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bstract

The purpose of this research was to analyze the effects

that spatial prefetching in cache memory have on the struc-

tural locality of program memory referencing behavior. To

examine this, a software simulator was built to model a

proposed two-level cache memory subsystem. The proposed

subsystem was designed to use spatial prefetching to exploit

the structural locality contained in executing computer

workloads.

New memory referencing models were developed to

incorporate the combined use of structural locality and

spatial locality prefetching. From these models, equations

were derived to predict the hits rates for both caches.

Combined with the state transition probabilities of the memory

referencing models, measurements from the trace-driven

simulations were used to solve the hit probability equations.

This research showed that performance gains through

structural locality prefetching are still possible even when

spatial locality prefetching is being used in the lower level

cache.

vi



Chapter I

Introduction

1.1 Background

One of the significant factors in improving the

performance of a computer system is minimizing the time

required to access instructions and data in main memory.

Cache memory performs this vital function. Located between

the computer processor and main memory, cache memory is small,

high-speed memory designed to temporarily store portions of

main memory most likely to be referenced by the computer in

the near future. Cache memory can typically reduce access

time to instructions and data to 10-25 percent of the time to

directly access main memory (Smith, 1982:473).

Its extremely fast operating speeds require cache memory

to be implemented by special hardware containing high-speed

logic circuits (Hayes, 1988:443). As a result, cache memory

is very expensive. The challenge for the cache memory

designer is to minimize design cost while maximizing cache

performance.

One of the key considerations in designing cache memory

is understanding the effects that computer workloads can have

on cache memory performance (Hobart, 1989:4). Despite its

small size, cache memory is able to successfully perform its
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functions due to the locality characteristics of workload

execution. Three types of program locality are spatial,

temporal, and structural (defined in section 1.5). By

characterizing the memory referencing behavior of expected

computer workloads, one can optimally design a cache memory

subsystem which increases computer performance by reducing

memory access time.

To take advantage of these referencing localities, cache

memory can prefetch in blocks of instructions and data from

main memory. Based on current memory referencing, these cache

blocks have a high probability of satisfying subsequent memory

references (cache hits).

While program locality ensures cache performance, a

trade-off exists in how much to prefetch. If the block size

is small, reduced bus bandwidth could boost cache performance

through decreased transfer time. However, the block size may

not be exploiting the locality potential in the workloads. In

turn, cache miss ratios could increase. On the other hand, a

large block size could improve hit rates by capturing more of

the available locality. But this advantage could be hampered

by reduced effective cache size resulting from prefetching

unneeded references (known as cache pollution).

From this discussion, it becomes apparent that block size

prefetch strategies play an important role in determining the

effectiveness of a cache memory design.
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1.2 Statement of Problem

The purpose of my thesis research is to analyze the

effects that spatial locality prefetching has on structural

locality. This research focuses on the cache pollution which

occurs when spatial prefetching is used in a two-level cache

hierarchy.

1.3 Research Objectives

This research involves the two-level cache memory sub-

system proposed by Hobart (Hobart, 1989:96-99). The proposed

design (discussed in detail in next chapter) uses two caches

to further reduce memory access time.

The cache hierarchy employs spatial prefetching in the

secondary cache (closest to main memory). This action

attempts to capture any structural locality being exhibited by

the executing workload. These referenced structures are then

prefetched into a smaller, faster first-level cache located

between the secondary cache and the processor.

In addition, Hobart developed four Markov models to

represent the referencing behavior of both caches employing

prefetching and no prefetching (Hobart, 1989:100-112). From

these models, cache hit probability equations were derived.

This research analyzes the two Markov models involving

prefetching in both caches (discussed in Chapter 4).

The objectives of this research are as follows:

- To design, build, and implement a cache simulator
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to represent Hobart's two-level cache hierarchy,

- To use trace-driven simulation to measure the

following cache performance statistics resulting from

various spatial prefetching strategies: miss ratios,

pollution, and effective memory access time.

- To determine how the two Markov models for prefetching

can be modified to account for the effects of spatial

prefetching,

- To derive cache hit probability equations from these

modified Markov models,

- To incorporate the cache pollution measurements into

these hit probability equations.

And in so doing, this research

- Provides a documented analysis of the effects that

spatial prefetching has on structural locality,

- Provides an analytic model which comprehensively

incorporates the effects of spatial prefetching on

the two-level cache performance,

- Provides a method to predict cache hit probabilities

using measured pollution rates,

- Identifies optimal prefetch block sizes for given

cache sizes which could serve as design parameters

for a possible hardware implementation of the pro-

posed memory subsystem.
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1.4 Research Questions

The questions involved in this research are as follows:

- Can the cache simulator be structurally developed

in the Ada language and provide acceptable simulation

processing speed?

- Does spatial prefetching into the secondary cache

effectively capture referenced structures (structural

locality) inherent in the workloads? And in the

process, how is cache performance affected by any

resulting pollution?

- Does structural prefetching into the first-level cache

produce an acceptable level of performance? How has this

performance been affected by any resulting pollution?

- Can the cache pollution measurements obtained from

spatial prefetcning strategies be used to predict the hit

ratios for both caches?

1.5 Definitions

1.5.1 Block

A block (also referred to as line) is a unit of cache

memory storage identified by a tag. Block size is always a

power of two.

1.5.2 Miss

The event that a requested memory address is not
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available when referenced in a given cache memory level. If

a miss occurs in main memory, it is known as a page fault. A

hit represents the opposite event: requested memory address

is available.

1.5.3 Miss Ratio

The number of misses occurring in a given cache divided

by the total number of memory references to that cache. The

miss ratio is a cache performance metric. The hit ratio

represents the opposite metric: number of hits in a cache

divided by total number of references to that cache.

1.5.1 Pollution

As defined by Smith, cache pollution is the portion of

prefetched data which is never referenced while residing in

the cache (Smith, 1982:482). Cache pollution reduces the

cache's effective size.

1.5.4 Prefetching

Prefetching is the transfer of a block of instructions

or data from one level of the memory hierarchy (such as main

memory) to a higher level (such as cache memory) prior to

being used at that higher level. Unless otherwise noted,

prefetch block size will always equal the cache block size.
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1.5.2 Spatial Locality

Spatial locality is the condition that subsequent

memory references will likely occur in locations close to the

current reference. Examples of spatial locality are data

files or results of a relational database query clustered by

an identifying attribute. Both tend to be stored together

physically in memory.

1.5.3 Structural Locality

Structural locality is the condition that a given set

of memory references will likely be referenced in the same

order as previously referenced. Termed by Thazhuthaveetil,

structural locality is the newest concept to be studied (Thaz,

1986). An example of structural locality is subroutine which

may be repeated several times during program execution.

1.5.4 Temporal Locality

Temporal locality is the condition that a current

memory reference will be likely referenced again in the near

future. An example is a program loop which repeats instruc-

tions.

1.6 Scope of Research

This research involves designing, building, and imple-

menting the cache simulator according to the behavioral

description of Hobart's proposed memory subsystem. Once
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coded, the simulator is thoroughly tested to prove

correctness of design. This validation process ensures that

research findings are based on accurate data.

Once the simulator is developed, trace-driven simulations

are used to measure the performance in both caches. The

traces are comprised of collected memory references obtained

from various computer workloads.

The resulting data is used to characterize the effects of

spatial prefetching on structural locality. From this

analysis, modified cache behavior models are developed to

account for these spatial prefetching effects. Cache hit

probability equations are derived from these new models.

Within these equations, pollution measurements are used to

predict the hit rates for the two caches. Using these hit

ratios, effective memory access times are calculated for

various spatial prefetching parameters.

This research does not involve measuring the effects of

prefetching on the access cycle time of each cache memory. To

determine the effective memory access time, the cycle times

for the memory levels are based on typical values associated

with current technology. In addition, this research does not

involve developing the hardware circuit design for any

components of the proposed memory subsystem. Instead, it

employs software simulation to study the different aspects of

cache behavior.
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1.7 Assumptions and Limitations

- The proposed cache memory subsystem operates in a

single processor environment.

- Since the goal of this research is to study the

effects of prefetching based on symbolic program

behavior, system activities such as context switching and

interrupt servicing are not included in the workloads.

As a continuation of Hobart's research, this research

serves as a baseline from which future studies can

analyze the effects of prefetching based on total system

behavior. The literature review covers some techniques

for incorporating context switching in trace-driven simu-

lations.

1.8 Summary

This chapter has provided an overview of this thesis

effort. The following chapters cover three main areas.

Chapter 2 provides an extensive literature review of

applicable research. Next, Chapter 3 describes the metho-

dology used to conduct this research. In particular, this

chapter covers the design and development of the cache

simulator. Chapter 4 provides a detailed description of the

research results. Modified cache behavior models incorpor-

ating the effects of spatial prefetching are presented. From

these models, cache hit probability equations are derived.

Calculated results are then compared with actual simulation
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measurements. In addition, this chapter investigates cache

performance improvements occurring from spatial prefetching.

Finally, Chapter 5 provides the research conclusions.

Recommendations for future research are presented.
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Chapter 2

Literature Reviev

2.1 Locality Characteristics of Symbolic Workloads

Hobart analyzed the spatial, temporal, and structural

localities of symbolic workloads (Hobart, 1989). Symbolic

processing is associated with artificial intelligence

applications.

Using trace-driven simulation, Hobart methodically

characterized the locality aspects of symbolic workloads by

examining the low-level memory referencing behavior. To

examine the "temporal distances" of memory references, Hobart

developed a two-state Markov model as shown in Figure 2.1

(Hobart, 1989:40-42). The various state transition probabili-

ties are discussed in Chapter 4.

Same Stack
Distance

OldNe

Not Same
Stack

Figure 2.1: Two-State Markov Model of Program Behavior
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Previously unreferenced addresses are described by the

"new reference" state. While previously referenced addresses

are depicted by the "old reference" state. Transitions

between the two states occur as memory referencing shifted

from old locations to new locations (vice versa). Within the

old reference state, consecutive references which occur in the

same order in which they were previously referenced are

represented as "same-stack-distance (SSD)" transitions. The

notion of a "stack" is used to describe the ordered contents

of the cache. Within the cache, stack distance represents the

spatial distance from the last address (top of the stack) to

another address. Given a previously referenced address, an

SSD reference takes place when the next reference is located

the same spatial distance from the top of the stack as when it

was last referenced. In turn, consecutive SSD transitions

show a rereferencing of cache addresses in the same order as

before. Conversely, consecutive old references with different

stack distances (not in the same order) are "not-same-stack-

distance (NSSD)" transitions. In total, Hobart identified

five possible state transitions: New-New, New-Old, Old-New,

Old-SSD, and Old-NSSD.

Employing this model, Hobart implemented a systematic

method for extensive analysis of program locality. New

metrics were developed to measure referencing behavior.

Studying the spatial characteristics of reference

strings, Hobart discovered an unique aspect of memory refer-
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encing behavior. When an executing workload is exhibiting

spatial locality, subsequent references took place within a

physical address distance of 32 words from the previous

references (Hobart, 1989:51-53). He labeled this

characteristic the "spatial locality window." This narrow

spatial window was found to exist in all types of workloads

both symbolic and non-symbolic (conventional).

From this, a new spatial locality metric was developed

called the "spatial window probability (Psw)": the prob-

ability that given a current address, the subsequent reference

is within 32 words. Hobart observed that the Psw of symbolic

workloads was almost 50 percent greater than of conventional

workloads. This was attributed to the higher percentages of

instruction fetches inherent to symbolic processing.

As a result of the higher Psw, Hobart suggested that

spatial prefetching may prove more effective for symbolic

workloads. In addition, the narrow spatial window allowed

smaller prefetch block sizes which reduces the potential for

cache pollution.

To analyze temporal locality characteristics, three

metrics were developed to measure the cumulative temporal

distances of program referencing (Hobart, 1989:55-69). The

LRU90, LRU95, and LRU99 metrics represented "simulated, fully-

associative least recently used (LRU) stack depths" needed to

capture 90, 95, and 99 percent of a workload's old references,

respectively.
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Hobart found that the temporal distances of symbolic

workloads were significantly less than those of conventional

workloads. The conventional LRU99 was five times greater.

This behavior was attributed to program referencing character-

istics. Symbolic workloads tend to access the first few

elements of a list. In contrast, conventional workloads tend

to access their entire structures evenly. In addition,

symbolic workloads only reference about one third the number

of distinct data addresses.

From this, Hobart suggested a trade-off between cache

design options tailored toward symbolic workloads. Based on

the temporal analysis, a 99 percent hit rate on old references

can be attained with a cache one fifth the size that would be

required for conventional workloads.

To analyze structural locality characteristics, Hobart

developed the Pssd metric: the probability that given a

previously referenced address, the subsequent reference will

be to an address with the "same stack distance" to the

previous reference (Hobart, 1989:69-71).

Hobart found the Pssd depicted one of the most unique

aspects of symbolic memory referencing behavior. Over one

half of symbolic references (Pssd = 0.550) can be classified

as the referencing of ordered structures. In contrast, the

percentage for conventional workloads is only slightly more

than one fourth.

As a result of his findings, Hobart proposed a memory
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subsystem design to exploit the structural locality of

symbolic workloads (Hobart, 1989:96-99). The design involves

a two-level cache hierarchy comprised of a small structural

locality cache (SLC) close to the processor and a larger

content-addressable memory (CAM) cache. The proposed design

is shown in Figure 2.2.

The main function of the CAM is to capture the structural

locality being exhibited by the workload. It can accomplish

this goal by using a first-in-first-out (FIFO) circular buffer

replacement algorithm. This algorithm allows the CAM to store

blocks containing requested addresses in the order received

from main memory. As a result of the maintained order,

structural locality will remain intact after being fetched

into the CAM.

The SLC is then able to exploit this structural locality

by prefetching requested blocks from the CAM. Unlike the CAM,

the SLC does not require reordering. This reason combined

with the small size of the SLC allow an LRU replacement

algorithm to be employed.

Both caches are comprised of content addressable memory.

This type of memory is fully associative and, in turn, allows

addresses to be simultaneously searched. The result is

improved access times due to reduced latency.

As discussed in Chapter 1, this proposed memory subsystem

will used in this research. One of Hobart's main concerns was

cache pollution in the CAM resulting from spatial prefetching.
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How would reduced structural locality resulting from pollution

effect the performance of the SLC and CAM caches? This

research will focus on this concern.

2.2 Trace-Driven Simulation

Trace-driven simulation involves the use of collected

sequences of virtual addresses (traces) to drive a simulation

model of the cache memory system (Smith, 1982:479-480). By

changing parameters within the simulator, the effects of cache

design choices (cache size, block size, replacement, etc.) can

be studied.

Smith identified two major advantages of trace-driven

simulation (Smith, 1987:1065). It allows the analysis of

cache memory performance based on actual computer workload

behavior. Mathematical models and random number generators

have fallen short in representing true program character-

istics. The other advantage is flexible and feasible cache

design assessment. Hardware prototypes require extensive

development time with minimum design variance. In contrast,

cache simulators can be developed quicker with maximum design

parameter ranges.

Smith pointed out two major limitations of trace-driven

simulation (Smith, 1987:1065). He found that actual miss

ratios from executing workloads in a real system environment

are almost always exceed those obtained through simulations.

This difference can be attributed to several reasons. Due to
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their relatively small sizes, traces may not provide repre-

sentative samples of the computer workloads. Operating system

activity, such as context switching and interrupt servicing,

may not be contained in the trace. In addition, input/output

handling may not be included.

The other limitation results in reduced analysis of

larger caches. In order to incorporate process switching,

Smith employed cache "flushing" to simulate the changing of

working sets. However, this approach combined with the

limited size of traces prevented larger caches (beyond 32K

bytes) from being filled. The result was a lower limit to

large cache performance.

To improve the trace collection process, Agarwal, Sites,

and Horowitz developed a new technique involving the modifi-

cation of microcode to capture memory references as they occur

(Agarwal and others, 1986:119-127). Using the VAX 8200, they

implemented microcode changes which recorded all virtual

address references to include process switching and system

calls. The method was dependent on available microcode

memory. Microcode was modified everywhere a memory reference

could be generated. As a result, saturated memory prevented

all required microcode changes.

Hobart overcame this memory problem. Using a microcode

modification technique similar to Agarwal, Sites, and

Horowitz's, Hobart eliminated the need to embed microcode

changes at every memory referencing location (Hobart, 1989:31-
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32). Instead, the page map table was changed to automatically

invoke the "page fault abort handler" on every virtual address

reference. In turn, the handler was modified to collect the

virtual address traces.

To improve trace data as a true representation of program

behavior, Iyer, Laha, and Patel developed a sampling technique

to estimate the distribution of cache miss ratios due to task

switching (Iyer and others, 1988:1325-1330). Similar to

Smith's approach, their technique uses an emptying of the

cache to represent a context switch. However, while Smith

simulated task switching by purging the cache at consecutive

intervals, Laha, Patel, and Iyer sampled a trace at points

where task switches occurred.

Their methodology involves the following steps. First,

they chose a sample size which represented the length of the

process interval. Next, based on trace size, the sampling

frequency was established to obtain a target number of

samples. Once these parameters were set, the trace samples

were collected so that the start of each sample mapped to a

context switch. When running the simulation, the cache memory

would be purged at the start of each sample to coincide with

the task switch.

The result is a trace-driven simulation which produces a

more accurate distribution of the cache miss ratio. Typical

samples sizes were 5000, 10000, and 20000 address references.

Laha, Patel, and Iyer used 35 samples from each trace to
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attain an acceptable level of confidence.

2.3 Impact of Prefetching on Cache Performance

The locality of memory referencing in executing workloads

provides the opportunity to predict which portions of the

address space will most likely be referenced next. Cache

memory takes advantage of this locality by prefetching

instructions and data ahead of their actual usage.

As Smith pointed out, the result is substantial

improvement of system performance (Smith, 1978:7-21). The

other choice is to fetch on demand. Smith explained that

demand fetches incur high penalties in CPU overhead and idle

time. In a single process environment, the CPU must wait

while transfers between cache and main memory are accom-

plished. Even with multiprogramming, a process may not always

be ready to execute while memory requests are being satisfied.

In addition, having to schedule and start each separate demand

fetch can lead to increased overhead per transfer.

In determining the effectiveness of prefetching, Smith

compared the reduction of the miss ratio for a given block

size to the corresponding increase in transfer ratio.

Transfer ratio was comprised of the miss ratio and prefetch

ratio: "number of prefetch data transfers to total number of

memory references." Smith concluded that prefetching can

reduce the cache miss ratio at a cost level less than the

percentage increase in transfer ratio. He found that a block

2-10



fetch size of 32 bytes was generally effective for cache

memory sizes up to 64K bytes. A 64-byte block size produced

comparable (even better) miss ratios but at the expense of

increased transfer costs. In this research, a CAM block size

of 32 bytes is used with a 32K byte CAM for one set of

simulations.

In their research of cache performance in a Unix

environment, Alexander, Keshlear, Cooper, and Briggs also

looked at prefetching effects on bus traffic (Alexander and

others, 1986:41-70). Similar to Smith, 32 bytes proved to be

an effective pref etch block size. They found that block sizes

ranging from 8 to 32 bytes resulted in the largest reductions

in bus traffic.

Smith identified several architectural factors which can

affect block size choice (Smith, 1987: 1064). "Memory

interference" and "memory busy time" can result from larger

block sizes. In multiprocessor systems, the longer line can

tie up the memory and bus and, in turn, adversely impact other

processors. In addition, "I/O overruns" may occur. Memory

interference may cause I/O operations to be aborted and

reinitiated. Another factor involves address tag storage. If

a block size is small, a substantial amount of the cache

storage is required for the address tags. The result is the

effective size of the cache is decreased. One more factor

concerns copy-back caches. A larger block size can increase

memory traffic for each copy back. However, Smith suggests
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the additional traffic can be countered by the lower miss

rates attained from larger lines.

To improve multiprocessor system performance, Johnson

also suggests the use of prefetching to reduce contention for

shared memory resources (Johnson, 1989:137-141). He explains

an approach called "tagged working set prefetching." Each

prefetched block carries a tag to uniquely identify its

working set. The prefetched blocks are then "broadcast" to

all processors. Using the tags, other cache controllers can

load any required broadcast blocks. The result is reduced

memory traffic by accomplishing several prefetches with single

accesses.

Smith attributed the effect on miss ratio as the main

influence that block size choice has on cache performance

(Smith, 1987:1064-1074). Using extensive trace-driven

simulation, Smith observed that larger block sizes generally

reduced cache miss ratios. Longer lines tend to exploit the

memory referencing localities of executing workloads. The

upper limit to this effect occurred when the block size

approached the cache size. After this point, the miss ratios

increased. Smith explained that the increase was due to less

captured program locality resulting from decreased number of

cache blocks. For cache sizes of 32K and 64K bytes, prefetch

block sizes of 16-64 bytes continued to produce the lowest

miss ratios. In addition to the simulations involving a 32

byte CAM block size, another set of simulations used in this
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research employs a 16 byte block size for a 32K byte CAM

cache.

Using trace-driven simulations involving similar cache

sizes, Przybylski also produced optimal pref etch block sizes

of 32-64 bytes (Przybylski, 1990:160-169). These sizes

resulted in the minimum effective memory access times.

The advantages of prefetching extend to all levels of the

memory hierarchy. Excessive dependence on disk I/O operations

can significantly decrease system performance. Smith

identified database systems as excellent candidates for data

caching (Smith, 1978:223-246). The high degree of sequential

access inherent in database systems allow subsequent data

references to be predicted. In turn, data blocks or segments

can be prefetched into main memory to satisfy future requests.

The resulting reduction in disk I/O substantially improves

database system performance.

2.4 Multi-Level Cache Hierarchies

With the speeds of new processors continuing to increase,

traditional single-level caches will not be able to exploit

the extremely fast CPU cycle times. As Smith pointed out,

expanding the size of a single cache produces two problems

(Smith, 1982:517). One is large physical size and circuit

complexity increases memory access time. The other problem is

adding more cost to an already expensive hardware component.

Hennessy, Horowitz, and Przybylski observed that once the
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cache size reaches 64KB, there exists little margin for per-

formance improvement (Hennessy and others, 1988:290-298). As

they note, "chip to chip communication" and control circuitry

continue to contribute a major portion of memory latency.

Physical cache size and material properties limit transfer

rates. Consequently, as CPU cycle time grows faster, the

single-level cache is hard pressed to maximize CPU

performance.

Multi-level caches provide a solution. Employing

smaller, faster cache design technology, cache hierarchies can

locate a first-level cache close to the processor to lower

memory latency and transfer times. As Hennessy, Horowitz, and

Przybylski pointed out, the addition of a second-level (C2)

cache substantially decreases the miss penalty of the first-

level (C1) cache (Hennessy and others, 1989:114-120). The

result is lower effective memory access time leading to

increased CPU performance.

In their two-level cache simulation study, Levy and Short

show that the addition of a secondary cache can boost system

performance (Levy and Short, 1988:81-87). Employing trace-

driven simulations, they compared the execution cycle times of

two-level caches to those of a single-level cache. Results

revealed that given an C2 to Cl size ratio of at least 8:1,

system performance was significantly improved from the

addition of the C2 cache. For example, given a 15-cycle main

memory access time, combining a 4-cycle, 256KB C2 cache with
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a 1-cycle, 8KB Cl cache produced a performance increase of 18

percent. In this research, an 8:1 ratio of CAM to SLC size

is used in the simulations.

Using trace-driven simulations of two-level caches,

Hennessy, Horowitz, and Przybylski showed that a C1 cache

largely decreased the number of memory references to the C2

cache (Hennessy and others, 1989:114-120). They noted that

the smaller amount of C2 references reduces the impact of C2

cycle time. As a result, optimal secondary cache sizes can

exceed the sizes of single-level caches. Interesting

similarities were found between the "global" miss ratios

(number of misses divided by total CPU references) of

secondary caches and the miss ratios of corresponding single-

level caches. They determined that if the C2 cache is at

least eight times the size of the Cl cache, then the global

miss ratio of C2 is basically equivalent to the miss ratio of

the comparably-sized single cache.

From trace-driven simulations of two-level caches, Bakka,

Bugge, and Kristiansen examined the miss ratios of secondary

caches (Bakka and others, 1990:250-259). Their simulations

involved C2 cache sizes of 1-8 MB with the smallest size being

eight times the size of the Cl cache. They found that C2

block sizes of 128 and 256 bytes produced the lowest miss

ratios in the secondary caches.

Due to the high hit ratios of the first-level cache,

improving the access time of this cache is an important design
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goal. Baer, Levy, and Wang proposed a two-level cache hier-

archy designed to minimize the access time of the C1 cache

(Baer and others, 1989:140-148). They suggested that the C1

cache can be optimally accessed by virtual addresses. In

turn, the Cl access time is reduced since no address

translation is required. Address translation and handling of

"synonyms" (copies of data under different virtual addresses)

is accomplished in the C2 cache. As discussed earlier,

decreased referencing of the C2 cache lessens the impact of

increased cycle time overhead. From their simulation results,

they concluded that if the address translation penalty in the

Cl cache is at least six percent, then switching to the

virtual Cl design would reduce effective memory access time.

2.5 Sumary

Several cache performance characteristics identified in

this chapter have direct applicability to this research.

Increasing the cache size beyond 64K bytes results in little

improvement to the hit ratio. For cache sizes of 32K and 64K

bytes, prefetch block sizes of 16-64 bytes produce the optimal

hit ratios. In two-level cache hierarchies, the size ratio of

the secondary cache to the primary cache should be at least 8

to 1. These performance characteristics are used to establish

the cache size and block size parameters for the trace-driven

sirulations.
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Chapter 3

Methodology

This chapter describes the methodology employed to design

and build the two-level cache simulator used for this

research. It starts with a justification of the methodology

selected. An overview of the experimental setup is provided.

Next, the cache simulator design and implementation is covered

in detail. The chapter ends with a description of the test

procedures used to validate and verify the correctness of the

simulator functions.

3.1 Justification of Methodology Selected

As covered in the background, trace-driven simulation is

the technique to be used to evaluate the proposed memory

subsystem design. Hobart developed a simulator for the two-

level SLC and CAM cache hierarchy. This simulator was written

in Lisp and was built to run on the TI Explorer II computer.

For this research, the decision was made to design and

develop another simulator for the SLC and CAM cache memory

subsystem. This simulator is written using the Ada

programming language.

The rationale for this decision is based on several

justifications. One main reason is to take advantage of the
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powerful, high-speed Sun SPARC microprocessor workstations.

The idea is very simple: to minimize the execution time of

the trace-driven simulations. The speed of the Sun SPARC

microprocessor is orders of magnitude (over 20 to 1) faster

than the TI Explorer II. Importantly, the Sun SPARC

workstation contains an extensive Ada software development/

execution environment: Verdix Ada Development System

(VADS - Version 6.0)

Another justification is based on the choice of the Ada

programming language. From a development standpoint, Ada

offers several advantages. A main strength of Ada lies in its

handling of abstract data types. Using a "packaging" concept,

Ada provides the ability to "encapsulate" abstract data types

along with the operations which manipulate their states

(Feldman, 1985:4-7). This Ada feature allows the cache

simulator to be developed using software packages which can be

integrated into a reliable, structured design. In addition,

this advantage facilitates modification and expansion of the

simulator to incorporate growing research requirements. New

aspects of cache behavior can be analyzed by modifying

existing or developing additional packages.

Another advantage is reusability. The use of Ada

constructs to achieve a highly-structured design promotes an

understanding of the software system. In turn, future

research efforts can benefit from expanded versions of the

cache simulator.
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3.2 Functional Requirements

The following requirements served as the functional

baseline for the SLC and CAM cache simulator.

3.2.i Workload Traces

Several sets of virtual address traces were available

for use in this research. Sixteen workload traces were

collected by Agarwal, Sites, and Horowitz from the VAX 8200

(Agarwal and others, 1986). Hobart provided 15 address traces

collected on the TI Explorer II (10 traces) and the IBM

System/360 Model 91 (5 traces).

The cache simulator must accept as input the memory

references contained in these traces. The memory references

in the Agarwal, Sites, and Horowitz traces are in hexadecimal

format. In addition, each memory reference has an integer

number identifier. This identifier indicates whether the

address is a data read, data write, or instruction fetch. The

memory references in the Explorer II/IBM 360 traces are in

integer format. These traces are available in separate

versions: data read only, data write only, instruction fetch

only, data reference only, and all references. As a result,

they do not contain reference identifiers.

3.2.2 Cache Design Parameters

The cache simulator must allow modification of the

following parameters for varied simulations: SLC size, SLC
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prefetch block size, CAM size, and CAM prefetch block size.

The SLC shall employ a LRU replacement algorithm. The CAM

shall employ a FIFO circular buffer replacement algorithm.

3.2.3 SLC and CAM Miss Ratios

For each trace-driven simulation, the cache simulator

must calculate the miss ratios for the SLC and CAM caches.

3.2.4 SLC and CAM Memory Access Time

For each trace-driven simulation, the cache simulator

must calculate the effective memory access time. If we assume

that a cache block transfer can be overlapped with the CPU

execution, then the effective memory access time ta is:

ta = tSLCPSLc + tca (1 - PSWd)PCH + tM (1 - PCAU) (l-Psc)

where

tS = memory access time of the SLC

psLc = hit rate of the SLC

tcm= memory access time of the CAM

PCWH= hit rate of the CAM given a SLC miss

tw = memory access time of the main memory
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3.2.5 SLC and CAM Cache Pollution

For each trace-driven simulation, the cache simulator

must calculate the SLC and CAM cache pollution percentages.

3.2.6 Reference Frequency

For each trace-driven simulation, the cache simulator

must individually track how long it takes (number of

references) before each prefetched address is first

referenced. Cache pollution references will not be included.

For each given number of references, the cache simulator must

determine how many pref etched addresses required the same

number of references. For example, 1000 prefetched addresses

in the SLC took 50 memory references before they were

referenced for the first time.

3.3 Cache Simulator Preliminary Design

The purpose of this stage was to develop a high-level

architecture depicting how the simulator can be structured to

meet all functional requirements. In turn, this architecture

served as guide to producing an Ada software design solution.

The design approach used for this cache simulator is

based on functional decomposition. To achieve a structured

design, the simulator is comprised of an integrated set of

program modules. Each module performs functional requirements

involving the processing of input(s) to produce required

output(s).
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A structure chart is constructed to provide a pictorial

representation of how the cache simulator program modules

would work together. The structure chart offers a way to

develop the simulator architecture without requiring knowledge

of the internal workings of each module. The syntax involves

using boxes to represent the program modules. Communication

between the modules is represented by labeled arrows.

Figure 3.1 shows the structure chart for the cache

simulator. As depicted, the program modules are grouped into

three major areas: input, processing, and output. The top

box represents the cache simulator driver module which directs

the activity between the three areas.

The input area is comprised of three modules. The Fetch

Trace Address module extracts one memory reference address at

a time from the trace file. Prior to being sent to the

driver, the memory reference is converted from hexadecimal to

integer format by the Convert Hex Address to Integer module.

The Determine Reference Type module determines whether the

memory reference is a data read, data write, or instruction

fetch.

The cache processing area performs the SLC and CAM cache

functions. It is comprised of the following three modules:

Process Data Read Address, Process Data Write Address, and

Process Instruction Fetch Address. Depending on the memory

reference type, the driver invokes the appropriate module

to service the trace address. Since these modules execute the
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SLC and CAM cache functions, they require access to the SLC

and CAM cache data structures. As the selected module

processes the memory reference, SLC and CAM data is generated

for cache performance analysis.

The output area processes the performance data and

produces statistics which are written to files. This area is

comprised of four modules. The Compute Miss Ratios module

calculates the SLC and CAM cache miss ratios. Using the cache

miss ratios, the Compute Memory Access Time module calculates

the effective memory access time. The Compute Cache Pollution

module calculates the SLC and CAM cache pollution percentages.

And finally, the Generate Reference Frequency List module

produces the output file tracking the number of references

before each prefetched address is first referenced.

Table 3.1 maps the structure chart modules to the

functional requirements satisfied.

3.4 Implementation of Cache Simulator in Ada

Once the simulator architecture was established,

development of the cache simulator began. This development

phase involved the transformation of the functional design

requirements into a complete Ada system. Major tasks included

the detailed design, coding, integration and testing of the

simulator.
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Table 3.1: Cache Simulator Requirements Matrix

Functional
Module Requirements

Driver 3.2.2
Fetch Trace Address 3.2.1
Determine Reference Type 3.2.1
Convert Hex Address to Integer 3.2.1
Process Data Read Address 3.2.2
Process Data Write Address 3.2.2
Process Instruction Fetch Address 3.2.2
Compute Miss Ratios 3.2.3
Compute Memory Access Time 3.2.4
Compute Cache Pollution 3.2.5
Generate Reference Frequency List 3.2.6

Each program module in the structure chart is mapped into

an Ada package. By performing this encapsulation, each Ada

package can be developed and tested as an individual

functional component. Indicated by the arrow connections

between modules (structure chart), visibility into other

packages is accomplished by withing the required packages.

Identified as data flows between modules (structure chart),

package communication is accomplished through the passing of

parameters to/from the various procedures and functions

contained within the packages.

The following sections provide a detailed description of

each Ada package used in the cache simulator. Appendix A

contains the source code.
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3.4.1 LinkedListsPackage

A linked list data structure is employed to represent

the SLC cache abstract data type. The LinkedListsPackage is

used to implement the SLC cache as a linked list structure.

Ada code for this package is a modified version of code taken

from Data Structures with Ada (Feldman, 1985:103-115). The

rationale for the linked list structure is based on the LRU

replacement algorithms of the SLC cache.

Initially, it appeared that the SLC might be optimally

represented as an array. However, if an array was employed,

the array elements would constantly have to be reshuffled to

depict an LRU ordering. If a time stamp (number of references

passed) was used, every array element would have to be search-

ed to determine the LRU candidate for replacement. Both of

these array approaches would have lead to simulator perfor-

mance penalties.

A linked list structure provides a cleaner way to imple-

ment the LRU replacement algorithm. As an SLC address is

being either referenced (cache hit) or prefetched, the address

can simply be placed at the front of the list. As a result,

the LRU addresses fall to the rear of the list. When an

address has to be replaced, no search is required. The

address at the rear of the list is replaced. In addition,

since the SLC is very small, the size of the linked list never

grows beyond 512 nodes (largest number of addresses in SLC).

In turn, SLC searches do not degrade simulator performance.
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In addition to the SLC, two linked lists are used to

maintain the SLC and CAM reference frequency lists. These

lists will be discussed in more detail later. For now, it

should be pointed out that these two linked lists are handled

by this package.

The LinkedListsPackage specification is shown in

Figure 3.2. LinkedListNode is a record structure containing

three fields. The Addr field represents the address of the

memory reference. The NumRef field indicates the number of

memory references which have passed while the address is

waiting to be first referenced. The Next field contains the

pointer to the next LinkedListode.

This package has two functions and four procedures to

manipulate the state of the linked list data structure.

Receiving the memory reference address, the MakeNode function

creates a LinkedListNode for storing a new address in the SLC.

The Search function is used to find the node containing the

matching address during a SLC search. The AddToFront

procedure adds a LinkedListNode to the front of the SLC. The

InsertInOrder procedure is used by the SLC and CAM reference

frequency lists to insert an address record in ascending order

by the NumRef value. InsertInOrder employs the AddToFront

and AddToRear (only at end of list) procedures to place a

frequency record in its appropriate position in the list. The

Delete procedure deletes a designated node from the SLC.
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package LinkedListsPackage is

type LinkedListNode;
type NodePointer is access LinkedListNode;
type LinkedListNode is

record
Addr : integer;
NumRef : integer := 0;
Next : NodePointer := null;

end record;

type List is
record

Next : NodePointer := null;
Tail : NodePointer := null;

end record;

function MakeNode (Address: integer)
return NodePointer;

function Search (L: List; PI: NodePointer)
return NodePointer;

procedure AddToFront (L: in out List;
P1: NodePointer);

procedure AddToRear (L: in out List;
P1: NodePointer);

procedure InsertInOrder (L: in out List;
P1: NodePointer);

procedure Delete (L: in out List; P1: NodePointer);

end LinkedListsPackage;

Figure 3.2: LinkedListPackage Specification

The LinkedListsPackage body instantiates a generic

package called UncheckedDeallocation. Dynamic allocation can

swiftly use up storage space as linked lists nodes are

continually being created and deleted. The Unchecked_

Deallocation package is called by the Delete procedure to

return space used by the deleted node back to available

memory.
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3.4.2 CircularQ_Package

A circular queue data structure is used to implement the

FIFO circular buffer replacement algorithm of the CAM cache.

Blocks of addresses are stored in the CAM in the order they

are referenced. The CircularQ_Package maintains the state of

the CAM cache using the circular queue. Ada code for this

package is also a modified version of code taken from Feldman

(Feldman, 1985:144-145).

Using a circular queue eliminates the need to move the

entire queue. Since the front and rear of the queue are

essentially connected, CAM replacement and prefetch operations

can be accomplished by moving head and tail pointers around

the queue.

In Chapter 4, the CAM is referred to as a "stack." This

terminology is not to be confused with the CAM being imple-

mented as a circular queue. Instead, "stack" is used to

describe the memory referencing behavior of the CAM cache:

same-stack-distance, not-same-stack-distance. The circular

queue describes how the addresses are stored and replaced

within the CAM cache.

The CircularQPackage specification is shown in

Figure 3.3. The circular queue array is created as the

dynamically allocated ArrayType with index of range 1 to

32768. The upper range represents the largest possible CAM

size of 32768 addresses. The Queue is a record structure

containing four fields. Declared as a dynamically allocated
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package CircularQPackage is

type index is range 1 .. 32768;
type ArrayType is array (index) of integer;
type Array_PtrType is access Array-Type;

type Queue is
record

Address : Array_Ptr_Type := new ArrayType;
RefCount : Array_Ptr_Type := new Array_Type;
head : index;
tail : index;

end record;

procedure Enqueue (Q: in out Queue;
CAM Size Index: in index;
Reference: in integer);

procedure Dequeue (Q: in out Queue;
CAMSizeIndex: in index);

procedure SearchQ (Q: in Queue;
Reference: in integer;
CAM Size Index: in index;
Position: in out index;
Found: in out boolean);

end CircularQPackage;

Figure 3.3: CircularQPackage Specification

variable of ArrayPtrType, the Address field is used to store

the memory reference address in the CAM. Also of Array_Ptr_

Type, the RefCount field indicates the number of memory

references that have passed while the address is waiting to be

first referenced. The head and tail fields are used to

indicate the front and rear of the CAM circular queue,

respectively.

This package has three procedures to manipulate the state
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of the circular queue data structure. Receiving the

prefetched memory reference address, the Enqueue procedure

loads the address at the tail of CAM queue. As required by

the FIFO replacement algorithm, the Dequeue procedure removes

the address located at the head of the CAM queue. The SearchQ

procedure searches for a matching address in the CAM. It

returns a flag indicating whether or not an address has been

found. If a cache hit occurs, SearchQ will also return the

position of the address in the CAM queue.

3.4.3 AddrRecordPackage

For type handling purposes, an abstract data type is

created for the virtual addresses contained in the Agarwal,

Sites, and Horowitz trace files. The AddressRecordPackage

specification is shown in figure 3.4. This package creates a

record structure comprised of two fields. The TheType field

indicates the type of the memory reference: data read, data

write, or instruction fetch. The Address field stores the

hexadecimal virtual address from the trace file.

3.4.4 Cache Simulator Driver Procedure

The Cache-Simulator driver procedure functions as the

main controller for the simulator system. It provides an

interface between the input, cache processing, and output

packages. In order to produce an executable Ada system, the

Cache-Simulator driver is built as a procedure instead of as
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package AddrRecord_Package is

type Addr Record is
record

TheType : character;
Address : integer;

end record;

end AddrRecordPackage;

Figure 3.4: AddrRecordPackage Specification

a package. Figure 3.5 shows the Cache Simulator driver

procedure.

As the driver, the CacheSimulator procedure needs

visibility to the input, processing, output packages. The

required packages are withed into the driver.

In the variable declaration section, the SLC linked list

and CAM circular queue data structures are instantiated. The

SLC and CAM reference frequency lists are also instantiated.

The SLC size, CAM size, SLC block size, and CAM block size

parameters are declared as variables rather than constants.

This allows the cache parameters to be interactively entered

by the user. The variables used to calculate the cache miss

ratios, pollution, and effective memory access time are

declared and initialized to zero. These variables include the

following: SLC Miss, CAM_Miss, SLC_TotalRefs, CAMTotal_

Refs, SLCNonRef, CAMNonRef, SLCTotalPrefetch, and

CAMTotalPrefetch.

For convenience, the driver provides the user with an
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with Text 10, AddrRecordPackage, LinkedLists Package,
CircularQ_Package, Fetch AddressPackage,
DetermineTypePackage, ServInstrFetchPackage,
Serv Data Read Package, ServDataWritePackage,
Comput6_M-ssRatios Package,-
ComputeMemory_Access TimePackage,
ComputeCache Pollution Package,
Generate_RefFrequencyListPackage;

procedure Cache Simulator is

-- * Variable declaration section *

begin
-- user enters names of output & reference files
-- create output & reference files
-- user enter name of trace input file
-- open trace input file
-- user enters cache parameters: SLC size, CAM size,
-- SLC block size, CAM block size

-- while not end of file loop
-- call routine to fetch address from trace file
-- call routine to determine type of reference
-- case
-- when data read =>
-- call routine to process data read
-- when data write =>
-- call routine to process data write
-- when instruction fetch =>
-- call routine to process instruction fetch
-- when others => exit
-- end case
-- if number of references processed = 20000 then
-- call routine to compute miss ratios
-- reset reference counter to zero
-- else if end of trace file then
-- call routine to compute final miss ratios
-- call routine to compute average memory
-- access time
-- call routine to compute cache pollution
-- call routine to generate reference
-- frequency list
-- end if
-- end loop
-- close input, output, and reference files

end Cache Simulator

Figure 3.5: Cache Simulator Driver Procedure
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interface for executing a simulation. Once the simulator is

activated, the user is queried to name the statistics output

file to be generated by the simulation run. The statistics

output file includes the SLC and CAM miss ratios, the SLC and

CAM pollution percentages, and the effective memory access

time. Secondly, the user is asked to name the reference

output file. This file includes the reference frequency list

for the SLC and CAM caches. Next, the user is queried to name

the trace input file to be used in the simulation run. The

final user inputs include the cache parameters: SLC size, CAM

size, SLC block size, and CAM block size. For archival

purposes, the driver writes the trace input filename and the

cache parameters at the top of the statistics and reference

output files.

Once all user inputs have been entered, the cache

simulation begins. Due to the different formats of the

address traces, two CacheSimulator drivers have been written.

One version is designed for the Agarwal, Sites, and Horowitz

traces. In this version (Version 1), the driver calls the

LoadRecord procedure (FetchAddressPackage). This action

returns an address converted from an hexadecimal to an integer

format. The driver then calls the Address_Type function

(DetermineType_Package) to determine the type of reference.

The other driver version (Version 2) is designed for the

Explorer trace files. As previously explained, these address

traces are already in integer format and do not require a type
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determination. In turn, this driver version only needs to

perform a get (Text_10) operation to fetch an address.

Depending on the reference type, the Version 1 driver

will invoke one of the three cache processing procedures:

ServDataRead, ServDataWrite, or Serv_Instr_Fetch. For

this research, these three procedures perform the same cache

processing functions. Given this, the rationale for creating

three separate procedures is to accommodate future research

requirements. Continuing research may need the simulator to

perform different cache processing functions based on

reference type. Separate procedures facilitate implementation

of these future cache processing modifications.

Since no reference type determination occurs, the Version

2 driver only requires one main cache processing procedure.

The ProcessMemoryReference procedure performs the same cache

functions as the three processing procedures in the Version 1

driver.

Once the memory address reference has been processed, the

driver repeats the fetch and process cycle described above.

For every 20000 trace references processed, the driver calls

the ComputeMissRatios procedure to calculate the cumulative

miss ratios in the SLC and CAM caches. When the simulator

reaches the end of the trace file, the driver invokes several

procedures to produce the cache performance data. First, the

driver calls the ComputeMissRatios procedure to calculate

the final miss ratios. Next, the driver calls the
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ComputeMemory_AccessTime procedure to calculate the

effective memory access time. Then, the ComputeCache_

Pollution procedure is called to determine the pollution

percentages. And finally, the Generate_Ref_Frequency_List

procedure is invoked producing the reference frequency data.

At this point, the simulation is finished. The driver

concludes the session by closing the trace, statistics, and

reference files.

3.4.5 Cache Processing Packages

The cache processing packages include the following:

(Version 1 driver) ServDataReadPackage, Serv_Data_Write_

Package, and Serv_InstrFetchPackage; (Version 2 driver)

ProcessMemory_ReferencePackage. Since all four packages

perform the same cache processing functions, the following

explanation applies to all four packages.

For types handling, the cache processing packages require

visibility (with) to the LinkedListPackage, the CircularQ_

Package, and the AddrRecordPackage. Each package contains

one cache processing procedure. To assist in a more detailed

description, Figure 3.6 shows the flow of the cache processing

procedure.

Using the requested address, the SLC is searched for a

matching address. If a SLC hit occurs, then the SLC

performance statistics are updated. Since the address request

has been satisfied, the cache processing is finished. Control
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is returned to the driver.

If a SLC miss occurs, then the CAM is searched for a

matching address. If a CAM hit occurs, then the block

containing the matching address is prefetched from the CAM to

the SLC. Figure 3.7 illustrates this prefetching process.

The goal is to pref etch the structural locality that exists in

the CAM. In turn, the requested address plus the addresses

located immediately above in the CAM (equal to SLC block size)

are prefetched into the SLC. The prefetched addresses are

placed at the front of the SLC linked list. This action

causes the LRU addresses to fall toward the back of the list.

Once the SLC prefetch is accomplished, the CAM performance

statistics are updated. Since cache processing has finished,

control is returned to the driver.

If a CAM miss occurs, then the block containing the

requested address is prefetched from main memory to the CAM.

In addition, a SLC block containing the requested address must

be prefetched from the CAM. Figure 3.8 illustrates this

prefetching process. Once again, only the requested address

plus the addresses immediately above in the stack (equal to

SLC block size) are prefetched into the SLC. In the example,

although the SLC block size is four, the prefetch results in

only one word. Two conditions produce this result. One is

the CAM prefetch is always placed at the stack top. The other

is the requested address is the last address on the stack.

Once both prefetches are accomplished, the SLC and CAM
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performance statistics are updated. Since cache processing

has finished, control is returned to the driver.

3.4.6 FetchAddressPackage

The FetchAddressPackage contains one procedure:

LoadRecord. The specification for this package is shown in

Figure 3.9. LoadRecord procedure extracts one memory

reference record (address and reference type) from the current

position of the Agarwal, Sites, and Horowitz trace file. To

convert the address from hexadecimal to integer format, this

procedure calls the HextoDec procedure. The resulting

integer address record is then returned to the driver for

further processing.

with Text_IO, AddrRecord_Package;

package FetchAddress Package is

procedure Load Record
(Input_File: in out FileType;
Memory_Ref: out AddrRecord);

end FetchAddressPackage;

Figure 3.9: FetchAddressPackage Specification

3.4.7 Hex_to_DecPackage

The Hex toDecPackage contains one function: Hex_

toDec. The specification for this package is shown in
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Figure 3.10. The HextoDec function converts the input

hexadecimal string into an integer address.

Due to the address structure of the SPARC microprocessor,

an offset is required in the conversion value. Although the

SPARC machine has a 32-bit address, it reserves 1 bit as a

sign bit for integers. In turn, not all eight digit hexa-

decimal addresses can be represented as integer values. To

counter this, the integers are offset to include both the

positive and negative values. The resulting integer range is:

-231 .. (231 - 1). Although this offset changes the original

value of the virtual address, the modified value does not

affect the cache processing. The simulator is only interested

in matching addresses during searches.

The rationale for converting the hexadecimal address to

an integer value is to optimize performance. The simulator

package Hex toDec_Package is

function Hex toDec (HexAddr: string;
HexLength: natural) return integer;

end HextoDecPackage;

Figure 3.10: Hex toDecPackage Specification

could be designed to process a hexadecimal address. However,

since the address would be represented as a string, cache

searches would involve comparing addresses one character at a

time. The result would be a substantial drop in simulation
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speed. By treating the address as an integer value, cache

searches only require a single comparison per address.

3.4.8 Deterzin._TypePackage

The Determine_TypePackage contains one function:

Address_Type. The specification for this package is shown is

Figure 3.11. Receiving the address record, the AddressType

procedure determines the memory reference type: data read,

data write, or instruction fetch. The type identifier is

returned to the driver.

with AddrRecordPackage;

package Determine_TypePackage is

function AddressType (Memory_Ref: AddrRecord)
return character;

end Determine_Type_Package;

Figure 3.11: DetermineTypePackage Specification

3.4.9 ComputeMissRatiosPackage

The ComputeMissRatios Package contains one procedure:

ComputeMissRatios. The specification for this package is

shown in Figure 3.12.

The ComputeMissRatios procedure calculates the SLC and

CAM miss ratios using input cache performance statistics:

number of SLC misses, total number of SLC references, number
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of CAM misses, and total number of CAM references. The

resulting miss ratios are written to the statistics file. In

addition, the values are returned to the driver to be used in

effective memory access time calculations.

with Text_IO;

package ComputeMissRatios Package is

procedure Compute Miss-Ratios
(SLC Miss: in natural; CAM Miss: in natural;
SLC TotalRefs: in natural;
CAM-Total Refs: in natural;
Num-Ref: 'in natural;
SLC MR: out float; CAM MR: out float
Output_File: in out File_Type);

end ComputeMiss RatiosPackage;

Figure 3.12: ComputeMissRatiosPackage Specification

3.4.10 Compute_eory Aoess_TiaePackage

The ComputeMemoryAccessTimePackage contains one

procedure: Compute_MemoryAccessTime. The specification for

this package is shown in Figure 3.13. The ComputeMemory_

AccessTime procedure calculates the effective memory access

time for the trace workload. The access times (in clock

cycles) used in the model for the three memory levels are as

follows: SLC: 1; CAM: 4; main memory: 32.
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with TextIO;

package ComputeMemory_AccessTimePackage is

procedure Compute Memory_AccessTime
(SLC MR: in float; CAM MR: in float;
OutputFile: in out FileType);

end ComputeMemoryAccessTimePackage;

Figure 3.13: Compute MemoryAccessTimePackage Specification

3.4.11 ComputeCachePollution_Package

The ComputeCachePollutionPackage contains one pro-

cedure: ComputeCache_Pollution. The specification for this

package is shown in Figure 3.14. The Compute_CachePollution

procedure calculates the SLC and CAM cache pollution using the

with TextIO, LinkedListsPackage, CircularQ_Package;

package ComputeCachePollutionPackage is

procedure Compute Cache Pollution
(SLC: in out List; CAM in out Queue;
SLC Non Ref: in out natural;
CAMNonRef: in out natural;
SLC Total Prefetch: in natural;
CAM Total Prefetch: in natural;
TempCAM Size: in natural;
Output_File: in out FileType);

end ComputeCachePollutionPackage;

Figure 3.14: ComputeCachePollutionPackage Specification

following cache performance statistics: number of prefetched
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addresses in the SLC and CAM never referenced; total number of

prefetched addresses in the SLC and CAM. The resulting pollu-

tion percentages are written to the statistics file.

3.4.12 GenerateRefFrequencyListPackage

The GenerateRefFrequencyListPackage contains one

procedure: GenerateRefFrequencyList. The specification

for this package is shown in Figure 3.15.

The Generate_RefFrequencyList procedure produces the

output file recording the reference frequencies for the SLC

and CAM. The file format consists of two columns. The first

column is comprised of values denoting the number of ref-

erences passed before the prefetched addresses were first

referenced. The second column indicates the number of

addresses (frequency) which realized the corresponding number

of references value.

with Text IO, LinkedListsPackage;

package GenerateRefFrequency_ListPackage is

procedure GenerateRefFrequency List
(SLC Ref List: in out List;
CAMRef-List: in out List;
SLC Non Ref: in natural;
CAMNon Ref: in natural;
Reference-File: in out FileType);

end GenerateRefFrequency_ListPackage;

Figure 3.15: GenerateRefFrequencyListPackage Spec
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3.5 Validation of Cache Simulator

Prior to being integrated into the cache simulator

system, each Ada package was tested thoroughly as a unit.

Using test inputs, the outputs of each package were checked

for correctness. Verifying the correct functioning of the

packages facilitated the integration effort.

Once the integration of the Ada packages was successfully

completed, the cache simulator system was ready for testing.

In order to ensure the validity of the research results, the

simulator was extensively tested for accuracy. To accomplish

this, a test trace file was created. The file contained 50

memory references which would require all cache processing

functions to be used. Figure 3.16 provides an outline of the

testing reguirements. Using this trace file, the test simu-

lations were designed to meet all of these requirements. In

Appendix B, each test requirement is mapped to the point

within the trace where it is tested.

Five test trace simulations were run and checked for

accuracy. Each test run used a different set of cache

parameters: SLC size, SLC block size, CAM size, and CAM block

size. Prior to running the simulations, the cache performance

statistics were manually calculated for each set of cache

parameters. After the five test simulations were run, the

simulation statistics matched the manual calculations.
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I. Test Input Functions
(Version 1 driver)
A. Correct handling of memory reference record

1. Hexadecimal address (8 digits)
2. Hexadecimal address (< 8 digits)
3. Conversion to integer value
4. Type determination

(Version 2 driver)
B. Correct handling of integer memory reference
C. (Both) Able to process all memory references

II. Test Cache Processing Functions
A. Correct handling of SLC search

1. SLC hit
2. SLC miss

B. Correct handling of CAM search
1. CAM hit
2. CAM miss

C. On CAM hit, correct handling of SLC prefetch
1. Before SLC fills
2. After SLC fills
3. From middle of CAM
4. From top of CAM

D. On CAM miss, correct handling of CAM prefetch
and SLC Prefetch
1. Before CAM fills
2. After CAM fills
3. Before SLC fills
4. After SLC fills

E. Correct tracking of cache performance stats
(after 25 references)

1. # of SLC misses
2. 1 of CAM misses
3. total # of SLC references
4. total # of CAM references

III. Test Output Functions
A. Correct SLC & CAM miss rates
B. Correct effective memory access time
C. Correct SLC & CAM cache pollution percentages
D. Correct values in reference frequency file

Figure 3.16: Simulator Testing Requirements
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3. 6 Summary

The cache simulator was designed to meet all the func-

tional requirements of the proposed memory subsystem.

Once developed, the simulator was subjected to rigorous

validation testing and cross-checking. Based on this

effort, it can be concluded that the cache simulator is

capable of providing valid results for this research.
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Chapter 4

Findings

This chapter provides the research results of the effect

that spatial locality prefetching has on structural locality.

First, the workload selection for studying the cache pollution

in the SLC and CAM is discussed. Next, the modifications to

Hobart's memory referencing models are shown to account for

spatial prefetching. From these modified models, new equa-

tions are derived to predict the SLC and CAM hit probabili-

ties. Next, the approach to using simulation measurements to

solve these equations is explained. Results from these

equations are then compared against hit ratios produced in the

trace-driven simulations. The SLC and CAM hit probabilities

are then used to estimate the effective memory access time of

the design. Finally, the performance effects of spatial

prefetching are compared with baseline results using no

prefetching.

4.1 Workload Selection

As discussed in chapter two, the differences between the

memory referencing behavior of symbolic and conventional

workloads has been well documented. In order to produce

meaningful results, cache performance studies must take these
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differences into account.

The basic motivation for the proposed memory subsystem

was to exploit the unique locality characteristics of symbolic

workloads (Hobart, 1989:96). As such, this research focuses

on symbolic workloads in determining the effects of cache

pollution from spatial prefetching. The symbolic workloads

used in the trace-driven simulations are shown in Table 4.1.

Eight workloads were used from the Explorer traces. The last

workload was taken from the VAX traces.

Table 4.1: Symbolic Workloads Used in Simulations

Workload Application System

Boyer Theorem Prover Explorer II

Compile-RB Lisp Compiler "

Compile-STR Lisp Compiler "

GLISP-Comp Expert System Tool "

GLISP-Pay Expert System Tool "

QSIM Qualitative Reasoning

Reducer Symbolic Computation

TMYCIN Expert System Tool

LISP.000.DIN Lisp Application VAX 8200

The nine selected workloads included all references. The

rationale is to characterize the cache pollution effects of

spatial prefetching against total workload behavior.
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4.2 Trace-driven Simulations

To reasonably limit the number of simulations due to time

constraints, the selection of the SLC and CAM size parameters

is based on an estimated upper range of current cache tech-

nology. The CAM and SLC sizes are set at 8192 and 512 words,

respectively. This 16 to 1 size ratio meets the minimum 8 to

1 ratio requirement. The cache parameters chosen for these

simulations are shown in Table 4.2.

In order to study the cache pollution effects of spatial

prefetching in the CAM, the CAM block size is fixed at 4

words. The rationale for this block size choice was based on

the availability of data needed to solve the cache hit

probability equations.

In studying cache performance in a RISC environment, Hill

and Pnevmatikatos determined that a 32 byte block size (upper

limit) produced the lowest miss ratios for a cache size of 32K

Table 4.2: SLC and CAM Cache Parameters

Number of

Type Words

SLC Size 512

CAM Size 8192

SLC Block Size 4, 8, 16, 32

CAM Block Size 4
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bytes (Hill and Pnev, 1990:53-68). The block size of four

words (used for the CAM cache) was also found to produce low

miss ratios. Using trace-driven simulation in their research,

the effects of block sizes were analyzed using a variety of

workloads including "Xlisp" (lisp interpreter with object-

oriented features).

The three SLC block sizes represent 1:1, 2:1, 4:1, and

8:1 ratios to the CAM block size. The rationale for these

block size selections is based on the memory subsystem design.

The CAM is designed to capture the structural locality in-

herent in the workloads while spatially prefetching. In order

to take advantage of this structural locality, the SLC should

prefetch a multiple of the CAM block size.

The speed performance of the cache simulator is very

acceptable. Assuming one user on the SPARC workstation,

simulation run time varied from one half hour to two hours.

This run time reflects simulations using trace files of up to

450,000 references. Importantly, this research showed the

cache simulator could be structurally developed using the Ada

language and, in turn, still provide a high level of

performance.

A total of 45 simulations (five per workload) were run.

Thirty-six simulations involved the prefetch ratios described

above. The other nine used the same SLC and CAM sizes but did

not use any prefetching. Therefore, the SLC and CAM block

sizes were one word. The results from these simulations were
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used as a baseline to determine any performance improvements.

The cache performance statistics generated from the trace

simulations are shown in Table 4.3. The statistics represent

the mean values for all workloads.

Table 4.3: Cache Performance Statistics

SLC Size = 512 CAM Size = 8192
SLC Block Size (varied) CAM Block Size = 4
No Prefetch: SLC & CAM Block Sizes = 1

SLC Block: 4 8 16 32 No Prefetch

SLC Hit Rate
Mean: .859 .880 .893 .908 .820
Std Dev: .061 .055 .051 .044 .074

CAM Hit Rate (given SLC miss)
Mean: .855 .827 .802 .777 .754
Std Dev: .063 .080 .100 .106 .113

SLC Pollution .608 .660 .733 .807 .489

CAM Pollution (SLC hits counted as pollution in CAM)
.771 .799 .819 .828 .561

Eff Memory
Access Time* 4.93 4.85 4.79 4.67 5.25

The equation for effective memory access time was
explained in Chapter 3 (Section 3.2.4).

4.3 CAN Cache Hit Probability

Hobart developed a two-state Markov model to illustrate

CAM cache referencing when prefetching is used (Hobart,

1989:100-106). As shown in Figure 4.1, the model uses state

transitions to represent the probabilities of various types of
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CAM cache referencing behavior.

In this research, the CAM is assumed to be referenced

only when a SLC miss occurs. Thus, the CAM miss rate repre-

sents the local miss rate of the CAM. From this assumption,

a CAM hit can occur in three ways. Given an old reference is

currently being referenced, a hit can take place if the next

reference is also old and has not been replaced out of the

CAM: (I - PON) Wc where (1 - PON) is the probability of an

old to old state transition; Wc is the effective cache size

hit probability. Given a current new reference, a hit occurs

if the next reference is old and has not been replaced out of

the CAM: PON WC where PNo is the probability of a new to old

state transition. In addition, given a current new reference,

a hit can take place if the next reference is new and exists

within the same block: Pcp which is the probability that a

new to new reference is made to the block that was just

prefetched. The simplifying assumption is made that once

consecutive new references are made to a block and a new to

old state transition occurs, any unreferenced addresses in the

prefetched block(s) are considered pollution.

Thus, in the original model, when an old to new state

transition occurs, the new reference is assumed to be to a

previously unreferenced block. In order to more accurately

predict the effects of spatial prefetching, a new model

removes this assumption as shown in Figure 4.2 (modifications

within dashed box). Given a current old reference, a hit can
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take place if the next reference is new and is located within

an existing prefetched block: Po0 PCB where PCB is the

probability of referencing a CAM prefetched block.

Using the modified Markov model, the following equation

is derived to determine the expected CAM cache hit rate, PcAM:

PC= ((1 - PoN) Wc + PoNPC) Ps, + (PNOWC + PCP) Ps,

where

Po PMO

P+ P

and

pal= P-po PON
P. + PON

Simplifying the equation, we have:

PW, (WC + PONPcB) + PONPCPPC"x =  PrM + PON

In order to show how the PCAM equation is solved, an example

using the performance statistics (Table 4.3) involving a CAM

block size of 4 words is explained.

By analyzing the temporal distances of reference strings,

Hobart determined the state transition probabilities of memory

referencing behavior for the symbolic trace workloads (Hobart,

1989:40-41, 137). The mean state transition probabilities

(shown in Table 4.4) will be used in the hit probability

equation.
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Table 4.4: State Transition Probabilities - All References

Same Stack Not Same
New-Old Distance Stack Distance Old-New

Workload (NO) (SSD) (NSSD) (ON)

Boyer .506 .474 .502 .024
Comp-RB .382 .562 .423 .015
Comp-STR .383 .544 .438 .018
GLISP-C .478 .623 .361 .016
GLISP-P .250 .588 .407 .005
QSIM .457 .444 .544 .012
Reducer .137 .540 .454 .006
TMYCIN .378 .626 .364 .010

Mean .371 .550 .436 .013
Std Dev .1235 .0653 .0634 .0063

Wc is a function of the CAM size. The probability that

an old reference exists in the CAM is limited by the finite

size of tha CAM. Since spatial prefetching results in

pollution, the effective size of the CAM is reduced.

Effective CAM size is calculated as follows:

Eff CAM Size = Nc (1 - Cp)

where

Nc = CAM size (words)

Cp= CAM pollution mean

In the example, effective CAM size is:

Eff CAM Size = 8192 (1 - .771) = 1876 words

Analyzing the cumulative temporal locality character-

istics of symbolic workloads, Hobart mapped the effective CAM
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sizes to corresponding hit probabilities on old-old transi-

tions (Hobart, 1989:103). Using this graph (Appendix C), the

Wc can be estimated for the effective CAM size of 1876 words:

Wc= 0.96

In order to calculate the probability of referencing a

pref etched CAM block, PcB, we must determine the number of old

to new reference hits resulting from references to previously

prefetched CAM blocks. First, the total number of additional

references accessed within a CAM prefetched block, AR, is

calculated. From the CAM pollution (Cp) resulting from no

prefetching (Table 4.3), (1 - C.) or 43.9% of the demand-

fetched references are rereferenced on average. We can note

that if none of the prefetched words were referenced, the CAM

pollution would be:

43c=1- 4 - 9

However, if all three of the prefetched references are, in

fact, referenced, then the CAM pollution would be:

Cp1 (.=1 439 + -) =0.140

4 4

Our actual cache pollution must be between these two extremes.

The following equation can be formed to determine the average

number of additional references, AR:

cp = 1 ((1 - cp +AR
B- Bc
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Solving for AR gives:

AR = (Bc - 1) (1 - Cp)

Using this equation in our example, we have:

AR = (3) (1 - .771) = 0.687

Therefore, 0.687 additional references are referenced in the

CAM block on average.

Next, the number of references occurring within a CAM

block during new to new referencing must be determined. Using

a probability decision tree and summing all expected value

outcomes, 1.41 references were found to be referenced during

new to new referencing within a prefetched block of 4 words.

Thus, only 0.41 out of the additional three references are

referenced on average during new to new transitions. However,

when the CAM spatially prefetches a block from main memory,

all or a portion of the CAM block will also be prefetched to

the SLC depending on where the requested address is located

within the CAM block. Since the forward references (above the

requested address) are prefetched to the SLC, new to new

referencing within the CAM can only occur from those

references within the CAM block which were not prefetched to

the SLC (below the requested address). For example, if all

four references in the CAM block are prefetched into the SLC,

then no new to new references from that block can take place

in the CAM. At the other extreme, if only the requested
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address in the CAM block is prefetched to the SLC, then 0.41

new to new references from that block can take place in the

CAM. The actual number of new to new references within the

CAM block must be between these two extremes. Assuming one-

half of the CAM block is prefetched into the SLC on average,

we can also assume that only 0.2 additional references of the

3 prefetched references is referenced before transitioning

back to the old reference state.

From the CAM pollution which occurs with no prefetching,

we know that 0.439 references are accessed on average. By

subtracting 0.439 references and the 0.2 new-new references

from the total number of additional references (0.687), the

number of old-new reference hits resulting from references to

previously prefetched CAM blocks is 0.048 references.

Based on the state transition probability, PON (.013), 13

out of every 1000 references can be expected to be old to new

transitions. In this research, simulations revealed that if

a prefetched address is to be referenced, it is first refer-

enced within 256 memory accesses after being prefetched.

Therefore, we can expect 3.328 (.013 x 256) to be referenced

during the next 256 transitions.

The probability of referencing a previously prefetched

CAM block, PCB, can now be determined by dividing the number

of old-new reference hits (0.048) by the expected number of

old-new references during the "lifetime" of a prefetched

reference (3.328) times the expected number of new-new
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references (1.2) that will occur in the new reference state:

0.048 = 0.012
3.994

To calculate the probability of a CAM prefetch block

reference during a new to new transition (Pcp), the expected

value of number of new to new references, Ucp, can be set

equal to the 0.2 additional new to new references. Ucp is

treated as a sum of geometric series using Pcp" From this, Pcp

can be calculated as follows:

P PCP -0.2
(1 - PC)

Therefore

1+.2Pc - . +2.2 - 0.167

Substituting the state transition probabilities, Wc, PcB,

and Pcp, the CAM hit probability equation can be solved:

pCAM .371 (.96 + (.013) (.012)) + (.013) (.167) = 0.932
.384

In table 4.5, the CAM cache hit probability computations

are compared with the measured mean values from the simula-

tions. As shown, the predicted hit rates are slightly outside

one standard deviation range from the measured hit rates. The

calculated hit rates consistently overestimate the measured

means. To account for this difference, future research may

investigate how the effective CAM size may be further reduced
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Table 4.5: CAM Cache Hit Probability Comparisons

SLC Size = 512 CAM Size = 8192
SLC Block (varied) CAM Block = 4

SLC Block 4 8 16 32

Equation .932 .924 .904 .893

Measured
Mean: .855 .827 .802 .777

Std Dev: .063 .080 .100 .106

from spatial prefetching. The resulting smaller effective CAM

size would decrease the calculated CAM hit probability.

4.4 Structural Locality Cache Hit Probability

Hobart developed a two-state Markov model to predict SLC

hit rates when structural locality prefetching is used

(Hobart, 1989:107-112). As shown in Figure 4.3, the model

uses state transitions to represent the probabilities of

various types of SLC referencing behavior. This model assumes

no spatial locality prefetching.

A SLC hit can occur in two ways. Given a current old

reference, a hit can take place if the next reference is also

old and has not been replaced in the SLC. Since the SLC

employs structural prefetching, the probability of this type

of hit is calculated using the SSD and NSSD state transitions:

PSSD + PJSSD Ws where PSSD is the probability of an old to SSD

state transition; PNssD is the probability of an old to NSSD

state transition; Ws is effective cache size hit probability.
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The other way a SLC hit can occur is during a new to old

state transition: PNO WS. This probability is similar to the

hit probability in the CAM model. Unlike the CAM model, a hit

cannot occur on a new to new state transition since this model

assumes that no spatial locality prefetching is being used in

the CAM.

To incorporate the effects of spatial locality prefetch-

ing, my model adds two state transitions which can produce

hits. As shown in Figure 4.4, these hit probabilities are

similar to the corresponding probabilities in the modified CAM

model (Figure 4.2). PSB is the probability of referencing

spatially prefetched CAM data during an old to new transition.

PsP is the probability of a reference to the same CAM block

during a new to new reference.

Using the modified Markov model, the following equation

is derived to determine the expected SLC hit rate, PSLC:

PSLC = ((PSSDA+PNSSD WS) +PP) (P Ws+Psp) PON

PO + PON PM + PON

which simplifies to

PSLC '2 (PSSDA + (PNsD + PO) WS + PO PsB) + PON PSPPSLC = pM + PON

In order to determine Ws, the effective SLC size must be

calculated as follows:
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Eff SLC Size = Ns (Ew + Ess)

where

Ns = SLC size (words)

Em = expected % of new-new reference hits occurring
wi thin the most recently prefetched SLC block

Ess = expected % of old-new reference hits occurring

wi thin previously prefetched SLC blocks

Given the assumption that on average one-half of the CAM

prefetched block (on a CAM miss) is prefetched into the SLC,

the expected number of new-new references (E.) is 1.2 out of

4 references (0.3). Thus, only 0.2 of the three additional

prefetched SLC references are accessed on average.

Ess is calculated as follows. First, the total number of

additional references used within a SLC block, AR, is

determined (discussed in Section 4.3):

AR = (Bs - 1) (1 - Sp)

where

Bs = SLC block size (words)

Sp = SLC pollution mean

Using the SLC block size of four words, we have:

AR = 3 (.392) = 1.176

From the SLC pollution occurring with no prefetching, we know

that 0.511 demand-fetched references are rereferenced on

4-19



average. Subtracting the 0.511 references and the 0.2

additional new-new references from the total number of

additional references (1.176), the number of additional old-

new reference hits resulting from references to previously

prefetched SLC blocks is 0.465. From this, Ess can be

determined:

.465
E - 4 .116

We can now solve for the effective CAM size:

Eff SLC Size = 512 (.3 + .116) = 213 words

Ws can now be estimated (Appendix C) for 213 words:

Ws = 0.67

PsB is calculated in the same manner as PCB is calculated

for the CAM cache. It is determined by dividing the number of

old-new reference hits (.465) by the expected number of old-

new references during the "lifetime" of a prefetched reference

(3.328) times the expected number of new-new references (1.2)

that will occur in the new reference state:

SB = .465 = 0.116

3.994

Since SLC blocks prefetch CAM blocks, PSB remains constant for

all SLC block sizes.

Given consecutive new-new references only occur within a

given block, Psp is calculated in a manner similar to PCp:

=P .2 0.167
(1 + .2)
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Substituting the state transition probabilities, Ws, PsB,

and Psp, the SLC hit probability equation can be solved:

PsLC - .371(.48+(.449) .67+(.013) .116) + (.013) .167 = 0.761
.384

In table 4.6, the SLC hit probability computations are

compared with the measured mean values from the simulations.

As shown, the predicted hit rates are relatively close to the

measured means. Hit rates for the SLC block sizes of 8 and 16

words fall within one standard deviation of the measured

means. Hit rates for the SLC block sizes of 4 and 32 words

are slightly outside one standard deviation range. The

calculated rates consistently underestimate the measured

rates. Although the overwhelming majority of SLC prefetches

take place from the CAM (allowing for a full SLC block), the

portion of SLC pref etches initiated from main memory may still

have an impact on pollution. Reduced pollution can increase

the effective size of SLC. And, in turn, increase the

calculated SLC nit.probability.

Table 4.6: SLC Hit Probability Comparisons

SLC Size = 512 CAM Size = 8192
SLC Block (varied) CAM Block = 4

SLC Block 4 8 16 32

Equation .761 .836 .846 .839

Measured
Mean: .859 .880 .893 .908
Std Dev: .061 .055 .051 .044
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In addition, as in the case of the CAM cache, future

research may also investigate the possibility that additional

SLC hits may occur as a result of new-new references which

take place within multiple blocks. These additional hits

would be represented by another new-new state transition. The

resulting SLC hits would increase the calculated SLC hit

probability.

4.5 Performance Analysis

The effective memory access times were measured for the

four sets of SLC and CAM cache block parameters (Table 4.3).

As presented in Chapter 3, the effective memory access time,

ta , is calculated as follows:

ta tSLCPSLC + tCAM(1 - Psi PCAM+ tW(1 - PC) (i - PsL)

where the cycle times for the SLC, CAM, and main memory are

1, 4, and 32 clock cycles, respectively.

To serve as a baseline comparison, the effective memory

access time is used for the same SLC and CAM cache sizes when

no prefetching is involved. From Table 4.3, the measured mean

effective memory access time for no prefetching is 2.822.

Calling this the baseline access time Tb, the performance

speedup S due to prefetching is defined as (Hobart, 1989:113):

S = (_tb - 1) 100 (percent)
tn

As shown in Table 4.7, the speedup due to spatial and
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structural prefetching occurred for all SLC block sizes. For

this set of parameters, increasing the SLC block size results

in performance improvement. As the SLC block size nears the

SLC size, performance gains would be expected to decrease.

In this set, the largest SLC block of 32 words did not

adversely impact the SLC hit ratio since a sufficient number

of blocks (16) could still be stored in the SLC. As a result,

it produced the smallest effective memory access time.

Table 4.7: Speedup Due to Spatial and
Structural Prefetching

SLC Size = 512 CAM Size = 8192

No Prefetch Tb = 5.25

CAM Prefetch Block = 4

SLC Block S (%)

4 6.5
8 8.2

16 9.6
32 12.4

4.6 Summary

This chapter has shown how Hobart's memory referencing

models were modified to incorporate the effects of spatial

prefetching in the CAM and structural prefetching in the SLC.

CAM and SLC hit probability equations were derived from these

models. Using the measurements from the trace-driven

simulations, the expected hit rates were calculated for both

caches using different sets of block size parameters. In
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particular, cache pollution estimates were used to analyze the

effects of spatial prefetching on structural locality.
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Chapter 5

Conclusion and Recommendations

5.1 Main Contributions

The principal contribution of this research is char-

acterizing the effects of spatial prefetching on structural

locality in the proposed memory subsystem. This research

shows that performance gains through structural locality

prefetching are still possible even when spatial locality

prefetching is being used in the lower level cache.

Existing memory referencing models are modified to

incorporate the combined use of structural locality and

spatial locality prefetching. From these models, equations

are derived to predict the expected hit rates of the SLC and

CAM caches. Targeting a representative sample of symbolic

workloads, trace-driven simulations provide performance

measurements for different combinations of SLC and CAM cache

block sizes. Combined with the state transition probabilities

of the modified Markov memory referencing models, these

measurements are used to solve the hit probability equations.

The purpose of this research is not to exhaustively

measure performance for all combinations of cache parameters.

Instead, it provides an extended memory referencing model to

analytically predict the hit rates and the effective memory
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access times for a range of SLC block sizes.

The experimental methodology for this research is also a

significant contribution. The cache simulator provides a

reliable tool for not only meeting the demands of this

research, but also future research as well. Built using the

Ada language, the simulator is designed to facilitate

tailoring it to meet new research requirements.

8.2 Additional Applications of This Research

Several approaches exist for continuing this research.

First, the modified memory referencing models should be

applied to other types of workloads such as numeric and data-

processing. Expanding the applicability to various workload

types will increase the usefulness of the models. In

addition, the effects of varying other parameters besides SLC

block size should be examined.

Another research application is to further analyze the

temporal behavior within the SLC and CAM cache. Specifically,

it would be useful to differentiate between prefetched

instructions and data. Further investigation is also required

to characterize this temporal behavior over a wide range of

cache parameters. The cache simulator has already been

designed to provide data for this analysis. As described in

Chapter 3, the GenerateRef_ FrequencyPackage outputs a

reference file containing temporal reference information for

both caches.
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Another research course would be to study the impact of

combined structural locality and spatial locality prefetching

on individual reference types: instruction fetches, data

reads, and data writes.
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package LinkedListsPackage is

type LinkedListNode;
type NodePointer is access LinkedListNode;

type LinkedListNode is
record

Addr : integer;
NumRef : integer := 0;
Next : NodePointer := null;

end record;

type List is
record

Next: NodePointer := null;
Tail: NodePointer := null;

end record;

-- create a node (address to be stored in cache)
function MakeNode (Address: integer) return NodePointer;

-- find node containing matching address with Pl
function Search (L: List; Address: integer)

return NodePointer;

-- add node P1 to front of list
procedure AddToFront (L: in out List; P1: NodePointer);

-- add node P1 to rear of list
procedure AddToRear (L: in out List; Pl: NodePointer);

-- insert node P1 in orler by number of passed references
before being first referenced

procedure InsertInOrder (L: in out List; Pl: NodePointer);

-- delete node Pl from list
procedure Delete (L: in out List; P1: NodePointer);

end LinkedLists_Package;
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with UncheckedDeallocation;

package body LinkedListsPackage is

procedure Deallocate Node is new UncheckedDeallocation
(Object => LinkedListNode,
Name => NodePointer);

function MakeNode (Address: integer)
return NodePointer is

p: NodePointer;
begin

p := new LinkedListNode;
p.Addr := Address;
return p;

end MakeNode;

function Search (L: List; Address: integer)
return NodePointer is

p: NodePointer := L.Next;
begin

while p /= null and then p.Addr /= Address loop
p :- p.Next;

end loop;
return p;

end Search;

procedure AddToFront (L: in out List; PI: NodePointer) is
begin

Pl.Next := L.Next;
L.Next : Pl;
if L.Tail = null then L.Tail := PI; end if;

end AddToFront;

procedure AddToRear (L: in out List; P1: NodePointer) is
begin

if L.Next = null then
AddToFront (L, P1);

end if;
L.Tail.Next := PI;
L.Tail := P1;

end AddToRear;

procedure Insert In Order (L: in out List; Pl: NodePointer) is
p: NodePointer := L.Next;
q: NodePointer;

begin
if p = null then

AddToFront (L, Pl);
elsif p.NumRef > Pl.NumRef then

AddToFront (L, Pl);
else

while p /= null and then
p.NumRef < P1.NumRef + 1 loop
q : p;
p : p.Next;

end loop;
if p = null then

AddToRear (L, Pl);
else

q.Next P1;
PI.Next p; A-3

end if;
end if;

end InsertInOrder;



procedure Delete (L: in out List; P1: NodePointer) is

p: NodePointer := L.Next;
q: NodePointer := null;

begin
if P1 - p then L.Next := Pi.Next;
else

while p /= null and then p /= Pl loop
q p;
p p.Next;

end loop;
q.Next := Pl.Next;
DeallocateNode (p);

end if;
if L.Tail = P1 then L.Tail := q; end if;

end Delete;

end LinkedListsPackage;
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generic

type Object is limited private;
type Name is access Object;

procedure UncheckedDeallocation (x: in out Name);
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package CircularQ_Package is

type index is range 1 .. 32768;
type ArrayType is array (index) of integer;
type ArrayPtrType is access ArrayType;

type Queue is
record

Address : ArrayPtr Type new ArrayType;
RefCount : ArrayPtrType new ArrayType;
head : index;
tail : index;

end record;

procedure Enqueue (Q: in out Queue;
CAM SizeIndex: in index;
Reference: in integer);

procedure Dequeue (Q: in out Queue;
CAMSizeIndex: in index);

procedure SearchQ (Q: in Queue;
Reference: in integer;
CAMSizeIndex: in index;
Position: in out index;
Found: in out boolean);

end CircularQPackage;
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package body CircularQPackage is

procedure Enqueue (Q: in out Queue;
CAM SizeIndex: in index;
Reference: in integer) is

begin
Q.tail := (Q.tail mod CAMSizeIndex) + 1;
Q.Address (Q.tail) :- Reference;
Q.RefCount (Q.tail) := 0;

end Enqueue;

procedure Dequeue (Q: in out Queue;
CAMSizeIndex: in index) is

begin
Q.head := (Q.head mod CAMSizeIndex) + 1;

end Dequeue;

procedure SearchQ (Q: in Queue;
Reference: in integer;
CAMSizeIndex: in index;
Position: in out index;
Found: in out boolean) is

begin
for i in 1 .. CAM Size Index loop

Position := (Position mod CAM SizeIndex) + 1;
if Q.Address (Position) = Reference

then Found := true;
exit;

end if;
end loop;

end SearchQ;

end CircularQ_Package;
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package AddrRecord Package is

type AddrRecord is
record

The Type : character;
Address : integer;

end record;

end AddrRecordPackage;
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ith Text_1O, AddrRecordPackage,
LinkedListsPackage, CircularQ_Package,
FetchAddressPackage, Determine TypePackage,
Serv_InstrFetchPackage, ServDataRead_Package,
Serv DataWritePackage, Compute_MissRatios Package,
ComputeMemoryAccessTimePackage,
ComputeCachePollutionPackage,
GenerateRef_Frequency_List_Package;

se Text 10, Addr RecordPackage,
LinkedLists_Package, CircularQPackage,
Fetch AddressPackage, DetermineType_Package,
ServInstrFetchPackage, ServDataReadPackage,
Serv Data Write Package, ComputeMiss RatiosPackage,
Compute MemoryAccessTimePackage,
ComputeCachePollutionPackage,
GenerateRef_Frequency_List_Package;

procedure CacheSimulator is

package Type Integer 10 is new integer 10 (integer)-
use TypeIntegerIO;
package IndexInteger_IO is new integer_I0 (index);
use IndexIntegerIO;

Input File : File Type;
Output_File : FileType;
Reference File : File Type;
Memory_Ref : AddrRecord;
Num Ref : natural 0;
Total Num Ref : natural 0;
Type Ref : character;
SLC : List;
CAM : Queue;
SLC Ref List : List;
CAMRefList : List;
SLC Miss : natural 0;
CAM Miss : natural 0;
SLC Total Refs : natural 0;
CAMTotalRefs : natural 0;
TempSLC_Size : natural 0;
TempCAMSize : natural 0;
SLC Non Ref : natural 0;
CAMNonRef : natural 0;
SLC Total Prefetch : natural 0;
CAMTotalPrefetch : natural 0;
SLC MR, CAMMR : float;
CAM Size Index : index;
In_String : string (1..15);
In Length : natural;
NewSpace : natural 1;
Last_Space : natural 0;

-- * CACHE PARAMETERS *

SLC Size : natural;
CAM Size : natural;
SLC LineSize : natural;
CAM-Line-Size : natural;

A-9

begin
new-line;
put ("Please enter the following:"); new line(2);



put ("Statistics Filename: ");
get line (InString, In-Length);
while ((NewSpace < InLength) and

(In_String (New Space .. NewSpace) /= " ")) loop
New-Space := New Space + 1;

end loop;
create (OutputFile, OutFile,

InString ((LastSpace + 1) .. New Space));
NewSpace := 1; LastSpace : 0;

put ("Reference Filename: ");
get line (In_String, In Length);
while ((New Space < InLength) and

(In_String (New Space .. NewSpace) /= " ")) loop
New-Space := NewSpace + 1;

end loop;
create (ReferenceFile, OutFile,

InString ((LastSpace + 1) .. NewSpace));
NewSpace := 1; Last-Space := 0;

put ("Trace Filename: ");
get line (In_String, In Length);
while ((NewSpace < InLength) and

(InString (New-Space .. NewSpace) /= " ")) loop
New Space := New-Space + 1;

end loop;
open (Input_File, InFile,

InString ((Last Space + 1) .. NewSpace));
newline;

put ("*** Cache Parameters ***"); newline;
put ("SLC Size: "); get (SLC_Size);
put ("SLC Line Size: "); get (SLCLine-Size);
put ("CAM Size: "); get (CAMSize);
put ("CAM Line Size: "); get (CAMLineSize); newline;

-- Heading info: stats & reference files.

put (Output_File, "Address Trace: ");
put (OutputFile, In_String((LastSpace+l)..NewSpace));
put (ReferenceFile, "Address Trace: ");
put (ReferenceFile, In_String((LastSpace+l)..NewSpace));
set line (Output File, 2);
set line (ReferenceFile, 2);
put (OutputFile, "SLC Size: ");
put (Output_File, SLC_Size);
put (OutputFile, " SLC Line: ");
put (Output_File, SLC Line Size);
put (ReferenceFile, "SLC Size: ");
put (ReferenceFile, SLCSize);
put (ReferenceFile, " SLC Line: ");
put (Reference File, SLCLine-Size);
set line (OutputFile, 3);
set line (Reference File, 3);
put (Output File, "CAM Size: ");
put (Output_File, CAMSize);
put (OutputFile, " CAM Line: ");
put (OutputFile, CAM LineSize);
put (ReferenceFile, "CAM Size: ");
put (ReferenceFile, CAMSize);
put (ReferenceFile, " CAM Line: ");
put (ReferenceFile, CAM LineSize); A-10
setline (OutputFile, 5);
set-line (ReferenceFile, 5);



-- Initialize CAM head & tail to CAM size.

CAM SizeIndex := index (CAMSize);
CAM~head := CAM Size Index;
CAM.tail := CAM Size Index;

while not EndOfFile (InputFile) loop

Load Record (Input File, MemoryRef);
Type Ref := AddressType (MemoryRef);

loop
case TypeRef is

when '0' =>
Num Ref := NumRef + 1;
ServDataRead (Input File, MemoryRef,

SLC, CAM, SLC_RefList, CAMRefList,
SLC Miss, CAM_-Miss,
SLC Total_Refs, CAMTotalRefs,
SLCNon Ref, CAM NonRef,
SLCTotalPrefetch, CAMTotalPrefetch,
SLCSize, CAMSize, SLC LineSize,
CAM LineSize, TempSLCSize,
TempCAMSize); exit;

when '1' =>
Num -Ref := NumRef + 1;
Serv-DataWrite (InputFile, MemoryRef,

SLC, CAM, SLCRefList, CAMRefList,
SLCMiss, CAM-Miss,
SLCTotal_Refs, CAMTotalRefs,
SLC Non Ref, CAMNon_Ref,
SLCTotalPrefetch, CAM TotalPrefetch,
SLCSize, CAMSize, SLCLine_Size,
CAM LineSize, TempSLC Size,
TempCAM Size); exit;

when '2' =>
Num Ref := NumRef + 1;
Serv-InstrFetch (Input-File, Memory Ref,

SLC, CAM, SLCRefList, CAMRefList,
SLC Miss, CAMMiss,
SLC TotalRefs, CAM Total Refs,
SLCNon- Ref, CAMNon_Ref,-
SLCTotalPrefetch, CAM Total Prefetch,
SLC Size, CAMSize, SLC-Line Size,
CAMLineSize, TempSLC7Size,
Temp_CAMSize); exit;

when others => exit;

end case;
end loop;

if NumRef = 20000 then
TotalNumRef := TotalNumRef + NumRef;

-- Compute SLC & CAM miss ratios
-- for every 20000 memory references A-11

Compute MissRatios (SLCMiss, CAMMiss,
SLCTotalRefs, CAMTotalRefs,



TotalNumRef, SLCMR,
CAMMR, Output_File);

NumRef := 0;

elsif End Of File (Input File) then
Total_NumRef := TotalNumRef + NumRef;

-- Compute final SLC & CAM miss ratios

Compute Miss Ratios (SLCMiss, CAMMiss,
SLC Total Refs, CAM TotalRefs,
TotalNumRef, SLCMR,
CAMMR, Output_File);

-- Compute average memory access time

ComputeMemoryAccess_Time (SLCMR, CAM_MR,
OutputFile);

-- Compute SLC & CAM pollution

Compute_Cache Pollution (SLC, CAM, SLC Non Ref,
CAM NonRef, SLCTotalPrefetch, CAM_TotalPrefetch,
TempCAMSize, OutputFile);

-- Generate reference frequency list

Generate RefFrequencyList (SLC RefList,
CAMRef List, SLCNonRef, CAM_Non_Ref,
ReferenceFile);

new-line (2);
putline ("***** End of Simulation *****");
exit;

end if;

end loop;

close (InputFile);
close (Output File);
close (ReferenceFile);

end CacheSimulator;
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with AddrRecordPackage,
LinkedListsPackage, CircularQPackage, TextIO;

ise AddrRecordPackage,
LinkedListsPackage, CircularQPackage, Text_10;

?ackage ServDataReadPackage is

procedure Serv Data Read
(Input-File in File-Type;
Memory Ref in AddrRecord;
SLC in out List;
CAM in out Queue;
SLC Ref List in out List;
CAM Ref List in out List;
SLC Miss in out natural;
CAM Miss in out natural;
SLC Total Refs : in out natural;
CAM Total Refs : in out natural;
SLC Non Ref : in out natural;
CAMNonRef in out natural;
SLC Total Prefetch : in out natural;
CAM Total Prefetch : in out natural;
SLC Size in natural;
CAM Size in natural;
SLC Line-Size in natural;
CAM Line Size in natural;
TempSLCSize in out natural;
TempCAMSize in out natural);

end ServDataReadPackage;
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package body ServDataRead_Package is

procedure Serv Data Read
(Input File : in File-Type;
Memory_Ref : in AddrRecord;
SLC : in out List;
CAM : in out Queue;
SLC Ref List : in out List;
CAMRefList : in out List;
SLC Miss : in out natural;
CAM Miss : in out natural;
SLCTotal Refs : in out natural;
CAM-TotalRefs : in out natural;
SLC-Non Ref : in out natural;
CAMNonRef : in out natural;
SLC-Total Prefetch : in out natural;
CAM-TotalPrefetch : in out natural;
SLCSize : in natural;
CAMSize : in natural;
SLCLine Size : in natural;
CAMLine Size : in natural;
TempSLC Size : in out natural;
Te:z.p_CAMSize : in out natural) is

package IndexInteger_IO is new integer_IO (index);
use Index_IntegerIO;

Reference : Addr Record;
Temp_Ndl, TempNd2 : NodePointer;
Temp_Nd3 : NodePointer;
Position : index := CAM.head;
Found : boolean := false;
k : natural 1;
CAMPrefetchAddr : integer;
n,o,p : integer;
CAMSizeIndex, j : index;
TempCAMTail : index;

begin

-- Search fcr memory reference in the SLC.

SLCTotalRefs :- SLCTotalRefs + 1;

TempNdl :- SLC.Next;
while Temp_Ndl /- null loop

if Temp_Ndl.NumRef /- -1 then
Temp_Ndl.NumRef :- TempNdl.NumRef + 1;

end if;
TempNdl :- Temp Ndl.Next;

end loop;

n :- Memory_Ref.Address;
Temp_Ndl :- MakeNode (MemoryRef.Address);

TempNd2 :- Search (SLC, n);

-- If the add-ess is found in the SLC,
-- then delete the address in the cache
-- (linked list) and add it to the front A-14
-- of the list (most recently used).

if TempNd2 /- null then



AddToFront (SLC, Temp_Ndl);
SLC.Next.NumRef :- -1;
if TempNd2.NumRef /- -1 then

TempNd3 :- MakeNode (Temp_Nd2.Addr);
TempNd3.NumRef :- TempNd2.NumRef;
InsertInOrder (SLCRefList, Temp_Nd3);

end if;
Delete (SLC, TempNd2);

else

-- Since a miss has occurred in the SLC,
-- search for the address in the CAM.

SLC Miss :- SLC Miss + 1;
CAMTotal Refs :- CAM Total Refs + 1;
CAM-SizeIndex :-index (CAMSize);

if TempCAM_Size /- 0 then
for i in 1 .. TempCAMSize loop

j :- index (i);
if CAM.Ref Count (j) /= -1 then

CAM.RefCount (j) := CAM.RefCount (j) + 1;
end if;

end loop;
end if;

SearchQ (CAM, n, CAMSizeIndex, Position, Found);

-- If the address is found in the CAM, then
-- prefetch a line from the CAM into the SLC.
-- The SLC line is comprised of the requested
-- address + the addresses located after the
-- requested address (total equal to the SLC
-- line size). This action represents a
-- spatial prefetch of the structural
-- locality captured in the CAM.

if Found - true then -- address found in CAM

if CAM.RefCount (Position) /- -1 then
TempNdl :- MakeNode (CAM.Address (Position));
TempNdl.NumRef :- CAM.Ref Count (Position);
Insert In Order (CAM Ref_List, TempNdl);
CAM.RefCount (Position) :- -1;

end if;
while Position /- CAM.tail

and then k /- SLCLineSize loop
k :- k + 1;
Position :- Position mod CAMSizeIndex + 1;

end loop;

for i in 1 .. k loop

-- If the SLC is full, then delete the
-- address located at the rear of the list
-- (LRU replacement). A-15

if TempSLC_Size - SLCSize then



if SLC.tail.NumRef /- -1 then
SLC Non Ref :- SLCNonRef + 1;

end if;-

Delete (SLC, SLC.tail);
TempSLCSize :- Temp_SLCSize - 1;

end if;

TempNdl :- MakeNode (CAM.Address (Position));
AddToFront (SLC, TempNdl);
SLCTotal Prefetch :- SLC Total Prefetch + 1;
TempSLC Size :- TempSLCSize 7 1;
if Position 1 then

Position :- CAMSizeIndex;
else

Position :z Position - 1;
end if;

end loop;

else -- address not found in CAM

-- If a miss occurs in the CAM, then prefetch a
-- line from main memory into the CAM. The line
-- will be comprised of the block of memory (equal
-- to the CAM line size) in which the requested
-- address is located.

CAMMiss :- CAMMiss + 1;

-- If the CAM is full, then the delete the
-- addresses (amount equal to the CAM line size)
-- in the front of the CAM (FIFO replacement).

if TempCAM_Size - CAM Size then
for i in 1 .. CAM_LineSize loop

if CAM.Ref Count (CAM.head mod CAMSize Index + 1)
/- -1 then
CAM NonRef :- CAMNonRef + 1;

end if;

Dequeue (CAM, CAM Size Index);
TempCAMSize :- Temp_CAM_Size - 1;

end loop;
end if;

o :- n / CAM LineSize;
CAMPrefetch-Addr :- o * CAM Line Size;

-- CAM prefetch for a positive integer address. A-16

if n >- 0 then
CAMPrefetchAddr :- CAMPrefetchAddr - 1;



for i in 1 .. CAM Line Size loop
CAM PrefetchAddr :- CAMPrefetchAddr + 1;
Enqueue (CAM, CAM Size_Index, CAMPrefetchAddr);
CAMTotalPrefetch := CAMTotalPrefetch + 1;
TempCAMSize :- Temp_CAM-_Size + 1;

end loop;
else

-- CAM prefetch for a negative integer address.

if n rem CAM Line Size /- 0 then
CAM PrefetchAddr :- CAMPrefetchAddr - CAMLineSize;

end if;
for i in 1 .. CAM Line Size loop

Enqueue (CAM, CAMSizeIndex, CAMPrefetchAddr);
CAM Total Prefetch :- CAM Total Prefetch + 1;
CAM-PrefetchAddr :- CAM PrefetchAddr + 1;
TempCAMSize :- Temp_CAMSize + 1;

end loop;
end if;

-- Prefetch the addresses from the CAM to the SLC
-- starting with the requested address and ending
-- with the last (tail of the circular queue)
-- address in the CAM.

TempCAMTail :- CAM.tail;

while CAM.Address (TempCAM Tail) /- n loop

Temp_Ndl :- MakeNode (CA.Address (TempCAMTail));

if TempSLCSize - SLCSize then

if SLC.tail.NumRef /- -1 then
SLC NonRef :- SLCNonRef + 1;

end if;

Delete (SLC, SLC.tail);
TempSLCSize :- TempSLCSize - 1;

end if;

AddToFront (SLC, Temp_Ndl);
SLCTotalPrefetch :- SLCTotalPrefetch + 1;
Temp_SLCSize :- Temp_SLCSize + 1;
if TempCAMTail - 1 then

Temp_CAMTail :- CAMSizeIndex;
else

TempCAMTail :- Temp_CAMTail - 1;
end if;

end loop;

if Temp_SLCSize - SLCSize then

if SLC.tail.NumRef /- -1 then
SLC NonRef :- SLCNonRef + 1;

end if; A-17

Delete (SLC, SLC.tail);
Temp_SLCSize :- TempSLCSize - 1;



end if;

Temp-Ndl :- makeNode (CAM.Address (Temp._CAM _Tail));
AddToFront (SLC, Temp__rdl);
SLCTotalPrefetch :- SLCTotalPrefetch + 1;
Temp_SLCSize :- TempSLC Size + 1;

end if;

end if;

end ServDataRead;

end ServDataReadPackage;
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with AddrRecord_Package,
LinkedListsPackage, CircularQPackage, TextIO;

use AddrRecord_Package,
LinkedListsPackage, CircularQPackage, TextIO;

package ServDataWritePackage is

procedure Serv Data Write
(Input File : in File-Type;
Memory_Ref : in Addr Record;
SLC : in out List;
CAM : in out Queue;
SLC Ref List : in out List;
CAMRefList : in out List;
SLC Miss : in out natural;
CAM Miss : in out natural;
SLC Total Refs : in out natural;
CAMTotal-Refs : in out natural;
SLCNonRef : in out natural;
CAMNon Ref : in out natural;
SLCTotal Prefetch : in out natural;
CAMTotalPrefetch : in out natural;
SLC Size : in natural;
CAM-Size : in natural;
SLC-Line-Size : in natural;
CAMLineSize : in natural;
TempSLCSize : in out natural;
TempCAMSize : in out natural);

end ServDataWritePackage;
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package body ServDataWritePackage is

procedure Serv DataWrite
(InputFile : in File Type;
Memory_Ref : in Addr Record;
SLC : in out List;
CAM : in out Queue;
SLC Ref List : in out List;
CAM Ref List : in out List;
SLC-Miss : in out natural;
CAM Miss : in out natural;
SLC Total Refs : in out natural;
CAM Total Refs : in out natural;
SLC Non Ref : in out natural;
CAMNonRef : in out natural;
SLCTotal Prefetch : in out natural;
CAMTotalPrefetch : in out natural;
SLC Size : in natural;
CAM Size : in natural;
SLC LineSize : in natural;
CAM LineSize : in natural;
TempSLCSize : in out natural;
TempCAMSize : in out natural) is

package Index Integer_IO is new integer_IO (index);
use Index_IntegerIO;

Reference : Addr Record;
TempNdl, TempNd2 : NodePointer;
TempNd3 : NodePointer;
Position : index := CAM.head;
Found : boolean false;
k : natural 1;
CAMPrefetchAddr : integer;
n,o,p : integer;
CAMSizeIndex, j : index;
TempCAM Tail : index;

begin

-- Search for memory reference in the SLC.

SLCTotalRefs := SLCTotalRefs + 1;

TempNdl := SLC.Next;
while TempNdl /= null loop

if TempNdl.NumRef /= -1 then
TempNdl.NumRef TempNdl.NumRef + 1;

end if;
TempNdl := TempNdl.Next;

end loop;

n := MemoryRef.Address;
TempNdl := MakeNode (MemoryRef.Address);

TempNd2 Search (SLC, n);

-- If the address is found in the SLC,
-- then delete the address in the cache
-- (linked list) and add it to the front
-- of the list (most recently used). A20

if TempNd2 /= null then



AddToFront (Sl(C, TempNdl);
SLC.Next.NumRe: := -1;
if Temp Nd2.NuiRef /= -1 then

Temp Nd3 := MakeNode (TempNd2.Addr);
TempNd3.NumRef := TempNd2.NumRef;
Insert In Order (SLCRefList, Temp_Nd3);

end if;
Delete (SLC, Temp_Nd2);

else

-- Since a miss has occurred in the SLC,
-- search for the address in the CAM.

SLC Miss := SLC Miss + 1;
CAMTotal Refs CAM Total Refs + 1;
CAM_Size_Inoex index (CAM-Size);

if Temp CAM_Size /= 0 then
for i in 1 .. TempCAMSize loop

j := index (i);
if CAM.RefCount (j) /= -1 then

CAM.RefCount (j) CAM.RefCount (j) + 1;
end if;

end loop;
end if;

SearchQ (CAM, n, CAMSizeIndex, Position, Found);

-- If the address is found in the CAM, then
-- prefetch a line from the CAM into the SLC.
-- The SLC line is comprised of the requested
-- address + the addresses located after the
-- requested address (total equal to the SLC
-- line size). This action represents a
-- spatial prefetch of the structural
-- locality captured in the CAM.

if Found = true then -- address found in CAM

if CAM.RefCount (Position) /= -1 then
TempNdl := MakeNode (CAM.Address (Position));
Temp_Ndl.NumRef := CAM.RefCount (Position);
Insert InOrder (CAM Ref List, Temp Ndl);
CAM.RefCount (Position)-: = -1;

end if;
while Position /= CAM.tail

and then k /= SLC_LineSize loop
k := k + 1;
Position := Position mod CAMSize Index + 1;

end loop;

for i in 1 .. k loop

-- If the SLC is full, then delete the
-- address located at the rear of the list
-- (LRU replacement). A-21

if Temp SLC Size = SLCSize then



if SLC.tail.NumRef /- -1 then
SLCNonRef := SLCNonRef + 1;

end if;

Delete (SLC, SLC.tail);
TempSLCSize := TempSLCSize - 1;

end if;

TempNdl := MakeNode (CAM.Address (Position));
AddToFront (SLC, Temp Ndl);
SLCTotalPrefetch := SLCTotalPrefetch + 1;
TempSLCSize := Temp SLC_Size + 1;
if Position = 1 then

Position CAMSizeIndex;
else

Position := Position - 1;
end if;

end loop;

else -- address not found in CAM

-- If a miss occurs in the CAM, then prefetch a
-- line from main memory into the CAM. The line
-- will be comprised of the block of memory (equal
-- to the CAM line size) in which the requested
-- address is located.

CAMMiss := CAMMiss + 1;

-- If the CAM is full, then the delete the
-- addresses (amount equal to the CAM line size)
-- in the front of the CAM (FIFO replacement).

if Temp CAM Size = CAMSize then
for i in 1 .. CAM_LineSize loop

if CAM.Ref Count (CAM.head mod CAMSizeIndex + 1)
/= -1 then
CAM NonRef := CAMNonRef + 1;

end if;

Dequeue (CAM, CAMSizeIndex);
Temp CAMSize := TempCAMSize - 1;

end loop;
end if;

o := n / CAMLine Size;
CAMPrefetchAddr := o * CAMLineSize;

-- CAM prefetch for a positive integer address.-- **** **** ************ *** * ** * ** *A-22

if n >= 0 then
CAMPrefetchAddr := CAMPrefetchAddr - 1;



for i in 1 .. CAMLineSize loop
CAM Prefetch Addr := CAMPrefetchAddr + 1;
Enqueue (CAM, CAMSizeIndex, CAM-PrefetchAddr);
CAM TotalPrefetch := CAMTotalPrefetch + 1;
TempCAMSize := TempCAMSize + 1;

end loop;
else

-- CAM prefetch for a negative integer address.

if n rem CAMLineSize /= 0 then
CAMPrefetchAddr := CAMPrefetchAddr - CAMLineSize;

end if;
for i in 1 .. CAM Line Size loop

Enqueue (CAM, CAM Size Index, CAM PrefetchAddr);
CAM Total Prefetch CAM Total Prefetch + 1;
CAM-PrefetchAddr CAMPrefetchAddr + 1;
TempCAMSize := TempCAMSize + 1;

end loop;
end if;

-- Prefetch the addresses from the CAM to the SLC
-- starting with the requested address and ending
-- with the last (tail of the circular queue)

address in the CAM.

TempCAMTail := CAM.tail;

while CAM.Address (TempCAMTail) /= n loop
Temp_Ndl := MakeNode (CAM.Address (Temp CAMTail));

if TempSLCSize = SLCSize then

if SLC.tail.NumRef /= -1 then
SLCNonRef := SLCNonRef + 1;

end if;

Delete (SLC, SLC.tail);
Temp SLCSize := Temp SLC Size - 1;

end if;

AddToFront (SLC, Temp Ndl);
SLCTotalPrefetch := SLCTotalPrefetch + 1;
Temp_SLCSize := TempSLC Size + 1;
if Temp CAMTail = 1 then

Temp CAMTail CAMSizeIndex;
else

TempCAMTail := TempCAMTail - 1;
end if;

end loop;

if Temp_SLC_Size = SLCSize then

if SLC.tail.NumRef /= -1 then
SLC NonRef := SLCNonRef + 1;

end if; A-23

Delete (SLC, SLC.tail);
TempSLCSize := Temp SLCSize - 1;



end if;

TempNdl :=MakeNode (CAM.Address (TempCAMTail));
AddToFrolt (SLC, Tep-Ndl);
SLC -Total Prefetch :=SLCTotalPrefetch + 1;

TempSLCSize :=TempSLCSize + 1;

end if;

end if;

end ServDataWrite;

end ServDataWrite_Package;

A-24



with Addr RecordPackage,
LinkedListsPackage, CircularQPackage, TextIO;

use AddrRecord_Package,
LinkedListsPackage, CircularQPackage, TextIO;

package ServInstrFetchPackage is

procedure Serv Instr Fetch
(Input File : in File Type;
MemoryRef : in Addr Record;
SLC : in out List;
CAM : in out Queue;
SLC Ref List : in out List;
CAMRef List : in out List;
SLCMiss : in out natural;
CAM Miss : in out natural;
SLC-Total-Refs : in out natural;
CAM Total Refs : in out natural;
SLCNon Ref : in out natural;
CAM Non Ref : in out natural;
SLC Total Prefetch : in out natural;
CAM Total Prefetch : in out natural;
SLC Size : in natural;
CAM Size : in natural;
SLC Line Size : in natural;
CAM-LineSize : in natural;
Temp SLCSize : in out natural;
Temp CAMSize : in out natural);

end ServInstrFetchPackage;
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package body ServInstrFetchPackage is

procedure ServInstrFetch
(InputFile : in File Type;
Memory_Ref : in Addr Record;
SLC : in out List;
CAM : in out Queue;
SLC Ref List : in out List;
CAMRefList : in out List;
SLC Miss : in out natural;
CAM Miss : in out natural;
SLC Total Refs : in out natural;
CAMTotal-Refs : in out natural;
SLCNon Ref : in out natural;
CAMNonRef : in out natural;
SLC Total Prefetch : in out natural;
CAMTotalPrefetch : in out natural;
SLC Size : in natural;
CAM Size : in natural;
SLC Line Size : in natural;
CAM-Line-Size : in natural;
TempSLCSize : in out natural;
TempCAMSize : in out natural) is

package Index Integer_IO is new integer_IO (index);
use IndexIntegerIO;

Reference : Addr Record;
Temp Ndl, Temp Nd2 : NodePointer;
TempNd3 : NodePointer;
Position : index := CAM.head;
Found : boolean false;
k : natural 1;
CAMPrefetchAddr : integer;
n,o,p : integer;
CAMSizeIndex, j : index;
TempCAMTail : index;

begin

-- Search for memory reference in the SLC.

SLCTotalRefs := SLCTotalRefs + 1;

TempNdl := SLC.Next;
while TempNdl /= null loop

if TempNdl.NumRef /= -1 then
TempNdl.NumRef TempNdl.NumRef + 1;

end if;
TempNdl := TempNdl.Next;

end loop;

n := Memory Ref.Address;
TempNdl = MakeNode (MemoryRef.Address);

TempNd2 Search (SLC, n);

-- If the address is found in the SLC,
-- then delete the address in the cache
-- (linked list) and add it to the front A-26
-- of the list (most recently used).

if Temp Nd2 /= null then



AddToFront (SLC, TempNdl);
SLC.Next.NumRef := -1;
if Temp Nd2.NumRef /= -1 then

TempNd3 := MakeNode (Temp Nd2.Addr);
TempNd3.NumRef := TempNd2.NumRef;
InsertInOrder (SLCRefList, TempNd3);

end if;
Delete (SLC, TempNd2);

else

-- Since a miss has occurred in the SLC,
-- search for the address in the CAM.

SLC Miss := SLCMiss + 1;
CAM Total Refs CAMTotalRefs + 1;
CAMSizeIndex index (CAM-Size);

if Temp CAMSize /= 0 then
for i in 1 .. TempCAMSize loop

j := index (i);
if CAM.Ref Count (j) /= -1 then

CAM.RefCount (j) CAM.RefCount (j) + 1;
end if;

end loop;
end if;

SearchQ (CAM, n, CAMSizeIndex, Position, Found);

-- If the address is found in the CAM, then
-- prefetch a line from the CAM into the SLC.
-- The SLC line is comprised of the requested
-- address + the addresses located after the
-- requested address (total equal to the SLC
-- line size). This action represents a
-- spatial prefetch of the structural
-- locality captured in the CAM.

if Found = true then -- address found in CAM

if CAM.RefCount (Position) /= -1 then
TempNdl :- MakeNode (CAM.Address (Position));
TempNdl.NumRef := CAM.Ref Count (Position);
Insert In Order (CAMRef_List, Temp Ndl);
CAM.RefCount (Position) := -1;

end if;
while Position /= CAM.tail

and then k /= SLCLineSize loop
k :- k + 1;
Position := Position mod CAMSizeIndex + 1;

end loop;

for i in .. k loop

-- If the SLC is full, then delete the
-- address located at the rear of the list
-- (LRU replacement). A-27

if TempSLCSize = SLC Size then



if SLC.tail.NunmRef /= -1 then
SLCNonRef := SLCNonRef + 1;

end if;

Delete (SLC, SLC.tail);
Temp SLCSize := Temp_SLCSize - 1;

end if;

Temp Ndl := MakeNode (CAM.Address (Position));
AddToFront (SLC, TempNdl);
SLCTotalPrefetch := SLCTotalPrefetch + 1;
TempSLCSize := TempSLCSize + 1;
if Position = 1 then

Position CAMSizeIndex;
else

Position Position - 1;
end if;

end loop;

else -- address not found in CAM

-- If a miss occurs in the CAM, then prefetch a
-- line from main memory into the CAM. The line
-- will be comprised of the block of memory (equal
-- to the CAM line size) in which the reqursted
-- address is located.

CAMMiss := CAMMiss + 1;

-- If the CAM is full, then the delete the
-- addresses (amount equal to the CAM line size)
-- in the front of the CAM (FIFO replacement).

if TempCAM Size = CAM Size then
for i in I .. CAMLineSize loop

if CAM.Ref Count (CAM.head mod CAMSize Index + 1)
/= -i then
CAM NonRef := CAMNonRef + 1;

end if;

Dequeue (CAM, CAMSizeIndex);
Temp CAM Size := TempCAMSize - I;

end loop;
end if;

o := n / CAMLine Size;
CAMPrefetchAddr := o * CAMLineSize;

-- CAM prefetch for a positive integer address. A-28

if n >= 0 then
CAMPrefetchAddr := CAMPrefetchAddr - 1;



for i in I .. CAM LineSize loop
CAMPrefetchAddr := CAMPrefetchAddr + 1;
Enqueue (CAM, CAM Size Index, CAMPrefetchAddr);
CAM Total Prefetch := CAMTotalPrefetch + 1;
TempCAMSize := TempCAMSize + 1;

end loop;
else

-- CAM prefetch for a negative integer address.

if n rem CAMLineSize /= 0 then
CAMPrefetchAddr := CAMPrefetchAddr - CAMLineSize;

end if;
for i in 1 .. CAMLine Size loop

Enqueue (CAM, CAMSizeIndex, CAMPrefetchAddr);
CAM Total Prefetch CAMTotalPrefetch + 1;
CAM-PrefetchAddr CAMPrefetchAddr + 1;
TempCAMSize - TempCAMSize + 1;

end loop;
end if;

-- Prefetch the addresses from the CAM to the SLC
-- starting with the requested address and ending
-- with the last (tail of the circular queue)
-- address in the CAM.

TempCAMTail := CAM.tail;

while CAM.Address (TempCAM Tail) /= n loop

TempNdl := MakeNode (CAM.Address (Temp CAMTail));

if TempSLCSize = SLCSize then

if SLC.tail.NumRef /= -1 then
SLC NonRef := SLCNonRef + 1;

end if;

Delete (SLC, SLC.tail);
TempSLCSize := Temp SLCSize - 1;

end if;

AddToFront (SLC, Temp Ndl);
SLCTotalPrefetch := SLCTotalPrefetch + 1;
TempSLCSize := TempSLCSize + 1;
if TempCAMTail = 1 then

TempCAMTail CAMSizeIndex;
else

TempCAMTail Temp CAMTail - 1;
end if;

end loop;

if Temp SLCSize = SLCSize then

if SLC.tail.NumRef /= -1 then
SLC NonRef := SLCNonRef + 1;

end if; A-29

Delete (SLC, SLC.tail);
Temp_SLCSize := Temp SLCSize - 1;



end if;

TempNdl :=MakeNode (CAM.Address (Temp__CAM _Tail));
AddToFront (SLC, Temp Ndl);
SLCTotalPrefetch :=SLCTotalPrefetch + 1;
TempSLCSize :=Temp SLCSize + 1;

end if;

end if;

end ServInstrFetch;

end ServInstrFetchPackage;
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with Text_10, AddrRecordPackage;

use TextIO, AddrRecordPackage;

package Fetch_AddressPackage is

procedure LoadRecord (InputFile: in out File Type;
Memory_Ref: out AddrRecord);

end FetchAddressPackage;
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with Text_IO, Hex to DecPackage;

use Text_10, Hex toDecPackage;

package body FetchAddressPackage is

procedure LoadRecord (Input-File: in out File-Type;
Memory_Ref: out AddrRecord) is

type FieldType is (fieldl, field2);

In_String : string (1 11);
InLength : natural;
New_Space : natural;
LastSpace : natural;
In Field : Field-Type := fieldl;
HexAddr : string (1 8);
HexLength : natural;

begin
get_line (Input-File, In String, InLength);

New Space := 1;
LastSpace 0;

loop

while ((New Space < InLength) and
(InString (New Space .. New-Space) /= " ")) loop
New Space := NewSpace + 1;

end loop;

case InField is

when fieldl => MemoryRef.The Type
In_String (New Space - 1);
InField := field2;

when field2 => Hex Addr ((LastSpace - 1) .. NewSpace - 2)
In_String ((Last Space + 1) .. New-Space);
HexLength := NewSpace - Last_Space;
MemoryRef.Address := Hex to Dec (HexAddr, Hex-Length);
InField := fieldl; exit;

when others => exit;

end case;

Last-Space New-Space;
New-Space New-Space + 1;

end loop;
end Load Record;

end FetchAddressPackage;
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package HextoDecPackage is

function Hex to Dec (HexAddr: string; Hex-Length: natural)
return integer;

end Hex toDecPackage;
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with Text_IO; use Text_IO;

package body Hex toDecPackage is

function Hex to Dec (HexAddr: string; Hex-Length: natural)
return integer is

ZeroPos : constant character'pos ('0');
Capital A Pos : constant character'pos ('A');
SmallAPos : constant character'pos ('a');

package Type IntegerIO is new integer_IO (integer);

use TypeInteger IO;

type DecValueType is range -2**31 .. 2**31-1;

TempDecValue: DecValue Type := 0;
NumValue: DecValueType range 0 .. 15;
DecValue: integer;

HexChar: character;

begin
for i in 1 HexLength loop

HexChar := HexAddr (i);

case HexChar is

when '0' .. '9' =>
NumValue := character'pos (Hex-Char) - ZeroPos;

when 'A' .. 'F' =>
Num_Value := character'pos (Hex-Char) -

Capital_A_Pos + 10;

when 'a'.. 'f' =>
NumValue := character'pos (Hex-Char) -

SmallAPos + 10;

when others => exit;

end case;

if i < 8 then
Temp Dec_Value : 16 * Temp_DecValue + NumValue;

else
Temp Dec_Value : TempDecValue - 2**27;
TempDecValue : 16 * Temp_DecValue + Num_Value;

end if;

end loop;

DecValue := integer (TempDecValue);
return DecValue;

end Hex toDec;

end Hex toDecPackage;
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with AddrRecordPackage; use AddrRecordPackage;

package DetermineTypePackage is

function AddressType (MemoryRef: AddrRecord) return
character;

end Determine TypePackage;
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with AddrRecordPackage; use AddrRecordPackage;

package body Determine TypePackage is

function Address-Type (Memory_Ref: Addr Record)
return character is

begin
return MemoryRef. TheType;

end Address Type;

end DetermineTypePackage;
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with Text_10; use TextIO;

package Compute MissRatiosPackage is

procedure ComputeMiss Ratios (SLCMiss: in natural;
CAMMiss: in natural; SLC TotalRefs: in natural;
CAMTotalRefs: in natural; NumRef: in natural;
SLCMR: out float; CAMMR: out float;
Output_File: in out File-Type);

end ComputeMissRatiosPackage;
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with TextIO; use TextIO;

package body ComputeMissRatiosPackage is

procedure ComputeMiss Ratios (SLC Miss: in natural;
CAM Miss: in natural; SLC TotalRefs: in natural;
CAM-Total Refs: in natural; Num-Ref : in natural;
SLC-MR: out float; CAMMR: out float;
OutputFile: in out File-Type) is

type MRType is delta 0.0001 range 0.0 .: 1.0;

package MRType 10 is new fixedIO (MRType);
package Type Integer _O is new integerIO (integer);
use MRType_IO, Type IntegerIO;

SLC Miss Ratio : MRType;
CAMMissRatio : MR Type;
SM, CM, ST, CT : float;
SMR, CMR : float;

begin
SM : float (SLC Miss);
CM float (CAM Miss);
ST := float (SLC TotalRefs);
CT := float (CAMTotalRefs);

newline (3);
put ("Number of References Processed: "); put (NumRef);
newline (2);
put ("Number of SLC Misses: "); put (SLCMiss);
new line;
put ("Number of CAM Misses: "); put (CAM-Miss);
new line;
put ("Total SLC References: "); put (SLCTotalRefs);
new line;
put ("Total CAM References: "); put (CAMTotalRefs);
newline (2);

SMR : SM / ST;
CMR : CM / CT;

SLCMiss Ratio := MR Type (SMR);
CAMMiss Ratio := MR Type (CMR);
SLCMR := float (SLCMissRatio);
CAMMR := float (CAMMissRatio);

put ("SLCMissRatio: "); put (SLCMissRatio);
new line;
put ("CAMMissRatio: "); put (CAMMiss Ratio);

Set_Col (OutputFile, 1);
put (OutputFile, NumRef);
put (Output-File, SLCMiss);
put (OutputFile, CAMMiss);
put (Output File, SLCTotalRefs);
put (OutputFile, CAM Total Refs);
put (OutputFile, SLC_Miss Ratio);
put (OutputFile, CAMMissRatio);

end ComputeMissRatios;

- A-38end ComputeMissRatiosPackage;



with Text_IO; use TextIO;

package ComputeMemoryAccessTimePackage is

procedure ComputeMemoryAccessTime (SLCMR: in float;
CAMMR: in float; OutputFile: in out File Type);

end ComputeMemoryAccessTimePackage;
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with Text_10; use TextIO;

package body ComputeMemoryAccessTimePackage is

procedure Compute MemoryAccessTime (SLC MR: in float;
CAM_MR: in float; OutputFile: in out FileType) is

type Avg_AccessType is delta 0.001 range 1.0 .. 32.0;

package Type_Access_10 is new fixed_10 (Avg Access Type);
use TypeAccessIO;

EffMemAccess : AvgAccess_Type;
CAMAccess : float :- 4.0;
MMAccess : float :- 32.0;

begin

Eff Mem Access :- AvgAccessType ((1.0 - SLCMR) + (CAM Access
* (SEC MR) * (1.0 - CAMMR)) + (MMAccess * (SLCMR) * (CAMMR)));

Set Col (Output File, 1); -
put (OutputFile, "Effective Memory Access Time: ");
put (OutputFile, EffMemAccess);

end CorputeMemoryAccessTime;

end ComputeMemory_AccessTimePackage;
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with Text 10, LinkedListsPackage, CircularQPackage;

use TextIO, LinkedListsPackage, CircularQPackage;

package ComputeCachePollutionPackage is

procedure Compute_CachePollution (SLC: in out List; CAM: in out Queue;
SLC Non Ref: in out natural;
CAM Non Ref: in out natural;
SLC Total Prefetch: in natural;
CAM Total Prefetch: in natural;
Temp CAM Size: in natural;
Output-File: in out FileType);

end ComputeCachePollutionPackage;
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package body ComputeCachePollutionPackage is

procedure Compute_CachePollution (SLC: in out List; CAM: in out Queue;
SLC Non Ref: in out natural;
CAM Non Ref: in out natural;
SLC Total Prefetch: in natural;
CAM-TotalPrefetch: in natural;
Temp CAM Size: in natural;
Output-File: in out FileType) is

type FixedType is delta 0.0001 range 0.0 .. 1.0;

package TypeFixedIO is new fixedIO (Fixed Type);
use Type-Fixed_IO;
package Index Integer_IO is new integerTO (index);
use Index_Integer IO;

SLCPollution : Fixed Type;
CAMPollution : FixedType;
SNR, CNR, STP, CTP : float;
TempNode : NodePointer;
j : index;

begin
TempNode := SLC.Next;
while TempNode /= null loop

if Temp Node.NumRef /= -1 then
SLC NonRef := SLCNonRef + 1;

end if;
Temp Node := Temp Node.Next;

end loop;

SNR : float (SLC Non Ref);
STP := float (SLCTotalPrefetch);
SLCPollution := Fixed_Type (SNR/STP);
Set Col (Output File, I);
put (Output File, "SLC Pollution: ");
put (Output File, SLCPollution);

for i in 1 .. TempCAMSize loop
j := index (i);
if CAM.Ref Count (j) /= -1 then

CAM NonRef := CAMNonRef + 1;
end if;

end loop;

CNR := float (CAM Non Ref);
CTP := float (CAMTotalPrefetch);
CAMPollution := Fixed_Type (CNR/CTP);
Set Col (Output File, i);
put (Output File, "CAM Pollution: ");
put (OutputFile, CAMPollution);

end ComputeCachePollution;

end ComputeCachePollutionPackage;
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with Text10, LinkedLists Package;

use TextIO, LinkedListsPackage;

package GenerateRefFrequencyListPackage is

procedure GenerateRef Frequency List (SLCRefList: in out List;
CAM Ref List: in out List;
SLC Non Ref: in natural;
CAM NonRef: in natural;
ReferenceFile: in out File-Type);

end GenerateRef Frequency List Package;
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package body GenerateRefFrequencyList_Package is

procedure GenerateRefjFrequency_List (SLC RefList: in out List;
CAM Ref List: in out List;
SLC Non Ref: in natural;
CAMNonRef: in natural;
ReferenceFile: in out FileType) is

package TypeInteger_10 is new integer IO (integer);
use TypeIntegerIO;

TempNdl, TempNd2 : NodePointer;
ReferenceCount : natural := 0;

begin
SetCol (ReferenceFile, 1);
put (Reference File, "SLC: Frequency of References");
SetCol (ReferenceFile, 1);
put (Reference File, " 0");
put (Reference File, SLC NonRef);
Temp_Ndl : SLC RefList.Next;
TempNd2 : SLCRef List.Next;
while Temp Ndl /= null loop

while TempNdl /= null and then
TempNdl. NumRef = TempNd2.NumRef loop
TempNdl := TempNdl.Next;
ReferenceCount := ReferenceCount + 1;

end loop;
Set Col (Reference File, 1);
put (ReferenceFile, TempNd2.NumRef);
put (Reference File, ReferenceCount);
Temp Nd2 := TempNdl;
ReferenceCount := 0;

end loop;
----------------------------------------

SetCol (Reference File, 1);
put (Reference File, "

SetCol (ReferenceFile, 1);
put (ReferenceFile, "CAM: Frequency of References");
SetCol (ReferenceFile, 1);
put (Reference File, " 0");
put (Reference File, CAMNon_Ref);
Temp_Ndl KCAM RefList.Next;
TempNd2 CAMRef List.Next;
while Temp Ndl /= null loop

while TempNdl /= null and then
Temp Ndl.NumRef = TempNd2.NumRef loop
Temp Ndl := Temp Ndl.Next;
ReferenceCount := ReferenceCount + 1;

end loop;
Set Col (Reference File, 1);
put (ReferenceFile, TempNd2.NumRef);
put (ReferenceFile, ReferenceCount);
Temp Nd2 := TempNdl;
ReferenceCount := 0;

end loop;

end GenerateRef FrequencyList;

end GenerateRefFrequencyListPackage;
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Test Trace Mina to Testing Requirements (Figure 3.16)

Note: Testing requirements are identified at the first point
in the test trace where they are tested. The following
test trace was designed for the VAX traces: Version 1
driver. To test the Version 2 driver for the TI
Explorer traces, the addresses were changed to integers
so the testing requirements were tested at the same
points in the test trace.

Cache Test Parameters (words)
SLC Size: 8 CAM Size: 16

SLC Block: 4 CAM Block: 2

o 1AF76945 <= I.A.1, I.A.3, I.A.4, II.A.2, II.B.2,

o 1AF76946

o 1AF76944 <= I1.B.1, II.C.1

1 2378BC12 <= II.D.4

1 2378BC13 <= II.A.2.

o 1AF76946

o 1AF76947

1 2378BC14

o 1AF76948

o IAF76945 <= II.C.2, II.C.3

2 189CDF03

2 189CDF02 <= II.C.4

1 2458F3B2

1 2458F3B3

1 2458F3B4

1 2458F3B5

1 2458F3B6 -<= II.D.2

o 9654EF24
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o 9654EF25

1 2458F3B2

1 2458F3B3

2 189CDF01

2 189CDF02

1 2458F3B4

1 2458F3B5 < II.E.1-4

3 08971234

4 367814BC

0 9654EP24

0 9654EF25

1 67209AFO

2 395CAFB1

0 9087BA23

1 65432DAO

1 2458F3B4

1 2458F3B5

0 56129027

1 9BF23467

1 67209AFO

2 395CAFB1

0 4F29B560

1 2A9F73CA

2 9876AFB3

O 682 1OBD3

O 56129027
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1 9BF23467

2 B5DA0 <= I.A.2

1 6754D231

0 4F29B560

1 2A9F73CA

0 1AF76945 <= III.A-D

Test Trace Results

SLC Miss Rate: 0.7083
CAM Miss Rate: 0.7059
SLC Pollution: 0.8267
CAM Pollution: 0.8333
Eff Memory Access Time: 17.124

SLC Frequency of References:
0 62 (never referenced)
1 9
3 1
4 2
7 1

CAM Frequency of References:
0 40 (never referenced)
1 1
2 1
4 1
5 1
6 2
7 2
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