
- 0 , r - ,

AFIT/GCS/ENG/91D-21 '-

AD-A243 622

/

Object-Oriented Analysis and Design of the Saber Wargame

THESIS

Christine M. Sherry
Captain, USAF

AFIT/GCS/ENG/91D-21

9I-18988

Approved for public release; distribution unlimited

91 1224 029

Form ApprovedREPORT DOCUMENTATION PAGE 0MB No. 0704-0188
Public reporting burden for this c oiiectiOn of information is ast.mated to average i hour per reswor'se Inctuding the time for reviewing instructions. searching existing data sources.gathering and maintaining the data needed. and comoleting and revie ,ng the coliection of information Svend comments regarding this burden estimate or any other aspect 01 this
collection of information. inciuding suggestions for reducing this ourden to Washington Headquarters services. Directorate or information Operations and Report. 1215 Jeferson
Davis Highway. Suite 1204. Arlington, PA 22202-4302. and iC the Ofice of Management and Budget. Paperwcrk Reduction Project (0704.0188). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVEREDI December 1991 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Object-Oriented Analysis and Design of the Saber Wargame

6. AUTHOR(S)
Christine M. Sherry, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
Air Force Institute of Technology, WPAFB OH 45433-6583 REPORT NUMBER

AFIT/GCS/ENG/91D-21

9. SPONSORING! MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Air Force Wargaming Center, Maxwell AFB, AL 36112-5532 AGENCY REPORT NUMBER

1"i. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODEApproved for public release; distribution Unlimited

13. ABSTRACT (Maximum 200 words)

Abstract
= This thesis presents an object-oriented analysis and design of Saber, a theater-level computerized wargame,

for the Air Force Wargaming Center, Maxwell AFB, Alabama. The analysis and design is based on a recently
developed conceptual model, an existing land battle, and additional research. This thesis also begins the
implementation process.

The design was accomplished using an iterative, five step design process. Objects and operations were
chosen and then encapsulated in Ada packages. This thesis also makes necessary changes to the land battle
as described by the conceptual model and as the result of additional research.

Sound software engineering principles were used to ensure that the system is easily modified or enhanced.
Once Saber is completely implemented it will provide a wargame that is both flexible and credible, due in
part, to the fact that it is not tied to a specific theater or to specific forces.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Object-Oriented Design, Wargame 127

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACTUNCLASSIFIED UNCLASSIFIED NCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std Z39-16
298-102

AFIT/GCS/ENG/91D-21

Object-Oriented Analysis and Design of the Saber Wargame

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the 1 AC

Requirements for the Degree of

Master of Science (Computer Systems)

Christine M. Sherry, A.A.B., B.A., M.S.S.M. ', : .".

Captain, USAF

December, 1991

Approved for public release; d;oribution unlimited

Acknowledgments

I would like to thank my thesis advisor, Maj Mark Roth, and my committee members,

Maj Michael Garrambone and Lt Col Patricia Lawlis, for their assistance and support in

the development of this thesis. I would also like to thank the following fellow students:

Capt Gary Klabunde, who shared his technical expertise, and Capt Dennis Rumbley, who

provided moral support during the past year.

I also owe my thanks to my friend, Nina Stutler, who patiently listened to me talk

about the thesis for the past year. As always, I also owe my thanks to my parents, Mr.

and Mrs. Gervase J. Sherry, who are always there when I need them. Lastly, and most

importantly, I owe thanks to God, for with Him all things (including this degree) are

possible.

Christine M. Sherry

ii

Table of Contents

Page

Acknowledgments......

Table of Contents......

List of Figures. ix

Abstract. X

1. Introduction. 1

1.1 Background. 1

1.2 Problem Definition and Research Objective 2

1.3 Scope and Limitations 2

1.4 Assumptions and Constraints. 2

1.5 Methodology 4

1.6 Materials and Equipment 4

1.7 Expected Benefits of This Research 4

1.8 Thesis Overview 4

II. Literature Review 6

2.1 Introduction 6

2.2 Object-Oriented Design. 6

2.2.1 Object-Oriented Design Concepts. 6

2.2.2 Object-Oriented Design Process 8

2.2.3 Booch's Object-Oriented Design Process. 10

2.2.4 Advanages and Stron~g Foints of Object-Oriented Design. 11

2.3 Simulation 13

2.3.1 Continuous Simulation. 14

iii

Page

2.3.2 Discrete Event Simulation 14

2.4 Object-Oriented Design and Simulation 15

2.5 Summary 16

III. Requirements Analysis and Initial Design 18

3.1 Introduction 18

3.2 Requirements Analysis 18

3.3 Initial Object-Oriented Design 18

3.3.1 Identify the Objects and Their Attributes 18

3.3.2 Identify the Operations Suffered By and Required of Each

Object 19

3.3.3 Establish the Visibility of Each Object in Relation to

Other Objects 19

3.4 Summary 19

IV. Requirements Modifications, Clarifications, and Enhancements 21

4.1 Introduction 21

4.2 Saber 21

4.2.1 The Hex System 21

4.2.2 Weather 24

4.2.3 Asset ID 24

4.2.4 Staging Operations 25

4.2.5 Historical Data 25

4.2.6 Beginning and End-of-Day Routines 26

4.3 Land Module 26

4.3.1 Targets and Obstacles 26

4.3.2 FEBA, Coasts, and Borders 26

4.3.3 Ammunition, POL, and Firepower 26

4.3.4 Orders 27

iv

Page

4.3.5 Supply Train 27

4.3.6 Radars 28

4.3.7 Launchers 28

4.3.8 Surface Missiles 29

4.4 Air Module 29

4.4.1 Air Hexes 29

4.4.2 Weapons Load. 33

4.4.3 Aircraft Maintenance. 34

4.4.4 Base Missions. 34

4.4.5 Aircraft Packages 35

4.4.6 AF Missions 36

4.5 Summary. 36

V. Detailed Object-Oriented Design 38

5.1 Introduction. 38

5.2 Identify the Objects and Their Attributes. 38

5.2.1 AFSim and ArmySim. 38

5.2.2 Aircraft 38

5.2.3 AircraftPackage 39

5.2.4 Airllex, GroundIlex, and Hex. 39

5.2.5 Algorithms. 40

5.2.6 Bases 40

5.2.7 Clock 40

5.2.8 Forces 40

5.2.9 GroundUnits 40

5.2.10 Radars 41

5.2.11 OneWayLists 41

5.2.12 Satellites. 41

V

Page

5.2.13 TargetInfo 41

5.2.14 UniformPackage. 41

5.2.15 Weapons. 41

5.3 Identify the Operations Suffered By and Required of Each Object 41

5.3.1 AFSim 42

5.3.2 Aircraft 42

5.3.3 AircraftPackage 43

5.3.4 Airllex 44

5.3.5 Algorithms. 45

5.3.6 ArmySim 47

5.3.7 Bases. 47

5.3.8 Clock. 48

5.3.9 Forces 48

5.3.10 Groundilex. 48

5.3.11 GroundUnits 49

5.3.12 Hex. 51

5.3.13 OneWayLists 51

5.3.14 Radars 51

5.3.15 Satellites. 52

5.3.16 TargetInfo 52

5.3.17 UniformPackage. 52

5.3.18 Weapons. 52

5.4 Establish the Visibility of Each Object in Relation to Other Objects 54

5.5 Establish the Interface of Each Object. 54

5.6 Summary. 54

vi

Page

VI. Implementation..55

6.1 Introduction. 55

6.2 Data Structures and Programming Style 55

6.2.1 Data Structures 55

6.2.2 Programming Style. 56

6.3 Land Module. 57

6.3.1 Code Reorganization 57

6.3.2 Code Modifications. 58

6.4 Air Module 59

6.5 Summary. 59

VII. Conclusion. 61

7.1 Summary. 61

7.2 Ada and Simulation. 62

7.3 Recommendations. 62

7.4 Conclusion 64

Appendix A. Description of Ness' Thesis on the Land Battle 65

A. 1 General. 65

A.2 Environment. 65

A.3 Combat Processes. 65

A.4 Combat Arms Operations. 65

A.5 Attrition 66

Appendix B. Description of Mann's Thesis 67

B. 1 Land Module 67

B.2 Environment. 67

B.3 Combat Processes. 68

BA4 Missions 68

Vii

Page

B.5 Databases and Entities. 68

B.5.1 Ground Units. 69

B.5.2 Air Defense Artillery and Missiles 69

B.5.3 Bases 69

B.5.4 Aircraft 69

B.5.5 Missiles and Bombs. 69

B.5.6 Aircraft Packages. 70

B.5.7 Nuclear and Chemical Weapons 70

B.6 Overall Process. 70

B.7 Algorithms 71

Appendix C. Ness' Packages and Contents 72

Appendix D. Visibility of Ness' Packages 76

Appendix E. Objects and their Attributes. 77

Appendix F. Objects and their Operations 93

Appendix G. Visibility of Objects 103

Appendix H. Additional Operations Needed 104

Bibliography 114

Vita 116

viii

List of Figures

Figure Page

1. Typical Combat Simulation Model. 3

2. Ness' Hex Grid System. 22

3. Revised Hex Grid System. 23

4. Air Hex Grid 30

5. CENTER-HEX Concept 31

6. North-South and South-North Movement. 32

7. Northeast and Southwest Mov, nent. 33

8. Southeast and Northwest Movement. 34

ix

AFIT/GCS/ENG/91D-21

Abstract

This thesis presents an object-oriented analysis and design of Saber, a theater-level

computerized wargame, for the Air Force Wargaming Center, Maxwell AFB, Alabama.

The analysis and design is based on a recently developed conceptual model, an existing

land battle, and additional research. This thesis also begins the implementation process.

The design was accomplished using an iterative, five step design process. Objects

and operations were chosen and then encapsulated in Ada packages. This thesis also makes

necessary changes to the land battle as described by the conceptual model and as the result

of additional research.

Sound software engineering principles were used to ensure that the system is easily

modified or enhanced. Once Saber is completely implemented it will provide a wargame

that is both flexible and credible, due in part, to the fact that it is not tied to a specific

theater or to specific forces.

x

Object-Oriented Analysis and Design of the Saber Wargame

I. Introduction

This thesis effort is based on two previous Air Force Institute of Technology thesis

efforts. CPT Marlin Ness, a graduate student in engineering, developed and implemented

a land battle module for a computer wargame. CPT William Mann, an operations research

graduate student, developed a conceptual model which extended CPT Ness' land battle

and added an air module. The resulting new model is called Saber. The model creates a

"foundation for a new theater level computerized wargame for the Air Force Wargaming

Center" located at Maxwell AFB, AL (17:1).

This thesis effort performed an object-oriented development of the previous theses. It

first took Mann's conceptual model and conducted an object-oriented design. The design

was conducted to ensure compatibility with CPT Ness' earlier work. It then began the

implementation using the Ada programming language. Minimal modifications were made

to Ness' code.

1.1 Background

CPT Ness' land model is an "aggregated interactive theater-level land combat model"

which was implemented using the Ada programming language and object oriented design

techniques (20:x). The land battle model "simulates doctrinal planning and decision mak-

ing operations conducted at Army Group level" (20:x). The model has the capability of

playing various scenarios (17:5) and contains modules to simuate logistics, unit movement

and attrition, as well as intelligence (20:x). Appendix A further describes CPT Ness' land

module.

CPT Mann's thesis problem was to link, "US Air Force doctrine with a conceptual

model's framework and designs a new air battle module" (17:5). The new combined land

and air modules will be called Saber (17:5).

Saber consists of many modules, including air-to-air, air-to-ground, ground-to-air,

logistics, intelligence, nuclear, and chemical weapons (17:8-9). The model takes input

from the wargame players, simulates the war, and provides output in the form of status

and combat results. The output from one run is used as input for the next run (17:53).

1

The simulation of the war follows "a decrement process that expends resources, aircraft,

and ground forces as the model represcnts battle" (17:53). Appendix B further describes

CPT Mann's conceptual model.

1.2 Problem Definition and Research Objective

The Air Force Wargaming Center needs a viable and flexible computer wargame

for students at the Air War College to use as a learning tool. Ness' thesis effort began

this process, Mann's conceptual model continued the effort. The purpose of this thesis

effort is to combine Ness' prototype land battle model with Mann's conceptual air battle

description to build an integrated theater level computer wargame.

1.3 Scope and Limitations

This thesis effort creates a prototype version of an integrated theater level land and

air computer wargame. The scope of this thesis does not include designing or implementing

the databases which are needed to maintain information on the various weapons, aircraft,

etc. This thesis does not include defining the contents of the databases. Capt Andre

Horton's thesis effort was to perform an object-oriented database design for Saber. Capt

Horton's database produces flat files for input to Saber. (11)

The thesis does not include designing or implementing any graphical interfaces to

the wargame. The design and implementation was coordinated with Capt Gary Klabunde.

Capt Gary Klabunde's thesis effort was to design a graphical interface for Saber. (13)

The thesis does not include designing the input screens or the output screens and

reports. Horton's thesis work included designing the input screens; Klabunde's included

designing the output screens and the combat reports. (11, 13)

Figure 1 depicts the portions of a typical combat model as portrayed in Mann's

thesis. (17:7) Horton's thesis work concentrated on the preprocessor portion, Klabunde's

on the postprocessor, and this thesis on the simulation itself.

This thesis effort does not include conducting any sensitivity analysis or validation

and verification nor does it include the writing of any scenarios.

1.4 Assumptions and Constraints

The following assumptions and constraints apply:

2

TYPICAL COMBAT MODEL

OSTAUSS

OUTPUT
GRAPHSBLUE RED CHARTS

Figure 1. Typical Combat Simulation Model

" The land model, as implemented by Ness, adequately models ground war to the level

desired for the training requirement.

" The mathematical formulas outlined in Mann's thesis for the air model are adequate

for the purpose intended.

" Mann's research on both U.S. and U.S.S.R. air and land doctrine provided him with

accurate mission information.

" At this time, Saber simulates only land and air combat operations. It does not

simulate naval operations.

" Saber is an unclassified, aggregated theater-level wargame.

" "The new game will have the flexibility to play any scenario or in any theater of

operations" (17:6).

" "Command, control, and communications will be modeled by the player interaction

in the game and not by the computer simulation" (20:5).

3

" The Air Force Wargaming Center is responsible for verification and validation of

Saber.

" Concurrent thesis efforts will provide the graphical interface and database support

for the wargame.

" The DOD standard programming language, Ada, will be used to implement the

wargame.

1.5 Methodology

The beginning point for this effort was Mann's thesis which was analyzed using

object-oriented requirements analysis and design techniques. As part of the design phase,

the fields of the various databases were defined and agreed upon with the student working

on the concurrent thesis effort for database support. The object-oriented design was fol-

lowed by an Ada implementation. This implementation follows sound software engineering

principles. The actual program code is documented to permit easy maintenance by the

Air Force Wargaming Center.

1.6 Materials and Equipment

The Air Force Wargaming Center expects to receive Sun SPARC workstations; there-

fore, the modification of the land module and the start of the implementation of the air

module was accomplished on a Sun SPARC workstation which was already available at

AFIT. Version 6 of Verdix Ada was used for code development.

1.7 Expected Benefits of This Research

This thesis is the second in a series of thesis efforts to develop a new computer

wargame for the Air Force Wargaming Center. Saber, once completely implemented, will

provide the Air Force Wargaming Center with a flexible and viable computer wargame.

This wargame will be used by students at the Air War College to aid in their learning of

the wartime operations of planning, preparation, and execution.

1.8 Thesis Overview

Chapter II consists of a literature review of object-oriented design methods and

simulations with an emphasis on using object-oriented techniques in simulations. Chapter

4

III describes both the process used for the requirements analysis and the initial design.

It also discusses the results. Chapter IV discusses the modifications and enhancements

to Saber which resulted from wargaming research group meetings, as well as clarifications

on material in Mann. Chapter V describes the detailed object-oriented design. Chapter

VI discusses the implementation phase of Saber. Chapter VII contains a summary and

conclusion as well as recommendations for future work.

5

II. Literature Review

2.1 Introduction

The purpose of this chapter is to review some of the literature on object-oriented

design and simulation. First, object-oriented design concepts are discussed, including the

steps involved in conducting an object-oriented design as described by various authors.

Advantages and strong points of object-oriented design are also discussed.

Finally, simulation is described, including continuous and discrete event simulation.

Since Ada will be used to implement Saber, research also consisted of tying discrete event

simulation to an Ada implementation. This chapter also includes a brief discussion of using

object-oriented design to develop simulations.

Some authors refer to "object-oriented design" or development while others do not

hyphenate the words "object" and "oriented". For the sake of consistency, this chapter

hyphenates the words even when the author quoted did not hyphenate them. As with the

term object-oriented, the term "discrete event" is sometimes hyphenated. For the sake of

consistency, this thesis uses the unhyphenated version of the words whether the author

quoted used the hyphen or not.

2.2 Object-Oriented Design

Object-oriented design (OOD) is based on a decomposition of the system into objects.

This differs from functional decomposition techniques where the decomposition is based

on functions. Each module in an object-oriented design is based on an object whereas, in

the functional decomposition, the modules are based on steps in the overall system process

(1:211). "Object-oriented design is a design method which is based on information hiding"

(28:204). Korson and McGregor state that "the object-oriented design paradigm takes a

modeling point of view" (15:46).

2.2.1 Object-Oriented Design Concepts. Korson and McGregor describe five con-

cepts in object-oriented methods. These concepts, which are described in the following

sections, are: "objects, classes, inheritance, polymorphism, and dynamic binding" (15:42).

2.2.1.1 Objects. Booch defines an object as "something you can do things to.

An object has state, behavior, and identity; the structure and behavior of similar objects

are defined in their common class. The terms instance and object are interchangeable"

6

(4:516). The behavior of an object is "characterized by the actions that it suffers and that

it requires of other objects" (1:211). "The intent of an object is to represent a problem

domain entity" ('5:4-57).

Objects use memory and have an associated address. Associated with an object are

procedures and functions which define the operations on the objects. (15:42) "Objects

communicate by passing messages to each other and these messages initiate object oper-

ations" (28:204). Communication may be asynchronous. OOD is an excellent method to

use in designing parallel or sequential programs. (28:204)

2.2.1.2 Classes. A class is "a set of objects that share a common structure

and a common behavior. The teims class and type are usually (but not always) inter-

changeable; a class is a slightly different concept than a type, in that it emphasizes the

importance of hierarchies of classes" (4:513). "From the point of view of a strongly typed

language, a class is a construct for implementing a user-defined type" (15:42).

Object-oriented techniques use an Abstract Data Type (ADT) to represent a class

of objects. According to Booch, an ADT "denotes a class of objects whose behavior is

defined by a set of values and a set of operations, including constructors, selectors, and

iterators" (2:613). "Ideally, a class is an implementation of an ADT. This means that the

implementation details of the class are private to the class" (15:42). An ADT in Ada is

implemented by using the package construct. A "package encapsulates the type but is not

the type itself" (15:42). This "results in a weaker connection between state and behavior"

(15:42).

2.2.1.3 Inheritance. "Inheritence is a relation between classes that allows for

the definition and implementation of one class to be based on that of other existing classes"

(15:43). "Inheritance defines a 'kind of' hierarchy among classes in which a subclass inherits

from one or more superclasses; a subclass typically augments or redefines the existing

structure and behavior of its superclasses" (1:514). Korson and McGregor state that the

inheritance relation often denotes an "is a" relation. Inheritance supports reuse of software

components. (15:43-44)

2.2.1.4 Polymorphism. Polymorphism is defined as "a concept in type theory,

according to which a name (such as a variable declaration) may denote objects of many

different classes that are related by some common superclass; thus, any object denoted by

this name is able to respond to some common set of operations in different ways" (4:517).

7

In other words, this means that polymorphism is a technique in which an object can have

more than one form. "A polymorphic reference has both a dynamic and a static type

associated with it. The 'is a' nature of inheritance is tightly coupled with the idea of

polymorphism in a strongly typed object-oriented language" (15:45).

2.2.1.5 Dynamic Binding. Booch defines dynamic binding as "a binding in

which the name/class association is not made until the object designated by the name is

created (at execution time)" (4:513). Binding, as defined by Booch, "denotes the associa-

tion of a name (such as a variable declaration) with a class" (4:513). Korson and McGregor

state that dynamic binding "means the code associated with a given procedure call is not

known until the moment of the call at runtime" (15:46). Dynamic binding "is associated

with inheritance and polymorphism in that a procedure call associated with a polymorphic

reference may depend on the dynamic type of that reference" (15:46).

2.2.2 Object-Oriented Design Process. Different authors describe different steps to

use in conducting an object-oriented design. What one author calls an object-oriented

design, another author calls object-oriented development or requirements analysis. Since

many authors use a modified version of Booch's object-oriented design process, his steps

will be discussed in a later section of this chapter. This section discusses a method de-

scribed by Henderson-Sellers and Edwards which they call an object-oriented development

methodology.

Henderson-Sellers and Edwards describe seven steps used by Bailin in his object-

oriented requirements specification method. They state that these steps could "obviously

transcend the requirements stage well into detailed design" (10:148). Bailin's seven steps,

as described by Henderson-Sellers and Edwards, are (10:148-149):

1. identification of key problem space objects,

2. distinguish between active and passive objects,

3. establish data flows between active objects,

4. decomposition of objects into "sub-objects",

5. check for new objects,

6. group functions under new objects,

7. assign new objects to appropriate domains.

8

According to Henderson-Sellers and Edwards, Bailin sees the first three steps as ones which

are accomplished only once, while the other steps are performed iteratively. Henderson-

Sellers and Edwards propose a "seven-point methodological framework for object-oriented

systems development" (10:149). The steps, and a description of each follow (10:140-150):

1. Undertake object-oriented systems requirements specification. "This stage is a high-

level analysis of the system in terms of objects and their services, as opposed to the

system functions" (10:149).

2. Identify the objects and the services each can provide. This equates to the entities and

their interfaces. "This is where the functional features will be defined; although no

indication of implementation is required" (10:150). Henderson-Sellers and Edwards

propose that an object dictionary be established. The visible interface is defined by

identifying the objects, and the operations on the objects, as well as the services

offered.

3. Establish interactions between objects in terms of services required and services ren-

dered. Henderson-Sellers and Edwards suggest that an entity-data flow diagram

(EDFD) or entity-relationship diagram be used for this step. They suggest that a

better name for this diagram is an information flow diagram (IFD).

4. Use of lower-level IFDs. This is where analysis and design merge. The lower-level

IFDs show "more internal details of the objects" (10:150). From this step on, bottom-

up concerns should be analyzed.

5. Bottom-up concerns. During this step, objects are constructed from libraries of

previously used objects. Implementation of low-level classes begins.

6. Introduce hierarchical inheritance relationships as required. This step involves de-

termining whether there are any superclasses or new subclasses. Henderson-Sellers

and Edwards propose the use of an inheritance diagram to show the inheritance re-

lationships. They state that this step is needed to provide a well-defined hierarchy

so that future efforts can reuse the resulting structure.

7. Aggregration and/or generalization of classes. This step might require reviewing

and modifying the IFDs. Prototyping might begin at this stage. The identified

system classes can undergo another stage of development which Henderson-Sellers

and Edwards call generalization. "At this stage the components continue to be

worked on until they are general, generic, and robust enough to be placed in a

library of components" (10:150).

9

2.2.3 Booch's Object-Oriented Design Process. This section describes the five steps

of Booch's design process as described in his book, Software Components with Ada (2).

Since other authors use very similar steps, it includes information from various authors.

2.2.3.1 Identify the Objects and Their Attributes. This step involves taking

a narrative requirements document and extracting the nouns, pronouns, and noun phrases

(2, 8, 12). Some objects may be similar to other objects.

In this case, a class of objects is formed (3:48). Once all the objects and classes are

identified, a decision must be made as to whether they will be kept or discarded (12:44).

Just because an object is identified from the requirements document does not mean that

it should become part of the design and implementation (12:44).

Once the list of objects is refined, then the attributes of the objects should be de-

termined. "The attributes of an object characterize its time and space behavior" (2:17).

Jean and Strohmeier state that "these properties are given by the qualifiers of the objects

and classes within the informal strategy and by the additional information found in the

requirements analysis document" (12:44). EVB Software Engineering, Inc. states that

these are the "adjectives and adjectival phrases" (8:2-8).

2.2.3.2 Identify the Operations Suffered By and Required of Each Object. In

this step, the requirements document is used to extract verbs, verb phrases, and predicates

(8, 12). Then, the extracted verbs, verb phrases, and predicates are associated with a

particular object (8, 12). Jean and Strohmeier say "The goal is to bind each operation to

a single object or a single class" and that "no operation should be left alone" (12:45).

"The operations suffered by an object define the object's activity when acted upon

by other objects". By defining the operations required by an object, an attempt is made

to decouple objects from one another. (2:17)

During this step, a determination should be made as to whether the operation is a

selector, a constructor, or an iterator (12:45). A selector evaluates the current object state;

a constructor alters the state of an object; an iterator permits all parts of an object to be

visited (2:20).

2.2.3.3 Establish the Visibility of Each Object in Relation to Other Objects.

As part of this step, a decision is made as to what objects "see" and are "seen" by other

objects (3:49). The dependencies among objects should be established (1:219). This can

10

be done diagrammatically by drawing each object and then connecting the objects with a

line to show the visibility between the objects (2:28,30).

EVB divides Booch's step into four substeps. The first substep is to decide on how

to implement the operations. Subprograms, packages, tasks, and generics are the Ada

program units used to implement an object. The second substep formally describes the

interfaces among the objects. These descriptions can be textual or graphical. A program

unit which depends on another program unit must be compiled after the first program.

This substep helps determine the compilation order. EVB's third substep is to create any

additional objects and operations which are needed to help the implementation strategy.

These items are ones that were not identified as part of the informal strategy but must be

visible outside of the program unit. The last substep is to produce graphical annotations

to represent the formal strategy. The diagrams give no indication as to how an object

should be implemented nor do they show much about the underlying implementation of

the operations. The diagrams serve as a map for the software engineer to follow throughout

the rest of the design process. (8).

2.2.3.4 Establish the Interface of Each Object. This step is accomplished by

writing a module specification for each object. This can be done in Ada by producing an

Ada specification which can be compiled. Booch states that "this specification also serves

as a contract between the clients of an object and the object itself". (2:18)

2.2.3.5 Implement Each Object. This "involves choosing a suitable represen-

tation for each object or class of objects and implementing the interface from the previous

step" (2:18). An object is implemented in Ada "as a packaged set of procedures and

internal data" (25:4-55).

2.2.4 Advantages and Strong Points of Object-Oriented Design. Sommerville de-

scribes the following advantages to OOD (28:205):

" Message passing eliminates the need for shared data areas for communication between

objects. Overall system coupling is thus reduced.

* All state and representation information is kept within the object itself, making the

object an independent entity that may be readily changed. Objects can not access

information on other objects either deliberately or accidentally. Changes may be

made without reference to other system objects.

11

* Objects may execute either in parallel or sequentially. They may also be distributed.

The decision as to whether parallelism should be used does not need to be made at

an early stage of the design process.

Korson and McGregor describe seven ways in which object-oriented design provides

support for a good design.

1. Modularity. Classes become the modules. "This means that not only does the

design process support modularity, but the implementation process supports it as

well through the class definition". (15:50)

2. Information Hiding. "The class construct supports information hiding through the

separation of the class interface and the class implementation" (15:51). This sepa-

ration permits the class specification to be mapped to various implementations and

means some maintenance can be accomplished without the user's knowledge (15:51).

3. Weak Coupling. Object-oriented design supports weak coupling (15:51). Since classes

are designed as a collection of objects and the operations on those objects, the "in-

terface operators of a class are inward-looking in the sense that they are intended to

access or modify the internal data of the class" (15:51). This leads to less coupling

which is desirable.

4. Strong Cohesion. Strong cohesion is desirable and supported by object-oriented

design. Korson and McGregor state that "a class is a naturally cohesive module

because it is a model of some entity" (15:51). Functional cohesion is a desirable form

of cohesion. Booch defines it as cohesion "in which the elements of a class or module

all work together to provide some well-bounded behavior" (4:124). OOD supports

functional cohesion. The fact that OOD makes use of inheritance does not mean

that the cohesion is weakened since both the data and functions which are inherited

from another class form a natural group (15:51). These natural groups are "brought

together to represent one concept" (15:51).

5. Abstraction. Object-oriented design supports abstraction. Booch defines abstrac-

tion as "the essential characteristics of an object that distinguish it from all other

kinds of objects and thus provide crisply-defined conceptual boundaries relative to

the perspective of the viewer" (4:512). Korson and McGregor discuss two types of

abstraction which support OOD: abstraction by specification and abstraction by pa-

rameterization (15:51-52). Abstraction by specification separates the specification

12

of an object from its implementation (15:52). 'Abstraction by parameterization ab-

stracts the type of data to be manipulated from the specification of how it is to be

manipulated" (15:52). Seidewitz and Stark state that there is a "spectrum of abstrac-

tion" including entity, action, virtual machine, and coincidental abstraction, which in

conjunction with information hiding, provide the main guidance for defining objects

(25:4-57). Entity abstraction, which is the best level, is where an object "represents

a useful model of a problem domain entity" (25:4-57). Action abstraction is where
"an object provides a generalized set of operations which all perform the same kind

of function" (25:4-57). Seidewitz and Stark describe virtual machine abstraction as

the case in which "an object groups together operations which are all used by some

superior level of control or all use some junior level set of operations" (25:4- 57). The

worst level of abstraction is the coincidental. This level of abstraction is defined as

where "an object packages a set of operations which have no relation to each other"

(25:4-57).

6. Extensibility. Object-oriented methods are "easily extended" (15:52). Inheritance

supports this in two ways. First, because inheritance permits "the reuse of existing

definitions to ease the development of new definitions" (15:52). Second, the poly-

morphic property also supports extensibility in designs (15:52).

7. Integrable. Designs produced by OOD "facilitate the integration of individual pieces

into complete designs" (15:52). This includes both the use of classes and objects

(15:52).

Booch discusses coupling, cohesion, sufficiency, completeness, and primitiveness as

means of determining that a design is good. Coupling and cohesion were discussed above.

By sufficiency, Booch "means that the class or module captures enough characteristics

of the abstraction to permit meaningful and efficient interaction" (4:124). Completeness

means "that the interface of the class or module captures all of the meaningful charac-

teristics of the abstraction" (4:124-125). Completeness is a subjective matter and should

not be overdone. Primitiveness implies that an operation can only be implemented if the

developer is given access to the underlying representation of the ADT. (4:124-125)

2.3 Simulation

"Simulation involves constructing models and the study of model behavior within

varying environments" (30:181). One of the reasons to use simulation is to experiment

13

with as yet undefined systems (30:181). Another reason to use simulation is because

first hand experience is not available (30:181). "Simulation is one of the more widely used

techniques in managerial decision making" (7:83). A simulation can focus on the important

details of what it is modelling and leave out the less important details (30:181). Unger and

others state that "the problems associated with designing, implementing, and maintaining

large simulation programs are essentially identical to other types of programs, particularly

concurrent programs" (30:181). Objects, and their operations, can readily be represented

in simulations (30:182).

The following subsections describe continuous and discrete event simulations. Since

the wargame which will result from this thesis effort will use discrete event simulations

and Ada the discussion includes a description of discrete -vent simulation and the Ada

programming language.

2.3.1 Continuous Simulation. "Continuous simulations are used in the modeling of

systems in which changes in system state variables occur continuously over time" (30:238).

This type of system is described by using "time-dependent differential or difference equa-

tions that represent the rates of change of the system's state variables" (30:238). With

continuous simulations, "time is advanced in uniform, or constant size, sttps" (30:181).

According to Unger and others, continuous simulation methods are us 'd in a number

of applications including "the modelling of marine and aerospace navigation and control

systems" (30:238).

2.3.2 Discrete Event Simulation. "Discrete event simulation refers to a modelling

technique that enables changes to occur in the state of a model at arbitrary simulation

times" (30:181). The actual time when the changes occur is called an event. The time

intervals between events are usually not of the same duration. (30:181) Discrete event

simulations are used as analytical tools in the investigation of complex systems (5:5-105).

2.3.2.1 Discrete Event Simulation and Ada. According to Borrego and oth-

ers, "Ada is a general purpose programming language and does not provide any simulation

tools" (5:762). In constrast, according to Shtern, Ada has many characteristics, like strong

typing and private types, which make it a powerful simulation language (27:13). Two

other Ada features, which discrete event simulations should take advantage of, are generic

packages and taskn (5, 27). Generic packages serve as templates for a package (5:762).

Tasks are used to represent the events and processes in the system being implemented

14

(26:5-105). The tasks can run independently on a single processor computer or in parallel

on a multi-processor computer (21:8). Communication between the tasks is achieved by

using shared variables and rendezvous parameters (21:8). The rendezvous in Ada pro-

vides the mechanism which ensures that while one task is being run, it is "nonsharable

and nonpreemptable for use by another task" (21:8). Tasks can be used in implementing

simulations because they can be suspended and resumed (5:762).

Melde and Gage discuss the development of a generic Ada package, A*SIM, which

provides all the capabilities needed for "general-purpose discrete event simulation". Besides

discussing how they used Ada's generic packages and tasks to implement the simulation,

they also discuss other Ada features which they found helpful. For example, they used

the Ada record to provide "dynamic allocation and deallocation of blocks of memory for

data storage". They also found that access types permitted them to create complex data

structures like linked lists. In A*SIM, the event calendar implementation is designed so

that it "can vary from a simple linked list structure to a highly specialized data structure

and algorithm for efficiency". (18:58-60)

Borrego and others describe some problems they found when using Ada to implement

a simulation. One problem with using Ada tasks is that the tasks are implemented by the

use of a first-in-first-out queue, unless a priority is provided. Priorites are determined at

compile time. There is no method for the simulation, based on various data, to change

the priority during run time. "Discrete event simulation also requires a random number

generator". A random number generator is not a required feature of Ada. (5:762)

In contrast, Shore describes the following benefits of using Ada in implementing a

simulation (26:5-105):

" Using Ada does not require training programmer personnel in more than one pro-

gramming language. "After some training in the concepts of discrete event simula-

tions, an Ada programmer could create simulations in a familiar environment, rather

than requiring additional training in a completely new language".

" Using Ada also permits easy porting of the simulation to any computer which has

an Ada compiler.

2.4 Object-Oriented Design and Simulation

"The object-oriented design of simulations is based on the concept of abstract data

types" (29:123). Object-oriented techniques lend themselves to simulation because the

15

"things" which should be modelled are objects and what each of the "things" can do are

the operations on the objects (23:278). This defines an abstract data type. Roberts and

Heim state that an "object-orientation attempts to bridge the gap between the model

and what is modeled" (23:278). They also state that "division into classes, recognition of

methods, and the organizations of hierarchies form the basic approach to object-oriented

modeling" (23:279). Methods are the operations performed on an object.

One benefit of an object-oriented simulation system is the focus on objects. Focusing

on objects provides both data abstraction and information hiding which help to modularize

the system. This "stimulates the user to identify the principal components of a system

and to specify their behaviors and interactions". (23:279)

Another benefit of an object-oriented simulation is that existing models can form the

basis for new models. By using overloading and inheritance, old objects can take on new

meanings. (23:280)

The resulting amount of code generated using object-oriented simulations is less than

using traditional approaches. This makes it easier to manage the model and also permits

models to be larger and more realistic. (23:280)

Objects provide a natural starting point for concurrency (23:280). Concurrency

permits more than one object to be processing at the same time as long as the objects do

not need to communicate with each other.

2.5 Summary

This chapter discussed object-oriented design and simulation. Object-oriented design

was defined and various concepts described. The key terms in object-oriented techniques

are object and class. An object is something which can be changed. It has behavior, state,

and identity. When objects have a similar structure and behavior they are often grouped

into classes. Another term defined was inheritance. Ada, which was used to implement

Saber, does not support inheritance.

Two object-oriented design processes were described, including an in-depth descrip-

tion of Booch's process. The research conducted showed that the process, as described by

numerous authors, is basically the same. The first step is to identify the objects and group

them into classes. At the same time as objects are identified, the operations which those

objects require can also be determined. As with other design techniques, ali object-oriented

design process should be an iterative one.

16

This chapter also described some of the advantages and strong points of object-

oriented design. Object-oriented design techniques provide the implementer with an easy

way to follow sound software engineering principles. Object-oriented design techniques

provide a modularized system which permits easier maintenance of the actual code. It also

supports information hiding by separating the interface and the implementation permitting

some maintenance to take place without the user's knowledge. A good object-oriented

design ensures weak coupling and strong cohesion as well as supporting abstraction. These

are all very important software engineering principles.

Simulation was the second major topic to be discussed in this chapter. Simulation is

the constructing of models and the study of model behavior within different environments.

There are two types of simulation, continuous and discrete event. Continuous simulations

are used to model systems where the variables change continuously over time. Discrete

event simulations are used to model systems where the variables change at arbitrary times.

Since wargames are discrete event simulations, research concentrated mostly in that area.

Object-oriented design techniques lend themselves to discrete event simulations because

the variables in a simulation can be modelled as objects and the events which change

variables become the operations on the objects.

Some researchers thought that Ada does not provide the capabilities needed to im-

plement a simulation. Other authors expounded on how Ada can be used for simulations.

The Ada task construct provides the capability for the simulation to suspend and resume

a task if needed. Other features of Ada which make it a good implementation method

are: the ability to encapsulate objects into packages, generic packages, strong typing, and

private types.

The third major topic in this chapter briefly described using object-oriented design

techniques in developing a simulation. It also discussed some of the benefits gained in

using object-oriented design.

The next chapter describes the requirements analysis and design phase which was

accomplished as part of this thesis effort.

17

III. Requirements Analysis and Initial Design

3.1 Introduction

This chapter describes the results of the requirements analysis and initial object-

oriented design. The requirements analysis was accomplished by analyzing both Ness' and

Mann's theses. The object-oriented design was only accomplished on Mann's thesis. The

design phase consisted of determining the objects, their attributes, and the operations

needed.

3.2 Requirements Analysis

As part of the requirements analysis, a review of CPT Ness' code, thesis, and main-

tenance manual was accomplished. The goal at this stage of the development was not to

become familiar with how functions were accomplished but rather how they were orga-

nized. The Ada packages and procedures were shown diagramatically in order to clearly

and quickly see the relationships between the individual modules.

The second part of the requirements analysis was to become familiar with CPT

Mann's thesis. An attempt was made to extract the basic information needed in order to

begin the development process. Further information on Ness' and Mann's theses can be

found in Appendices A and B, respectively. Appendix C shows the packages Ness used.

It lists the procedures and functions which are part of each package as well as giving a

brief description of his main type declarations. Appendix D shows the visibility required

between Ness' original packages.

3.3 Initial Object-Oriented Design

The first three of Booch's object-oriented design steps, as discussed in Chapter II,

were used to conduct the initial object-oriented design.

3.3.1 Identify the Objects and Their Attributes. The first step in this process is to

determine the objects. This is accomplished by extracting nouns from the requirements

document. In this case, both Ness' and Mann's theses were used as requirements docu-

ments. The initial list of objects from the requirements analysis was refined as part of

this step and the attributes determined. The emphasis during this step was on the air

battle, though the land battle was considered. The objects and corresponding attributes

are shown in Appendix D. Items shown in italics were not part of the initial design.

18

An example of an object is an aircraft. An aircraft object would need many attributes

in order for the simulation to function correctly. It would need, for example: the plane's

designation, the weapons load which it carries, the average number of sorties flown per

week, the maximum speed of the plane, the amount of maintenance it requires each time

it is flown, and the size of runway needed. Other objects that come to mind immediately

are Weapons and Bases.

3.3.2 Identify the Operations Suffered By and Required of Each Object. The oper-

ations are determined by extracting verbs and verb phrases from the requirements docu-

ments. For the initial design, this step was only accomplished using Mann's thesis. The

objects and the required operations are shown in Appendix E. Items shown in italics were

not part of the initial design.

To continue with the Aircraft object, it would need a number of operations. The

simulation would need to read in from a disk file the initial characteristics for each type

of aircraft. It would also need to determine the actual maintenance hours which a plane

requires based on the mission flown. The simulation would also need to keep track of the

number of aircraft available, decreasing the quantity when a plane is on a mission and

increasing it when the plane returns from a mission.

3.3.3 Establish the Visibility of Each Object in Relation to Other Objects. The

purpose of this step is to decide which objects need to "see" and be "seen" by other

objects. Appendix F shows the initial results of this step. The objects marked with an "I"

indicate the results of this step.

Since an aircraft needs to have a weapons load attribute, the Aircraft object would

need access to the Weapons object. And since an aircraft is assigned to a base, it should

be "seen" by the B.se object. The Weapons object would also be "seen" by the Base since

a base is a holder of weapons as well as aircraft.

3.4 Summary

This chapter briefly described the steps taken to accomplish both a requirements

analysis and the initial object-oriented design. Object-oriented design is a good technique

to use for simulations, especially wargames, because the objects are real "things", like

weapons and aircraft. Unfortunately, there is also one major drawback: the need to

extract nouns (for objects) and verbs (for operations) from the requirements document.

19

This can be very time consuming if the requirements document happens to be over 200

pages long. The process could be automated if a dictionary of valid nouns and verbs was

available or constructed and if an electronic version of the requirements document was also

available. Once the list of nouns and verbs are made, an analysis must be accomplished

to determine if the words are actually objects and operations needed for the system being

designed.

The next chapter will discuss changes to the requirements which resulted from thesis

research meetings.

20

IV. Requirements Modifications, Clarifications, and Enhancements

4.1 Introduction

This chapter will describe changes to features that were implemented by Ness or were

part of Mann's thesis effort. It will also include features that were not defined by either

Ness or Mann but were defined as part of the research group meetings and discussions with

the Air Force Wargaming Center.

The sections are centered around whether the discussion affects Saber as a whole,

only the land module, or only the air module.

4.2 Saber

4.2.1 The Hex System. Ness' hex system numbered the hexes from west to east

and south to north along a diagonal. There were two coordinates, one representing the

x-coordinate and the second representing the y-coordinate. The x-coordinate increases as

you move from west to east and the y-coordinate changes with diagonal movement. The

hexes were oriented with north-south directions across the points and east-west directions

across the flats. Figure 2, which was extracted from Ness' thesis, shows his basic hex setup

and numbering scheme. (19:8-9)

As part of the graphical interface, the hexes should be displayed. With Ness' hex grid,

it is not easy to determine from a display what the hex number is. The Saber research

group reviewed a BDM document which described various types of grids and different

numbering schemes (16). The members kept two areas in mind: readability of the display

and the need to be able to determine the relationship between seven land hexes and one

air hex. It was decided that Ness' numbering scheme should be modified so that the x-

coordinate increases moving from west to east and remains the same when moving north

or south on the grid. The y-coordinate remains the same when moving from west to east

and changes when moving north or south on the grid.

The wargames maintained by the Air Force Wargaming Center which have graphical

interfaces have the east-west directions of the hexes across the points and the north-south

directions across the flats. Since Saber is being created for the Wargaming Center's use,

it was decided to change the direction of Ness' hexes to be the same as those used by the

Wargaming Center. This permitted Klabunde to reuse code provided by the Wargaming

21

05 0105 0205

04 0204 0304 0404 0504 0604

03 0203 0303

02 0302 0402 0502 0602 0702

01 0301 0401

Figure 2. Ness' Hex Grid System

22

03

02 0002 0202

012 0

00 0000 0200 0400 0600

00 01 02 03 04 05 06

Figure 3. Revised Hex Grid System

Center. (13) Figure 3 shows the new direction of the hexes and the new numbering sci, .ae.

(11)

The addition of the air hexes meant an additional coordinate was needed to represent

the altitude. This was done simply by adding a z-coordinate. Normally when one thinks

of a three dimensional coordinate system, the z-coordinate is the third number. In the

case of Saber, it was decided that it would be easier for the user to read the hex number

if the altitude, or level, was the first number. Therefore, the hex numbers for Saber take

the following format: zzxxyy. This constrains the number of hexes to two digits. Using

base 10 numbers up to 100 x 100 hexes may be used for the ground level. At 25 km

across, this implies a maximum playing area of 250,000 km 2 . This will be sufficient for

theater-level games, however, air assets located outside the playing area will need to be

simulated somewhere on the allowed grid space.

It was also decided to reserve the minimum and maximum hex numbers for special

use. They are used for two purposes. The first is in determining the correct movement

23

of units or aircraft packages. Having the extra hex numbers around the "edges" of the

grid eliminates the need for a complicated movement algorithm that would have to check

for those "edges". The second purpose is to use those same numbers to implement bases

which are not within the map being depicted by the hex grid. For example, if the scenario

being played is Korea and the USAF had a base in the Phillipines, that base might provide

aircraft support to the forces in Korea. Some means was needed to represent this concept.

In this example, the base might be assigned to ground hex 010000. The simulation will

not attempt to fight a battle or drop munitions on the minimum and maximum hexes; i.e.,

they c-n not be targeted. They are basically placeholders and the resources located within

them can "fly" out of, and return to, them. When an aircraft package leaves from one of

these hexes, maintenance is determined from that location. No attempt should be made

to determine maintenance from the "real" location.

4.2.2 Weather. The preprocessor provides the simulation with a good and fair

weather forecast percentage. The forecasts are used in determining the actual weather

for an individual hex. The weather for each hex should be determined by comparing the

result of a random number draw with the forecast. If the random number is less than

or equal to the forecast for good weather, then the actual weather is good. If the ran-

dom number is greater than the forecast for good weather and less than or equal to the

summation of the percentages for good and fair weather, then the actual weather is fair.

The actual weather is poor if it exceeds the summation for the criteria for good or fair.

The weather changes are based on weather periods and not on time periods. The weather

period is a multiple of a time period. (24)

4.2.3 Asset ID. The database system design for Saber assigns an identifying num-

ber to each aircraft package, base, depot, ground unit, hex, obstacle, road, railroad,

pipeline, Army order number, city, and satellite. This identifying number is referred to as

an ASSETID. It consists of two letters and a six digit number. The letters used indicate

what asset is being referred to. For example, a ground unit (or land unit) ASSETID

begins with LU while a railroad begins with RR. The six digit number is a chronological

number except in the case of a hex id. The first two numbers of a hex id indicate the

altitude level (1-7, as described by Mann), the next two numbers refer to the x-coordinate

of the hex while the last two numbers indicate the y-coordinate. (11)

Ness' code created a hex grid by using a loop and initializing attributes. The database

design includes tables to provide this information. This includes not only the obstacle

24

values, but also the hex IDs themselves. In addition, the database design uses a neighbor

ID to indicate the relationship between hex sides of adjoining hexes. For example, the NE

side of one hex and the SW side of the adjoining hex would have the same neighbor ID.

This allows the simulation to check the side of one hex for an obstacle and not have to

check the side of the next hex to see if it has an obstacle as was required by Ness' design.

4.2.4 Staging Operations. Staging operations, including aircraft beddown, are per-

formed by the preprocessor and not by the simulation.

4.2.5 Historical Data. Discussions pertaining to the postprocessor portion of Saber

resulted in recognizing the need for a history file. This history file should be created by

the simulation and is used in the processing of output reports. Entries to the history file

should be made when certain events take place. Entries are of two types, events and status

records. An event record contains information on things like getting attacked while status

records log the current status of specific objects. For example, the events pertaining to an

aircraft package are:

9 Mission Start: This entry should include the mission start time, the asset ID, the

rendezvous hex ID, the actual event, the mission type, the requested time-on-target,

the force, and the target ID.

o Move: This entry records the movement of an aircraft package and consists of the

following information: time, the asset ID, the new hex ID, and the event.

o Attacked By: This entry records the attack on an aircraft package by either another

aircraft package or a ground unit (surface-to-air missile). It includes the following

information: time, the asset ID of the aircraft package, the hex ID where the aircraft

package is located, and the asset ID of the attacker. If aircraft package number

AC000017 located in hex number 020120 was attacked at 1700 by aircraft package

number AC000232, the event record would look like the following:

E 1700 AC000017 HEX020120 ATKDBY AC000232.

e Jettison: This entry would indicate that weapons were jettisoned from an aircraft.

It would enter information on the mission type, the aircraft type, and the number of

weapons jettisoned.

o Mission Complete: The mission complete event record logs the fact that an aircraft

package has completed its mission. It consists of the time of completion, the aircraft

package number, the hex number, and the event.

25

The status records for an aircraft package would show the status of the aircraft package's

aircraft after each of the events described previously. The status record would show the

aircraft type and the quantity present in the aircraft package. Similar event and status

entries should also be made for a base, depot, ground unit, satellite, supply train, ground

level hex, and weather (see (14)).

4.2.6 Beginning and End-of-Day Routines. Input routines should only read in the

data needed by the simulation. The routines should not read in attributes like full-desig-

nator which the simulation itself does not need.

At the end of each day two events should happen, output files should be written and

output status reports should be created. Ness' code includes procedures to accomplish

both of these events. These routines are no longer accurate. Klabunde has designed new

reports (13). The procedures to create output files should merge the input files with the

attributes which were modified by the simulation.

4.3 Land Module

4.3.1 Targets and Obstacles. The database design is flexible and permits a ground

unit to have more than one target. It also permits a ground level hex to have more than

one obstacle per side. (11) Ness' design was based on the ground unit having one target

and a hex only having one obstacle per side.

The graphical interface design required the addition of pipelines, roads, railroads,

and rivers. The addition of these items to Saber will permit them to be displayed. It

should also permit them to be targeted. (13)

4.3.2 FEBA, Coasts, and Borders. Horton's database design includes tables which

contain the location of the forward edge of the battle area (FEBA) as well as the location

of coasts and borders. The coasts and borders are not needed for the simulation itself but

rather are for graphical display purposes. Ness' land module already has a mechanism for

determining the FEBA.

4.3.3 Ammunition, POL, and Firepower. The code for Mann's algorithm for de-

termining the total POL (fuel) and AMMO (ammunition) for a ground unit should read in

variable values from the database and not have any values hard-coded. The same is true

for the decimals used in determining the BLUE and RED firepower scores. Mann shows,

26

for example, that the number of tanks is multiplied by .5. The .5 should be read in from

the database and not be hard-coded. (17:176)

The presence of missiles does not increase a unit's firepower score because of the

distant range of the missiles. Mann describes firepower and combat power differently from

Ness. Mann's firepower is Ness' combat power and vice versa. The ;imulation should

reflect Mann's definition. This includes Ness' attributes of CP_IN and Cl- _OUT.

4.3.4 Orders. The database design has a MOVE table and a MOVELjNLT (MOVE-

LEAVE NO LATER THAN) table for the Army orders. The MOVE table provides the

input for the way Ness implementeu orders and provides the leave no earlier than day and

time period. The MOVELNLT table provides a new feature, that of overriding. It gives

the user the ability to say that a unit must leave by a specific day and period.

It is used when a unit is delayed for some reason. The MOVE_LNLT orders have a

higher priority for completion than the MOVE orders. For each time period within a day,

the simulation should first determine whether there are any orders that were part of the

MOVELNLT table that need to be processed. After it processes any orders of this type,

it should then check for orders that were part of the MOVE table and are for that specific

day and time period. (11)

4.3.5 Supply Train. A supply train moves supplies from a depot to either a ground

unit or to a base. Since a supply train moves through ground hexes, it should have ground

unit attributes and use ground unit algorithms. The supply train's additional attributes

are needed to describe what supplies the train is moving and to what unit or base they

should be delivered.

Saber should simulate two types of supply train missions, one in which the user

would request each time needed (ST) and a predirect one which would run automatically.

The predirect supply train (PST) would simulate the replenishing of supplies which is

accomplished as a normal part of a base or ground unit's operation.

The supply train simulates movement by trucks. A supply train (ST) mission would

deliver the supplies, leave the trucks, and disappear, unless the student submitted a second

order to return the trucks to their depot. Therefore, the simulation must determine whether

a supply train has a subsequent return order before adding the delivery trucks to the base

or unit's inventory.

27

In contrast to the ST mission, one PST mission would deliver its supplies and return

to its depot. The train would then be used for another PST mission. (24)

4.3.6 Radars. Mann describes an algorithm for determining the number of missiles

fired. This algorithm requires the use of a probability that there is a launche: arid radar

pair (17:131). The type of radar that should be paired with a launcher is a radar fire control

(RFC). Mann says that the launcher/radar pair should be determined by a random number

draw. Instead, it was decided that the simulation should use the average radar quality.

The following algorithm should be used to determine the radar quality:

Radar Quality = 1 / (maximum radar quality - actual radar quality + 1) (24)

The radar quality is calculated for each RFC type. The radar qualities are then

summed and averaged. The average is used in place of the random number draw. The

maximum radar quality is a user-supplied constant for each radar type. The actual radar

quality should be a floating point number between 0 and 2. (24)

The same radar quality algorithm should also be used as part of Mann's local detec-

tion algorithm but instead of using RFC, the calculation should be based on acquisition

radar. The revised local detection algorithm is as follows:

P(t) = (1/EC)(I - e- A)(ARQ)

where P(t) is the probability of detection, EC is the electronic combat value of tht target,

w is the target speed, W is the diameter of the sensor's detection area, t is the time the

target was in the area, A is the size of the search area (17:124) and ARQ is the average

acquisition radar quality. (24)

4.3.7 Launchers. There is a one-to-one correspondence between launchers and mis-

siles. There was some discussion about this correspondence because some launchers actu-

ally do have the capability of launching multiple missiles at one time. It was decided that

it would be easier to implement ground missiles if the launcher could only fire one missile

at a time. It is also easier to determine that the launcher is destroyed. If a launcher could

fire three missiles simultaneously, then what would be the result of a hit from an aircraft?

Would it destroy the ability to fire one missile, two missiles, or all three? Was the launcher

fully loaded or partially loaded when it was hit? The one-to-one correspondence makes

the implementation easier but still realistic.

28

4.3.8 Surface Missiles. Since surface missiles are attached to a ground unit, they

need to have the attributes of a ground unit. But since they are also missiles, they need

additional attributes. Therefore, when simulating a surface-to-surface missile mission, the

simulation must use the attributes of both a ground unit and a surface-to-surface missile.

Surface-to-air missiles do not need a separate mission because they only fire in response

to an aircraft package's presence. The processing of an aircraft package will check for

surface-to-air missiles and, if any are present, will determine the results.

Surface missiles need to have attributes for the probability of kill (PK) for a hard,

soft, and medium target. These attributes are needed so that the simulation can determine

the outcome of a conflict. Each of the targets has a hardness. This hardness value provides

the simulation with the ability to provide different results based on the type of target. For

example, the results of firing a missile at an aircraft should not be the same as firing one

against a runway. (24)

4.4 Air Module

4.4.1 Air Hexes. The following subsections describe the clarifications, modifica-

tions, and enhancements to the air hexes.

4.4.1.1 Relationship with Ground Hex. A method was needed to relate the

ground hexes to an air hex. Seven ground hexes were grouped to create an air hex. Figure 4

shows the relationship between a ground hex and an air hex (11). It was determined that

one way of relating the ground hexes to the appropriate air hex was to give the ground hex

an additional attribute of CENTER-HEX. This value is the hex id of the center ground

hex when grouped by sevens. It is also the number used for the corresponding air hex.

Figure 5 shows how seven ground hexes are related to an air hex via the CENTER-HEX

number (11).

4.4.1.2 Trafficability. The movement of aircraft packages through an air hex

should not only be based on weather and the electronic combat (EC) value of the hex, as

described by Mann, it also needs to be based on trafficability (17:61). Mann describes the

second hex level as being tree-top level; therefore, some method of simulating the trees

is needed. Mountains could also be located in an air hex. The addition of an attribute

for trafficability needs to be added. It should be implemented similar to the way the land

module uses it.

29

Figure 4. Air Hex Grid

4.4.1.3 Aircraft Package Movement. Mann said an aircraft package should

move through air hexes by determining a straight line from the rendezvous hex to the

target or desti-: tion hex (17:119). Many discussions took place on how this should be

accomplished. It was decided that an aircraft package should move from hex to hex and

resolve any conflicts in each hex before proceeding. It was also decided to determine the

route by moving through each hex and calculating the next hex location based on the

current hex location. The six directions which an aircraft package can move from hex

to hex are north, south, north-east, north-west, south-east, and south-west; an aircraft

package can not move directly east or west.

It was decided that if a package was moving south it would first move down and

left. On the next move it would go down and right. This rotation of left and right would

continue until the aircraft package reached its destination hex. For example, if the start

hex number was 020516 and the destination hex was 020502, the aircraft package would

first move to 020413, the next moves would be to hexes 020611, 020509, 020406, and finally

30

HX01 1012

H00912 HX0 1112

H010911 HX11111

Figure 5. CENTERIEX Concept

to hex 020502. The opposite is true if the package is moving north. To go from 020502

to hex 020516 the aircraft package would move first to 020604, then to 020707, 020509,

020611, 020714 and finally to 020809. Figure 6 shows the north-south and south-north

movement.

If the aircraft package wants to move in a northeasterly direction from its starting

location to its destination location it first moves up and to the right and then up right.

For example, to move from air hex 020502 to air hex 022414, the aircraft package would

first move to hex 020802, then to hex 020905. From there it goes to hexes 021205, 021308,

021608, 021711, 022011, 022114, and finally reaches its destination of 022414. Going

southwest, the algorithm does the opposite, the simulation moves down and to the left and

then down left. In this example, the aircraft package would go from 022414, to 022114,

022011, 021711, 021608, 021308, 021205, 020905, 020802, and finally to air hex 020502.

Note, this does take the aircraft package through the same air hexes as the northeast

31

Figure 6. North-South and South-North Movement

direction. Figure 7 shows the northeast and southwest movement of an aircraft package

through air hexes located in level 2.

If the aircraft package wants to move in a southeasterly direction it first moves up

and to the right and then moves down to the right, alternating directions until it reaches
its final destination. For example, an aircraft package moving from air hex 020413 to

022503 would first move to hex 020611 then to hexes 020809, 021007, 021205, 021403,

021601, 021902, 022202, and finally to 022503. For a northwest movement, the aircraft

package would go from 022503 to 022305, 022107, 021909, 021711, 021513, 021212, 020912,

020611, and then reach its destination of 020413. It attempts to first go up left and then

up right. Again, the simulation takes care of those situations when the aircraft package

cannot alternate directions. Figure 8 shows the southeast and northwest movement of an

aircraft package through air hexes located in level 2.

32

Figure 7. Northeast and Southwest Movement

4.4.2 Weapons Load. There are three types of weapons load: preferred conventional

load (PCL), preferred nuclear load (PNL), and preferred biological, or chemical, load

(PBL). When the user enters the missions to be flown, the type of warhead to be used

should also be entered.

When forming an aircraft package, the system should first determine if the requested

aircraft are available. After it determines that the required aircraft are available, it should

then determine the actual weapons to use. The particular weapons load needed is first

based on whether the mission is using conventional, nuclear, or chemical warheads.

A particular weapons load is based not only on the warhead but also on the aircraft

being used, the weather of the target hex, the hardness of the target, and the mission to be

flown. For example, an F15A flying a Suppression of Enemy Air Defense (SEAD) mission

with conventional weapons in poor weather against a hard target would require a different

make-up of weapons than the same aircraft flying a fighter sweep mission. (24)

33

Figure 8. S e a r s m

wareadandMFMiurwen it Suhas anea wrhed.oemn

4.4.3 Aircraft Maintenance. Aircraft require maintenance each time they are flown

on a mission. Each aircraft type has an attribute of maintenance distribution which refers

to the type of statistical distribution that should be used by the simulation to calculate the

actual maintenance time. An aircraft record also has attributes for the mean and standard

deviation. The types of distributions initially allowed are: normal, poisson, and uniform.

(24)

4.4.4 Base Missions. Mann says a base should have three missions: NA, fire, and

move. The fire mission was deleted from the requirement because fire support would be

34

received from a ground unit. The move mission was renamed deploy. Bases don't really get

up and move like ground units but personnel and aircraft are often deployed. Therefore,

the name was changed. The deploy mission would permit an entire base to move from one

hex location to another. (24)

4.4.5 Aircraft Packages. In addition to an aircraft package's primary mission, an

aircraft package can also have escort, SEAD, ECM (Electronic Counter Measures), and

refueling aircraft assigned to it. If an aircraft package encounters an enemy aircraft package,

the escort and SEAD planes are targeted first. The presence of SEAD and ECM aircraft

increase the electronic combat (EC) rating for the aircraft package. They can also increase

the distance that the aircraft package can fly. An aircraft package would continue on its

mission even if the escort aircraft are destroyed. SEAD aircraft can be either a support

aircraft or perform its own mission. When used as a support aircraft it strikes enemy air

defense at the target.

An aircraft package is formed by taking aircraft from various bases. Before selecting

an aircraft for a mission, the simulation must ensure the following:

" the runway length is sufficient for take-off,

" the aircraft is not currently undergoing maintenance,

" the base has enough fuel available for the mission,

" the correct weapons load is available,

" the aircraft can fly in the target hex's current weather,

" the target is within the range of the aircraft or refueling planes are available.

Fuel and weapon quantities should be reduced when the aircraft package is formed. Spare

parts and maintenance hours are decreased when the aircraft returns from a mission. If

the aircraft package was hit, then the aircraft would require more than routine preventive

maintenance, i.e., the maintenance time needs to be longer.

Once the simulation gathers the number of aircraft needed, the aircraft automatically

appear at the rendezvous hex. The simulation does not need to "fly" the planes to the

mission's starting point. When an aircraft package returns from a mission, the aircraft are

randomly distributed back to the bases.

35

4.4.6 AF Missions. Any aircraft can fly any mission. The aircraft's COMBAT

attribute provides a combat rating which ensures that a F16 flying an escort mission

has better results than a KC135 flying the same mission. The preprocessor will simulate

warnings to the player of unreasonable missions.

Each mission can only target one hex. Most missions target a base or unit. A

reconnaissance (RECCE) mission is different in that it can have a hex id as its target.

Once the RECCE plane reaches the hex it determines what bases, supply trains, or units

axe in the hex. Anything which it finds in the hex that can be a taxget becomes a target.

The simulation then determines the order used in striking the targets. Both chemical

and nuclear missions can also target a hex. If a Battlefield Air Interdiction (BAI) or Air

Interdiction (Al) mission has a hex ID as its target, then a mine laying operation should

be performed.

4.5 Summary

This chapter described changes and enhancements to Saber based on research being

conducted by Klabunde and Horton. It also clarified some of Mann's algorithms. Specif-

ically, the chapter described Ness' hex system and how the hex system was changed to

provide compatibility with other wargames used at the Wargaming Center and to provide

a better visual display of the hex grid. This chapter also discussed the changes in how the

actual weather is determined. The new method is stochastic in design.

Each asset in the wargame has a unique identifying number called an ASSETID.

Aircraft and weapons do not have ASSETIDs because the simulation is not tracking

tail numbers of aircraft or individual weapons; rather the simulation just keeps track of

quantities of different aircraft and weapons.

Since there is a graphical interface to Saber and since the interface is not real-time,

a history file is needed to store what actions the simulation has taken. This requires

additional code in the land battle module. Other changes to the land module include the

capability to have more than one obstacle in a hex and for a unit to be able to target more

than one other unit. In addition, there now exists the capability to target railroads, roads,

pipelines, and rivers.

A ground unit can have two kinds of orders with Saber. Ness' design used a MOVE

table; Horton's adds a MOVE_LNLT table. Supply trains can be of two types, predirect,

which runs automatically, and one the student requests. Both supply trains and surface

missiles have the attributes of a ground unit in addition to their own attributes.

36

This chapter also described clarifications and modifications to the requirements of

the air module. An air hex, like a ground hex, can have trafficability. In an air hex, this

attribute indicates the presence, or absence, of mountains and tall trees.

Aircraft can have three types of weapons loads: preferred conventional load, preferred

nuclear load, and preferred chemical/biological load. This chapter described the process

of choosing the correct weapon load based on the mission, the target hardness, and the

weather. This chapter also described how aircraft maintenance should be calculated.

Aircraft packages have a primary mission with primary aircraft plus support aircraft

for escorts, refueling, suppression of enemy air defenses, and to provide electronic counter

measure operations.

The support aircraft are not a required part of an aircraft package but provide

additional capabilities if included. The formation of an aircraft package was described. It

does not include ensuring that required maintenance hours and spare parts are available.

These are changed when the mission is completed.

The next chapter will describe the detailed object-oriented design.

37

V. Detailed Object-Oriented Design

5.1 Introduction

This chapter describes the results of the detailed object-oriented design. This phase

consisted of finalizing the objects, their attributes, the operations needed, establishing the

visibility between objects, and establishing the interface of each object.

The first four of Booch's object-oriented design steps, as discussed in Chapter 2, were

used to refine the initial object-oriented design and determine the final set of objects. This

chapter is divided into sections based on Booch's design steps.

5.2 Identify the Objects and Their Attributes

As stated in Chapter 3, the first step in this process is to determine the objects. This

was accomplished by extracting nouns from the requirements documents (Ness and Mann's

theses) and by discussing the model design with the other wargaming thesis students.

The final list of objects and their attributes from the initial object-oriented design

were refined as part of this step. The final objects and their corresponding attributes are

shown in Appendix E. The items shown in italics were not part of the initial design. In

Ada, objects are encapsulated in packages. The following sections describe the various

packages.

5.2.1 AFSim and ArmySim. AFSim and ArmySim are two separate packages but

perform similar functions. Neither contain any object declarations. They are the top-level

simulation objects for Saber. AFSim is used to simulate air activities and ArmySim is

used to simulate land activities. Both packages call procedures and functions from other

packages. The idea for these objects came from a MITRE working paper which used an

object called The Simulator as its top-level object. (6:24)

5.2.2 Aircraft. This package contains the declarations for an aircraft. It includes

the declarations for the three different types of weapons loads: preferred conventional,

preferred nuclear, and preferred biological (chemical). A weapons load is based on the

type of aircraft, the mission, the target hardness, and the weather. A consideration was

made as to whether each of the loads should by themselves be objects bait it was decided

to locate the description within the Aircraft object. The reason for this is because once

the initial weapons load information is read, it is not changed.

38

This package also includes the declaration for AFMISSIONS. This declaration is an

enumeration type of various air force missions, such as BAI (battlefield air interdiction),

Al (air interdiction), CAS (close air support), etc. Though a number of objects also have

an attribute of AFMISSIONS, this is the first location where it is needed. As seen later in

this chapter when visibility is discussed, all the other objects which need AFMISSIONS

also need the AIRCRAFT object.

5.2.3 AircraftPackage. The AircraftPackage object consists of all the declarations

needed to define an aircraft package. It also includes those user-defined constants which

pertain directly to an aircraft package.

5.2.4 AirHex, GroundHex, and Hex. The initial design had an object called Hex

which was to represent the terrain features. After additional discussions and further design

work, it was determined that two objects would be needed, one for the air hexes and a

second for the ground hexes. This is because the air hexes do not need most of the

attributes of the land hex.

A third object was created later and contains declarations which are common to both

the land and air hexes, as well as declarations for some of the ground unit attributes which

were also needed by the ground hex object. Weather and trafficability are examples of

attributes which are common to both hexes.

The GroundHex package includes declarations for things like roads, pipelines, and

railroads. These attributes were added to Ness' GroundHex declaration because they

should be used in the simulation when determining trafficability. They should also be

used for logistics and as targets. For example, a railroad runs along the NE side of hex

number 013323 and a unit wants to move into that hex. The presence of the railroad

should make the movement through the hex more difficult to represent the presence of

a train running on the tracks. If a road ran through the same hex, the presence would

make trafficability easier but if the road was destroyed it should be more difficult for the

troops to move through the hex. This is simulated by decreasing the trafficability from,

for example, excellent to poor. The roads, pipelines, and railroads should also be used to

provide logistical support to other land units and bases. The movement of a supply train

can be simulated by routing it via the roads or railroads. Pipelines can be used to simulate

the resupply of fuel or water to a unit or base. Destroying a portion of a pipeline would

cut off the fuel or water supply. Again, destroying a portion of a road or railroad would

make the supply train's movement more difficult (or impossible without changing routes).

39

5.2.5 Algorithms. This object contains no variable declarations but is used to en-

capsulate the mathematical operations needed for the simulation. Further discussion of

this object is deferred until the section describing operations on an object.

5.2.6 Bases. The Bases object includes not only the declaration for an airbase but

also a Depot. The difference between the two is how they are used. An aircraft package

is formed by taking resources (for example, aircraft, weapons, POL, spare parts) from a

base and using them in support of a mission. A supply train is formed by taking resources

(such as weapons, POL and spare parts) from a depot and delivering them to a base or

ground unit. Though the USAF uses aircraft to resupply bases, the simulation will not do

so. Resupply by aircraft will be done by the preprocessor. A depot, including the aircraft,

should still be a target for the simulation, hence the need for the object.

5.2.7 Clock. This object contains the constants needed by the simulation to keep

track of the day being processed as well as the constants used by the simulation for the

number of days and the number of periods.

5.2.8 Forces. This object was also not a part of the initial design. It was added

because the Aircraft, Weapons, GroundUnits, Bases, Depots, and Missiles all contain an

attribute of Forces. It consists of two declarations: FORCES-TYPE which can be either

BLUE, RED, or NEUTRAL and COUNTRY-TYPE which links particular countries to a

specific force or side. Having a separate package for this declaration will make it easy to

enhance the FORCES-TYPE to include more than the current two forces - BLUE and

RED.

5.2.9 GroundUnits. This object came directly from Ness' work and is the basic

operational object for the land battle that the players manipulate (20:47). The specifica-

tion for this package includes all the user-defined variables which are needed for the land

simulation and pertain to a ground unit. It also includes variable declarations needed to

define the attributes of the ground unit. For example, one of the attributes of an Army

unit is TYPEOFUNIT. Therefore, this package contains Ness' declaration for ARMY-

UNITS.

This package also contains the declaration for a supply train since a supply train uses

the attributes of a GroundUnit and also the ground unit algorithms. A supply train also

has additional attributes.

40

5.2.10 Radars. This object was added to the list of objects based on further dis-

cussions of the need for, and implementation of, ground missiles. The Radars package

contains the declaration for a radar. Radars can be of two types, radar fire control and

acquisition (17:102).

5.2.11 OneWayLists. This object was added. It defines a generic one-way linked

list. Except for the addition of the Ada code needed to create a generic package, it

was taken directly from Feldman (9:110). With this generic object, an object can be

implemented as a list without requiring the type declaration and operations to be defined

within each package.

5.2.12 Satellites. The need for this object was not seen initially. That is because

it was thought of as part of AFMISSIONS. In order to conduct the satellite mission an

object is needed. The attributes for a satellite are taken directly from Horton's database

design.

5.2.13 TargetInfo. This is another object which was not part of the initial design.

This package contains the declarations for the hardness of the target and the declarations

for the various components which make up a ground unit or a base and are, hence, tar-

getable. These components include, for example, the different types of tanks and trucks.

This package also includes the declaration for cargo and provides the capacity of a cargo

unit. The need for these items is based on Mann and is used in determining the results of

an air strike (17:150).

5.2.14 UniformPackage. This object is a generic package. This object provides the

ability to determine a uniform random number. It contains only generic type declarations

for a range of floating point numbers. This permits the user to define the ranges needed

for specific applications.

5.2.15 Weapons. This package contains the declarations for the air-to-air and air-

to-surface weapons as well as the surface-to-surface and surface-to-air missiles. It provides

the ability for a weapon to contain either a nuclear or a biological/chemical warhead.

5.3 Identify the Operations Suffered By and Required of Each Object

As stated in Chapter 3, the operations are determined by extracting verbs and verb

phrases from the requirements documents. Operations are the various procedures and

41

functions which are needed by the simulation to manipulate the object. The final version

of the objects and their required operations are shown in Appendix F. The items in italics

were not part of the initial design. Below is a brief description of the operations needed for

a specific object. The procedures and functions described are those that need to interface

with other objects. Additional procedures and functions are sometimes required by the

ones discussed below. Those additional procedures and functions will be discussed with

the implementation.

5.3.1 AFSim. This package contains all the procedures needed to run the air por-

tion of the simulation.

" INITIALIZE. This procedure should initialize all the objects related to the air sim-

ulation.

* PERFORM-MISSIONS. This procedure should determine what mission needs to be

performed and call the appropriate procedure to accomplish that mission.

" RUN-DELAYEDMISSIONS. This procedure is needed to run any missions that were

delayed from the previous time period.

" WRITE.DATA. This procedure should provide the capability to write all the data

back to disk.

* REPORT-WRITER. This procedure should provide the ability to print required

reports.

5.3.2 Aircraft. This section describes the operations needed by the Aircraft object.

" GETAC. This procedure should read in from the disk file the initial aircraft infor-

mation.

" INCREASEAC. This procedure provides the ability to increase the number of air-

craft. It should be used to increase aircraft assigned to particular bases when breaking

up an aircraft package upon the completion of a mission.

" DECREASEAC. This procedure provides the ability to decrease the number of

aircraft. It should be used to decrease aircraft from the appropriate bases when

forming an aircraft package. It should also be used to decrease the number of aircraft

that are part of an aircraft package to reflect losses due to combat.

42

" ADDTOMAINT.LIST. Once an aircraft is flown on a mission it must undergo

maintenance. This procedure should provide that capability.

" DELETEFROMMAINTILIST. Once an aircraft has received its maintenance it

should be made available for new missions. This procedure should provide this

capability.

* DETERMINE_PCL. This procedure determines the preferred conventional weapons

load which a specific aircraft should use on a specific mission.

" DETERMINEPBL. This procedure determines the preferred biological/chemical

weapons load which a specific aircraft should use on a specific mission.

" DETERMINEPNL. This procedure determines the preferred nuclear weapons load

which a specific aircraft should use on a specific mission.

" GET.AC-QUANT. This procedure should read in from disk the quantities available

for each type of aircraft.

" GETREFUELCAP. This procedure should read in from disk those aircraft which

can be refueled.

" GETMAINT. This procedure should read in from disk the maintenance information

for each type of aircraft.

" WRITE-ACQUANT. This procedure should write out to disk the aircraft quantities.

5.3.3 AircraftPackage. This section contains descriptions of the procedures needed

by an AircraftPackage object.

* GET-ACPKGANFO. This procedure should read in from the disk file the information

needed for the various aircraft missions.

" FORMACPKG. This procedure should form the aircraft packages needed to accom-

plish the various missions read in by the previous procedure.

" BREAKUPACPKG. This procedure should return any resources not used by the air-

craft package back to the appropriate bases. It should also ensure that the returning

aircraft undergo maintenance.

" DELAY-MISSION. This procedure should add a delayed mission to a list of delayed

missions.

43

" GET-CONSTANT. This procedure should read in the constant required by the Air-

craftPackage object in order to fine-tune the simulation.

" DECREASEASSETS. This procedure should decrease the resources held by an air-

craft package based on the resolution of any conflicts.

" DELETEACPKG_-MISSION-LIST. This procedure should delete an aircraft package

from the list of missions once the package is formed.

" DELETEACPKGDELAYLIST. This procedure should delete an aircraft package

from the list of delayed missions once the package is formed.

" UPDATE procedures. There are a number of procedures needed by the simulation

to update specific attributes of an aircraft package. See Appendix F for the names

of all the procedures. Each procedure has the same basic function: it changes the

value in the attribute which matches the name of the procedure. For example, the

UPDATEINTELJNDEX should change the INTELINDEX attribute of a specific

AircraftPackage. Having the simulation (in AirSim) determine what the actual value

is and then just replacing the value with an UPDATE procedure reduces the number

of procedures needed since there is no need for separate INCREASE and DECREASE

procedures. The same concept is used for all the other objects.

" WRITEACPKG-INFO. This procedure should write out to disk the information on

the various aircraft package missions.

" WRITEJDELAYMISSIONS. This procedure should write out to disk the informa-

tion on delayed missions so that they can be read back in from disk for the next

day.

5.3.4 AirHex. This section describes the procedures needed for the AirHex object.

* GETAIRGRID. This procedure should read in the initial air hex data from the

input disk file and create an AIR-GRID.

" LOAD-WEATHER. This procedure loads the actual weather into each air hex.

" ADDACPKG. This procedure adds an aircraft package to a specific air hex. This

is especially needed by the area missions which remain in an air hex for at least one

time period.

" DELETEACPKG. This procedure removes an aircraft package from an air hex once

the package is either destroyed in its entirety or once it moves to another air hex.

44

" ADD-SATELLITE. This procedure should add a satellite to an air hex.

" DELETE -SATELLITE. This procedure should delete a satellite from an air hex.

" UPDATE-LOCATION. This procedure should update the location of a specific air-

craft package.

" WRITE.AIRGRID. This procedure should write out to disk the air hex grid infor-

mation.

5.3.5 Algorithms. The Algorithm object contains procedures and functions for all

the new mathematical calculations required by the simulation. It does not include those

calculations which Ness created as part of his land battle simulation. The idea for this

object came from a MITRE working paper. The Battefield Environment Model, which

the paper describes, contains not only the object, The Simulator, described earlier, but

also one called the Mathematician. Their Mathematician object performs most of the

simulation calculations. (6:31) The Algorithms object should also perform most of Saber's

calculations as described by Mann's Chapter 6. The procedures and functions required are

described below.

" DETERMINE-DIRECTION. This procedure determines the direction in which an

aircraft package should move.

* CALCLOCAL-DETECTION. This procedure determines the local detection.

* ONEJMISSONEAC. This function returns the probability that the missile success-

fully hits the aircraft.

" MULTMISSONE-AC. This function returns the probability that the multiple mis-

siles successfully destroy the aircraft.

" MULTMISS-MULTAC. This function returns the aggregated probability of kill

based on multiple missiles and multiple aircraft.

" CALC.NOMISSFIRED. This procedure determines the number of missiles fired.

" CALCBERNOULLI. This function performs a bernoulli random number draw based

on the probability of kill. The result is used to determine attrition.

" CALCBINOMIAL. This function performs a binomial random number draw and is

based on the probability of kill. The result is used to determine attrition.

45

" CALCYPOISSON. This function determines the poisson distribution and is used to

determine the maintenance hours needed. This procedure is not based on Mann's

thesis.

" CALCNORMAL. This function determines the maintenance hours needed for an

aircraft based on a normal distribution. This procedure is not based on Mann's

thesis.

" CALCPROBHIT-CIRC-TARGET. This function determines the probability of hit-

ting a circular target.

" CALCPROBHITRECTTARGET. This function determines the probability of

hitting a rectangular target.

" CALCBLUEFIREPOWER. This function determines the firepower value for a

BLUE ground unit.

* CALCREDFIREPOWER. This function determines the firepower value for a RED

ground unit. This function is not the same as the one for the BLUE side.

" CALCPOL. This function is used to calculate the total POL for a ground unit.

" CALCAMMO. This function is used to calculate the total amount of ammunition a

ground unit has.

" CALCPROBLAUNCH. This function calculates the probability of launching a mis-

sile while conducting air-to-air combat. This function should be used to calculate

the probability of launch for both the RED and BLUE forces.

" CALC.SSPK. This function calculates the single shot probability of kill and is used

for air-to-air combat.

" CALC.PROBAKILL. This function calculates the probability of kill for a missile fired

from an aircraft and targeting an opposing aircraft. Like the CALCPROBLAUNCH

function, this function should also be used for both RED and BLUE forces.

" DETERMINLPROBFOR-TARGETS. This function should determine the proba-

bility of an aircraft hitting a specific ground target.

" CALCADAYPK. This finction should determine the probability of kill based on the

air defense artillery values.

* DETERMINEILONGRANGEDETECTION. This procedure should determine the

long range detection when an aircraft package enters a new air hex.

46

5.3.6 ArmySim. The procedures which are part of the ArmySim package were de-

signed and written by Ness. Ness did not have them encapsulated in one package; instead

he used the Ada "separate" statement. They were encapsulated into one package in an

effort to keep the design object-oriented. For the sake of completeness, the procedures are

described in this section.

" INITIALIZE. This procedure initializes the units and ground hexes. It also sets up

the initial pointers between the hexes and the units.

" REPORT-WRITER. This procedure creates output reports.

• LOG.SPT. This procedure controls the logistics operational flow of control for the

ground battle.

" MOVEMENT. This procedure controls the movement of units.

* INTELLIGENCE. This procedure performs Army intelligence operations.

" WRITE-DATA. This procedure writes the hex and unit information to a disk file.

" SET-UP. This procedure performs the necessary combat set up operations prior to

performing the attrition operations.

" ATTRITION. This procedure performs the overall control for combat attrition op-

erations.

" PERFORMSTOPS. This procedure was not part of Ness' thesis work. It should

perform supply train operations.

5.3. 7 Bases. This section describes the operations required by, and needed for, an

airbase or a depot.

" GET-BASE. This procedure should read in from a disk file the starting information

for all the bases to be used in the simulation.

* GET-DEPOT. This procedure should read in from disk the initial information on

depots.

* INCREASE-RESOURCES. This procedure should increase the aircraft and weapons

on a specific base. It should be used when breaking up an aircraft package.

* DECREASE-RESOURCES. This procedure should decrease the aircraft and weapons

available on a specific base. It should be used when forming an aircraft package or a

supply train.

47

" INCREASE-SUPPLIES. This procedure should increase the amount of POL, spare

parts, and weapons. It should be used as the result of a supply train operation.

" DECREASEMAINTNOS. This procedure should be used to decrease the MAINT_

PERSONHAND, MAINTHRSACCUM, and MAINT.EQUIPON.HAND attributes

of a base. This should be used when an aircraft returns from its required maintenance

period as a result of conducting a mission.

* UPDATE procedures. There are numerous procedures needed to update the different

attributes of a base or depot. These all begin with UPDATE and are followed by the

name of the attribute which they are modifying. See Appendix F for the individual

procedure names.

" WRITE-BASES. This procedure should write out to disk the information on bases.

" WRITE-DEPOTS. This procedure should write out to disk the information on de-

pots.

5.3.8 Clock. The Clock package has two operations: GET-CONSTANTS which

will read in the Clock related constants needed to fine-tune the simulation and GET

CYCLES which reads in from disk the cycle or period numbers needed by the simulation

and a field telling whether the cycle is considered daytime or nighttime.

5.3.9 Forrec. This package contains one procedure: GET-COUNTRIES. This pro-

cedure reads in from a disk file the country and its corresponding side (or force).

5.3.10 GroundHex. This package contains the procedures and functions needed for

the object GroundHex. It includes many procedures written by Ness.

" GET-GRID. This function was part of Ness' original code and created a grid of hexes.

* GET-CONSTANTS. This procedure should read in all the user-defined constants

needed to fine-tune the part of the simulation which relates to the ground hexes.

" CALC_VAL. This function was part of Ness' implementation. It assigns a value to

the six possible difficulties used for obstacles.

" INITIALPTR. This procedure was part of Ness' implementaion and initializes the

hex-to-unit pointers.

" ADD. This procedure was part of Ness' implementation and adds a unit to a specific

hex.

48

" DELETE. This procedure was part of Ness' implementation and deletes a unit from

a specific hex.

" ADD-BASE. This procedure should add an airbase or depot to the list of bases

located within a specific ground hex.

" DELETE-BASE. This procedure should delete an airbase or depot from the list of

bases located within a specific ground hex.

* LOAD-WEATHER. This procedure should load the weather into each hex.

" ASSESS-CONTACT. This procedure was part of Ness' implementation. It initializes

the contact parameters for each hex and unit, determines if opposing forces are in

adjacent hexes, and sets the appropriate contact and attrition flags.

" APPLYFS. This procedure was part of Ness' implementation. It applies field ar-

tillery, aviation, and air defense fire support with the combat power of the units being

provided the support.

* APPLY_FP. This procedure was part of Ness' implementation. It sets up the numbers

required for calculating attrition. It takes all the firepower in a hex and applies it

equally to all adjacent hexes which contain opposing forces.

* ATTRIT. This procedure was part of Ness' implementation. It performs the attrition

on every unit in combat.

" SFJINTEL. This procedure was part of Ness' implementation. It performs special

forces intelligence operations.

" UPDATE procedures. There are numerous procedures needed to update the different

attributes of a ground hex. These all begin with UPDATE and are followed by the

name of the attribute which they are modifying. See Appendix F for the individual

procedure names.

" WRITE-GRID. This procedure should write out to disk the ground hex information.

5.3.11 GroundUnits. This package contains the procedures and functions needed

for the GroundUnits object.

* GET-CONSTANTS. This procedure reads in from disk the user-supplied constants

needed to fine-tune the ground units.

" GET-UNIT. This procedure was initially written by Ness and reads in the ground

unit information from a disk file.

49

" GET.SF.INTEL. This function reads in from disk the initial special forces informa-

tion.

* GETSUPPLYTRAIN. This procedure should read in from disk information on the

various supply trains.

" ADDIT. This procedure was part of Ness' implementation and adds a destroyed unit

to a list of destroyed units.

" UNIT-LOGSUPPLY. This procedure was part of Ness' implementation and adds

supplies to appropriate units.

" REDUCEINTEL. This procedure was part of Ness' implementation. It performs a

reduction of intelligence for each time period to reflect a degradation of intelligence

over time.

" UNIT-VAL. This function was part of Ness' implementation. It assigns a movement

factor for combat units.

" MOVEANGRID. This procedure was part of Ness' implementation. It performs the

operations necessary when a unit moves within a hex.

" DELETESUPPLYTRAIN. This procedure should delete a specific supply train

from a specific ground hex.

" INCREASESTASSETS. This procedure should increase the POL, ammunition,

hardware, and spares which the supply train will move from a depot to a ground

unit.

" DECREASESTASSETS. This procedure should decrease the POL, ammunition,

hardware, and spares once the supply train reaches the ground unit to receive the

supplies.

* DISBURSE-SUPPLIES. This procedure should add the supplies to a ground unit's

attributes.

* UPDATE procedures. There are numerous procedures needed to update the different

attributes of a ground unit. These all begin with UPDATE and are followed by the

name of the attribute which they are modifying. See Appendix F for the individual

procedure names.

" WRITE-UNITS. This procedure should write out to disk the information on each

ground unit.

50

" WRITESFJINTEL. This procedure should write out to disk the special forces infor-

mation.

" WRITESUPPLY-TRAIN. This procedure should write out to disk the supply train

information.

5.3.12 Hex. This package contains the procedures and functions which apply to

both the air and ground hexes.

" GET-CONSTANTS. This procedure reads in from disk the user-supplied constants

needed to fine-tune the hexes.

* GET-WEATHER. This procedure reads in from disk the weather information for

each hex.

" CONVERT-NO. This procedure converts a hex number into three portions: LEVEL,

LON, and LAT. LON and LAT were used by Ness throughout his implementation to

represent x and y coordinates (or longitute and latitude). LEVEL is used to represent

the levels of altitude as defined by Mann (17:57-60).

* CALCWEATHERVAL. This function was modified from Ness' code. It assigns a

value to the four possible weather difficulties.

" CALC-TRAFFIC-VAL. This function was modified from Ness' code. It assigns a

value to the six possible traffic difficulties.

* REVERSE-DIR. This function was part of Ness' implementation. It reverses by 180

degrees the direction which a unit is moving.

" UPDATE procedures. There are two procedures needed to update the different

attributes of a hex. They both begin with UPDATE and are followed by the name of

the attribute which they are modifying. See Appendix F for the individual procedure

names.

5.3.13 One WayLists. This package contains all the operations necessary for a list

implemented as a one way linked list. The procedures and functions were taken from

Feldman. (9:110) For the specific functions and procedures see Appendix F.

5.3.14 Radars. This package contains four procedures. Tile GET-RADARS pro-

cedure reads radar information from a disk file. The DECREASE-RADAR procedure

decreases the quantity of a specific radar. The GET-CONSTANTS procedure reads in the

51

MAXRADARQUALITY which is used to fine-tune the simulation. The last procedure,

WRITE-RADARS, should write radar information out to disk.

5.3.15 Satellites. This package contains three procedures. The GET-SATELLITES

procedure reads in the satellite information from a disk file. The GETSATELLITE_

QTY procedure should read in from disk the quantities of the various satellites. The

DECREASE-SATELLITE procedure should decrease the quantity of a specific satellite.

5.3.16 TargetInfo. This package contains the procedures for target hardness, com-

ponents, and cargo.

" GET-COMPONENTS. This procedure reads in from two disk files the data on both

ground and base components.

" GETCOMPONENTSQUANT. This procedure reads in from two disk files the

quantities of the various components.

" GET-CARGO. This procedure reads in from disk the data on cargo.

" GET-CLASS. This procedure reads in from disk the component designation and the

name of the corresponding database file where the component information can be

found.

* DECREASECOMPONENTSQUANT. This procedure should reduce the quantity

of a specific ground component.

" DETERMINESAI. This procedure should determine the surface to air index for a

specific component.

* GET-HARDNESS. This procedure reads in the hardness value for each target.

" WRITECOMPONENTSQUANT. This procedure should write back out to disk the

quantities of each component.

5.3.17 UniformPackage. This package contains a function UNIFORM which re-

turns a uniform random number. It also contains a procedure SET-SEED which initializes

the seed value required by UNIFORM.

5.3.18 Weapons. This package contains the procedures needed by the Weapons

object.

52

" GET-SAM. This procedure reads in from a disk file the surface-to-air missile infor-

mation.

" GETSSM. This procedure reads in from a disk file the surface-to-surface missile

information.

" GETAAW. This procedure reads in from a disk file the air-to-air weapons informa-

tion.

" GETASW. This procedure reads in from a disk file the air-to-surface weapons in-

formation.

" GETAIRWEAPONQUANT. This procedure reads in the initial quantity for each

air weapon.

" GETGROUND-WEAPONQUANT. This procedure reads in the initial quantity

for each ground missile.

" GETWEAPONSLOAD. This procedure reads in the file which contains the various

weapons load quantities.

" GET-CHEMICAL. This procedure should read in from disk the attribute information

needed for the chemical type.

" GET-NUCLEAR. This procedure should read in from disk the attribute information

needed for the nuclear type.

" INCREASE-WEAPONS. There are two versions of this procedure, one for the air

weapons and a second for the ground missiles. Both procedures should increase the

quantity for a specific weapon or missile.

" DECREASE-WEAPONS. There are two versions of this procedure, one for the air

weapons and a second for the ground missiles. Both procedures should decrease the

quantity for a specific weapon or missile.

" UPDATECEP. Four procedures are needed which update the CEP: one for the air-

to-surface weapon type, a second for the surface-to-surface missile type, a third for

the chemical type and a fourth for the nuclear type. All four should do nothing more

than change the value of CEP using the new value passed into the procedure.

" UPDATEWEAPONQTY. There are two versions of this procedure. One should

update the quantity for a specific air weapon while the second should update the

quantity for a specific ground missile.

53

" UPDATE.LAUNCHERQTY. This procedure should update the quantity of avail-

able launchers.

* WRITE-AIRWEAPONS.QUANT. This procedure should write out to disk the

quantity of each air weapon.

" WRITEGROUNDWEAPONSQUANT. This procedure should write out to disk

the quantity of each ground weapon.

5.4 Establish the Visibility of Each Object in Relation to Other Objects

As discussed in Chapter 3, the purpose of this step is to decide which objects need

to "see" and be "seen" by other objects. The "with" portion of the package specifications

and body is Ada's way of showing which objects are "seen" by other objects. Appendix

G shows the visibility of each object in relation to other objects. An "F" indicates the

visibility of each object based on the detailed design; an "I" indicates the visibility needed

based on the initial design. The visibility shown is taken from the package specifications

only.

5.5 Establish the Interface of Each Object

This is the fourth of Booch's five steps and requires the writing of a module speci-

fication. This is accomplished in Ada by creating compilable package specifications. The

package specifications are contained in Volume II of this thesis.

5.6 Summary

This chapter described the detailed object-oriented design based on Booch's design

steps. It first described each of the objects and the rationale for making them objects.

It then described the operations performed on each of the objects. It also described the

visibility of each object in relation to other objects. And lastly, it described how to establish

the interface of each object in Ada. The next chapter will discuss Booch's fifth and final

step, "Implement Each Object".

54

VI. Implementation

6.1 Introduction

The final step of Booch's object-oriented design procedure is to implement each

object. This chapter includes a discussion of the data structures used to implement the

various objects and the programming style used for Saber as a whole. It aso discusses the

changes made to Ness' land module code and what was accomplished in the implementation

of the air module.

6.2 Data Structures and Programming Style

This section describes the data structures used for Saber as well as the programming

style.

6.2.1 Data Structures. Ness used records, arrays, and linked lists as his main data

structures. Ness used records to define his ground unit and hex. He then used an array of

hexes to make his hex grid. His ground units are maintained in an array of pointers. His hex

grid contains an attribute which maintains a linked list of the ground units located within

each hex. (20:53) An attempt was made to use the same data structures in the air module

as Ness used. An attempt was also made to not modify Ness' data structures. Therefore,

Ness' hex grid was left as a two-dimensional array even though the hex numbering scheme

was changed. The fact that hexes now consist of three numbers did not mean Ness' code

needed to be changed since the ground hexes are all level 01.

The new objects were defined as records. A list of the various records, such as

aircraft, are then maintained in an array. Since an aircraft pp'kage is located within a

hex just like a ground unit, a linked list was used to keep track of which air hexes contain

aircraft packages. The bases and depots are located in ground hexes but because of the

concerns for speed, an array construct was used to keep track of bascs and depots within

a specific hex.

The only variation to Ness' data structures was in the implementation of the air

hex grid. Initially, it was implemented as a three-dimenbional array consisting of LEVEL,

LON, and LAT. This data structure meant that the array contained lots of empty records

because there is only one air hex for every seven land hexes. Quite a bit of space was

wasted. The data structure was then changed to a sparse matrix. This implementation

55

requires one to know what the maximum element size is and how many non-zero records

there will be. That information was easily determined. The sparse matrix provides an

array of air hexes and eliminates all the empty records thus saving space.

Once the database design was baselined, it was incorporated with the work in progress

for the simulation itself. The writing of the input procedures began as did the problems.

When attempting to compile the test program for the ground hex input procedure, an error

was encountered which indicated that there was not enough space. The hex grid size was

reduced and the test program compiled. Further testing indicated that reducing the size

of the hex grid was not going to resolve the problem. The same problem occurred when

testing the input procedure for the aircraft object. Changing some of the declarations

from arrays to linked lists solved the problem for the aircraft, aircraft package, and bases

objects. The problem for the ground hex, however, is more complicated because Ness'

code is based on locating records and performing operations based on the units location

within the two-dimensional hex grid. Changing the hex grid to some other data structure

will require a major rework of Ness' code. Solutions to these problems are the subject of

future work.

6.2.2 Programming Style. Since code is often not maintained by the person writing

it, it is very important to make the code readable and ui, lerstandable. This means that

the p-ogrammer should not use procedure and program names that are vague nor should

the programmer use any "arcane programming tricks which confuse the reader" (28:311).

These concepts were kept in mind in naming the variables and procedures needed for Saber.

Ness did an excellent job of naming his procedures and variables. It is apparent from his

names what most of his procedures and functions do. The same type of names were given to

the air portion of Saber. A procedure that is called CALCPOISSON obviously calculates

a poisson distribution for something. Given a procedure name, FORMACPKGS, the

reader can correctly guess that the procedure forms aircraft packages. The same is true

with the type declarations. The reader can correctly surmise that the type declaration,

SAMTYPE, defines a surface-to-air missile while one called AIRBASETYPE defines an

airbase.

In addition to having good procedures names it is also important for the reader to

easily determine where a procedure is located. If the reader sees a procedure call, for

example, INITIALIZE with some parameters, they are left to try to determine where the

actual procedure is located. The only "clue" is the actual parameters. If THEAIRGRID

56

is one of the parameters, the reader might assume that the procedure is located within

AirHex. In this example, the procedure is actually located within AFSim. For this reason,

using the Ada "use" clause was kept to a minimum. Instead, the procedure call is explicit:

ArmySim.INITIALIZE with the parameters or AFSim.INITIALIZE with the appropriate

parameters.

6.3 Land Module

This section describes the reorganization of Ness' code and the changes made to it.

6.3.1 Code Reorganization. Ness' code contained many packages. He had one pack-

age which contained all of the Ada type declarations. He had other packages which per-

formed various operations. For example, he had a package titled CombatOps which per-

formed combat operations and another one called Logistic which performed logistical op-

erations. In additon, his driver program, Main, made use of Ada's ability to separately

compile procedures. His code was restructured as part of this thesis effort. The type

declarations were encapsulated in packages along with the procedures and functions which

performed operations on the object. For example, the hex grid declaration and the opera-

tions performed on it were placed in the GroundHex package. His "separate" procedures

were encapsulated in the ArmySim package. Procedures which modified more than one

object were also encapsulated in the ArmySim package. For example, Ness has a proce-

dure called DEPOT-LOG which updates attributes of both the ground hex and the ground

unit. Since, following object-oriented principles, it did not fit with either the GroundUnits

or GroundHex packages, it was located in the ArmySim package. Of the packages shown

in Appendix G, the ArmySim, Forces, GroundHex, GroundUnits, and Hex contain Ness'

original code.

This reorganizing of Ness' code still does not make it completely object-oriented

because the ArmySim package performs operations on both the ground unit and the ground

hex. To continue with the DEPOT-LOG example, Ness has the following code which

updates the TOTALAMMO attribute of a ground unit:

UNITYPTR.THEMJIT. TOTALAMMO := UNITPTR.THEUNIT.TTALAMMO + LOG(i).THE_

UNIT. TOTALAMMO

UNITPTR is a pointer to a particular ground unit. Therefore, any changes which

occur are made to just the unit to which the pointer refers. To make Ness' code more

57

object-oriented, procedures were written to update attributes of the major objects. In the

example given, the following code replaced Ness':

GroundUnits.UPDATETOTALAMMO (UNITYPTR.THEUNIT.TOTALAMMO + LOG(i).THE_

UNIT. TOTALAMMO)

By replacing the assignment statement with a procedure call, the actual change is

being made within the GroundUnits package which is how it should be done according to

object-oriented principles.

All of Ness' package took advantage of Ada's "use" clause. In reorganizing the

code, the majority of the "use" statements were eliminated and procedure calls were made

explicit.

6.3.2 Code Modifications. Ness' code was also modified to reflect the rotation of the

hexes and the new numbering scheme. The definition of Ness' HEXSIDETYPE, GRID-

SPECS, and UNITS-TYPE were modified to include the additional features described by

Mann and ir. Chapter 4 of this thesis. For example, Ness' type declaration permitted one

obstacle per hex side and one target per unit. Those declarations were replaced with arrays

which permit more than one obstacle per hex side and more than one target per unit. Ness'

code was modified to read the first obstacle or target. This should be a temporary fix until

the code can be reviewed and modified to correctly take advantage of the new capabilities.

In addition, all references to FIREPOWER and COMBATPOWER were reversed in Ness'

code. What Ness' thesis describes as FIREPOWER is now called COMBATPOWER in

his code and vice versa. This is because Mann's definition of firepower was used for Saber's

design.

Procedures were written to provide many enhancements to Ness' code. These proce-

dures are located within the Algorithms package but the land module code does not cur-

rently call any of them. Examples of these procedures are: CALCBLUEYFIREPOWER,

CALCREDFIREPOWER, CALCAMMO, and CALCPOL. All of these procedures were

written based on Mann's Chapter 6. (17:176)

Ness had a type declaration for DIFFICULTY and subtypes of DIFFICULTY for

the weather, trafficability, and obstacles. This DIFFICULTY was an enumeration type

containing EXC, VG, GD, FAIR, POOR, and VP. Separate type declarations for weather

and trafficability were created. It was decided that the weather should range from GD to

POOR. Having three separate declarations meant that Ness' code to determine the CALC_

VAL function was no longer accurate. There are now three functions that assign a numeric

58

value to the three types of difficulty. The CALCNAL function located within the Ground-

Hex package determines the value for the obstacle difficulty, the CALCWEATHERVAL

and CALCTRAFFICVAL are located within the Hex package and perform the same

functions for weather and trafficability.

6.4 Air Module

Initially, the plan for the implementation phase of Saber included a bottom-up type

implementation. The plan was to write the input procedures and then work on writing

the procedures to form an aircraft package, to fly the package, and to simulate conflicts.

This plan did not work as expected because of the concurrent design of the database. The

effort was not wasted because in working through the functions needed to create and fly an

aircraft package and to simulate conflicts, it was determined that the operations identified

by the detailed design would require other operations in order to perform the functions

needed.

In the meantime, another starting point was needed. This was found in the area

of Mann's algorithms. Using object-oriented principles and good programming practices

it was simple enough to start implementing the algorithms without knowing the database

design or the final version of the objects' attributes. In fact, this technique proved beneficial

because in coding the algorithms additional attributes were defined.

Chapter 5 discussed the procedures needed for the package specifications. Appendix

H describes the procedures and functions which are part of the package body but not part

of the package specifications. These procedures and functions are required by another

procedure or function within that package. They are not required by any other packages

and therefore, do not need to be in the specifications.

6.5 Summary

This chapter described the data structures used in the implementation of Saber as

well as the problems encountered when testing the input procedures. Most objects are

implemented via Ada's records and arrays. The air grid is implemented using a sparse

matrix instead of a normal array to eliminate the wasted space caused by all the empty

records.

This chapter also discussed the many changes made to the land module code as

well as recbanization of the code. It discussed the reversal of the FIREPOWER and

59

COMBATPOWER attributes throughout Ness' code. It also describe the encapsulation

of Ness' "separate" procedures into the package ArmySim.

Lastly, it described the beginning of the implementation of the air module and the

processes used for the implementation. A bottom-up implementation was initially started

but the method used was changed to one that centered around Mann's Chapter 6. The

next chapter provides a summary, recommendations for further study, and a conclusion.

60

VII. Conclusion

7.1 Summary

This thesis developed an object-oriented design for the simulation portion of Saber.

Included in this design were the modification of Ness' land module design and the com-

plete design of the air module. A five step process was used for the design. The steps

encompassed:

1. Identifying the objects and their attributes. This was done for the land module by

reviewing Ness' thesis and Ada code. Since Ness' used good naming conventions when

writing his type declarations, it was relatively easy to determine what objects he used

for the implementation. Mann' thesis provided enhancements and modifications for

the land module. It was also used for the selection of air module objects. This was

done by considering the nouns used in Mann's thesis as possible objects. Mann's

thesis and Ness' code provided the basis for the attributes of most of the objects.

2. Identifying the operations needed for each object. This was done by extracting verbs

from Mann's thesis. Besides using Mann's thesis to determine operations, research

group meetings on the requirements of Saber also provided additional operations.

The land module's code was reviewed, as well as Ness' thesis to determine what

operations were needed for the ground unit. In addition, Ness' maintenance and

user's manual proved beneficial (19).

3. Establishing tl'e visibility required between objects. This was accomplished by first

looking at the attributes of the various objects and seeing what other objects where

needed to define each object. It was also accomplished by looking at the operations

required by an object and needed for an object.

4. Establishing the interface of each object. This was done by creating Ada package

specifications and successfully compiling them.

5. Implementing each object. This is done in Ada by writing the package body. Though

this step was started, due to time constraints it was not completed. An attempt

was made to create procedure stubs for all the needed operations. Sound software

engineering principles were used to provide easy to read and modular code.

61

7.2 Ada and Simulation

Ada has its advantages and disadvantages when used as the implementation language

for a simulation. The research accomplished for this thesis indicated that some models are

written using more than one language because no one language provides all the capabilities

needed for a good implementation using object-oriented techniques. Ada does provides

most of the capabilities needed. In fact, Ada was missing only one capability that could

have been used for Saber's object-oriented implementation. The missing capability is

the ability to portray inheritance. This would have been helpful, for example, in the

implementation of the hex object. The air hex is a hex, the ground hex is a hex, yet they

ended up being defined in separate packages and a third object, Hex, created to define

common attributes. It also could have been used when defining a supply train and the

surface missiles since they need the attributes of the ground unit as well as their own

additional unei.

Simulations often require the use of a random number generator, statistical distribu-

tions, and a clock. The random number generator is used for such things as determining

the number of missiles fired or how many aircraft enter the playing field at one time. Sta-

tistical distributions are used for many purposes. The time it takes an aircraft to land

and taxi might be calculated via some distribution. In the case of Saber, statistical distri-

butions were needed to determine the required maintenance time for an aircraft returning

from a mission as well as to determine attrition. Simulations need a clock to keep track

of the simulation and when events should occur. Simulation languages, like SLAM II

(22), include a random number generator, various statistical distributions, and a clock but

Ada does not include any of them. Therefore, a random number generator and numerous

statistical distributions had to be written and a mechanism created to simulate the clock.

7.3 Recommendations

This thesis focused on the object-oriented design of Saber. Though a good design

leads to a good implementation, time did not permit the complete implementation of Saber.

The following are specific areas that require further work:

" Completion of the air module implementation. There are a number of packages which

contain stubs for procedures and functions that should be completed.

" Additional research needs to be done in the area of nuclear and chemical warfare to

determine the most realistic method to accomplish missions using non-conventional

62

warheads. What Mann's thesis describes is a good beginning but further research

is needed. This research should include specific algorithms to be used in the imple-

mentation.

" Additional research should be accomplished for the use of satellites. Again, Mann's

work in this area is a good start but as the military becomes more dependent on satel-

lites, their mission becomes more important and should be realistically portrayed.

" Ness' code needs to be modified to implement the enhanced features of Saber. Cur-

rently, Saber's input provides the ability to have more than one obstacle in a ground

hex. Ness' code does not permit this. The same is true with targets. Saber's design

also includes rivers, roads, railroads, and pipelines; they should also be implemented

in the land module. Ness' code should also be reviewed to determine if any changes

need to be made to implement the concept of "neighborid" and to determinc if the

way he implements the FEBA is better than using the table provided by Horton's

database.

" The ARMY-UNITS type includes Army units that have not been implemented. For

example, there is a MI type that is not implemented. In addition, Saber's design

added the additional capability of using surface missiles, having a supply train, and

also having a predirect supply train. These additional types should be implemented.

" A student well versed in Ada and object-oriented development methods should review

Ness' code and determine if a better way exists to implement the various procedures

and functions. There are times when Ness repeats an entire block of code in the

same procedure or in other procedures. He also updates the unit information via its

link to the ground hex. This is not only difficult to follow, it is also hard for someone

maintaining the code to determine that a ground unit is in fact being modified.

" Verification and validation should be accomplished before Saber is provided to the

Air Force Wargaming Center. Both the land and the air modules algorithms need to

be validated.

* A scenario development tool is needed to prepare the large amount of data needed

to initiate a game.

" Further research needs to be done in the area of multiple-sided warfare. For example,

what is the effect on Saber if there were GREEN and BLUE forces fighting RED

forces.

63

" Further research needs to be done in the area of weapons, missiles, bombs, etc. It

should be determined whether Saber's design permits correct use of the various types

of weapons.

" An analysis should be done with the Saber code to determine whether it would be

beneficial for Saber to run processes in parallel. This can be done in Ada using tasks

instead of the current procedures.

" Saber should be enhanced to include the targeting of an air hex. This would permit

the simulation of air bursts which would destroy or reduce communications capabil-

ities.

" Ness uses an intelligence filter to vary the intelligence index for certains situations.

Research should be conducted in the use of the intel filter to provide the RED player

with one type of intelligence information, the BLUE player with another level of

intelligence, and the controller with complete intelligence.

" A base currently can have a mission of DEPLOY. This capability should be designed

and implemented. Or maybe a capability of deploying parts of a base should be

considered. Certain USAF units, like Red Horse units, deploy in time of war. Aircraft

and supporting personnel are deployed. It would be interesting to research whether

entire bases are actually deployed.

7.4 Conclusion

In conclusion, Saber, once it is fully implemented, should provide the Air Force

Wargaming Center with a viable wargame. The design provides for a flexible, easy to un-

derstand, and easy to maintain system. It also takes advantage of the software engineering

principle of reusing code. It provides the user with a credible combat mooe, for air and

land warfare.

64

Appendix A. Description of Ness' Thesis on the Land Battle

This appendix summarizes Ness' thesis effort (20) which developed a new land battle

module.

A.1 General

The land battle program is an aggregated model which was designed to be generic

so that any combat arena could be played. The principal area of focus is on corps division

and non-divisional units up to army group level. It is a stochastic model. It uses discrete

events with fixed time steps.

The input source is flat files. The flat files were designed so that the input could be

extracted from an Oracle data base management system. Input is also provided by the

user. Output is written to flat files at the completion of a simulation run. Three portions

of the land battle need to interact with an air battle module. These portions simulate

reconnaissance, battlefield air interdiction, and close air support. These portions are no

longer needed because of the development of the air module.

A.2 Environment

The land battle uses interlocking hexagons to represent terrain. Terrain features and

obstacles, as well as weather, are simulated. Trafficability is represented both in a hex and

at the boundaries of a hex. Boundaries contain bridges, mines, and manmade obstacles.

A.3 Combat Processes

The land battle simulates missions, fire and general support processes, and unit

movements. The missions supported are attack, defend, withdraw, movement, and support.

Logistics is modeled via the support mission; retrograde operations are simulated by the

withdraw mission. Command, control, and communications are modeled only through the

player input. Nuclear, chemical, and biological missions are not part of Ness' land battle.

A.4 Combat Arms Operations

The land battle simulates the activities of the following units: armor, infantry, cal-

vary, aviation, field artillery, air defense artillery, engineering, special operations forces,

65

military intelligence, support, and Air Force units. It models both general support and

direct support operations. Reserves can be modeled by applying them as either resupply

support or as combat units.

A.5 Attrition

Attrition is assessed when opposing units occupy adjacent hexes. It is based on

force ratios, engagement type, terrain characteristics, and whether the unit is attacking or

defending.

66

Appendix B. Description of Mann's Thesis

This appendix summari7es Mann's thesis effort (17) on using U.S. Air Force doctrine

to create a new conceptual model.

B.1 Land Module

The recently implemented land battle simulation uses hexes to facilitate the move-

ment of ground units. Combat begins when opposing units are in adjacent hexes. The

combat process is deterministic. Combat units have a firepower score which can be raised

by "unit posturing, attached units, and supporting units" (17:54). Mann proposes that

the land module be modified "to portray air/ground interactions" (17:54). The modifica-

tion should expand the definition of the ground entities to include a counter which will be

compared to the firepower score.

B.2 Environment

Saber will simulate the environment. Specifically, the new model needs the capability

of providing a clock to divide a day into two hour segments. Mann proposes that the hex

system used for the land module be modified for the air portion of Saber. He proposes

that six layers of air hexes be superimposed over the land hexes. Since an aircraft covers a

much larger area than a ground vehicle in the same amount of time, Mann proposes that

an air hex should consist of seven land hexes. The seven layers of hexes will indicate the

following levels of altitude:

" The terrain hex is the base hex,

* Tree top level - from 0 to 200 feet,

* Low altitude - from 200 to 2,000 feet,

" Medium altitude - from 2,000 to 10,000 feet,

" High altitude - from 10,000 to 30,000 feet,

" Very high altitude - from 30,000 to 100,000 feet, and

* Space - from 100,000 to geosynchronous orbit.

The model also needs the capability to simulate weather for each hex. Weather should be

good. fair, or poor, and should vary based on the level of the hex.

67

B.3 Combat Processes

The combat processes which Saber should simulate include "air-to-air combat, surface-

to-air missiles, suppression of enemy air defense sites, and air-to-surface attack" (17:64).

B.-4 Missions

Mann's thesis describes the following missions which should be simulated by Saber:

" Strike missions:

- Offensive Counter Air (OCA),

- Battlefield Air Interdiction (BAI),

- Air Interdiction (AI),

- Close Air Support (CAS),

- Reconnaisance (RECCE),

- Missiles.

" Area missions:

- Defensive Counter Air (DCA),

- Close Air Patrol (CAP),

- Command and Control (C2),

- Suppresion of Enemy Air Defenses (SEAD),

- Electronic Combat (EC),

- Satellites,

- Reserves.

B.5 Databases and Entities

Saber will have a number of databases. The databases will contain information on

such things as aircraft, weapons, airbases, and depots for both the Blue and Red sides.

Mann's thesis provides a reference system for future modifiers of the system so they

will know how he derived various values and can make any necessary modifications. He

accomplishes this by modelling the individual components of entities (i.e., tanks and planes)

to their engineering characteristics.

68

B.5.1 Ground Units. Mann's thesis has tables showing battalion equivalents for

the ground units. He also describes how he calculates firepower scores for the U.S. Army's

divisions, as well as separate brigades. He also provides the firepower score calculations

for the Soviet Motorized Rifle Division and the Soviet Tank Division.

B.5.2 Air Defense Artillery and Missiles. "In both the US and Soviet Armies the

military air defense is divided up into SHORAD and HIMAD systems" (17:100). The

SHORAD is simulated by a surface-to-air index (SAI). The SAI is used along with an

algorithm to determine a unit's short-range air defense against enemy aircraft. The HIMAD

is a surface-to-air missile and is represented as a separate entity with its own characteristics,

including a single shot probability of kill.

B.5.3 Bases. There are four main categories of bases: air bases, depots, staging

bases, and missile bases. Each of these have similar characteristics: "identity, situational

awareness, resources, and aircraft or missiles" (17:102). Mann describes what is contained

in the database for each of the bases.

B.5.4 Aircraft. Aircraft are used in the simulation of four areas. Mann describes

how to determine the combat capability of an aircraft which is used in air-to-air combat

simulations. A circular error of probability is determined when calculating the air-to-

ground ratings. The model uses an electronic combat value to determine the results of

electronic combat. The fourth area is the determination of the resource quantities needed

to fly an aircraft. The "resources include fuel, maintenance hours, spares (spare parts),

ammunition, and usable runway" (17:109). If any of the items are missing, the aircraft's

mission is aborted.

B.5.5 Missiles and Bombs. Mann describes the four types of missiles as follows:

The surface-to-surface missiles are treated as aircraft. Air combat uses air-
to-air missiles. The short-range surface-to-air missiles are incorporated in the
SAI, whereas theater surface-to-air missiles are used to conduct combat with
the aircraft packages. And finally, air-to-surface missiles are either point target
destructive or an area effect weapon. (17:110-111)

Mann goes on to describe the various characteristics of each type of missile.

69

B.5.6 Aircraft Packages. Saber will not simulate the flying of individual aircraft

but rather the usage of multiple aircraft. The multiple aircraft are formed into an aircraft

package. An aircraft package should include aircraft for the primary mission as well as

any electronic combat, SEAD, refueling, and escort aircraft. Aircraft package attributes

are described by Mann. Attributes include the mission identification and the individual

aircraft.

B.5.7 Nuclear and Chemical Weapons. Mann proposes that Saber simulate both

nuclear and chemical weapons. He describes how to simulate both of these.

B.6 Overall Process

The model will read in the initial input values for a 24 hour cycle and then process the

weather. As the clock changes, the computer makes any required changes to the databases.

If the player's input calls for a mission to be conducted within the clock's current time

period, then the simulation creates an aircraft package.

An aircraft package cannot be created unless the appropriate resources are available.

The types of resources needed might include: aircraft, fuel, and weapons. After aircraft

packages are formed, the simulation subtracts logistical resources and number of aircraft

needed from the appropriate databases and loads ground unit data.

If there are not enough resources available for a particular mission, the mission is

delayed until the next time period. The first missions to be executed are the delayed

missions from the previous time period. Once all the delayed missions are accomplished,

the new area and strike missions are loaded.

First, the area missiopi are executed in the following order: C2, EC, CAP, and DCA.

"If there are conflicting missions, combat process (sic) are conducted to resolve the issues"

(17:80). After the missions are resolved, the appropriate links should be in place to the air

and ground hexes.

Next, tX", strike missions are executed in order of priority. Algorithms are used

to determine the correct path across the hexes. This path becomes part of the aircraft

package. "As the aircraft package enters an air hex, the computer checks to see if the
nackage has been detected by AWACs or GCI" (17:73). The simulation then determines

. hether there are any Air Defense Artillery units in the ground hexes. If there are any

conflicts, Saber should resolve them when they are encountered. While travelling through

70

the hexes, the system checks to see if the package has reached its target. Once the target

is reached, the simulation is conducted.

Mann describes the following three outcomes which can result from a conflict:

The package may be utterly destroyed, the package may have taken so many
hits that it decides to abandon its mission and return home, or the package
may still have sufficient combat power to continue. If the package continues and
successfully arrives at the mission site, the aircraft will conduct their mission,
and return to their start point using a backwards route or a return path that
is recalculated. At the end point, the planes are loaded back into their bases
and the appropriate supplies the aircraft have remaining are loaded back into
the base or counted as consumed (17:81).

After the strike missions are accomplished, the system determines whether the area mis-

sions can continue. Any missions which can continue are kept in the area mission matrix,

while others are returned to their bases. The clock is then advanced, databases updated,

the ground war takes place, and the process begins again.

B. 7 Algorithms

Chapter VI of Mann's thesis describes a number of algorithms which should be used

in Saber.

71

Appendix C. Ness' Packages and Contents

This appendix shows the packages used by CPT Ness. It also lists the procedures,

functions, and the main type declarations. For a description of the procedures and func-

tions see Appendix F.

" AFCOMBAT. This package performs the air force operations against land units.

- APPLYCAS

- APPLYBAI

" AFJO. This package reads in from disk all the necessary air force information.

- GETRECCE

- GETBAI

- GETCAS

" COMBATOPS. This package contains the necessary subprograms to perform re-

quired set up and combat operations of ground units. Only the first two procedures

below are part of the package specifications; the remainder are only part of the

package body.

- SET-UP

- ATTRITION

- ASSESSCP

- SETATK

- ASSESS-CONTACT

- APPLYFS

- APPLYCP

- ATTRIT

- DESTROY

* ADDIT

- WITHDRAW-UNIT

72

" CONSTANTS. This package defines all the user specified constants needed for the

simulation.

- GET-CONSTANTS

" DATAJO. This package reads in from disk all the land unit information needed to

run the simulation.

- GET-GRID

- GET-WEATHER

- GET-UNIT

- GETSF-ANTEL

" INTEL. This package performs land unit intelligence reduction based on loss of in-

telligence over time, intelligence operations of a unit's own intelligence capabilities,

and military intelligence brigade operations.

- REDUCE-INTEL

- SFJNTEL

- ARMYINTEL

" LOGISTIC. This package provides all logistic and depot resupply and support oper-

ations.

- DEPOT-LOG

- UNITLOGSUPPLY

" MAIN. The driver program. The procedures are all defined as "separate" procedures.

- INITIALIZE

- GETAF

- REPORT-WRITER

- LOGSPT

- APPLYAFS

- MOVEMENT

73

- INTELLIGENCE

- AFANTEL

- WRITE-DATA

- AIRJNTERFACE

- LOAD-WEATHER

" OBSTACLEOPS. This package performs operations when a unit is faced by obsta-

cles at a border. It includes the engineer brigade support and a ground unit's own

inherent support.

- OVERCOME-OBSTACLE

" PTR. This package provides the access type (pointer) operations necessary to ma-

nipulate the access types.

- INITIALPTR

- ADD

- DELETE

" TEXT-1O

* UNIT. This package defines all the types needed by the simulation. It does not

contain any functions or procedures. Listed below are the main type declarations.

- HEXSIDETYPE. The specifications for the six sides of a hexagon.

- GRID-SPECS. The specifications applicable to an entire hexagon.

- WEATHER-SET. An array specifying the weather difficulty by days, cycles,

and weather zone.

- COMBAT-SPTARRAY. An array of pointers to the units providing support.

- ARMY-UNITS. An enumeration type declaring the various types of units.

- UNITS-TYPE. The declaration for a ground unit.

- SFANTEL-RECORD. The declaration for the Special Forces intelligence units.

- NODE. The pointer record declaration.

- RECCETYPE. The record declaration for an AF reconnaissance mission.

74

- BAITYPE. The record declaration for an AF battefield air interdiction mission.

- CASSPTRECORD. The record declaration showing the percentage of support

being provided to a unit.

- CASTYPE. The record declaration for a close air support mission.

* UNITOPS. This package provides the basic movement and movement related oper-

ations which a ground unit must perform.

- DETERMINE-ROUTE

- CALC_VAL

- UNIT-VAL

- SELECTROUTE

* CALCDIRECTION

- REVERSEDIR

- BORDER-TRANSITION

- MOVEN_GRID

- UPDATE-LOCATION

- MANEUVER

75

Appendix D. Visibility of Ness' Packages

This appendix indicates the visibility between the packages defined by CPT Ness.

This was accomplished in his code by the use of Ada "with" clauses.

U)

~ 4 r
OBJCT W z E- E-4 z0a :

U3 z

0 0--: 0 E- WzZ
OBJECTS Jn 4 0r -

AFCOMBAT X X

AFAO X X X

COMBATOPS X X X X X

CONSTANTS X

DATAIO X X

INTEL X X X

LOGISTIC X X X

MAIN X X X X X

OBSTACLEOPS X X

PTR X

TEXTAO

UNIT

UNITOPS X X X X X

76

Appendix E. Objects and their Attributes

This appendix shows the various objects followed by their attributes. Attributes

shown in italics are a result of the detailed design. Most of the attributes are described

in Horton's data dictionary (11). The attributes not described in his data dictionary are

described after their usage. Attributes which have a different name here than in Horton's

data dictionary have the corresponding data dictionary name following them.

" AFSim

" AIRCRAFT

- DESIGNATION

- FORCE

- NIGHT-CAP - Horton calls this attribute night-capability.

- WEATHER-CAP - Horton calls this attribute wx-capability.

- COMBAT - Horton calls this attribute a2a-rating; Mann calls it COMBAT.

- SIZE - Horton calls this attribute ac-size.

- AVGSORTIESPERWEEK - Horton calls this attribute sorties-week.

- SEARCH

- EC

- MAX-SPEED

- COMBAT-RADIUS - Horton calls this attribute radius.

- LOITER-TIME

- CARGO

- RECONABILITY

- REFUEL - Horton calls this attribute refuelable.

- MAINTDIST - Horton calls this attribute maintain-dist.

- MA INTMEA N - Horton calls this attribute maintain-mean.

- MAINTSTANDDEV - Horton calls this attribute maintain-standev.

- AMTSPARES - Horton calls this attribute spare-parts.

77

- POL - Horton calls this attribute pol-usage-rate.

- RAMP - Horton calls this attribute ramp-space.

- MINRUNWAYNEEDED - Horton calls this attribute min-runway.

- PCL - This is the preferred conventional load. It contains the designations and

quantities of weapons needed for a specific aircraft for all missions which the

plane can fly. A PCL record contains the following attributes:

* MISSION - Horton calls this attribute mission-type.

* TARGET-HARDNESS - Horton calls this attribute hardness.

* PRIM-LOAD - This attribute is the integer part of Horton's load-id which

applies to the primary weapons load.

* SECOND-LOAD - This attribute is the integer part of Horton's load-id

which applies to the secondary weapons load.

* TERTIARY-LOAD - This attribute is the integer part of Horton's Ioad-id

which applies to the tertiary weapons load.

- PBL - This is the preferred biological/chemical load. It contains the designa-

tions and quantities of weapons needed for a specific aircraft carrying a chemical

warhead for all missions which the plane can fly. Each record has the same at-

tributes as a PCL record.

- PNL - This is the preferred nuclear load. It contains the designations and

quantities of weapons needed for a specific aircraft carrying a nuclear warhead

for all missions which the plane can fly. Each record has the same attributes as

a PCL record.

- AIRGROUNDRATING - Horton calls this attribute a2g-rating.

- MAXHEXLEVEL - Horton calls this attribute max-hex.

* AircraftPackage

- MISSION-NO - Horton calls this attribute mission-id.

- FORCE

- PRIMARY-MISSION - Horton calls this attribute missiontype.

- TARGET - This is the number of a target. It is the ASSETID.

- RQSTPRDONTARGET

78

- RQSTDAYONTARGET

- ACTUALSTARTPRD

- ACTUALSTARTDAY

- LOITER-TIME

- RQSTRETURNPRD

- RQSTJRETURNDAY

- ACTUALRETURNPRD

- ACTUALRETURNDAY

- PRIORITY

- ACTIVATED

- RENDEZVOUS-HEX

- DISTANCE - This is the total distance the aircraft package can fly. It is based

on the aircraft in the package which flies the shortest distance.

- ALTITUDE - This is the highest hex level which the aircraft package can fly

and is based on the capabilities of the aircraft which are part of the package.

- SPEED - This is the speed of the slowest aircraft in the package and indicates

the overall speed of the aircraft package.

- INEFFECTIVE-REASON

- ORBIT-LOCATION

- ATTRITPER-AIRHEX - This is the amount of attrition for each air hex the

aircraft package flies through.

- DETECTED - This is a boolean value which reflects true when the aircraft

package is detected by the enemy's early warning systems.

- POSITIVEID - This boolean value indicates that not only was the aircraft

package detected but it was also positively identified by the enemy.

- WAS-CANCELLED - This boolean value indicates that the aircraft package

was cancelled.

- WARHEAD - This attribute indicates whether the warhead is chemical, nu-

clear, or conventional.

79

- PRIM-ACSCHED - This attribute provides a list of the primary scheduled

aircraft and their quantities.

- PRIM-M SNACSTARTNO - This attribute provides a list of the primary air-

craft and quantities which actually started on a mission.

- PRIM.MSNACPRESNO - This attribute provides a list of the present pri-

mary aircraft and quantities. It is used to indicate how many aircraft return

from a mission.

- ESCORTORCAPAC-SCHED - This attribute provides a list of the escort

and close air patrol (CAP) aircraft that are being scheduled by the user to

fly a mission. This information comes from Horton's AIRCRAFT-PACKAGE

relation.

- ESCORTORCAPACSTART-NO - This attribute provides a list of the escort

and CAP aircraft that actually started on a mission.

- ESCORT-ORCAPAC-PRES_NO - This attribute provides a list of the escort

and CAP aircraft that are currently part of the aircraft package. This number

is reduced when an escort or CAP aircraft is destroyed.

- SEADACSCHED - This attribute provides a list of the SEAD aircraft sched-

uled by the user to be flown as support aircraft as part of an aircraft package.

This information comes from Horton's AIRCRAFT-PACKAGE relation.

- SEAD.ACSTARTNO - This attribute provides the actual starting number of

SEAD aircraft flying a support mission.

- SEAD-AC-PRESNO - This attribute provides the present number of SEAD

aircraft on a mission.

- ECMACSCHED - This attribute provides a list of the electronic countermea-

sure (ECM) aircraft which the user has requested for a support role within an

aircraft package. This information comes from Horton's AIRCRAFTPACK-

AGE relation.

- ECMAC-STARTNO - This attribute provides a list of the actual starting

number of ECM aircraft for a particular aircraft package.

- ECMACPRESNO - This attribute provides a list of the present number of

ECM aircraft returning from, or during, a mission.

80

- REFUEL-ACSCHED - This attribute provides a list of the refueling aircraft

which the user has requested for a support role within an aircraft package. This

information comes from Horton's AIRCRAFT-PACKAGE relation.

- REFUELACSTARTNO - This attribute provides a list of the actual starting

number of refueling aircraft for a particular aircraft package.

- REFUELACYPRESYNO - This attribute provides a list of the present number

of refueling aircraft returning from, or during, a mission.

" AirHex

- WEATHER - Horton calls this attribute actual-wx.

- WEATHER-ZONE - Horton calls this attribute wz.

- ATTRITION

- EC

- TRAFFICABILITY

- PERSISTENCE - Horton calls this attribute persistencetime.

- NEXT-ACPKG - This attribute provides a linked list of aircraft packages lo-

cated in a particular air hex.

* ALGORITHMS

" ArmySim

" BASES (Includes Air Bases and Depots)

- ASSET-ID - Horton calls this an airbase.id.

- FORCE

- HQ

- MO VEALLOWED - This is a boolean value and indicates whether the base

can deploy or not.

- MISSION - Horton calls this attribute base-mission.

- PRESILOC - Horton calls this attribute location.

- FUTILOC - Horton calls this attribute futuredocation.

- WIDTH

81

- LENGTH

- WEATHER-MIN - Horton calls this attribute weather.minimum.

- ISBASEOVERRUN - This is a boolean value that indicates whether the base

or depot is overrun.

- ISBASE-WITHINENEMYART - This is a boolean value which indicates

whether the base or depot is within the range of enemy artillery.

- ISBASEUNDERNUCCHEM-ATK - This is a boolean value that indicates

whether the base is under chemical or nuclear attack.

- ACTIVEENEMY-MINES - Horton calls this attribute enemy-mines.

- MOPPPOSTURE

- ISBASEUNDERAIRATK - This is a boolean value that indicates whether

the base or depot is under air attack.

- ALT-BASES - This attribute provides a list of alternate bases where aircraft

can land if the runway on their home base is no longer of sufficient size for a

landing. This list is taken from Horton's ALTERNATE-BASES relation.

POLSOFT-STORE

- POLHARD-STORE

- MAXPOLSOFT

- MA XPOLHA RD

- MAINTYPERSONHAND - Horton calls this attribute maint-personnel.

- MAINTHRSACCUM

- MAINT-EQUIP-ON-HAND - Horton calls this attribute maint-equip.

- SPARE-PARTS

- RUNWAYS - This attribute is a list of available runways on a specific base.

It comes from Horton's RUNWAYS relation and consists of RUNWAY, CON-

DITION (difficulty according to Horton), CURRENT-LENGTH, and MAX

LENGTH.

- MAXRAMPSPACE

- RAMP.A VA IL

82

- SHELTERS

- EODCREWS

- RRRCREWS

- WEAPONS-AVAIL - This attribute provides a list of weapons and quantities

based on the weapons' designation.

- ACTYPESNOS - This attribute provides a list of aircraft and their quantities.

- AC-MAINT - This attribute provides a list of aircraft currently undergoing

maintenance. The values are calculated by the simulation but eventually get

read into Horton's MAINTENANCE relation. Each AC-MAINTTYPE record

contains the following attributes:

* INDEX - This is an integer which refers to the position in the aircraft array

for a particular aircraft.

* CURRENTQUANT - Horton calls this attribute quantity.

* MAINT-TIME

* START-TIME

- TOTALAC - This attribute is the total number of aircraft on the base.

- STATUS

- NOTIMESATCK - This attribute indicates the total number of times a base

has been attacked.

- INTELINDEX

* Clock

- CYCLE-TYPE

* CYCLE

* PERIOD

* Forces

- FORCES-TYPE is (BLUE, RED, NEUTRAL)

- COUNTRYTYPE

• COUNTRY

83

• FORCE

* GroundHex

GRID-SPECS

* WEATHER - Horton calls this attribute actual-wx.

* WEATHER-ZONE - Horton calls this attribute wz.

* FORCE

* SIDE-DEF - This attribute is an array containing information on the six

sides of a hex.

* MISSION - Horton calls this attribute an army-mission-type.

* INCONTACT - This is a boolean value indicating whether a ground unit

is in contact with the enemy.

* IN-ATTRITION - This is a boolean value indicating whether a ground unit

is in attrition with the enemy in adjacent hexes.

* FPOUT - Horton calls this attribute cpo.

* FPAN - Horton calls this attribute cpi.

* ATTRITION - This is a rate used by the land module.

* SAT - This is the aggregated surface-to-air index for the units within a hex.

* INTELJNI)EX

* NEXTUNIT - This attribute is a pointer to the ground units located within

the hex.

* PERSISTENCE- Horton calls this attribute persistence-time.

* EC

* CENTER-HtEX

* BASEIIST- This attribute is a list of airbases and depots currently located

in the hex.

IEXSIDETYPE

* NEIGHBOR-NO - Horton calls this attribute neighborid.

* OBSTACLES - This attribute is a list of obstacles and is taken from Hor-

ton's HEXSIDEASSETS table. Each record consists of the following: OB-

STACLENO, OBSTACLE, and OBSDIFF. Horton calls these attributes

obstacleid, obstacle, and difficulty.

84

* TRAFFIC - This attribute is taken from Horton's TRAVEL table. It

equates to Horton's pie-trafficability.

* FEBA - This boolean value is based on Horton's FEBA table.

* BORDER - This boolean value is based on Horton's BORDERS table.

* COAST - This boolean value is based on Horton's COASTS table.

* RIVER-SIZE

* ROADS - This attribute is a list of roads going into the hex. It is taken

from Horton's ROADS table. It has the following attributes:

ROAD-NO - Horton calls this attribute road-id.

SIZE - Horton calls this attribute road-size.

FLOW

* RAILROADS

RAILROAD-NO - Horton calls this attribute railroad-id.

FLOW

* PIPELINES

PIPELINE-NO - Horton calls this attribute pipelineid.

FLOW

* GroundUnits

- ASSETID - Horton calls this attribute unit-id.

- CORPSJD

- PARENT-UNIT

- UNIT-SIZE

- TYPEOFUNIT - Horton calls this attribute unit-type.

- FORCE

- PRESENTLOCATION - Horton calls this attribute location.

- MSNEFFDAY

- REGION

- HEX-DIR - This attribute indicates the direction of movement for a unit.

- MOVE-ALLOWED - This attribute is an array of au~horized side movements.

85

- IN-ATTRITION - This boolean value indicates whether a unit is in attrition

with other units.

- FIREPOWER

- COMBATPOWER - Horton calls this attribute combat-power.

- ATTRITION

- TOTALPOL

- POL-RESUPPLYPERCENT - Horton calls this attribute pol-resupply-pct.

- POLUSAGE..RATE

- TOTAL-AMMO

- AMMO-RESUPPLYPERCENT - Horton calls this attribute ammo-resupply_

pct.

- A MMO_ USA GERA TE

- TOTAL-HARDWARE

- HARDWARE-RESUPPLYPERCENT - Horton calls this attribute hw-resup-

ply-pct.

- IIA RD WA RE_ USA GEJRA TE - Horton calls this attribute hw-usage-rate.

- DEPOTSPT - This attribute is a pointer to the depot supporting a particular

unit.

- IN-CONTACT - This boolean value indicates that the unit is in contact with

other units.

- INTEL-INDEX

- INTEL-FILTER

- WASINTELED - This boolean value indicates whether the unit has been in-

telled or not.

- BREAKPT - Horton calls this attribute breakpoint.

- GRID-TIME

- ISCS - This boolean value indicates whether a unit is providing combat support

or not.

- ISNTERDICTION - This boolean value indicates whether a unit is an inter-

diction unit or not.

86

- SPTEDUNITS - This attribute is a list of support units and is taken from

Horton's UNIT-SUPPORTS relation. Each individual record has two attributes

as defined by Ness: UNITS.TOSPT (Horton calls it UNITSUPPORTEDAD)

and SPTPERCENT (Horton calls it percent).

- DAYLASTINTELLED

- PRDLASTJNTELLED

- LOCLASTINTELLED

- MISSION - This attribute is a list of missions taken from Horton's MOVE table.

This record is defined by the simulation as ORDER-TYPE and consists of:

* TARGET-NO - Horton calls this attribute target-id.

* ORDER-NO - Horton calls this attribute order-id.

* DAY

* PERIOD

* MISSION - Horton calls this attribute army-missionAype.

- OVERRIDE-MISSION - This attribute is is a list of missions and is taken

from Horton's MOVEILNLT table. The OVERRIDE-MISSION attribute list

contains the same attributes as the MISSION attribute.

- UNDERCHEM-NUCATK - This boolean value indicates whether the unit is

under chemical or nuclear attack.

- MOPPPOSTURE

- TROOP-QUALITY

- ASSETS - This attribute is a list of ground components and quantities. It is

taken from Horton's UNIT-COMPONENTS table.

- SSM - This attribute is a list of surface-to-surface missiles assigned to the unit

along with the quantity of each missile. It is extracted from Horton's UNIT-

$2S table. It also includes the quantity of the launchers used for each missile.

- SAM - This attribute is a list of surface-to-surface missiles assigned to the unit

along with the quantity of each missile. It is extracted from Horton's UNIT-

S2A table. It also includes the quantity of the launchers used for each missile.

- RADAR - This attribute is a list of radars assigned to a unit. See the Radar

object for the radar's attributes.

87

- GROUNDSPEED

- PERCENTSAI-USED - This attribute is an integer indicating the percentage

of surface-to-air index used by the unit.

- FUEL-TRUCKS

- AMMOTRUCKS

- WATER

- WATER.PERCENT

- WATER-TRUCKS

- ENGINEERS

- ENGVEHICLES

- STATUS

" SupplyTrain

- GroundUnits attributes

- MISSION-INFO - This attribute is a list of supply missions and is taken from

Horton's SUPPLY-MOVEMENT relation. It includes the following attributes:

* TARGET-NO - Horton calls this attribute target-id.

* ORDER-NO - Horton calls this attribute orderid.

* SUPPLIES-DELIVER - Horton calls this attribute designation.

* DELIVERY-QUANTITY - Horton calls this attribute deliver-qty.

- TOT-CAP - Horton calls this attribute total-capacity.

- IN-USE

- SUPPLY - Horton calls this attribute supply-type.

- TRANS.MODE

- TOTAL-POL

- TOTALAMMO

- TOTAL-HARDWARE

- TOTAL-SPARES - Horton calls this attribute spare-parts.

" Hey

88

- WEATHER-FORECAST

* GOOD-PERCENT - Horton calls this attribute forecast.good.

* FAIRPERCENT - Horton calls this attribute forecast-fair.

* WEATHER - Horton calls this attribute actual-wx.

" One WayList

- This is a generic package which uses a user defined InfoType.

" Radars

- TYPE-RADAR - Horton calls this attribute radar-type.

- QUALITY

- QUANTITY

* Satellites

- ASSET__D - Horton calls this attribute satellite-id.

- DESIGNATION

- FORCE

- LOCATION

- SAT-TYPE

- STATUS

- SPEED

- DIRECTION

- ORBIT

- SA TDELA Y - Horton calls this attribute delay.

* Targets

- CARGOCAPACITYTYPE

* CARGO - Horton calls this attribute vehicle.

* CAPACITY

- DESIGNA TION-TYPE

89

* DESIGNA TION

* QUANTITY - Horton calls this attribute weapon-count.

- GROUNDCOMPONENTSTYPE

* DESIGNATION

* AMMOUSAGERATE

* POLUSAGERATE

* HARD WARE-USAGE.RATE - Horton calls this attribute hw.usage-rate.

* TARGET-WEIGHT - Horton calls this attribute target-wgt.

* FIREPO WER_ WEIGHT - Horton calls this attribute firepower.

* LENGTH

* WIDTH

- BA SECOMPONENTS-TYPE

* DESIGNATION

* TARGET-WEIGHT - Horton calls this attribute target-wgt.

* LENGTH

* WIDTH

- CLASS-TYPE

* DESIGNATION

* RELA TION

- HARDNESS-TYPE

* TARGET - Horton calls this attribute target-type.

* PKVALUE - Horton calls this attribute hardness.

" UniformPackage

- This is a generic package which permits the user to define the range of float

numbers desired.

" WEAPONS

- AIRTOAIRWEAPONS

* DESIGNATION

90

* FOR CE

* MISS-RANGE - Horton calls this attribute range.

* SSPK

-AIR-TO-SURFACE..WEAPONS

* DESIGNATION

* FORCE

* LETHALITY-.RADIUS - Horton calls this attribute lethal-area.

* CEP

* PKJ-HARDY-POINT-TYPE - Horton calls this attribute pkiiard.

* PIKMEDYPOINT-TYPE - Horton calls this attribute pk-med.

* PKISOFT-POINT-~TYPE - Horton calls this attribute pk-soft.

-SURFACE-TO-SURFACE-MISSILE

* Ground Units attributes

* DESIGNATION

* FORCE

* WARHEAD - Horton calls this attribute class.

* LETHALITI'JADIUS - Horton calls this attribute lethal-area.

* CEP

* PKIIARD-POINT-TYPE - Horton calls this attribute pk..hard.

* PK-MED-POINJITYPE - Horton calls this attribute pk-med.

* PK-SOFTYPOINT. TYPE - Horton calls this attribute pk-soft.

* MIN-RANGE

* MAX-RANGE

* LA UNCHERJOUNDS - Horton calls this attribute rnds-perlauncher.

* RELOAD-TIME

-SURFACE-TO-AIR.MISSILE

* GroundUnits attributes

* DESIGNA TION

* FORCE

* WARHEAD - Horton calls this attribute class.

91

* SL 0 W.HIGH

* SLOW-LOW

* FAST-HIGH

* FAST-LOW

* SSPK

* MISS_-RADAR.RANGE - This is a list of both the radar's range and the

missile's range for each missile by hex levels. It consists of Horton's radar2,

radar3, radar4, radar5, radar6, and radar7. It also consists of Horton's

range2, range3, range4, range5, range6, and range7.

* LA UNCHERROUNDS - Horton calls this attribute rnds-perdauncher.

* RELOAD-TIME

* WEATHER-MIN

- CHEMICAL

* DESIGNATION

* FORCE

* PERSISTENCE Horton calls this attribute persistence-time.

* LETHALITY

* CEP

- NUCLEAR

* DESIGNATION

* YIELD

* FORCE

* CEP

* PERSISTENCE - Horton calls this attribute persistence-time.

92

Appendix F. Objects and their Operations

This appendix shows the objects and the operations required for the object. Items

in italics were not part of the initial design.

" A FSim

- INITL4LIZE

- PERFORAMISSIONS

- R UNDELA YEDMISSIONS

- WRITE-DATA

- REPORTWRITER

" Aircraft

- GETAC

- INCREASEAC

- DECREASEAC

- ADDTOMAINTLIST

- DELETEFROMMA INTLIST

- DETERMINEPCL

- DETERMINEPBL

- DETERMINEPNL

- GETACQUANT

- GETREFUELCAP

- GETMAINT

- WRITEMAINT

- WRITEACQUANT

" AircraftPackage

- GETA CPKGINFO

93

- FORM-ACPKGS

- BREAKUP-ACPKG

- DELA Y3IISSION

- GET-CONSTANT

- DECREASE-ASSETS

- DELETL-A CPKG-.MISSION-LIST

- DELETEA CPKG-DELA YJ§IST

- UPDATE-DETECTED

- UPDA4TEYPOSITIVE-ID

- UPDA TE-ACTI V4TED

- UPDA T-A CTUAL-RETURN

- 1JPDA TE-INTEL-INDEX

- UPDA TE-INEFFECTI VEJEA SON

- UPDA TE-PA OKA GL-EC

- LJPDA TE-PR!kl-MSN-A C-STA RT-NO

- UPDA TELPRIAL-MSNAC-PRES-NO

- U7PDA TEIESCWOR-CA P-STA RT-NO

- UPDA TEESC-OR- CA PPRES-NO

- UPDA TE-SEAD-STA RL.NO

- UPDA TE-SEA D-PRESJVO

- UPDA TECMSTART-N~O

- UPDA TEIECM-PRES-NO

- UPDA TEJEFUEL-STA RT-NO

- UPDA TEJEFUELYPRES-NO

- WRITE-A CPKG INFO

- WRITFADELA K-MISSIONS

o A irlkx

94

- GLr..AIR-GRID

L QA DWEA THEft

- A DD-A CPKG

- DELETE-ACPKG

- UPDATE-LOCATION

- WRITE-AIR-GRID

eAlgorithms

- DETERMINE-DIRECTION

- CALC-LOCAL-DETECTION

- ONE-NIISS-ONE-AC

- MULT-MISS-ONE-AC

- MULT-NMISS-NIILT-AC

- CAICSNO-,ISS-FIRED

- ('ALCLBERNOULLI

- CA L CBINOM114 L

- CA4 L CLPISSON

- 'A LCUSORMAL

- ('ALCYPROB-HIlf CIRC-TARGET

- CAL('YROB-1IIT-RECT-TARGET

- C'AL C'3L UEFIREPO WER

- CAL CIRED-FIREPOIWEll

- CA L CPOL

- C7AL C'A MIMO

- CALC-PROB-LA (INCH

- CA L C-SSPK

- C--ALCYPROB-KTLL

- D ET ER MIIN E -PRO BF0R -TAR GET S

95

- CALC.ADAYPK

- DETERMIINE-LONGRANGE-DETECTION

e Arinyir

- INITIALIZE

- REPORT-WRJTER

- LOG-SPT

- MOVEMENT

- INTELLIGENCE

- WRITl E-DATA

- SETTA'

- ATTRITION

- IERFOR MIST-OPS

- GET-BASL

- G ET1J) E I"OT

- I NCR EA S E-R ESO0URCE S

- 1) FCR EA SER E SOUR CE S

- INCREFA SE S UPPL IES

- DECREA SIK-,A ILVOS

- lITPDA TEISO 0VER RUN

- UPDA TEJS- 117TIIIN-ENEM -A R T

- I(TDA TEJS- (NDERN (UC-CHEM-A TA

- (.PDA TE- UNDER-A IR-.A TK

- I PDA TERI N IVA Y

- fTPDA TER RR- CRE WS

- UPDA TEIEOD-CRE 11

- UPDA TES5HEL TERS

96

- UPDATU..POL-HARD

- UPDATEJ'OL-SOFT

- UPDA TEJO VE-ALL OWED

- UPDA TEJ3ASEJJIMENSIONS

- UPDA TE-IN TEL-INDEX

- WRITE-BASES

- WRITE-DEPOTS

" Clock

- GET-CONSTANTS

- GET-CYCLES

" Forces

- GET-COUNTRIES

* Groundllex

- GET-GRID

- GET-CONSTANTS

- CALCJ'AL

- INITIAL-PTR

- ADD

- DELETE

- ADD-.BASE

- DELETE-BASE

- LOAD-WEATHER

- ASSESS-CONTACT

- APPLYYFS

- APPLY-FP

- ATTRIT

97

- SFINTEL

- UPDATE-OBSTACLE

- UPDATE-OBSDIFF

- UPDATE-OBSTACLEREC

- UPDATE-INTELINDEX

- UPDA TEMISSION

- UPDATEJINCONTA CT

- UPDA TEINA TTRITION

- UPDATEATTRITION

- UPDATEFPINOUT

- UPDA TEFEBA

- UPDATEEC

- UPDATE-TRAFFIC

- UPDA TEPIPELINE

- UPDA TE-ROA D

- UPDATE-RAILROAD

- UPDATE-RIVER

- WRITE-GRID

o GroundUnits

- GET-CONSTANTS

- GET-UNIT

- GETSFANTEL

- GETSUPPLYTRAIN

- ADDIT

- UNITLOGSUPPLY

- REDUCEINTEL

- UNIT-VAL

98

- MOVEIN..GRID

- DELETE-SUPPLY11TRAIN

- IN CR EA SE-ST.ASSETS

- DISBURSE-SUPPLIES

- UPDATE-ATTRITION

- UPDATE..TOTAL-AMMO

- UPDA TE-COMBA TPO WER

- UPDA TE-INTEL-INDEX

- UPDA TEJJEPO TSPT

- UPDA TE- UNITS- TO-SPT

- UPDA TE-ISCS

- UPDATE..TOTAL-POL

- UPDATE..TOTAL-HARDWARE

- UPDA TE-GRID- TIME

- UPDA TL WA SIN TELED

- UPDA TE-IEX-DIR

- UPDA TESREGION

- UPDA TE-FIREPO WER

- UPDA TE-INCONTA CT

- UPDA TE-IN-ATTRITION

- UPDA TE-DESTROYEDILIST

- UPDA TE-MISSION

- UPDA TE-MOVEMENT-TIME

- WRITE-UNITS

- WRITE..SFINTEL

- WRITE-SUPPLY-.TRAIN

o Hex

99

- GET-CONSTANTS

- GET-WEATHER

- CONVERT-NO

- CALCWEATHERVAL

- CALCTRAFFICVAL

- REVERSEDIR

- UPDATEMOVEALLOWED

- UPDATE-LOCATION

* OnylWayLists

- MakeNode

- InfoPart

- Front

- Empty

- Successor

- Predecessor

- AddToFront

- AddToRear

- InsertBefore

- InsertAfter

- Delete

* Radars

- GET-RADARS

- DECREASE-RADAR

- GET-CONSTANTS

- WRITE-RADARS

* Satellites

100

- GET-SATELLITES

" TargetInfo

- GET-COMPONENTS

- GETCOMPONENTSQ UANT

- GET-CARGO

- GET-CLASS

- DECREA SE-COMPONENTSQ UA NT

- DETERMINESAI

- GET-HARDNESS

- WRITECOMPONENTSQUANT

" UniformPackage

- UNIFORM

- SETSEED

" Weapons

- GET-SAM

- GETSSM

- GETAAW

- GETASW

- GET..AIRWEAPONSQUANT

- GET-GROUNDWEAPONSQUANT

- GET_ WEAPONSLOAD

- GET-CHEMICAL

- GET-NUCLEAR

- INCREASE-WEAPONS

- DECREASE-WEAPONS

- INCREASE-LAUNCHERS

101

- DECREASE-LAUNCHERS

- UPDA TK.CEP

- UPDA TEA VEAPOPLQTY

- URDA TELA UNCHELQ T Y

- WRITE..AIR-WEAPONS-QTY

- WRITE-GRO UNiX WEAPONS..QTY

102

Appendix G. Visibility of Objects

This appendix indicates which objects "see" other objects and which objects are
"seen" by other objects. An "I" indicates the visibility noted by the initial design; an "F"

indicates the visibility which resulted from the detailed design and preparation of the Ada

package specifications. An "X" indicates the visibility required by the Ada package body.

Two packages are not shown in the table. The Algorithms package uses Verdix Ada's Math

package. The TEXTIO package is used by every object.

Airxex-F F F

Croto

E E a.

bO 0

OBJECTS -4 k k -- U0 U 0

AFSimn X F F X F XX F XX F X X

Aircraft F F F F F

AircraftPackage IF I F IF IF F IF

AirHex F F F

Algorithms X

ArmySimn X X X F F IX I X X X

Bases IF IF I IF F IF

Clock

Forces

Groundflex F X F F F F

GroundUnits X F I IF F F F

Hex F X

One WayL1sts

Radars

Satellites I I IF I IF

TargetInfo

UniformPackage

Weapons F ±F

103

Appendix H. Additional Operations Needed

This appendix describes the procedures and functions which are part of the package

body but not part of the package specifications. These procedures and functions are

required by another procedure or function within that package. They are not required by

any other package and, therefore, do not need to be in the specifications. For the sake

of consistency, this appendix includes the additional procedures which were part of Ness'

original code.

* AFSim.

- JETTISON_-WEAPONS. This procedure should release from the aircraft pa:k-

age any weapons not used on a mission. It is needed by the CONTINUE-

MISSION and RUNSTRIKEMISSIONS procedures.

- ACCOMPLISHSTRIKEMISSION. This procedure is called by RUNSTRIKE_

MISSIONS if an aircraft package makes it to its target. It in turn calls the cor-

rect targeting procedure.

- ACCOMPLISHSUPPORTMISSION. This procedure is called by RUNSUP-

PORT-MISSIONS if an aircraft package makes it to the location of its target.

It in turn calls the correct targeting procedure.

- APPLY-CHEMICAL. This procedure should simulate the use of a chemical

weapon. It should implement what Mann describes on pages 166-174 of his

thesis (17).

- APPLY-NUCLEAR. This procedure should simulate the use of a nuclear weapon.

It should implement what Mann describes on pages 160-165 of his thesis (17).

- PERFORM_-SATELITEOPS. This procedure should perform satellite opera-

tions as described by Mann on pages 170-174 of his thesis (17).

- REFUELAIRCRAFT. This procedure should refuel aircraft if refueling aircraft

are part of the aircraft package.

104

- DETERMINE-TARGETS. This procedure is used by a reconnaissance mission.

It should keep track of what targets the reconnaissance aircraft "sees" as it flies

through the hexes (17:175). It is called by RUNSUPPORTMISSIONS, RUN-

STRIKE-MISSIONS, and RUNAREAMISSIONS.

- TARGET-BASE. This procedure is called by ACCOMPLISHSTRIKEMIS-

SION and is used when the target is a base or depot. It should determine what

is located on the base that can be targeted. It should use Mann's targeting

algorithm (17:156-160).

- TARGETGROUNDUNIT. This procedure is called by ACCOMPLISH_-STRIKE-

MISSION and is used when the target is a ground unit. It should determine

what is located with the ground unit that can be targeted. It should use Mann's

targeting algorithm (17:156-160).

- TARGETGROUND.HEX. This procedure is called by ACCOMPLISHSTRIKE-

MISSION and is used when the target is a ground hex. It should determine what

is located within the ground hex that can be targeted. It should use Mann's

targeting algorithm (17:156-160).

- TARGET-OBSTACLE. This procedure is called by ACCOMPLISH-STRIKE-

MISSION and is used when the target is an obstacle. It should determine the

correct targeting algorithm to use and call the correct procedure. For example,

if the obstacle is a bridge, then the rectangular target algorithm would be used

to determine how much destruction occurred.

- TARGET.SUPPLYTRAIN. This procedure is called by ACCOMPLISHSTRIKE_

MISSION and is used when the target is a supply train. It should determine

what the supply train encompasses that can be targeted. It should use Mann's

targeting algorithm (17:156-160).

- RUN.ADA. This procedure runs the air defense artillery by using the surface-

to-air index of a ground unit (17:135- 141).

- DETERMINE-DETECTSAM. This procedure should determine whether an

aircraft package is detected by a surface-to-air missile. If the aircraft is de-

105

tected, then the amount of damage is determined. It is called by RESOLVE.

CONFLICTS and, in turn, calls functions located within the Algorithms pack-

age.

- DETERMINE-LONG -RANG EDETECT. This procedure should determine if

an aircraft package is detected by any airborne early warning aircraft (AWACs)

or ground control intercept (GCI) aircraft. It is called by RESOLVECON-

FLICTS and, in turn, calls functions located within the Algorithms package.

- RUNAIRTOAIR. This procedure should perform air-to-air combat if oppos-

ing aircraft packages are located in the same air hex (17:142-146). It should call

functions and procedures located within the Algorithms package. It is called by

RESOLVE-CONFLICTS.

- RESOLVE-CONFLICTS. This procedure should determine the resolution of any

conflicts between two or more aircraft packages and between aircraft packages

and surface-to-air missiles. It is called by RUNSUPPORTMISSIONS, RUN-

STRIKE-MISSIONS, and RUN-AREA_.MISSIONS. It in turn, calls the appro-

priate procedures and functions in the Algorithms package needed to resolve

the type of conflict encountered.

- CONTINUE-MISSION. This procedure should continue an area mission once

all the strike missions are finished and if it is the right period for the area mission

to accomplish its mission. It is called by CHECKAREAMISSIONS.

- RUNAREAMISSIONS. This procedure should put all the area missions in

their appropriate hexes. It should be processed before the strike missions

are run so that the strike missions have the possibility of air conflicts. It is

called by PERFORM-MISSIONS. It calls the Algorithms.DETERMINEDI-

RECTION procedure to determine the movement of the aircraft package. It

also calls AirHex.UPDATE-LOCATION to actually reflect the new location

of the aircraft package. It also calls DETERMINE-TARGETS or RESOLVE-

CONFLICTS depending on the aircraft package's mission.

106

- CHECK.AREAMISSIONS. This procedure should detemine whether an area

mission should be continued. It is called by PERFORM_-MISSIONS and should,

in turn, call the CONTINUE-MISSION and AircraftPackage.BREAKUPACPKG

procedures.

- RUNSTRIKEMISSIONS. This procedure should perform the strike missions.

It is called by PERFORM_-MISSIONS. It calls the Algorithms.DETERMINE-

DIRECTION procedure to determine the movement of the aircraft package.

It also calls AirHex.UPDATELOCATION to actually reflect the new location

of the aircraft package and RESOLVE-CONFLICTS to resolve any conflicts it

encounters. In addition, it calls the ACCOMPLISHSTRIKEMISSION, JET-

TISONWEAPONS, and AircraftPackage.BREAKUPACPKG procedures.

- RUN_-SUPPORTMISSIONS. This procedure should perform the support mis-

sions. It is called by PERFORM_-MISSIONS. It calls the Algorithms.DETERMINE_

DIRECTION procedure to determine the movement of the aircraft package. It

also calls AirHex.UPDATELOCATION to actually reflect the new location of

the aircraft package and RESOLVE-CONFLICTS to resolve any conflicts it en-

counters. In addition, it calls the ACCOMPLISHSUPPORTMISSION and

Aircraft Package.BREAK U PACPKG procedures.

" AirHex. The package body does not contain any additional procedures or functions.

" Aircraft.

- GET_PCL. This procedure is called by GETAC and reads in from disk the

preferred conventional load information for each type of aircraft.

- GETPBL. This procedure is called by GETAC and reads in from disk the

preferred biological/chemical load information for each type of aircraft.

- GETPNL. This procedure is called by GETAC and reads in from disk the

preferred nuclear load information for each type of aircraft.

" AircraftPackage.

- GET-TARGETS. This procedure reads in the target number from the disk file.

107

- GETACPKGAC. This procedure reads in the types and quantities of aircraft

needed for the aircraft package, as well as their missions.

- WRITE-TARGETS. This procedure writes to disk the aircraft package's target

number.

- WRITEACPKGAC. This procedure writes out to disk the types and quantities

of aircraft needed for the aircraft package, as well as their missions.

* AirHex. The package body does not contain any additional procedures or functions.

* Algorithms.

- MOVEDOWNRIGHT. This procedure determines the new x and y air hex

coordinates for an aircraft package moving down and right. It is called by GO-

SE.

- MOVELEFTEVEN. This procedure determines the new x and y air hex co-

ordinates for an aircraft package moving left when the starting x value is even.

It is called by GOSW and GONW.

- MOVELEFTODD. This procedure determines the new x and y air hex coor-

dinates for an aircraft package moving left when the starting x value is odd. It

is called by GOSW and GONW.

- MOVEDOWNLEFTEVEN. This procedure determines the new x and y air

hex coordinates for an aircraft package moving down and left when the starting

x value is even. It is called by GOSW.

- MOVEDOWNLEFTODD. This procedure determines the new x and y air

hex coordinates for an aircraft package moving down and left when the starting

x value is odd. It is called by GOSW.

- MOVEWRIGHTEVEN. This procedure determines the new x and y air hex

coordinates for an aircraft package moving right when the starting x value is

even. It is called by GO.NE, GOSE, and GONW.

108

- MOVERIGHTODD. This procedure determines the new x and y air hex co-

ordinates for an aircraft package moving right when the starting x value is odd.

It is called by GONE, GOSE, and GONW.

- MOVEUPRIGHTEVEN. This procedure determines the new x and y air hex

coordinates for an aircraft package moving up and right when the starting x

value is even. It is called by GONE and GONW.

- MOVEUPRIGHTODD. This procedure determines the new x and y air hex

coordinates for an aircraft package moving up and right when the starting x

value is odd. It is called by GONE and GO__NW.

- MOVEUPIEFT. This procedure determines the new x and y air hex coor-

dinates for an aircraft package moving up and to the left. It is called by GO-

NW.

- GOSOUTH. This procedure is called by DETERMINE-DIRECTION. It is used

if the destination hex is south of the current hex. It determines the hex number

to which the aircraft package should move. It does not call any other procedure.

- (ONOIRTII. This procedure is called by DETERMINEDIRECTION. It is

used if the destination hex is north of the current hex. It determines the hex

number to which the aircraft package should move. It does not call any other

procedure.

- GONE. This procedure is called by DETERMINEDIRECTION. It is used

if the destination hex is north-east of the current hex. Based on the current

hex number and the destination hex number it, in turn, calls one of the fol-

lowing procedures: MOVERIGHTEVEN, MOVERIGHTODD, MOVEUP_

RIGHT-EVEN, or MOVEUPRIGHTODD.

- GO.SE. This procedure is called by DETERMINE-DIRECTION. It is used if

the destination hex is south-east of the current hex. Based on the current hex

number and the destination hex number it, in turn, calls one of the following

procedures: MOVE-RIGHTEVEN, MOVERIGHTODD, or MOVEDOWN_

RIGHT.

109

- GOSW. This procedure is called by DETERMINE-DIRECTION. It is used if

the destination hex is south-west of the current hex. Based on the current hex

number and the destination hex number it, in turn, calls one of the follow-

ing procedures: MOVELEFTEVEN, MOVELEFTODD, MOVEDOWN_

LEFT-EVEN, or MOVEDOWNLEFTODD.

- GONW. This procedure is called by DETERMINE-DIRECTION. It is used

if the destination hex is north-west of the current hex. Based on the cur-

rent hex number and the destination hex number it, in turn, calls one of

the following procedures: MOVEUPLEFT, MOVERIGHTEVEN, MOVE-

RIGlTODD, MOVEUPRIGHTEVEN, MOVEUPRIGHTODD, MOVE-

LEFTEVEN, or MOVELEFTODD.

- CALCRADARQUALITY. This function is called by CALC-LOCALDETEC-

TION and CALCNOMISS-FIRED. It is not one of the algorithms defined by

Mann but was discussed in Chapter 4. It determines the radar quality.

e ArmySim. All of the following procedures were written by Ness and described in his

thesis.

- DEPOT-LOG. This procedure is called by LOG-SPT.

- OVERCOME-OBSTACLE. This procedure is called by LOGSPT and MOVE-

MENT.

- DETERMINEROUTE. This procedure is called by BORDER-TRANSITION.

- SELECTJ{OUTE. This procedure is called by BORDER-TRANSITION.

- CALCDIRECTION. This procedure is nested within SELECT-ROUTE.

- UPDATEUNITLOCATION. This procedure is called by BORDERTRANSI-

TION and WITHDRAW-UNIT.

- BORDERTRANSITION. This procedure is called by MANEUVER.

- MANEUVER. This procedure is called by MOVEMENT.

- ARMYJNTEL. This procedure is called by INTELLIGENCE.

110

- WRDESTROYED. This procedure is nested within WRITE-DATA.

- WRGRID. This procedure is nested within WRITE-DATA.

- WRUNITS. This procedure is nested within WRITE-DATA.

- WRINTEL. This procedure is nested within WRITE-DATA.

- ASSESSFP. This procedure is called by SET-UP.

- SETATK. This procedure is called by SET-UP.

- DESTROY. This procedure is called by ATTRITION.

- WITHDRAW-UNIT. This procedure is called by ATTRITION.

" Bases.

- GET-RUNWAYS. This procedure is called by GET-BASES. It should read in

from disk the information on the runways for a specific airbase.

- GETALTERNATE-BASES. This procedure is called by GET-BASES. It should

read in from disk the information on alternate bases. This information is used

if an aircraft returns from a mission and there is not enough runway left at the

plane's home location for it to land.

- WRITE-RUNWAYS. This procedure is called by WRITE-BASES. It should

write to disk the information on the runways for a specific airbase.

" Clock. The package body does not contain any additional procedures or functions.

" Forces. The package body does not contain any additional procedures or functions.

* GroundHex.

- GET-OBSTACLES. This procedure should read in from disk the information

on obstacles. It should be called by GETJHEX-SIDE.

- GET-PIPELINES. This procedure should read in from disk the information on

pipelines. It should be called by GETHEXSIDE.

- GET-ROADS. This procedure should read in from disk the information on

roads. It should be called by GE1UHEXSIDE.

111

- GET-RAILROADS. This procedure should read in from disk the information

on railroads. It should be called by GETAtEXSIDE.

- GET-RIVERS. This procedure should read in from disk the information on

rivers. It should be called by GETJIEXSIDE.

- GETFEBA. This procedure should read in from disk the location of the FEBA.

It should be called by GETIEXSIDE.

- GET.HEXSIDE. This procedure should read in from disk the information on

trafficability for the hex sides. It should be called by GET-GRID.

- WRITE-OBSTACLES. This procedure should write to disk the information on

obstacles. It should be called by WRITE-HEXSIDE.

- WRITE-PIPELINES. This procedure should write to disk the information on

pipelines. It should be called by WRITEJtEXSIDE.

- WRITE-ROADS. This procedure should write to disk the information on roads.

It should be called by WRITEJtEX.SIDE.

- WRITE__RAILROADS. This procedure should write to disk the information on

railroads. It should be called by WRITE_-HEXSIDE.

- WRITE-RIVERS. This procedure should write to disk the information on rivers.

It should be called by WRITEHEXSIDE.

- WRITEJEBA. This procedure should write to disk the location of the FEBA.

It should be called by WRITE-HEX.SIDE.

- WRITEJIEXSIDE. This procedure should write to disk the information on

trafficability for the hex sides. It should be called by WRITE-GRID.

* GroundUnits.

- GETSUPPORTUNITS. This procedure should read in from disk the informa-

tion on specific support units.

- GET.SUPPLYMISSIONS. This procedure should read in from disk the data

on the supply missions.

112

- GET-MISSIONS. This procedure should read in from disk the missions, or

orders, the Army units are to perform.

- GETOVERRIDEMISSIONS. This procedure should read in from disk the

override missions, or orders, which apply to specific Army units.

- WRITE.SUPPORT_UNITS. This procedure should write to disk the informa-

tion on specific support units.

- WRITESUPPLYMISSIONS. This procedure should write to disk the data on

the supply missions.

- WRITE-MISSIONS. This procedure should write to disk the missions, or orders,

the Army units are to perform.

- WRITEOVERRIDEMISSIONS. This procedure should write to disk the over-

ride missions, or orders, which apply to specific Army units.

* Hex.

- DETERMINE-WEATHER. This procedure determines the actual weather. It

is called by GET-WEATHER.

" Radars. The package body does not contain any additional procedures or functions.

" Satellites. The package body does not contain any additional procedures or functions.

" Targets. The package body does not contain any additional procedures or functions.

" Weapons. The package body does not contain any additional procedures or functions.

113

Bibliography

1. Booch, Grady. "Object-Oriented Development," IEEE Transactions on Software En-
gineering, SE-12:211-221 (February 1986).

2. Booch, Grady. Software Components with Ada. Menlo Park CA: The Ben-
jamin/Cummings Publishing Company, Inc, 1987.

3. Booch, Grady. Software Engineering with Ada (Second Edition). Menlo Park CA:
The Benjamin/Cummings Publishing Company, Inc, 1987.

4. Booch, Grady. Object Oriented Design. Redwood City CA: The Benjamin/Cummings
Publishing Company, Inc, 1991.

5. Borrego, Jesus and others. "A space logistics simulation development in ADA." Pro-
ceedings of the 1988 Winter Simulation Conference, edited by Michael A. Abrams and
others. 763-764. New York: IEEE Press, 1988.

6. Corporation, The MITRE, "A Preliminary Evaluation of Object-Oriented Program-
ming for Ground Combat Modeling." Working Paper 83W00407, 1983.

7. Eldredge, David L. and others. "Applying the object-oriented paradigm to discrete
event simulations using the C++ language," Simulation, 54:83-91 (February 1990).

8. EVB Software Engineering, Inc. An Object Oriented Design Handbook for Ada Soft-
ware. EVB Software Engineering, Inc, 1985.

9. Feldman, Michael B. Data Structures with Ada. Reston, Virginia: Reston Publishing
Company, 1985.

10. Henderson-Sellers, Brian and Julian M. Edwards. "The Object-Oriented Systems Life
Cycle," Communications of the ACM, 33:142-159 (September 1990).

11. Horton, Andrew M. Design and Implementation of a Graphical User Interface and
a Database Management System for the Saber Theater-Level Wargame. MS thesis,
AFIT/GCS/ENG/91D-08, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1991 (DTIC # unknown).

12. Jean, Catherine and Alfred Strohmeier. "An experience in teaching OOD for ADA
software," Software Engineering Notes, 15:44-49 (October 1990).

13. Klabunde, Gary W. An Animated Graphical Postprocessor for the Saber Wargame.
MS thesis, AFIT/GCS/ENG/91D-10, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1991 (DTIC # unknown).

14. Klabunde, Gary W. "History File." Report to Wargaming Research Group. AFIT,
Wright-Patterson AFB OH, August 1991.

15. Korson, Tim and John D. McGregor. "Understanding Object-Oriented: A Unifying
Paradigm," Communications of the ACM, 33:40-60 (September 1990).

16. Krecker, Donald K. and Peter J. Lattimore, "An Integrated Coordinate System for
Combat Modeling." Contract W-78-297-TR with BDM Corporation, 19 May 1978.

114

17. Mann, CPT William III. Saber: A Theater Wargame. MS thesis,
AFIT/GOR/ENS/91M-09, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, March 1990 (AD-A238825).

18. Melde, John E. and Philip G. Gage. "Ada simulation technology - methods and
metrics," Simulation, 51:57-69 (August 1988).

19. Ness, CPT Marlin A. "Maintenance and User's Manual for the Land Battle Pro-
gram." Department of Electrical and Computer Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, June 1990.

20. Ness, CPT Marlin A. A New Land Battle for the Theater War Exercise. MS thesis,
AFIT/GE/ENG/90J-01, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, June 1990 (AD-A223087).

21. Powers, Wendy S. and Tom Nute. "Implementing a simulator as a set of Ada tasks."
Simulation in Ada, edited by Brian Unger and others. 7-12. 1985.

22. Pritsker, A. Alan B. Introduction to Simulation and SLAM II (Third Edition). West
Lafayette IN: Systems Publishing Corporation, 1986.

23. Roberts, Stephen D. and Joe Heim. "A perspective on object-oriented simulation."
Proceedings of the 1988 Winter Simulation Conference, edited by Michael A. Abrams
and others. 277-281. New York: IEEE Press, 1988.

24. Roth, Major Mark A., (Thesis advisor). Personal conversations. Electrical and Com-
puter Engineering Department, School of Engineering, Air Force Institute of Technol-
ogy (AU), Wright-Patterson AFB OH, 1 April through 20 September 1991.

25. Seidewitz, Ed and Mike Stark. "Towards a General Object-Oriented Software Devel-
opment Methodology," Ada Letters, VII:54-67 (July, August 1987).

26. Shore, Dr. R. W. "Discrete-Event Simulation in Ada: Concepts," Ada Letters,
VII:105-112 (September, October 1987).

27. Shtern, Dr. Victor. "Testing of software for discrete simulation models in Ada,"
Simulation in Ada, 13-18 (1985).

28. Sommerville, Ian. Software Engineering (Third Edition). Wokingham England:
Addison-Wesley Publishing Company, 1989.

29. Unger, Brian W. "Object oriented simulation - Ada, C++, Simula." Proceedings of
the 1986 Winter Simulation Conference, edited by J. Wilson and others. 123-124.
New York: IEEE Press, 1986.

30. Unger, Brian W. et al. Simulation Software and Ada. LaJolla CA: Simulation Coun-
cils, Inc., 1984.

31. Zeitak, G. and J. Arlan, editors. Missiles & Missile Systems: An International Di-
rectory. Rehovot, Israel. A to Z Independent Information Indexing, 1987.

115

