ey .o s e @l

AFIT/GSO/ENS/91D-03

AD-A243
G l‘llﬂh!lhﬂ ’" 'ill;llll

RADAR SYSTEM CLASSIFICATION USING
NEURAL NETWORKS

THESIS

Pavid Michael Cameron
Captain, CAF

AFIT/GSO/FENS/91D-03

Approved for pnblic release; distribution unlimited

91-19037 91 1224 058
AR

AFIT/GSO/ENS/91D-03

RADAR SYSTEM CLASSIFICATION USING
NEURAL NETWORKS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

g nT o
Air University (-;JT’" ;
v SPreyen F
. . \‘\ 6 ///
In Partial Fulfillment of the -

Requirements for the Degree of

AL sevslon ¥er

Master of Science (Space Operations) o ALY N ‘
Y Tt [
T woved r] H
NS DTS £ X7, S »M_,_%
David Michael Cameron, B.A .Sc. T e tout b
. i A ¢, 8111y Todes
Captain, CAF SR voreses
‘ Aval) vaa/for
Diat . 3&psoial

December, 1991

AN

Approved for public release: distribution unlimited

Thesis Approval

Student: Captain David M. Cameron
Section: GSO 91D
Thesis Title: Radar System Classification Using Neural Networks

Defense Date: November 14, 1991

COMMITTEE NAME/DEPARTMENT SIGNATURE
Advisul Major Steven K. Rogers/ENC % : —_—

Reader Major Bruce W. Morlan/ENS ’0/2 C%L

Prefuce

This study applied artificial neural networks to the problem of classifying radar
emitter systems. The study concentrated on the particular problems associated
with classifying radar systems when there are many classes to choose from. Some
of the factors affecting the network accuracy were identified and used to improve
performance. A method of using multiple neural networks to imjrove the overall

classification accuracy was tested.

I am deeply indebted to my thesis advisor. Major Steven Rogers, for his expert
guidance and encouragement. I also wish to thank Captain Daniel Zahirniak for his
timely advice and for acquiring the data used in the experiments. The support of
Captain Gregory Tarr, the author of the software used for this research, was greatly

appreciated. Lastly, I am grateful to Major Bruce Morlan for his editorial input.

David Michael (‘ameron

Preface

Table of Contents

Table of Contents . .

List of Figures

List of Tables . .

.........................

......................................

Abstract e
L Problem Statement e e e e e C
1.1 Background. e e e e e
1.2 Research Objective . .
1.3 Chapter Qutlines
121 Chanter?2
132 Chapter3
133 Chapterd
1.34 Chapterd L. L.
135 Chapler6
136 Chapter 7 L L.
14 Scope
1.5 Summary
I1. Literature Review

2.2 Taxonomy of Neural Networks

.........

11

ML

IV.

2.2.1 Network Topology

2.2.2 Computational Elements

2.2.3 Training Algorithms S

2.3 Radar Signal Classification by Neural Networks . . .

2.3.1 Advantages of Neural Networks

2.3.2 Problem Areas e

2.4 Systems of Neural Networks

241 Motivation L L oL L.

2.4.2 Hierarchical Neural Networks

2.4.3 lmplementations,

25 Summary oL
Methodology
3.1 Introduction

3.2 Data Descriptior e e s -

33 Hardware

34 Sofiware ... oL L

3.5 Experimental Design

3.6 Summary ... o
Radar Data Characterization

Introductiono o L . oL,
Folev’s Rule e e e e e
Baseline Testing
Lffect of Numberof Classes e
Convergence of Network Accuracy
Binarv-Coded Output Nodes

Repeatability of Fxperiments .0 0oL L.

-1

e .

-1

-1

(o v s}

<o o

11
1i
11
11
H
13
14

16

16

v 20

4.8 Effect of Number of Hidden Layer Nodes 23
4.9 Effect of Relative Numbers of Training Vectors. 25
4.10 Effect of Vectors with Equal Feature Values 27
4.11 Network Performance Using Fewer Features 28
4.12 Feature Saliency, 29
4.13 Summary e .3
V. Statistical Analysis e e e e e e e 33
51 Introduction T X |
5.2 eature Means and Standard Deviations P X
5.3 Feature Means and Standard Deviations by Class 34
5.4 Effect of Feature Correlation 34
5.5 Total Standard Deviation 36
5.6 Network Trained on Class Means 37
5.7 Distinctionof Classes 38
5.8 Statistical Measures and Class Performance 3
0.8 Swummmary ..o e 10

V1. Multiple Neural Networks 41
6.1 Introduction. C e e e e 41
6.2 Classification Performance . . 0. 00000 o000 41
6.3 Groupings Based on Inter-class Confusion 12
6.4 Output Node Values . 000 o000 oL 13
6.5 Parallel Neural Networks . . . 0000000000 44
6.6 Hierarchical Approach 45
6.7 Probability Tree.o oL o oL 18
6.8 Sumunary 48

VIl. Conclusions e e e e e e e e s e e R
7.1 Introduction L oL .. 50
7.2 Factors Affecting Network Accuracy. 50
7.3 Methods of Improving Accuracy 50
74 Recommendations. e e e e e e 51
T.D Summary e e e e 51
Appendix A. Chapter 4 Data Tables C e 53
Appendix B. Chapter 5 Data Tables 56
Appendix C. Chapter 6 Data Tables e e e e 66
Appendix D. Software e e 73
DI newdata 73
D2 pickelass oL oL 74
D.3 renumberc e e e 75
D oreclassce oo o o B
D5 geteonstic, e e e T
D6 splitdata.c 78
D7 distincdon.co 78
DS feature.eo L Sl
DY Statie . .o e 82
DaOtotdev.e oo 00 RS
Ddlreperunehee o000 00 o0 oo 85

DA2awkrep . o 0 0 0 00 o o 88

List of Figures
Figure Page
1. Effect of Numberof Classes e e e 19
2. Convergence of Network Accuracy e e e e e 20
3. Effect of Number of Hidden Nodes (20,000 Iterations) 2
4. Comparison of All or 100 Training Vectors 26
5. Performance Using First N Features 29
6. Projections of Class Means (Correlated) 3
7. Projections of Class Means (Uncorrelated) B 1
8. Probability Tree for Hierarchical System 49
vii

Table

o

<t

6.

-7

10.
11.

13.
I4.

16.
17,

19.

20.

List of Tables

Page
Basic Classifier Groups 5
Original Data Library e e .12
Baseline Testing 18

Effect of Binary Coding of Qutput 21

Repeatability of Experiments e e e e .23
Effect of Vectors with Equal Feature Values 28
Feature Saliency Ranking e 30
Effect of Feature Saliency 31
Feature Means and Standard Deviations 33
Effect of Feature Correlation 36
Effect of Total Deviation on Classification Accuracy 37
('lass Groups with High and Low Inter-class Confusion 43
Parallel Network Performance o oo 0o 000 15
Groupings into Two Classes 0000000 o ... 46
Second-Level Network ‘Test Performance 47
Overall Hierarchical System Performances 47
Factors Affecting Network \ecuracy 50
Convergence of Network Accuracy (section 4.5) 53
Fflect of Number of Hidden Nodes (section 1.8) « . 5l
Effect of Numbers of Training Vectors (section 1.9) 55
Feature Means by Class (1 of 2)(section 5.3) 5
Feature Means by Class (2 of 2)(section 5.3) 58
Feature Deviation by Class (1 of 2)(section 5.3) 59
Feature Deviation by Class (2 of 2){(section 2.3) 60

Vil

Table Page
25. C(lass Ranking by Total Feature Deviation (section 5.5) 61
26. Distinction of Classes (1 of 4)(section 5.7), 62
27. Distinction of Classes (2 of 4)(section 5.7) 63
28. Distinction of Classes (3 of 4)(section 5.7) 64
29. Distinction of Classes (4 of 4)(section 5.7), 65
30. Classification Confusion Matrix (1 of 3)(section 6.2) N (Y
31. Classification Confusion Matrix (2 of 3)(section 6.2) 68
32. Classification Confusion Matrix (3 of 3)(section 6.2) 69
33. Classification Accuracy Ranking by Class (section 6.3) 70
34. Confusion Irequency Ranking by Class (section 6.3) 71
35. Class Identification by Networks (section 6.6) 72

AFIT/GSO/ENS/91D-03

Abstract

Foas

n

This study investigated methods of improving the accuracy of neural networks
in the classification of large numbers of classes. A literature search revealed that
neural networks have been successful in the radar classification problem. and that
many complex problen:s have been solved 1sing systems of multiple neural networks.
The experiments conducted were based on 32 classes of radar systen data. The
neural networks were modelled using a program called the Ncural Graphics Analysis
System. It was found that the accuracy of the individual neural networks could
be increased by controlling the number of hidden nodes, the relative numbers of
training vectors per class. and the number of training iterations. The maximum
classification accuracy of 96.5% was achieved using a hierarchy of neural networks

in which the classes were paititioned based on their performances in a large neural

network trained with all classes,

RADAR SYSTEM CLASSIFICATION USING
NEURAL NETWORKS

I. Problem Statement

1.1 Background

Electronic warfare equipment is continually evolving and is the focus of much
Air Force research. Onc active area of research is the design of radar warning re-
ceivers. The simplest design is one which only indicates the presence of electromag-
netic radiation in a specified bandwidth. A more sophisticated design will attempt to
identify the radar system which ~mitted the radar signal. based on the characteristic
features of the signal. Success in this type of automatic recognition has been limited
by the on-board computing capacity of aircraft and the ever-increasing number of
types of radar svstems. This arca of research is important because the realization of
a robust, accurate radar system recognizer would allow instant characterization of

the threat to an aircraft.

As described by Ruck (13:5-7), the process of automatic pattern recognition
consists of three sequential stages: segmentation, feature extraction. and classifi-
cation. Segmentation is the operation of isolating the signal of interest from its
environment. Feature extraction involves processing the data to compute the fea-
fures which allow discrimination hetween different signal classes. The classification

stage assigns each mput signal to a class based on its features.

Artificial neural networks (also called simply neural networks) have been used
extensively to solve problems at all three stages of automatic recognition (1. 6. 13.
18). Neural networks are inherently fast processors due to the parallel processing
of information. Neural networks used for classification have been shown to closely
approximate statistically optimal performance without requiring statistical analyais
of the input data. These characteristics make neural networks mote suitable for

applications in which processing time is critical.

A major problem with all automatic recognition systems is the d ‘rease in
system classification accuracy with the increase in the number of distinct classes. As
intuition suggests, a system makes more errors discriminating between many objects
than between relatively few objects. Radar classification systems are no exception;
they are limited in the number of classes that can be recognized. In particular,
the application of neural networks to radar system classification is limited by the

many-class problem.

1.2 Research Objective

The objective of this research was to determinc some of the factors aflecting the
classification accuracy of a neural network with many output classes and to evaluate

methods of increasing that accuracy.

1.8 Chapter Oullines

The following pararaphs contain brief descriptions of the contents of cach of

the subsequent chapters.

1.3.1 Chapter 2 The literatvre relevant to the general problem of neural
network pattern recognition and the particular problem ol radar system classification

1s reviewed.

1.3.2 Chapter 3 The methodology used to carry out the research is described

in detail, including the data, hardware. and software.

1.3.3 Chaplcr 4 The effects of data and network parameters on the clas-
sification accuracy are desciibed. The factors identified arve used to improve the

performance of networks in subsequent experiments.

1.3.4 Chapler 5 A statistical analysis of the data is presented and the rela-
tionship of statistical parameters to network performance is analvzed. The motiva-

tion for the use of multiple network systems for classification is developed.

1.3.5 Chapter 6 The performance of various systems of neural networks are
evaluated and compared to the performance of single neural networks. Two types of

multiple network systems are evaluated: parallel and hicrarchical.

1.3.6 Chapter 7 The main conclusions drawn from the results of experiments

in chapters 4-6 are summarized. Recommendatious for further rescarch are made.

1.4 Scope

The research was limited to a single neural network topology. The two-layer,
feed-forward, multi-layer perceptron model trained by a modified conjugate-gradient
paradigm was used for all experiments. Since the research was concerned with the
relative classification accuracy of neural network models, the use of only one topology

was not considered a limitation.

The chapter on statistical analysis is not intended to represent a complete data
characterization; it is only intended to identify some of the statistical parameters

which relate to the performance of the neural networks.

1.5 Summary

The problem of automatic radar system classification is important to the Air
Force. The objective of this research was to determine some of the factors affecting
the performance of neural networks in this application. Methods of improving the
neural network classification accuracy were investigated. The contents of each of the
following chapters was outlined above. The research effort is limited to experimen-

tation with one neural network topology.

The following chapter contains a review of neural networks and current research

in the arca of radar signal classification.

II. Literature Review

2.1 Introduction

This section reviews literature pertinent to this research. The discussion covers

the following three topics:

e Neural network taxonomy
e Radar signal classification by neural networks

e Systems of neural networks

o

2.2 Toronomy of Neural Neiworks

An artificial neural network is a mechanism for performing a mapping from an
input vector space to an output vector space. Its structurc is analogous to a biological
neural network in which a large number of neurons are arranged in some pattern with
interconnections between them. The nodes in an artificial neural network correspond
to the neurons, and each node is a simple computing element which implements
an activation function. 'The strength of the interconnections hetween nodes are

represented by weights which are numbers assigned by a network training process.

Neural networks can have many different forms, and many categorizations are
possible. The type of input data, binary or continuous, forms one dichotomy. Kuhl

(7) further characterizes neural networks by three properiies:

1. Network topology
2. Computational clement (activation function)

3. Training algorithm

2,21 Nelwork Topology Many topologics are possible, ranging from simple
structures to very complex networks of interconnected nodes. However, to be useful
a neural network must have an organized and regular structure. The most commonly

used structure is the feed-forward network in which the nodes are arranged in lavers

with cach node connected in a forward direction to all the nodes in the adjacent

layer. The number of layers, the number of interconnections. and the number of

nodes in each layer are all variable.

There are few guidelines available for choosing the appropriate network topol-
ogy for a particular problem. It has been shown that a two-layer (onc hidden layer)
feed-forward neural network can approximate any continuous mapping to arbitrary
accuracy (2). The numbeor of nodes required in the hidden layer has not been de-
termined analytically for the general case (17:206). In somne applications. a neural

network with one hidden layer can outperform « network with two hidden layers

(17:207).

2.2.2 Computational Elemcnts Neural networks, when used as classifiers. can
be divided into four general groups based on the computing elements and method
used for classification. The groups, the corresponding computing elements. and

representative classifiers are shown in Table 1 (9:48-49).

Table 1. Basic Classifier Groups

i Group] Computing Element] Representative Classifiers]
Probabilistic Distribution Gaussian,
Depeadent Mixture
Hyperplane Sigmoicd Multilayer perceptron.
Boltzimann machine
Receptive Iields Kernel Poteutial Functions,
(Kernel) CMAC
Exemplar Fuclidean Norm IK-Nearest
Neighbor,
| LVQ

Probabilistic dlassifiers model the input data as samples ftom an assumed prob-
ability distribution. such as Gaussian. The probability that a patticular input vee-
tot helongs to a particular class is then proportional to the value of the probability
density function for that input. The distributions are nsually chosen based on a
statistical analysis of data for which the class is known. The performance of the

classifier depends on the accuracy of the model (9:47).

Hyperplane ciassifiers partition the higher dimensional space represented by

the input voctors into regions which correspond to the different classes. ‘Typically.

the computing element is a noa-linear fui."tion such as a sigmoid or a polynomial.
These neural network classifiers ave characterized by long training times, low niemory

requirements, and rapid classification (9:49).
q y

Receptive field classifiers use a kernel function which give each node a receptive
field in the pattern space; a node responds more strongly the closer the input vector

is to its field. These neural nctwork classifiers have relatively short training times
(9, 18:49).

Exemplar classifiers compare eacti input vector to stored examples (or exem-
plars) of each class and measure the distance between the input and each example.
The class of the input vector is indicated by the smallest distance. Neural networks
of this type train quickly but may require large amounts of memory and classify

relatively slowly, depending on the size of the problem (9:49).

2.2.8 Training Algorithms Neural networks vary greatly in the methods used
for training. Training is simply the method used to set the weights of the internodal
connections. There are as many techniques for training neural networks «s there
are neural networks, but all techniques are either supervised, unsupervised, or some

co:nbination of supervised and unsupervised (9:48).

Supervised training methods require data which has been labelled with the
class il was derived from. Examples of all classes expected s possible input to the
trained net must be available. The exact number of exemple.s required for effective
training has never been determined analytically, but there are approximate formula
such as Foley’s Rule which requires that “the sumber of training samples per class
should be greater than three times the number of features™ (; 3:30). For each example
in a single class, the weights in the network are adjusted according to some ruie which
results i1 a better anpreximation of the desired input/output mapping. Usually. a

large number of iterations is required before the neural network is optimally trained.

The most popular supervised training method is the gradient-descent or back-
propagation method. It secks to minimize the squared error between the actual
outputs and the desired outputs. resulting in a convergence towards the desired in-
put/output mapping. The multilaver pe ceptron trained by back-propegation has
heen shown to approximate the probability functions of the training classes (12).

However. the number of nodes required to guarantee a close approximation has not

6

been analyticallv determined, and must be found by experimentation for each new

application.

Unsupervised training paradigrus require no prior knowledge of the input train-
mg data. [he irput vectors are clustered into sets according to their relative positions
in the input space. The Kohonen self-organizing feature map is the most common

example of this type of training method.

The combined supervised/ausupervised training methods usually begin with
unsupervised training to cluster the input data and then “fine-tune” the network with
supervised training. This is the preferred method if there is only a small amount of

labelled data available. or if the training time must be mimimized (9:48).

2.3 Radar Signal Classification by Neural Networks

2.3.1 Advantages of Neural Nctworks There are many advantages of neural
networks over conventional computaticnal methods. Neural networks are very gen-
eral structures which can be adapted '~ a wide variety of problems (7). They are
also faster than conventional method:, and are more tolerani of system faults or
noisy input data (17:200). These advantages are important if a robust, real-time

classification system is the objective.

Brown and others (1) reported that a neural network classifier equaled the
performance of a conventional statistical classifier in a radar dlassification applica-
tion. Zahirniak (18) used radial basis functions (RBE’s) as the activation functions
for his radar svstem classifier and reported performance equal to that of hyperplane
classifiers. These two examples demonstiate the potential of neural networks in the

area of radar signal classification.

2.3.2 Problem Arcas Wihison (17:260200% veported two ditficulties in imple-
menting a neural network radar classifiei. 1 iest, the segmentation task becomes very
difficult when there are multiple radar sources. ‘The pulses must be de-interleaved in
order to allow separate analysis of the pulses from cach emitter. ‘T he receiver must
measure parameters of the pulses in order to distinguish between pulses from differ-
ent emitters: in effect. clustering of the input vectors must be carried out. The second

difficulty reported was the very long training time required for the backpropagation

method.

Howitt (5:213-215) identified two problems in his neural network mo el of a
radar emitter identifier. The first probicm was that the network failed to detect
when an input pattern belonged to no known emitter class. The secona roblem was

the steep rise in training time required as the number of emitter classes increased.

None of the studies cited ¢,.- . atly reported the problem of decreasing accu-
racy with increasing nui bers . ier ¢ however, none of the systems were tested
with more than 10 classes. . -1 «uy-_lass problem is often .voided or taken for
granted in research but it is a se; sus concern in the design of real-world systems

whether they are based on neurai ks or more conventional techniques.

2.4 Syslems of Neural Networks

2.4.1 Motivation Cemplex classification problems are often solved using sys-
tems of several neural networks (3, 14, §). The multiple neural netwo.ks can be
arranged in parallel, series, or some cuinbination of the two. The series arrangement
1s normally called a hierarchical neural retwork. The criteria for adopting a particu-
lar system is related to the nature of the problem. If the problem can be functionally
o1 logically divided, then each portion can be solved by a separate parallel neural
network. If the problem requires inulti-level processing of data. then a hierarchy
of networks may be more appropriate. The motivativa for using a multiple-network
svstem s to achiev. g reater classification accuracy than is possible with a single nen-
ral network by using knowledse about the problem in the design of the system. For
instance. a problem in visual model-matcliing was solved by using a coarse-to-fine

strategy which naturally fits into a hierarchical pattern (8:81).

2.4.2 Hicrareivical Newral Networls Villa and Reilly (16:657) define a hicr-

archical neural network as follows:

A hcrarchecal neural network (IINN) is a multi-lavered neural network
i which the outputs of deeper lavers produce progressively partitioned
spaces. in which certain functional properties what the cell “stands
for™ of cells in » laver are determined by cells in preceding lavers. This
confers on these nets the property of being partially ordeced sets (poret,
well represented by a hicrarchical diagram).

The advantages of using HNNs are (16:663):

o each layer contains some information about the problem
¢ intermediate laver results may be useful eve. if the system errs

o attributes are inherited and passed on to successive layers
The disadvantages of using HNN’s are (16:663):

e criticality of valid output {from earlier layers
e a large tree structure

o serial processing by successive layers is slower th7 parailel

2.4.3 Implemenlations Ersoy and Hong designed a system consisting of a
number of neural networks in series. Each network output included an error detec-
tinn capability to prevent erroneous information from propagating through the sys-
tem during training. After a certain number of training iterations, if an input vector
produced an output different from the desired output, the vector was transformed ny
a modified discrete Fourier transform before being used again. This technique pre-
vented the errors of earlier networks from influencing the training of later networks.
and also transformed the input vector into a new location in the feature space which
was easier to dassify. 1 he system reportedly outperformel a 3-laver feed-forward
neural network (3:170-174).

Sun, Chen, and Lee designed a system which automnatically constructed a hier-
archical neural network tailored to the application. The features were ranied bas-t
on their information entropy, and the most important features for most classificatious
were nsed by the carlier networks. The system was reported to out perform neura!
networks trained by back-propagation for decision-tree problems (1-1:191-166).

e

29 Summary

The various neural network topologies. computing elements. and training al-
gorithins have been reviewed. 1t has been demonstrated that neural networks are
capable of performing any continnous mapping and are therefore suitable for many
applications. A case was ciled in which a neural network equaled the periormance

ol a comentional classifier. The suitability of neural networks for classifving radar

signals was confirmed by the positive results of several studies.

Neural networks have three major characteristics which make them especially
effective for classification problems. As detailed by Roth (11:36-37), these character-
istics are massive parallelism, automatic clustering during learning, and integration

of diverse features.

Systems of neural networks have been shown to be more effective in complex
applications than single neural networks. The systems should be tailored to match

the underlying structure of the nroblem for the best resulis.

10

III. Methodology

3.1 Introduction

This chapter outlines the methodology and tools used to conduct the research.

The data, hardware, software, and experimental approach are each described.

3.2 Data Description

The data from the Georgia Technical Research Institute comprises 32 ASCII
files representing 32 classes of radar emitter data. The first line of each file contains
two integers which give the number of data vectors (one per line) and the length of
the vectors (all vectors contain 16 clements). The remaining non-blank lines in the
file alternate between 16 integers and a single integer representing the class number

of the preceding vector. The number of sample vectors of each class is shown in
Table 2.

The vector elements are the measured fealures of the radar signals. The
specifics of the measurements used for features are irrelevant to the classification

problem analysis.

The data was used to train and test the various neural network models. The
rescarch consisted of experiments to classify the data vectors and analyvsis of the
classification performance. Thus. the data provided a specific problem for a case
study as well as a means for evaluating the success of various methods in classifying

many classes.

3.3 Hardware

The computers used to run the neural network simulations were Silicon Graph-
ics workstations. The three models nsed were the TR1S 3120, the IRIS 11)/35. and
the IRIS 4D/310GTX. The operating systems were versions of UNIN. Other UNIN-

based systems were nsed to prepare and manipulate the ASCH data files.

3.4 Software

The neural network simulations were all performed nsing the Newral Graphies

Analysis System program (13). The program was a powerful tool for research and

Table 2. Original Data Library

Class Number of

File name | Number Vectors
class 01.d 1 250
class.02.d 2 250
class 03.d 3 2183
class 04.d q 250)
class 05.d 5 250
class 06.d 6 400
class_07.d 7 2183
class_08.d S 84
class_09.d 9 S4
class_10.d 10 679
class_11.d 11 870
class_12.d 12 566
class_13.d 13 594
class.14.d 14 571
class_15.d 15 591
class_ 16.d 16 H91
class_17.d 17 591
class_18.d I8 a61
class_19.d 19 296
class20.d 20 592
class21.d 2] 523
class_22.d 22 584
class_23.d 23 593
class 2 1.d 24 551
class 25.d 25 229
class 26.d 26 96
class 27.d 27 126
class_28.d 28 105
class 29.d 2') 291
class_30.d 30 35
class31.d 31 RAY
Gass232.d 32 T96

f
|
1
|

was used to implement all neural network models. The program version used in this

research was the current version on July 27, 1991.

The Neural Graphics program implements a neural network model using a data
file containing both training and test vectors. The program provides an exhaustive
report of the network output from cach node for each test vector including statistics

on the accuracy of the network by classes.

The program provides several measures of the accuracy of the neural network
in the classification task. It measures the accuracy using both the training and test
data. and for cach set it calculates the percentage “right™ and “good”. The program
detines a “good” classification as one in which the output node corresponding to the
input vaoctor class has the highest output. The program defines a “right™ classification
as cne in which the correct output node value is greater than 0.8 and all other nodes
have values less than 0.2. The less strict “good” measure was used throughout this

thesis and was termed the percentage correct.

Several modifications were made to the program to allow the network models to
test and train with large data files with many classes. The minor changes consisted
of changi g some integer constants in the program modules makcinput.c and fest.c.
The autho, has since updated the program several times and removed the limitations;
however. the updates included changes to the training paradigms. In the interest of
maintaining a standard basis for comparing experiments. the old (modified) version

was used thronghout this thesis.

Many programs were written to create and manipulate data files. Initially.
the data files had to be reformatted to allow processing by the Neural Graphics
program. Since the Nenral Graphics program requires sequentially numbered elasses
beginning at one. a method of changing the class number of vectors was required.
In addition. programs to randomly pick vectors ol specified classes and to analyze
Neural Graphies outpnt files were required. The main (C programs and Unix seript

files nsed are listed in Appendix 1.

2.5 Frperunaontal Design

An initial period of experimentation with the Neural Graphics Analysis Sys-
tem was conducted to determine the proper procedures and formats required by

the program. and t) decide on a standard network topology. The topology chosen

14

was a feed-forward two-layer neural network, based on its simiplicity and the good
results obtained in the initial experiments. The particular topology chosen was not
considered as important as the maintenance of a standard for all experiments. The
initial experiments were also used to pick appropriate program parameters for the
radar system identification problem. Parameters which worked well were chosen
and kept constant throughout this research unless specifically noted. The standard

parameters of importance are:

®

Conjugate Gradient — the training paradigm used

e Saliency Off — only used when measuring feature saliency

e Class OQutput — normal node to class correspondence: one node per class
e Statistical Normalize —- vectors are normalized by feature

e Random initial weights —— to initialize the neural network for training

¢ Lavers -— 2 layers of weights (number of hidden nodes varies)

Each experiment was conducted with one or more unique data files constructed
from the original data. The data files varied in the total numbers of training and
test vectors. the particular classes represented. and the numbers of training and test
vectors per class. The Neural Graphics program was run for a certain number of
training iterations on cach data file. These valnes ave all tabnlated in the discussion

of the particular experiment and the associated tables and graphs.

In comparing the experimental results for various neural networks. the overall
network accuracies must be interpreted with respeet to the set of test vectors used.
A higher overall network acenraey could be cansed by the use of a test set with
more vectors from classes which the network classifies with high accuracy. and fewer
vectors from the more “difficult” classes. This confounding effect was avoided by
only comparing, results obtained with the same numbers of test vectors from cach

class,

J.6 Summmary

This chapter has outlined the software. hardware. date . and experimental

methods used for this researeh. The GTRI data was used to bhaild data files as

input to the Neural Graphics Analysis System running on Silicon Graphics worksta-
tions. The results were analyzed and compared based on the classification accuracy
of the networks. The GTRI data served as a case study as well as a means of testing
and evaluating the network models. Analysis of the network performances provided

insights into both the case study and the general many-class identification problem.

The following chapter contains the results of neural network experiments in
which the data and network parameters were varied to determine their effects on the

performance of the networks.

IV. Radar Data Characterization

4.1 Introduction

This chapter evaluates the performance of various neural networks in the task of
classifying the radar emitter data. The effects of parameters such as the numbers of
training vectors, test vectors, hidden layer nodes, and classes on the network a.curacy
were documented. The effect of features was also investigated. The collection of all
the experiments gives a good characterization of how the neural networks perform
on this data set, and identifies parameters which are expected to be important in

many neural network problems.

4.2 Foley’s Rule

Table 3.1 shows the number of vectors of each class. The classes 30 and 3!
have 35 and 28 vectors, respectively. According to Foley’s rule, there should be a
minimum of 48 vectors per class for training the neural network. When this criteria is
met, the observed neural network error rate on the training data is a good predictor
of the network error rate on an independent set of test data (10:61). Since Foley’s
rule is an approximate rule-of-thumb, an experiment was conducted to determine if

a neural network could train effectively on the classes with few vectors.

Experimental results: see following paragraph

Data file: a100x32.d

Classes: all 32

Training vectors: the lesser of 100 or half of the vectors. for each class

Test vectors: the lesser of 50 or hali 1 the vectors, for each class

Hidden nodes: 20
Iterations: 50.000

The overall classification accuracy was 92.3% for the t1aining vectors and 90.0%
for the test vectors. The percentage for the training vectors appears to be a good

overall predictor of the network accuracy for the test vectors. Unfortunately, a

16

class-by-class breakdown of the training accuracy is not available using this Neural

Graphics program.

For the test vectors, the classification accuracies for class 30 and 31 exemplars
were both 0%. The only other classes with fewer than 48 training vectors were 8§ and
9, with 42 each. The network classified those exemplars with 100% accuracy. The
accuracies for the other classes varied between 78% and 100% except for classes 2
and 19 at 36% and 48%, respectively.

Since the classes 30 and 31 have too few vectors to effectively train this neural
network, they were excluded from all other experiments. These classes were still
used in statistical calculations for completeness. Class 32 was renamed class 30 for

convenience.

4.3 Baseline Testing

This series of experiments was intended to provide a baseline against which to
compare future experimental results. Accordingly, the number of classes per data
file and the number of vectors per class were both varied as widely as possible.
In addition, the class numbers were reassigned to ensure a random combination of

classes.

Experimental results: sec Table 3

Data files: named in format annzmm.d, where nn is the number of training vectors

per class, and mm is the number of test vectors per class.
Classes: randomnly selected, numbers as indicated
Training vectors: as indicated
Test vectors: 25 per class
Hidden nodes: 16
Iterations: as indicated

Special note: some classes have too few vectors: thus the insufficicnt data entries

It can be seen that the classification accuracy increased as the number of train-
ing vectors increased. The accuracy decreased as the number of classes increased. as

expected. The accuracy generally increased as the number of iterations increased.

[7

and the effect was more pronounced for runs with twenty or more classes. This was
also expected since the larger networks had to be trained with more vectors. The

maximum accuracy recorded for a 30-class problem was 90.4%.

Table 3. Baseline Testing

Training Percentage Correct (Test/Train)
Vectors | Iterations Number of classes

(per class) | (x 1000) 8 14 20 26 30
25 10 96.0/98.0 | 95.7/95.1 | 84.8/88.4 | 84.1/82.5 | 70.0/69.9
25 20 97.0/99.5 | 96.3/98.3 | 88.4/91.4 | 87.7/89.1 | 87.1/88.9
25 30 97.5/99.5 | 96.0/99.1 | 91.0/94.0 | 89.5/90.8 | 88.3/89.6
50 10 96.0/98.5 1 94.3/95.7 1 90.4/92.1 | 88.3/90.0 | 81.5/80.0
50 20 96.0/99.0 | 94.9/98.3 | 89.4/91.9 | 92.3/94.8 | 90.4/91.7
50 30 95.0/99.5 | 94.6/98.6 | 90.8/95.5 | 91.9/94.9 | 88.9/91.5
75 10 96.0/97.3 | 96.6/96.5 | 86.2/88.2 | 82.0/83.0 | insuf. data
75 20 96.5/98.8 | 97.4/97.7 | 89.2/91.7 | 91.5/93.2 | insuf. data
75 30 96.5/99.3 | 97.7/98.0 | 91.8/94.2 | 92.0/92.5 | insuf. data
100 10 97.5/99.6 | 96.0/96.5 | 87.4/90.2 | 78.3/79.3 | insul. data
100 20 97.5/100 | 96.9/96.9 | 91.6/93.1 | 89.1/90.0 | insuf. data
100 30 98.0/100 | 96.9/97.6 | 91.2/94.7 | 92.0/92.5 | insuf. data
125 10 98.0/98.5 | 95.7/96.3 | 90.2/90.6 | 76.0/77.1 | insuf. data
125 20 98.0/99.2 | 96.0/97.5 | 90.4/91.4 | 88.3/89.8 | insuf. data
125 30 98.5/99.5 | 96.9/97.6 | 92.6/94.8 | 90.9/91.9 | insuf. data

4.4 Effect of Number of Classes

This experiment investigated the relationship between classification accuracy

and the number of classes to be discriminated.

Experimental results: sce Figure 1

Data files: named in format a50rnn.d. where nn is the number of classes
Classes: randomly selected, variable number

Training vectors: 50 per class

Test vectors: 25 per class

Hidden nodes: 16

Iterations: as indicated by legend (k means “x 1000”)

Special Note: accuracies plotted are for test vectors

100
95
2
8]
o
o 90
[o]
Q
g 85
[14]
4
iy
0 80
=
[0}
[a¥]
75
70 : : i ;‘ i
0 5 10 15 20 25 30

Number of Classes

Figure 1. Effect of Number of Classes

The classification accuracy decreased as the number of classes increases. as
expected. The decrease was not due to a limitation of the network capacity (only
16 hidden nodes), as demonstrated in section 4.8. The accuracy increased as the
number of iterations increased. The graph of Figure | clearly shows the many-class

problem which hampers automatic identification systems.

4.5 Convergence of Nelwork Aecuracy

In some cases. the accuracy of a neural network will only reach its maximum
after a large number of iterations. This is usually apparent in networks with & large
number of output nodes (meaning a large number of classes). For this experiment.
the accuracies of both a 20-class and 26-class network were monitored as they were

trained for a large number of iterations.
Experimental results: sce Figure 2 and Table 18 (Appendix A)

19

Data files: a50x20.d and a125x26.d

Classes: 20 and 26, respectively (randomly selected)
Training vectors: 50 and 125 per class, respectively
Test vectors: 25 per class

Hidden nodes: 16

Iterations: on x-axis

Special Note: accuracies plotted are for test vectors

100 ! ! : ;

D
0
]
H
S
0
O
)
o
]
32
c
o
0
-t
o :
o :
0] j I 1
0 20 40 60 80 100

Iterations (x 1000)

Figure 2. Convergence of Network Accuracy

The convergence of the networks’ accuracies occurred within a few thousand
iterations for this data. The 26-class problem takes longer to converge because there
are more classes and more training vectors per class. Qvertraining was not observed:
the network classification accuracies did not diop significantly during training to
200.000 iterations.

4.6 Binary-Coded Output Nodes

Neural networks with many output nodes have a large number of weights and
therefore much computation is required {or training the network. One possible way
of reducing the number of output nodes is to assign a coded meaning to each of the
output nodes. Instead of the usual class-coded output in which the node with the
highest output value signifies the class number, each node could be interpreted as
a digit of a binary number. The output 1010 could be interpreted as class 10. In
this experiment, the network accuracy was determined for various sizes of networks

trained to output the binary-coded class number.

Table 4. Effect of Binary Coding of Output

Percentage Correct (Test/Train)
File name | Iterations | Binary Output | Class Qutput
ab50x08.d 10,000 96.5/99.8 96.0/98.5
i 30,000 96.0/99.8 95.0/99.5
ah0x14.d 10,000 92.3/93.6 94.3/95.7
? 30.000 95.7/96.7 94.6/98.6
a50x26.d 10,000 67.2/68.5 88.3/90.0
! 30.000 76.9/77.6 91.9/94.9
al25x08.d | 10,000 95.5/96.8 98.0/98.5
) 30.000 95.5/98.6 93.5/99.5
a50x20.d | 10.000 79.6/81.4 90.4/92.1
30.000 76.4/79.3 90.8/95.5
60.000 86.0/90.1 n/a
K 90.000 85.6/89.6 n/a
al25x20.d 10.000 82.0/82.0 90.2/90.6
) 50.000 78.0/79.0 n/a
100.000 82.2/85.1 n/a
125.000 83.8/85.8 n/a
200.000 78.4/80.6 ~ nfa

Experimental results: sce Table

Data files: named in format annemm.d. where nn is the number of training vectors
g

per class. and wmm is the number of classes.

Classes: randomly selected: 8. 141, 20, or 26

Training vectors: as indicated by file nae
Test vectors: 25 per class

Hidden nodes: 16

Iterations: as indicated

Special notes: Neural Graphics output paiameter set to Binary Outpui. last col-

umn of Table 4 was taken from Table 3

The binary-output neural network performed marginally better than the equiv-
alent class-output neural network only for the 8-class, 50-vectors-per-class data set.
In networks with 14 or more classes and networks with 125 training vectors per class,
the binary-output network performed relatively poorly. The binary-output networks
took longer to train on this data. The binary coding scheme performed progressively
more poorly as the number of classes increased and/or the number of training vectors
increased. For the 20-class, 125-vectors-per-class data set, the class-output network
performed 6.4% better than the binary- output network, even though the latter was
trained to its maximum accuracy (which occured at 125,000 iterations). The binary

coding of the outputl nodes generally decreased the accuracy of the neural networks.

4.7 Repeatability of Experiments

The consistent results of the previous experiments seem to indicate that the
accuracies obtained are repeatable and are independent of the initial random weights.
This experiment was run to determine explicitly if the results obtained using Neural
Graphics are repeatable. Three data files were run a total of 40 times, starting
each time with a new random set of weights. Both normal class-coded output ane

binary-coded ontput were nsed (once on the same file).

Experimental results: see Table 5

Data files: a50x14.d. a75x20.d. and ad0x26.d

Classes: 14. 20 and 26. respectively: randomly selected
Training vectors: 50, 75 and 50 per class, respectively

Test vectors: 25 per class

Hidden nodes: 16

Iterations: 20,000 each run

Special Note: The last two rows represent runs with the Neural Graphics ouput

setting at “Binary”.

Table 5. Repeatability of Experiments

Percentage Accuracy (Test/Train}
File name | Runs Averages | Deviations |
a7hx20.d | 10 90.1/92.6 .87/.86
ab0x14.d | 10 97.0/97.7 .80/.26
a50x14.d | 10 90.0/95.1 1.68/.29
ah0x26.d | 10 72.2/74.2 2.13/1.62

The standard deviations were less than 1% for the runs with normal class-
coded outputs, and were less than 2.2% for the runs with binary-coded outputs.
The deviations were smaller for networks with the normal class-coded outputs than
with the binary-coded outputs. The deviations were larger for networks with more
classes.

The standard deviations are expected to be even smaller for runs made with
more iterations. due to the continued convergence of the neural network training
which occurs after 20,000 iterations. The results of the Neural Graphics runs can
be considered independent of the initial weights when they are randomly set. The

results are repeatable within a small statistical variation.

4.8 Effcet of Numbcr of Hidden Layer Nodes

The number of hidden layer nodes required to optimize the classification accu-
racy of a neural network has not been determined analytically for the general case.
This experiment investigated the relationship between network performance and the
namber of hidden laver nodes. The goal was to lind the mnimnim number of ncdes

required to ensnre gond classification performance.

Experimental resuits: sce Figure 3 and Table 19 (Appendix A)

Data files: as indicated in Table 19

Classes: as indicated
Training vectors: indicaied by 1st number in file name
Test vecters: 25 per class

Hidden nodes: as indicated

Iterations: 20,000 for Figure 3; as indicated in Table 19

Special note: the program sometimes crashed when the number of hidden rodes ‘

was small and the total error grew very large

100
90
D
3
g
= 80
0
3]
<
g 70
(1)
o] : : : : :
(rf: 60 F- : 9 : .
2 i1 i rgclasses’
o) ’l14classes”:
o : - :
50 b
40 i L
50 45 40 35 20 25 20 15 10 5 0
Number of Hidden Nodes

Figure 3. Effect of Number of Hidden Nodes (20.000 Iterations)

The performance of the neural networks was not increased (and the training
time was greatly increased) by using more hidden nodes than the number of classes. ‘
The performance degraded when the number of hidden nodes was less than about
one-half the numbor of classes. For this data set. optimum classification performance
can be ensured by using more hidden layer nodes than half the number of output

classes.

2

- o

4.9 Effect of Relative Numbers of Training Vectors

All 16,939 vectors of the 30 usable classes were divided into two equal sets of
vectors. One of the sets was designated training vectors, and the other was designated
test vectors. A 30-class neural network was constructed and trained with varying

numbers of training vectors as follows:

e alldata.d: all ting vectors used
e max100.d: the lesser of 100 or all the trng vectors per class
e all100.d: all classes had 100 trng vectors

¢ some200.d: same as all100.d except classes 1, 2, and 19 had 200 trng vectors

each

e some300.d: same as alll00.d except classes 1, 2, and 19 had 300 trng vectors

each

Classes 1. 2, and 19 were chosen because the 30-class networks had the lowest

accuracy of classification for vectors of those classes.

Experimental results: see Figure 4 and Table 20 (Appendix A)
Data file(s): alldata.d. max100.d. all100.d, some200.d. and some300.d
Classes: 30

Training vectors: 100 per class except as indicated above

Test vectors: $16Y total (half the vectors for each class)

Hidden nodes: 20

Iterations: 70.000

Special notes: for the last 3 files. some duplication of trng vectors was required to
generate the required numbers. only the first two data files are used for the

graph.

The classes with many vectors performed much better when they were allowed
a disproportionately large number of training vectors. This shows that those classes
had a disproportionately large effeet on the training of the neural network. Con-

versely, the elasses with few vectors performed poorly when there were elasses with

100
! +
Voo
]
80 L
I I
0 1 1
)] 1 I
N |)
& : ,’
o v
> .
i b
o 40 [
[0} 1 :
2 i 'max100’ ——
o L 'alldata’ -+--
20 } vy .
1!
I'
o
Y
0 L } [l L i L
0 5 10 15 20 25 30
Class Number

Figure 4. Comparison of All or 100 Training Vectors

many training vectors included in the data set, yet performed very well when the

number of training vectors was limited to 100 per class.

The effect of adding more training vectors to the classes with fewer than 100
exemplars was to decrease the network performance slightly on some other classes.
When, in addition, the number of vectors in classes 1. 2, and 19 was doubled, only
the network performance on class 19 was significantly increased. When the number
of vectors for the same three classes was increased to 300 each, the performance of

the network on class 19 again increased. with little effect on classes 1 or 2.

‘The overall accuracies listed in Table 20 are higher than for previous 30-class
networks because there arc more vectors of some classes which were very accurately
classified. The actual performance of the networks on new data would be similar

only if the classes were presented in the same proportions (as per Table 2).

It is apparent that there is an optimum number of training vectors for each class
which would result in maximum overall classification accuracy. The large number
of permutations possible with this 30-class problem prohibits an exhaustive search.

In general. training the network with approximately equal numbers of vectors from
g l v eq

each class resulted in good overall accuracy without badly degrading the recognition
of any particular classes.

4-10 Effect of Vectors with Equal Feature Values

There are three classes which contain vectors with all 16 features of equal value.
The value of the features varies widely between vectors of the same class. These
“constant” vectors may be degrading the accuracy of the networks. The classes 1,

2, and 8 have 13, 90. and 11 “constant™ veclors. respectively.

Several approaches were used in this experiment. The three classes 1, 2, and
§ were first treated as a 3-class problem (file: const3.d). Then. the constant vectors
were eliminated from the data file and the 3-class network was trained again (file:
noconst3d.d). Then, the 3-class network was trained with only the constant vectors
for training and only non-constant vectors for testing (file: allconst3.d). The effect
of the constant vectors on the accuracy of a 20-class network was tested by including
the classes 1. 2, and 8 (file: const20.d), and then repeating the training with the

same classes with the constant vectors removed (file: noconst20.d).

Experimental results: see Table 6
Data files: as indicated

Classes: classes 1. 2, and § for 3-class network: other 17 classes chosen at random

for 20-class network
Training vectors: 50 per class
Test vectors: 25 per class
Hidden nodes: 16

lterations: as indicated

The effect of removing the “constant™ vectors from the data files was to improve
the performance of the neural network on test vectors by L8Y for the 3-class problem.
and by 2.6% for the 20-class problem. The poor performance of the network in the
test with all constant training vectors indicates that there is a fundamental difference
between these veetors and the other vectors of classes 1. 2. and 8. The better overall
performance of the 20-class network is partly due to the better performance of the 17

classes with no constant vectors. These results indicate that the veetors with equal

values are detrimental to the elassification process,

Table 6. Effect of Vectors with Equal Feature Values

% Accuracy (Test/Train)
[terations (x 1000)

File name Classes 10 20 30 80

const3.d 3 88.0/98.0 | 83.0/99.3 | 89.3/99.3 | 86.7/99.3
noconst3.d 3 93.2/100 | 91.5/100 | 93.2/100 | 91.5/100
allconst3.d 3 |385.2/92.0 | 40.5/95.1 | 41.3/96.6 | 41.5/96.6
const20.d 20 87.8/91.1 | 88.6/93.6 | 90.8/94.7 | 90.6/94.1
noconst20.d 20 90.0/93.1 | 91.2/94.9 | 90.4/95.6 | 93.2/97.7

Network Pcrformance Using Fewer Features

In order to directly measure the contribution of individual features to the clas-
sification process. features were systematically deleted from a data set and the per-
formance of the neural network with fewer and fewer fcatures was recorded. Features

were deleted in reverse order by arbitrary choice (feature 16 deleted first).

Experimental results: see Figure 5
Data file: ¢50x30.d

Classes: 30

Training vectors: 50 per class
Test vectors: 25 per class

Hidden nodes: 20

Iterations: 50.000

Special note: the features are counted from the start of the data vectors (e.g. 12

features indicates the Ist 12 features)

There was a graceful degradation of network performance as the number of
features was reduced. The higher-numbered features had less of an effeet on the
network accuracy. but this may have been because each feature became more impor-
tant as the total number of features was reduced and there was less redundancy, The

graph in Fignre 5 <hows that no featuie is mnch more important to the classification

process than any other,

100 T ; T T ! ! !

Percentage Accuracy

0 2 4 6 8 10 12 14 16
Features

Figure 5. Performance Using First N Features

4.12 Feature Saliency

The Neural Graphics program provides a measure of the uscfulness of a pai-

ticular feature in the network classification process. It is called the saliency.

Five data sets were used in 25 runs to determine the saliency of each feature.
The average ranking of each feature over all the runs and the final ranking was

calculated.

Experimental results: sec Table 7

Data files: newl.d, new2.d, new3.d, newd.d, and newd.d
Classes: 30

Training vectors: 50 per class

Test vectors: 25 per class

Hidden nodes: 20

Iterations: variable; 10,000 to 30,000

Special note: Neural Graphics toggled Salicney On

Table 7. Feature Saliency Ranking

Feature | Avg. Rank | Ranking
i 4.4 2
2 11.2 12
3 12.6 13
4 10.5 11
5 8.3 9
6 7.1 6
7 7.5 S
8 5.6 5
9 5.0 4
10 7.2 7
H 12.8 14
12 14.0 15
13 14.2 16
14 10.1 10
15 4.5 3
16 1.0 1

Feature 16 was by far the most important featurc for the classification process.
However, the graph of Figure 5 does not show any significant drop in network accu-
racy when feature 16 is omitted. This must be due to the redundancy of information
contained in the other 15 features. Other features were considerably less important
with no large discontinuities in the ranking. The saliency measure was compared to
statistical parameters in chapter 5.

The 5 highest-saliency features. the 5 lowest-saliency features, and the 11
Jowest-saliency fcatures were extracted from the vectors of the file new3.d. The
resulting files were used to train neural networks with the appropriate number of

input nodes and the resulting performances were recorded.

Experimental results: see Table 8

Data files: besthf.d. worsth{.d, and worst11{.d
Classes: 30

Training vectors: 50 per class

Test vectors: 25 per class

30

Hidden nodes:; 20

Iterations: as indicated

Table 8. Effect of Feature Saliency

File Name || Iterations | % Test | % Train
bestdf.d 80,000 87.6 90.3
worst5f.d 50,000 73.9 75.2

worst11{.d 50,000 91.7 93.8

The network using the best 5 features performed 13.7% better (on the test
vectors) than the network using the worst 5 features. The worst 11 features produced
a trained network with greater accuracy than the network trained with the best §

features. All features were important to the classification process.

4.13 Summary

The data from class numbers 30 and 31 was excluded from further experiments
because they have too few exemplars to effectively train a neural network. The
general results of the baseline testing were that the classification accuracy of a neural
network decreases as the nuimnber of classes increases. The accuracy increases as the
number of training iterations increases or the number of training vectors per class
increases. The convergence of the network models to a stable value of classification
accuracy, and the repeatability of those results, was confirmed. The effect of the
binary-coding scheme at the output nodes of the neural networks was negligible
when there were only eight output classes, but caused a decrease in the classification

accuracy when there were 14 or more output classes.

The networks could be trained close to their maximum accuracy as long as
the number of hidden layer nodes remained above half the number of output classes.
The anomaly of data vectors with all-equal feature values was shown to decrease the
performance of networks. The effect of using many more training vectors of some
classes relative to other classes adversely affects the accuracy of the networks on
vectors of the smaller classes. When the number of training vectors is limited to
a maximum of 100 per class, no adverse effects were noted. The classification of

particular classes was improved by including more training vectors of those classes,

31

but the effect on the classification of other classes was unpredictable. Finally, the 16
features were ranked in importance by the salicncy measure, but all features were

required for the maximum network accuracy.

The following chapter presents a statistical analysis of the data and relates the

statistical parameters to the performance of the neural networks.

V. Statistical Analysis

5.1 Introduction

This chapter contains a statistical analysis of the data, including all 32 classes.
The effects of parameters such as means, standard deviations, and class distinction

on neural network performance were evaluated. The results of some experinents of

chapter 4 were related to the obse:ved data distributions.

5.2 Feature Means and Standard Deviations

The entire data library of 17002 vectors was used to calculate the mean and

standard deviation of each feature, independently of the class. The results are shown

in Table 9.

Table 9. Feature Means and Standard Deviations

Feature Mean Deviation
1 139.3 38.5
2 147.6 46.1
3 154.0 48.7
4 156.9 46.6
5 155.6 41.1
6 151.5 34.5
T 146.5 29.3
8 142.3 27.2
9 140.0 27.6
10 139.0 27.5
11 138.4 27.3
12 137.3 25.9
13 1360.3 247
14 134.8 23.7
15 133.0 22.6
16 130.4 21.9

The feature means vary between 130 and 157: the standard deviations vary
between 21 and 49. There are no features which are significantly different in magni-

tude from all the others. The features appear to be numbered in order of descending

mean and standard deviation. except for the first three.

33

The higher feature numbers might be expected to have less value in classifi-
cation since they are closer in value across classes, meaning the classes are more
similar. However, the saliency measure of section 4.12 ranked features 16 and 15
as first and third, respectively. Feature 1 was ranked second in saliency, yel has
an average feature deviation across classes. No clear correlation exists between the

standard deviations of the features and their saliency measures.

5.3 Feature Means and Standard Deviations by Class

All 17002 vectors of length 16 were analyzed to determine the ineans and
standard deviations of the features by class. The feature means are shown in Tables
21 and 22 of Appendix B. The feature standard deviations arc shown in Tables 23
and 24 of Appendix B.

The means of the first two features for each class were used to create a scatter
plot of the projections of the class means into two dimensions (see Figure 6). The
plot consists of 32 points representing the means of the features 1 and 2 for each
class. The plot shows the positive correlation between the first {wo features. All
sequential pairs of features (i.e. 3 and 4, 5 and 6, etc.) are distributed in a very
similar pattern. Random pairs of features (e.g. 3 aud 14) showed a much weaker

correlation (see Figure 7).

5.4 Effect of Feature Corrdlation

An experiment was conducted to test the effect of the feature correlations
noted in the previous section. From the file ¢50230.d, three data files consisting
of vectors with only 8§ features were constructed. The file f08.d used the first 8
features: the file fScven.d used the even-nminbered features: and the file fRodd.d used

the odd-numbered features.

Experimental results: see Figure 10
Data files: f08.d, f8even.d, and {Sodd.d
Clasges: 30

Training vectors: 50 per class

Test vectors: 25 per class

Feature 2

240
220
200
180
160
140
120
100

80

60

40

X] | 1] i 3.

60 80 100 120 140 160 180 200 220
Feature 1

Figure 6. Projections of Class Means (Correlated)

Feature 14

220

200

180

160

140

120

100

80

40 60 80 100 120 140 160 180 200 220 240 260

1 [1 1 1 1 1 1 1 1

Feature 3

Figure 7. Projections of ('lass Means (Uncorrelated)

35

Hidden nodes: 20
Iterations: 50,000

Table 10. Effect of Feature Correlation

File name || % Test | %Train
03.d 74.0 77.1
[Seven.d 92.0 93.1
fSodd.d 91.6 92.9

The first file consisted of 4 pairs of correlated features. The last two files used
features which were not clearly correlated. The poor relative performance of the
network using the first data file shows that the correlation of the consecutive pairs

of fcatures represents a redundancy of information.

The experiments of section 4.11 did not rveveal this correlation, but the small
drops in classification accuracy of the networks as fecatures were deleted indicate
redundant information in the fcatures. Those experiments showed that adding fea-
tures which were correlated to the existing features still improved the network pet-

formance.

3.5 Tolal Standard Dcviation

The class feature standard deviation was used to calculate the total standard
deviation across all 16 features. The total deviation is defined here as the square
root of the sum of the feature variances, for cach class. Table 25 (Appendix B) shows

the ranking of the classes by total standard deviation.

Various numbers of classes with the lowest and highest total deviations were
sciected from Table 25 to construct data sets. The top 10. 12. 11 and 20 classes
were used as input to the Neural Graphies program. The bottom 3. 5. and 10 classes

(with the highest total deviations) were also tested.

Experimental results: sce Table 11
Data files: as indicated: descriptive names

Classes: sclected by rauk from Table 25

36

Training vectors: 50 per class
Test vectors: 25 per class
Hidden nodes: 16
Iterations: as indicated

Special Note: the run was stopped if training accuracy reached 100%

Table 11. Effect of Total Deviation on Classification Accuracy

File name Iterations | % (Test/Train)
lowdev10.d 20,000 100/100
lowdev1l.d 20,000 100/100
lowdev12.d 50,000 99.9/100
lowdev16.d 60,000 99.3/100
lowdev20.d 100,000 97.0/98.5

hidev3.d 80,000 98.7/99.7
hidev5.d 80,000 96.8/99.2
hidev10.d 100.000 95.6/99.4

Table 11 shows that 100% accuracy on the test vectors was achieved for the
11 classes with the lowest total deviation. The 10 classes with the highest total
deviations lead to a network accuracy of 95.6% on the test vectors. The results
show that the total deviation is negatively correlated with the classification accuracy
achievable with that class. The high accuracies achieved with the 10 classes with
the highest deviations shows that the total deviation alone is not a good predictor of
the neural network classification performance. However, since high accuracies {over
€0%) are achicved for almost all class groupings. even a gain of a few percentage

points is significant.

5.6 Network Trained on Class Means

The distribution of the classes in the 16-dimensional feature space determines
how well the classes can be discriminated. If the classes are clustered in non-
overlapping groups. one would expect a classifier to perform very well. Conversely.

if exemplars of one class are interspersed with exemplars of another class, one would

expect poor performance from a classifier,

The simplest distribution of exemplars is the existence of a single cluster center
for each class. Tor this experiment, the center of each class cluster (the class mean)
was assumed to be the vector with components equal to the mecan of each feature (for

that class). The class mecans weie duplicated and used to train a 30-class network.

Experimental results: see following paragraph

Data file: mean30.d

Classes: 30

Training vectors: 5 per class, all equal to class means
Test vectors: 3469 (half of each <lass)

Hidden nodes: 20

Iterations: 35,000

The neural network trained to a maximum accuracy of 85.2% on the test
vectors. The training vectors were learned to 100% accuracy. which was expected
since there was only one duplicated vector representing each class. The maximum
classification accuracy occurred at 35.000 iterations: further training caused a slight
decrease in accuracy after that point. The decrease was 3.0% and was gradual over

the subsequent 65.000 iterations.

The performance of the network was very high. considering the extreme com-
pression of data represented by the class averaging. This result implies that the

classes must be predominantly clustered about single class centers.

5.7 IDistinction of Classes

Based on the class means caleulated in the last section. a study of the interac-
tion or overlap of the class distributions was undertaken. The distinction measure
used hereis given by Equation 1t the distinetion of any two classes i< the sum over
all 16 features of the difference of the elass means divided by the sum of the class
deviations. The means and deviations used were those given in Tables 21, 22, 23,

and 24 (Appendix B).

6
[= Z [y, = m /(a0 o) for classes j. k (1)

=1

The distinction of every class relative to every other class is given in Tables 26,
27, 28, and 29 (Appendix B). The validity of the single cluster per class assumption
can now be tested by building data scts using classes either close together or far

apart and training a neural network with them.

Based on the distinction between classes, class numbers 1, 2, 6, 28, and 32
should be difficult to distinguish. A data file consisting of vectors from these five
classes was run on Neural Graphics and after 60,000 iterations the classification
accuracy was 94.4% and 97.0% for the test and training vectors, respectively. This
is relatively poor performance for only 5 classes. By contrast. the six classes 4. 5, §,
12, 21, and 22 are among the least distinct by the distinction measure. A data file
consisting of vectors from these classes trained a network to 100% accuracy on the

test vectors after 20,000 iterations.

The distinction of data classes shows a positive correlation with the classi-
fication accuracy of networks trained on those classes. Although the difference in
accuracy between the two networks discussed in the previous paragraph is only 5.6%,

it is significant because it is the last 5.6% required for perfect classification.
g 1 I

The distribution of the data is probably unimodal for most classes. Some of the
classes have more complicated distributions. There are methods for determining the
number of modes in data clusters; the interested reader can refer to Gnanadesikan
(4:58).

5.8 Statistical Measurcs and Class Pcrformance

The statistical measures of total feature deviation and distinction are closely

related to the classification accuracy of the neural networks by class,

The classes which were very distinet from other classes by the distinetion mea-
swre (low values) were ranked among the highest by the total feature deviation
measure (see Table 25). Classes 1.2, 6. and 28 ranked 27. 29, 30. and 25. resper-
tively. out of the 30 classes. The classes which were not very distinet from other
classes ranked among the lowest by the total feature deviation measure Classes .
5.8, 210 and 22 ranked 1 1.2, 11 and 8. respectively, out of the 30 classes. A very
strong negative correlation between the distincetion and the total feature deviation

is indicated.

Both of these measures are also strongly correlated with the classification accu-

racy by class. The classes which had low measures of distinetion and high measures

39

of total feature deviation were also the ones which were classified the least accu-
rately, as indicated by Table 20. Classes 1, 2, and 28 were ranked 29, 30, and 27,
respectively, for the network trained with the data file max100.d. The classes which
had low measures of total feature deviation and high measures of distinction ranked

very highly by accuracy.

Therefore, the classification accuracy of the neural networks is also providing

statistical information about the classes.

5.9 Summary

The data vectors are fairly well distributed in the 16-dimensional feature space,
which explains the fairly high classification accuracies of neural networks evaluated in
the last chapter. There is a positive correlation between sequential pairs of features.
A neural network trained on only vectors which are equal to the class means achieved

84.3% accuracy on test vectors.

The total deviation of classes and the distinction of a group of classes can both
be used to pick groups of classes which are easier to classify than thosc picked at
random. These two statistical measures are strongly correlated with the performance
of a neural network. The improvements in classification performance were only a few
percentage points, but they were significant because the accuracy was already very
high.

The abililty to choose class groupings which allow better neural network per-
formance suggests that an approach using multiple neural networks may improve the
overall performance of the classification system. Separate neural networks could bhe
used to classify groups of classes chosen for their high performance. and the group
results could be combined to get a complete classification system. The next chapter

presents experiments with systems of multiple neural networks.

VI Multiple Neural Networks

6.1 Introduction

The experiments of this chapter involved systems of neural networks which
together formed classification systems. The criteria for grouping the classes was
based on the classification performance of a neural network on all of the classes.
This differs from the statistical approaches of the last chapter in that only the actual
classifications performed by the neural network were used; no characteristics of the

data were used.

The general approach was to train a network to divide a large problem into
several smaller problems. First. several neural networks were used in parallel. Then.

a hierarchical approach was used with neural networks working sequentially.

6.2 Classification Performance

The classification accuracy of a trained neural network was analvzed on a class-
by-class basis and the network output and classification of every test vector was
analyzed and counted by the program reperunch.c (see Appendix D). The results
were tabulated by the prograin confuse.c (see Appendix D) and a frequency table
(or confusion matrix) of which input class vectors were mapped to which output
classes was constructed. Analysis of this matrix revealed which classes were difficult

to classify correctly and which class combinations were frequently confused.

Included in the program was an analysis of the outputs from cach node of the
nenral network for each input vector. The last row of cach table. labelled “Not top
37, gives the total ertors for which the correct node output was not one of the top 3

in magnitude.

Experimental results: sce Tables 30. 31, and 32
Data file: max100.d
Classes: 30

Training vectors: 100 per class: classes 8.9.26.27 have 42,12, 18.63. respectively
f I)

Test. vectors: 8169 (half of cach class)

Hidden nodes: 20
Iterations: 70,000

Special Note: the last column of Table 32 includes the errors for the same rows of
Tables 30 and 31

6.8 Groupings Based on Inter-class Confusion

The confusion matrix gives the performance of the 30-class neural network with

respect to each class in two ways:

1. The number of times a given class is mistaken for any another class. This

number is given by the “Errors” row at the bottom of the tables.

2. The number of times all other classes are mistaken for a given class. This

number is given by the far right column of Table 32.

The classes were ranked based on their input vector ciassification accuracy as
tabulated in Tables 30, 31. and 32. The ranking is shown in Table 33 (Appendix
C). Twelve classes were classified perfectly, and only 5 were classified with less than

90% accuracy.

The classes were also ranked based on the number of times any vector was
mistaken as a vector of the class under consideration. as tabulated in the last column
of Table 32. This ranking is shown in Table 34. Three classes had no vectors wrongly

assigned to them, and 15 classes had fewer than 10 vectors wrongly assigned to them.

Table 33 was used to select the best 15 classes and the worst 6 and 10 classes.
Table 34 was used to select the most-confused 12 classes and the least-confused 11
classes. Data files were constructed based on these class gronpings for the following

experiment (the files can be identified by the number of classes).

Experimental results: see Table 12

Data files: as indicated

Classes: as indicated

Training vectors: the lesser of 100 and half the total per . Jass

Test vectors: 8169 (half the total per class)

12

Hidden nodes: 16

Iterations: as indicated

Table 12. Class Groups with High and Low Inter-cic Jonfusion

| File Name || Classes | Iterationsl%Test- | %Train_]

worst6.d 6 80,000 90.7 97.0
worst10.d 10 60,000 94.4 99.4
best15.d 15 40,000 100 99.9
nonconi.d 12 75,000 99.1 99.2
confll.d 11 75,000 96.3 97.1

Since the classes were picked based on the performance of a 30-class network,
it is not surprising that the same relative nerformance carried over to the networks
with fewer classes. The result for the file worst6.d is the worst performance of any
6-class problem attempted so far in this research. The best-performing 15 classes
scored 100% on the test vectors.

The groupings based on the number of incorrect classifications into a class
did not result in as dramatic a range of network performance. The least-confused
12 classes scored 99.1% and the most-confused 11 classes scored 96.3% on the test
vectors. Therefore, the input classification accuracy was judged a better criteria to
use for selecting class groupings and was the criteria used in the later multi-network

experiments.

6.4 Output Node Values

The confusion matrix shows that when the network made an error in classifi-
cation, often the correct norde output was not even in the top 3 in magnitude. There
were 160 out of 407 errors in which the correct node output was Jower than third
in magnitude. The program was modified to check the top 5 output nodes. and 121

out of 407 errors were not in the top 5 in magnitude.

The significance of the “top 5" is that very few output nodes have a high output
for any given iput. The neural networks train to output only one high value and
all other values low. Of 100 randomly selected sets of output nodes (1600 nodes).

there were only 162 nodes with output values above 0.2. No set had more than 3

13

values above 0.2. This was true for both correct classification outputs and errors.
Therefore, when the correct node output is not in the top 5, it is almost certainly
below 0.2 in value and is indistinguishable from the other low node values. The
analysis of node output values did not provide any information on the correctness of
the indicated classifications.

6.5 Parallel Neural Networks

The initial appioach was to use two 15-class neural networks to classify each
input vector; the classificaticn corresponded to the highest output node from either
network. The classification accuracy was very low because the networks responded
unpredictably to vectors from classes it had not been trained with. The outputs of
nodes from both networks were analyzed in an unsuccessful attempt to determine
which network should be used (the network which was trained on the particular
input vector). A method of identifying vectors which do not belong to any class of

a given network was required.

Two separate 16-class networks were used to classify each input vector. The
first network consisted of the top-performing 15 classes from Table 33 and a com-
posite class made up of 20 vectors from each of the other 15 classes. The second
network consisted of the worst-performning 15 classes from Table 33 and a composite

class made up of 20 vectors from each of the other 15 classes.

Experimental results: see Table 13

Data files: as indicated

Classes: as indicated

Training vectors: the lesser of 100 and hall the total per class
Test vectors: 8169 total (half of cach class)

Hidden nodes: 16

Iterations: as indicated

The overall performance of the two parallel 16-class networks ou the 30 input
classes was 93.5%. This was worse than the performance of the single 30-class net-

work and is therefore not a useful technique for this problem. The values of the

Table 13. Parallel Network Performance

File Name || Classes | Iterations | %Test | %Train
good15.d 15 110,000 99.9 100
badl5.d 15 70,000 95.6 96.2
good16.d 16 70,000 95.6 96.2
bad16.d 16 65,000 92.2 91.1

outputs of nodes of both networks for the same input vector were compared in an
attempt to detcrmine the appropriate network to use for classification. The highest
output of the “wrong”™ network was higher than the highest output of the “right”
network approximately half of the time. Analysis of the weights did not reveal any

method of choosing the right network.

6.6 Hiercrchical Approach

The classification accuracy recorded for the individual classes in a 30-class
network was used to divide the 30 classes into smaller groups. The overall classifica-
tion accuracy of the system is the probabalistic combination of the separate neural

networks. Three networks will be required for classification:

1. a 2-class network to separate the 30 classes into two groups

| O]

. a network to classify the classes of group 1

3. a network to classifv the classcs of group 2

The 30 classes were split into two groups in four different ways. First. the
clasaes were split into two groups consisting of the first 15 and last 15 classes. by
number. This grouping was used for comparison since it is pseudo-random with
respect to class performance. Based on the rankiug of Table 33 (Appendix (). the
30 classes were split three other wavs: the top 21,18, or 15, and the bottom 9, 12, or
[5. respectively. The class groups were numbered 1 and 2. T he nnmber of iterations
was chosen for the maximum network accuracy: a further 20.000 iterations bevond
the histed values caused either no change or a slight decrease in the accuracy. in all

Cases.

Experimental results: sce Table 14

Data files: as indicated

Classes: 2

Training vectors: the lesser of 100 or half the total, per class
Test vectors: 8469 total (half of each class)

Hidden nodes: 16

Tterations: as indicated

Table 14. Groupings into Two Classes

File name Iterations | % Group 1 | % Group 2
1st2nd15.d 130,000 93.9 97.1
top21bot9.d | 110,000 98.1 94.2

topl8hotl2.d | 95,000 99.1 97.6

top15bot15.d | 105.000 99.1 97.5 |

The last column of Table 14 indicates that grouping based on class perfor-
mance can improve the performance of the two-class network. The worst performing
network was the one trained on file Ist2nd15.d, in which the class groupings were
essentiallv random. The best performance was by the network with the 18/12 split

based on class performance ranking, closely followed by the cven 15/15 split.

Fach of the eight groups of classes were then used to train a network to deter-
mine the individual classes. Also, the bottom 15 classes of the ranked 15/15 split
network were split again into the bottom 8 and bottom 7 classes and the 8 and 7-
class networks were also trained and tested. This was done to determine if a further

breakdown would resull in any overall accuracy gain.

Experimental results: see Table 15

Data files: as indicated

Classes: as indicated

Training vectors: the lesser of 100 or half the total. per class

Test vectors: 8469 total (hall of each class)

Hidden nodes: 16

‘able 15. Second-Level Network Test Performance

File name Classes | Iterations | % Correct

1st15.d 15 100,000 97.3
2nd15.d 15 100,000 99.0
top21.d 21 60,000 99.4
bot9.d 9 135,000 97.0
topl8.d 1§ | 70,000 99.7
bot12.d 12 125,000 96.1
topl5.d 15 | 110,000 | 99.9
bot15.d 15 70,000 95.6
bot8and7.d 2 85,000 96.8
bot8.d 8 95,000 99.3
bot7.d 7 90,000 97.1

Iterations: as indicated

The end-to-end probability of the hierarchical systems is shown in Table 16,
with the /st2nd15 system added for comparison. The latter was outperformed by all 3
of the hierarchical systems. The thrce-tiered hierarchical system did not improve the
overall performance of the first two tiers. The calculation of the overall probabilities

is explained in the next section.

The best performance was delivered by the system which spht the 30 classes
18/12 based on the class performances in the 30-class network. The accuracy of

96.5% is a 1.3% improvement over the equivalent 30-class performance of 95.2%.

Table 16. Overall Hierarchical System Performances

Svstem name | Class Split | Classification %
I1st2nd15 15/15 93.4
top21ihoty 21/9 95.3
top18bot12 18/12 96.5
toplhbotlh 15/15 95.8

The performance of each network on cach class of vector is included for ref-
erence in Table 35 (Appendix (). The “dash™ entries indicate classes which would

never be presented to that network.

Figure 8. Probability Tree for Hierarchical System

Right
“GOOD” 0.997
NET 2
0.991
0.003 Wrong
NET 1 _
GOOD 0.009 o0 Right
VECT0 NET
4902/8469 3
BAD 1.0 Wrong
3567/8469 5 — Right
“GOOD” 0.
NET 2
/ 0.024
1.0 Wrong
NET1
I Right
0.976 0.961
NET 3
“BAD” 0.039
Wrong

6.7 Probability Tree

The probability tree for the hierarchical system is shown in Figure 8. The
probability of a vector from a particular class being presented to NET1 is equal to
the fraction of the total number of test vectors that class represents. NET1 splits
the 30 classes into two groups of classes, called “Good” and “Bad”. The probability
of an input vector being “Good™ or “Bad” is equal to the fraction of the total test
vectors represented by all the classes in that group. NET?2 classifies the “Good”
vectors and NET3 classifies the “Bad” vectots. Note that the sub-networks NET2
and NET3 score 0% correct if NET1 preceding it makes an error. This is hecause
the sub-networks cannot correctly classifv a vector from a class they have not been

trained on.

The probabilities shown are for the best-performing svstem. The other sys-
tems could be represented by similar structures except that the three-level sys-

tem would require an extra column to represent the 8/7 split of the bottom 15

classes. The probability of a correct classification is found by recursively multiply-
ing and adding the probabilities of the left-most node’s subtrees for the branches
with “Right” outcomes. For the best system {topl8bot12), the overall probablity
is P = (4902/8469)(0.991)(0.997) + (3567/8469)(0.976)(0.961) = 0.965. The overall

probabilities for each of the networks is given in percentage form in Table 16.

6.8 Summary

The class groupings based on the percentage of input classes correctly classified
showed a greater spread and a higher maximum than those based on the number
of times an output class was incorrectly chosen. Therefore, the input classification
accuracy was used to partition the 30 classes into groups for the multi-network

systems.

The parallel neural networks did not provide an improvement in system clas-
sification accuracy. All three of the hierarchical systems provided an improvement
in classification accuracy over the single 30-class network. The maximum accuracy

achieved was 96.5% by the hierarchy based on a 18/12 class partition.

The following final chapter summarizes the findings of the thesis.

49

L.

VII. Conclusions

7.1 Introduction

This chapter summarizes the findings of the experiments of chapters 4, 5, and
6. The factors affecting the classification accuracies ot the neural networks and the
methods identified for improving the accuracy are discussed. Recommendations for
further research are included, and the most important findings are restated in the

final summary.

7.2 Factors Affecting Network Accuracy

The factors affecting the classification accuracy of the neural networks in the
experiments are listed in Table 17. The effect of increasing various network or data

parameters is shown. Further clarification can be found in the applicable sections.

Table 17. Factors Affecting Network Accuracy

[Section [Parameter l Increase Effect r Comments J
4.2/4.3 | Number of trng vectors increase minimum required
4.3/-1.4 | Number of classes decrease
1.3/1.5 | Number of iterations imcrease maxinmum exists
4.6 Binary Coding decrease worse for mauy classes
4.3 Number of hidden nodes increase max = no. classes
4.9 Rel. no. trng vectors variable class-by-class effects
4.10 Equal-valued features decrease
4.11 Number of {eatures increase even when correlated
4.12 Saliency of features increase fow correlation
5.4 Feature correlation decrease
5.5 Total deviation decrease
5.7 Distinction inerease

7.3 Mcthods of Improving Accuracy
i 3] - - -
Fhe acenracy of the experimental nerval networks were improved by controlling
the parameters listed in Table 17, Howeverlin a practical application. the designer

of a nenral network classification system does not have control over many of those

)

parameters. The number of hidden layer nodes can be optimized, as can the relative
numbers of training vectors (subject to data availability). Binary coding of the
output nodes should not be used. All of the available features should be used. The
number of iterations of training can be controlled to achieve maximum accuracy.

The rest of the parameters listed are not under the control of the designer.

Systems of neural networks can be used to increase the overall classification
accuracy. In this case, the designer has control over how the problem is divided
between the separate neural networks. Partitioning of the classes based on the class-
by-class performance of a network using all of the classes proved to be the best

method in this research.

The use of parallel neural networks, in which separate networks were trained to
recognize a subsct of the total number of classes, did not improve the experimental
accuracy. The problem was that the neural networks responded unpredictably to

vectors from classes they had not been trained with.

Hierarchical neural networks were found to provide an increase in the overall
classification accuracy. The method was to partition the classes into two groups
with one neural network, and then classifv the vectors of each group with two other
networks. The number of classes included in each group was determined empirically.
The partition which produced the highest accuracy was the 18/12 split. which re-
sulted in an overall accuracy of 96.5% (sce Table 16). This was also the partition
which gave the highest accuracy for grouping into two classes (see Table 14). but
the margin of victory (0.1%) and the limited number of partitions tested (only 1)

precludes any further generalization.

7.4 Recommendations

Many of the seetions of this thesis conld be explored further. The results of
similar experiments on different nenral network topologies and using different data
could be informative. The use of different eriteria for the partitioning of the classes

for the hicrarchical systems may vield further increases in classification aceuracy.

7.5 Summary
This research has demonstrated that neural networks can be used to design
radar classification systems with very high acenracy for 30 classes. It has also demon-

strated that the hicrarchical approach to the classification problem with 30 classes

Y

results in greater overall system accuracy. The method used should be applicable to
other problems with many classes. The maximum classification accuracy on a set of

8469 test vectors representing half of each class was 96.5%.

Appendix A. Chapter 4 Data Tables

This appendix contains several data tables which supplement the sections ref-
erenced in the table captions. Some of the data from each of these tables is graphed

in the applicable section. ‘

Table 18. Convergence of Network Accuracy (section 4.5)

File name | Iterations | % (Test/Train)

a50x20.d | 10,000 91.0/91.9
20,000 90.8/94.5
30,000 92.6/94.5

40,000 91.8/94.5

50,000 91.8/96.1
60,000 92.4/96.6
" 70,000 92.0/97.1
80,000 94.0/97.0
90,000 92.8/96.7

100,000 92.8/96.7

119,000 92.6/96.3

120,000 93.0/96.9
150,000 93.2/97.4
200,000 91.6/97.5

al25x26.d 10.000 76.0/77.1
? 20,000 88.3/89.8
30.000 90.9/91.9 |
50,000 94.0/94.6 1
75,000 91.2/94.8 |

100,000 93.1/94.5 |
125.000 93.4/95.3
150.000 93.1/95.2

Table 19. Effect of Number of Hidden Nodes (section 4.8)

Percentage Correct (Test/Train)

Hidden Number of iterations

File name | Classes | nodes 10,000 20,000 40,000
a125x08.d 8 75 98/98.5 |98.5/99.4 | 98.5/99.8
7 S 50 98.0/98.3 | 98.5/99.5 | 98.5/99.9

38 25 98.0/98.9 | 98.5/99.6 | 98.5/99.9

7 S 16 98.5/98.5 | 99.0/99.3 | 98.5/99.5

v S 8 97.5/97.8 | 99.0/98.8 | 98.5/99.5

” 8 5 97.0/94.8 | 96.5/96.1 | 95.0/96.3

8 3 | 77.5/75.4 | 72.5/74.3 | 90.5/91.5

" S 2 45.0/47.0 | 63.0/62.2 | crash!
a50x14.d 14 40 96.9/97.7 | 95.7/97.3 | 97.1/99.3
7 14 30 96.3/97.3 | 95.7/97.1 | 96.3/98.7

” 14 20 95.4/96.6 | 94.6/96.9 | 95.7/98.7

" 14 16 | 95.1/97.4 | 95.7/97.1 | 96.0/95.0

’ 14 10 94.9/95.4 | 94.3/94.3 | 95.1/97.6
14 6 85.1/86.4 | 84.0/87.4 | 90.3/93.1

14 4 78.9/77.3 | 78.0/80.4 | 86.9/89.7

1. 3 51.2/52.3 1 41.0/42.7 | 57.1/56.9

al100x20.d 20 40 83.2/89.3 1 91.4/93.6 | 94.6/96.7
” 20 20 87.8/89.5 | 92.4/94.2 | 91.0/96.2
20 12 1 86.0/86.7 | 91.6/93.1 | 92.4/94.4
20 S $3.6/86.7 | 87.2/89.9 | §9.2/92.3

20 5 |l 61.8/66.1 | 61.8/66.5 | 69.6/71.0

a1Hx26.d 26 45 83.9/85.0 1 93.1/9L.0 | 91.5/95.4
" 26 206 80.2/80.0 | 91.1/93.0 | 92.8/95.0

26 12 || 76.1/77.1 | 81.9/86.5 | 89.1/90.3

26 10 1 70.5/72.5 | 88.6/88.3 | 89.1/89.9

20 S T0.5/72.9 [77.7/80.0 | TTA/T7.T

26 6 [3.0/44.8 | 54.9/55.7 | 59.1/60.9

Table 20. Effect of Numbers of Training Vectors (scction 4.9)

Percentage Accuracy (Test Vectors) {or file:

Class || alldata.d | max100.d | all100.d | some200.d | some300.d
] 68.8 72.8 52.8 72.8 64.8
2 39.2 56.8 48.8 57.6 56.0
3 98.3 93.3 95.0 94.4 95.2
4 99.2 100 59.2 100 100
5 100 100 97.6 100 100
6 98.5 97.5 98.5 94.0 98.0
7 100 99.7 99.7 100 99.6
S 0.0 100 100 100 35.7
9 31.0 100 190 100 100
10 94.1 97.9 91.4 90.0 94.1
11 90.1 90.3 94.9 94.9 94.0
12 100 100 1060 99.7 99.7
13 100 100 100 100 100
14 99.3 98.3 99.0 99.3 100
15 100 100 100 100 100
16 99.7 93.9 98.3 97.6 99.3
17 97.0 99.7 97.0 O8.7 90.0
18 97.2 95.7 99.6 98.2 S9.0
19 66.2 59.5 21.6 T1.6 871.2
20 99.7 100 97.6 99.3 99.3
2] 100 100 100 100 100
22 100 100 100 100 100
23 97.6 97.3 39.4 91.6 91.3
24 99.3 99.6 97.5 98.9 97.1
25 971 97.1 O8.3 93.7 93.0
26 61.6 100 100 95.8 95 N
27 100 100 100 100 100
28 St.7 88.6 812 90).1 s
29 93.0 89.9 859 96.6 93.3
30 100 92.5 64.6 95.2 93.0

Overall || 93.7 95.2 TR T05.0

Appendix B. Chapter § Data Tables

This appendix contains large data tables giving statistics for every class and
feature. Discussion of the data can be found in the sections referenced in the table

captions.

b

"able 21. Feature Means by Class (1 of 2)(section 5.3)

Feature Number

Class || 101 | {02 | f03 | {04 | {05 | f06 | f07 | {08

90 | 90 {100 | 119 | 158 | 153 | 159 | 155
97 | 96 | 100 { 107 | 114 | 116 | 116 | 114
130 } 145 | 160 | 166 | 162 | 147 | 127 | 109
130 | 124 1 117 | 111 | 109 | 114 | 123 | 133
128 | 124 | 119 | 116 | 114 | 117 1 123 } 129
83 [70 { 60 | 57 | 64 } 79 | 98 | 116
171 1 185 1 191 | 189 | 180 | 169 | 161 | 156
128 | 129 1 129 | 129 | 129 | 129 [129 | 129
104 1102 | 106 | 113 } 121 } 127 { 130 | 129
190 | 200 | 197 | 180 | 158 [137 | 124 | 119
161 | 170 | 174 | 171 | 164 | 155 | 146 | 140
183 | 205 | 220 | 227 { 224 | 216 | 204 | 192
102 1 104 | 110 | 116 | 121 | 122 | 122 | 122
207 | 230 | 239 | 234 | 216 | 193 | 173 | 159
180 | 196 | 205 | 206 | 201 | 196 | 195 | 198
10§ | 115 | 127 | 141 | 152 | 158 | 187 | 152
17 92 1 89 1 94 | 105 | 118 | 129 | 136 | 138
t8 129 1 149 1 170 | 185 | 192 1 189 | 182 | 175
19 125 | 125 | 131 | 134 | 136 | 136 | 136 | 134
20 106 | 109 | 116 | 125 1 132 1 136 | 136 | 135

TS I D U R WD —

[Y e T
Y Tt oA WD

21 205 {229 | 243 | 244 | 234 | 218 | 205 | 197
22 170 | 181 | 186 | 183 | 176 | 168 | 163 | 160
23 1424152 1 164 | 173) 157 | 176 1 170 | 162
24 139 [136 | 131 | 126 | 124 | 126 | 131 | 137
25 P20 L | B 139 1136 | 134 | 133
26 1290 123] 16 { 110§ 110 | 116 | 124 } 133
27 120 1124 1127 [129 1129 | 127 [123 | 120
2o AT A8 AL 63 | 80| 96 | 109
21) 100} 105 | 116 | 129 | 140 } 116 | 147 | 144

30 PO 1107 1 106 [110 | 115 | 121 | 126 | 130
T 63|70) 82 100 | 119|131 135
97 1 93 L 91 1 99 1106 1 113} 119} 122

....
o —
-

Table 22. Feature Means by Class (2 of 2)(section 5.3)

Feature Number
Class || 109 | f10 | f11 | 12 | f13 | f14 | f15 | {16
1 1451134 1125 1124 7125 1128 {130 | 132
2 113 1 114 | 117 1122 1124 1125|124 | 121
3 98 1 96 | 96 | 96 | 96 | 96 | 96 | 96
| 140 | 142 {138 | 131 {125 121 {121 | 123
5 1331134 11321128 112511231124 | 126
6 131 | 142 | 146 | 149 | 149 | 148 | 147 | 146
T 153 | 151 | 150 | 147 | 150 | 150 | 145 | 130
S 129 1129 | 129 {129 | 129 [129 | 129 [129
9 128 | 126 | 125 | 125|126 | 126 | 125 | 125
10 120 122 {124 | 123] 122 1122 [124 | 126
11 137 1137 1139 1 140 | 141 | 143 | 144 | 145
12 1821172 1164 | 155 | 147 | 140 | 134 | 130
13 123 1127 1132 | 138 | 144 [147 | 148 | 150
14 152 | 148 | 147 | 141 | 134 | 127 | 119 | 113
15 204 {207 | 207 | 197 | 183 | 167 | 152 | 140
16 144 [138 1132 | 130 | 127 | 125 [123 | 123
17 137 1136 | 135 | 137 | 138 | 140 | 140 | 140
18 171] 167 | 162 1 155 | 143 | 128 | 117 | 112
19 1321131 1 1830 1 1301 1291 12911291 129
20 133 1133 1 133 [136 | 137 | 137 | 137 | 136
2] 196 | 199 | 205 | 207 | 205 | 202 | 195 | 189
22 160 | 161 | 162} 160 | 158 { 156 | 154 | 154
23 154 1148 1 146 | 146 | 147 | 149 | 152 | 154
24 140 1 142 1 10| 540] 140 | 143] 148] 152
25 13211290 (127 0 1200 120 1 119 P 116 112
20 138 137 1 132 1 126 1 121 | 189 | 120] 123
27 119 1 1E9 | 120] 122) 122 1121 | 120] 120
28 6L g 19200 120 {1220 128 1 126
29 IO | 137 | 136 | 156 | 136 | 135 | 134 | 134
30 132 0 0132 1130 | 128 | 127 [125 3 1240 § 124
3 133 0120 0124 [123 0 120 1125 0 125 1 12
By 1240 (125 {125 | 127 128 1128 [130 | 132

Table 23. Feature Deviation by Class (1 of 2)(section 5.3)

Feature Number
Class || 101 | {02 | f03 | {04 | f05 | f06 | f07 | 08
1 19 11918117 18|18 |18} 16
2 23127 1 37 | A8 [54 {82 | 431 29
3 109 1015119118112 (8
4 2 2 2 1 1 1 2 2
5 1 1 1 1 1 1 1 1
6 24 138 [48 | 53 1 54 151 |45 | 39
T 5} b 4 3 4 4 4 4
8 1 1 1 1 1 1 1 1
9 2 2 2 2 1 1 1 1
10 16 116 | 13 110 | 8 7 6 B
11 1111 (10| 8 6 6 6 6
12 6 6 6 5 4 4 4 4
13 13114111 S 5 6 6 6
14 131310 ity qp1079 8
15 311211110419 S 7 T
16 141137101 6 4 4 5])
17 10} 1Y 10 ¢ 7 1 2 2 2
18 39135126116 (17 19181} 14
19 Ml i104 6 5 0 6 6
20 6 6 4 3 2 2 2 2
21 11411 8 6 O 5) 4
22 6 6) 3 3 3 2 2
23 1L {10} 8 6 T T 3 7
24 121121101 8 0 5 4 q
25 137131 11 T 5] B 6)
26 2 2 2 2 I 2 2 2
27 3 3 2 2 2 2 2 2
28 S PP 1e 151413
29 1311301107 6 3 3 ! 3
30 } 4 3 2 2 2 2 2
31 7T 116 1131 8 4 H H
P32 Jofos e afala

Table 24. Feature Deviation by Class (2 of 2)(section 5.3)

Feature Number

Class {{ {09 | {10 | {11 [{12 | 13 { f14 | {15 } {16
1 18120120 (19120 |19 18] 17
2 21 121 |22 122122122221 2]
3 1371671616116 |16 | 16 | 16
4 1 1 1 1 i 1 i 1
) 1 1 1 1 1 1 1 1
6 35 [31 131 [303234361 37
T 4 4 1 4 3 4 4 7
S 1 1 1] 1 1 1 1
9 1 0 | 1 1 1 1 i
10 D H b5} 5 H 5} b) D
11 6 1616|667 T 7
12 4 4 4 313131313
13 6 6 6 G} D 5 S 4
14 T 6 6 H \ 5 5 4
15 6 6 G 6 6 6 0 D
16 4 313 137031371272
17 2 1 1 | | |]]
13 101 9 9 11111 {101 8 T
19 B 1 3 3 3 3 3 3
20] 1 | 1 i 1 l 1
2] 4 4 9 4 b 5 5 b)
22 2 2 2 2 2 2 2 2
23 6 5 6 6 T T T T
21 3 4 4 3 3 3 3 3
25 1 3 3 3 | 4 4 3
26 |] i | ! 1 1 l
27 | | 1 | | |] |
23 il 11 i [N I 10} 1
29 3 2 2 2 3 3 2 2
30 2 2 2 2 32 2 2 2
31 1 3 3 3 3 3 3 4
32 | i] 4 4 14 | 4

()

Table 25. Class Ranking by Total Feature Deviation (section 5.5)

I Rank " Class I Deviation |

1 5 2.9

2 8 4.3

3 9 4.9

4 4 5.5

5 26 6.0

6 27 6.5

7 20 10.7
8 22 12.8
9 12 17.1
10 7 17.3
11 17 19.9
12 30 22.1
13 29 23.4
14 21 24.8
15 16 25.1
16 24 25.3
17 25 27.1
|8 19 27.4
19 11 29.3
20 23 29.6
21 13 30.0
22 15 32.5
23 10 34.2
24 14 34.4
25 23 138.9
26 3 58.2
27 1 3.8
28 18 71.3
29 2 130.1
30 6 158.7

61

Table 26. Distinction of Classes (1 of 4)(section 5.7)

Class
Class [f ¢01 | c02{c03 | c04 | c05 | c06 | cO7 { cO8
1 0) 19 | 14 1 14 9 23 | 13
2 5 0 11 8 7 6 22 8
3 19 | 11 0 32 03117137 27
4 14| 8 |32 0 {28112 |108] 61
5 14 T 31 | 28 0 12 1124 | 52
6 9 6 17 1 12 | 12 0 18 | 13
T 23 1 221 37 [108 |12 18 0 |101
S 13 S 27 1 61 | 52 1 13 |1017 O
9 9 4 33 166 38|11 J1211 51
10 19 | 11 18 | 41 § 37 | 17 | 36 | 32
11 16 | 15 | 23 | 48 | 51 14 | 18 | 40
12 37 1 30 | 55 {154 {174 25 | 44 1150
13 11 T 27 | 32 § 28 7 50 | 26
14 26 | 22 | 37 [65 | 721 22| 26 | 67
15 37 1331053 1151125 26 | 42 {113
16 6 9 126139140 | 13|42 | 34
17 9 8 37 1 535 | 63 T 65 1 A0
13 15116 [23 134 13811516] 35
19 3 N 22126 01 20 | 11} 47 6
20 9 9 | 33166 661 10 [76 | 41
21 54 | 45 | 14 [197 [219) 34 | 84 | 196
22 27 1 26 | 44 [153 {1831 19 | 17 | 147
23 18 ¢ 18 1 28 160 | 66 | 14 | 14 | 55
2] 13 12 1 29 | 34 | 41 9 41 31
25 12 9 17 1 31 209 14 {5l 21
26 I T 3] 137125 12 11085] 55
27 11) 23 1 61 61 14 11091 44
23 16 6 20 1 3t 31 5 6l 38
24 6 9 30 V44 49 0 101 47
30 10) H 32 129 1 2] 10 | 99 | 38
3] 10 B 30 | 26 22 T 61 | 27
32 10 3 20 | 20 | 26 S ™29

62

Table 27. Distinction of Classes (2 of 4){section 5.7)

Class

Class || c09 { c101cll | cl2{cl3|cld|cl5|clb

1 9 119|116 |37 (11]2 37| 6
2 4 |11 15[30 7T 12213319
3 33 118} 23 | 55 | 27 | 37 | 53 | 26
4 66 | 41 | 48 | 154 | 32 |} 65 [115 | 39
5 58 | 37 | 81 | 174 | 28 | 72 | 125 | 40
G 11 17 {14 (25 7 | 2212613
7 1211 36 | 18 | 44 | 50 | 26 | 42 | 42
8 51 | 32 | 40 | 150 | 26 | 67 [113] 34
9 0 |34 153 [174] 24 | 75 [129} 42
10 34 1 0 {22161 (303163] 28
11 53 | 22 | 0 | 50 | 26 | 30 | 47 | 23
12 174 1 61 | 50 { O | 82 | 27 { 32 | 76
13 24 30 [26|82 | 0 {5370 |33
14 ™31 130727 (53] 0 143 |35
15 1201 63 | 47 | 32 1 70 { 43 | O | 74
16 42 128 (23] 76 {33 3514 | 0
17 63 | 44 | 28 | 108} 16 | 89 | 94 | 41
13 41026 119117 133 1 14 126 | 22
19 220020 | 221 76] 20) 41 (74] 16
20 63 | 40 { 30 {123 19 | 62 ;100 | 35

21 221199 | 80 ¢ 55 (108] 6O | 28 | 122
22 186 | 56 | 27 | 57 | 60 | 42 | 44 | G6
23 T0 | 35 | 14) 41 | 33] 27 39 {30
21 A7 136 1T L TT 13 1 46 | 69 | 33
25 22 10181 25183)29 139 80 |21
20 56 | 37 § A8 [IS 33 o7 [LIS | 3T
27 5V 0240 151 JIA8 [32 1 69 | 123 | 42
28 20030 42 | 77 | 24 § 53 | 72] 32
29 A 135 1200 83 | 2145 07919
30 19 135 | 46 [1421 21 F 66 | 112] 32
31 16 27 [37 | 94 | 24 | 51 [89 | 28
32 19029 140 1107 416 | 59 1 91 1 35

Table 28. Distinction of Classes (3 of 4)(section 5.7)

Class
Class | ¢17 {cI81cl9 | c20 | c21 | 22| c23 | c24
1 9 15 8 9 54 | 27 1 18 | 13
2 8 16 3 9 45 1 26 | 18 | 12
3 372312233 |74 | 44 | 28| 29
4 55 | 34 | 26 |} 66 {197 | 153§ 60 | 34
5 63 | 38 [20 | 66 [219 (183 | 66 | 41
6 T 15 | 11 10 | 34 | 19 ¢ 14 9
T 65 | 16 | 47 1 76 { 84 { 17 | 14 | 41
8 50 1 35 6 41 1196 |1 147 | 55 | 31
9 63 1 41 | 22 {1 63 1221 1186 70 | 47
10 44 126 1 21 1 40 [99 1 56 | 35 | 36
i1 28 019 {22 (30 | SO | 27 | 14 | 17
12 1081 17 | 76 | 123} 55 | 57 | 41 | 77
13 16 1 33 1201 19 {1080 60 | 33 (13
14 5 | 14 | 41 62 | 60 | 42 | 27 | 46
15 94 V26 | Y4 {1001 28 1 44 | 39 | 69
16 41 1 22 116 | 35 [122] 66 | 30 | 33
17 0 36 | 24 19 1571 98 | 43 19
18 36 0 26 | 35 | 45 19 | 14 | 29
19 201 206 0 15 11200 69 | 34 | 20
20 191 351 15 0 (193114 | 46 | 22
2] 1571 45 11201173 O 89 | o8 | 111
22 95 119 1 69 [114} 389 0 16 | 54
23 431 14| 34 46 | 63 16 0 25
21 19129 1 20 [22 [111} 54 1 25 0
25 39 425 12 1 30 {1254 76 | 37 { 30
26 61 36 | 25 | 67 (201 1159 62 1
27 S 39 1 24 1205 1166 | 65 | 5l
A W3 2T 3 99 | 70 171 35
29 20 | 27 15 5 [130) 12] 32 | 21
30 37 136 17] 3R 1185 | 138] 60 | 36
31 28] 3 19 1 32 113571 90 19 1 33
32 20037 119 1 33 11451 99 1 53 1 33

lable 29. Distinction of Classes (4 of 4)(section 5.7)

Class
Class [[¢25 1 ¢26 { ¢27 | c28 | c29 | ¢30 | ¢31 | c32
1 12114 | 14 | 16 6 10 | 10 | 10
2 9 T 5 6 9 G} 5 3
3 17 131 |23 1291301321 30129
4 31 | 13 | 61 | 34 j 44 {29 | 26 | 29
5 20 1 25 1 61 | 34 [49 | 21 | 22 | 26
6 14 | 12 | 14) 10 | 10 T S
T 51 110811091 61 { 47 1 99 { 64 | 75
S 21 { 55 | 44 | 38 | 34 | 38 | 27 | 29
Y 28 1 56 | 54 1 27T 148 119 1 16 | 19
10 18 | 37 [24 { 30 | 35 {35 | 27 | 29
11 25 | 48 [51 | 42 | 20 | 46 | 37 | 41
12 83 | 154 | 158 | 77 | 83 [142 94 | 107
13 20 133 1 32124 | 2221|2416
14 39167 169|531 45| 66 | 51 [59
15 SO | 1181231 72 | 79 {112 | 89 | 94
16 21 137 142 1 32 [191 321 28| 35
17 39 | 61 | S4 | 28 | 20 | 37 | 238 | 27
1S 20 0036 1 39 1 34 1 27T 1 36 | 31 37
19 12025 028 120115 107119119
20 30067 17434] 15138 321 33
21 1251201 1205 99 | 131 | 1S5 [135 | 115
22 T6 [1591166 70 L 72 11381 90 | 99
23 3T 62 {65 47 | 321 60 | 419 1 53
24 30 | 41 [51 | 35 120] 36 | 33 | 33
25 0 25 122 1 29 1 28 | 25 | 21 28
26 25 0 51 32146 | 25 | 22 | 28
27 22 1 5l 0 2005 145] 291 30
23 201 32 1 29 0 32127 12 17
29 28 | 46 | HH | 32 0 35 1 31 | 31
30 29 125 L 45 | 27 1 35 0 15 | 17
31 2000 2129 121 31 15 0 13
32 28 1 28 | 30 1 17 | 31 17 13 0

Appendix C. Chapter 6 Data Tables

This appendix contains tables of the classification performance of various net-
works on a class-by-class basis. Discussions of the table data can be found in the

sections referenced in the table captions.

06

Table 30. Classification Confusion Matrix (1 of 3)(section 6.2)

Output Input Class

Class ¢0l 02 03 04 c05 06 <07 c08 <09 cl0
1 91 4 0 0 0 0 0 0 0 0
2 5 71 0 0 0 5 0 0o 0 1
3 0 0 1018 0 0 O 0 0 0 0
4 2 0 0 125 0 0 0 0 06 0
5 0 1 0 0 125 0 0 0o 0 0
6 0 4 0 0 0 195 0 0 0 0
T 0 0 0 0 0 0 1089 0 0 0
8 0 12 21 0 0 0 0 42 0 0
9 0 2 0 0 0 0 0 0 42 0
10 0 2 14 0 0 0 0 0 0 332
11 1 0 0 0 0 o0 0 0 0 1
12 0 0 0 0 0 0 0o 0 0 0
13 1 4 1 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0
16 4 0 0 0 0 0 0 0 0 0
17 2 0] 0 0 o 0 0 0 0
18 40 0 0 0 0 0 0 0 0
19 1 2 8 0o 0 0 0 0 0 2
20 16 1 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0o 0 0 0
22 0 0 0 0 0 0o 0 0 0 0
23 I] 0 0 0 0 3 0 0 0
24 5 1 1 0 0 0 0 0 0 0
25 O 1 20 0 0 0 0 0o 0 2
26] 1 0 0 0 o0 0 o 0 0
27 0 1 0 0 0 0 o 0 0 1
2% 0 3 0 0 0 0 0 0 0 0
29 6 1 0 0 0 0 o0 0 0
3 0 2 2 0 0 0 0 0 0 0
Totals | 125 125 1091 125 125 200 1092 12 12 339
Frrors | 31 51 @3 0 0 5 3 0o 0 7

Nottop3 121 23 50 0 0 3 0 0 0 4

67

= o &
QOOOOOOOOOOOOOOOOOOON000000000num,_00

~~

)

© o o

g dIOOOOOOK\UIUOOOOOIlO%?.OOOﬂ.JllOHUH(mm

S

5} 0 = ™

Rz e P 00 0PN ST OO TS DS S|

—_

)

= - < -

- Sleococoocooco oo coegoecc oo ST SS S~ Sini—iS

g 17 *

Ra S o o =l

™ Sl cocoocoocoocoococooc o coocol-ocnocococonecaocooolaLl—-

- Ofe &l =~

M o
2 ho Ty T

= Mmoo ooOoCcOoOOoCcCOoOOoCcCOoOoCocOoOCo S oo oo CToCigice

/e hc [fal] ”

2 %

f.m = — N

= HeorpoocoocoococococogooceneSo oo oS oSSl n|S

O .

O

—) I~ L~

g S cocoococcoocoocogocococcooc oo S opoe

2

<

C o~ o =

= Joeoocococoocoocoogoococcoc o oo o oo oooikee

w

<

e — o 1D - —)0

&) Sleoccococonofgoocoocoococoom Ineecoc SRR

—

o -
Al & o . . =i =ls
= I - s -x o — A D S = N D ot

a mmfwl?.n)ﬂ.._)ﬁﬁtsgwuhmbw“rmﬂmzlzﬂfﬂfM_\./.m.m.. ==
o =12

-

Table 32. Classification Confusion Matrix (3 of 3)(section 6.2)

Output Input Class Row
Class c2]l ¢22 23 24 25 26 <27 28 <29 30 | Errors
1 0 0 0 0 0 0 0 0 0 0 9
2 0 0 0 0 0 0 0 4 0 0 16
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 2
5 0 0 0 0 0 0 0 0 0 4 5
6 0 0 0 0 0 0 0 7 0 0 11
T 0 0 2 0 0 0 0 0 0 0 2
S 0 0 0 0 0 0 0 0 0 4 56
9 0 0 0 0 0 0 0 0 0 4 7
10 0 0 0 1 1 0 0 0 0 0 42
11 0 0 4 0 0 0 0 0 1 0 7
12 0 0 0 0 0 0 0 0 0 0 6
13 0 0 1 0 0 0 0 1 0 1 9
14 0 0 0 0 0 0 0 0 0 0 2
15 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 1 0 0 0 0 0 9
17 0 0 0 0 0 0 0 2 0 0 6
18 0 0 0 0 0 0 0 0 0 0 9
19 0 0 0 0 1 n 0 0 23 0 16
2() 0 0 0 0 0 0 0 0 6 0 16
21 261 0 0 0 0 0 0 0 0 0 0
22 0 292 1 0 0 0 0 0 0 0 7
23 0 0 280 0 0 0 0 0 0 0 22
24 0 0 0 2714 9 0 0 8 1) 0 23
25 0 0 0 0 112 0 0 0 0 0 31
26 0 0 0 0 0 48 0 | 0 0 6
27 0 0 0 0 0 0 63 0] 0)
23 0 0 0 0 0 0 0 17 0 17 20)
29 0 0 0 O 0 0 0 0 267 0 22
30 0 0 0 0 0 0 0 0 368 {
Totals 261 292 297 275 115 IR 63 202 297 308 407
Frrors 0 0 3] 3 0 0 23 30 30 107
Nottop 3| 0 0 2] 0] 0 6 ! 3 160

Table 33. Classification Accuracy Ranking by Class (section 6.3)

Rank | Class | % Correct
I 4 100
2 H 100
3 3 100
4 ' 100
5 2 100
6 13 100
7 15 100
S 20 100
9 21 100
10 22 100
11 26 100
12 27 100
I3 T 99.7
14 17 99.7
15 24 99.6
16 14 98.3
17 10 97.9
IS 0 97.5
19 25 974
20 23 97.3
21 18 95.7
2 16 93.9
23 3 93.3
24 30 925
25 11 90.58
26 29 89.9
27 28 SN0
A | 72.3
24 19 590.5
30 2 56.8

Overall r 95.2

70

Table 34. Confusion Frequency Ranking by Class (section 6.3)

Rank | Class | Errors
1 3 0
2 15 0
3 21 0
4 4 2
5 T 2
6 14 2
T 30 4
8 5 -
9 12)

{0 17 6
11 26 6
12 9 7
13 11 7
14 22 7
15 1 9
16 13 9
17 16 9
i8 18 9
19 27 9
20 6 11
2] 2 16
22 20 16
23 28 20
24 23 22
25 29 22
26 24 23
27 25 34
28 10 42
29 19 46
30 3 56
Total 407

Table 35. Class Identification by Networks (section 6.6)

Network Training File Name (all have .d extension)

Class || max100 | Ist15 | 2nd15 | top21 | bot9 | topl8 | botl2 | topl5 | botl
1 72.8 87.9 - - 81.4 - 82.0 - 15.7
2 56.8 61.6 - - 69.3 - 80.4 - 78.0
3 93.3 91.5 - - 93.2 - 95.2 - 96.0
4 100 93.9 - 95.7 - 99.1 - 99.1 -

5 100 93.9 - 98.1 - 99.1 - 99.1 -
6 97.5 92.0 - 97.1 - 98.1 - - 95.6
7 99.7 93.9 - 97.2 - 99.1 - 99.1 -
8 100 93.9 - 98.1 - 99.1 - 99.1
9 100 93.9 - 98.1 - 99.1 - 99.1 -
10 97.9 89.2 - 96.4 - 97.6 - - 93.5
11 90.8 92.0 - - 94.0 - 90.6 - 93.7
12 100 93.9 - 97.8 - 98.8 - 99.1 -
13 100 93.3 - 98.1 - 99.1 - 99.1 -
14 98.3 93.9 - 98.1 - 99.1 - - 96.8
15 100 93.9 - 98.1 - 99.1 - 99.1 -
16 93.9 - 93.2 - 93.8 - 96.0 - 96.5
17 99.7 - 96.8 97.1 - 98.4 - 99.1 -
18 95.7 96.4 1 95.3 - 97.2 - 95.1
19 59.5 - 92.5 - 83.4 - 81.1 - 79.7
20 100 - 97.1 | 97.8 - 98.8 - 98.4
21 100 - 97.1 98.1 - 99.1 - 99.1
22 100 - 97.1 | 978 - 99.1 - 99.1 -
23 97.3 - 96.1 96.5 - - 95.0 - 92.2
24 99.6 96.8 97.4 - 98.4 - 98.7 -
25 97.4 96.3 | 97.2 - - 96.8 - 93.3
26 100 97.1 | 98.1 - 97.0 - 99.1 -
21 100 97.1 | 98.1 - 99.1 - 99.1 -
28 83.6 96.6 - 93.7 - 95.7 - 92.2
29 89.9 91.5 - 90.4 95.0 91.9
30 92.5 - 97.1 - 94.0 - 97.6 - 92.6
Overall 95.2 9L | 96.0 | 975 (914 | 988 } 938 | 99.0 | 93.2

-~1
(3N

Appendix D. Software

This appendix includes the listings of many of the C progiams and Unix script

files written to manipulate data vectors, analyze data, and produce tables. Not all

programs have been included.

D.1 newdate

% newdata

% This script file uses other script files to pick specific lines of
% each of the 30 data files. Since the mixall script pre-mixes the
% vectors of each file, a different and pseudo-random set of vectors is
% chosen each time this script is used.

% The output data file is ready for running on Neural Graphics.

/A

cat newheader > trgvect50

cat newheader > testvect2b

mixall

pickmed c01 ¢02

pickvlg c03

pickmed c04 c05

picklg c06

pickvlg c07

picksm c08 c09

picklg c1[0-8]

pickmed ci9

picklg c2[0-4]

pickmed c25

picksm c26 c27

picklg c28 c29 c30

for file in trgvect50 testvect25

do

ex - $file << endscrapt

1,1d

vq

endscript

done

cat ~b trgvect50 testvect25 > tempz

3

cat newheader tempz > new50x30.d
rm tempz
echo ’'New data file is called new50x30.4’°

D.2 pickclass

% pickclass

A This script takes all command line arguments as class numbers

% and puts together a data file of those classes in the format

% required by Neural Graphics. The script reads 60 files, one test
% and one training file for each of 30 classes.

echo ’Header’ >new.trg
echo ’Header’ >new.test
for num in $x*
do
cat c$num.trg >> new.trg
cat c$num.test >> new.test
done
ex - new.trg << endscript
1,1d
vq
endscript
ex - new.test << endscr
1,1d
vq
endscr
wc -1 new.trg >headl
awk '{print $1 }’ headl >head3
we¢ -1 new.test >head?2
awk ’{print $1 }’ head2 >head4
cat -b new.trg new.test >new.1
cat head3 head4 new.1 >new.2
reclass4 < new.2 > new.3
awk ’length < 20’ new.3 >head5
awk ’length > 20’ new.3 >new.4
cat head5 new.4 >new
m new.trg
rm nev.test
rm head?

rm new.?
echo ’'New data file is called: new’

D.3 renumber.c

[ks ok sk ok ok ok ok ok ki ok sk ko ok okok s sk ok ok ok ok sk ok sk ok ok sk ok

/* renumber.c
Program to renumber a data file in Neural Network format.
Does not print the line number and prints a new class number.
First line of input file must be the number of lines and
the new class number desired. Std I/0.

*/

#include <stdio.h>
main{)

{

int count,lines, newclass;
int a, b,c,d,e,f,g,h,i,j,k,1,m,n,0,p,q,r; /* 18 elms per vector */

scanf ("%d %d'",&lines, &newclass);

for (count = 1; count <= lines ; count++)

{
scanf (" Yd %d %d %d %d %d Y%d %d %d %d %d Y%d %4 %d %d %d %d %d \n",
&a, &b,&c,&d,&e,&f ,&g,4h, &1, &j,&k,&1,&m,&n,&0,4p,4q,4T) ;

/* Don’t print the line number , print new class number */
printf("%d %d %d %d %d %d %d Yd %d %d %d 4d %d %d 4d %d %d \n",
b,c,d,e,f,g,h,i,j,k,1,m,n,»,p,q,newclass);

¥

} /* end of main */

D.} reclass.c

[ks stk o koK ok sk sk ok ok ok ok o ok ok ok sk sk ok sk ok ook o ok ok ok ok ok ok sk kK ok ok ok oKk ok okok ok

/* reclass.c

Program to convert original class number to get sequential as
required by Greg Tarr’s neural net modelling program.
Input file must start with number of vectors,

oldclass, newclass line, then vectors.

The lines must not be numbered yet. */

#define MAXLINE 1000 /* longest line allowed */
#include <stdio.h>
main()

{
char linel [MAXLINE] ;
int linelen, numvect, oldclass, newclass, index;
scanf("%d %d %4d \n", &numvect,&oldclass, &newclass);
/* printf("%d testvects 16 %d \n", numvect,newclass); */

while ((linelen= (getline(linel,MAXLINE))) != 0)
{
linel[linelen -1] = ’\0’; /* remove the /n */
if (linelen > 9) {
/* first remove the old class number at end of each line */
index = linelen - 2;

while (linei[index--] == ’ ') ; /% skip spaces */
line1[index+1] = ’\0’;
while (linei[index--] t= "’ ') {

linel[index+1] = ’\0’;)

printf("%s 4d \n", linel, newclass);

} /* only prints long data lines */
/*
printf("The previous data class was %d \n", oldclass);

x/

getline(s,lim) /* get line into s, return length */
char s[];

int lim;
{
int c,i;
for (i=0; i<lim-1 && (c=getchar())!= EOF && c!=’\n’;++i)
s[i] = c;

if (¢ == '\n’) {

16

sfi] = c;
++3;
}
s[i] = ’\o’;
return(i);

D.5 getconst.c

/ FR Ak ok ok ook ok ok sk ok Kok sk ok o ok ok ok ok ook ok K ok ok ok sk o o kok ok ok sk ok ok ok ok
/* getconst.c
program to extract from a data file already in the format
required by Greg Tarr’s neural net modeling program to
print all constant-valued vectors (all features equal).

Input and output are std and must be redirected by shell.
*/

#include <stdio.h>

main()

{
int numvect, testvect, features, output, count;
int a,b,c,d,e,f,g,h,i,j,k,1,n,n,0,p,q,r; /* 18 elms per vector */
scanf("%d %d %d %d \n", &numvect,&testvect, &features, &output);

for (count = 1; count <= (numvect + testvect); count++)

{
scanf("%d %d %d %d %d %d %d %d %d Yd %d %d %d %d %d %d %d %d \n",
&a,&b,&c,&d,&e ,&f &g, &h &1, &j,&k,&l,&m,&n,&o,&p,&q,&r);

if ((b==c && c==d &% d==e &% e==f) && (f==g &% g==h && h==i && i==j)
&% (3==k && k==1 && l==m && m==n) && (n==o0 && o==p && p==q))

printf("%d %d %d %d %d %d %d %d %d %d %d %Ud %d %d %d %d %d %d \n",
a,b,c,d,e,f,g,h,i,j,k,1,m,n,0,p,q,r);

D.6 splitdata.c

[kskok ok ok ok ok sk kokok sk sk skok ok ok ok ko sk ok sk ok ok e kok ok sk sk ke ook ok ok f

/* splitdata.c

program to Split a data file by writing the first and every
other line to the output.

Use to split exemplars into training and test groups.

std 1/0.

Must change the for loop counter to match size of file.

*/

#include <stdio.h>
main()

{

int count;
int a,b,c,d,e,f,g,h,i,j,k,1,m,n,0,p,q; /* 17 elms per vector */

for (count = 1; count <= 16939 ; count++)

{
scanf("%d %d Y%d %d %d %d %d Yd %d %d %4 %d %d %d %d %d %d \n",
&a,&b,&c,&d,&e,&f &g ,&h,&i, &j,&k,&),4m,&n,&0,&p,&q);

1f (count % 2 == 0)
printf ("%d %d %d %d %d %d %d d %d %d %d %d Y%d Yd Ud Yd %d \n",
a,b,c,d,e,f,g,h,i,j,k,1,m,n,0,p,q);

D.7 distinction.c

[ARk ok ke 3 ook oK ok ok ok ok o oK o oo S o o ok ok ok ok ok ok s ok ke ok ok R AR K ok skl ok R ok Kok f
/* distainction.c
program to calculate the distinctiveness of classes of data

based on their feature means and std devs.

This is treating the cluster center of each class

as the mean of its features.

4 tables showing the '"distance" between each pair of
classes is produced.

Reads the means and std devs from the file "allstats.d".
Std input and output redirection to be used.

*/

#include <stdio.h>

#include <math.h>

#define ABS(X) ((X) > -(X) 7 (X) : -(X))
#define SQR(x) ((x)*(x))

main()

{
int x,y,z;
double means[33][17], devs[33]([17];
double dist[33]([33], sumdist;

/* read in the means for each class, feature */

for (x=1; x<=32; x++)
for (y=1; y<=16; y++)
scanf ("%1£",&means [x] [y]);

/* read in the stddevs for each class, feature */

for (x=1; x<=32; x++)
for (y=1; y<=16; y++)
scanf ("%1f",&devs[x] [y]);

/* compute the matrix of distances between centers */

for (x=1; x<=32; x++)
for (y=1; y<=32; y++)
{
1f (x==y) dist[x][y] = 9;
else

{

sumdist = 0.9;

T

for (z=1; z<=16; z++)
sumdist += ABS(means[x] [z]-means[y][z])/(devs[x][zl+devs[y][z]);
dist[x][y] = sumdist;
}
}

/* now print the distances in four tables, 8x32 each */

for (x = 1; x <= 32 ; x++)
{
printf ("%4d",x);
for (y=1; y<=8 ; y++)
printf ("%5.0f %c", dist[x][y], ’ *);
printf("\n");
}
printf("\n");
for (x = 1; x <= 32; x++)
{
printf("%4d",x);
for (y=9; y<=16; y++)
printf("%5.0f Yc", distixllyl, ’ ’);
printf("\n");
}
printf ("\n");
for (x = 1; x <= 32; x+¢)
{
printf("%4d",x);
for (y=17; y<=24; y++)
printf ("%5.0f Y%c", dist[x][yl, ’ *);
printf("\n");
}
printf("\n");
for (x = 1; x <= 32; x++)
{
printf("%4d",x);
for (y=25; y<=32; y++)
printf ("%5.0f %c". dast[x](y], ’ *);
printf("\n");
}
printf("\n");

} /* end of main */

30

double sqrt(num)
/* returns the square root using Newton’s method */
double num;
{
double guess;
guess = 100.0;
do

guess = guess- (guess*guess-num)/(2.0*guess);
while (ABS(guess*guess-num) > 0.00000001);
return(guess) ;

}

D.8 feature.c

/] 3kt oo ok ok ke sk sk ok ke ke ook K ok o ok KKk o o ook o o ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok skokokok f

/* feature.c
Program to select only some of the features of each vector.
Can be modified to select only desired features by

changing the printf statement.
*/

#include <stdio.h>

main()

{
int x,y, classes, trgvect, testvect, trgnum , testnum ;
int a,b,c,d,e,f,g,h,i,j,k,1,m,n,0,p,q,r; /* 18 elms per vector */
scanf("%d %d %d %d \n", &trgvect, &testvect,&trgnum, &testnum);
classes = trgvect/trgnum;
printf("/d %d %d %d \n", trgvect,testvect, trgnum, testnum);

for (x=1; x <= testvect+trgvect; x++) /¥ for every vector */
{
scanf ("%d %d %d %d %d %d %d %d %d Ud Yd %d %d %d %d %d %d %d \n",
&a,&b,&c,kd,&e,&f &g, 4h, &1, &j,&k,&1,8m,&n,%0,&p,&q,&r);

/* print only desired features */
praintf(" %d %d %d %d %d %d %d \n",
a,b,c,l,m,n,r); /* class is x */

}

} /* end of main */

D.9 stat.c

[k ok ok sk ok sk oKk okok 3k ok ok ok sk ko sk ok ok ok s Kk ok ok ok ok ok ok ok ok ok ok f
/* stat.c
Program to calculate the mean and dev
of the 16 features of each of 32 classes in a file.
Also calculates the mean, dev of the features, independently
of the class number.
File must be in format required by Greg Tarr’s program.
Std input and output redirection to be used.

*/

#include <stdio.h>
#include <math.h>
#define TOTAL 17002 /* total number of vectors */
#define ABS(X) ((X) > -(X) 2 (X) : -(X))
#define SQR(x) ((x)*(x))
main()
{
int trgvect, testvect, insize, outsize, feature, class, vect[18];
int count, count2, x ;
double sums[33]1[33];
/* sums{class][n,sum(x),sum(x*x)] */
double hold, dev, feat([33];
scanf("%d %d %d %d \n", &trgvect, &testvect, &insize, &outsize);

/* first initialize sum array to all 0’s */
for (count =0; count <= 32; count ++)
for (count2 =0; count2<= 32; count2 ++)
sums [count] [count2] = 0.0;

for (count = 0; count <= 32; count++)
feat [count] = 0.0;

/* read each vector in the file and update sums */

o
I~

-

for (count = 1; count <= (trgvect + testvect); count++)
{
for (count2 = 0; count2 <= 17; count2 ++)
scanf ("%d", &vect[count2]);
x = vect[17]; /* the class number */
sums [x] [0] += 1;

for (feature = 1; feature <= 16; featura++)

{

sums [x] [feature] += vect[feature];

sums [x] [16+feature] += vect[feature]*vect[feature];

feat[feature] += vect[feature];

feat[16+feature] += vect[feature]*vect([feature];

}

}

/* now compute the means and std dev for each feature, class */

for (x = 1; x <= 32; x++)
{
printf("\n");
printf("class %d vectors %.0f \n", x, sums[x][0]);
printf("means and std devs for 16 features: \n");
for (feature = 1; feature <= 16; feature++)

{

prantf("%.1f %c ",sums{x] [featurel/sums{x]1[0], * *);
it (feature==8 || feature==16) printf("\n");

}

for (feature = 1; feature <= 16; feature++)

hold=sums[x] [16+feature] ~-SQR(sums[x] [feature])/sums[x] [0];
dev = sqrt(hold/(sums[x][0] -1));
printf("%.1f Jc ", dev, '’);
if (feature==8 || feature==16) printf('\n");
}
i

/* now compute the means and stddev for each feature. x/

printf(" \n");
for (feature = 1; feature <= 16; feature++)

{
hold = feat[16+feature]- SQR(feat[feature])/TOTAL;

dev = sqrt(held/(TOTAL - 1));

printf(“"feature %d mean %.1f std dev %.1f \n", feature,
feat [feature] /TOTAL, dav);

}

} /% end of main */

double sqrt(num)

/* returns the square root using Newton’s method */
double num;

{

double guess;

guess = 100.0;
do

guess = guess- (guess*guess-num)/(2.0*guess);

while (ABS(guess*guess-num) > 0.00000001);
return(guess);

¥

D.10 totdev.c

o Aok st ok ok ko ok ook ko o ok s sk ok o ok ok ook o ok ok ok ok kR Kok ks ok ok ok ok f
/* totdev.c
Program to calculate the total deviation from
the cluster centers of each class of data.
The center coordinates are defined as the mean of
each feature for the class. The total deviation is the sqrt
of the sum of the variances of each feature.
Reads the std devs from the file "alldevs".
Std input and output redirection to be used.

x/

#include <stdio.h>

#include <math.h>

#define ABS(X) (xX) > -(x) 2 (X) : -(X))
#define SQR(x) ((x)*(x))

main()

{

int x,y,z;
double devs[33][17];
double sumdevs;

/* read in the stddevs for each class, feature */

for (x=1; x<=32; x++)
for (y=1; y<=16; y++)
scanf ("%1f" ,&devs[x] [y1);

/* compute and print the total deviation for each class */

for {(x=1; x<=32; x++)
{
sumdevs = 0.0;
for (z=1; z<=16; z++)
sumdevs += SQR(devs[x][z]);
printf("%5.1f is total std dev for class %3d \n",sqrt(sumdevs),x);
}

} /* end of main */

double sqrt(num)

/* returns the square root using Newton’s method */
double num;

{

double guess;

guess = 100.0;

do

guess = guess- (guess*guess-num)/(2.0*guess);

while (ABS(guess*guess-num) > 0.00000001);
return(guess);

¥

D.t1 reperunch.c

[HFFIAFA* repCTUnCh.C Fskkskdkokskkokkokskdookkokokk ook kokok dokokokok /

/* program to analyze the item_report.

Reads the edited report file giving the actual class and

the guessed class by the neural network for each test vector.

output tables (confusion matrix).

The script file awkrep prepares an item_report file for input.
Std input and output redirection to be used.
ok ok okokotok ok ok skokokok ok sokstofkslok ok ok skok ok ok sk loksk kiR ok ok ok ok K

#include <stdio.h>
#include <math.h>
#define TOPN 3

main()

{
int x,y,z, class,guess,lines,classes,tabend;
int mtx[32][32] ;
float ops[31];

for (x=0; x<=31; x++)
for (y=0; y<=31; y++)
mtx[x] [yl = 0;

for (x=0; x<=31; x++)
ops(x] = 0.0;

scanf("%d %d ", &lines,&classes);
/* read in the report test data */
P

for (z=1; z<=lines;z++)
{
scanf ("%d %d ", &class,&guess);
for (x=classes; x>=1; x--)
scanf ("}f", &ops(x]);

mtx[class] [guess]++ ;

if (guess != class) /* ie there is an error */
{
mtx[class] [0]++; /* add one to error for class */
if (ranking(class,ops) > TOPN)
mtx[class] [31]++ ; /* incr topn error counter */

Produces

}

/* print out the confusion mtx for all classes */

if (classes > 16)
tabend = 15;
else tabend = classes;

L}

i}

printf("Class");
for (x=1; x<=tabend; x++)
printf ("\& %44",x);
printf ("\\\\\n");
printf("\n");

for (y=1; y<=classes; y++)
{
printf ("%6d",y);
for (x=1; x<=tabend; x++)
printf("\& %3d ",mtx[x][yD);
printf ("\\\\\n");
}
printf("Errors\n");
for (x=1; x<=tabend; x++)
printf ("\& %3d",mtx[x][0]);
printf("\\\\\n");

printf{"Exemplars not in top %3d\n",TOPN);
for (x=1; x<=tabend; x++)
printf ("\& %3d",mtx[x]1[31]);
printf ("\\\\\n");
printf("\n");

if (classes > 16) /*Have to print a second table */
{
printf(“Class");
for (x=tabend+1l; x<=classes; x++)
printf ("\& %4d",x);
printf(*\\\\\n");
printf("\n");

2'5\
-

A

for (y=1; y<=classes; y++)
{
printf("%6d",y);
for (x=tabend+l; x<=classes; x++)
printf ("\& %3d ",mtx[x][yl);
printf ("\\\\\n");
}
printf("Errors\n");
for (x=tabend+1; x<=classes; x++)
printf(*"\& %3d",mtx[x]1[0]);
prantf ("\\\\\n");

printf("Exemplars not in top %3d\n",TOPN);
for (x=tabend+1; x<=classes; x++)
printf("\& %3d",mtx[x][31]);
printf ("\\\\\n");
printf("\n");
}

} /* end of main */

int ranking(class,outp)
/* RETURNS THE RANKING OF CLASS BASED ON OUTPUTS OF NET */
int class;
float outpi3ii;
{
int rank,a;
/* COUNT HOW MANY 0/P’S ARE >= THE CLASS OUTPUT */
rank = 1;
for (a=1; a<=30; at+)
if ((a != class) && (outpla] >= outplclass]))
rank++;
return (rank);

D.12 awkrep

% awkrep
% Script file to prepare the item_report output by
% Neural Graphics for the analysis program repcrunch.c

88

% Can do multiple files at once
%
for file in $*
do
avk '/Ttem/{print $4+1,$6+1,$7,$8,$9,$10,$11,$12,$13,$14,$15,$15,$17,
$18,$19,$20,$21,$22}’ $file > $file.1
awk ’/Total/{print $2+1,$4,$6,$8}’ $file > x$file
we -1 x$file > $file.3
avk ’{print $1}’ $file.3 > $file.cl
we -1 $file.1 > $file.4
awk ’{print $1}’ $file.4 > $file.lc
cat $file.lc $file.cl $file.1 >$file
rm $file.*

echo ’File is ready for repcrunch.c!’
done

10.

1.

12.

13.

Bibliography

. Brown, Joe R. and others. “Comparison of two neural net classifiers to a

quadratic classifier for millimeter wave radar”, Proceedings of SPIE. 1294:217-
224. Bellingham, WA: SPIE-The International Society for Optical Engineering, -
1990.

Cybenko, G. “Approximation of Superpositions of a Sigmoidal Function”, Math-
ematics of Control, Signals and Systems, 2:303-314 (March, 1989).

Ersoy, O. K. and D. Hong. © Parallel, Self-Organizing, Hierarchical Neural Net-
works”, IEEE Transactions on Neural Networks, 1:167-178 (June 1990).

. Gnanadesikan, R. and J. R. Kettenring. “Discriminant Analysis and Cluster-

ing”, Statistical Science, 4:34-69 (1989).

. Howitt, Ivan. “Radar warning receiver emitter identification processing utilizing

artificial neural networks”, Proceedings of SPIE. 1294:211-216. Bellingham, WA:
SPIE-The International Society for Optical Engineering, 1990.

. Intrator, Nathan. “A neural network for feature extraction”, Advances in Neural
b ?

Information Processing Systems 2. 719-724. Denver, CO: Morgan Kaufmann
Publishers, 1990.

Kuhl, F.P., A.P. Reeves, and R.J. Prokop. A Neural Network Object Recognition
System, July, 1990. Contract ARFSD-TR-90008 U.S. Army Research Office,
Research Tiiangle Park, NC (AD A225 627).

Lin, Wei-Chung and others. A lherarchicai Muitinle View Approach to 3-
Dimensional Object Recognition”, [EEE Transacltions on Neural Networks.
2:34-92 (January 1991).

. Lippmann, Richard P. “Pattern Classification Using Neural Networks,” [EEE

Communications Magazine, 2:47-63 (December 1990).

Rogers, Steven K. and others. An Introduction to Biological and Artificial Neu-
ral Networks. Wright-Patterson AFB. OH: Air Force Institute of Technology.
October 23, 1990.

Roth, M.W. “Neural Network Technology for Automatic Pattern Recogniiion™.
IEEFE Transactions on Newral Nelworks, 1:32-38, (March 19903.

Ruck, Dennis W. and others. “The Multilayer Perceptron as an Approxima-
tion to a Bayes Optimal Discriminant Function”™, IEEF Transactions on Neural
Nelworks, 1:296-298 (December 1990).

Ruck, Capt Dennis W. Characterization of Multilayer Pcreeptrons and their Ap-
plication to Multisensor Automatic Targe! Detection. PhD dissertation. School
of Engincering. Air Force Institute of Technology (AU). Wright-Patterson AFB
OH. December 1990 (AD-A229 035).

90

15.

16.

17.

. Sun, G. Z., H. H. Chen and Y. C. Lee. “Parallel Sequential Induction Network:

A New Paradigm of Neural Network Architecture”, Proceedings of the IEEE
International Joint Conference on Neural Networks. 489-496. San Diego: IEEE
Press, 1988.

Tarr, Gregory L., and others. “AFIT Neural Network Development Tools and
Techniques for Modeling Artificial Neural Networks”, Proceedings of SPIFE.
1294:211-216. Bellingham, WA: SPIE-The International Society for Optical En-
gineering, 1990.

Villa, Mark F. and Kevin D. Reilly. “Hierarchical Neural Networks”, SPIE
Proceedings of the Second Workshop on Neural Networks. 1515:657-664. San
Diego: The Society for Computer Simulation, International, 1991.

Willson, Gregory B. “Radar classification using a neural network”, Proceedings
of SPIE. 1294:200-210. Bellingham. WA: SPIE-The International Society for
Optical Engineering, 1990.

Zahirniak, Daniel R., Characterization of Radar Signals Using Neural Networks.
Master’s thesis. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1990 (AD-A230 582).

91

December 1991 Master’s Thesis

RADAR SYSTEM CLASSIFICATION USING NEURAL NETWORKS

David M. Cameron, Captain, CAF

Air Force Instituce of Technology, WPAFB OH 45433-6583 AFIT/GSO/ENS/91D-03

Approved for public release: distribution unlimited

This study nvestigated methods of improving the accuracy of neural networks in the classification of large num-
bers of classes. A literature search revealed that neural networks h:ve been successful in the radar classification
problem, and that many complex problems have been solved using systemns of multiple neural networks. The
experiments conducted were based on 32 classes of radar system data. The neural networks were modelled using
a program called the Newral Graphics Analysis System. 1t was found that the accuracy of the individual neural
networks could be increased by controlling the number of hidden nodes, the relative numbers of training vectors
per class, and the number of training iterations. The maximum classification accuracy of 96.8% was achieved
using a hierarchy of neural networks in which the classes were partitioned based on their performances in a large
neural network trained with all classes.

Artificial Neural Networks. Radar Warning Receiver 208

Unclassified Unelassified Unclassified UL

