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Preface

This study applied artificial neural networks to the problem of classifying radar

emitter systems. The study concentrated on the particular problems associated

with classifying radar systems when there are many classes to choose from. Some

of the factors affecting the network accuracy were identified and used to improve

performance. A method of using multiple neural networks to imlprove the overall

classification accuracy was tested.,

I am deeply indebted to my thesis advisor. Major Steven Rogers, for his expert

guidance and encouragement. I also wish to thank Captain Daniel Zahirniak for his

timely advice and for acquiring the data used in the experiments. The support of

Captain Gregory Tarr, the author of the software used for this research, was greatly

appreciated. Lastly, I am grateful to Major Bruce Morlan for his editorial input.

David Michael (anieron
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A bstract

This Studly investigated methods of improving the accuracy of neural networks

inl thle classification of large numblers of classes. A literature search revealed that

neural networks have been muccessful in the radlar classification p~rob~lem. and( that

inany complex problen!,; have been solvedl ising systems of mutt ilple neural networks.

The experiments condlucted were based onl 32 classes of radar systeiii dlata. rIhe

neu ral networks were modlel ledl usig a program cal led the N u ral Graphiics Anaulysis

Sysicin. It was found that the accuracy of the individual neural networks couIld

be iicreasedj by controlling the number of hidden nodes, the relative numbers of

training vectors per class, and the numbler of training iterations. The maximiuml

classification accuracy, of !)6.5(/ wa~s achievedl using a hierarchy of neural networks

in which thle clasbes were pai titiotied based onl their performances inl a large, neural

network trained withI all classes,



RADAR SYSTEM CLASSIFICATION USING

NEURAL NETWORKS

I. Problem Statement

1.1 Background

Electronic warfare equipment is continually evolving and is the focus of much

Air Force research. One active area of research is the design of radar warning re-

ceivers. The simplest design is one which only indicates the presence of electromag-

netic radiation in a specified bandwidth. A more sophisticated design will attempt to

identify the radar system which emitted the radar signal. based on the characteristic

features of the signal. Success in this type of automatic recognition has been limited

by the on-board conputing capacity of aircraft, and the ever-increasing number of

types of radar systems. This area of research is important because the realization of

a robust, accurate radar system recognizer would allow instant characterization of

the threat to an aircraft.

As described by Ruck (13:5-7), the process of automatic pattern recoginition

consists of three sequential stages: segmentation, featuire extraction, and classifi-

cation. Segmentation is the operation of isolating the signal of interest from it's

environment. Feature extraction inolves processing the data to compute the fea-

1,1 res which allow discri miathon belween different signal classes. The classificatioll

,stage assigns each input signal to a class based oil Its features.

Artificial iieural net works (also called simply neural net works) have been used

extensivelv to solve problems al all three stages of auiloniatic recognitioi (1. 6. 1:3.

18). Neural networks are inherenly fast processors due to the parallel )ro(e.ss,,ing

of information. Neural iiet works used for classification have beeii showii to clo.ely

approximal e stat isticallv optimal performaice without requiring st at ist ical anal.,is

of the input data. These characteristics make neural networks moie suitable for

a)l)1licat ioni iii whichi processing tinie, is critical.



A major problem with all automnatic recognition systems is the d 'rease in

system classification accuracy with the increase in the number of distinct Classes. As

intuition suggests, a system makes more errors discriminating between many objects

than between relatively few objects. Radar classification systems are no exception;

they are limited in the number of classes that can be recognized. In p~articular,

the application of neural networks t~o radar system classification is lim-ited by the

miany-class prolem.

1.2 Research Ob5jecive

The objective of this research was to determnine somec of the factors affecting the

classification accuracy of a neural network with many' output classes and t~o evaluate

methods of increasing that accu racy.

1.3 Ohapter, Outlines

Trhe following pararaphs contain brief descriptions of the conitents of each of

the subsequent chapters.

1.3.1 Chiap/ci' 2 The literature relevant to the general problem) of neural

niet work pat tern1 recogn it ion and the p~arti cular problem ol radar systemn cla.sif ca lion

15 reviewedl.

1.3.2. Chap/cr '?The mlethodlology used to carry out, thle research is dlescrib~e(]

i1 (detail. including tile data. hardw~are,~ and software.

1.3.3 C/iaph r ), The effects of' dat a and network parailieters onl the ('las-
si fica titi acii tac\ I~e leS i be. Th fac(totrs idenit ified ale( used to impr )ov~ie

Iperiornlanlce of niet works Ill sublsequenlt eXIperi inents.

1.:.1. /1 (ia phi 5 .,\ stat istica I auia I \si5 of the dat a is presented a lid thle rela-

I ioilil ip of Mt at ist ica I pat ai iteters to net work performance is atial vzed . 'i'le( miotiva

tion for the use ol miultiple nietwork systeiris for classification is dlevelopedl.

1.3.5 (lha ph'r 6 Ihe pet'forta te of var1i011 s *yst ('lllS of' liteilla tMet works are

evaluiated alid coniipa red 1theII( jpetorillallce of single neurllal jiet Wotks. Iwo I \iws of

inlilt iple net work SYv (111 an, evalllatedl: parallel anld hlierarchlicalI.



1.3.6 Chapter 7 The main conclusions drawn from the results of experiments

in chapters 4-6 are summarized. Recommendationis for further research are made.

1.4 Scope

The research was limited to a single neural network topology. The two-layer,

feed-forward, multi-layer perceptron model trained by a modified conjugate-gradient

paradigm was used for all experiments. Since the research was concerned with the

relative classification accuracy of neural network models, the use of only one topology

was not considered a limitation.

The chapter on statistical analysis is not intended to rpi ebent a complete data

characterization; it is only intended to identify some of the statistical parameters

which relate to the performance of the neural networks.

1.5 Summary

The problem of automatic radar system classification is important to the Air

Force. The objective of this research was to determine some of the factors affecting

the performance of neural networks in this a.pplication. Methods of improving tile

neural network classification accuracy were investigated. The contents of each of the

following chapters was outlined al)ove. rhe research effort is limited to experimen-

tation wit l one neural network topology.

The following chapter contains a review of neural networks and current research

in the area of radar signal classification.

3



1I. Literature Review

.1 Int roduction

This section reviews literature pertinent to this research. The discussion covers

the following three topics:

" Neural network taxonomy

" Radlar signal classification by neural netwvorks

" Systems of neural networks

2.2 T Thono iny of Nettral Net works

Ani artificial neural netwvork is a mechanism, for performing a mapping from anl

inp LIt vector space to an outp~ut vector space. Its structure is analogous to a biological

neural network in which a, large number of neurons are arranged in some pattern with

interconnections between them.. The nodes in an artificial neural network correspond

to the nieurons, and each node is a simple computing element which Implements

an activaion fwiclon. The strength of the Interconnections 1)etweeii nodes., are

repi eseiit cc by weights which are numbers assignied by a network training p~rocess.

Neural njetxvorks can have many\ different. forms, and many categorizatilons arc

possible. The typ)e of input data, binary or continuous, forms, one dichotom-y. Kuhl

(7) Ifurther ch a racteri zes neural networks by three properijes:

1. Network t opology

2. (onpitat ioiial elemniit (activat ion function)

.3. Train inig alIgori thmii

2.2.1 *\'htwork. Topology Mkani~ topologies are-( possible, ranging from simpjle

si met tir1es to verY .olliC nipel(tworks of initercon nected noudes. H owever, to be us-eful

a nen rat nlet work m tist have anl orga ni-zed an iid egifla r sltriti ire. 'I'll( imost comrnonl~y

uised st 'l IIet ti s 1,twc feed-forward network In whichi the nodles are( arranigedl in layers
witl ei acth node 'Olil nced 1 in a forwar inirect ion t~o all t he nodes inI the adtjacent



layer. The number of layers, the number of interconnections, and the number of

nodes in each layer are all variable.

riheire are few guidelines available for chocosing the appropriate network top)ol-

ogy for a pirticular problem. It has been shown that a two-layer (one hidden layer)

feed-forward neural network can app~roximate any continuous mapping to a ri trarv

accuracy (2). The numbx-r of nodes required in the hiddcn layer has' not been de-

termined analytically, for the general case (17:206). In some appl icat.ins. at neural

network with one hidden layer can outperform a network with) two hidden layers

(17:207).

2.2.2 CompyidatimiaI EF/cm c0i,; Neural networks, when used as, clas'sifiers, call

be divided into four general grouips b~asedl on the computing elements and mnethod

ulsedl for classification. Th'le groulps, the corresp)ondling conmlpl iing elements, and
rep~resentative classifiers are shown in rTabie 1 (9:48-419).

TFable 1. Basic Classifier Groups

Group ---7 Coninputing Eleme. nt Representative 'iasmer
Probabi list ic 1 )J1ist ribuIttion Gaussianl,

INepenclnt, i 1 ITr
H-yperplanle Sgmnoid Multilaer per('eptron.

lBolt zinlhinl mla('lIiii

Receptiv'e Fields Nernel P~otenitial Funictions,
(Kernel) __________f______CM AC_____

EeIn Ila Iu[) id~ean Norml 1K-Nearest,
Neighlbor.

l~roahi isic (las i hrsiodel t he in put. (dat a assa mJles 110111 all a.ssumled piob-

aiilit v (list rilitionm. sucih as Galussial. Th'le prolbabilitY Ilthatia pailticuilar. Input vec-

toi belonigs to at pail icuIar c' lass Is tilien p~roportional to thel( v.a I jeof thle probabihiliiy

(l'sit v fliiicl lol ror. Iiat. Input. 'thle (list riblt.i1Iis are csu l ioseii based onl a

st a1 st ica I a iia 'SIS of, dat a for wIi ichi f li class is kn iownm. Ill(, jpeformnce of the
(iiis, Ifer dep~ends oii I lie accu racy of tihe iiiode(l (9:17).

If lvperpla ile riassifiei s part itioti thec liighe(l i liiieisioiial Spac.e rejpiest'iii d b.\

ilie IIII )iII vcto in5 t o i egioisw, Ii ici corresponld to thle di ffei'en Ic hisses. 'I pica iiY.



the computing element is a iioa-linear fui, lion such as a sigmioid or a p~olynlomial.

These neural network classifiers are characterized by long training times, low memory

requirements, and rapid classi fica tion (9:49).

Receptive field classifiers use a kernel function which give each node a receptive

field in the pattern space; a node responds more strongly the closer the input. vectoi

is to its field. These neural netwvork classifiers have relatively short trainlig timnes

(9. 18:49).

Exemplar classifiers compare eacii iput vector to stored examples (or exen-

lplars) of each class and measure the distance between the input and each examp~le.

The class of the inp~ut vector is indicated by the smallest distance. Neural networks

of this type train quickly but inay require large arnouits of miemory and classify

relatively slowly , depending on the size of the problem (9:49).

2.2.3 Training Al1gordiths Neural networks vary greatly in the methods used

for training. Training is simply the method used to set thle weights of the internoclal

connections. There are as mnany techniques for training neural networks is there

are neural networks, but. all techniques are eit her sup~ervised, unsup~ervised,. or some

comnli ation of suplervisecl and unsupervised (9:48).

Supervised training mnethods require data which has beenl labl~eled wit I-] the

class, it was derived from. Examiph s of all classe,, expected -is po5ssile input to the

tralied net mus11t be availa ble. The exact, nIMfl)er- Of PXeI~iu.' .srITUI rd for' Cffe( ti y

trainintg has never been determnired anialytical ly, but here are approxi ma te lorintila

such ats Foley's Rutle which reqIuires thiat. "the ?hlimer of' traini ng samp~les peir class

should be greater thami th ree tiies t he numb er of featlures" (; 31:30). For eachl (exa rnpie

illit aSingle class, t lie welihts ill the net work ar'e adjust-ed accordling to somne ri c wilc h

re(sullts Ill a bette ai approx Iiliiat loll of Ilhe dlesi red ii plitt/oltpult iiia ppiiig. ( 'sna liv. a

large num11ber o f iterat ions, is required before the neurllal nlet work is opt iiiialky tralined.

'I'le iosi popular sIlpervisvd trainling ietho 10 Is th1e gradilnt -descentl olr lack -

p)ropagation miethod0(. It seeks it) mliinmize tite sqluaredI erroi bet weeti t li actiltal

on tjpttS and tHie dlesi red 01it Iit s. resuti tig inl a c01nvergenice 1.owva 1( thle desi red Inl-

put /outpuit mlap~piiig. ile Illulti l'Cr pf 'ept ron t rained byN back- prop'a t liol Ilas"

been shown to appIroximnate tie( prolballY Iiniictiomis of Ible t raining cla-sses (12).

fHowever. t Ie( 1titimber of nlodes re(1tliredl to guaratee ;I cls aprxi ion ha-s not



been analytically determined, and must be found by experimentation for each new

applicAion.

Unsupervised training paradigms require no prior knowledge of the input train-

ing data. The ip 1 )ut vectors are clustered into sots according to their relative positions

in the input space, The Nohionen self-organizing feature map is the most common

examplle of this type of training method.

The combined suiperv ised/:,it nsul)erv Nised tra ininrg methods usually begin with

uinsupervised! training to cluster thie input data and then "fin~e-tune" the network wvith

supervised training. This Is the preferred method if there is only a small amount of

labelled dlata available, or if the training time must be inininilzecl (9:48).

2.3 Radar Sigiial Classification by Nrziral Netlworks

9.3.1 Advantages of Neuctral NOworks There are miany adlvanitages of neural

netwvorks over coniventional coinputaticnal methods. Neural networks are very gen-

eral structures whichi canl be adapted a wide variety of pr1olems (7). Thiey, are

also faster Ohan conventilonal method' and are !nore tolerai~ of system faults or

noisy inputt (lta (17:200). These adl\ intag 3es are importanti if a robust, real-time

classification system is the objective.

Browi! and others (1) rep~ortedl that a nemral network classifier equaled thie

perforiimance of' a convenitioiial statistical ('la ,sifiei iii a radlar ( lassifi at ion alppl ica-

tion . Zahi rniak (18) u-sed radial basis hr nctic~is ( l{ 311s) as the activation fuinctioiis

for his radlar s ,vst em cla.sifier anie~ port ed perforrniice equal to that of hYperplaiie

classifiers. Th'lese t wo exarnples (llinst'lit", e I lie p~otenltial ofl neural networks inl thle

area of' radlar sigi,;rl classificationi.

2.:1.2 Probkin? A1 r a., WVi sori ( i7i P'20,0, report ed two difficuilt ivs ill iipje-

mlen itiig a nleirral net work rada r cI assi fici - I Ist, thle segniminaltli Iask beconies ver y

(liffhctilt Wiil tl.I arem iiIC mull e iadar S'MIrIces. The( p~ilS(5st" be dc-mJllcilaved ill

order t~o alIlow separate anlalyvsis of' tilt' pulses f'roint each en uittIer. I be receiver inust

nrleastre pai'aiiuefers of I!!e piukes iii order to dlist.iuiis bet we(eni pii5CS froni differ-

en t emril1.1ers: fet.cl seirgo Il liiptmit vectors inii st be carcried owit. T[he secoiill

(l*,flicuilt\ remported was thle very long Inii ig fi ue reqired for t he backprojagatliif

meno hod.



1-Iowitt (5:213-215) identified two problems in his neural network inojel of a

radar emitter identifier. The first probi~ni was that the network failed to (detect

when an input pattern belonged to no known emitter class. The secona -obleil was

the steel) rise in training time re.-itired as the number of emitter classes increased.

None of the studies cited F 01 ~;y reported the problem of decreasing accit-

racy- with increasing ji, ber, owever, none of the systems were tested

with more than 10 classes. .: ,-.-ass l)1oider is often .,voidedl or taken for

granted in research but t is a. s(. jus concern in the clesgn of real-world systemns

whether they are based onl netirp& - :.-ks or more conventional techniqjues.

2.4 Syshins of Neur-al Networks

2.4.1 Alot jvat ion Crnplex classification problems are often solved us;ng Sys-
temis of several neural networks (3, 14, 8). The mult iple neural nletwo.-ks canl be

arranged inl parallel, series, or some cumnibination of the two. The series arrargement
is normially called at hirarchical neurtial 07r0work. 'The criteria for adopting a particti-

lar- system is related to the nature of the problem. If the pi'oblei can be functionall 'y

oi logically divided, then each p~ortion canl be solved by -t separate parallel neu ral

network. If the prob~lem requires null i-level processintg of data. then a hierarchy

of liet works inay be more app~rop~riate. '[hle niotival juli for using at inultiple-n'twork

.systi m is t o achilex'.. reater Classification accui acy than is possible withI a single nc'i-

ra I net work by using" knowled-e about. the lprolblern ]in ; he( desig!n of the systemi. For
itistflhico. at probleml in) visual iodel-inatching was Solved by uingf a ('oarise-t o-fine

st rat egy which natnirallrv fits iinto a hie: Irchilcal pattern (8:81).

:...2 lH inrchical N( ura1 NYhrorl., Villa and( Reilllx (I 10:6,5) define a hii' ,'
(JIyhicI(l n( tird utIwork as followvs:

A liu rat-clical mc ural uiroik (11 NN ) is at iniilt i- laYered neuiral ni work
ill which the oullpt s of deeper layers produhce p)rogressively part it ioned
slpaces. ill whtichi certa in f'llnctional properties wh at th le cell *"st, a 1(1
for" of Cells ill ;, aver. are deteri'n ined 1wN cells ill preced i n hayers. T[his
('on fers of] h ese nlets t he prolpertv of heinug partlia IlY ordored. sets ( rp* -Me
well rep~resentedl lw a hicra rch ica d iagra in).

'[le ;ielvnt ages of using, II \*Ns ate( (6:663):



*each layer contains some information about the problem

* uitel mnediate layer results ma~y be useful eveo if the sYstemi errs

*attributes are inherited andl passed on to successive layers

The disadvantages of using HNN's are (16:663):

*criticality of valid output frlom earlier layers

* a large tree structure

*serial processing by successive layers is slower tbi;., parallel

2.J1.3 hIzfpleienlalons Ersoy a nc Hong designed a systern consisting of a

nunmber of nieural networks in series. Each network output include(] an error cletec-

ti-n calialility to prevent erroneous information from propagating through thle sys-

temn lUring training. After a certain number of training iterations, if anl iniput vector

p~roduced an output different from the desired output, the vector was transformied iny
a modified discrete Fourier transform before being used again. This technique pre-

vented the errors of earlier networks fromi lifluencing the trainiiig of latei networks.

and also trilnsformned the in1put vector into a new location in the featuire sp~ace which

was easier to tJassify. A lie systemi reportedly outperformicl a :3-havei' feed-fOrward

neural niet work 13: 170-17,1).

Stil. ('lin, and Lee dlesignied at systemn which autoinat ically cotist ritcd a hier-

archical neural network tailored to the application. Thie feat tires were raii':ed b,'~

on Itheir informiationi entropyNI, anid the n most imnportant feattures for inost classi ficat m'':.'

MIrT m INe bY the earl ier nletwork's. Th'le systemi was rel)ortvk ed o oni perl 'tin tieuid

net works trained by hack-p~ropagation for decision-I ree lprolilens (11:.191I- 1%6).

2.5 S8ummnary

tihe variouls ienral imet work topologies. conip"Iting ('lefiliits. ald~ r1antinlg al-

gorit hillus have bejil reviewed. It hias beenl dvitioristrat ed thIiat nletnral I ie'Iworks alrV

capable ol' p'rfo'ninig ally\ contion1s 111ap)ping and~ arc terefot e suit able !'Ot ni1;amY

aj)plicat ions. A rase was (lied inl wimiri a neurial inetwork equaled thle perforniance

of at comm\ven ionail classifier. The sit hilit v of iten ial I iet works foi c Iassiflvi iig radar

signials, was conifirmel~d b)y the posili ye restil Is of several stuldies.
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Neural networks have three major characteristics which make them especially

effective for classification problems. As detailed by Roth (11:36-37), these character-

istics are massive parallelism, automatic clustering during learning, and integration

of diverse features.

Systems of neural networks have been shown to be more effective in complex

applications than single neural networks. The systems should be tailored to match

the underlying structure of the ,roblem for the best results.

! I)



III. Me thodology

3.1 Introduction

This chapter outlines the methodology and tools used to conduct the research.

The data, hardware, software, and experimiental approach are each described.

3.2 Data Description

The data from the Georgia Technical Research Institute com-prises :32 ASCII

files representing 32 classes of radar emitter data. The first line of each file contains

two integers which give the number of data vectors (one( per line) and the length of

the vectors (all vectors contain 16 elements). 'lle remaining non-blank lines in the

file alternate between 16 integers and a single integer rep~resenting the class number

of the preceding vector. The number of sample vectors of each class is shown in

Table 2.

The vector elemeiit! are the mneasured features of the radar signals. The
specifics of the measurements used for feat ures are irrelevant to the classification

prolblein analysis.

The data was used to train and test t he various neural net work models. Theli

research consisted of ex NprinienitoI( classify thle lal a vcct ors antd anialysis of t lie

classification p~erformnce. 'l'hus. the dlat a providIed a specific lprolbleIn for a case

study as well as a m-eans lot)i evaltiat ing thie success of various mnet hods in classifying.

m1any classes.

31.3 flu ivwerc

The comiputers uised tort-tenuIlntlk)ttua os eeSlcoiCapt

ics workst at ions. The t h ee niodlels uised were (ithe I RIS :1 120. the I lHIS MI /35. and1(

the IRIS 4D/:31IOCTX. Hlie op)erating syst (ils were versions of U NIX. Other 1*, N *IX-

b~ased systems were used to prepare aiid iiianilpulate the ASC II data files.

31. /1 Soft wa r(

Th'le neurllal netw~ork simuillat ions were all performned u1sing Ow lieX ra/ Grapjh jC.

A1;~ w'lqi .Sustr in progra ii (I15). lir Jprograuil was a powerfit I tool fort resech an



Tale 2. Original Data Library

Class Number of
File name N umnber Vectors

class-0l.d 1 250
class-02c 2 250
classO03.d 3 2183
classO04.c '1 2.5(0
class-05.d 5 250
class-06.d 6 400
class-07.d 7 2183
class-OSAd 8 841
classJ)9.d 9 841
classi10. 10 679
class]I 1 d 11 870
(iass-i2.d1 12 -566
class13.d 13 -5941
classii-Ld 1-1 I 571
classi15.d 1 5 59 1
r Iass 16. (1 16 -59 1
c I as s 7. ( 17 5941
c'lass- 1 8.d I IS 561

clas] .d 19 296
cas2A 20 592

clas.s..21.( 21 523
cla ,S,22.(l 22 58-1
class.23A~ 23 593
rla ss-2 1. (1 21 55 1
clas.,25. 2.5 229)

class-27.d 27 I i 26
class-28A( 28 105.:
c I iuss.29. (1 29 59 1
class:I0{ 310 :15
(iass-3A.(j :11 ,
( ;jss.12.d 312 719f
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was used to implement all neural network models. The program version used in this

research was the current version on July 27, 1991.

The Neural Graphics program implements a neural network miodel using a data

file containing bo0th training and test vectors. The program p~rovides an exhaustive

report of the network output from cach node for each test vector including statistics

on the accuracy of thle network by classes.

The program prid~es several measures of the accuracy of the neural network

in the classification task. It mneasurcs the accuracy using both the training and test

(data. and for (cach set it calculates the percentage "right'* and "'good". 'The pi-ograill

defines a "good* classification as one in which the output nodle corresponding to the

input Xve Ctor class hias thle inghest output. The program defines a "right" classification

as ie III which the correc:t output node value is greater than 0.8 and all other nodes

have values lcess than 0.2. The less strict "good" measure was usedl throughout this

thesis anid was termed the( percentage co7rrect.

Several modifications were mnade to the program to allow the network models to

test andl I r,.in with large,( data files with many classes. The minor rhanges consisted

of Ch11gi 10 somne in tege* Const ants in the program modules nuikcinpul.r anl ILsI.

The aut hlo. has Since upd)(ated tilie p~rogrami several timnes and removed thie limnitatilonls,

hlowever. tilhe update" Inrcluded cliange,; to dhe training pa radigrus. Ili the interest of

iiaiit aininau a st andlard basis for coliJarin~g ex pe'rl itt s. Owh old ( Illodi fled) Version

was, used I hroughout t his thesis.

Mlanv Iprotrains were written to create andl manipulate (la files. Imit ially.

ie( dat a files hlad to be reformat ted to allow processing by the Neuiral Graphics

priograll1. Siri( Owth Neural Graphics prograil requiires Sequienii ally num11bered classes

begilnng at ()ne(. it iliel hod of changing Ite (-lass imninr of x-ectors, was required.

lin additionl. prolgrain is to raia n1rlY pick vectors ol specified classes andi( to arialy ze

Neurial G raphiics 0111 pli files were requiiredl. Tle mnal) C pr'ograil1; and U ni.\ script

file's used ale lismed III Appendix I).

.,\Iti mit I'll period of' exlperilicteit at ion with t lie, <vurarl (rapliics Analysis S\ S-

tI-ila- conducted 1)dci ermnine tw liplrope)r proced inre's arid forrinats reqnnilre' by

iilf pcro-grain. anmd t le. I' le oni a st a d net work lpolog . 'I Iret lopI logv rhow~n

IH.



was a feed-forward two-layer neural network, based on it's simplicity andl the good

results obtained in the initial experiments. The particular topology chosent was not

considered as important as the maintenance of a standard for all experiments. The

initial experiments were also usedl to p)ick applropriate program parameters for tile

radlar systemn idlentification p~rob~lem. lPararneters which worked well were chosen

and kept constant throughout this research unless specifically noted. The standlardl

para meteirs of inmport ance aic:

* Conjugate Gradient --- the training paradigm used

* Saliency Off --- only used when mecasuring feature saliency

* Class Output - normal niode to class correspondence: one- node per (-lass

* Statistical INormnalize -- vect.ors are normalized by feature

Randlom initial weights -- to initialize the neural network for training11

* Layers ---- 2 layers% of weights (number of hidden nodes varies)

Each e~periiient was conducted with one or more uinique dlat a files const ruct ed

from thle original data. The data Files variedl in the total numbers of training and

test vectors, the( particuflar classes represented. and t he numbers of training and[ test

vectors per class. Theli( Neural Graphmics program was rtiii for a cert ain numbier of

rai i mg ite(rat ions onl each data file. *Phlese val lies are all t abhi ated in I lie disci is.sion

of the particular experiment and tie associated tables and graphis.

In compjarinig t lie experiiiilt al resutfs for variouis neural net wvorks. t he overall

net work acculracies mu11st be iiiterpreted withI respect to the set of le(st vectors 1i5Cel.

A\ Iiger overall jiet work acci i iacy coiilld l)CIisedl bv ill' I ise of a teSt set wit h

more vectors [miili classes which filie nlet wotk classIfies withI high aremi racy. and fewer

vect ois [moiii the miore "diffirlilt" classes. Thiis coiifoliinig effect was avoidled b%

0IllY coliijdlhig results1 obt aiiied with i lie samme num11bers (4 test vectors from each

'[his Chiapt er has omit lined the Soft ware. hardware. date . and experimetivial

ii ithlods used foirII re.se;I h. Til ( ;I'l{I dat a was ulsed to I ii d dat a files, as



input to the Neural Graphics Analysis System running on Silicon Graphics worksta-

tions. The results were analyzed and compared based on the classification accuracy

of the networks. The GTRI data served as a case study as well as a means of testing

and evaluating the network models. Analysis of the network performances provided

insights into both the case study and the general many-class identification problem.

The following chapter contains the results of neural network experiments in

which the data and network parameters were varied to determine their effects on the

performance of the networks.

15



IV. Radar Data Characterization

4.1 Introduction

This chapter evaluates the performance of various neural networks in the task of
classifying the radar emitter data. The effects of parameters such as the numbers of

training vectors, test vectors, hidden layer nodes, and classes on the network accuracy

were documented. The effect of features was also investigated. The collection of all

the experiments gives a good characterization of how the neural networks perform

on this data set, and identifies parameters which are expected to be important in

many neural network problems.

4.2 Foley's Rule

Table 3.1 shows the number of vectors of each class. The classes 30 and 31
have 35 and 28 vectors, respectively. According to Foley's rule, there should be a

minimum of 48 vectors per class for training the neural network. When this criteria is
met, the observed neural network error rate on the training data is a good predictor

of the network error rate on an independent set of test data (10:61). Since Foley's
rule is an approximate rule-of-thumb, an experiment was conducted to determine if

a neural network could train effectively on the classes with few vectors.

Experimental results: see following paragraph

Data file: a100x32.d

Classes: all 32

Training vectors: the lesser of too or half of the vectors, for each class

Test vectors: the lesser of 50 or halh i the vectois, for each cla.ss

Hidden nodes: 20

Iterations: 50,000

The overall classification accuracy was 92.3% for the ti aining vectors and 90.0%

for the test vectors. The percentage for the training vectors appears to be a good

overall predictor of the network accuracy for t-he test vectors. U nfort.unately, a

16



class-by-class breakdown of the training accuracy is not available using this Neural

Graphics program.

For the test vectors, the classification accuracies for class 30 and 31 exemplars

were both 0%. The only other classes with fewer than 48 training vectors were 8 and

9, with 42 each. The network classified those exemplars with 100% accuracy. The

accuracies for the other classes varied between 78% and 100% except for classes 2

and 19 at 36% and 48%, respectively.

Since the classes 30 and 31 have too few vectors to effectively train this neural

network, they were excluded from all other experiments. These classes were still

used in statistical calculations for completeness. Class 32 was renamed class 30 for

convenience.

4.3 Baseline Testing

This series of experiments was intended to provide a baseline against which to

compare future experimental results. Accordingly, the number of classes per data

file and the number of vectors per class were both varied as widely as possible.

In addition, the class numbers were reassigned to ensure a random combination of

classes.

Experimental results: see Table :3

Data files: named in format annxinn.d, where tin is the number of training vectors

per class, and min is the number of test vectors per class.

Classes: randoinly selected, numbers as indicated

Training vectors: as indicated

Test vectors: 25 per (lass

Hidden nodes: 16

Iterations: as indicated

Special note: some classes have too few vectors: thus the insuJficicnl daa entries

It can be seen that lhe classification accuracy increased as the number of train-

ing vectors increased. The accurac y dee'ased as I lhe tnuiler of cla.sses increased, as

eXpc('X('i. The accuiracly g('lerally inci eased as t he niniber of iterations increa.-eld.
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and the effect was more pronounced for runs with twenty or more classes. This was
also expected since the larger networks had to be trained with more vectors. The
maximum accuracy recorded for a 30-class problem was 90.4%.

Table 3. Baseline Testing

Training Percentage Correct (Test/Train)
Vectors Iterations Number of classes

(per class) (x 1000) 8 14 20 26 30
25 10 96.0/98.0 95.7/95.1 84.8/88.4 84.1/82.5 70.0/69.9
25 20 97.0/99.5 96.3/98.3 88.4/91.4 87.7/89.1 87.1/88.9
25 30 97.5/99.5 96.0/99.1 91.0/94.0 89.5/90.8 88.3/89.6
50 10 96.0/98.5 94.3/95.7 90.4/92.1 88.3/90.0 81.5/80.0
50 20 96.0/99.0 94.9/98.3 89.4/91.9 92.3/94.8 90.4/91.7
50 30 95.0/99.5 94.6/98.6 90.8/95.5 91.9/94.9 88.9/91.5
75 10 96.0/97.3 96.6/96.5 86.2/88.2 82.0/83.0 insuf. data
75 20 96.5/98.8 97.4/97.7 89.2/91.7 91.5/93.2 insuf. data
75 30 96.5/99.3 97.7/98.0 91.8/94.2 92.0/92.5 insuf. data
100 10 97.5/99.6 96.0/96.5 87.4/90.2 78.3/79.3 insuf. data.
100 20 97.5/100 96.9/96.9 91.6/93.1 89.1/90.0 insuf. data
100 30 98.0/100 96.9/97.6 91.2/94.7 92.0/92.5 insuf. data
125 10 98.0/98.5 95.7/96.3 90.2/90.6 76.0/77.1 insuf. data
125 20 98.0/99.2 96.0/97.5 90.4/91.4 88.3/89.8 insuf. data
125 30 98.5/99.5 96.9/97.6 92.6/94.8 90.9/91.9 insuf. data

4.4 Effect of Number of Classes

This experiment investigated the relatioiiship between classification accuracy
ad the number of classes to be discriminate(.

Experimental results: see Figure 1

Data files: named hn format a50.rTn.d. where n i Is le number of classes

Classes: randomly selected, variable number

Training vectors: 50 per class

Test vectors: 25 per class

Hidden nodes: 16

is



Iterations: as indicated by legend (k mneans "x 1000")

Special Note: accuracies plotted are for test vectors

100r

90 ....

0
85

o80 ...

:10k'
a) 1:20k'

0 5 10 15 20 25 30
Number of Classes

Figure I1. Effect of Number of Classes

The classificationi accuracy dlecreasedi as the numnber of classes icreases, as

expected. The decrease was not clute to a limitation of the network capac ,ity (only
16 hidden niodes), as demionstrated in section 4.8. The accuracy increased as the
numnber of iterationis inicreased. The graph of Figure I clearly shows the mnany-class

problem wvhich hamipers autom-at-ic idenitification systemis.

4.5 Convr iyencc of Nc Iwor A*,cc uracyj

IN somne cases. the accuirac ' of a nieural nietwork will onflY reach its m~axinitim
after a large number oif iterationis. This is usually apparent in nietworks wvith ;7 large

numnber of output niodes (mieaninjg at large inumber of classes). For this experinwnit.

the accuracies of both a 20-class and 26-class network were mionitored as they were

traitned for a large inumiber of it erationis.

Experimiental results: see lFigure 2 aiid Tfable 18 (Appenldix A)
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Data files: a50x20.d and a125x26.d

Classes: 20 and 26, respectively (randomnly selected)

Training vectors: 50 and 125 per class,, respectively

Test vectors: 25 per class

Hidden nodes: 16

Iterations: on x-axis

Special Note: accuracies plotted are for test vectors

90

08

0

20Oclass':

03

20

0 20 40 60 80 100
Iterations (x 1000)

Figure 2. Convergence of iNetwork Accuracy

Tlhe convergence of the netm 011(' accuraciies occurred withinl a few thousanld

iterations for this data. The 26-class p)robleml takes longer to converge because there

are more classes and more training vectors per class. Overtraiiiiir was not, observed-'

the net work classification accuracies did not chop significantl1Y durig traiinig to

200,000 iteratimis,
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4.6 Binary- Coded Output Nodes

Neural networks with many output nodes have a large number of weights and

therefore much computation is required f'r training the network. One possile way

of reducing the number of outp~ut nodles is to assign a coded meaning to each of the

output nodes. Instead of the usual class-coded output in which the node with thle

highest output value signifies the class number, each node could be interpreted as
a digit of a binary number. The output 1010 could be interpreted as class 10. 111
this experiment, the network accuracy was determined for various sizes of networks

trained to outptl the binary-coded class number.

Table 4. Effect of Binary Coding of Output

Percentage Correct (Test/Train)
File name Iterations Binary Output Class Output
a50x08.d 10.000 96.5/99.8 96.0/98.5

30,000 96.0/99.8 95.0/99.5
a50x14.d 10,000 92.3/93.6 94.3/95.7

30.000 9.5.7/ 96.7 94.6/98.6
a50x2-6.d 10,000 67.2/68.5 88.3/90.0

30,000 76.9/77.6 91.9/94.9
al2SxOS.d 10,000 95.5/96.8 98.0/98.5

________ 30.000 9.55/98.6 98.5/99.5
a.0x20. 10.000 79.6/81.4 90.4/92.1 1

30.000 76.4/79.3 90-8/95.5
60.000 86.0/90.1 nl/a
90.000 8.5.6/89.6 n/a

a 125x20.d 10.000 82.0/82.0 90-2/90.6
50.000 78.0/79.0 n/a
100.000 82.2/8-5.4 n/a
12-5.000 83.8/85.8 n/a

_______200.000 78.4/80.6 ri/a

Experimiental results: '[" able 4I

Data files: nanled In format ailnnrm in. d. where nn i, tHie inmmiiiier of t ra mm iig vectors

p~er cla'", and1( I?) is t lie nu imi1ber of classes.

Classes: rand~oiilY eete:S 1.1, 21). oi- 26
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Training vectors: as indicated by file name

Test vectors: 25 per class

Hidden nodes: 16

Iterations: as indicated

Special notes: Neural Graphics output paza.meter set to Binary Output. last col-

umn of Table 4 was taken from Table 3

The binary-output neural network performed marginally better than the equiv-

alent class-output neural network only for the 8-class, 50-vectors-per-class data set.

In networks wih 14 or more classes and networks with 125 training vectors per class,

the binary-output network performed relatively poorly, The binary-output networks

took longer to tiain on this data. The binary coding scheme performed progressively

more poorly as the number of classes increased and/or the number of training vectors

increased. For the 20-class, 125-vectors-per-class data set, the class-output network

performed 6.4% better than the binary- output network, even though the latter was

trained to its maximum accuracy (which occured at 125,000 iterations). The binary

coding of the output nodes generally decreased the accuracy of the neural networks.

4.7 Repeatahlhdy of Experiments

The consitent results of the ire'iotis experiments seem to indicate that the

accuracies obtained are repeatable and are independent of t he initial random weights.

This experiment was run to determine explicitly if the results obtained using Neural

Graphics are repeatable. Three data files were run a total of 40 times, starting

each time with a new random set of weights. Both norma! class-coded otpit anI

binarv-coded oiat.l)Ul were iised (once on the same file).

Experimental results: see Table 15

Data files: aSOxl.d. a75x20.d. and aS0x26.d

Classes: 1.1. 20 and 26. respect ively: rai(omly selected

Training vectors: 50, 75 and 50 per 'lass: respectively

Test vectors: 25 per class

Hidden nodes: 16
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Iterations: 20,000 each run

Special Note: The last two rows represent runs with the Neural Graphics ouput

setting at "Binary",~

Table 5. Repeatability of Experimenits

R 11 I Percentage Accuracy (Test/Train)
File___ I__ Averages 1Deviations

a75x20.l [10 90.1/92.6 .87/.86 1
a50x14.cI 10 II 97.0/97.7 .80/.26Ia50x14.d f 10 90.0/95.1 1 1.68/.29 1
a.50x26.cl 10 72.2/74.2 J 2.13/1.62

The standard deviations were. less than 1% for the runs with normal class-

coded outputs, and were less than 2.2% for the runs with binary-coded outputs.

The deviations wvere smaller for networks with the normal class-coded outputs than

with the binary-coded outputs. The deviations were larger for networks with more

classes.

The standard deviations aire exp)ected to be even smaller for runs inadle with

more iterat ions. due to t !,- continued convergence of the neural net work trainig

which occurs after 20,000 iterations. The0 results of the iNeural Graphics, ruli3 canl

b)e consideredl indlependlent of the initial weights when they are randonfly set. The

results are repeat able within a smnall statistical variation.

.4.8 Effu'1/ of NitVn bhrr of Iliddr n Layrr Nodts

The iium11ber of hidden layer no(!es required to opt-imize thle Classifical ion accu-

rac *y of at neural net work has not been (let erir'ed analyt ica liv for t he general case.

'Th isCe~j~r11nient ilvesti1gated the( iCat iOnlihip bee lCCiet.worbP p)(tlfoiniace and (te

r1ibrof hiddenl la,\er. fiodes. "Ihle goal was to fid t he m11iniuml nuumi1ber of' i1 des

Ireqi ire'rl to eraiii' ood cla.sification performa nce.

Experimntal resuits: see Pigure :3 and 'able 19 (Appendix A)

Dat~a files: as inmd ical ed iii Tlable 19
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Classes: as indicated

Training vectors: indlicated1 by 1st number ill file name

Test vectcrs: 25 per ciass

Hidden nodes: as indlicated

Iterations: 20,000 for Figure 3; as indicated in Table 19

Special note: the program sometimes crashed when the number of hidden nodes

was small and the total error grew very large

100-

90 .

$4

80 '7

606
C)0 18ciasses.

2 26:lasses 1: *N

40-
542 45 40 35 30 25 20 15 10 5 0

Number of Hidden Nodes

Figure :3. Effect of Nimbler of hlidden Nodes (20.000 Iterations)

T1he performance of the neural net works was not increasd (and thle training

timie was greatlyv increased) by using more -hidden inodes thlan thle num11ber of Classes.
J lie perlorniance degradled when the inmber of hidden niodes was less t han about.

one-halIf the nuinbor of classes. Foi this dlata set. opt inniclassification perforniance
call be t'nsiuure( by using In(,re hidden laver niodes than lualf the numiber of' output

classes.

2-1



4.9 Effect of Relative Numbers of Training Vectors

All1 16,939 vectors of the :30 usable classes were divided into two equal sets of

vectors. One of the sets was designated training vectors, and the other was designated

test vectors. A :30-class neural network was constructed and trained with varying

numlbers of training vectors as follows:

*alldata.d: all trng vectors used

*maxlOO.d: the lesser of 100 or all the trng vectors per class

*alllOO.d: all classes had 100 trng vectors

*some200.d: samne as alllOO0A except classes 1, 2, and 19 had 200 trng vectors

each

* ome300.d: same as alllOO.d except classes 1, 2, and 19 had 300 trng vectors

each

Classes 1. 2, and 19 were chosen because the 30-class networks had the lowest

accuracy of classification for vectors of those classes.

Experimental results: see Figure 4 and 'able 20 (Appendix A)

Data file(s): alldala.d. maxlOO0d. AMAlO~, some200.d. and some.300.d

Classes: :30

Training vectors: 100 per class except as indicated above

Test vectors: 8-169 total (half the vectors for each clas)

Hidden nodes: 20

Iterations: 70.000

Special notes: for thle last :1 files. Solme (ljlicat ion of Ito vectors was required to

4Yenierate t lie re(1Iiired ;iii1ibers. only the first two (lta files are iisedl for the

graph.

Theclaseswitl hIiiaiw vectors performed imuch b~et ter when t hey were allowed

a disproport ioiiatly large nim mber of tra iihig vectors. TIhis shows thialt hose class"es

had at (IisproI)ort ltatelN ci a rl effect on IiI trai iiiiig of t he neumralI net work. (Coil-

Versel vY. I lhe clases wit h) few vectors l)ertorI 1ilmed poorlY w1hemi I hiere m cre cla;sses. wit I)
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Figure 4. Comparison of All or 100 Training Vectors

many training vectors Included inl the data set,, yet. performed very well when the

number of training vectors was limited to 100 per class.

Trhe effect of adding more training vectors to the classes with fewer than 100

exemp~lar.- was to decrease the network perfo,'nance slightly on sonic other classes.

When, in addition, the number of vectors in classes 1.2, and 19 was doubled, only

the network performance on class 19 was significantly increasedl. When the number

of vectors for the same three classes was increased t.o 300 each, the performance of

(lie network on class 19 again Increased. with lilt Ile effect on Classes I or 2.

The overall acrii'acies list.ed , in Table 20 are higher than ror previous 30-cia.ss

net works becaulse there are more vertors of sonme classes which were very accurately

classifiedi. rhie actual perfo~rmance of the nelworks on new data wotld be" siilar

oniy if tihe classes were presented in t~he saine proportions (as per Tl*able 2).

It. is apparent t hat t here Is an opt innim nmbler of I raining vectors for each c'lass
which would result iIIn aximunm ove,-all classification accuracy. The large nmber

of permutlations lpossilble with I his 30-class lp'olehmn rohlitits an exhaiisli\', search.

In, general, training tile nel work wit h alplromilnately equal mimblers of vectlors froml
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each class resulted in good overall accuracy without badly degrading the recognition

of any p~articular classes.

4.10 Effect of Vectors with Equal Feature I/alues

There are three classes which contain vector's wvith all 16 featutres of equal value.

The value of the features varies widely between vectors of the same class. These
tconstanC vector's may be degrading the accuracy of the networks. The classes 1,
2, and 8 have 13, 90. and 11 "constant** vectors. respectively.

Several approaches were used in this experiment. The three classes 1, 2, and
Swere first treated as a 3-class lproblemn (file: const3.d). Then. the constant vectors

were eliminated from the data file and the 3-class network was trained again (file:
noconst.3.d). Then, tile 3-class network was trained with only the constant vectors

for training and only non-constant vectors for testing (file: allconst3.d). The effect

of the constant vectors on the accuracy of a 20-class netwvork was tested by including

the classes 1. 2, and 8 (file: const20.d). and then rep)eating the training with the

same classes with the constant vectors removed (file: noconst20.d).

Experim-lental results: see Trable 6

Data files: as Indicated

Classes: classes 1. 2. and 8 for 3-class network: other 17 (classes chosen at random

for 20-class net work

Training vectors: 50 per class

Test vectors: 25 per class

Hidden ntodes: 16

Iterations: as inidicated

Thle effect of reiovintg t he "const ailt vectors fron t Ihe dat a files was to implrove

the pe)('rllaice of tile neural net work oil t e~t vectors bY I .8'X Ibr the 3-(lass problem.-

aid bY 2.(;(,7 for- t lie 20 -class p~rob~lem. Thle poor performanice of het( net work Ini t Ie(
t est wit It all ('(nst ant t raiinrg vectors indicates t h at t here Is a fundI~amel(nt al difference

bet weenl these vect ors and I te ot her vectors of clas',;es 1 . 2. anid S. The bet ter overall

jperforimince of I lie 20-class network is p~art lv dne t o I te bettevr performance of t i 17
classes with It Io cotisia it vect ors. T'hese restit s i ndIica te Ira t ft h vect ors wit h eqita I

\v;litc ate det rilint al to thle classificatl i roces
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T1able 6. Effect of Vectors with Equtal Featuire Valutes

VX. Accuracy (Test./Traini)
___________ _______ _______ Iterations (x 1000)

File namre Classes 10 20 30 so
const,3A :3 88.0/98.0 88&0/99.3 89.3/99.3 86.7/99.3

IocoIIst.3.(l 3 93.2/100 91.5/100 93.2/100 91..5/100
allconst:3.l .3 :38.2/92.0 40.5/95.4 41.3/96.6 41.15/96.6
const20.d 20 87.8/91.1 88.6/93.6 90.8/94-.7 r90.6/94.1l

-oonst2Od 204./31 9./:.9 90-4/9-5.6 93.2/97.7j

./.11 Ne! work hi(for1facf bsilig FhiVC, J'Cay.-

In ordler to dlirectly measure the contributtion of indcividlial featuires to the cls-

si ficatIion process. featuires were svstemnatically deleted fromt a (data set and the per-

formnance of the neuiral network with fewer and fewer feat ulres was rccorded. Featuires

were (leletedl in reverse order bv arbitrary choice (featutre 16 dleted1 first)

Experimenital results: see Figutre .5

Data ile: (')0x:30.(l

Classes: 310

Training vectors: .50 percls

Trest vectors: 2.5 per ls

Hidden nodes: 20

Iterations: .50.000

Special nlote: I he( feat urIes are counte (n( IrJu he -,Iar! of I te dat a vect ors (g.12

t'aliries iniciates I iv I1st 12 feat itres)

There(T Was a grarefiul legrada t on of" net work performnc e as the numnber of

feat iprs wasN reducved. 'Ihel hli-,her- Jill inhered.( feat ii IP had less of at)i effect otil Ille

niet work acciiimy. 1)11 t his miaY have lient 1wn'etseearb feat tire becatine morm itilpor-

taut as thle total tittitihe' of feat tres was red(It(e'l and( thiere was lesredttidan r. Th'e(

grajinl ill Figitre') *'hows lhat no4 fe-atl t Ve is1'r ittd i ll Ir l it lt to Ilhe elassicln a ili

itlait at lier
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JI.12 Feat ure Saliency

The Neural Graphics program provides a measure of I he usefulness of a pax-
ticular feature in the network classification process. It. Is called thle salie ncy.

Five data sets weore used in 25 rus to determine the saliency of each feature.
The average ranking of each feature over all the runs and the final ranking was

calculated.

Experimental reFUltS: see Table 7

Data files: newi .(, new2.d, new3.d, newl .d, andluwF.

Classes: :30

Training vectors: 50 per class

Test vectors: 25 I)eJ class

Hiddeni nodes: 20

Iterations: variable; 10,000 to :30,000

Special note: Neural Graphics toggled .Saliancej On
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Table 7. Feature Saliency Ranking

Feature Avg. Rank Ranking
1 4.4 2
2 11.2 12
3 12.6 13
4 10.5 11
5 8.3 9
6 7.1 6
7 7.5 8
8 5.6 5
9 5.0 4
10 7.2 7
11 12.S 14
12 14.0 15
13 14.2 16
14 10.1 10
15 4.5 3
16 1.0 1

Feature 16 was by far the most important feature for the classification process.

Howecver, the graph of Figure 5 does not show any significant drop innetwork accu-

racy when featutre 16 is omitted. This miust be (tue to the redundlancy of* information

contai nedl in the other 15 feature,,. Other features were con sidIeraly less Imp~lort ant

with no large d iscontmnui ties in the ranking. The saliency mneasure was compared to

statistical lparanieters in chapter 5.

The 5 highest.-saliency features. thle 5 lowest-saliency features, and thle 11

lowest.-saliencY features were extracted fromi die vectors of the file ,i r..The
resutintg file" were 1us.ed to t rain neural networks with thle appr~lopr'iatei nuiber of'

input. nodles and the resulting p~erformances were recordled.

Experiniental results: see TFable 8

Data files: best.5f.d. worst..5f.d, and worst]I lf.d

Classes: :30

Training vectors: 50 per class

Test vectors: 25 pci class
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Hidden nodes: 20

Iterations: as indicated

Table 8. Effect of Feature Saliency

File Name Iterations % Test % Train
best5f.d 80,000 87.6 90.3

worst5f.d 50,000 73.9 75.2
worstllf.d 50,000 91.7 93.8

The network using the best 5 features performed 13.7% better (on the test

vectors) than the network using the worst 5 features. The worst 11 features produced

a trained network with greater accuracy than the network trained with the best 5

features, All features were important to the classification process.

J1.13 Summary

The data from class numbers 30 and 31 was excluded from further experiments

because they have too few exemplars to effectively train a neural network. The

general results of the baseline testing were that the classification accuracy of a neural

network decreases as the number of classes increases. The accuracy increases as the

number of training iterations increases or the number of training vectors per class

increases. The convergence of the network models to a stable value of classification

accuracy, and the repeatability of those results, was confirmed. The effect of the

binary-coding scheme at the output nodes of the neural networks was negligible

when there were only eight output classes, but caused a decrea.se in the ('assification

accuracy when there were 14 or more output classes.

The networks could be trained close to their maximum accuracy as long as

the number of hidden layer nodes remained above half thc number of out put classes.

The anomaly of data vectors with all-equal feature values was shown to decrease the

performance of networks. The effect of using many more training vectors of some
clasies relative to other classes adversely affects the accuracy of the networks on

vectors of the smaller classes. When the number of training vectors is limited to

a maxinumm of 100 per class, no adverse effects were noted. The classification of

particular classes was improved by including more training vectors of those classes,
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but the effect on the classification of other classes wa-s unpredictable. Finally, the 16
features were ranked in importance by the salicncy measure,, but all features were

required for the maximum network accuracy.

The following chapter presents a statistical analysis of the data and relates the
statistical parameters to the performance of the neural networks.
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V. Statistical Analysis

5.1 Introduction

This chapter contains a statistical analysis of the data, including all 32 classes.

The effects of parameters such as means, standard deviations, and class distinction

on neural network performance were evaluated. The results of some experiments of

chapter 4 were related to the obseved data distributions.

5.2 Feature Means and Standard Deviations

The entire data library of 17002 vectors was used to calculate the mean and

standard deviation of each feature, independently of the class. The results are shown

in Table 9.

Table 9. Feature Means and Standard Deviations

Feature Mean Deviation
1 139.3 38.5
2 147.6 46.1
3 154.0 48.7
4 156.9 46.6
5 155.6 -11.1

6 ]5].5 3.t.5
7 !46.5 29.3

8 142.3 27.2
9 140.0 27.6
10 139.0 27.5
11 138.1 27.3
12 137.3 25.9
13 136.:3 2.1.7
14 13:1.8 2:3.7
15 133.(0 22.6
16 130.4 21j

The featurc means vary I)(,tween 130 and 157: the st.an(lard deviations vary

betwecn 21 and 19. There are nio feat Iiurcs which are significantly different in magni-

tride from all tle ol hers. The feat.ures appear to b, ri run bered ill order of descend illig

m(an and standard deviation., (,x'(,l)l foI lhe first three.

33



The higher feature numbers inight be expected to have less value in classifi-
cation since they are closer in value across classes, meaning the classes are more

similar., However, the saliency measure of section 4.12 ranked features 16 and 15
as first and third, respectively. Feature 1 was canked second in saliency, yet has

an average feature deviation across classes. No clear correlation exists between the

standard deviations of the features and their saliency measures.

5.3 F ature Means and Standard Deviations by Class

All 17002 vectors of length 16 were analyzed to determine the means and
standard deviations of the features by class. The feature means are shown in Tables

21 and 22 of Appendix B. The feature standard deviations are shown in Tables 23

and 24 of Appendix B.

The means of the first two features for each class were used to create a scatter

plot of the projections of the class means into two dimensions (see Figure 6). The
plot consists of 32 points representing the means of the features I and 2 for each
class. The plot shows the positive correlation between the first two features. All

sequential pairs of features (i.e. 3 and 4, 5 and 6, etc.) are distributed in a very
similar pattern. Random pairs of features (e.g. 3 and 14) showed a much weaker

correlation (see Figure 7).

5.4 I"fct of FIatr Corn lalion

An experiment was conducted to test, the effect of the feature correlations

noted in the previous section. From the file c5Ox30.d, three data files consisting

of vectors with onlv 8 f eatu res were constructed. The file fOS.d used the first 8

teat tures: the file f 'r ?I.d used t lie eveu- u1111 bered feat iles: and lhe file ftsodd.d used

the odd-numlbered features.

Experimental results: see Figure 10

Data files: I'0S.d. fS 'ven.d, and fSodd.d

Classes: :30

Training vectors: 50 per class

'rest vectors: 25 per class
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Hidden nodes: 20

Iterations: 50,00

Table 10. Effect of Feature Correlation

File name % Test %Train
f08.d Jf74.0 77.1

f~even.d 92.0 j93.1
fSodd.d 91.6 92.9

The first file consistedl of4 p1lair's of correlated features. The last two files used

features which were not. clearly corr~elated, The poor, relative p~erformnance of the

network using the first data file shows that the correlation of the consecutive pairs

of features represents a redlundlancy of information.

The experiments of section 4.11 did not reveal this correlation, but the small

drops in classification accuiacy of the networks as featUres were deleted indicate

redunidant informaltion in the features, Those experiments showed that adding fea-

tures which were correlated to the existing features still improved the network pei -

for 11iance.

T1he class feature stand~ardl deviation was ulsed to calculate thel( total st andard

deviation across all 16 feat ures. Thell( total deviation is dlefin~ed here as the square'

root of thew sumn offthe feature variances, for each class. Table 25 ( Appendix 13) shIowvs

the ranV~ikintg of Il1w classes I v to ai st anda rd deviation.

Various numbhlers of (lasses with i e lowest, and highiest total deviat iOtis Were

s( ected frot n 'Table 25 to consi ruct dal a sets. The t op 10. 1 2. 1-1 an d 20 classes

were uised I s itlt to dic) h Neural Graphics program. The 1)01toim 3. 5. antd 10 classes

(wi Ii thel( highest total devilatilonls) were alIso testcd.

Experiniental results: see 'litble I I

D~ata files: as indicat ed; descri pt V iv atieN

Classes: select cc bY) ra it k fronm 'I able 25

36i



Training vectors: 50 per class

Test vectors: 25 per class

Hidden nodes: 16

Iterations: as indicated

Special Note: the run was stopped if training accuracy reached 100%

Table 11. Effect of Total Deviation on Classification Accuracy

File name Iterations % (Test/Train)
lowdevl0.d 20,000 100/100
lowdevlL.d 20,000 100/100
lowdev12.d 50,000 99.9/100
lowdevl6.d 60,000 99.3/100
lowdev20.d 100,000 97.0/98.5

h;dev3.d 80,000 98.7/99.7
hidcv5.d 80,000 96.8/99.2
hidevl0.d 100.000 95.6/99.4

Table 11 shows that 1007, accuracy oil the test vectors was achieved for the

11 classes with the lowest total deviation. The 10 classes with the highest total
deviations lead to a network accuracy of 95.6% on the test vectors. The results

show that the total deviation is negatively correlated with the classification accuracy
achievable with that class. The high accuracies achieved with the 10 classes with

the highest deviations shows that the total deviation alone is not a good predictor of
the neural nletwork classification )erf(6i malice. Ihowever, since high accuracies (over

• 0%) are achieved for alhost all class groupings. even a gain of a few percentage

points is significant.

5.6 Ndtwork irtincd on ('lass Auaus

The dist ribut ion of the classes iM the 1-dimensional feature space dletermines

how well tile classes can be (liscriminated. If the( classes are clustered in non-

overlapping groups. one would expect a classifier to perform very well. Conversely.

if (xemplars of one class are interspersel with exemplars of another class, one would

expect poor i)erformance fiom a classifier.
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Thle simplest distribution of exemplars is the existence of a single clustcr center

for each class. For this experiment, the center of each class cluster (thle class mean)

was assumned to be the vector with components equal to the mean of each feature (for

that class). The class means weic dluplicatedi and used to train a 30-class network.

Experimental resuilts: see following jparagr-,p

Data file: rnean[30.d

Classes: 30

Training vectors: 5 per class, all equal to class means

Test vectors: 846i9 (half of each Jass)

Hidden nodes: 20

Iterations: 35,000

The neural netwvork trained to a mnaximumi accuracy of 85.2% on the test

vectors. Trhe training vectors were learnied to 100%. accuracy, which wvas expected

since there was only one (luiplicated( vector rep~resenlting each class. Thle miaximum.11

classification accuracy occurredI at 3-5.000 it erat ions; further training causedi a slight

dlecrease ini accuracy after that point1. Fihe dec'rease was :3.0% andI was gradlual over

the sub)sequent 65.000 iterations.

''lhc l)CrfOrfianceX of the network was very high. conlsidlering t he ext remec coiu-

pression of data. re1 )resentedI 1by the class averaging. This r( sult imphllies that the

classes muist. be pi-edoi nantly ci ustered abhout si iigle class cent ers.

5,.7 0/is/111011 Of (1'l~,s,

BasedI on the class mevans calculatedI in thl( last section. a stun(lY of' the in terac-

ion or overlap of I~ lc (lass (list ri hut ions was tinderlaken. lw d?.'410c1,ol n 1leasire

11sed hiere is gi -cei by Equal lon 1: 1he (liSt inct ion of any Itwo classes i4 1 lhe sumil over

all 16 feat tires of' the (liference of I he class me1anls dlividled by t lie suml of I lhe class

(leviat ions. 'l'lle Inea ns a ii(I dlevia tions 1usedI were those given In 'Falea1hs 21 . 22. 2:1.

andI 2.1 (Appendix 13).

I) >1 I' Ill 4, IA/(7~, ' 7k, ) forI c la ses J. k (



The distinction of every class relative to every other class is given in Tables 26,
27, 28, and 29 (Appendix B). The validity of the single cluster per class assumption
can now be tested by building data sets using classes either close together or far
apart and training a neural network with them.

Based ol the distinction between classes, class numbers 1, 2, 6, 28. and 32
should be difficult to distinguish. A data file consisting of vectors from these five
classes was run on Neural Graphics and after 60,000 iterations the classification
accuracy was 94.4% and 97.0% for the test and training vectors, respectively. This

is relatively poor performance for only 5 classes. By contrast. the six classes 4. 5, 8,
12, 21, and 22 are among the least distinct by the distinction measure. A data file

consisting of vectors from these classes trained a network to 100% accuracy on the

test, vectors after 20,000 iterations.

The distinction of data classes shows a positive correlation with the classi-

fication accuracy of networks trained on those classes. Although the difference in

accuracy between the two networks discussed in the previous paragrahl is only 5.6%,

it is significant because it is the last 5.6% required for perfect classification.

'[he distribution of the data is l)robably unimodal for most classes. Some of the

classes have more complicated distributions. There are methods for determining the

number of modes in data clusters: the interested reader can refer to Gnanadesikan

5.8 Slali.shcal !ll~astr(., and Class Pc :formanc

'I'll statistical measures of total feat ure deviation and distinction are closely
'elated to the classification ;acuracy of tle nem-al networks by (l;,ss.

The classes which were \'ei'v distilct from of her classes by I he dist! i nd ion niea-
sure (low 'dlnes) were ranked aiioilg file highest bY Ole total fea tire deviat.ioil

mm(as1ire (see 'lable 25). ('lasses 1. 2, 6. anld 28 ranked 27. 29. :0. and 25. respe,-
ively. oul of tle 30 classes. lhe classes which were not very distinct from oilier

classes raniked a mong the lowest by the total featire d viaI io 1 Immeasmi me (,lasses .1.

5. 8. 21. and 22 ranked I. 1. 2. 11. and 8. respectivevt out of le 30 classes. A very

st roig mega live correlal tlol bet weel tle disli nct ioml amld Ihe tot al fealu e devialion

is inlicated.

ihl 1 of I li. se mea.Nlres a e also st rongly correlated wit hi 1 lie classifical ion accii-

racy bY class,. "'I" l classe, which had low mmlea.ire.s of dist illl ioll and hilgh ileasums
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of total feature deviation were also the, ones which were classified the least accu-

rately, as indicated by Table 20. Classes 1, 2, and 28 were ranked 29, 30, and 27,

respectively, for the network trained with the data file maxlOO.d. The classes which

had low measures of total feature deviation and high measures of distinction ranked

very highly by accuracy,

Therefore, the classification accuracy of the neural networks is also providing

statistical information about the classes.

5.9 Summary

The data vectors are fairly well distributed in the 16-dimensional feature space,

which explains the fairly high classification accuracies of neural networks evaluated in

the last chapter. There is a positive correlation between sequential pairs of features.,

A neural network trained on only vectors which are equal to the class means achieved

84.3% accuracy on test vectors.

The total deviation of classes and the distinction of a group of classes can both

be used to pick groups of classes which are easier to classify than thosc picked at

random. These two statistical measures are strongly correlated with the performance

of a neural network. The improvements in classification performance were only a few

percentage points, but they were significant because the accuracy was already very

high.

The abililty to choose class groupings which allow better neural network per-

formance suggests that an approach using multiple neural networks may improve the

overall performance of the classification system. Separate neural networks could be

used to classify groups of classes chosen for their high performance. and the group

residts could be combined t.o get a complete cla.isification s:ystem. The next chapter

presents experiments with systems of multiple neural net works.
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VI. Multiple Neural Networks

6.1 Introduction

The experiments of this chapter involved systems of neural networks which
together formed classification systems. The criteria for grouping the classes was

based on the classification performance of a neural network on all of the classes.
This differs from the statistical approaches of the last chapter in that only the actual

classifications performed by the neural network were used; no characteristics of the

data were used.

The general approach was to train a network to divide a large problem into

several smaller problems. First. several neural networks were used in parallel. Then.

a hierarchical approach was used with neural networks working sequentially.

6.2 Classification Pfrformance

The classification accuracy of a trained neural network was analyzed on a class-

by-class basis and the network output and classification of every test vector was

analyzed and counted by the program repcruncb.c (see Appendix D). The results
were tabulated by the program confuse.c (see Appendix 1)) and a frequency table

(or confusion miatrix) of wh ich input class vectors were mapped to which out)Ut
classes was constructed. Analysis of this matrix revealed which classes were difficult

to classify correctly and which class combinations were frequently confused.

Included in the program was an analysis of tle outputs from each node of the

neural network for each input vector. 'The last row of each table. labelled "'Not top

3"'. gives the total erlors for which the correct node output was not one of Ole top 3

in Inagnii,(le.

Experimental results: see Tables 30. 31. and 32

Data file: maxI00.d

Classes: :30

Training vectors: 100 per class: classes 8.9.26.27 have 12.42. 18.63. respectively

'rest vectors: 8 1)9 (half of each class)
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Hidden nodes: 20

Iterations: 70,000

Special Note: the last column of Table 32 includes the errors for the same rows of

Tables 30 and 31

6.3 Groupings Based on Inter-class Confusion

The confusion matrix gives the performance of the 30-class neural network with

respect to each class in two ways:

1. The number of times a given class is mistaken for any another class. This

number is given by the "Errors" row at the bottom of the tables.

2. The number of times all other classes are mistaken for a given class. Thi's

number is given by the far right column of Table 32.

The classes were ranked based on their input vector classification accuracy as

tabulated in Tables 30, 31. and 32. The ranking is shown in Table 33 (Appendix

C). Twelve classes were classified perfectly, and only 5 were classified with less than

90% accuracy.

The classes were also ranked based on the number of times any vector was

mistaken as a vector of the (lass under consideration. as tabulated in the last colunn

of Table :12. This ranking is shown in Table 34. Three classes had no vectors wrongly

assigned to them, and 15 classes had fewer than 10 vectors wrongly assigned to them.

Table 33 was ,sed to select the best 15 classes and the worst. 6 and 10 classes.

Trable :34 was used to select the most-confused 12 classes and the least-con fused II
classes, l)ata files were construicted based on these (lass groupings for the following

experiment (the files (-an l)v identified by the number of classes).

Experimental results: see Table 12

Data files: as indicated

Classes: as indicateI

Training vectors: the lesser of 100 and half the total per, lass

Test vectors: 84169 (half the total per (-lass)
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Hidden nodes: 16

Iterations: as indicated

Table 12. Class Groups with High and Low Inter-ci, Jonfusion

File Name Classes Iterations %Test [ %Traim

worst6.d 6 80,000 90.7 97.0
worstlO.d 10 60,000 94.4 99.4
bestlS.d 15 40,000 100 99.9

nonconf.d 12 75,000 99.1 99.2
confll.d 11 75,000 96.3 97.1

Since the classes were picked based on the performance of a 30-class network,

it is not surprising that the same relative performance carried over to the networks

with fewer classes. The result for the file worst6.d is the worst performance of any

6-class problem attempted so far in this research. The best-performing 15 classes

scored 100% on the test vectors.

The groupings based on the number of incorrect classifications into a class

did not result in as dramatic a range of network performance. 'l'he least-confused

12 classes scored 99.1% and the most-confused 11 classes scored 96.3% on the test,

vectors. Therefore, the input. classification accuracy \as judged a better criteria to

use for selecting class groupings and was the criteria used in the later multi-network

experiments.

6.11 Output Node Valuise

The confusion mat rix shows that when the network made an error in classifi-

cat ion, often tile correct nodle output was not, evenI in lie top 3 in niagnitude.-.There

were 160 ontt. of 407 errors in which the correct node outpui was lower than third

in magnitude. The program was modified to check the top 5 out pit no(les, and 121

out. of 407 errors were not in the top 5 in magnitude.

The significance of the "to) 5" is that. very few out put nodes have a high out put.

for any given i,'put.. The neural networks train to outl)Ult only one high value and

all other values low. Of 100 randomly selected sets of out put nodes (1600 nodes).

thre were only 160) nodes wit h output. vaies above 0.2. No set hadI more than 3
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values above 0.2. This was true for both correct classification outputs and errors.

Therefore, when the correct node output is not in the top 5, it is almost certainly

below 0.2 in value and is indistinguishable from the other low node values. The

analysis of node ou t put values did not provide any information on the correctness of

the indicated classifications.

6.5 Parallel Neural Networks

The initial appioach was to use two 15-class neural networks to classify each

input vector; the classificaticn corresponded to the highest output node from either

network. The classification accuracy was very low because the networks responded

unpredictably to vectors from classes it. had not been trained with. The outputs of

nodes from both networks were analyzed in an unsuccessful attempt to determine

which network should be used (the network which was trained on the particular

input vector). A method of identifying vectors which do not belong to any class of

a given network was required.

Two separate 16-class networks were used to classify each input vector. The

first network consisted of the top-performing 15 classes from Table 33 and a com-

posite class madei up of 20 vectors from each of the other 15 classes. The second

network consisted of the worst-performing 15 classes from Table 3.3 and a co1mposite

class made up of 20 vectors from each of (he other 15 classes.

Experimental results: see Table 13

Data files: as indicated

Classes: as indicated

lraining vectors: the lesser of 100 and half the total per class

Test vectors: 8,169 total (half of each class)

Hidden nodes: 16

Iterations: as indicated

The overall performance of the two )arallel 16-class networks on the 30 input

classes wa.s 93.5%. This was worse than the performance of the single 3(0-class net-

work and is tlhi('refore not. a uisefil te('h11iqi1e for thi., )rol)lenm. Thev alues of' tlIe



Table 13. Parallel Network Performance

File Name Classes Iterations %Test %Train
goodlI53A 15 110,000 99.9 100
badl5.d fi 15 70,000 95.6 96.2

goodl6.d 16 70,000 95.6 96.2
1)a~d16.d (1 16 65,000 92.2 91.1

outputs of nodes of both networks for the samne input vector were compared in an

attempt to determine the -approp~riate network to use for classification. The highest

output of the "~wrong- network was higher than the highest output of the "right"

network approximately half of the time. Analysis of the weights dlid not reveal any

method of choosing the right network.

6.6 Iien: rch ical AFP roach

The classification accuracy recorded for the individual classes in a 30-class

network was usedl to divide the 30 classes into smaller groulps. The overall classifica-

tion accuracy of the systemi is the probabalistic combination of the sepaxalte neural

networks. Three networks will be required for- classification:

1l. a 2-class network to separate the :30 classes into two groups

2. a net~work to classif\- the classes of group 1

.3. a network to classify thle classes of group 2

The :30 classes wer, Sp~lit into tw\ o grouips in fonli different ways. Fi"rst., the

clas~c's wet e split into tIwo groi 11) cottsisti ig of the first 15) a nd last. 1.5 classes. by

nlumbIer. Ilis grou ping was uised fo comDparison since it Is l)xeudo-ratndoi wvithl

resp~ect to class performiantce. Based onl lhe ran king of TFable :13 (Apjpeni\~i C). the

:30 classes \crc, split three otli.wr wa.\s: tI l top 21, 18. or 1I5, and( the holt oi 9, 12. or

I5. rcslpectel The ('lass, groll js were I] til Ihered I a tid 2. *Ili( niumber of it erat ions
was chosen for tlhe niaxiinin net \\ork acciiiracy: a futrther 20.000) iterations lbevotid

lhe listed valutes ca usecl cithe 111o1 change or at slight decrease in t he accuracy. in all

Experiniental results: see '[aibde H.



Data files: as indicated

Classes: 2

Training vectors: the lesser of 100 or half the total, per class

Test vectors: 8469 total (half of each class)

Hidden nodes: 16

Iterations: as indicated

Table 14. Groupings into Two Classes

File name Iterations % Group 1 % Group 2
lst2ndl5.d 130,000 93.9 97.1
top2lbot9.d 110,000 98.1 94.2

top18bot12.d 95,000 99.1 97.6
topl5bot15.d 105,000 99.1 97.5

The last column of Table 14 indicates that grouping based on class perfor-

mance call improve the performance of the two-class network. The worst performing

network was the one trained on file lst2ndl5.d, in which the class groupings were

essentially random. The best performance was by the network with the 18/12 split

based on class perlormance ranking, closely followed by the even 15/15 split.

Each of the eight groups of classes were then used to train a network to deter-

mine the individual classes. Also, the bottom 15 classes of the ranked 15/15 split.

network were Split agail into the bottom 8 and bottom 7 classes and the 8- and 7-

class networks were also trained and tested. This was done to determine if a further

breakdown would result iII any overall accuracy gail.

Experimental results: see Table 15

Data files: as indicated

Classes: as indicated

Training vectors: the lesser of 100 or half the tot at per class

Test vectors: 8,169 lot.al (half of' each class)

Hidden nodes: 16
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Table 15. Second-Level Network Test Performance

File name Classes Iterations % Correct
lstl5.d 15 100,000 - 97.3-
2ndl'S.d 15 100,000 99.0
top2l.d 21 60,000 99.4
bot9.d 9 135,000 97.0
topl8.d 18 70,000 99.7
botl2.d 12 125,000 96.1
topl5.d 15 110,000 99.9
botl5.d 15 70,000 95.6

bot8and7Ac 2 85,000 96.8
bot8.d 8 95,000 99.:3
hot-I.d 7 90,000 97.1

Iterations: as Indicated

The end-to-end probatbility of the hierarchical systems Is shown ill Table 16,
with the Ist2nd 1/isystemi added for comparison. The latter was outperformed by all 3

of the hierarchical systems. The threce-tiered hierarchical systemn (lid not improve the

overall performance of the ir st. two tiers. 'Ihel calculatlin of the overall lprobablil ities

is exp)lained inl thle next section.

Thie best p~erformance was dleliveredl 1) ' the system which sp~lit, the 30 classeb

18/12 based onl the class performances inl the 30-class network. The accuracy of

96.,5%,( is a 1.3% implrovernent. over the equivalent :30-class performnance of 95.2%.

Tab~le 16. Ovorall i erarchtical System Performances

SY-st-en name Class Split ( lassi ficat ion %
Ist.2ind1I- 15/15 9:3.4

t01j)2 I bot 9 21 /9 9-53
L~op I8bot. 12 18 '/12 96.5
t op I5bot, 15 15/1-- 95.8

Thew performuance of eac!] net work onl each class of vect ol is Md imded for ref-

eeIInCV Ill Table :35 (Append(ix C"). Thle -dash",i (litntes iii1Iicate (la.ses which wVould

bmve e presenited to thIiat liet work.



Figure 8. Probability Tree for Hierarchical System
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6.7 Probability Tree

The probability tree for the hierarchical system is shown in Figure 8. The

probability of a vector from a particular class being presented to NETI is equal to

the fraction of the total number of test vectors that class represents., NETI splits

the 30 classes into two groups of classes, called "Good" and "Bad". The probability

of ain input vector being "Good" or "Bad" is equal to the fraction of the total test

vectors represented by all the classes in that group. NET2 classifies the "Good"

vectors and NET3 classifies the "Bad" vectois., Note that the sub-networks NET2

and NET3 score 0% correct if NETI preceding it makes an error. This is because
the sub-networks cannot correctly classify a vector from a class they have not been

trained on.

The probabilities shown are for the best-performing system. The other sys-

terns could be represented by similar structures except that the three-level sys-

tem would require an extra column to represent the 8/7 split of tle bottom 15
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classes. The probability of a correct classification is found by recursively multiply-

ing and adding the probabilities of the left-most node's subtrees for the branches

with "Right" outcomes. For the best system (topl8botl2), the overall probability

is P = (4902/8469)(0.991)(0.997) + (3567/8469)(0.976)(0.961) = 0.965. The overall

probabilities for each of the networks is given in percentage form in Table 16.

6.8 Summary

The class groupings based on the percentage of input classes correctly classified

showed a greater spread and a higher maximum tthan those based on the number

of times an output class was incorrectly chosen. Therefore, the input classification

accuracy was used to partition the 30 classes into groups for the multi-network

systems.

The parallel neural networks did not provide an improvement in system clas-

sification accuracy. All three of the hierarchical systems provided an improvement

in classification accuracy over the single 30-class network. The maximum accuracy

achieved was 96.5% by the hierarchy based on a 18/12 class partition.

The following final chapter summarizes the fiudings of the thesis.
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VII. Conclusions

7.1 Intr-oduction

This chapter summarizes the findings of the experinmts of chapters 4, 5, and

6. The factors affecting the classification accuracies of the neural networks and the

methods identified for improving the accuracy arc discussed. Recommendations for

further research are included, and the most important findings are restated in the

final summary.

7.2 Fa ctors Affecting Network A ccum(cy

The factors affecting the classification accuracy of' the neural networks in the

exp~eriments are listed in Table 17. The effect of icreasing various network or data

parameters is shown, Further clarification can be found in thle applicable sections.

Table 17. Factors Affecting Netwvork Accuracy

Section Prameter Inrease Effect [ Comments
4.2/4.3 Number of triig vectors increase minimium required
4.:3/.4 Number of classes dlecrease
.1.3/ 1.15 Number of iterations 3 ncrease MI~IIIfiii~I exists
4. 6 Binary Coding decrease worse for inat~y classes
4.8 N umb~er of hiddeni nodes inlCreaseI max n io. classes
4.9 Rei. no. trng vectors variable class-by-class effects
4.10 Equal-valued featuires decrease
4.11 Niunber of freatures increaseI eveni wheni correlated
,1.12 Saliency of featue I Ii ic rea S low correlationl
5.A Featurie correlationl (ecrea'se
5,.5 T1otal (eviatio) (decrease
5. 7 Ijisti nction inIIc rease

7.? '; MfItods of Iinproviiu .4('c'ulIcy

Th Ia Ic cuIIra cY of t he ex per Im1)entl Iw' 1 11 work S we re i I Il) roved b~y coilt rollIn1g

the pa ramet ers listed ill Tablde 17. I lowe(\*ei . ini a pract ica l applicat ion. thie designler

of ;I1( liilal l letAwork classificltionl syst ei does n1ot iiavv coi I rol over ii alnv of thlose
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parameters. The number of hidden layer nodes can be optimized, as can the relative

numbers of training vectors (subject to data availability). Binary coding of the

output nodes should not be used. All of the available features should be used. The

number of iterations of training can be controlled to achieve maximum accuracy.

The rest of the parameters listed are not under the control of the designer.

Systems of neural networks can be used to increase the overall classification

accuracy. In this case, the designer has control over how the problem is divided

between the ,eparate neural networks. Partitioning of the classes based on the class-

by-class performance of a network using all of the classes proved to be the best

method in this research.

The use of parallel neural networks, in which separate networks were trained to

recognize a subset of the total number of classes, did not improve the experimental

accuracy. The problem was that the neural networks responded unpredictably to

vectors from classes they had not been trained with.

Hierarchical neural networks were found to provide an increase in the overall

classification accuracy. The method was to partition the classes into two groups

with one neural network, and then classify the vectors of each group with two other

networks. The number of classes included in each group wab determined empirically.

The partition which produced the highest accuracy was the 18/12 split, which re-

suited in all overall accuracy of. 96.5%M (see lal)h, 16). This was also the l)artition

whichi gave tlhe high'est accuracy for groulping into two classes (see Tl'able I-1). but

the margin of victory (0.1,A) and the limited number of partitions tested (only 4)
precludes aly fu rt her generalization.

7. / Iuol;iuu1 1d(hitons

NIi .nv of the sections of this tie.sis coild be explored fiirtI her. The results of
siilar cxl)erinlls on different neural net work topologies anI using different data

('OUld 1( e inl'o; maltive. e se of dift'eretl crit 'ia for the ipartitioning oft le classes

for tlhe hirarchical ssLems iiay yield fiirther increases in classificat.ion acciiracy.

7.5 .Summary

This research has denionstrated hati neural networks can be used to design
r dar classifica tioI syst ens wit Ih very high accia'c y for 30 classes. It has also deI nII -

sI rated I hatll Ihe hi'rarlchical alpiproach to I lIe (lassificat ion probleni wit Ii 30 classes
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results in greater overall system accuracy. The method used should be applicable- to

other problems with many classes. The maximum classification accuracy on a set of

8469 test vectors representing half of each class was 96.5%.
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Appendix A. Chapter 4 Data Tables

This appendix contains several data tables which supplement the sections ref-

erenced in the table captions. Some of the data from each of these tables is graphed

in the applicable section.

Table 18. Convergence of Network Accuracy (section 4.5)

File name Iterations % (Test/Train)
a50x20.d 10,000 91.0/91.9

20,000 90.8/94.5

30,000 92.6/94.5
40,000 91.8/94.5
50,000 91.8/96.1
60,000 92.4/96.6
70,000 92.0/97.1
80,000 94.0/97.0
90,000 92.8/96.7
100,000 92.8/96.7
I IJ,000 92.6/96.3
120,000 93.0/96.9
150,000 93.2/97.4
200,000 91.6/97.5

a 125x26.d 10.000 76.0/77. I
20.,000 88.3/89.8
30.000 90.9/91.9
50,000 94.0/94.6
75,000 9 1.2/94.8
100,000 ):3. 1/9).
125.000 9:1.4/95.:
1 50.00() 93. 1/95.2
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Table 19. Effect of Number of Hidden Nodes (section 4.8)

Percentage Correct (Test/Train)

Hidden Number of iterations
File name Classes nodes 10,000 20,000 1 40,000
a125xO8.d 8 7.5 98/98.5 98.5/99.4 98.5/99.8

8 50 98.0/98.3 98.5/99.5 98.5/99.9
8 25 98.0/98.9 98.5/99.6 98.5/99.9
8 16 98.5/98.5 99.0/99.3 98.5/99.5
S 8 97.5/97.8 99.0/98.8 98.5/99.5
8 5 97.0/94.8 96.5/96.1 95.0/96.3
8 3 77.5/75.4 72.5/74.3 90.5/91.5
8 2 45.0/47.0 63.0/62.2 crash!

a50xl4.d 14 40 96.9/97.7 95.7/97.3 97.1/99.3
14 30 96.3/97.3 95.7/97.1 96.3/98.7
14 20 95.4/96.6 94.6/96.9 9.5.7/98.7
14 16 95.1/97.4 95.7/97.1 96.0/98.0
14 10 9.1.9/95.4 94.3/94.3 95.1/97.6
11 6 85.1/86.4, 84.0/87.1 90.3/93.1
14 .1 78.9/77.3 78.0/80.4 86.9/89.7

" 14 :1 .51.2/52.3 .11.0/42.7 57.1/56.9
alOOx2O.d 20 40 88.2/89.3 91.4A/93.6 94.6/96.7

20 20 87.8/89.5 92.4/91.2 94.0/96.2
20 12 86.0/86.7 91.6/93.1 92.4/94.4
20 8 8:3.6/86.7 87.2/89.9 89.2/92.:3
20 5 64.8/66.1 6.1.8/66.5 69.6/71.0

at75x26.d 26 45 8:3..9/,5.0 93.1/91.0 9.1.5/95.51
26 26 80.2/80.0 91. 1/93.0 92.8/915.0
26 12 76.1/77.1 8.1. )/_6.:) 89.-4/90.3
26 10 70.5/72.5 88.6/88.3 891/89.9
26 8 70.5/72.f) 77.7/80.0 77.1/77.7

" 26 6 13. 1/4-1.8 1.9/55.7 59.1/60.9
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Table 20. Effect of Numbers of Training Vectors (section 4.9)

Percentage Accuracy (Test. Vectors) for file:
Class alldata.d maxlOO.d alll00.d some200.d soine300.d

68.8 72.8 52.8 72.8 64.8
2 39.2 56.8 48.8 57.6 56.0
3 98.3 93.3 95.0 94.4 95.2
4 99.2 100 59.2 100 100
5 100 100 97.6 100 100
6 98.5 97.5 98.5 94.0 98.0
7 100 99.7 99.7 100 99.6
8 0.0 100 100 100 35.7
9 31.0 100 1N0 100 100
10 94.1 97.9 91.,11 90.0 94.1
11 90.1 90.8 9,4.9 94.9 9,1.0
12 100 100 100 99.7 99.7
13 100 100 100 100 100
1,1 99.3 98.3 99.0 99.3 100
15 100 100 1O0 100 1O0
16 99.7 93.9 98.3 97.6 99.-3
17 97.0 99.7 !)7.0 98.7 96.6
18 97.2 95.7 99.6 98.2 89.0
19 (i6.2 59.5 21.6 71.6 87.2
20 99.7 100 97.6 99.3 99.:3
21 100 100 100 100 100
22 100 100 too 1O0 100
2:3 97.6 97.3 89.9 9-1.6 91.3
2-1 99.3 99.(i 97.5 98.9 97. I
25 97.1 97.1 98..3 95.7 93.0
26 6,1.6 100 100 95.S 95 8
27 100 100 100 1O0 10)
28 81.7 88.6 81.2 90.1 81.2
298.0 89.9 85.9 96.6 93.3
:10 100 92.5 6.9.6 95.2 93.0

_ 93.7_. )5.2 __ . :. 9).S 95.0
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Appendix B. Chapter 5 Data Tables

This appendix contains large data tables giving statistics for every clauss and

feature. D~iscussion of the data can be found in the sections referenced in the table

captions.



Table 21. Feature Means by Class (1 of 2)(section 5.3)

Feature Number
Class "01 f02 f03 f04 fO5 f06 f07 fOS

1 90 90 100 119 118 153 159 155
) 97 96 100 107 114 116 116 114
3 130 145 160 166 162 147 127 109
4 130 124 117 111 109 114 123 133

1281 124 119 116 114 117 123 129
6 83 70 60 57 64 79 98 116
7 171 185 191 189 180 169 161 156
8 128 129 129 129 129 129 129 129
9 104 102 !06 113 121 127 130 129
10 190 200 197 180 158 137 124 119
11 161 170 174 171 164 155 146 140
12 183 205 220 227 224 216 204 192
13 102 104 110 116 121 122 122 122
14 207 230 239 234 216 193 173 159
15 180 196 205 206 201 196 195 198
16 108 115 127 141 152 158 157 152
17 92 89 94 105 118 129 136 138
[8 129 149 170 185 192 189 182 175
19 125 128 131 134 136 1:36 136 134
20 106 10) 116 125 132 136 136 135
21 205 229 2'13 244 234 218 205 197
22 170 181 186 183 176 168 163 160
23 142 152 164 17:3 177 176 170 162
24 139 1:36 1:31 126 124 126 131 137
25 1 t2 1.14 111 141 139 1:36 134 1:33
26 129 12:3 116 110 110 116 121 1:33
27 121 12.1 127 129 129 127 123 120
, 74 57 48 51 63 80 96 109

29 100 105 116 129 140 116 147 144
:30 1O 107 106 110 115 121 126 130

1 168 70 82 100 119 131 135
:32 97 93 94 99 106 113 19i) 122
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Table 22. Feature Means by Class (2 of 2)(section 5.3)

Feature Number
Class f09 flO fll f12 f13 f14 f15 f16

1 145 134 125 124 125 128 130 132
2 113 114 117 122 124 125 124 121
3 98 96 96 96 96 96 96 96
4 140 142 138 131 125 121 121 123
5 133 134 132 128 125 123 124 126
6 131 142 146 1,49 149 148 147 146
7 153 151 150 147 150 150 145 130
8 129 129 129 129 129 129 129 129
9 128 126 125 125 126 126 125 125
10 120 122 124 123 122 122 124 126
11 137 137 139 140 141 143 144 145
12 182 172 164 155 147 140 134 130
13 123 127 132 138 144 147 148 150
14 152 148 1,17 141 134 127 119 113
15 204 207 207 197 183 167 152 140
16 141 138 132 130 127 125 123 123
17 137 136 135 137 138 110 140 140
18 171 167 162 155 143 128 117 112
19 132 131 130 130 129 129 129 129
20 133 1:33 133 136 137 137 137 136
21 196 199 205 207 205 202 195 189
22 160 161 162 160 158 156 154 154
23 154 1,18 1,16 1,16 147 149 152 154
2.1 140 1.12 1,11 1,10 140 14:3 1,18 152
2,5 132 129 127 12.1 121 119 116 112
26 138 137 1:32 126 121 119 120 123
27 119 119 120 122 122 121 120 120
28 116 119 119 120 121 122 121 126
29 1,10 137 136 1:36 136 135 134 t :34
30 1:32 1:32 130 128 127 125 124 124
:31 133 129 124t 12:3 12, 125 125 12,1
32 12.1 125 125 127 128 128 130 132
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Table 23. Feature Deviation by Class (1 of 2)(section 5.3)

Feature Number
Class f0 f02 f03 f04 fO5 f06 f07 f08

1 19 19 IS 1718 18 18 16
2 23 27 37 48 54 52 4:3 29
3 10 9 10 15 19 18 12 8
4 2 2 2 1 1 1 2 2
5 1 1 1 1 1 1 1 1
6 24 38 48 53 54 51 45 39
7 5 5 4 4 4 4 4
8 1 1 1 1 1 1 1
9 2 2 2 2 1 1 1 1
10 16 16 1:3 10 8 7 6 5
11 11 11 10 8 6 6 6 6
12 6 6 6 5 4 4 4 4
13 1:3 14 11 8 5 6 6 6
14 13 13 11 2 11 10 9 8
1) 13 12 11 10 9 8 7 7
16 14 13 10 6 4 4 5 5
17 1011 10 7 1 2 2 1
IS :39 :35 26 16 17 19 18 14
19 141 1:3 10 06 5 6 6 6
20 6 6 41 3 2 2 2 2
21 11 11 8 6 6 5 5 4
22 6 6 5 3 3 :3 2 9
23 I1 10 S 6 7 - 8 J 7
24 12 12 10 S 7 .5 4 1
2.5 1:3 13 11 7 .5 5 6 5
26 2 2 2 2 1 2 2 2
27 :3 3 2 2 2 9

28 S I 1 11 1S 16 15 14 1:3
29 13 1:3 10 6 :1 :3 1 :3
:30 1 3~ It :3 2) 9 9
:31 _11.1 17 16 13 8 4

12JI 10 8 6 .11 _ 'I ~ 1 4



Table 24. Feature Deviation by Class (2 of 2)(section 5.3)

Feature Number
Class f09 fT01fil f12 f13 f4 f15 f16

1 18 20 20 19 20 19 18 17
2 21 21 22 22 22 22 22 21

13 16 16 16 16 16 16 16
4 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1

6 35 31 31 30 :32 34 .36 37
7 4 4 4 4 3 , 4 7
8 1 1 1 1 1 1 1
9 1 0 1 1 1 1 1 1
10 5 5 5 5 5 5 5 5
11 6 6 6 6 6 7 7 7
12 4 4 41 3 3 3 3 3
13 6 6 6 5 5 5 5 4
I14 6 6 5 6 5 5 4
15 6 6 i 6 6 6 6

16 4 :3 3j :3 3j 3 2 2
17 2 1 1 1 1 1 1 I
18 10 9 9 11 11 10 8S
P9 5 I .1 3 :3 3: 3 :3
2(901 1 1 1 1
21 ,1 4 5 4 .5 5 5 r
99 9 2
23 0 5 6 6 7 7 7

24 .1 :3 3 3 3
25 .1 3 3 ~3 -II 1 :3
26 1 1 1 1 1 1 1 1
27 1 I 1 1 1 1 1 1
28 11 11 11 1I II 11 10 11
29 3 j 3 2 2

30 2
3 1 3 3j 3 : 3:3 I1
31L' I 1 -1

32O



Table 25. Class Ranking by Total Feature Deviation (section 5.5)

Rank I Class J Deviation

1 5 2.9
2 8 4.3
3 9 4.9
4 4 5.5
5 26 6.0
6 27 6.5
7 20 10.7
8 22 12.8
9 12 17.1
10 7 17.3
11 17 19.9
12 30 22.1
13 29 23.4
14 21 24.8
15 16 25.1
16 24 25.3
17 25 27.1
18 19 27.4
9 11 29.3

20 2:3 29.6
21 13 30.0
22 15 32.r5
23 10 34.2
24 14 34.4
25 28 48.9
26 :3 58.2
27 1 7:3.8
28 18 7.1.3
29 2 130.1
30 61 158.7
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Table 26. Distinction of Casses (1 of 4)(section 5.7)

Class
Class cOl c02 c03 c04 c05 c06 c0 7  cOS

1 0 5 19 14 14 9 23 13
2 5 0 11 8 7 6 22 8
3 19 11 0 32 31 17 37 27
4 14 8 32 0 28 12 108 61
5 14 7 31 28 0 12 124 52
6 9 6 17 12 12 0 18 13
7 23 22 37 108 124 18 0 101
8 13 8 27 6! 52 13 101 0

9 9 4 33 66 58 11 121 51
10 19 11 18 41 37 17 36 32
11 16 15 23 48 51 14 18 40
12 37 30 55 154 174 25 44 150
13 11 7 27 32 28 7 50 26
14 26 22 37 65 72 22 26 67
15 37 33 53 115 125 26 42 113
16 6 9 26 39 40 13 42 34
17 9 8 37 55 63 7 65 50
18 15 16 23 34 38 15 16 35
19 8 8 22 26 20 11 47 6

20 9 9 33 66 66 10 76 41
21 51 '15 74 197 219 34 84 196
22 27 26 44 153 183 19 17 147
23 18 18 28 60 66 14 14 55
21 13 12 29 34 ,11 9 ,11 31
25 12 9 17 31 29 1- 51 21
26 1.1 7 31 13 25 12 108 55
27 1.1 5 23 61 61 1H 109 14
28 16 6 29 :31 :31 5 61 38
29 6 9 :30 4.1 19 10 ,17 31
30 10 5 32 29 21 10 99 38
31 10 5 30 26 22 7 64 27
32 10 3 29 29 26 8 7 5 29
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Table 27. Distinction of Classes (2 of 4)(section 5.7)

Class
Class c09 clO cll c12 c13 c14 c15 c16

1 9 19 16 37 11 26 37 6
2 4 11 15 30 7 22 33 9
3 33 18 23 55 27 37 53 26
4 66 41 48 154 32 65 115 39
5 58 37 51 174 28 72 125 40
6 11 17 14 25 7 22 26 13
7 121 36 18 44 .50 26 42 42
8 51 32 40 150 26 67 113 34
9 0 34 53 174 24 75 129 42
10 34 0 22 61 30 31 63 28
11 53 22 0 50 26 30 47 23
12 174 61 50 0 82 27 32 76
13 24 30 26 82 0 53 70 33
14 7.5 31 30 27 53 0 43 35
15 129 63 47 32 70 43 0 74
16 '12 28 23 76 33 35 74 0
17 63 44 28 108 16 59 94 11
18 1 26 19 17 33 14 26 22
19 22 21 22 76 20 41 74 16
20 63 40 30 123 19 62 100 35
21 221 99 80 55 108 60 28 122
22 186 56 27 57 60 42 44 66
23 70 :35 14 41 :33 27 39 30
2.1 -17 :16 17 77 13 16 69 33
25 28 1S 25 83 29 39 80 21
26 56 37 18 15 1 :33 (7 118 :37
27 51 21 51 158 32 69 123 42
28 27 30 .12 77 24 53 72 32
29 .18 -5 20 8:3 22 .15 79 19
30 19 35 1(6 1,12 21 66 112 32
31 16 27 :37 94 2.1 51 89 28
32 19 29 41 j 107 _16 59 91 35
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Table 28. Distinction of Classes (3 of 4)(section 5.7)

Class
Class c17 cIS c19 c20 c21 c22 c23 c24

1 9 15 8 9 54 27 18 13
2 S 16 S 9 45 26 18 12
3 37 23 22 33 74 44 28 29
4 55 34 26 66 197 153 60 34
5 63 38 20 66 219 183 66 41
6 7 15 11 10 34 19 14 9
7 65 16 47 76 84 17 14 41
8 50 35 6 41 196 147 55 31
9 63 41 22 63 221 186 70 47
10 44 26 21 40 99 56 35 36
11 28 19 22 30 80 27 14 17

12 108 17 76 123 55 57 41 77
13 16 33 20 19 108 60 33 13

14 59 141 41 62 60 42 27 46
15 94 26 74 100 28 44 39 69
16 41 22 16 35 122 66 30 33
17 0 :36 24 19 157 9S 4:3 19
18 :36 0 26 :35 4 5 19 14 29
19 2.1 26 0 15 120 69 :3. 20
20 19 :3.5 15 0 173 114 46 22
21 157 45 120 173 0 89 68 11

98 19 69 111 89 0 16 54
2: , 13 14 34 46 68 16 0 25
21 19 29 20 2? 111 5.1 25 0
25 39 25 12 30 125 76 :17 :30
26 61 :36 25 67 201 159 62 II
27 S :19 24 74 205 166 65 51
28 28 :3. 27 31 99 70 17 :15
29 20 27 1 .5 15 131 72 :12 21
30 :17 36 17 :18 185 I:8 60 :16
31 28 3.1 19 :32 !:35 90 19 33
32 27 37 19 33 1 5 99 3 :3
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Table 29. Distinction of Classes (4 of 4)(section 5.7)

Class
Class c25 c26 c27 c28 c29 c30 c3i c32

1 12 14 14 16 6 10 10 10
2 9 7 5 6 9 5 5 3
.3 17 .31 23 29 30 32 30 29
4 31 13 61 34 44 29 26 29
5 29 25 61 34 49 21 22 26
6 14 12 14 5 10 10 7 8
7 51 108 109 61 47 99 64 75

8 21 55 44 38 34 38 27 29
9 28 56 54 27 48 19 16 19
10 18 37 24 30 35 35 27 29
11 25 48 51 42 20 46 37 41
12 83 154 158 77 83 142 94 107
13 29 33 32 24 22 21 24 16
14 39 67 69 53 45 66 51 59
15 SO 118 123 72 79 112 89 94
16 21 :37 42 32 19 .32 28 35
17 39 61 84 28 20 37 28 27
1s 25 3 6 39 :34 27 :16 31 :37
19 12 25 2-1 27 15 17 19 19
20 :30 67 741 34 15 38 :32 :3
21 125 201 205 99 1:31 185 1:3.5 1 1 5
22 76 1-59 166 70 72 1:38 90 99
2.3 '37 62 (i .5 7 :32 60O 19 5:3
24 :30 4 1 .51 35 2 1 :36 33 33

25 0 25 22 29 28 2,5 21 28
2(i 25 0 51 3 2 46 25 22 28
27 22 51 0 29 .55 .15 29 :30
28 29 32 29 0 312 27 12 17
29 28 16 5S - :32 0 1 - 31 3!

: 5022 5 2 , -5 27 35 0 15 17
31 21 29 99 l9 3]1 -5 0 13

:1 28 8 3 I17 :11 17 13 _0
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Appendix C. Chapter 6 Data Tables

This appendix contains tables of the classification performance of various net-
works on a class-by-class basis. Discussions of the table data can be found in the

sections referenced in the table captions.
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Table 30. Classification Confusion Matrix (1 of 3)(section 6.2)

Out put Input Class
Class cOl c02 c03 c04 cO5 c06 c07 c08 c09 clO

1 91 4 0 0 0 0 0 0 0 0
2 5 71 0 0 0 5 0 0 0 1
3 0 0 1018 0 0 0 0 0 0 0
4 2 0 0 125 0 0 0 0 0 0
5 0 1 0 0 125 0 0 0 0 0
6 0 ,4 0 0 0 195 0 0 0 0
7 0 0 0 0 0 0 1089 0 0 0
8 0 12 21 0 0 0 0 42 0 0
9 0 2 0 0 0 0 0 0 42 0
10 0 2 14 0 0 0 0 0 0 332
11 1 0 0 0 0 0 0 0 0 1
12 0 0 0 0 0 0 0 0 0 0
13 1 41 1 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0
16 , 0 0 0 0 0 0 0 0 0
17 2 0 1 0 0 0 0 0 0 0
18 :1 0 0 0 0 0 0 0 0 0
19 1 2 8 0 0 0 0 0 0 2
20 1 6 1 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0
23 1 I 0 0 0 0 :3 0 0 0
2,N 5 I .1 0 0 0 0 0 0 0
25 0 I 21 0 0 2
26 1 1 0 0 0 0 0 0 0 0
27 0 7 0 0 0 0 0 0 0 1
28 0 : 0 0 0 0 0 0 0 0
2!) 6 I 0 0 ) 0 0 0 0 0
30 0 2 2 0 0 0 0 0 0 0

Totals 125 125 1 091 1 25 125 200 102 r2 12 339
Err'ors 3.1 51 73 0 0 5 3 0 0 7

Not top 3 2.1 23 50 0 0 3 0 0 0 .I
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Table 31. Classification Confusion Matrix (2 of 3)(section 6.2)

Out)ut Input Class
Class cli c12 c13 c14 c15 c16 c17 c18 c19 c20
1 0 0 0 0 0 4 0 0 1 0
2 0 0 0 0 0 0 0 1 0 0

3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 19 0
9 0 0 0 0 0 0 0 0 1 0
10 13 0 0 0 0 0 0 0 11 0
11 395 0 0 0 0 0 0 0 0 0
12 0 283 0 0 0 0 0 6 0 0
13 0 0 297 0 0 0 0 0 0 0
14 0 0 0 281 0 0 0 2 0 0
15 0 0 0 0 295 0 0 0 0 0
16 0 0 0 0 0 279 0 0 4 0
17 0 0 0 0 0 0 296 0 1 0
18 0 0 0 5 0 0 0 269 0 0
19 0 0 0 0 0 9 0 0 88 0
20 0 0 0 0 0 0 0 0 2 296
21 0 0 0 0 0 0 0 0 0 0
22 5 0 0 0 0 0 0 1 0 0
23 17 0 0 0 0 0 0 0 0 0
24 5 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 5 0 0 5 0
26 0 0 0 0 0 0 0 2 1 0
27 0 0 0 0 0 0 0 0 1 0
28 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 I 0 1 I 0
30 0 0 0 0 0 0 0 0 0 0

lotals 135 283 297 286 295 297 297 281 I1,4 29)6

Errors .40 0 0 5 0 1S I 12 60 0
Not top :3 . 0 0 0 0 1 0 5 19 0
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Table 32. Classification Confusion Matrix (3 of 3)(section 6.2)

Output Input Class Row
Class c21 c22 c23 c24 c25 c26 c27 c28 c29 c30 Errors

1 0 0 0 0 0 0 0 0 0 0 9
2 0 0 0 0 0 0 0 4 0 0 16
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 2
5 0 0 0 0 0 0 0 0 0 4 5
6 0 0 0 0 0 0 0 7 0 0 11
7 0 0 2 0 0 0 0 0 0 0 2
8 0 0 0 0 0 0 0 0 0 4 56
9 0 0 0 0 0 0 0 0 0 4
10 0 0 0 1 1 0 0 0 0 0 42
11 0 0 4 0 0 0 0 0 1 0 7
12 0 0 0 0 0 0 0 0 0 0 6
13 0 0 1 0 0 0 0 1 0 1 9
14 0 0 0 0 0 0 0 0 0 0 2
15 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 1 0 0 0 0 0 9
17 0 0 0 0 0 0 0 2 0 0 6
is 0 0 0 0 0 0 0 0 0 0 9
19 0 0 0 0 1 r) 0 0 23 0 16
20 0 0 0 0 0 0 0 0 6 0 16
21 261 0 0 0 0 0 0 0 0 0 0
22 0 292 1 0 0 0 0 0 0 7
23 0 0 289 0 0 0 0 0 0 0 9
24 0 0 0 274 0 0 0 8 0 0 23
25 0 0 0 0 112 0 0 0 0 0 3 1
26 0 0 0 0 0 .18 0 1 0 0 6
27 0 0 0 0 0 0 63 0 0 9
28 0 0 0 0 0 0 0 179 0 17 20
29 0 0 0 U 0 0 0 0 267 0 22
30 0 0 0 0 0 0 0 0 0 36S 1

Totals 261 292 297 275 115 1 63 2012 297 398 .107
Errors 0 0 I 3 0 0 23 :10 30 .107

Not io!  0j 0 2 1 0 0 0 16 .1 1
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Table 33. Classification Accuracy Ranking by Class (section 6.3)

Rank Class % Corr-ect
' 1 100

2 5 100
3 8 100
4 9 100
5 12 100
6 13 100
7 15 100
8 20 100
9 21 100
10 22 100
11 26 100
12 27 100

13 7 99.7
14 17 99.7
15 24 99.6
16 14 98.3
17 10 97.9
18 6 97.5
19 25 97.-
20 23 97.3
21 18 95.7
22 16 93.)
23 93.3
2.1 30 92.5

25 I! 90.i
26 2 8.9
27 28 88.6
28 I 72.8
29 19 59.5
30 2 56.8

Overall 95.2
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Table 34. Confusion Frequency Ranking by Class (section 6.3)

Rank Class Errors
1 3 0
2 15 0
3 21 0
,i 4 2
5 7 2
6 14 2
7 30 4
8 5 t

9 12
10 17 6
11 26 6
12 9 7
13 11 7
14 22 7
15 1 9
16 13 9
1. 16 9
18 is 9
19 27 9
20 6 11
21 2 16
22 20 16
23 28 20
24 23 22
25 29 22
26 2,1 23
27 25 34
28 10 42
29 19 t
30 8 56

'lotal ,107
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Table 35. Class Identification by Networks (section 6.6)

Network Training File Name (all have .d extension)
Class maxO0 IstI5 2nd15 top2l bot9 top18 botl2 topl5 bot15

1 72.8 87.9 - 81.4 - 82.0 - 75.7
2 56.8 61.6 - 69.3 - 80.4 - 78.0
3 93.3 91.5 - 93.2 - 95.2 - 96.0
4I 100 93.9 95.7 - 99.1 - 99.1 -

5 100 93.9 98.1 - 99.1 - 99.1 -

6 97.5 92.0 97.1 - 98.1 - - 95.6
7 99.7 93.9 97.2 - 99.1 99.1 -

8 100 93.9 98.1 - 99.1 - 99.1 -

9 100 93.9 - 98.1 - 99.1 - 99.1 -

10 97.9 89.2 - 96.4 - 97.6 - - 93.5
11 90.8 92.0 - - 94.0 - 90.6 - 93.7
12 100 93.9 - 97.8 - 98.8 - 99.1 -

13 100 93.3 - 98.1 - 99.1 - 99.1 -

14 98.3 9o.9 - 98.1 - 99.1 - - 96.8
15 100 93.9 - 98.1 - 99.1 - 99.1 -

16 93.9 - 9:3.2 - 93.8 - 96.0 - 96.5
17 99.7 - 96.8 97.1 - 98.4 - 99.1 -

18 95.7 - 96-1 95.3 - - 97.2 - 95.1
19 59.5 - 92.5 - 83.4 - 81.1 - 79.7
20 100 - 97.1 97.8 - 98.8 - 98.4 -

21 100 - 97.1 98.1 - 99.1 99.1 -

22 100 - 97.1 97.8 - 99.1 - 99.1 -

23 97.3 - 96.1 96.5 - 95.0 - 92.2
2,1 99.6 - 96.8 97.1 - 98..1 - 98.7 -

25 97., - 96.3 97.2 - - 96.8 - 93.3
26 100 - 97.1 98.1 - 97.0 - 99.1 -

27 100 - 97.1 98.1 - 99.1 - 99.1 -

28 88.6 - 96.6 - 93.7 - 95.7 - 92.2
29 89.9 - 91.5 - 90.1 95.0 91. 9
30 92.5 - 97.1 - 94.0 97.6 - 92.6

Overall 95.2 91.41 96.1 9 7.5 91 ..4 98.8 93.8 99.0 93.2
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Appendix D. Software

This appendix includes the listings of many of the C progiams and Unix script

files written to manipulate data vectors, analyze data, and produce tables. Not all

programs have been included.

D. 1 newdata

% newdata
% This script file uses other script files to pick specific lines of
% each of the 30 data files. Since the mixall script pre-mixes the
% vectors of each file, a different and pseudo-random set of vectors is
% chosen each time this script is used.
% The output data file is ready for running on Neural Graphics.

cat newheader > trgvect50

cat newheader > testvect25
mixall.

pickmed col c02
pickvlg c03

pickmed c04 c05

picklg c06

pickvlg c07
picksm c08 c09

picklg ci[0-8]
pickmed c19

picklg c2[0-4]
pickmed c25
picksm c26 c27

picklg c28 c29 c30
for file in trgvect50 testvect25
do

ex - $file << endscript

1,1d

wq
endscript
done

cat -b trgvect50 testvect25 > tempz
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cat newheader tempz > new50x3O.d

rm tempz
echo 'New data file is called new5Ox3.d'

D. 2 pickclass

% pickclass
% This script takes all command line arguments as class numbers
%h and puts together a data file of those classes in the format
% required by Neural Graphics. The script reads 60 files, one test
%and one training file for each of 30 classes.

echo 'Header' >new.trg
echo 'Header' >new.test
for num in $*

do
cat c$nurn.trg >> new.trg
cat c$num.test >> new.test

done
ex - new.trg << endscript

1,1d
wq
endsc-ipt
ex - new.test << endscr
1,1d

wq
endscr
wc -1 new.trg >headl
awk '{print $1 1' headi >head3
wc -1 new.test >head2
awk '{print $1 }' head2 >head4

cat -b new.trg new.test >new.1
cat head3 head4 new.1 >new.2
reclass4 < new.2 > new.3
awk 'length < 20' new.3 >head5
awk 'length > 20' new.3 >new.4

cat head5 new.4 >new
rm new.trg
rm new.test
rm head?



rm new.?
echo 'New data file is called: new'

D.3 renunber.c

/* renumber.c

Program to renumber a data file in Neural Network format.
Does not print the line number and prints a new class number.

First line of input file must be the number of lines and
the new class number desired. Std I/O.
*/

#include <stdio.h>
main()

{
int count,lines, newclass;
int a, b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r; /* 18 elms per vector */

scanf("cd d",&lines, &newclass);

for (count = 1; count <= lines ; count++ )
{

scanf(" %d %d % %d d d %d %d d d %d d d d %d Xd d i d \n",
&a, &b,&c,&d,&e,&f,&g,&h,&i, &j,&k,&l,&m,&n,&o,&p,&q,&r);

/* Don't print the line number , print new class number */

printf("d d %d %d c d d %d %d %d %d cd d % %d cid %d %d \n",
b,c,dle,f,g,h,i,j,k,l,m,n,o,p,q,newclass);

}

} /* end of main */

D.4 ,Pcc/Iss.c

/* reclass.c
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Program to convert original class number to get sequential as
required by Greg Tarr's neural net modelling program.

Input file must start with number of vectors,
oldclass, newclass line, then vectors.
The lines must not be numbered yet. */

#define MAXLINE 1000 /* longest line allowed *
#include <stdio .h>

main()

char linel[MAXLINE]

mnt linelen, numvect, oldclass, newclass, index;
scanf("%d %/d %d \n", &numvect,&oldclass, &newclass);
1* printf("%d testvects 16 %d \n", numvect,newclass); *

while ((linelen= (getline(linel,MAXLINE))) != 0)

f
linel~linelen -11 = '\01; /* remove the In *

if (linelen > 9) {
1* first remove the old class number at end of each line *

index =linelen - 2;
while (linel~index--] ' /* skip spaces *
linel[index+1] = \;
while (linel[index--] f '

linel[index+1] = '\0';, I-

printf("%/s %d \n", linel, newclass);

3- * only prints long data lines *

printf('The previous data class was %d \n", oldclass);

getline(s,lim) /* get line into s, return length *
char s[];

int lim;

mnt c,i;
for (i0O; i<lim-1 && (cgetcharo)!= EOF && c!='\n';++i)

s[iJ = C;
if (c == '\nl){
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s(i] =C;

s[i] = c++j;

s[i] = 1\0';

return(i);
}

D.5 getconst.c

/* getconst.c
program to extract from a data file already in the format

required by Greg Tarr's neural net modeling program to

print all constant-valued vectors (all features equal).

Input and output are std and must be redirected by shell.

#include <stdio.h>

main(0
{

int numvect, testvect, features, output, count;

int a,b,c,d,e,f,g,h,i,j,k,l,mn,op,q,r; /* 18 elms per vector */
scanf("%d %d %d %d \n", &numvect,&testvect, &features, &output);

for (count = 1; count <= (numvect + testvect); count++)
{
scanf("%d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d % d \n",

&a,&b,&c,&d,&e,&f,&g,&h,&i, &j,&k,&l,&m,&n,&o,&p,&q,&r);

if ((b==c & c==d & d==e && e==f) && (f==g && g==h && h==i && i==j)

&& (j==k && k==1 && l==m && m==n) && (n==o && o==p & p==q))

printf ("%d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d YAd \n",

a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r);
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D.6 splitdala.c

/* splitdata.c

program to Split a data file by writing the first and every
other line to the output.
Use to split exemplars into training and test groups.

Std I/O.
Must change the for loop counter to match size of file.
*/

#include <stdio.h>

main()
{

int count;
int a,b,c,d,e,f,gh,i,j,k,lm,n,o,p,q; /* 17 elms per vector */

for (count = 1; count <= 16939 ; count++ )
{

scanf("%d %d %d % %d %d %d %d %d %d 'd %d %d %d %d %d %d \n",

&a,&b,&c,&d,&e,&f,&g,&h,&i, &j,&k,&l,&m,&n,&o,&p,&q);

if ( count % 2 == 0)
printf("%d %d %d d %d %d %d %d %d %d %d %d %d %d %d %d %d \n",

a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q);

D. 7 disihurl ol.c

/* distinction.c
program to calculate the distinctiveness of classes of data
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based on their feature means and std devs.
This is treating the cluster center of each class
as the mean of its features.

4 tables showing the "distance" between each pair of
classes is produced.
Reads the means and std devs from the file "allstats.d".
Std input and output redirection to be used.
*/

#include <stdio.h>
#include <math.h>
#define ABS(X) ((X) > -(X) ? (X) : -(X))

#define SQR(x) ((x)*(x))

main()
{

int x,y,z;
double means[33][17], devs[33][17];

double dist[33][33], sumdist;

/* read in the means for each class, feature */

for (x=l; x<=32; x++)
for (y=l; y<=16 ; y++)

scanf("%lf" ,&means [x] [y]);

/* read in the stddevs for each class, feature */

for (x=l; x<=32; x++)

for (y=1; y<=16; y++)
scanf("%lf",&devs[x][y]);

/* compute the matrix of distances between centers */

for (x=l; x<=32; x++)
for (y=l; y<=32; y++)
{

if (x==y) dist[x][y] 0;
else
{

sumdist = 0.0;
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for (z1l; z(=16; z++)
sumdist += ABS (means Ex][z] -means [y]Ez] ) /(devs Ex]l~z]+devs [y)rz]);

dist[xJ [y] = sumdist;

1* now print the distances in four tables, 8x32 each *

for (x = 1; x <= 32 ; x+

printf("%4d" ,x);
for (y1l; y<=8 ; y++)

printf('%5.Of %c", dist[x][y],
printf(#\n"t);

I
printf("\n");

for (x = 1; x <= 32; x++)

printf("Y.4d",x);
for (y=9 ; y(=16 ; y++)

printf('%5.Of %c", dist [xl fy],'
printf("\n");

I
printf('\n");

for (x =1; x <= 32; x+ )

priLntf (14d",x);
for (y=1 7 ; y<=24 ; y++)

printf("Y.5.Of %c", dist[x] [y], ')

printf C\n");

printf("\n");

for (x = 1; x <= 32; x++)

printf('%4d" ,x);
for (y=25; y<=3 2 ; y++)

printf("%5.Of %c", d:ist[xII[y], ')

printf("\n");

printf("\n");

}/* end of main *
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double sqrt(num)
/* returns the square root using Newton's method */
double num;

f
double guess;
guess = 100.0;
do

guess = guess- (guess*guess-num)/(2.0*guess);
while (ABS(guess*guess-num) > 0.00000001);
return(guess);
}

D.8 feature.c

/* feature.c

Program to select only some of the features of each vector.
Can be modified to select only desired features by
changing the printf statement.
*/

#include <stdio.h>
main(0
{.

int x,y, classes, trgvect, testvect, trgnum , testnum
int a,b,c,d,e,fg,h,i,j,k,l,m,n,op,q,r; /* 18 elms per vector */
scanf("%d %d %d %d \n", &trgvect, &testvect,&trgnum, &testnum);
classes = trgvect/trgnum;

printf("%d %d %d %d \n", trgvect,testvect, trgnum, testnum);

for (x=l; x <= testvect+trgvect; x++) /* for every vector */
{

scanf("%d %d %d % d %dd %d %d %d 7d %d %d %d %d %d %d %d %d %d \n",
&a,&b,&c,&d,&e,&f,&g,kh,&i, &j,&k,&l,&m,&n,&o,&p,&q,&r);

/* print only desired features */

printf(" %d %d %d %d %d %d %d \n",
a,b,c,l,m,n,r); /* class is x */
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}

} /* end of main */

D.9 stat.c

1* stat.c

Program to calculate the mean and dev

of the 16 features of each of 32 classes in a file.

Also calculates the mean, dev of the features, independently

of the class number.

File must be in format required by Greg Tarr's program.

Std input and output redirection to be used.
*/

#include <stdio.h>

#include <math.h>

#define TOTAL 17002 /* total number of vectors */
#define ABS(X) ((X) > -(X) ? (X) : -(X))
#define SQR(x) ((x)*(x))

main()

int trgvect, testvect, insize, outsize, feature, class, vect[18];
int count, count2, x

double sums[33] [33];

/* sums[class] [n,sum(x),sum(x*x)] */
double hold, dev, feat[33];

scanf("%d %d %d %d \n", &trgvect, &testvect, &insize, &outsize);

/* first initialize sum array to all O's */
for (count =0; count <= 32; count ++)

for (count2 =0; count2<= 32; count2 ++)

sums[count][count2] = 0.0;

for (count = 0; count <= 32; count++)

feat [count] = 0.0;

/* read each vector in the file and update sums
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for (count = 1; count <= (trgvect + testvect); count++)

for (count2 0; count2 <= 17; count2 +4)
scanf ("Ud", &vect [count2]);

x = vect[1?]; /* the class number *
sums[x] [0] += 1;

for (feature = 1; feature <= 16; featur'++)

sums Wx [f eature] += vect [f eature];
sums Wx [ 16+f eature] += vect [f eature] *vect [f eature];
feat [feature] +a= vect [feature];
feat [16+feature] += vect [feature] *vect [feature];

1* now compute the means aaid std dev for each feature, class *

for (x = 1; x <= 32; x++)

printf("\n");
printf ("class %d vectors %.Of \n", x, sumsNx] £0];
printf ("means and std devs for 16 features: \n");
for (feature =1; feature <= 16; feature++)

printf("%.lf %c ",sums~x] [feature] /sumslx] [0], '

it (feature==8 IIfeature==16) printf("\n");

for (feature =1; feature <= 16; feature++)

hold=sums Cx] l6sfeature] -SQR(sums Cx][feature])/sums[x] [0];
dev = sqrt(hold/(sums[x][0] -1));
printf("'/..f %c ",dev, )' )

if (feature==8 IIfeature==16) printf('\n");

/* now compute the means and stddev for each feature. *

printf(" \n");
for (feature = 1; feature <= 16; feature++)

hold =feat[16+feature)- SpR(feat[feature])/TOTAL;
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dev =sqrt(hcld/(TOTAL - M);

printf ("feature %~d mean Y.lf std dev %.1f \n", feature,

feat[feature]/TOTAL, dev);

I

} * end of main *

double sqrt(num)
/* returns the square root using Newton's method *
double num;

double guess;

guess = 100.0;
do

guess =guess- (guess*guess-num)/(2.0*guess);
while (ABS(guess*guess-num) > 0.00000001);
return (guess);

D.10 Iotdrvx

/* totdev.c
Program to calculate the total deviation from
the cluster centers of each class of data.

The center coordinates are defined as the mean of
each feature for the class. The total deviation is the sqrt
of the sum of the variances of each feature.
Reads the std devs from the file "alldevs" -

Std input and output redirection to be used.

#include <stdio .h>
#include <math.h>

#define ABS(X) ((X) > -(X) ? MX) -(X))
#define SQR(x) ((x)*(x))

main()

.{.... ...- ---



int x,y,z;
double devs[33] [17];

double sumdevs;

/* read in the stddevs for each class, feature *

for (x=1; x<=32; x++)
for (y1l; y<=16; y++)

scanf ("%lf ",&devs[x] [y]) ;

/* compute and print the total deviation for each class *

for (x=i; x<=32; x++)

f
sumdevs = 0.0;
for (z=1; z<=16; z++)

sumdevs += SQR(devs[xll);
printf("%5.lf is total std dev for class %3d \n",sqrt(sumdevs),x);

} * end of main *

double sqrt(num)
1* returns the square root using Newton's method *
double num;

double guess;
guess = 100.0;

do
guess = guess- (guess*guess-num)/(2.0*guess);

while (ABS(guess*guess-num) > 0.00000001);
return(guess);

I

D.11i re/)cirunchic

/******** repcrunch.c *****************

/* program to analyze the item-report.



Reads the edited report file giving the actual class and
the guessed class by the neural network f or each test vector. Produces
output tables (confusion matrix).

The script file awkrep prepares an item-.report file for input.
Std input and output redirection to be used.

#include <stdio .h>
#include <math.h>
#define TOPN 3

main 0

mnt x,y,z, class,guess,lines,classes,tabend;
mnt mtx[32] [321
float ops [31) ;

for (x0O; x<=31; x++)
for (y=O; y<=31; y++)

mtx[x][y] = 0;

for (x=0; x<=31; x++)
opsEx] = 0.0;

scanf('"%d %d ", &lines,&classes);
/* read in the report test data *

for (z=l; z<=lines;z++)

scanf("%d %d ", &class,&guess);
for (x=classes; x>=1; X--)

scanf ("%~f", Uops [x]) ;

mtx [class] [guess]++

if (guess != class) 1* ie, there is an error *

mtx[class][0]++; /* add one to error for class *
if (ranking(class,ops) > TOPN)

mtx[class]M31]++ ; /* incr topn error counter *
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/* Print out the confusion mtx for all classes *

if (classes > 16)

tabend =15;
else tabend =classes;

printf("Class");
for (x=1; x<=tabend; x++)

printf(CA& /.4d",x);
printf("\\\\\n");
printf("\n");

for (y=l; y<=classes; y++)

f
printf('%6d",y);
for (x=l; x<=tabend; x++)

printf ("\& %3d ",mtx[x] [y]);

printf("Errors\n");
for (x=1; x<=tabend; x++)

printf C' \& %3d" , mtx [x] [0])
printfC'\\\\\n");

printf("Exemplars not in top %3d\n",TOPN);
for (x1l; x<=tabend; x-i+)

printf(CA& %3d' ,mtx [x] [31]);
printf("\\\\\n");

if (classes > 16) /*Have to print a second table *

printf("ClassI);
for (xtabend+1; x<=classes; x++)

printf CA& %4d",x);
printf ("\\\\\n");
printf('\n');
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for (y=l; y<=classes; y++)

{
printf("%6d" ,y);

for (x=tabend+l; x<=classes; x++)

printf ("\& %3d ",mtx[xl [y]);
printf("\\\\\n");

}
printf ("Errors\n");
for (x=tabend+l; x<=classes; x++)

printf ("\& %3d" ,mtx [x] [0]);
prLntf ("\\\\\n");

printf("Exemplars not in top %3d\n",TOPN);
for (x=tabend+l; x<=classes; x++)

printf ("\& %3d" ,mtx[x] [31]);
printf("\\\\\n");
printf("\n");

}

} /* end of main */

int ranking(class ,outp)
/* RETURNS THE RANKING OF CLASS BASED ON OUTPUTS OF NET */
int class;
float outp[.3] ;
{

int rank,a;
/* COUNT HOW MANY O/P'S ARE >= THE CLASS OUTPUT */
rank = 1;

for (a=l; a<=30; a++)
if ((a != class) && (outp[a] >= outp[class]))

rank++;

return (rank);

A 12 a wkrep

% awkrep
% Script file to prepare the item-report output by
% Neural Graphics for the analysis program repcrunch.c
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% Can do multiple files at once

for file in $*
do

awk '/Item/{print $4+1 ,$6+1 ,$7,$8,$9 ,$10,$11 ,$12,$13,$14,$15,$1S ,$17,
$18,$19,$20,$21,$221' $file > $file.1
awk I/Total/{print $2+1,$4,$6,$8P' $file > x$file
wc -1 x$file > $file.3
awk '(print $1}' $file.3 > $file.cl
wc -1 $file.I. > $file.4
awk '{print $1}' $file.4 > $file.lc
cat $file.lc $file.cl $file-I >$file

rm $file.*
echo 'File is ready for repcrunch.c!'

done
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This study ;nvestigated methods of improving the accuracy of neural networks in the classification of large num-
bers of classes. A literature search revealed that neural networks h:;ve been successful in the radar classification
problem, and that many complex problems have been solved using systems of multiple neural networks. The
experiments conducted were based on 32 classes of radar system data. The neural networks were modelled using
a program called the Neurul Graphics Analysis System. It was found that the accuracy of the individual neural
networks could he increased by controlling the number of hidden nodes. the relati,.e numhrs of training vectors
per class, and the number of training iterations. The maximunn classification accurac of 96.8% was achieved
using a hierarchy of neural networks in which the classes were partitioned based on their performance- in a large
neural network trained with all classes.
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