[

AFIT/GCS/ENG/91D-20 i;) ‘l A
(.
’

A243 632 - 0
|\||\|'\\|||“|\‘ AR

EFFECT OF SPATIAL LOCALITY PREFETCHING
ON STRUCTURAL LOCALITY

THESIS

Dirk D. Schalch, Captain, USAF

AFIT/GCS/ENG/91D-20

Approved for public release: distribution unlimited

91-19048 .
HRRRI 91 1224 0

(

v
1
y

Form Approved

REPCRT DOCUMENTATION PAGE OMB No. 0704-0188

Pubir¢ reporting buraen for this cOIRCtION O INTOrMANION 15 ESTIMATAT 1O averaqe "our Der ‘esDOrse., INCIUAING the time for reviewing instructiong, sear(nng suisting 0ata sources
Qathenng ana MAINTAHNING tNS 313 NELSEC. and (OMPISTING ANT FEVIEWING ThE (OLECTION O INTMATION Send comments regarding this burgen estimate of any other aspect of this
coliection Of 111! M ALION. INCGUAING SUGQEST!ONs 10T reQuUING this Durfger 1o WasminQlor reagauarters Services, Directorate 107 Inta-manon Operations ang keports. 1215 jettersor
Davis Highway 5utte 1206 Arington. v4 102026302 ang t¢ tne Othice 4t Management ang Buoget, Paperwors Reguction Project (3704-0 188), Washington. { 20503

1. AGENCY USE ONLY (Leave blank)] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1991 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

EFFECT OF SPATIAL LOCALITY PREFETCHINC ON
STRUCTURAL LOCALITY

.6. AUTHOR(S) '
Dirk D. Schalch

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
i REPORT NUMBER
* Air Force Institute of Technology, WPAFB OH 45433-6583

' AFIT/GCS/ENG/91D-20

© 9. SPONSORING ' MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING ' MONITORING
: AGENCY REPORT NUMBER

11. SUPPLEMENTARY NCTeS

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited _

1 13. ABSTRACT (Maximum 200 words)

2 The purpose of this research was to analyze the effect that spatial locality

.

prefetching in cache memory has on the structural locality of program memory
referencing behavior. To examine this, a software simulator was built to model

a proposed two-level cache memory subsystem. The proposed subsystem was designed
to use spatial locality prefetching to exploit the structural locality contained
in executing computer workloads. New memory referencing models were developed to
incorporate the combined use of structural locality and spatial locality

. prefetching. From these models, equations were derived to predict the hit rates
for both caches. Combined with the state transition probabilities of the memory
referencing models, measurements from the trace-driven simulations were used to
solve the hit probability equations. This research showed that performance gains
+ through structural locality prefetching are still possible even when spatial
locality prefetching is being used in the lower level cache.

e
18, SUBJECT TERMS 15. NUMBER OF PAGES
Cache, Spatial Locality, Structural Locality 149

16. PRICE COD¢E

17. SECURITY CLASSIFICATION I!B. SECURITY CLASSIFICATION ’19 SECURITY CLASSIFIZATION 2C. LIMITATION OF LESTRACT
of nInorT . T TR PAGE . ST oRIITrRAlT

UNCLASSIFIED UNCLASSIy ity UNCLASSIFIED UL

Nen T

AFIT/GCS/ENG/91D-20

EFFECT OF SPATIAL LOCALITY PREFETCHING

ON STRUCTURAL LOCALITY

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Systems

CA_seas.oa Ter

X ').\):t.l

; Lt Tal r.

i e - aved b
ot aasideatton L o
i B — JUR
Dirk D. Schalch, B.S. . W . :
T e ol Lo o
- '
Captain, USAF b et Ty n s
ORI L & i

tift. ! e .""1

December 1991 l;\)\ {—

Approved for public release; distribution unlimited

Acknowledgments

.In accomplishing this thesis, I received invaluable
assistance from others. I am greatly indebted to my faculty
advisor, Maj William C. Hobart, Jr., for his leadership and
support. His belief in me and the importance of my research
guided my efforts to completion.

I also would like to thank my thesis committee members,
Maj Eric R. Christensen and Maj Kim Kanzaki, for their help.
Maj Christensen provided timely assistance with the Ada
programming language.

And finally, I wish to thank my wife Maggie whose
patience and support made a difficult task much easier to

bear,

Dirk D. Schalch

ii

Table of Contents

Page

AcknowledgmentsS . . . « + & ¢ 4 o o o s o o s e o s o o ii
List of Figures . . « + ¢« v ¢ ¢ o + ¢ o o o o o o o o o iv
List of Tables * * . . L2 - - [] L] L] L] L] L] L] L2 L - L] . L] v
Abstract . . ¢ ¢ ¢ ¢ 4 ¢t 6 s 4 s e o e e o o 2 s o o vi
I L] IntroduCtion L] . - L] » * L] - L] L] - L d - *® L] * L] . 1-1
II . Literature Review - - . - - - - . 2-1
III L] Methodology - L] L] . L L) L] L L] L] L] L] L] - L] L d - . L 3-1
Justification of Methodology Selected 3-1

Funct iOnal Requirements . . - - 'Y - - . . 3-3

Cache Simulator Preliminary Design 3-5
Implementation of Cache Simulator in Ada 3-8
Validation of Cache Simulator 3-31
Summary . . . - - . . . Y . . - . . - 3-33

IV. Findings L] - L] - L] L] L] L] L] . L] L] . L] - L] L] . L] L] 4-1
Workload Selection & ¢« & ¢« ¢« ¢ ¢ & . . 4-1
Trace-driven Simulations « « « + « . . 4-3

CAM Cache Hit Probability« ¢« « ¢« ¢« « « + & 4-5
Structural Locality Cache Hit Probability 4-15
Performance AnalysSisS . . « « + o« o o o o o o o & 4-22
Summary L] L] L] - . L] L] L] e L] . Ll L] . L] . » - L] L] L] 4-23

V. Conclusions and Recommendations 5-1
Appendix A: Cache Simulator Source Code A-1

Appendix B: Test Trace Mapping to Testing Requirements B-1
Appendix C: Wc and Ws vs. Effective Cache Size Graphs c-1
Bibliography L] * L] . L4 L] L] - L] L] L] - L] L] - - - - . L] - BIB-l

Vita

List of Figqures

Figure
2.1 Two~-State Markov Model of Program Behavior
2.2 Hobart's Proposed Memory Subsystem
3.1 Cache Simulator Structure Chart ;
3.2 Linked_List_Package Specification
3.3 CircularQ_Package Specification
3.4 Addr_Record_Package Specification
3.5 Cache_Simulator_Driver Procedure
3.6 Cache Processing FIow . . ¢ ¢ ¢ ¢ ¢ &« o ¢ o o o &
3.7 SLC Prefetch After SLC Miss and CAM Hit
3.8 SLC and CAM Prefetches After Both Caches Missed .
3.9 Fetch_Address_Package Specification
3.10 Hex_to_Dec_Package Specification
3.11 Determine_Type Package Specification
3.12 Compute Miss Ratios Package Specification
3.13 Compute_Memory Access_Time_ Package Specification .
3.14 Compute_Cache_Pollution_Package Specification . .
3.15 Generate Ref Frequency_ List_Package Specification
3.16 Simulator Testing Requirements
4.1 Markov Model for CAM Cache Referencing With
Prefetching ¢ ¢ ¢ ¢ ¢ ¢« ¢ ¢ o o o o o @
4.2 Modified Markov Model for CAM Cache Referencing
With Prefetching ¢« . « « « . .
4.3 Markov Model for SLC Referencing With Prefetching
4.4 Modified Markov Model for SLC Referencing With

Prefetching . . . ¢ ¢« ¢ ¢ ¢ ¢ o ¢ o o o o o o

iv

List of Tables

Cache Simulator Requirements Matrix . .
Symbolic Workloads Used in Simulations .
SLC and CAM Cache Parameters

Cache Performance Statistics

State Transition Probabilities - All References

CAM Cache Hit Probability Comparisons .

SLC Hit Probability Comparisons

Speedup Due to Spatial and Structural Prefetching

.

AFIT/GCS/ENG/91D-20
Abstract

The purpose of this research was to analyze the effects
that spatial prefetching in cache memory have on the struc-
tural locality of program memory referencing behavior. To
examine this, a software simulator was built to model a
proposed two-level cache memory subsysten. The proposed
subsystem was designed to use spatial prefetching to exploit
the structural 1locality contained in executing computer
workloads.

New memory referencing models were developed to
incorporate the combined use of structural locality and
spatial locality prefetching. From these models, equations
were derived to predict the hits rates for both caches.
Combined with the state transition probabilities of the memory
referencing models, measurements from the trace-driven
simulations were used to solve the hit probability equations.

This research showed that performance gains through
structural locality prefetching are still possible even when
spatial locality prefetching is being used in the lower level

cache.

vi

Chapter 1

Introduction

1.1 Background

One of the significant factors in improving the
performance of a computer system is minimizing the time
required to access instructions and data in main memory.
Cache memory performs this vital function. Located between
the computer processor and main memory, cache memory is small,
high-speed memory designed to temporarily store portions of
main memory most likely to be referenced by the computer in
the near future. Cache memory can typically reduce access
time to instructions and data to 10-25 percent of the time to
directly access main memory (Smith, 1982:473).

Its extremely fast operating speeds require cache memory
to be implemented by special hardware containing high-speed
logic circuits (Hayes, 1988:443). As a result, cache menmory
is very expensive. The challenge for the cache memory
designer is to minimize design cost while maximizing cache
performance.

One of the key considerations in designing cache memory
is understanding the effects that computer workloads can have
on cache memory performance (Hobart, 1989:4). Despite its

small size, cache memory is able to successfully perform its

functions due to the 1locality characteristics of workload
execution. Three types of program 1locality are spatial,
temporal, and structural (defined in section 1.5). By
characterizing the memory referencing behavior of expected
computer workloads, one can optimally design a cache memory
subsystem which increases computer performance by reducing
memory access time.

To take advantage of these referencing localities, cache
memory can prefetch in blocks of instructions and data from
main memory. Based on current memory referencing, these cache
blocks have a high probability of satisfying subsequent memory
references (cache hits).

While program locality ensures cache performance, a
trade-off exists in how much to prefetch. If the block size
is small, reduced bus bandwidth could boost cache performance
through decreased transfer time. However, the block size may
not be exploiting the locality potential in the workloads. 1In
turn, cache miss ratios could increase. On the other hand, a
large block size could improve hit rates by capturing more of
the available locality. But this advantage could be hampered
by reduced effective cache size resulting from prefetching
unneeded references (known as cache pollution).

From this discussion, it becomes apparent that block size
prefetch strategies play an important role in determining the

effectiveness of a cache memory design.

1.2 Statement of Problem

The purpose of my thesis research is to analyze the
effects that spatial locality prefetching has on structural
locality. This research focuses on the cache pollution which
occurs when spatial prefetching is used in a two-level cache

hierarchy.

1.3 Research Objectives

This research involves the two-level cache memory sub-
system proposed by Hobart (Hobart, 1989:96-99). The proposed
design (discussed in detail in next chapter) uses two caches
to further reduce memory access time.

The cache hierarchy employs spatial prefetching in the
secondary cache (closest to main memory). This action
attempts to capture any structural locality being exhibited by
the executing workload. These referenced structures are then
prefetched into a smaller, faster first-level cache located
between the secondary cache and the processor.

In addition, Hobart developed four Markov models to
represent the referencing behavior of both caches employing
prefetching and no prefetching (Hobart, 1989:100-112). From
these models, cache hit probability equations were derived.
This research analyzes the two Markov models involving
prefetching in both caches (discussed in Chapter 4).

The objectives of this research are as follows:

- To design, build, and implement a cache simulator

to represent Hobart's two-level cache hierarchy,
- To use trace-driven simulation to measure the
following cache performance statistics resulting from
various spatial prefetching strategies: miss ratios,
pollution, and effective memory access time.
- To determine how the two Markov models for prefetching
can be modified to account for the effects of spatial
prefetching,
- To derive cache hit probability equations from these
modified MArkov models,
- To incorporate the cache pollution measurements into
these hit probability equations.

And in so doing, this research
- Provides a documented analysis of the effects that
spatial prefetching has on structural locality,
- Provides an analytic model which comprehensively
incorporates the effects of spatial prefetching on
the two-level cache performance,
- Provides a method to predict cache hit probabilities
using measured pollution rates,
- Identifies optimal prefetch block sizes for given
cache sizes which could serve as design parameters
for a possible hardware implementation of the pro-

posed memory subsystem.

Research Questions

The questions involved in this research are as follows:
- Can the cache simulator be structurally developed

in the Ada language and provide acceptable simulation
processing speed?

- Does spatial prefetching into the secondary cache
effectively capture referenced structures (structural
locality) inherent in the workloads? And in the
process, how is cache performance affected by any
resulting pollution?

- Does structural prefetching into the first-level cache
produce an acceptable level of performance? How has this
performance been affected by any resulting pollution?

= Can the cache pollution measurements obtained from
spatial prefetcning strategies be used to predict the hit

ratios for both caches?

Definitions

1.5.1 Block

A block (also referred to as line) is a unit of cache

memory storage identified by a tag. Block size is always a

power of two.

1.5.2 Miss

The event that a requested memory address is not

available when referenced in a given cache memory level. If
a miss occurs in main memory, it is known as a page fault. A
hit represents the opposite event: requested memory address

is available.

1.5.3 Miss Ratio

The number of misses occurring in a given cache divided
by the total number of memory references to that cache. The
miss ratio is a cache performance metric. The hit ratio
represents the opposite metric: number of hits in a cache

divided by total number of references to that cache.

1.5.1 Pollution

As defined by Smith, cache pollution is the portion of
prefetched data which is never referenced while residing in
the cache (Smith, 1982:482). Cache pollution reduces the

cache's effective size.

1.5.4 Prefetching

Prefetching is the transfer of a block of instructions
or data from one level of the memory hierarchy (such as main
memory) to a higher level (such as cache memory) prior to
being used at that higher level. ©Unless otherwise noted,

prefetch block size will always equal the cache block size.

1.5.2 Spatial Locality

Spatial 1locality is the condition that subsequent
memory references will likely occur in locations close to the
current reference. Examples of spatial locality are data
files or results of a relational database query clustered by
an identifying attribute. Both tend to be stored together

physically in memory.

1.5.3 8tructural Locality

Structural locality is the condition that a given set
of memory references will likely be referenced in the same
order as previously referenced. Termed by Thazhuthaveetil,
structural locality is the newest concept to be studied (Thaz,
1986). An example of structural locality is subroutine which

may be repeated several times during program execution.

1.5.4 Temporal Locality

Temporal 1locality is the condition that a current
memory reference will be likely referenced again in the near
future. An example is a program loop which repeats instruc-

tions.

1.6 8cope of Research
This research involves designing, building, and imple-
menting the cache simulator according to the behavioral

description of Hobart's proposed memory subsystem. Once

coded, the simulator is thoroughly tested to prove
correctness of design. This validation process ensures that
research findings are based on accurate data.

Oonce the simulator is developed, trace-driven simulations
are used to measure the performance in both caches. The
traces are comprised of collected memory references obtained
from various computer workloads.

The resulting data is used to characterize the effects of
spatial prefetching on structural 1locality. From this
analysis, modified cache behavior models are developed to
account for these spatial prefetching effects. Cache hit
probability equations are derived from these new models.
Within these equations, pollution measurements are used to
predict the hit rates for the two caches. Using these hit
ratios, effective memory access times are calculated for
various spatial prefetching parameters.

This research does not involve measuring the effects of
prefetching on the access cycle time of each cache memory. To
determine the effective memory access time, the cycle times
for the memory levels are based on typical values associated
with current technology. In addition, this research does not
involve developing the hardware circuit design for any
components of the proposed memory subsystem. Instead, it
employs software simulation to study the different aspects of

cache behavior.

1.7 Assumptions and Limitations
- The proposed cache memory subsystem operates in a
single processor environment.
- Since the goal of this research is to study the
effects of prefetching based on symbolic program
behavior, system activities such as context switching and
interrupt servicing are not included in the workloads.
As a continuation of Hobart's research, this resea>ch
serves as a baseline from which future studies can
analyze the effects of prefetching based on total system
behavior. The literature review covers some techniques
for incorporating context switching in trace-driven simu-

lations.

1.8 Summary

This chapter has provided an overview of this thesis
effort. The following chapters cover three main areas.
Chapter 2 provides an extensive 1literature review of
applicable research. Next, Chapter 3 describes the metho-
dology used to conduct this research. In particular, this
chapter covers the design and development of the cache
simulator. Chapter 4 provides a detailed description of the
research results. Modified cache behavior models incorpor-
ating the effects of spatial prefetching are presented. From
these models, cache hit probability equations are derived.

Calculated results are then compared with actual simulation

measurements. In addition, thkis chapter investigates cache
performance improvements occurring from spatial prefetching.
Finally, Chapter 5 provides the research conclusions.

Recommendations for future research are presented.

1-10

Chapter 2

Literature Review

2.1 Locality Characteristics of Symbolic Workloads

Hobart analyzed the spatial, temporal, and structural
localities of symbolic workloads (Hobart, 1989). Symbolic
processing 1is associated with artificial intelligence
applications.

Using trace-driven simulation, Hobart methodically
characterized the locality aspects of symbolic workloads by
examining the low-level memory referencing behavior. To
examine the "temporal distances" of memory references, Hobart
developed a two-state Markov model as shown in Figure 2.1
(Hobart, 1989:40-42). The various state transition probabili-

ties are discussed in Chapter 4.

Same Stack
Distance
Old New
Reference Reference
Not Same
Stack
Distance

Figure 2.1: Two-State Markov Model of Program Behavior

2-1

Previously unreferenced addresses are described by the
"new reference" state. While previously referenced addresses
are depicted by the "old reference" state. Transitions
between the two states occur as memory referencing shifted
from old locations to new locations (vice versa). Within the
old reference state, consecutive references which occur in the
same order in which they were previously referenced are
represented as "“same-stack-distance (SSD)" transitions. The
notion of a "stack" is used to describe the ordered contents
of the cache. Within the cache, stack distance represents the
spatial distance from the last address (top of the stack) to
another address. Given a previously referenced address, an
SSD reference takes place when the next reference is located
the same spatial distance from the top of the stack as when it
was last referenced. 1In turn, consecutive SSD transitions
show a rereferencing of cache addresses in the same order as
before. Conversely, consecutive old references with different
stack distances (not in the same order) are "not-same-stack-
distance (NSSD)" transitions. 1In total, Hobart identified
five possible state transitions: New-New, New-0ld, Old-New,
01d-ssD, and 01d-NSSD.

Employing this model, Hobart implemented a systematic
method for extensive analysis of program locality. New
metrics were developed to measure referencing behavior.

Studying the spatial characteristics of reference

strings, Hobart discovered an unique aspect of memory refer-

encing behavior. When an executing workload is exhibiting
spatial locality, subsequent references took place within a
physical address distance of 32 words from the previous
references (Hobart, 1989:51-53). He labeled this
characteristic the "spatial locality window." This narrow
spatial window was found to exist in all types of workloads
both symbolic and non-symbolic (conventional).

From this, a new spatial locality metric was developed
called the "spatial window probability (Psw)": the prob-
ability that given a current address, the subsequent reference
is within 32 words. Hobart observed that the Psw of symbolic
workloads was almost 50 percent greater than of conventional
workloads. This was attributed to the higher percentages of
instruction fetches inherent to symbolic processing.

As a result of the higher Psw, Hobart suggested that
spatial prefetching may prove more effective for symbolic
workloads. 1In addition, the narrow spatial window allowed
smaller prefetch block sizes which reduces the potential for
cache pollution.

To analyze temporal 1locality characteristics, three
metrics were developed to measure the cumulative temporal
distances of program referencing (Hobart, 1989:55-69). The
LRU90, LRU95, and LRU99 metrics represented "simulated, fully-
associative least recently used (LRU) stack depths" needed to
capture 90, 95, and 99 percent of a workload's old references,

respectively.

Hobart found that the temporal distances of symbolic
workloads were significantly less than those of conventional
workloads. The conventional LRU99 was five times greater.
This behavior was attributed to program referencing character-
istics. Symbolic workloads tend to access the first few
elements of a list. In contrast, conventional workloads tend
to access their entire structures evenly. In addition,
symbolic workloads only reference about one third the number
of distinct data addresses.

From this, Hobart suggested a trade-off between cache
design options tailored toward symbolic workloads. Based on
the temporal analysis, a 99 percent hit rate on old references
can be attained with a cache one fifth the size that would be
required for conventional workloads.

To analyze structural locality characteristics, Hobart
developed the Pssd metric: the probab:lity that given a
previously referenced address, the subsequent reference will
be to an address with the "same stack distance" to the
previous reference (Hobart, 1989:69-71).

Hobart found the Pssd depicted one of the most unique
aspects of symbolic memory referencing behavior. Over one
half of symbolic references (Pssd = 0.550) can be classified
as the referencing of ordered structures. 1In contrast, the
percentage for conventional workloads is only slightly more
than one fourth.

As a result of his findings, Hobart proposed a memory

subsystem design to exploit the structural 1locality of
symbolic workloads (Hobart, 1989:96-99). The design involves
a two-level cache hierarchy comprised of a small structural
locality cache (SLC) close to the processor and a larger
content-addressable memory (CAM) cache. The proposed design
is shown in Figure 2.2.

The main function of the CAM is to capture the structural
locality being exhibited by the workload. It can accomplish
this goal by using a first-in-first-out (FIFO) circular buffer
replacement algorithm. This algorithm allows the CAM to store
blocks containing requested addresses in the order received
from main memory. As a result of the maintained order,
structural locality will remain intact after being fetched
into the CAM.

The SLC is then able to exploit this structural locality
by prefetching requested blocks from the CAM. Unlike the CAM,
the SLC does not require reordering. This reason combined
with the small size of the SLC allow an LRU replacement
algorithm to be employed.

Both caches are comprised of content addressable memory.
This type of memory is fully associative and, in turn, allows
addresses to be simultaneously searched. The result is
improved access times due to reduced latency.

As discussed in Chapter 1, this proposed memory subsystem
will used in this research. One of Hobart's main concerns was

cache pollution in the CAM resulting from spatial prefetching.

AHOW3W

NIV

(10018 WvD)
yoejeld
Ayeoo fegeds

34444444

weysAsang AloweiN pesodoud s JeqoH 2'2 e.nBi4

(iooig O18)
yogjeje.d
......... TN Aeco] eiongg
.........] x_|
Ayeds0
|||||||||| eJoduwie) b - — - -
.......... 1 4
YMo 0 w
RS Wweweseidey NH1
WVO
eweseidey Jeyng
2N24D O41d

NdO

How would reduced structural locality resulting from pollution
effect the performance of the SLC and CAM caches? This

research will focus on this concern.

2.2 Trace-Driven Simulation

Trace-driven simulation involves the use of collected
sequences of virtual addresses (traces) to drive a simulation
model of the cache memory system (Smith, 1982:479-480). By
changing parameters within the simulator, the effects of cache
design choices (cache size, block size, replacement, etc.) can
be studied.

Smith identified two major advantages of trace-driven
simulation (Smith, 1987:1065). It allows the analysis of
cache memory performance based on actual computer workload
behavior. Mathematical models and random number generators
have fallen short in representing true program character-
istics. The other advantage is flexible and feasible cache
design assessment. Hardware prototypes require extensive
development time with minimum design variance. 1In contrast,
cache simulators can be developed quicker with maximum design
parameter ranges.

Smith pointed out two major limitations of trace-driven
simulation (Smith, 1987:1065). He found that actual miss
ratios from executing workloads in a real system environment
are almost always exceed those obtained through simulations.

This difference can be attributed to several reasons. Due to

their relatively small sizes, traces may not provide repre-
sentative samples of the computer workloads. Operating system
activity, such as context switching and interrupt servicing,
may not be contained in the trace. 1In addition, input/output
handling may not be included.

The other 1limitation results in reduced analysis of
larger caches. In order to incorporate process switching,
Smith employed cache "flushing" to simulate the changing of
working sets. However, this approach combined with the
limited size of traces prevented larger caches (beyond 32K
bytes) from being filled. The result was a lower limit to
large cache performance.

To improve the trace collection process, Agarwal, Sites,
and Horowitz developed a new technique involving the modifi-
cation of microcode to capture memory references as they occur
(Agarwal and others, 1986:119-127). Using the VAX 8200, they
implemented microcode changes which recorded all virtual
address references to include process switching and system
calls. The method was dependent on available microcode
memory. Microcode was modified everywhere a memory reference
could be generated. As a result, saturated memory prevented
all required microcode changes.

Hobart overcame this memory problem. Using a microcode
modification technique similar to Agarwal, Sites, and
Horowitz's, Hobart eliminated the need to embed microcode

changes at every memory referencing location (Hobart, 1989:31-

- I RRRETSI—=,

32). Instead, the page map table was changed to automatically
invoke the "page fault abort handler" on every virtual address
reference. In turn, the handler was modified to collect the
virtual address traces.

To improve trace data as a true representation of program
behavior, Iyer, Laha, and Patel developed a sampling technique
to estimate the distribution of cache miss ratios due to task
switching (Iyer and others, 1988:1325-1330). Similar to
Smith's approach, their technique uses an emptying of the
cache to represent a context switch. However, while Smith
simulated task switching by purging the cache at consecutive
intervals, Laha, Patel, and Iyer sampled a trace at points
where task switches occurred.

Their methodology involves the following steps. First,
they chose a sample size which represented the length of the
process interval. Next, based on trace size, the sampling
frequency was established to obtain a target number of
samples. Once these parameters were set, the trace samples
were collected so that the start of each sample mapped to a
context switch. When running the simulation, the cache memory
would be purged at the start of each sample to coincide with

the task switch.

The result is a trace-driven simulation which produces a
more accurate distribution of the cache miss ratio. Typical
samples sizes were 5000, 10000, and 20000 address references.

Laha, Patel, and Iyer used 35 samples from each trace ‘o

attain an acceptable level of confidence.

2.3 Impact of Prefetching on Cache Performance

The locality of memory referencing in executing workloads
provides the opportunity to predict which portions of the
address space will most likely be referenced next. Cache
memory takes advantage of this locality by prefetching
instructions and data ahead of their actual usage.

As Smith pointed out, the result is substantial
improvement of system performance (Smith, 1978:7-21). The
other choice is to fetch on demand. Smith explained that
demand fetches incur high penalties in CPU overhead and idle
time. In a single process environment, the CPU must wait
while transfers between cache and main memory are accom-
plished. Even with multiprogramming, a process may not always
be ready to execute while memory requests are being satisfied.
In addition, having to schedule and start each separate demand
fetch can lead to increased overhead per transfer.

In determining the effectiveness of prefetching, Smith
compared the reduction of the miss ratio for a given block
size to the corresponding increase in transfer ratio.
Transfer ratio was comprised of the miss ratio and prefetch
ratio: "number of prefetch data transfers to total number of
memory references." Smith concluded that prefetching can
reduce the cache miss ratio at a cost level less than the

percentage increase in transfer ratio. He found that a block

fetch size of 32 bytes was generally effective for cache
memory sizes up to 64K bytes. A 64-byte block size produced
comparable (even better) miss ratios but at the expense of
increased transfer costs. In this research, a CAM block size
of 32 bytes is used with a 32K byte CaM for one set of
simulations.

In their research of cache performance in a Unix
environment, Alexander, Keshlear, Cooper, and Briggs also
looked at prefetching effects on bus traffic (Alexander and
others, 1986:41-70). Similar to Smith, 32 bytes proved to be
an effective prefetch block size. They found that block sizes
ranging from 8 to 32 bytes resulted in the largest reductions
in bus traffic.

Smith identified several architectural factors which can
affect block size choice (Smith, 1987: 1064). "Memory
interference" and "memory busy time" can result from larger
block sizes. In multiprocessor systems, the longer line can
tie up the memory and bus and, in turn, adversely impact other
processors. In addition, "I/O overruns" may occur. Memory
interference may cause I/0 operations to be aborted and
reinitiated. Another factor involves address tag storage. If
a block size is small, a substantial amount of the cache
storage is required for the address tags. The result is the
effective size of the cache is decreased.‘ One more factor
concerns copy-back caches. A larger block size can increase

memory traffic for each copy back. However, Smith suggests

the additional traffic can be countered by the lower miss
rates attained from larger lines.

To improve multiprocessor system performance, Johnson
also suggests the use of prefetching to reduce contention for
shared memory resources (Johnson, 1989:137-141). He explains
an approach called "tagged working set prefetching." Each
prefetched block carries a tag to uniquely identify its
working set. The prefetched blocks are then "“broadcast" to
all processors. Using the tags, other cache controllers can
load any required broadcast blocks. The result is reduced
memory traffic by accomplishing several prefetches with single
accesses.

Smith attributed the effect on miss ratio as the main
influence that block size choice has on cache performance
(Smith, 1987:1064-1074). Using extensive trace-driven
simulation, Smith observed that larger block sizes generally
reduced cache miss ratios. Longer lines tend to exploit the
memory referencing localities of executing workloads. The
upper limit to this effect occurred when the block size
approached the cache size. After this point, the miss ratios
increased. Smith explained that the increase was due to less
captured program locality resulting from decreased number of
cache blocks. For cache sizes of 32K and 64K bytes, prefetch
block sizes of 16-64 bytes continued to produce the lowest
miss ratios. 1In addition to the simulations involving a 32

byte CAM block size, another set of simulations used in this

research employs a 16 byte block size for a 32K byte CAM
cache.

Using trace-driven simulations involving similar cache
sizes, Przybylski also produced optimal prefetch block sizes
of 32-64 bytes (Przybylski, 1990:160-169). These sizes
resulted in the minimum effective memory access times.

The advantages of prefetching extend to all levels of the
memory hierarchy. Excessive dependence on disk I/0 operations
can significantly decrease system performance. Smith
identified database systems as excellent candidates for data
caching (Smith, 1978:223-246). The high degree of sequential
access inherent in database systems allow subsequent data
references to be predicted. 1In turn, data blocks or segments
can be prefetched into main memory to satisfy future requests.
The resulting reduction in disk I/O substantially improves

database system performance.

2.4 Multi-Level Cache Hierarchies

With the speeds of new processors continuing to increase,
traditional single-level caches will not be able to exploit
the extremely fast CPU cycle times. As Smith pointed out,
expanding the size of a single cache produces two problems
(Smith, 1982:517). One is large physical size and circuit
complexity increases memory access time. The other problenm is
adding more cost to an already expensive hardware component.

Hennessy, Horowitz, and Przybylski observed that once the

cache size reaches 64KB, there exists little margin for per-
formance improvement (Hennessy and others, 1988:290-298). As
they note, "chip to chip communication" and control circuitry
continue to contribute a major portion of memory latency.
Physical cache size and material properties limit transfer
rates. Consequently, as CPU cycle time grows faster, the
single-level cache 1is hard pressed to maximize CPU
performance.

Multi-level caches provide a solution. Employing
smaller, faster cache design technology, cache hierarchies can
locate a first-level cache close to the processor to lower
memory latency and transfer times. As Hennessy, Horowitz, and
Przybylski pointed out, the addition of a second-level (C2)
cache substantially decreases the miss penalty of the first-
level (C1) cache (Hennessy and others, 1989:114-120). The
result is lower effective memory access time leading to
increased CPU performance.

In their two-level cache simulation study, Levy and Short
show that the addition of a secondary cache can boost system
performance (Levy and Short, 1988:81-87). Employing trace-
driven simulations, they compared the execution cycle times of
two-level caches to those of a single-level cache. Results
revealed that given an C2 to C1 size ratio of at least 8:1,
system performance was significantly improved from the
addition of the C2 cache. For example, given a 15-cycle main

memory access time, combining a 4-cycle, 256KB C2 cache with

a l-cycle, 8KB C1 cache produced a performance increase of 18
percent. In this research, an 8:1 ratio of CAM to SLC size
is used in the simulations.

Using trace-driven simulations of two-level caches,
Hennessy, Horowitz, and Przybylski showed that a C1 cache
largely decreased the number of memory references to the C2
cache (Hennessy and others, 1989:114-120). They noted that
the smaller amount of C2 references reduces the impact of C2
cycle time. As a result, optimal secondary cache sizes can
exceed the sizes of single-level caches. Interesting
similarities were found between the "global" miss ratios
(number of misses divided by total CPU references) of
secondary caches and the miss ratios of corresponding single-
level caches. They determined that if the C2 cache is at
least eight times the size of the Cl1 cache, then the global
miss ratio of C2 is basically equivalent to the miss ratio of
the comparably-sized single cache.

From trace-driven simulations of two-level caches, Bakka,
Bugge, and Kristiansen examined the miss ratios of secondary
caches (Bakka and others, 1990:250-259). Their simulations
involved C2 cache sizes of 1-8 MB with the smallest size being
eight times the size of the C1 cache. They found that C2
block sizes of 128 and 256 bytes produced the lowest miss
ratios in the secondary caches.

Due to the high hit ratios of the first-level cache,

improving the access time of this cache is an important design

goal. Baer, Levy, and Wang proposed a two-level cache hier-
archy designed to minimize the access time of the C1 cache
(Baer and others, 1989:140-148). They suggested that the C1
cache can be optimally accessed by virtual addresses. In
turn, the Cl1 access time is reduced since no address
translation is required. Address translation and handling of
"synonyms" (copies of data under different virtual addresses)
is accomplished in the C2 cache. As discussed earlier,
decreased referencing of the €2 cache lessens the impact of
increased cycle time overhead. From their simulation results,
they concluded that if the address translation penalty in the
C1 cache is at least six percent, then switching to the

virtual C1 design would reduce effective memory access time.

2.5 Summary

Several cache performance characteristics identified in
this chapter have direct applicability to this research.
Increasing the cache size beyond 64K bytes results in little
improvement to the hit ratio. For cache sizes of 32K and 64K
bytes, prefetch block sizes of 16-64 bytes produce the optimal
hit ratios. In two-level cache hierarchies, the size ratio of
the secondary cache to the primary cache should be at least 8
to 1. These performance characteristics are used to establish
the cache size and block size parameters for the trace-driven

sirulations.

Chapter 3

Methodology

This chapter describes the methodology employed to design
and build the two-level cache simulator used for this
research. It starts with a justification of the methodology
selected. An overview of the experimental setup is provided.
Next, the cache simulator design and implementation is covered
in detail. The chapter ends with a description of the test
procedures used to validate and verify the correctness of the

simulator functions.

3.1 Justification of Methodology Selected

As covered in the background, trace-driven simulation is
the technique to be used to evaluate the proposed memory
subsystem design. Hobart developed a simulator for the two-
level SLC and CAM cache hierarchy. This simulator was written
in Lisp and was built to run on the TI Explorer II computer.

For this research, the decision was made to design and
develop another simulator for the SLC and CAM cache memory
subsystem. This simulator is written using the Ada
programming language.

The rationale for this decision is based on several

justifications. One main reason is to take advantage of the

3-1

powerful, high-speed Sun SPARC microprocessor workstations.
The idea is very simple: to minimize the execution time of
the trace-driven simulations. The speed of the Sun SPARC
microprocessor is orders of magnitude (over 20 to 1) faster
than the TI Explorer II. Importantly, the Sun SPARC
workstation contains an extensive Ada software development/
execution environment: Verdix Ada Development System

(VADS - Version 6.0)

Another justification is based on the choice of the Ada
programming language. From a development standpoint, Ada
offers several advantages. A main strength of Ada lies in its
handling of abstract data types. Using a "packaging" concept,
Ada provides the ability to "encapsulate" abstract data types
along with the operations which manipulate their states
(Feldman, 1985:4-7). This Ada feature allows the cache
simulator to be developed using software packages which can be
integrated into a reliable, structured design. In addition,
this advantage facilitates modification and expansion of the
simulator to incorporate growing research requirements. New
aspects of cache behavior can be analyzed by modifying
existing or developing additional packages.

Another advantage is reusability. The use of Ada
constructs to achieve a highly-structured design promotes an
understanding of the software system. In turn, future
research efforts can benefit from expanded versions of the

cache simulator.

3.2 Functional Requirements
The following requirements served as the functional

baseline for the SLC and CAM cache simulator.

3.2.1 Workload Traces

Several sets of virtual address traces were available
for use in this research. Sixteen workload traces were
collected by Agarwal, Sites, and Horowitz from the VAX 8200
(Agarwal and others, 1986). Hobart provided 15 address traces
collected on the TI Explorer II (10 traces) and the IBM
System/360 Model 91 (5 traces).

The cache simulator must accept as input the memory
references contained in these traces. The memory references
in the Agarwal, Sites, and Horowitz traces are in hexadecimal
format. In addition, each memory reference has an integer
number identifier. This identifier indicates whether the
address is a data read, data write, or instruction fetch. The
memory references in the Explorer II/IBM 360 traces are in
integer format. These traces are available in separate
versions: data read only, data write only, instruction fetch
only, data reference only, and all references. As a result,

they do not contain reference identifiers.

3.2.2 Cache Design Parameters
The cache simulator must allow modification of the

following parameters for varied simulations: SLC size, SLC

prefetch block size, CAM size, and CAM prefetch block size.
The SLC shall employ a LRU replacement algorithm. The CAM

shall employ a FIFO circular buffer replacement algorithm.

3.2.3 SLC and CAM Miss Ratios
For each trace-driven simulation, the cache simulator

must calculate the miss ratios for the SLC and CAM caches.

3.2.4 S8SLC and CAM Memory Access Time

For each trace-driven simulation, the cache simulator
must calculate the effective memory access time. If we assume
that a cache block transfer can be overlapped with the CPU

execution, then the effective memory access time t, is:

td = tSLCpSLC + tCAM(l - pSLC)pCAM + tm(l - pm) (1-PSLC)

where

tsc = memory access time of the SLC
Dgic = hit rate of the SLC
teay = memory access time of the CAM
Pcay = hit rate of the CAM given a SLC miss

tumy = Mmemory access time of the main memory

3.2.5 B8LC and CAM Cache Pollution
For each trace-driven simulation, the cache simulator

must calculate the SLC and CAM cache pollution percentages.

3.2.6 Reference Frequency

For each trace-driven simulation, the cache simulator
must individually track how 1long it takes (number of
references) before each prefetched address is first
referenced. Cache pollution references will not be included.
For each given number of references, the cache simulator must
determine how many prefetched addresses required the same
number of references. For example, 1000 prefetched addresses
in the SLC took 50 memory references before they were

refefenced for the first time.

3.3 Cache S8imulator Preliminary Design

The purpose of this stage was to develop a high-level
architecture depicting how the simulator can be structured to
meet all functional requirements. In turn, this architecture
served as guide to producing an Ada software design solution.

The design approach used for this cache simulator is
based on functional decomposition. To achieve a structured
design, the simulator is comprised of an integrated set of
program modules. Each module performs functional requirements
involving the processing of input(s) to produce required

output(s).

A structure chart is constructed to provide a pictorial
representation of how the cache simulator program modules
would work together. The structure chart offers a way to
develop the simulator architecture without requiring knowledge
of the internal workings of each module. The syntax involves
using boxes to represent the program modules. Communication
between the modules is represented by labeled arrows.

Figure 3.1 shows the structure chart for the cache
simulator. As depicted, the program modules are grouped into
three major areas: input, processing, and output. The top
box represents the cache simulator driver module which directs
the activity between the three areas.

The input area is comprised of three modules. The Fetch
Trace Address module extracts one memory reference address at
a time from the trace file. Prior to being sent to the
driver, the memory reference is converted from hexadecimal to
integer format by the Convert Hex Address to Integer module.
The Determine Reference Type module determines whether the
memory reference is a data read, data write, or instruction
fetch.

The cache processing area performs the SLC and CAM cache
functions. It is comprised of the following three modules:
Process Data Read Address, Process Data Write Address, and
Process Instruction Fetch Address. Depending on the memory
reference type, the driver invokes the appropriate module

to service the trace address. Since these modules execute the

- — . - ——— e - g = - —— . —— = - —— -

NOLLNTIOd
JHOVO
31LNdWOD

JNL
§8300V
AHOW3N
3LNdWOD

SOILVH
SSIN
31LNdWNOD

] —.

Heyo eJnjonsg Jojeinuig eyoeo : ¢ esnbiy

ONISS3O0Hd dHOVO
€834aayv §834aayv
HO134 1M
NOILONYLSNI viva
§83004d §8300Hd

SLV1S

oS

$S34QQV

AvO
p\ \ﬂﬁu 18
AVO

18N
AON3NOD3H4A
JON3H343H
J1VH3IN3O

= S1vlS
Q

LNdLNO/

7

..
|
[
i
I
|
|
|
i
|
|
|
1
)

§83daav
av3ad
viva

§8300Hd

Sivis O18

HIOILNI
oL
._-D n_z_ S834aav X3H
JH3ANOD
$S340QY SSQ0Y
HIOAUN w * w wxw,.
JON3H3I43Y €S3Haagy
40 3dAL JOVHL
ININY313a HO134
$S34QQv

H3AIHA

HOLVINNIS
JHOVO

an (L

O_ ss3uaav

- - - - — - S - = e e -

SLC and CAM cache functions, they require access to the SLC
and CAM cache data structures. As the selected module
processes the memory reference, SLC and CAM data is generated
for cache performance analysis.

The output area processes the performance data and
produces statistics which are written to files. This area is
comprised of four modules. The Compute Miss Ratios module
calculates the SLC and CAM cache miss ratios. Using the cache
miss ratios, the Compute Memory Access Time module calculates
the effective memory access time. The Compute Cache Pollution
module calculates the SLC and CAM cache pollution percentages.
And finally, the Generate Reference Frequency List module
produces the output file tracking the number of references
before each prefetched address is first referenced.

Table 3.1 maps the structure chart modules to the

functional requirements satisfied.

3.4 Implementation of Cache Simulator in ada

Once the simulator architecture was established,
development of the cache simulator began. This development
phase involved the transformation of the functional design
requirements into a complete Ada system. Major tasks included
the detailed design, coding, integration and testing of the

simulator.

Table 3.1: Cache Simulator Requirements Matrix

Functional
Module Requirements
Driver 3.2.2
Fetch Trace Address 3.2.1
Determine Reference Type 3.2.1
Convert Hex Address to Integer 3.2.1
Process Data Read Address 3.2.2
Process Data Write Address 3.2.2
Process Instruction Fetch Address 3.2.2
Compute Miss Ratios 3.2.3
Compute Memory Access Time 3.2.4
Compute Cache Pollution 3.2.5
Generate Reference Frequency List 3.2.6

Each program module in the structure chart is mapped into
an Ada package. By performing this encapsulation, each Ada
package can be developed and tested as an individual
functional component. Indicated by the arrow connections
between modules (structure chart), visibility into other
packages is accomplished by withing the required packages.
Identified as data flows between modules (structure chart),
package communication is accomplished through the passing of
parameters to/from the various procedures and functions
contained within the packages.

The following sections provide a detailed description of
each Ada package used in the cache simulator. Appendix A

contains the source code.

3.4.1 LinkedLists_Package

A linked list data structure is employed to represent
the SLC cache abstract data type. The LinkedLists_Package is
used to implement the SLC cache as a linked list structure.
Ada code for this package is a modified version of code taken
from Data Structures with Ada (Feldman, 1985:103-115). The
rationale for the linked list structure is based on the LRU
replacement algorithms of the SLC cache.

Initially, it appeared that the SLC might be optimally
represented as an array. However, if an array was employed,
the array elements would constantly have to be reshuffled to
depict an LRU ordering. If a time stamp (number of references
passed) was used, every array element would have to be search-
ed to determine the LRU candidate for replacement. Both of
these array approaches would have lead to simulator perfor-
mance penalties.

A linked list structure provides a cleaner way to imple-
ment the LRU replacement algorithm. As an SLC address is
being either referenced (cache hit) or prefetched, the address
can simply be placed at the front of the list. As a result,
the LRU addresses fall to the rear of the list. When an
address has to be replaced, no search is required. The
address at the rear of the list is replaced. 1In addition,
since the SLC is very small, the size of the linked list never
grows beyond 512 nodes (largest number of addresses in SLC).

In turn, SLC searches do not degrade simulator performance.

In addition to the SLC, two linked lists are used to
maintain the SLC and CAM reference frequency lists. These
lists will be discussed in more detail later. For now, it
should be pointed out that these two linked lists are handled
by this package.

The LinkedLists_Package specification is shown in
Figure 3.2. LinkedListNode is a record structure containing
three fields. The Addr field represents the address of the
memory reference. The NumRef field indicates the number of
memory references which have passed while the address is
waiting to be first referenced. The Next field contains the
pointer to the next LinkedListNode.

This package has two functions and four procedures to
manipulate the state of the 1linked 1list dgta structure.
Receiving the memory reference address, the MakeNode function
creates a LinkedListNode for storing a new address in the SLC.
The Search function is used to find the node containing the
matching address during a SLC search. The AddToFront
procedure adds a LinkedListNode to the front of the SLC. The
Insert_In_Order procedure is used by the SLC and CAM reference
frequency lists to insert an address record in ascending order
by the NumRef value. Insert_ In_Order employs the AddToFront
and AddToRear (only at end of list) procedures to place a
frequency record in its appropriate position in the list. The

Delete procedure deletes a designated node from the SLC.

package LinkedLists_Package is

type LinkedListNode;
type NodePointer is access LinkedListNode;
type LinkedListNode is

record
Addr : integer;
NumRef ¢ integer := 0;
Next : NodePointer := null;

end record;

type List is

record
Next : NodePointer := null;
Tail : NodePointer := null;

end record;

function MakeNode (Address: integer)
return NodePointer;
function Search (L: List; P1: NodePointer)
return NodePointer;
procedure AddToFront (L: in out List;
P1: NodePointer);
procedure AddToRear (L: in out List;
P1l: NodePointer);
procedure Insert_In Order (L: in out List;
P1l: NodePointer);
procedure Delete (L: in out List; P1: NodePointer);

end LinkedLists Package;

Figure 3.2: LinkedList_Package Specification

The LinkedLists_Package body instantiates a generic
package called Unchecked_Deallocation. Dynamic allocation can
swiftly use up storage space as linked 1lists nodes are
continually being created and deleted. The Unchecked_
Deallocation package is called by the Delete procedure to
return space used by the deleted node back to available

memory.

3.4.2 CircularQ Package

A circular queue data structure is used to implement the
FIFO circular buffer replacement algorithm of the CAM cache.
Blocks of addresses are stored in the CAM in the order they
are referenced. The CircularQ Package maintains the state of
the CAM cache using the circular queue. Ada code for this
package is also a modified version of code taken from Feldman
(Feldman, 1985:144-145).

Using a circular queue eliminates the need to move the
entire queue. Since the front and rear of the queue are
essentially connected, CAM replacement and prefetch operations
can be accomplished by moving head and tail pointers around
the queue.

In Chapter 4, the CAM is referred to as a "stack." This
terminology is not to be confused with the CAM being imple-
mented as a circular queue. Instead, "stack" is used to
describe the memory referencing behavior of the CAM cache:
same-stack-distance, not-sgme-stack-distance. The circular
queue describes how the addresses are stored and replaced
within the CAM cache.

The CircularQ Package specification is shown in
Figure 3.3. The circular queue array is created as the
dynamically allocated Array Type with index of range 1 to
32768. The upper range represents the largest possible CAM
size of 32768 addresses. The Queue is a record structure

containing four fields. Declared as a dynamically allocated

package CircularQ Package is

type index is range 1 .. 32768;
type Array Type is array (index) of integer;
type Array Ptr_Type is access Array_ Type;

type Queue is
record

Address : Array Ptr_Type := new Array Type;
Ref Count : Array Ptr Type := new Array_Type;
head : index;
tail : index;

end recordqd;

procedure Enqueue (Q: in out Queue;
CAM_Size_Index: in index;
Reference: in integer);

procedure Dequeue (Q: in out Queue;
CAM_Size Index: in index);

procedure SearchQ (Q: in Queue;
Reference: in integer;
CAM Size_Index: in index;
Position: in out index;
Found: in out boolean);

end CircularQ_Package;

Figure 3.3: CcCircularQ Package Specification

variable of Array Ptr Type, the Address field is used to store
the memory reference address in the CAM. Also of Array_ Ptr_
Type, the Ref Count field indicates the number of memory
references that have passed while the address is waiting to be
first referenced. The head and tail fields are used to
indicate the front and rear of the CAM circular queue,
respectively.

This package has three procedures to manipulate the state

of the circular queue data structure. Receiving the
prefetched memory reference address, the Enqueue procedure
loads the address at the tail of CAM queue. As required by
the FIFO replacement algorithm, the Dequeue procedure removes
the address located at the head of the CAM queue. The SearchQ
procedure searches for a matching address in the CAM. It
returns a flag indicating whether or not an address has been
found. If a cache hit occurs, SearchQ will also return the

position of the address in the CAM queue.

3.4.3 Addr_Record Package

For type handling purposes, an abstract data type is
created for the virtual addresses contained in the Agarwal,
Sites, and Horowitz trace files. The Address_Record_Package
specification is shown in figure 3.4. This package creates a
record structure comprised of two fields. The The_Type field
indicates the type of the memory reference: data read, data
write, or instruction fetch. The Address field stores the

hexadecimal virtual address from the trace file.

3.4.4 cCache_sSimulator Driver Procedure

The Cache_Simulator driver procedure functions as the
main controller for the simulator system. It provides an
interface between the input, cache processing, and output
packages. In order to produce an executable Ada system, the

Cache_Simulator driver is built as a procedure instead of as

package Addr_Record_Package is

type Addr_Record is

record
The_Type : character;
Address : integer;

end record;

end Addr_Record_Package;

Figure 3.4: Addr_Record Package Specification

a package. Figure 3.5 shows the Cache_sSimulator driver
procedure.

As the driver, the Cache_Simulator procedure needs
visibility to the input, processing, output packages. The
required packages are withed into the driver.

In the variable declaration section, the SLC linked list
and CAM circular queue data structures are instantiated. The
SLC and CAM reference frequency lists are also instantiated.
The SLC size, CAM size, SLC block size, and CAM block size
parameters are declared as variables rather than constants.
This allows the cache parameters to be interactively entered
by the user. The variables used to calculate the cache miss
ratios, pollution, and effective memory access time are
declared and initialized to zero. These variables include the
following: SLC_Miss, CAM_Miss, SLC_Total_Refs, CAM_Total_
Refs, SLC_Non_Ref, CAM _Non_Ref, SLC Total Prefetch, and
CAM_Total Prefetch.

For convenience, the driver provides the user with an

with

Text_I0, Addr_Record Package, LinkedLists_Package,
ClrcularQ Package, Fetch Address_Package,
Determine _Type_Package, Serv Instr Fetch_Package,
Serv_Data Read _Package, Serv_ Data Write Package,
Compate Miss Ratlos Package,

Compute | Memory Access _Time_Package,

Compute_Cache_ Pollution Package,

Generate_Ref Frequency Tist _Package;

procedure Cache_Simulator is

khkkkhhkhkhhhhkhhhkhhkhkhhkkhhkhhkhkhkhkhk

* Variable declaration section *
khkhkhhhkhkhhkhkhkhkhkkkhkhhkhkhkhkkhkhkhhhkhkkdk

user enters names of output & reference files

create output & reference files

user enter name of trace input file

open trace input file

user enters cache parameters: SLC size, CAM size,
SLC block size, CAM block size

while not end of file loop
call routine to fetch address from trace file
call routine to determine type of reference
case
when data read =>
call routine to process data read
when data write =>
call routine to process data write
when instruction fetch =>

call routine to process instruction fetch

when others => exit
end case
if number of references processed = 20000 then
call routine to compute miss ratios
reset reference counter to zero
else if end of trace file then
call routine to compute final miss ratios
call routine to compute average memory
access time
call routine to compute cache pollution
call routine to generate reference
frequency list
end if
end loop
close input, output, and reference files

end Cache_sSimulator

Figure 3.5: Cache_Simulator Driver Procedure

3-17

interface for executing a simulation. Once the simulator is
activated, the user is queried to name the statistics output
file to be generated by the simulation run. The statistics
output file includes the SLC and CAM miss ratios, the SLC and
CAM pollution percentages, and the effective memory access
time. Secondly, the user is asked to name the reference
output file. This file includes the reference frequency list
for the SLC and CAM caches. Next, the user is queried to name
the trace input file to be used in the simulation run. The
final user inputs include the cache parameters: SLC size, CAM
size, SLC block size, and CAM block size. For archival
purposes, the driver writes the trace input filename and the
cache parameters at the top of the statistics and reference
output files.

Once all user inputs have been entered, the cache
simulation begins. Due to the different formats of the
address traces, two Cache_Simulator drivers have been written.
One version is designed for the Agarwal, Sites, and Horowitz
traces. In this version (Version 1), the driver calls the
Load_Record procedure (Fetch_Address_ Package). This action
returns an address converted from an hexadecimal to an integer
format. The driver then calls the Address Type function
(Determine_Type Package) to determine the type of reference.

The other driver version (Version 2) is designed for the
Explorer trace files. As previously explained, these address

traces are already in integer format and do not require a type

determination. In turn, this driver version only needs to
perform a get (Text_IO) operation to fetch an address.

Depending on the reference type, the Version 1 driver
will invoke one of the three cache processing procedures:
Serv_Data_Read, Serv_Data Write, or Serv_Instr_ Fetch. For
this research, these three procedures perform the same cache
processing functions. Given this, the rationale for creating
three separate procedures is to accommodate future research
requirements. Continuing research may need the simulator to
perform different cache processing functions based on
reference type. Separate procedures facilitate implementation
of these future cache processing modifications.

Since no reference type determination occurs, the Version
2 driver only requires one main cache processing procedure.
The Process_Memory Reference procedure performs the same cache
functions as the three processing procedures in the Version 1
driver.

Once the memory address reference has been processed, the
driver repeats the fetch and process cycle described above.
For every 20000 trace references processed, the driver calls
the Compute_Miss_Ratios procedure to calculate the cumulative
miss ratios in the SLC and CAM caches. When the simulator
reaches the end of the trace file, the driver invokes several
procedures to produce the cache performance data. First, the
driver calls the Compute_Miss Ratios procedure to calculate

the final miss ratios. Next, the driver calls the

Compute_Memory Access_Time procedure to <calculate the
effective memory access time. Then, the Compute_Cache_
Pollution procedure is called to determine the pollution
percentages. And finally, the Generate_Ref Frequency_List
procedure is invoked producing the reference frequency data.

At this point, the simulation is finished. The driver
concludes the session by closing the trace, statistics, and

reference files.

3.4.5 Cache Processing Packages

The cache processing packages include the following:
(Version 1 driver) Serv_Data_Read_Package, Serv_Data Write_
Package, and Serv_Instr_ Fetch Package; (Version 2 driver)
Process_Memory Reference_Package. Since all four packages
perform the same cache processing functions, the following
explanation applies to all four packages.

For types handling, the cache processing packages require
visibility (with) to the Linked List_Package, the CircularQ_
Package, and the Addr Record_Package. Each package contains
one cache processing procedure. To assist in a more detailed
description, Figure 3.6 shows the flow of the cache processing
procedure.

Using the requested address, the SLC is searched for a
matching address. If a SLC hit occurs, then the SLC
performance statistics are updated. Since the address request

has been satisfied, the cache processing is finished. Control

mol4 Buissesold syoen :g'¢ enbiy

19AUQ VYD Wouj N WOy
0} [*———100|g OIS+ Po0Ig WYO
uinjey yojejeid yojejeid
SSIN WVO ﬁ
J9ALQ INVO Wouy |
WVYO
0F = %90|g DS le—
uinley (petepdn sEls) yolaleld ¥H WVD yoJeag
SSIN O1S ﬂ
19AUQ |
e
uInjay "L yosesg | oo

3-21

is returned to the driver.

If a SLC miss occurs, then the CAM is searched for a
matching address. If a CAM hit occurs, then the block
containing the matching address is prefetched from the CAM to
the SLC. Figure 3.7 illustrates this prefetching process.
The goal is to prefetch the structural locality that exists in
the CAM. In turn, the requested address plus the addresses
located immediately above in the CAM (equal to SLC block size)
are prefetched into the SLC. The prefetched addresses are
placed at the front of the SLC 1linked list. This action
causes the LRU addresses to fall toward the back of the list.
Once the SLC prefetch is accomplished, the CAM performance
statistics are updated. Since cache processing has finished,
control is returned to the driver.

If a CAM miss occurs, then the block containing the
requested address is prefetched from main memory to the CAM.
In addition, a SLC block containing the requested address must
be prefetched from the CAM. Figure 3.8 illustrates this
prefetching process. Once again, only the requested address
plus the addresses immediately above in the stack (equal to
SLC block size) are prefetched into the SLC. In the example,
although the SLC block size is four, the prefetch results in
only one word. Two conditions produce this result. One is
the CAM prefetch is always placed at the stack top. The other
is the requested address is the last address on the stack.

Once both prefetches are accomplished, the SLC and CAM

¥H WVO 2 SSIN O11S Jely Udlejedd O1S :L'€ esnbid

—— Pp69.24V I = €S34AAV Q3183NO3H
......... & = o01g D18)
(2 = %0198 WVYD) _H Y¥6OL 4V
||||||||| G¥6OL4V1L e e
||||||||| 00281962 e]
||||||||| 10284052 I
yojeje.d
Ayeo0n pinongs
YR o
Jueweseidey
AHOW3W VD e
NIVIN uswese|dey Jeyng
zenodD O4id

44444444

- — -

AHOWIN
NIVIN

PessI seyoed Liog JelY seudjejeid WYO 8 O1S (8¢ eanbiy

(e =o01g WVYI)

184vOs6e = 8S3HAAv a31s3nO3d

ogvosee N\ /I]
ledvosee |/

5\50;04
yoieleld 3oe1s

Ayes0 epedg
WYO
eweoeidey Jeyng
2noxd O4i4

44444444

(b = 3o0ig O19)

{ 8dvosee v\‘ S]
yolejeud
Ayed0o eunonas
J18
ewedeidey
nd1

3-24

performance statistics are updated. Since cache processing

has finished, control is returned to the driver.

3.4.6 Fetch Address Package

The Fetch_Address_Package contains one procedure:
Load_Record. The specification for this package is shown in
Figure 3.9. Load_Record procedure extracts one memory
reference record (address and reference type) from the current
position of the Agarwal, Sites, and Horowitz trace file. To
convert the address from hexadecimal to integer format, this
procedure calls the Hex_to_Dec procedure. The resulting
integer address record is then returned to the driver for

further processing.

with Text_IO, Addr_Record_Package;
package Fetch_Address_Package is
procedure Load Record

(Input_File: in out File_Type;
Memory Ref: out Addr_Record);

end Fetch_Address_Package;

Figure 3.9: Fetch_Address_Package Specification

3.4.7 Hex to_Dec_Package
The Hex_to_Dec_Package contains one function: Hex

to_Dec. The specification for this package is shown in

3-25

Figure 3.10. The Hex_to_Dec function converts the input
hexadecimal string into an integer address.

Due to the address structure of the SPARC microprocessor,
an offset is required in the conversion value. Although the
SPARC machine has a 32-bit address, it reserves 1 bit as a
sign bit for integers. 1In turn, not all eight digit hexa-
decimal addresses can be represented as integer values. To
counter this, the integers are offset to include both the
positive and negative values. The resulting integer range is:
-231 |, (231 - 1). Although this offset changes the original
value of the virtual address, the modified value does not
affect the cache processing. The simulator is only interested
in matching addresses during searches.

The rationale for converting the hexadecimal address to

an integer value is to optimize performance. The simulator

package Hex to_Dec_Package is

function Hex to_Dec (Hex_Addr: string;
Hex_Length: natural) return integer;

end Hex_to_Dec_Package;

Figure 3.10: Hex_to_Dec_Package Specification

could be designed to process a hexadecimal address. However,
since the address would be represented as a string, cache
searches would involve comparing addresses one character at a

time. The result would be a substantial drop in simulation

3-26

speed. By treating the address as an integer value, cache

searches only require a single comparison per address.

3.4.8 Determine_Type Package

The Determine_Type Package contains one function:
Address_Type. The specification for this package is shown is
Figure 3.11. Receiving the address record, the Address_Type
procedure determines the memory reference type: data read,
data write, or instruction fetch. The type identifier is

returned to the driver.

with Addr_Record_Package;
package Determine_Type Package is

function Address_Type (Memory Ref: Addr Record)
return character;

end Determine_Type_Package;

Figure 3.11: Determine Type_ Package Specification

3.4.9 Compute Miss Ratios_Package
The Compute_Miss_Ratios_Package contains one procedure:
Compute Miss_Ratios. The specification for this package is
shown in Figure 3.12.
The Compute_Miss_Ratios procedure calculates the SLC and
CAM miss ratios using input cache performance statistics:

number of SLC misses, total number of SLC references, number

3~27

of CAM misses, and total number of CAM references. The
resulting miss ratios are written to the statistics file. 1In
addition, the values are returned to the driver to be used in

effective memory access time calculations.

with Text IO;
package Compute Miss_Ratios_Package is

procedure Compute Miss_Ratios
(SLC_Miss: in natural; CAM Miss: in natural;
SLC_Total_Refs: in natural;
CAM Total Refs: in natural;
Num_Ref: 1In natural;
SLC_MR: out float; CAM MR: out float
Output_File: in out File_Type);

end Compute Miss_Ratios_Package;

Figure 3.12: Compute Miss_Ratios_Package Specification

3.4.10 Compute_Memory Access_Time_ Package

The Compute_Memory Access_Time_Package contains one
procedure: Compute Memory Access_Time. The specification for
this package is shown in Figure 3.13. The Compute_ Memory_
Access_Time procedure calculates the effective memory access
time for the trace workload. The access times (in clock
cycles) used in the model for the three memory levels are as

follows: SLC: 1; CAM: 4; main memory: 32.

with Text IO;
package Compute Memory Access_Time_ Package is
procedure Compute Memory Access Time

(SLC_MR: in float; CAM MR: in float;
Output_File: in out File_Type);

end Compute Memory Access_Time_Package;

Figure 3.13: Compute_Memory Access_Time_Package Specification

3.4.11 Compute_Cache_Pollution_Package

The Compute_Cache_Pollution_Package contains one pro-
cedure: Compute_Cache_Follution. The specification for this
package is shown in Figure 3.14. The Compute_Cache_Pollution

procedure calculates the SLC and CAM cache pollution using the

with Text_IO, LinkedLists_Package, CircularQ Package;
package Compute_Cache_Pollution_Package is

procedure Compute_Cache_Pollution
(SLC: in out List; CAM in out Queue;
SLC_Non_Ref: in out natural;
CAM _Non_Ref: in out natural;
SLC_Total_ Prefetch: in natural;
CAM_Total_ Prefetch: in natural;
Temp CAM Size: in natural;
Output_File: in out File Type);

end Compute_Cache_Pollution_Package;

Figure 3.14: Compute_Cache_Pollution_Package Specification

following cache performance statistics: number of prefetched

addresses in the SLC and CAM never referenced; total number of
prefetched addresses in the SLC and CAM. The resulting pollu-

tion percentages are written to the statistics file.

3.4.12 Generate_Ref_ Frequency List_ Package

The Generate_Ref Frequency_ List_Package contains one
procedure: Generate_Ref Frequency_List. The specification
for this package is shown in Figure 3.15.

The Generate_Ref_ Frequency List procedure produces the
output file recording the reference frequencies for the SLC
and CAM. The file format consists of two columns. The first
column is comprised of values denoting the number of ref-
erences passed before the prefetched addresses were first
referenced. The second column indicates the number of
addresses (frequency) which realized the corresponding number

of references value.

with Text_ IO, LinkedLists_Package;
package Generate Ref Frequency List Package is

procedure Generate Ref Frequency List
(SLC_Ref_List: in out List;
CAM Ref List: in out List;
SLC_Non_Ref: in natural;
CAM Non_Ref: in natural;
Reference_File: in out File_Type);

end Generate_Ref Frequency List Package;

Figure 3.15: Generate_Ref Frequency_List_Package Spec

3.5 Validation of cache Simulator

Prior to being integrated into the cache simulator
system, each Ada package was tested thoroughly as a unit.
Using test inputs, the outputs of each package were checked
for correctness. Verifying the correct functioning of the
packages facilitated the integration effort.

Once the integration of the Ada packages was successfully
completed, the cache simulator system was ready for testing.
In order to ensure the validity of the research results, the
simulator was extensively tested for accuracy. To accomplish
this, a test trace file was created. The file contained 50
memory references which would require all cache processing
functions to be used. Figure 3.16 provides an outline of the
testing reguirements. Using this trace file, the test simu-
lations were designed to meet all of these requirements. 1In
Appendix B, each test requirement is mapped to the point
within the trace where it is tested.

Five test trace simulations were run and checked for
accuracy. Each test run used a different set of cache
parameters: SLC size, SLC block size, CAM size, and CAM block
size. Prior to running the simulations, the cache performance
statistics were manually calculated for each set of cache
parameters. After the five test simulations were run, the

simulation statistics matched the manual calculations.

3-31

II.

III.

Test Input Functions
(Version 1 driver)
A. Correct handling of memory reference record
1. Hexadecimal address (8 digits)
2. Hexadecimal address (< 8 digits)
3. Conversion to integer value
4. Type determination
(Version 2 driver)
B. Correct handling of integer memory reference
C. (Both) Able to process all memory references

Test Cache Processing Functions
A. Correct handling of SLC search
1. SLC hit
2. SLC miss
B. Correct handling of CAM search
1. CAM hit
2. CAM nmiss
C. On CAM hit, correct handling of SLC prefetch
1. Before SLC fills
2. After SLC fills
3. From middle of CAM
4. From top of CAM
D. On CAM miss, correct handling of CAM prefetch
and SLC Prefetch
1. Before CAM fills
2. After CAM fills
3. Before SLC fills
4. After SLC fills
E. Correct tracking of cache performance stats
(after 25 references)
1. # of SLC misses
2. # of CAM misses
3. total # of SLC references
4. total # of CAM references

Test Output Functions

A. Correct SLC & CAM miss rates

B. Correct effective memory access time

C. Correct SLC & CAM cache pollution percentages
D. Correct values in reference frequency file

Figure 3.16: Simulator Testing Requirements

3.6 Summary

The cache simulator was designed to meet all the func-
tional requirements of the proposed memory subsystem.
Once developed, the simulator was subjected to rigorous
validation testing and cross-checking. Based on this
effort, it can be concluded that the cache simulator is

capable of providing valid results for this research.

Chapter 4

Findings

_This chapter provides the research results of the effect
that spatial locality prefetching has on structural locality.
First, the workload selection for studying the cache pollution
in the SLC and CAM is discussed. Next, the modifications to
Hobart's memory referencing models are shown to account for
spatial prefetching. From these modified models, new equa-
tions are derived to predict the SLC and CAM hit probabili-
ties. Next, the approach to using simulation measurements to
solve these equations is explained. Results from these
equations are then compared against hit ratios produced in the
trace-driven simulations. The SLC and CAM hit probabilities
are then used to estimate the effective memory access time of
the design. Finally, the performance effects of spatial
prefetching are compared with baseline results using no

prefetching.

4.1 Workload 8Selection

As discussed in chapter two, the differences between the
memory referencing behavior of symbolic and conventional
workloads has been well documented. In order to produce

meaningful results, cache performance studies must take these

differences into account.

The basic motivation for the proposed memory subsystem

was to exploit the unique locality characteristics of symbolic

workloads (Hobart, 1989:96). As such, this research focuses

on symbolic workloads in determining the effects of cache

pollution from spatial prefetching. The symbolic workloads

used in the trace-driven simulations are shown in Table 4.1.

Eight workloads were used from the Explorer traces.

workload was taken from the VAX traces.

‘Table 4.1: Symbolic Workloads Used in Simulations

The last

Workload Application System
Boyer Theorem Prover Explorer 1II
Compile-RB Lisp Compiler "
Compile-STR Lisp Compiler "
GLISP~Comp Expert System Tool "
GLISP-Pay Expert System Tool "

QSIM Qualitative Reasoning "
Reducer Symbolic Computation "
TMYCIN Expert System Tool "
LISP.0CO.DIN Lisp Application VAX 8200

The nine selected workloads included all references.

The

rationale is to characterize the cache pollution effects of

spatial prefetching against total workload behavior.

4.2 Trace-driven Simulations

To reasonably limit the number of simulations due to time
constraints, the selection of the SLC and CAM size parameters
is based on an estimated upper range of current cache tech-
nology. The CAM and SLC sizes are set at 8192 and 512 words,
respectively. This 16 to 1 size ratio meets the minimum 8 to
1 ratio requirement. The cache parameters chosen for these
simulations are shown in Table 4.2.

In order to study the cache pollution effects of spatial
prefetching in the CAM, the CAM block size is fixed at 4
words. The rationale for this block size choice was based on
the availability of data needed to solve the cache hit
probability equations.

In studying cache performance in a RISC environment, Hill
and Pnevmatikatos determined that a 32 byte block size (upper

limit) produced the lowest miss ratios for a cache size of 32K

Table 4.2: SLC and CAM Cache Parameters

Number of
Type Words
SLC Size 512
CAM Size 8192
SLC Block Size 4, 8, 16, 32
CAM Block Size 4

bytes (Hill and Pnev, 1990:53-68). The block size of four
words (used for the CAM cache) was also found to produce low
miss ratios. Using trace-driven simulation in their research,
the effects of block sizes were analyzed using a variety of
workloads including "Xlisp" (lisp interpreter with object-
oriented features).

The three SLC block sizes represent 1:1, 2:1, 4:1, and
8:1 ratios to the CAM block size. The rationale for these
block size selections is based on the memory subsystem design.
The CAM is designed to capture the structural locality in-
herent in the workloads while spatially prefetching. In order
to take advantage of this structural locality, the SLC should
prefetch a multiple of the CAM block size.

The speed performance of the cache simulator is very
acceptable. Assuming one user on the SPARC workstation,
simulation run time varied from one half hour to two hours.
This run time reflects simulations using trace files of up to
450,000 references. Importantly, this research showed the
cache simulator could be structurally developed using the Ada
langﬁage and, in turn, still provide a high 1level of
performance.

A total of 45 simulations (five per workload) were run.
Thirty-six simulations involved the prefetch ratios described
above. The other nine used the same SLC and CAM sizes but did
not use any prefetching. Therefore, the SLC and CAM block

sizes were one word. The results from these simulations were

used as a baseline to determine any performance improvements.
- The cache performance statistics generated from the trace
simulations are shown in Table 4.3. The statistics represent

the mean values for all workloads.

Table 4.3: Cache Performance Statistics

SLC Size = 512 CAM Size = 8192
SLC Block Size (varied) CAM Block Size = 4
No Prefetch: SLC & CAM Block Sizes = 1

SLC Block: 4 8 16 32 No Prefetch
SLC Hit Rate
Mean: .859 .880 .893 .908 .820
Std Dev: .061 . 055 .051 .044 .074
CAM Hit Rate (given SLC miss)
Mean: .855 .827 .802 « 777 .754
std Dev: .063 .080 .100 .106 .113
SLC Pollution .608 .660 .733 .807 .489
CAM Pollution (SLC hits counted as pollution in CAM)
<771 «799 .819 .828 .561
Eff Memory
Access Time* 4.93 4.85 4.79 4.67 5.25

* The equation for effective memory access time was
explained in Chapter 3 (Section 3.2.4).

4.3 CAM Cache Hit Probability

Hobart developed a two-state Markov model to illustrate
CAM cache referencing when prefetching is used (Hobart,
1989:100-~106). As shown in Figure 4.1, the model uses state

transitions to represent the probabilities of various types of

—

Buiyolejeld Lum Buiouesejey eyseD WO 1o} |OPON AR 1P 6nBiy

‘s ayelg °g ajeig
(TR)) MH)
“d "M (Nog- 1)
| ot
©SIN) - (9pp - 1) ONg
aoualejey _ | 80UBlBjOY
MaN QH) O>> Ozﬂ_ PIO
-y
(ssin) NO
4d - (ONg- 1) (°M- 1) (Nog- 1)

(ssin) (SSIN)

CAM cache referencing behavior.

In this research, the CAM is assumed to be referenced
only when a SLC miss occurs. Thus, the CAM miss rate repre-
sents the local miss rate of the CAM. From this assumption,
a CAM hit can occur in three ways. Given an old reference is
currently being referenced, a hit can take place if the next
reference is also o0ld and has not been replaced out of the
CAM: (1 - Pyy) Wo where (1 - P,y) is the probability of an
old to old state transition; W, is the effective cache size
hit probability. Given a current new reference, a hit occurs
if the next reference is old and has not been replaced out of
the CAM: P,y W, where Py, is the probability of a new to old
state transition. In addition, given a current new reference,
a hit can take place if the next reference is new and exists
within the same block: P which is the probability that a
new to new reference is made to the block that was just
prefetched. The simplifying assumption is made that once
consecutive new references are made to a block and a new to
old state transition occurs, any unreferenced addresses in the
prefetched block(s) are considered pollution.

Thus, in the original model, when an old to new state
transition occurs, the new reference is assumed to be to a
previously unreferenced block. In order to more accurately
predict the effects of spatial prefetching, a new model
removes this assumption as shown in Figure 4.2 (modifications

within dashed box). Given a current old reference, a hit can

Buiyoiejeld Aueoo rereds yum
Buiouesejey eyoeD VD 10} [SPON AOHEW POUIPOW 2t e4nBi4

‘s aEIg °g ajelg
WH) (TN

dd o) NO ,; -
d M (Nog- 1)

SN (9 - 1) O
@ouelajoy 4H) M ONg @ouelejey

- —— . —— - ——— - ——————

e - wm a — — — —— — — — — — m ——— — — — —— — ——— - ——

(°M-1) (Nog- 1)
(ssIN)

take place if the next reference is new and is located within
an existing prefetched block: Poy Pcp Where P.p is the
probability of referencing a CAM prefetched block.

Using the modified Markov model, the following equation

is derived to determine the expected CAM cache hit rate, Pcpy:

Poyy = ((1 = Po) Wo + PoyPoy) Py *+ (PyoWo + Pgp) Dy
where
P
pso = P, foP

NO ON
and

- PON

psl-l-pso- Py *+ Py

Simplifying the equation, we have:

P = Pyo (W + PoyPcg) + PoyPep
CAM PM)+ PON

In order to show how the Pg,, equation is solved, an example
using the performance statistics (Table 4.3) involving a CAM
block size of 4 words is explained.

By analyzing the temporal distances of reference strings,
Hobart determined the state transition probabilities of memory
referencing behavior for the symbolic trace workloads (Hobart,
1989:40-41, 137). The mean state transition probabilities
(shown 1n Table 4.4) will be used in the hit probability

equation.

Table 4.4: State Transition Probabilities - All References

Same Stack Not Same
New-01d Distance Stack Distance Old-New
Workload (NO) (SSD) (NSSD) (ON)
Boyer .506 .474 .502 .024
Comp-RB .382 «562 .423 .015
Comp-STR .383 .544 .438 .018
GLISP-C .478 .623 .361 .01l6
GLISP-P .250 .588 .407 .005
QSIM .457 .444 .544 .012
Reducer «137 «540 .454 .006
TMYCIN .378 .626 «364 .010
Mean .371 .550 .436 .013
Std Dev «1235 .0653 .0634 . 0063

We is a function of the CAM size. The probability that
an old reference exists in the CAM 1s limited by the finite
size of tho CAM. Since spatial prefetching results in
pollution, the effective size of the CAM is reduced.

Effective CAM size is calculated as follows:
Eff CAM Size = N, (1 ~ Cp)
where

N. = CAM size (words)

Cp = CAM pollution mean
In the example, effective CAM size is:
Eff CAM Size = 8192 (1 - .771) = 1876 words

Analyzing the cumulative temporal locality character-

istics of symbolic workloads, Hobart mapped the effective CAM

sizes to corresponding hit probabilities on old-old transi-
tions (Hobart, 1989:103). Using this graph (Appendix C), the

We can be estimated for the effective CAM size of 1876 words:
W.=0.96

In order to calculate the probability of referencing a
prefetched CAM block, Pz, we must determine the number of old
to new reference hits resulting from references to previously
prefetched CAM blocks. First, the total number of additional
references accessed within a CAM prefetched block, A, is
calculated. From the CAM pollution (Cp) resulting from no
prefetching (Table 4.3), (1 = Cp) or 43.9% of the demand-
fetched references are rereferenced on average. We can note
that if none of the prefetched words were referenced, the CAM

pollution would be:

c,=1--'—443-2=0.890

However, if all three of the prefetched references are, in

fact, referenced, then the CAM pollution would be:

(.439

C,=1 -
P 4

3
+ =) =0.140
4)

Our actual cache pollution must be between these two extremes.
The following equation can be formed to determine the average
number of additional references, Ag:

..___(1 -~ S + ﬁ')

Cp=1 -
d (BC BC

Solving for A, gives:
A, = (B, -1) (1 -Cp
Using this equation in our example, we have:

Ap = (3) (1 -.771) =0.687

Therefore, 0.687 additional references are referenced in the
CAM block on average.

Next, the number of references occurring within a CAM
block during new to new referencing must be determined. Using
a probability decision tree and summing all expected value
outcomes, 1.41 references were found to be referenced during
new to new referencing within a prefetched block of 4 words.
Thus, only 0.41 out of the additional three references are
referenced on average during new to new transitions. However,
when.the CAM spatially prefetches a block from main memory,
all or a portion of the CAM block will also be prefetched to
the SLC depending on where the requested address is located
within the CAM block. Since the forward references (above the
requested address) are prefetched to the SLC, new to new
referencing within the CAM can only occur from those
references within the CAM block which were not prefetched to
the SLC (below the requested address). For example, if all
four references in the CAM block are prefetched into the SLC,
then no new to new references from that block can take place

in the CAM. At the other extreme, if only the requested

address in the CAM block is prefetched to the SLC, then 0.41
new to new references from that block can take place in the
CAM. The actual number of new to new references within the
CAM block must be between these two extremes. Assuming one-
half of the CAM block is prefetched into the SLC on average,
we can also assume that only 0.2 additional references of the
3 prefetched references is referenced before transitioning
back to the old reference state.

From the CAM pollution which occurs with no prefetching,
we know that 0.439 references are accessed on average. By
subtracting 0.439 references and the 0.2 new-new references
from the total number of additional references (0.687), the
number of old-new reference hits resulting from references to
previously prefetched CAM blocks is 0.048 references.

Based on the state transition probability, Poy (.013), 13
out of every 1000 references can be expected to be old to new
transitions. In this research, simulations revealed that if
a prefetched address is to be referenced, it is first refer-
enced within 256 memory accesses after being prefetched.
Therefore, we can expect 3.328 (.013 x 256) to be referenced
during the next 256 transitions.

The probability of referencing a previously prefetched
CAM block, P.g, can now be determined by dividing the number
of old-new reference hits (0.048) by the expected number of
old-new references during the "lifetime" of a prefetched

reference (3.328) times the expected number of new~-new

references (1.2) that will occur in the new reference state:

0.048
P = — =0.012
c3 3.994

To calculate the probability of a CAM prefetch block
reference during a new to new transition (P.p), the expected
value of number of new to new references, Ucp, can be set
equal to the 0.2 additional new to new references. U, is
treated as a sum of geometric series using Pop. From this, P.p

can be calculated as follows:

P
U = e P =0.2
{1 - Pgp)
Therefore
- .2 -
PCP— 1_+.3' "0.167

Substituting the state transition probabilities, W, Peog,

and P.p, the CAM hit probability equation can be solved:

Py = =371 (.96 + (.013) (531112)) + (.013) (.167) _ 4 935

In table 4.5, the CAM cache hit probability computations
are compared with the measured mean values from the simula-
tions. As shown, the predicted hit rates are slightly outside
one standard deviation range from the measured hit rates. The
calculated hit rates consistently overestimate the measured
means. To account for this difference, future research may

investigate how the effective CAM size may be further reduced

Table 4.5: CAM Cache Hit Probability Comparisons

SLC Size = 512 CAM Size = 8192
SLC Block (varied) CAM Block = 4
SLC Block 4 8 16 32
Equation .932 .924 .904 .893
Measured
Mean: .855 .827 .802 « 777
std Dev: .063 .080 .100 .106

from spatial prefetching. The resulting smaller effective CAM

size would decrease the calculated CAM hit probability.

4.4 BStructural Locality Cache Hit Probability

lHobart developed a two-state Markov model to predict SLC
hit rates when structural locality prefetching is used
(Hobart, 1989:107-112). As shown in Figure 4.3, the model
uses state transitions to represent the probabilities of
various types of SLC referencing behavior. This model assumes
no spatial locality prefetching.

A SLC hit can occur in two ways. Given a current old
reference, a hit can take place if the next reference is also
old and has not been replaced in the SLC. Since the SLC
employs structural prefetching, the probability of this type
of hit is calculated using the SSD and NSSD state transitions:
Pssph+ Pyssp Ws where Pgo, is the probability of an old to SSD
state transition; Pyggp is the probability of an old to NSSD

state transition; Wg is effective cache size hit probability.

Buiyojejesd Apeoo fregeds o inq Buysjeje.d
Aifed0 eamonas Uum Buiouelejey O11S 10} 19POW A0 €'t 84nBidy

‘g erels %g g\l

H)
SA owmzn_ + <ommn_

|
CoW) (S - 1) ONg
aoualsjey __ | 9OUBIBJEY
MBN UH) wg Ozn_ PIO
(ssin) Noy
(°"d - 1) (SMm - 1) 98Ny

(ssin) (ssIN)

4-16

The other way a SLC hit can occur is during a new to old
state transition: Py, Wg. This probability is similar to the
hit probability in the CAM model. Unlike the CAM model, a hit
cannot occur on a new to new state transition since this model
assumes that no spatial locality prefetching is being used in
the CAM.

To incorporate the effects of spatial locality prefetch-
ing, my model adds two state transitions which can produce
hits; As shown in Figure 4.4, these hit probabilities are
similar to the corresponding probabilities in the modified CAM
model (Figure 4.2). Pgz is the probability of referencing
spatially prefetched CAM data during an old to new transition.
Pgp is the probability of a reference to the same CAM block
during a new to new reference.

Using the modified Markov model, the following equation
is derived to determine the expected SLC hit rate, Pg..:

Py P
Pgc = ((Pggp + Pygsp Ws) +PspPoy) Pug* Pon + (PyoWg+ Pgp) —mez)on

which simplifies to

Pyo (Pggp, + (Pyssp *+ Poy) Wg + Poy Pgg) + Poy Pgp

Py + Poy

Psz.c -

In order to determine Wg, the effective SLC size must be

calculated as follows:

Buiyojejesd Aureoo fegeds pue Buidjejeld Ayeso
feanjonAs Ly Bujouslejey OIS JO) (PO AOHEI POUIPO bt 6nBi-

‘s oS °s ajeiS

aoualejey

©JUudli8joYy

9d - (ONg- 1) (M- 1) 9™y
(ssIN) (ssin)

4-18

Eff SLC Size = Ng (Eyy + Egg)
where

Ng = SLC size (words)

Eyw = expected % of new-new reference hits occurring
within the most recently prefetched SLC block

E,, = expected % of old-new reference hits occurring
within previously prefetched SLC blocks

Given the assumption that on average one-half of the CAM
prefetched block (on a CAM miss) is prefetched into the SLC,
the expected number of new-new references (Ey,) is 1.2 out of
4 references (0.3). Thus, only 0.2 of the three additional
prefetched SLC references are accessed on average.

Egs is calculated as follows. First, the total number of
additional references used within a SLC block, A4, is

determined (discussed in Section 4.3):
Ap, = (Bg - 1) (1 - Sp)
where

By = SLC block size (words)

Sp = SLC pollution mean
Using the SLC block size of four words, we have:
Ap =3(.392) =1.176

From the SLC pollution occurring with no prefetching, we know

that 0.511 demand-fetched references are rereferenced on

average. Subtracting the 0.511 references and the 0.2
additional new-new references from the total number of
additional references (1.176), the number of additional old-
new reference hits resulting from references to previously
prefetched SLC blocks is 0.465. From this, Egg can be

determined:

Egg = = = .116

We can now solve for the effective CAM size:
Eff SLC Size = 512 (.3 + .116) = 213 words
Wg can now be estimated (Appendix C) for 213 words:
Wg = 0.67

Pggp is calculated in the same manner as P, is calculated
for the CAM cache. It is determined by dividing the number of
old-new reference hits (.465) by the expected number of old-
new references during the "lifetime" of a prefetched reference
(3.328) times the expected number of new-new references (1l.2)

that will occur in the new reference state:

.465

= 0.116
3.994 11

Pgp =

Since SLC blocks prefetch CAM blocks, Pgp remains constant for
all SLC block sizes.
Given consecutive new-new references only occur within a

given block, Pgp is calculated in a manner similar to Pep:

= -2 =

4-20

Substituting the state transition probabilities, Wg, Pgg,

and Pgp, the SLC hit probability equation can be solved:

Pge = .371(.48+(.449) .67+(.013) .116) + (.013) .167 _ 0.761

.384

In table 4.6, the SLC hit probability computations are
compared with the measured mean values from the simulations.
As shown, the predicted hit rates are relatively close to the
measured means. Hit rates for the SLC block sizes of 8 and 16
words fall within one standard deviation of the measured
means. Hit rates for the SLC block sizes of 4 and 32 words
are slightly outside one standard deviation range. The
calculated rates consistently underestimate the measured
rates. Although the overwhelming majority of SLC prefetches
take'place from the CAM (allowing for a full SLC block), the
portion of SLC prefetches initiated from main memory may still
have an impact on pollution. Reduced pollution can increase
the effective size of SLC. And, in ¢turn, increase the

calculated SLC nit ,probability.

Table 4.6: SLC Hit Probability Comparisons

SLC Size = 512 CAM Size = 8192
SLC Block (varied) CAM Block = 4
SLC Block 4 8 16 32
Equation .761 .836 .846 .839
Measured
Mean: .859 . 880 .893 .908
Std Dev: .061 .055 .051 .044

In addition, as in the case of the CAM cache, future
research may also investigate the possibility that additional
SLC hits may occur as a result of new-new references which
take place within multiple blocks. These additional hits
would be represented by another new-new state transition. The
resulting ch hits would increase the calculated SLC hit

probability.

4.5 Performance Analysis

The effective memory access times were measured for the
four sets of SLC and CAM cache block parameters (Table 4.3).
As presented in Chapter 3, the effective memory access time,

t is calculated as follows:

€a = CsrcPorc * Caaw (1l = Psro) Poy + Gy (1 — Poay) (1 = Pgre)

where the cycle times for the SLC, CAM, and main memory are
1, 4, and 32 clock cycles, respectively.

To serve as a baseline comparison, the effective memory
access time is used for the same SLC and CAM cache sizes when
no prefetching is involved. From Table 4.3, the measured mean
effective memory access time for no prefetching is 2.822.
Calling this the baseline access time Tb, the performance
speedup S due to prefetching is defined as (Hobart, 1989:113):

t
S = (?” - 1) 100 (percent)

n

As shown in Table 4.7, the speedup due to spatial and

structural prefetching occurred for all SLC block sizes. For
this set of parameters, increasing the SLC block size results
in performance improvement. As the SLC block size nears the
SLC size, performance gains would be expected to decrease.
In this set, the largest SLC block of 32 words did not
adversely impact the SLC hit ratio since a sufficient number
of blocks (16) could still be stored in the SLC. As a result,
it produced the smallest effective memory access time.
Table 4.7: Speedup Due to Spatial and
Structural Prefetching

SLC Size = 512 CAM Size = 8192
No Prefetch Tbh = 5.25

CAM Prefetch Block = 4
SLC Block S (%)
4 6.5
8 8.2
16 9.6
32 12.4

4.6 Bsummary

This chapter has shown how Hobart's memory referencing
models were modified to incorporate the effects of spatial
prefetching in the CAM and structural prefetching in the SLC.
CAM and SLC hit probability equations were derived from these
models. Using the measurements from the trace-~driven
simulations, the expected hit rates were calculated for both

caches using different sets of block size parameters. In

particular, cache pollution estimates were used to analyze the

effects of spatial prefetching on structural locality.

Chapter 5

Conclusion and Recommendations

5.1 Main Contributions

The principal contribution of this research is char-
acterizing the effects of spatial prefetching on structural
locality in the proposed memory subsystem. This research
shows that performance gains through structural 1locality
prefetching are still possible even when spatial 1locality
prefetching is being used in the lower level cache.

Existing memory referencing models are modified to
incorporate the combined use of structural 1locality and
spatial locality prefetching. From these models, equations
are derived to predict the expected hit rates of the SLC and
CAM caches. Targeting a representative sample of symbolic
workloads, trace-driven simulations provide performance
measurements for different combinations of SLC and CAM cache
block sizes. Combined with the state transition probabilities
of the modified Markov memory referencing models, these
measurements are used to solve the hit probability equations.

The purpose of this research is not to exhaustively
measure performance for all combinations of cache parameters.
Instead, it provides an extended memory referencing model to

analytically predict the hit rates and the effective memory

access times for a range of SLC block sizes.

The experimental methodology for this research is also a
significant contribution. The cache simulator provides a
reliable tool for not only meeting the demands of this
research, but also future research as well. Built using the
Ada language, the simulator is designed to facilitate

tailoring it to meet new research requirements.

8.2 Additional Applications of This Research

Several approaches exist for continuing this research.
First, the modified memory referencing models should be
applied to other types of workloads such as numeric and data-
processing. Expanding the applicability to various workload
types will increase the usefulness of the models. In
addition, the effects of varying other parameters besides SLC
block size should be examined.

Another research application is to further analyze the
temporal behavior within the SLC and CAM cache. Specifically,
it would be useful to differentiate between prefetched
instructions and data. Further investigation is also required
to characterize this temporal behavior over a wide range of
cache parameters. The cache simulator has already been
designed to provide data for this analysis. As described in
Chapter 3, the Generate_Ref_ Frequency_ Package outputs a
reference file containing temporal reference information for

both caches.

Another research course would be to study the impact of
combined structural locality and spatial locality prefetching
on individual reference types: instruction fetches, data

reads, and data writes.

end : Cache Simulator Source Code

package LinkedlLists_Package is

type LinkedListNode;
type NodePointer is access LinkedListNode;

type LinkedListNode is

record
Addr : integer;
NumRef : integer := 0;
Next : NodePointer := null;

end record;

type List is
record
Next: NodePointer
Tail: NodePointer
end record;

null;
null;

-— create a node (address to be stored in cache)
function MakeNode (Address: integer) return NodePointer;

-— find node containing matching address with P1
function Search (L: List; Address: integer)
return NodePointer;

-— add node Pl to front of list
procedure AddToFront (L: in out List; P1l: NodePointer);

-- add node Pl to rear of list
procedure AddToRear (L: in out List; Pl: NodePointer);

-- insert node Pl in or-er by number of passed references
-= before being first referenced
procedure Insert In Order (L: in out List; Pl: NodePointer);

-— delete node Pl from list
procedure Delete (L: in out List; Pl: NodePointer);

end LinkedLists_Package;

with Unchecked Deallocation;
package body LinkedLists_Package 1is

procedure Deallocate Node is new Unchecked Deallocation
(Object => LinkedListNode,
Name => NodePointer);

function MakeNode (Address: integer)
return NodePointer is
p: NodePointer;
begin
p := new LinkedListNode;
p.Addr := Address;
return p;
end MakeNode;

function Search (L: List; Address: integer)
return NodePointer is
p: NodePointer := L.Next;
begin '
while p /= null and then p.Addr /= Address loop
p := p.Next;
end loop;
return p;
end Search;

procedure AddToFront (L: in out List; P1l: NodePointer) is
begin

Pl.Next := L.Next;

L.Next := P1l;

if L.Tail = null then L.Tail := P1l; end if;
end AddToFront;

procedure AddToRear (L: in out List; Pl: NodePointer) is
begin

if L.Next = null then

AddToFront (L, Pl);

end if;

L.Tail.Next := P1l;

L.Tail := P1;
end AddToRear;

procedure Insert_In_Order (L: in out List; Pl: NodePointer) is
p: NodePointer := L.Next;
g: NodePointer;
begin
if p = null then
AddToFront (L, Pl)y;
elsif p.NumRef > Pl.NumRef then
AddToFront (L, Pl);
else
while p /= null and then
p.NumRef < Pl.NumRef + 1 loop
q := pi
p := p.Next;
end loop;
if p = null then
AddToRear (L, Pl);

else
qg.Next := Pl;
Pl.Next := pf -
end if; A-3
end if;

end Insert In_Order;

procedure Delete (L: in out List; Pl: NodePointer)
p: NodePointer := L.Next;

q: NodePointer := null;
begin
if P1 = p then L.Next := Pl.Next;
else
while p /= null and then p /= Pl loop
q = pi
p := p.Next;
end loop;

gq.Next := Pl.Next;
Deallocate_Node (p);
end if;
if L.Tail = Pl then L.Tail := q; end if;

end Delete;

end LinkedLists_Package;

generic

type Object is limited private;
type Name is access Object;

procedure Unchecked Deallocation (x: in out Name);

package CircularQ Package is
type index is range 1 .. 32768;
type Array_Type is array (index) of integer;
type Array_Ptr Type is access Array_Type;

type Queue is

record
Address : Array_Ptr Type := new Array_Type;
Ref Count : Array_Ptr Type := new Array_Type;
head : index;
tail : index;

end record;

procedure Enqueue (Q: in out Queue;
CAM Size_Index: in index;
Reference: in integer);

procedure Dequeue (Q: in out Queue;
CAM_Size Index: in index);

procedure SearchQ (Q: in Queue;
Reference: in integer;
CAM Size Index: in index;
Position: in out index;
Found: in out boolean);

end CircularQ Package;

package body CircularQ Package is

procedure Enqueue (Q: in out Queue;
CAM Size_Index: in index;
Reference: in integer) is

begin
Q.tail := (Q.tail mod CAM_Size_ Index) + 1;
Q.address (Q.tail) := Reference;
Q.Ref_Count (Q.tail) := 0O;

end Enqueue;

procedure Dequeue (Q: in out Queue;
CAM_Size Index: in index) is
begin '
Q.head := (Q.head mod CAM_Size_ Index) + 1;

end Dequeue;

procedure SearchQ (Q: in Queue;
Reference: in integer;
CAM_Size_Index: in index;
Position: in out index;
Found: in out boolean) is

begin
for i in 1 .. CAM_Size_Index loop
Position := (Position mod CAM_Size_ Index) + 1;
if Q.Address (Position) = Reference
then Found := true;
exit;
end if;
end loop;

end SearchQ;

end CircularQ Package;

package Addr_Record_ Package is

type Addr_Record is

record
The_ Type : character;
Address : integer;

end record;

end Addr_Record_Package;

it

se

h Text_ 10, Addr_Record_Package,
LinkedLists_Package, CircularQ Package,
Fetch_Address_Package, Determine_ Type Package,
Serv_Instr_Fetch Package, Serv_Data_Read_Package,
Serv Data erte _Package, Compute MlSS Ratios_Package,
Compute Memory Access_Time_Package,
Compute_Cache_Pollution_Package,
Generate_Ref Frequency_List_Package;
Text IO, Addr_Record_Package,
LinkedLists_Package, CircularQ Package,
Fetch_Address_Package, Determine_Type_ Package,
Serv_Instr_ Fetch_ Package, Serv_Data_ Read_ Package,
Serv_Data_Write_Package, Compute_ Miss Ratios_Package,
Compute_Memory_ Access_Time_Package,
Compute_Cache Pollution_Package,
Generate_Ref Frequency_List_ Package;

procedure Cache Simulator is

package Type_Integer IO is new integer IO (integer):
use Type Integer I0;
package Index Integer IO is new integer IO (index);
use Index Integer_ IO;

Input_File File Type;
Output_File File Type;
Reference_File File Type;

Memory_Ref Addr_Record;
Num_Ref natural := 0;
Total Num Ref natural := O;
Type_Ref character;
SLC List;

CaM Queue;
SLC_Ref List : List;

CAM__ “Ref _List : List;
SLC_Mlss : natural := 0O;
CAM Miss natural := 0O;
SLC_ Total Refs natural := 0;
CAM Total Refs natural := 0O;
Temp_SLC_Slze natural := O;
Temp_CAM Size natural := 0;
SLC_Non_Ref natural := 0;
CAM_Non_Ref natural := 0;
SLC_Total_Prefetch natural := 0;
CAM Total Prefetch natural := 0;
SLC_MR, CAM_MR float;
CAM_Size Index index;
In_Strlng string (1..15);
In_Length natural;
New_Space natural := 1;
Last_Space natural := 0;

AKX A KR AR AR AR A AT A AR A AR AR AR AR AR AR A A A AR AT AT AR A A AR A A A A KA Kk

* CACHE PARAMETERS *
(LB E SRS AR SRR R RS RS R SR SRR RRERR RSl RRsR RS RRRREERER R
SLC_Size natural;
CAM_Size natural;
SLC_Line_Size natural;
CaM_Line_Size natural;

*******************t****************&*6**********'********

begin
new_line;
put ("Please enter the following:"); new line(2);

put ("Statistics Filename: ");
get_line (In_String, In_Length);
while ((New_Space < In_Length) and

(In_String (New_Space .. New_Space) /= " ")) loop
New_Space := New_Space + 1;
end loop;
create (Output_File, Out_File,
In_String ((Last_Space + 1) .. New_Space));

New_Space := 1; Last_Space := 0;

put ("Reference Filename: ");
get_line (In_String, In_Length);
while ((New_Space < In_Length) and

(In_String (New_Space .. New_Space) /=" ")) loop
New_Space := New_Space + 1;
end loop;
create (Reference File, Out _File,
In_String ((Last_Space + 1) .. New_Space));

New_ Space := 1; Last_Space := 0;

put ("Trace Filename: ");
get_line (In_String, In_Length);
while ((New_Space < In_Length) and
(In_String (New_Space .. New_Space) /= " ")) loop
New_Space := New_Space + 1;
end loop;
open (Input_File, In_File,
In_String ((Last_Space + 1) .. New_Space));
new_line;

put ("*** Cache Parameters ***"); new_line;
put ("SLC Size: "); get (SLC_Size);

put ("SLC Line Size: "); get (SLC_Line_Size);
put ("CAM Size: "); get (CAM_Size);
put ("CAM Line Size: "); get (CAM Line Size); new_line;

put (Output_File, "Address Trace: ");
put (Output_File, In_String((Last_Space+l)..New_Space));
put (Reference File, "Address Trace: ");

put (Reference_File, In_String((Last_Space+l)..New_Space));
set_line (Output_File, 2);

set_line (Reference_File, 2);

put (Output File, "SLC Size: ");

put (Output_File, SLC_Size);

put (Output_File, " SIC Line: ");
put (Output_File, SLC_Line_Size);

put (Reference File, "SLC Size: ");

put (Reference File, SLC_Size);

put (Reference File, " SILC Line: ");

put (Reference File, SLC_Line_Size);
set_line (Output_File, 3);

set_line (Reference_ File, 3);

put (Output_File, "CAM Size: ");
put (Output File, CAM Size);

put (Output File, " CAM Line: ");

put (Output_File, CAM_Line_Size);

put (Reference File, "CAM Size: ");

put (Reference File, CAM_Size);

put (Reference File, " CAM Line: ");

put (Reference_File, CAM Line_Size); A-10

set_line (Output_ File, 5);
set_line (Reference File, 5);

CAM_Size_Index := index (CAM_Size);
CAM.head := CAM_Size_Index;
CAM.tail := CAM_Size_Index;

while not End_Of File (Input_File) loop

Load_Record (Input_File, Memory_Ref);
Type_Ref := Address_Type (Memory Ref);

loop
case Type_ Ref is

when '0' =>

Num_Ref := Num_Ref + 1;

Serv_Data_Read (Input_File, Memory Ref,
SLC, CAM, SLC_Ref_List, CAM Ref List,
SLC_Miss, CAM Miss,

SLC_Total_Refs, CAM_Total_ Refs,
SLC_Non_Ref, CAM Non_Ref,
SLC_Total_Prefetch, CAM_Total Prefetch,
SLC_Size, CAM_Size, SLC_Line_Size,

CAM Line_Size, Temp SLC Size,

Temp_CAM Size); exit;

when '1' =>

Num_Ref := Num_Ref + 1;

Serv_Data_Write (Input_File, Memory_ Ref,
SLC, CAM, SLC_Ref List, CAM Ref List,
SLC_Miss, CAM Miss,

SLC_Total_Refs, CAM Total _Refs,
SLC_Non_Ref, CAM Non_Ref,
SLC_Total_Prefetch, CAM*Total_Prefetch,
SLC_Size, CAM_ Size, SLC_Line Size,
CAM_Line_Size, Temp_SLC Slze,
Temp_CAM_Size); exit;

when '2' =>

Num_Ref := Num Ref + 1;

Serv_Instr_Fetch (Input_File, Memory_Ref,
SLC, CAM, SLC_Ref List, CAM_Ref List,
SLC_Miss, CAM_Miss,

SLC_ " Total Refs, CAM_Total Refs,

SLC Non Ref CAM_ Non _Ref,

SLC_ Total Prefetch, CAM Total_ Prefetch,
SLC _Size, “caMm | Size, SLC Line Slze,

CAM Line_Size, Temp SLC . _Size,
Temp_CAM_Size); exit;

when others => exit;

end case;
end loop;

if Num_Ref = 20000 then
"~ Total_Num_Ref := Total_Num Ref + Num_Ref;

-- Compute SILC & CAM miss ratios

-= for every 20000 memory references A-11

Compute_Miss_Ratios (SLC_Miss, CAM Miss,
SLC_Total_Refs, CAM Total Refs,

Total_Num_Ref, SLC_MR,
CAM_MR, OQutput_File);
Num_Ref := 0;

elsif End_Of_File (Input_File) then
Total_ Num Ref := Total_Num_Ref + Num Ref;

Compute_Miss_Ratios (SLC_Miss, CAM Miss,
SLC_Total Refs, CAM_Total_Refs,
Total_Num Ref, SLC_MR,

CAM MR, Output File);

Compute Memory_ Access_Time (SLC_MR, CAM_MR,
Output_File);

Compute_Cache_Pollution (SLC, CAM, SLC_Non_Ref,
CAM _Non_Ref, SLC_Total_Prefetch, CAM Total_Prefetch,
Temp CAM_Size, Qutput_File);

Generate_ Ref Frequency_List (SLC_Ref List,
CAM_Ref List, SLC_Non_Ref, CAM_Non_Ref,
Reference File);

new _line (2);
put_line ("***** End of Simulation ***xxx");
exit;

end if;

end loop;
close (Input_File);
close (QOutput File);
close (Reference File);

end Cache_Simulator;

A-12

vith Addr_Record_Package,

LinkedLists_Package, CircularQ Package, Text IO;
1se Acddr_Record_Package,

LinkedLists_Package, CircularQ Package, Text_IO;

package Serv_Data_Read_Package is

procedure Serv_Data_Read

(Input_File : in File Type;
Memory_Ref ‘ : in Addr_Record;
SLC : in out List;
cam : in out Queue;
SLC_Ref List : in out List;
CAM_Ref List : in out List;
SLC_Miss : in out natural;
CAM Miss : in out natural;
SLC_Total_Refs : in out natural;
CAM_Total_Refs : in out natural;
SLC_Non_Ref : in out natural;
CAM_Non_Ref : in out natural;

SLC_Total Prefetch : in out natural;
CAM_Total_ Prefetch : in out natural;

SLC_Size : in natural;
CAM_Size : in natural;
SLC_Line_Size : in natural;
CAM _Line_Size : in natural;
Temp_ SLC_Size : in out natural;
Temp_ CAM Size : in out natural);

end Serv_Data_Read_Package;

A-13

package body Serv_Data Read Package is

procedure Serv_Data_ Read

(Input_File : in File_Type:;
Memory Ref : in Addr_Record:
SLC ¢ in out List;
CaM ¢ in out Queue;
SLC_Ref List : in out List;
CAM Ref List : in out List;
Q_Mlss : in out natural;
CAM_Miss : in out natural;
SLC_Total_Refs : in out natural;
CAM_Total Refs : in out natural;
SLC_Non_Ref : in out natural;
CAM_Non_Ref : in out natural:;

SLC Total _Prefetch : in out natural:;
CAM Total Prefetch : in out natural;

SLC Size : in natural;

CAM Size : in natural:;
SLC_Line_Size : in natural:

CAM Line_Size : in natural;

Temp SLC Size : in out natural;
Tenp | CAM Size : in out natural) is

package Index_Integer_ IO is new integer_ IO (index):
use Index_Integer_ IO;

Reference : Addr_Record;
Temp_Ndl, Temp Nd2 : NodePointer;
Temp_Nd3 : NodePointer;
Position : index := CAM.head;
Found : boolean := false;
k : natural := 1;
CAM Prefetch_Addr : integer;
n,o,p : integer;
CAM_Size_Index, j : index;
Temp CAM | Tail : index:;

begin

—— khkk kA Ak AN A KAk AR A A Ak Ak hhkhkkhkkhk kA khkhkkKk

-- Search Ffor memory reference in the SLC.
—— Rk kA A AR A Tk h bk hkhkkkhki

SLC_Total_Refs := SLC_Total_Refs + 1;

Temp_ Ndl := SLC.Next;
while Temp Ndl /= null loop
if Temp_Ndl.NumRef /= -1 then
Temp_ Ndl.NumRef := Temp Ndl.NumRef + 1;
end if;
Temp_ Ndl := Temp_Ndl.Next:;
end loop:

n := Memory Ref.Address;
Temp Nd1l := MakeNode (Memory_ Ref.Address):;

Temp_Nd2 := Search (SLC, n):

N 222222222822 SRRt iRttt RS R R

-- If the add.ess is found in the SLC,
-- then delete the address in the cache
-- (linked list) and add it to the front A-14

-- of the list (most recently used).
N AL R 22222222 RRRd R iR il a2 R 2R 4

if Temp_Nd2 /= null then

AddToFront (SLC, Temp Ndl):;

SLC.Next .NumRef := -1;

if Temp_Nd2.NumRef /=~ -1 then
Temp_Nd3 := MakeNode (Temp NdZ2.Addr):
Temp_ Nd3. NumRef := Temp_Nd2.NumRef;
Insert_In_Order (SLC_Ref List, Temp_Nd3):;

end if:;

Delete (SLC, Temp_Nd2);

else

s 22 82222 22222 Rt R Rt s it R R R L]

-~ Since a miss has occurred in the SLC,

-~ search for the address in the CaM.
— KEARATITAAARAEARAAAEAAEIRRA T A AR AAA R A A A TR A LK d kK

SLC_Miss := SLC Miss + 1;
CAM_Total Refs := CAM Total Refs + 1;
CAM_Size_Index := index (CAM Size);

if Temp_CAM Size /= 0 then
for i in 1 .. Temp_CAM Size loop
j := index (i):
if CAM.Ref_Count (j) /= -1 then
CAM.Ref Count (j) := CAM.Ref_Count (j) + 1;
end if;
end loop:
end if;

SearchQ (CAM, n, CAM Size Index, Position, Found):;

—— Kkhk Ak A A KA AT AT AR A AR AR ARk hkkk R hkdkkkkhkkhkkhkhkhkkk

-- If the address is found in the CAd4, then
-- prefetch a line from the CAM into the SLC.
-- The SLC line is comprised of the requested
-- address + the addresses located after the
-- requested address (total equal to the SLC
-- line size). This action represents a

-- spatial prefetch of the structural

-- locality captured in the CAM.

-—— KKK ARAAAETAAETAAARRE A A AN AR A AT AR A Ik hhk

if Found = true then -- address found in CAM

if CAM.Ref_Count (Position) /= -1 then
Temp_Ndl := MakeNode (CAM.Address (Position)):
Temp_Ndl. NumRef := CAM.Ref Count (Position);
Insert_In_Order (CAM Ref LlSt, Temp Ndl);
CAM.Ref Count (Position) := -1;
end if;
while Position /= CAM.tail
and then k /= SLC_Line_Size loop
k := k + 1;
Position := Position mod CAM_Size_Index + 1;
end loop:

for 1 in 1 .. k loop

— RRARRARRRA R AN A AN AR AR AT AR Ak hd

-~ If the SLC is full, then delete the
-- address located at the rear of the list
-- (LRU replacement). A-15

_—— REANXRRA AR A AR TAR AR AR AR AR AR R hkdekhkk

if Temp SLC_Size = SLC_Size then

R

else

if SLC.tail.NumRef /= -1 then
SLC_Non_Ref := SLC_Non_Ref + 1;
end if;

Delete (SLC, SLC.tail):
Temp SLC_Size := Temp_ SLC_Size - 1;

end if;

—— KA KEKR AR AKAAAA AR RAAA AT AAA AR A AR AL A A A KRR

Temp Ndl := MakeNode (CAM.Address (Position));

AddToFront (SLC, Temp Ndl):

SLC_Total Prefetch := SLC Total Prefetch + 1;

Temp SLC Slze = Temp__ SLC Size + 1;
if Position = 1 then

Position := CAM Size_ Index;
else

Position := Position - 1;
end if;

end loop:;

(222 R RS2 E Rzt Rt Rt RS R S S SR

If a miss occurs in the CAM, then prefetch a
line from main memory into the CAM. The line

will be comprised of the block of memory (equal

to the CAM line size) in which the requested

address is located.
AXEAEARAR AT A AT AR R A TR AT A A AR A A AT AT AT A A A Ak kX

CAM Miss := CAM Miss + 1;

(2222828322228 22222822l il 2222832 X2 X XS XXX X X3
If the CAM is full, then the delete the

addresses (amount equal to the CAM line size)

in the front of the CAM (FIFO replacement).
(AR 2RSSR R iR Rttt it a2 R AR R S]

if Temp_CAM _Size = CAM_Size then

-~ address not found in CAM

for 1 in 1 .. CAM Line_Size loop
if CAM.Ref_ Count (CAM.head mod CAM Size_Index + 1)
/= -1 then
CAM_Non_Ref := CAM Non_Ref + 1;
end if;

Dequeue (CAM, CAM Size_Index):;
Temp_CAM Size := Temp_ CAM Size - 1;

end loop;
end if;

s v gk ek de ke Kok de ke de de de e ok gk vtk e ek ok o e e ok e ok e e ok ok ke ok ok ok ok ek d ok

o :=n / CAM Line_Size;
CAM_Prefetch Addr := o * CAM Line_Size:

(22222 RS2SRRSRttt Rttt s s At 2 s S

CAM prefetch for a positive integer address.
L2 222222222222 222222 22222222 iR X222 8 X

if n >= 0 then

CAM Prefetch_Addr := CAM_Prefetch_ Addr - 1;

A-16

1

for i in 1 .. CAM Line_Size loop
CAM _Prefetch Addr := CAM Prefetch Addr + 1;

Enqueue (CAM, CAM_ Slze Index, CAM Prefetch _Addr);

CAM Total_| Prefetch := CAM Total Prefetch + 1;
Temp_CAM_Slze 1= Temp CAM Size + 1;
end loop:
else

e 3222 2R R SRR el ARt R ottt & LS

-- CAM prefetch for a negative integer address.
—— KR A K AR KA T X AR F LK I dhddkddkddhkhk ok kkkkhhkkkkkdhkkkk

if n rem CAM Line Size /= 0 then

CAM_Prefetch_Addr := CAM Prefetch_Addr - CAM Line_Size;

end if;
for i in 1 .. CAM Line_Size loop

Enqueue (CAM, CAM Size_Index, CAM_Prefetch Addr);

CAM Total Prefetch s CAM Total Prefetch + 1;
CaM Prefetch Addr := CAM | Prefetch Addr + 1;
Temp CAM . Size := Temp_ CAM Size + 1;
end loop:
end if;

—_—— KA KA AATT TR AT AR AT AT A AR A A kA kb hkhhkhkhkkx
-- Prefetch the addresses from the CAM to the SLC
-- starting with the requested address and ending
-- with the last (tail of the circular queue)

-- address in the CAM.

PSSR 322222 R SRR Rl R R Rt st R R SRS E S

Temp_CAM_Tail := CAM.tail;

while CAM.Address (Temp_CAM Tail) /= n loop

Temp Ndl := MakeNode (CAM.Address (Temp CAM Tail)):

if Temp SLC_Size = SLC_Size then

if SLC.tail.NumRef /= -1 then
SLC_Non_Ref := SLC_Non_Ref + 1;
end if;

Delete (SLC, SLC.tail):
Temp_SLC_Size := Temp SLC_Size - 1;

end if;

AddToFront (SLC, Temp_ Ndl):
SLC_Total_Prefetch := SLC Total_ Prefetch + 1;
Temp SLC_ Size := Temp SLC Size + 1;
if Temp_CAM_Tall = 1 then

Temp_CAM_Tail := CAM_Size_Index:;
else

Temp_CAM Tail := Temp CAM Tail - 1:;
end if;

end loop:
if Temp_SLC_Size = SLC_Size then
if SLC.tail.NumRef /= -1 then
SLC_Non_Ref := SLC Non_Ref + 1;

end if:;

Delete (SLC, SLC.tail);
Temp_ SLC_Size := Temp_ SLC_Size - 1;

o — e e

A-17

end if;
Temp_Ndl := MakeNode (CAM.Address (Temp CAM Tail)):

AddToFront (SLC, Temp_ Ndl);
SLC_Total_Prefetch := SLC_Total_Prefetch + 1;

Temp SLC_. Size := Temp_ SLC_ Size + 1;
end if;
end if;

end Serv_Data_Read:
end Serv Data Read |_Package:

A-18

with Addr_Record_Package,
LinkedLists_Package,
use Addr_ Record_Package,
LinkedLists_Package,

package Serv_Data_Write Package is

procedure Serv_Data_Write

(Input_File
Memory_Ref
SLC
caM

SLC_Ref List
CAM_Ref List

SLC Miss

CAM Miss
SLC_Total_Refs

CAM Total_Refs
SLC_Non_Ref

CAM Non_Ref
SLC_Total Prefetch
CAM_Total Prefetch
SLC_Size

CAM_Size
SLC_Line_Size

CAM Line_Size
Temp_SLC_Size
Temp_CAM_Size

end Serv_Data_Write_ Package;

CircularQ Package,

CircularQ Package,

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

Text_I0;

Text I0;

File Type;
Addr_ Record;
out List;
out Queue;
out List;
out List;
out natural;
out natural;
out natural;
out natural;
out natural;
out natural;
out natural;
out natural;
natural;
natural;
natural;
natural;

out natural;
out natural);

A-19

package body Serv_Data_Write Package is

procedure Serv_Data_Write

(Input_File : in File_ Type;
Memory Ref : in Addr_Record;
SLC : in out List;
CaM : 1n out Queue;
SLC_Ref List : in out List;
CAM_Ref List : in out List;
SLC Miss : in out natural;
CAM Miss : in out natural;
SLC_Total_Refs : in out natural;
CAM_Total Refs : in out natural;
SLC_Non_Ref : in out natural;
CAM_Non_Ref : in out natural;

SLC_Total_Prefetch : in out natural;
CAM_Total_ Prefetch : in out natural;

SLC_Size : in natural;
CAM_Size : in natural;
SLC_Line_Size : in natural;
CAM_Line_Size : in natural;

Temp_ SLC_Size : in out natural;
Temp CAM Size : in out natural) is

package Index_Integer_ IO is new integer_ IO (index);
use Index_Integer_ IO;

Reference : Addr_Record;
Temp_Ndl, Temp Nd2 : NodePointer;
Temp_Nd3 : NodePointer;
Position : index := CAM.head;
Found : boolean := false;
k : natural := 1;
CAM_Prefetch_Addr : integer;
n,o,p : integer;
CAM_Size_Index, j : index;
Temp CAM Tail : index;

begin

ER A A SRR RS SRS EEE SRR REEEEEEESEEEEEEEESEREEE]

-— Search for memory reference in the SIC.
e S A A R R RS SRS SRS EEREESEEESREEEEEEEESESESESEE

SLC_Total_Refs := SLC_Total_Refs + 1;

Temp_ Nd1l := SLC.Next;
while Temp_Ndl /= null loop
if Temp_Ndl.NumRef /= -1 then
Temp_Ndl.NumRef := Temp_ Ndl.NumRef + 1;

end if;

Temp_Ndl := Temp_Ndl.Next;
end loop;
n := Memory_ Ref.Address;

Temp Nd1l := MakeNode (Memory_ Ref.Address);

Temp_Nd2 := Search (SLC, n);

pa e PR R RS R R R R R R R R R R SR SRR R R R R R R R SRR RERE R RS
-- If the address is found in the SIC,

-- then delete the address in the cache

-~ (linked 1list) and add it to the front

—-- of the list (most recently used).
R R RS R A R R R R R SRR R R AR RERERRESEEESEEEERES,

if Temp Nd2 /= null then

M

A-20

AddToFront (SL(, Temp Nd1l);
SLC.Next.NumRel := -1;
if Temp Nd2.NumRef /= -1 then

Temp Nd3 := MakeNode (Temp_Nd2.Addr);

Temp Nd3.NumRef := Temp Nd2.NumRef;
Insert_In_Order (SLC_Ref List, Temp_ Nd3);
end if;

Delete (SLC, Temp Nd42);

else

B R R R RS SRS S SRR ERE R RS RREREESEERSEEEEESE SRS S S

~— Since a miss has occurred in the SLC,

—— search for the address in the CAM.
_—— AR KA AR A AR A IR A AR A AT A AR R A AR A AT AR AT AN AT kA kK kK

SLC_Miss := SLC_Miss + 1;
CAM_Total Refs := CAM_Total Refs + 1;
CAM Size Index index (CAM_Size);

if Temp CAM_Size /= 0 then

for i in 1 .. Temp_CAM_Size loop
j := index (i);
if CAM.Ref Count (j) /= -1 then
CAM.Ref Count (j) := CAM.Ref_Count (j) + 1;
end if;
end loop;

end if;
SearchQ (CAM, n, CAM_Size_Index, Position, Found);

R e R E SRR RS S SRR R R R R R EREEEREEEREEEEEESEERESES

—- If the address is found in the CAM, then
—-- prefetch a line from the CAM into the SLC.
-- The SLC line is comprised of the requested
—-- address + the addresses located after the
—-- requested address (total equal to the SLC
-— line size). This action represents a

-- spatial prefetch of the structural

-- locality captured in the CAM.

R A A RS R R LSS SRS R SRR RS RRESEREEER SR EEEE DD RS S

if Pound = true then —- address found in CAM

if CAM.Ref Count (Position) /= -1 then
Temp Ndl := MakeNode (CAM.Address (Position));
Temp_Ndl.NumRef := CAM.Ref Count (Position);
Insert_In_Order (CAM Ref List, Temp_Ndl);
CAM.Ref Count (Position) := -1;

end if;

while Position /= CAM.tail
and then k /= SLC_Line_Size loop

k := k + 1;
Position := Position mod CAM_Size Index + 1;
end loop; '
for i in 1 .. k loop

P SRR E R R EE R R R R R R RS R R R R R RS R RN SR EEEEESEEE]

-- If the SLC is full, then delete the

-— address located at the rear of the list

-- (LRU replacement). A-21

Bt R AR R SRR R R R RR R RE RS RS EEREEESEE SN

if Temp SLC_Size = SLC_Size then

R IR IR

R T

if SLC.tail.NumRef /= -1 then
SLC_Non_Ref := SLC Non_Ref + 1;
end if;

Delete (SLC, SLC.tail);
Temp_SLC_Size := Temp_SLC_ Size - 1;

end if;

—— Khkhkhkkhk kAKX AkKAXXFhkKAXARkA kA Rk hkhAkrA kXA khhxhk

Temp_Ndl := MakeNode (CAM.Address (Position));
AddToFront (SLC, Temp_Ndl);
SLC_Total_Prefetch := SLC_Total Prefetch + 1;
Temp_SLC_Size := Temp_SLC_Size + 1;
if Position = 1 then

Position := CAM_Size Index;

else
Position := Position - 1;
end if;
end loop;
else ~— address not found in CAM

—— KA ARATARA KK AKARARKRAA KRR A KRR R AR TR R A AR IRk AR R AR, kK

-— If a miss occurs in the CAM, then prefetch a

-- line from main memory into the CAM. The line
-— will be comprised of the block of memory (equal
-— to the CAM line size) in which the requested

—- address is located.
— AR A AR A I A A AA A TAARTKN AR TR T A AR AR AT AR A AR R Rk kk kK

CAM Miss := CAM Miss + 1;

—_— KK KA KT A KA AR AR A EA AR KA AR AAKXRARKRAKAARARAKRRAKR AR A A AR AKX A K
-- If the CAM is full, then the delete the

—-- addresses (amount equal to the CAM line size)
-- in the front of the CAM (FIFO replacement).

Bl EEE R EREEE SRS S SRR RS RS S S SRR SR SRR RS R EEE RS SRS S

if Temp_CAM_Size = CAM Size then

for 1 in 1 .. CAM_Line_Size loop
if CAM.Ref Count (CAM.head mod CAM Size Index + 1)
/= -1 then
CAM Non_Ref := CAM Non_Ref + 1;
end if;

Dequeue (CAM, CAM_Size_Index);
Temp CAM_Size := Temp CAM Size - 1;

end loop;
end if;

—_— AR IKRA TR T AR A ARARATARRKR AR A AR A AL AAR A A AR A A R

o :=n / CAM Line_Size;
CAM_Prefetch Addr := o * CAM_Line_Size;

PR AR SRS AR R R SRS RS S EERES Rl Ral SRR ERRRae SRR RS,

-- CAM prefetch for a positive integer address. A-22
—_—_ RARER AT AR X AT AAT LA AR AR A AL AR Ak Rtttk kb

if n >= 0 then
CAM_Prefetch_Addr := CAM Prefetch Addr - 1;

for i in 1 .. CAM Line_Size loop
CAM_Prefetch_Addr := CAM_Prefetch Addr + 1;
Enqueue (CAM, CAM Size_Index, CAM Prefetch_ Addr);
CAM_Total Prefetch := CAM Total_ Prefetch + 1;
Temp_CAM_Size := Temp CAM_Size + 1;
end loop;
else

—— Ak A KR KA A ARKIKNARN KR KA A AN A AR AR KA A A A I AR IRk A AT Rk xhkx kK k%

—— CAM prefetch for a negative integer address.
—_—— Ak KA KA AR KR I A A A AT A AT A A A AR K AN AR ARXRARKT AR AT R AR kXA h A k)

if n rem CAM Line Size /= 0 then
CAM_Prefetch_Addr := CAM_Prefetch Addr - CAM lLine Size;

end if;

for i in 1 .. CAM Line_Size loop
Enqueue (CAM, CAM Size_Index, CAM_ Prefetch_Addr);
CAM_Total_Prefetch := CAM Total Prefetch + 1;
CAM_Prefetch_Addr := CAM_Prefetch Addr + 1;
Temp CAM Size := Temp CAM Size + 1;

end loop;

end if;

e S S R RS S S S ESSE S SEERESELSEEEESE RS R EEEEEEEEENEEE]
—- Prefetch the addresses from the CAM to the SLC
—- starting with the requested address and ending
~— with the last (tail of the circular queue)

—— address in the CaM.

e A AR ES SR SRR ESREEREREERRERREEEEEREEEEEEEESESSEE]

Temp CAM Tail := CAM.tail;

while CAM.Address (Temp CAM Tail) /= n loop
Temp_Ndl := MakeNode (CAM.Address (Temp CAM Tail));

if Temp SLC_Size = SLC_Size then

if SLC.tail.NumRef /= -1 then
SLC_Non_Ref := SLC_Non Ref + 1;
end if;

Delete (SLC, SLC.tail);
Temp_SLC_Size := Temp_SLC_Size - 1;

end if;

AddToFront (SLC, Temp_Ndl);
SLC_Total Prefetch := SLC_Total Prefetch + 1;
Temp_SLC_Size := Temp SLC_Size + 1;
if Temp_CAM Tail = 1 then
Temp_ CAM_Tail := CAM_Size_Index;
else
Temp_CAM_Tail := Temp CAM Tail - 1;
end if;

end loop;
if Temp SLC_Size = SLC_Size then
if SIC.tail.NumRef /= -1 then
SLC_Non_Ref := SLC Non_Ref + 1;
end if; A-23

Delete (SLC, SLC.tail);
Temp_SLC_Size := Temp_SLC_Size - 1;

end if;
Temp Nd1l := MakeNode (CAM.Address (Temp_CAM_Tail));
AddToFront (SLC, Temp_Ndl);
SLC_Total_Prefetch := SLC_Total Prefetch + 1;
Temp SLC_Size := Temp_SLC_Size + 1;
end if;
end if;

end Serv_Data_Write;
end Serv_Data_Write_ Package;

A-24

with Addr_Record_Package,
LinkedLists_Package,
use Addr_Record_Package,
LinkedLists_Package,

CircularQ Package,

CircularQ Package,

package Serv_Instr Fetch_ Package is

procedure Serv_Instr_ Fetch

(Input_File
Memory_Ref
SLC
caM
SLC_Ref List
CAM_Ref List
SLC_Miss
CAM Miss

SLC_Total Refs
CAM_Total_ Refs

SLC_Non_Ref
CAM_Non_Ref

SLC_Size
CAM Size
SLC_Line_Size
CAM Line Size
Temp_SLC_Size
Temp_CAM_Size

Text IO;

Text I0;

in File Type;
in Addr_Record;
in out List;
in out Queue;
in out List;
in out List;
in out natural;
in cut natural;
in out natural;
in out natural;
in out natural;
: in out natural;
SLC_Total Prefetch : in out natural;
CAM Total Prefetch : in out natural;

in natural;
in natural;
in natural;
in natural;

in out natural;
in out natural);

end Serv_Instr_Fetch_ Package;

A-25

package body Serv_Instr Fetch Package is

procedure Serv_Instr Fetch

(Input_File : in File Type;
Memory_ Ref : in Addr_Record;
SLC : in out List;
CaM : in out Queue;
SLC_Ref List : in out List;
CAM Ref List : in out List;
SLC_Miss : in out natural;
CAM Miss : in out natural;
SLC_Total Refs : in out natural;
CAM _Total Refs : in out natural;
SLC_Non_Ref : in out natural;
CAM _Non_Ref : in out natural;

SLC_Total_Prefetch : in out natural;
CAM_Total Prefetch : in out natural;

SLC_Size : in natural;

CAM Size : in natural;

SLC Line_Size : in natural;
CAM_Line_Size : in natural;

Temp SLC_Size : in out natural;
Temp_CAM_Size : in out natural) is

package Index_Integer_ IO is new integer_ IO (index);
use Index_Integer IO;

Reference : Addr_Record;
Temp Nd1l, Temp_Nd2 : NodePointer;
Temp_Nd3 : NodePointer;
Position : index := CAM.head;
Found : boolean := false;
k : natural := 1;
CAM_Prefetch_Addr : integer;
n,o,p . : integer;
CAM_Size_Index, j : index;
Temp_CAM_Tail : index;

begin

e R R R R R R RS EESEEREREEREREERE SRR EEEEEES S

—- Search for memory reference in the SLC.
—— AKX AKRKAKRAARAA T AR A AR AR AR AR T RA R AR TR AR

SLC_Total_Refs := SLC_Total_Refs + 1;

Temp_Nd1l := SLC.Next;
while Temp Ndl /= null loop
if Temp_Ndl.NumRef /= -1 then
Temp Ndl.NumRef := Temp_Ndl.NumRef + 1;

end if;

Temp_Ndl := Temp_ Ndl.Next;
end loop;
n := Memory_ Ref.Address;

Temp_Ndl := MakeNode (Memory_Ref.Address);

Temp Nd2 := Search (SLC, n);

e AR R AR AR AR I KRR AR R R AR AR ARR IR KRR AR AR A AR R AL AR

-- If the address is found in the SLC,
-- then delete the address in the cache
—-- (linked list) and add it to the front

-~ of the list (most recently used).
R E AR EE R E R R RS R AR R R R AR R REEREREREREEEEEESE

A-26

if Temp Nd2 /= null then

AddToFront (SLC, Temp Ndl);

SLC.Next.NumRef := -1;

if Temp Nd2.NumRef /= -1 then
Temp_Nd3 := MakeNode (Temp_ NdZ.Addr);
Temp Nd3.NumRef := Temp Nd2.NumRef;
Insert_In_Order (SLC_Ref List, Temp_Nd3);

end if;

Delete (SLC, Temp_Nd2);

else

—— KA KARET XA AA AR T AKR AR I ARKRKRA XA ARKRR R AR AT A AR R KT XA K

-— Since a miss has occurred in the SLC,

~-— search for the address in the CAM.
—— R AR AR KR E KRR IAR T XA AKRARKN KRR KRR AKX A KRR TR AR AR A A XAk X

SILC Miss := SLC Miss + 1;
CAM Total Refs := CAM Total_Refs + 1;
CAM_Size Index := index (CAM_Size);

if Temp_CAM Size /= 0 then
for i in 1 .. Temp_CAM_Size loop

:= index (1);
if CAM.Ref_Count (j) /= -1 then
CAM.Ref Count (j) := CAM.Ref_Count (j) + 1;
end if;
end loop;

end if;

SearchQ (CAM, n, CAM Size Index, Position, Found);

—_— A EEKAKRIA KKK A AR AT AR AR AR AR A AT A AT AT TN kA ok bk

-—- 1f the address is found in the CAM, then
-- prefetch a line from the CAM into the SLC.
-- The SLC line is comprised of the requested
~-— address + the addresses located after the
-- requested address (total equal to the SLC
-- line size). This action represents a

-- spatial prefetch of the structural

-- locality captured in the CAM.

P SRR R R LRSS R A RERES RS R R EaR SRR R E R RS EESEE SN

if Found = true then ~- address found in CaM

if CAM.Ref_Count (Position) /= -1 then
Temp_Ndl := MakeNode (CAM.Address (Position));
Temp_Ndl.NumRef := CAM.Ref_Count (Position);
Insert_In_Order (CAM Ref List, Temp_Ndl);
CAM.Ref_Count (Position) := -1;

end if;

while Position /= CAM.tail
and then k /= SLC_Line_Size loop

k := k + 1;
Position := Position mod CAM_Size_Index + 1;
end loop;
for 1 in 1 .. k loop

—_—— X RRARARARERRRE A AR AT ARRRRARRARARARR AR AR RN K

-- I1f the SLC is full, then delete the

—-—- address located at the rear of the list

~-- (LRU replacement). A-27

S XA R RS SRR RS R RS R R R R ERERREREEEEEEEES]

if Temp_SLC_Size = SLC_Size then

1f SLC.tail.NumRef /= -1 then
SLC_Non_Ref := SLC_Non Ref + 1;
end if;

Delete (SLC, SLC.tail);
Temp_SLC _Size := Temp SLC Size - 1;

end if;

~—— AR IAFIKRIAFITAAA KR AKR AR KRR IT A A AR AR A AR T RRKR KR kK R kk

Temp_Nd1l := MakeNode (CAM.Address (Position));
AddToFront (SLC, Temp Ndl);

SLC_Total Prefetch := SLC Total Prefetch + 1;
Temp SLC_Size := Temp_SLC_Size + 1;

if Position = 1 then

Position := CAM_Size_Index;
else
Position := Position - 1;
end if;
end loop;
else ~— address not found in CAM

e S S R EEREREEERERSEEEEESEEEEEEEEREEEEEEEEEEEEES

-— If a miss occurs in the CAM, then prefetch a

-- line from main memory into the CAM. The line
-- will be comprised of the block of memory (equal
—-— to the CAM line size) in which the requested

-— address is located.
B A S S SRS ES R RS SLEE S REEEEESEEREEEEEEEIEEEEDE SR RS

CAM Miss := CAM Miss + 1;

E R S R AR SRR R AL SRS R R RS SRR R REREER SRR R EREEREEEEESEER]
-- If the CAM 1is full, then the delete the

-- addresses (amount equal to the CAM line size)
-— 1in the front of the CAM (FIFQO replacement).

B R R S SR AR R EEERRE SRR ARE RS RS SR EEEEEEESEEREESEESEE]

if Temp_CAM Size = CAM Size then

for i in 1 .. CaAM Line_Size loop
if CAM.Ref_Count (CAM.head mod CAM_Size Index + 1)
/= ~1 then
CAM Non_Ref := CAM Non_Ref + 1;
end if;

Dequeue (CAM, CAM Size_ Index);
Temp_CAM_Size := Temp_CAM_Size - 1;

end loop;
end if;

—— AR AR R A AR FAAAA I AR A AR AL A AT AR AR AT AR A KK F ok Kk k

o := n / CAM_Line_Size;
CAM_Prefetch Addr := o * CAM_Line Size;

EaE R A A LR SRS RS RE RS R R EEREREEREEEEREREREEEENEIEREIESESES

-— CAM prefetch for a positive integer address. A~28

Pt B R B R R B B RS S EEEEEEEESEESEEE S S EEEEREERSEEEIERSERXRS

if n >= 0 then
CAM_Prefetch_Addr := CAM Prefetch Addr - 1,

for i in 1 .. CAM Line_Size loop
CAM_Prefetch_Addr := CAM Prefetch Addr + 1;
Enqueue (CAM, CAM Size Index, CAM_ Prefetch_Addr);
CAM Total Prefetch := CAM_Total_Prefetch + 1;
Temp CAM Size := Temp_CAM Size + 1;
end loop;
else

R EEE SRR LSRR RS RS ESR SRR SRR R R R E R EEEEEEEESESEEE]

-- CAM prefetch for a negative integer address.
P R R R EE R R R R R R R R R R RS ESEE R EE R RS E RS EE SRS ESEESES S

if n rem CAM Line_Size /= 0 then
CAM_Prefetch_Addr := CAM Prefetch Addr — CAM Line_Size;
end if;
for i in 1 .. CaM_Line_Size loop
Enqueue (CAM, CAM _Size_ Index, CAM Prefetch_ Addr);
CAM Total Prefetch := CAM_Total_ Prefetch + 1;
CAM Prefetch Addr := CAM_ Prefetch Addr + 1;
Temp CAM_Size := Temp_CAM Size + 1;
end loop;
end if;

IREEEE SR EREEEEEEESRERRARS SRR R R R SRR EEEEEEEEESEE

Prefetch the addresses from the CAM to the SLC
starting with the requested address and ending
with the last (tail of the circular queue)
address in the CaM.

IR ERE SR EEEEERARR SRR SRR R R R EE SRR EEEEEEESE SRS

Temp CAM Tail := CAM.tail;

while CAM.Address (Temp_CAM Tail) /= n loop
Temp Ndl := MakeNode (CAM.Address (Temp_CAM Tail));

if Temp SLC_Size = SLC_Size then

if SLC.tail.NumRef /= -1 then
SLC_Non_Ref := SLC_Non_Ref + 1;
end if;

Delete (SLC, SLC.tail);
Temp_SLC_Size := Temp_SLC_Size - 1;

end if;

AddToFront (SLC, Temp_Ndl);
SLC_Total_Prefetch := SLC_Total_Prefetch + 1;
Temp SLC_Size := Temp_SLC_Size + 1;
if Temp_CAM _Tail = 1 then

Temp CAM_Tail := CAM_Size_Index;
else

Temp CAM Tail := Temp_CAM Tail - 1;
end if;

end loop;
if Temp_SLC_Size = SLC_Size then

if SLC.tail.NumRef /= -1 then
SLC_Non_Ref := SLC_Non_Ref + 1;
d if;
end A-29
Delete (SLC, SLC.tail);
Temp SLC_Size := Temp_SLC_Size - 1;

]

. S .

end if;
Temp_Ndl := MakeNode (CAM.Address (Temp CAM Tail));
AddToFront (SLC, Temp_ Ndl);
SLC_Total_pPrefetch := SLC_Total Prefetch + 1;
Temp_SLC_Size := Temp_SLC_Size + 1;
end if;
end if;

end Serv_Instr Fetch;
end Serv_Instr_ Fetch_ Package;

A-30

with Text_ IO, Addr_Record_Package;
use Text_IO, Addr_Record_Package;

package Fetch_Address_Package is

procedure Load_Record (Input_File: in out File_ Type;
Memory_ Ref: out Addr_Record);

end Fetch_Address_Package;

A-31

with Text_IO, Hex_to_Dec_Package;
use Text_IO, Hex_ to_Dec_Package;

package body Fetch Address_Package is

procedure Load_Record (Input_File: in out File_Type;
Memory Ref: out Addr_Record) is

type Field_Type is (fieldl, field2);

In_String : string (1 .. 11);
In_Length : natural;
New_Space : natural;
Last_Space : natural;
In_Field : Field Type := fieldl;
Hex_ Addr : string (1 .. 8);
Hex_Length : natural;
begin
get_line (Input_File, In_String, In_Length);
New_Space := 1;
Last Space := 0;
loop
while ((New_Space < In_Length) and
(In_String (New_Space .. New_Space) /= " ")) loop
New_Space := New_Space + 1;
end loop;

case In_Field is

when fieldl => Memory_Ref.The Type :=
In_String (New_Space - 1);
In_Field := field2;

when field2 => Hex_Addr ((Last_Space - 1)
In_String ((Last_Space + 1) .. New_Space);
Hex_length := New_Space - Last_Space;

Memory_Ref.Address := Hex_to_Dec (Hex_Addr, Hex_Length);

In_Field := fieldl; exit;

when others => exit;

end case;

Last_Space := New_Space;

New_Space := New_Space + 1;
end loop;

end Load_Record;
end Fetch_Address_Package;

A-32

.. New_Space - 2)

package Hex_to Dec_Package is

function Hex_to_Dec (Hex_Addr: string; Hex_Length: natural)
return integer;

end Hex_to_Dec_Package;

A-33

T

with Text_IO; use Text_ I0;
package body Hex_to_Dec_Package is

function Hex_to_Dec (Hex_ Addr: string; Hex_Length: natural)
return integer is

Zero_Pos : constant := character'pos ('0');
Capital_A_ Pos : constant := character’'pos ('A');
Small_A_Pos : constant := character'pos ('a');

package Type Integer 10 is new integer_ IO (integer);
use Type_Integer_IO;

type Dec_Value Type is range -=2**31 .. 2**31-1;
Temp_Dec_Value: Dec_Value Type := 0;
Num_Value: Dec_Value Type range 0 .. 15;
Dec_Value: integer;

Hex_Char: character;

begin
for i in 1 .. Hex_Length loop

Hex_Char := Hex Addr (i);

case Hex_Char is

when '0' .. '9' =>

Num Value := character'pos (Hex_Char) - Zero_Pos;
when 'A' .. 'F' =>

Num_Value := character'pos (Hex_Char) -

Capital_A_Pos + 10;

when 'a' .. 'f' =>
Num_Value := character'pos (Hex_Char) -
Smail A Pos + 10;

when others => exit;
end case;

if i < 8 then
Temp_ Dec_Value
else
Temp_Dec_Value
Temp_Dec_Value
end if;

It

16 * Temp_Dec_Value + Num_Value;

Temp_Dec_Value - 2**27;
16 * Temp_Dec_Value + Num_Value;

[

end loop;

Dec_Vvalue := integer (Temp_Dec_Value);
return Dec_Value;

end Hex_ to_Dec;

end Hex_to_Dec_Package;

A-34

with Addr_Record Package; use Addr_Record_Package;
package Determine_Type_ Package is

function Address_Type (Memory Ref: Addr_Record) return
character;

end Determine_Type Package;

A-35

with Addr_Record_Package; use Addr_Record Package;
package body Determine_ Type_Package is
function Address_Type (Memory_Ref: Addr Record)
return character is
begin
return Memory Ref.The_ Type;
end Address_Type;

end Determine Type_ Package;

A-36

with Text_ IO; use Text_ I10;
package Compute Miss_Ratios_Package is
procedure Compute_ Miss_Ratios (SLC_Miss: in natural;
CAM_Miss: in natural; SLC_Total_Refs: in natural;
CAM_Total_Refs: in natural; Num Ref: in natural;
SLC_MR: out float; CAM_MR: out float;
Output_File: in out File Type);

end Compute Miss_Ratios_Package;

A-37

with Text_IO; use Text_IO;
package body Compute Miss_Ratios Package is

procedure Compute Miss_Ratios (SLC_Miss: in natural;
CAM _Miss: in natural; SLC Total_ Refs: in natural;
CAM_Total_Refs: in natural; Num_Ref : in natural;
SLC_MR: out float; CAM MR: out float;
Output_File: in out File_Type) is

type MR_Type is delta 0.0001 range 0.0 .. 1.0;
package MR_Typé_IO is new fixed_ IO (MR_Type);

package Type_Integer_ 10 is new integer_ IO (integer);
use MR_Type_ 10, Type_Integer_ I0;

SLC_Miss_Ratio : MR_Type;

CAM Miss_Ratio : MR_Type;

SM, CM, ST, CT : float;

SMR, CMR : float;
begin

SM := float (SLC_Miss);

CM := float (CAM_Miss);

ST := float (SLC_Total_Refs);

CT := float (CAM_Total Refs);

new_line (3);

put ("Number of References Processed: "); put (Num_Ref);
new_line (2);

put ("Number of SLC Misses: "); put (SLC_Miss);
new_line;

put ("Number of CAM Misses: "); put (CAM Miss);
new_line;

put ("Total SLC References: "); put (SLC_Total_Refs);
new_line;

put ("Total CAM References: "); put (CAM Total_Refs);
new_line (2);

SMR
CMR

SM / ST;
CM / CT;

SLC_Miss_Ratio := MR _Type (SMR);
CAM Miss Ratio := MR_Type (CMR);
SLC_MR float (SLC_Miss Ratio);
CAM_MR float (CAM_Miss_ Ratio);

o

put ("SLC_Miss_Ratio: "); put (SLC_Miss_Ratio);
new_line;
put ("CAM Miss Ratio: "); put (CAM Miss Ratio);

Set Col (Output_File, 1);

put (Output_File, Num_Ref);

put (Output_File, SLC_Miss);

put (Output_File, CAM Miss);

put (Output_File, SLC_Total_Refs);
put (Output File, CAM Total Refs);
put (Output_File, SLC_Miss Ratio);
put (Output_File, CAM_Miss _Ratio);

end Compute Miss_Ratios;

end Compute_Miss_Ratios_Package; A-38

]

e —

with Text 10; use Text I0;
package Compute Memory_ Access_Time_Package is

procedure Compute Memory Access_Time (SLC_MR: in float;
CAM_MR: in float; Output_File: in out File Type);

end Compute_Memory_ Access_Time Package;

A-39

1S ——

with Text_IO; use Text_IO;
package body Compute_Memory Access_Time_Package is

procedure Compute_ Memory_ Access_Time (SLC_MR: in float:;
CAM MR: in float; Output File: in out File Type) is

type Avg_Access_Type is delta 0.001 range 1.0 .. 32.0;

package Type_Access_IO is new fixed IO (Avg_Access_Type):
use Type_Access_IO;

Eff Mem Access : Avg_Access_Type:;

CAM_Access : float := 4.0;

MM Access : float := 32.0;
begin

Eff _Mem_ Access := Avg_Access_Type ((1.0 - SLC_MR) + (CAM Access
* (SLC MR) * (1.0 - CAM_MR)) + (MM_Access * (SLC_MR) * (CAM MR))):
Set_Col (Output File, 1):
put (Output_File, "Effective Memory Access Time: ");
put (Qutput_File, Eff Mem Access):

end Compute_Memory Access_Time;

end Compute_Memory Access_Time_ Package;

A-40

with Text_IO, LinkedLists_Package, CircularQ Package;
use Text_ 10, LinkedLists_ Package, CircularQ Package;

package Compute_Cache_Pollution_ Package is

procedure Compute_Cache_ Pollution (SLC: in out List; CAM: in out Queue;
SLC_Non_Ref: in out natural;
CAM Non_Ref: in out natural;
SLC_Total Prefetch: in natural;
CAM_Total Prefetch: in natural;
Temp_CAM_Size: in natural;
Qutput_File: in out File Type);

end Compute_Cache Pollution_Package;

A-41

package body Compute Cache Pollution_Package is

procedure Compute Cache Pollution (SLC: in out List; CAM: in out Queue;
SLC_Non_Ref: in out natural;
CAM_Non_Ref: in out natural;
SLC_Total_ Prefetch: in natural;
CAM_Total Prefetch: in natural;
‘ Temp_CAM_Size: in natural;
Output_File: in out File_Type) is

type Fixed Type is delta 0.0001 range 0.0 .. 1.0;

package Type Fixed IO is new fixed IO (Fixed_Type),
use Type_ Fixed 10;

package Index_Integer IO is new integer_ IO (index);
use Index_ Integer_IO;

SLC Pollution : Fixed Type;
~”AM Pollution : Fixed_Type;
SNR, CNR, STP, CTP : float;
Temp_Node : NodePointer;
3 : index;

begin

Temp_ Node := SLC.Next;
while Temp_Node /= null loop
if Temp_Node.NumRef /= -1 then
SLC_Non_Ref := SLC_Non_Ref + 1;
end if;
Temp_Node := Temp_Node.Next;
end loop;

SNR := float (SLC_Non_Ref);

STP := float (SLC_Total Prefetch);
SLC_Pollution := Fixed_Type (SNR/STP);
Set Col (Output_File, 1);

put (Output_File, "SLC Pollution: ");
put (Output_File, SLC_Pollution);

for i in 1 .. Temp CAM Size loop
j := index (1i);
if CaAM.Ref Count (Jj) /= -1 then
CAM_Non_Ref := CAM_Non_Ref + 1;
end if;
end loop;

CNR float (CAM_Non_Ref);

CTP float (CAM _Total Prefetch);
CAM_Pollution := Fixed Type (CNR/CTP);
Set_Col (Output_File, 1);

put (Output File, "CAM Pollution: ");
put (Output_ File, CAM_Pollution);

end Compute_Cache_Pollution;

end Compute_Cache_Pollution_Package;

A-42

with Text_I0, LinkedLists_ Package;
use Text IO, LinkedLists_Package;

package Generate_ Ref Frequency_List _Package is

procedure Generate Ref Frequency List (SLC_Ref List: in out List;
CAM_Ref List: in out List;
SLC_Non_Ref: in natural;
CAM Non_Ref: in natural;
Reference File: in out File_Type);

end Generate_éef_Frequency_List_Package;

A-43

VR

package body Generate_Ref Frequency_List_Package is

procedure Generate_Ref_ Frequency_List (SLC_Ref List: in out List;
CAM Ref List: in out List;
SLC_Non_Ref: in natural;
CAM Non Ref: in natural;
Reference_File: in out File_Type)

package Type_ Integer_IO is new integer_IO (integer);
use Type_Integer I0;

Temp_Ndl, Temp_ Nd2 : NodePointer;
Reference_Count : natural := 0;
begin

Set Col (Reference File, 1);
put (Reference File, "SLC: Frequency of References");
Set_Col (Reference File, 1);
put (Reference_ File, " 0"y,
put (Reference File, SLC_Non Ref);
Temp_ Ndl := SLC_Ref List.Next;
Temp_Nd2 := SLC_Ref List.Next;
while Temp Ndl /= null loop
while Temp N4l /= null and then
Temp_Ndl.NumRef = Temp_Nd2.NumRef loop
Temp_Ndl := Temp_Ndl.Next;
Reference_Count := Reference_Count + 1;
end loop;
Set_Col (Reference File, 1);
put (Reference File, Temp_Nd2.NumRef);
put (Reference File, Reference_Count);
Temp_Nd2 := Temp_Ndl;
Reference Count := 0;

Set _Col (Reference_File, 1),
put (Reference_File, " "y
Set_Col (Reference_File, 1);
put (Reference File, "CAM: Frequency of References");
Set Col (Reference_File, 1);
put (Reference File, " o");
put (Reference_File, CAM_Non _Ref);
Temp_Ndl := CAM_Ref List.Next;
Temp Nd2 := CAM_Ref List.Next;
while Temp Ndl1 /= null loop
while Temp Ndl /= null and then
Temp_Ndl.NumRef = Temp_Nd2.NumRef loop
Temp_ Nd1l := Temp_Ndl.Next;
Reference Count := Reference_Count + 1;
end loop;
Set_Col (Reference File, 1);
put (Reference_File, Temp_Nd2.NumRef);
put (Reference_File, Reference_Count);
Temp_Nd2 := Temp_Ndl;
Reference_Count := 0;
end loop;

end Generate_Ref Frequency_List;

end Generate Ref Frequency_List_Package;
A-44

Appendix B: Test Trace Mapping to Testing Requirements

Test Trace Mapping to Testing Requirements (Figure 3.16)

Note: Testing requirements are identified at the first point

in the test trace where they are tested. The following
test trace was designed for the VAX traces: Version 1
driver. To test the Version 2 driver for the TI
Explorer traces, the addresses were changed to integers
so the testing requirements were tested at the same
points in the test trace.
Cache Test Parameters (words)

SLC Size: 8 CAM Size: 16

SLC Block: 4 CAM Block: 2

0 1AF76945 <= I.A.1, I.A.3, I.A.4, II.A.2, II.B.2,
II.D.1, II.D.2

0 1AF76946

0 1AF76944 <= II.B.1, II.C.1

1 2378BC12 <= II.D.4

1 2378BC13 <= II.A.1

0 1AF76946

0 1AF76947

1 2378BCl4

0 1AF76948

0 1AF76945 <= 1II.C.2, II.C.3

2 189CDFO03

2 189CDF02 <= II.C.4

1 2458F3B2

1 2458F3B3

1 2458F3B4

1 2458F3B5

1 2458F3B6 <= II.D.2

0 9654EF24

o N

N

9654EF25
2458F3B2
2458F3B3
189CDFO1
189CDFO02
2458F3B4
2458F3B5
08971234
367814BC
9654EF24
9654EF25
67209AF0
395CAFB1
9087BA23
65432DA0
2458F3B4
2458F3B5
56129027
9BF23467
67209AF0
395CAFB1
4F29B560
2A9F73CA
9876AFB3
68210BD3

56129027

<

II.E.1-4

9BF23467
B5DAO

6754D231
4F29B560
2A9F73CA

1AF76945

I.A.2

III.A-D

Test Trace Results

0
\IO\UI-bNHOE qauu—-og

Miss Rate: 0.7083
Miss Rate: 0.7059
Pollution: 0.8267
Pollution: 0.8333
Memory Access Time: 17.124

Frequency of References:

62 (never referenced)
9

1

2

1

Frequency of References:

40 (never referenced)
1

1

1

1

2

2

B-4

endix C: Wc and Ws vs. Effective Cache Size Graphs

?Z.OT
_r

I
|
-
saa: s
i —
s?.64 e
| I
| //’
56.41 f
|
. J
i J
43.2+ /
| o
i /
1 e
Wg 36.04 J
i /
| /
.81
] }
| f
i
21.6+ /
It
[
[
4}
14.44
|
i
7.2 4
1
1
° e u 2 2 g
@ 25 S1 7 182 128 154 179 205 238 256

DISTRANCE
Effective Cache Size

C-2

84.90+
!

]
vt
[

g o

-«

[- .} n
-——— ‘__..—l.____.'___

\

SC.QT

-
n

®
— ——
~

-

-
-

33.61

N
(1
.
N
————
~

>
» s
——— e —

——

o

N

-
S =t

" .

51 182 154 205 256 387

358 410 461 512

Effective Cache Size

Cc-3

205 411 616 622 1627 1232 1438 1643 1849 205¢

Effective Cache Size

1.000

0.998 _

0.996 A
0.994 -

0.982 J

0.990 1

0.988 +
0.986 -

0.984 _

0.982 4

0.980

L L l L] ¥ L] l Ll 1 L)] L

4000 8000 12000

Effective Cache Size

C-5

LABRELE] L L) L)

16000 20000

Bibliography

Agarwal, A. and others. "ATUM: A New Technique for Cap-
turing Address Traces Using Microcode," Proceedings
of the 13th Annual International Symposium on
Computer Architecture. 119-127. New York: IEEE
Press, 1986.

Alexander, Cedell and others. "“Cache Memory Performance in a
Unix Environment," ACM Computer Architecture News, 14:
41-70 (June 1986).

Baer, Jean-Loup and others. "Organizaztion and Performance of
a Two~Level Virtual-Real Cache Hierarchy," Proceedings of
the 16th Annual International Symposium on Computer
Architecture. 140-148. New York: IEEE Press, 1989.

Bakka, Bjorn 0. and others. "Trace-Driven Simulations for a
" Two-Level Cache Design in Open Bus Systems," ACM Computer
Architecture News, 18: 250-259 (June 1990).

Feldman, Michael B. Data Structures with Ada. Reston:
Reston Publishing Company, Inc., 1985.

Hayes, John P. Computer Architecture and Organization (Second
Edition). New York: McGraw-Hill Book Company, 1988.

Hennessy, John and others. "Performance Tradeoffs in Cache
Design," Proceedings of the 15th Annual International
Symposium on Computer Architecture. 290-298. New York:
IEEE Press, 1988.

----- . YCharacteristics of Performance-Optimal Multi-Level
Cache Hierarchies," Proceedings of the 16th Annual Inter-
national Symposium on Computer Architecture. 114-121.
New York: IEEE Press, 1989.

Hill, Mark D. and Dionisios N. Pnevmatikatos. "Cache Perfor-
mance of the Integer SPEC Benchmarks on a RISC," ACM
Computer Architecture News, 18: 53-68 (June 1990).

Hobart, Maj William C., Jr. An Investigation of the Locality
of Memory Accesses During Symbolic Program Execution.
PhD dissertation. The University of Texas at Austin,
Austin TX, 1989.

Iyer, Ravishankar K. and others. "Accurate Low-Cost Methods
for Performance Evaluation of Cache Memory Systems," IEEE
Transactions on Computers, 37: 1325-1335 (November
1988).

BIB~-1

Johnson, Eric E. "Working Set Prefetching for Cache Memo-
ries," ACM Computer Architecture News, 17: 137-141
(December 1989).

Levy, Henry M. and Robert T. Short. "A Simulation Study of
. Two-Level Caches," ACM Computer Architecture News, 16:
81-87 (May 1988).

Przybylski, Steven. "The Performance Impact of Block Sizes
and Fetch Strategies," Proceedings of the 17th Annual
International Symposium on Computer Architecture. 160-
169. New York: IEEE Press, 1990.

Smith, Alan J. "Sequentiality and Prefetching in Database
Systems," ACM Transactions on Database Systems," 3:
223-247 (September 1978).

----- . "Sequential Program Prefetching in Memory Hierarch-
ies," IEEE Computers, 12: 7-21 (December 1978).

----- . "Cache Memories," Computing Surveys, 14: 473-523
(September 1982).

----- . "Line (Block) Size Choice for CPU Cache Memories,"
IEEE Transactions on Computers, C-36: 1063-1075 (Sept-
ember 1987).

Thazhuthaveetil, M.J. A Structured Memory Access Architecture

‘for Lisp. PhD dissertation. The University of Wiscon-
sin-Madison, Madison WI, 1986.

BIB-2

