
0. . 0L" t
D~DOT""~

5 fENTATION PAGE Form Approved

____~z: z'~ L~~e 'wa~g t~e tne fr .e~ OMB2 No. 07040 188:
tno ng lero ofnorai S d commnrfts re d ro thfs ob-..ari e~rl-.te Cr anl, other asmi t Ofthis

thi ou9e te et ino 4eduatr sevie Lirvort , I ~l ,o r. r's.d Rpc'its.12' eeroA D - 243 602 the (fflice of Maqerr"!..rat. s~aoerwoK Reduction Pro3e~ ctO104-0 ~1 b) Irr'sqtvr.. L)C 2050 3

EPORT DATE 3.REPORT TYPE AND DATES COVERED

11IE111111111111111 __________________________

4. 1h1I: AND SUBTITLE 5. FUNDING NUMBERS
Optimal Specialization and Allocation of Maintenance
Manpower

6. AUTHOR(S)

Dennis C. Dietz, Major

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT Student Attending: Pennsylvania State University AFIT/CI/CIA- 91-016D

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

Wright-Patterson AFB OH 45433-6583 D#

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b DISTRIBUTION CODE

Approved for Public Release IAW 190-1
Distributed Unlimited
ERNEST A. HAYGOOD, Captain, USAF
Executive Officer

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES
109

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY C1 F6~SIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

NSN 7540-01-280-5500 S tndard ;orm 2 ,8 (Rev 2-89)

Abstract -.
Optimal Specialization and Allocation of Maintenance Manpower "- .
Dennis C. Dietz, Major, USAF
Ph.D.; 1991 " ,
The Pennsylvania State University
109 pages 4 ,.

-4-

This thesis develops an analytical method for determining an optimal level

of specialization and optimal task allocation for a maintenan-e manpower force.

The method assumes that maintenance tasks are generated by a system of identical

machines which experience random malfunctions and require periodic service. The

impact of alternative manpower structures on system performance is evaluated us-

ing a queuing network model. Markov decision analysis is employed to determine an

optimal assignment of manpower resources to pending tasks as the network status

varies over time. A linear programming algorithm is derived to enable simultaneous

optimization of specific assignment decisions and the overall manpower structure.

The optimization method is developed and demonstrated through a simple exam-

ple, but the dimensionality issues associated with larger system models are also

addressed. The method is specifically applied to the problem of maximizing mil-

itary aircraf sortie generation subject to a constraint on maintenance manpower

expenditure.

91 12i3 184

91-17934IIIIIIIIIII

The Pennsylvania State University

The Graduate School

Department of Industrial and Management Systems Engineering

OPTIMAL SPECIALIZATION AND ALLOCATION

OF MAINTENANCE MANPOWER

A Thesis in

Industrial Engineering and Operations Research

by

Dennis C. Dietz

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

August 1991

We approve the thesis of Dennis C. Dietz.

Date of Signature

Matthew Rosenshine
Professor of Industrial Engineering
Thesis Adviser
Chair of Committee

Tom M. Cavalier
Associate Professor of Industrial Engineering

Briian J. Menloy

Assistant Professor of Indu t al Engineering

Susan Hong Xu
Assistant Professor of Management Science

_____&___ 6/641l
Allen B. Soyster
Professor of Industrial Engineering
Head of the Department of Industrial and

Manarement Systems Engineering

.°111

Abstract

This thesis develops an analytical method for determining an optimal level

of specialization and optimal task allocation for a maintenance manpower force.

The method assumes that maintenance tasks are generated by a system of identical

machines which experience random malfunctions and require periodic service. The

impact of alternative manpower structures on system performance is evaluated us-

ing a queuing network model. Markov decision analysis is employed to determine an

optimal assignment of manpower resources to pending tasks as the network status

varies over time. A linear programming algorithm is derived to enable simultaneous

optimization of specific assignment decisions and the overall manpower structure.

The optimization method is developed and demonstrated through a simple exam-

ple, but the dimensionality issues associated with larger system models are also

addressed. The method is specifically applied to the problem of maximizing mil-

itary aircraft sortie generation subject to a constraint on maintenance manpower

expenditure.

iv

Contents

Figures..v

Tables... v

Symbols.. vii

Chapter 1 Introduction. 1
1.1 Motivation 1
1.2 Problem Statement. 2
1.3 Assumptions 4
1.4 Literature Review 6

1.4.1 Queuing Network Analysis. 6
1.4.2 Military Manpower Analysis 10

Chapter 2 Model Development 15
2.1 Problem Formulation. 15
2.2 Optimal Specialization Strategy. 23
2.3 Linear Programming Model 29

2.3.1 Concurrent Approach. 30
2.3.2 Sequential Approach 32

2.4 Network Reduction Procedure 36

Chapter 3 Application. 41
3.1 The YF-XX Aircraft Maintenance Problem. 41
3.2 Maintenance Cost Model 42
3.3 Manpower Optimization. 45

Chapter 4 Extensions 47
4.1 Cross-Training 47
4 .2 Dependent Machine Operations. 50

Chapter 5 Conclusions. 56

Appendix A Policy Iteration Algorithm. 60

Appendix B Program MAINTOP 65
B.1 Description. 65
B.2 Program Listing. 68
B.3 Sample Output 95

References 98

V

Figures

1.1 Components of the Manpower Problem 3

2.1 Possible Conditions for Individual Aircraft 17

3.1 Reduced Network for YF-XX Aircraft Maintenance 43

3.2 Profile of YF-XX Manpower Force 45

4.1 Dependent Aircraft Operation 51

B.1 Relationship between Components of Program MAINTOP 66

vi

Tables

2.1 System States and Transitions ('-,z+) 18

2.2 Costs and Skills of Available Manpower 23

2.3 Manpower Structure Alternatives 25

2.4 Possible Manpower Assignment Decisions 26

2.5 Nondominated Feasible Decisions (Dgi) 27

2.6 Computational Performance of Sequential Algorithms 36

3.1 Task Data for YF-XX Tactical Fighter 42

3.2 Maintenance Specialties for YF-XX 44

3.3 Manpower Structures for YF-XX 46

4.1 Manpower Structures with Cross-Training 49

4.2 Transition Activities (/) for Dependent Operations 52

4.3 Results with Dependent Machine Operations 55

B.1 Data Format for Program MAINTOP 67

vii

Symbols

A Set of task types which are always required between operational activities

am Number of maintenance personnel required for a type m task

B Set of group sizes for dependent machine operations

b Index for dependent machine group sizes (b E B)

C Expenditure limit for maintenance manpower

cY Unit cost of a type y maintenance specialist

Dg, Set of nondominated feasible decisions for manpower structure g and system
state i

E, Set of eligible tasks for network station z

G Total number of maintenance manpower structures

g Index £o± maintenance manpower structures (9 E {1, 2,..., G})

-y Index for transition activities (-y E {0, 1,... , M})

H Total number of manpower specialization strategies

h Index for specialization strategies (h E {1, 2,... , H})

I Total number of system states

i,j Indices for system states (i,j E {1,2,. .. ,I})

k Index for manpower assignment decisions

L Training time for type y maintenance specialty

A,, Malfunction rate for generation of type m tasks

M Total number of maintenance task types

m Index for maintenance task types (m E {1,2,...,M})

viii

t'u Operational activity rate

IL, Maintenance rate for a type m task

N Total number of machines in system

n. Number of machines at network station z

P, Set of pending tasks for network station z

Pg,k Joint probability of employing manpower structure g, finding system in
state i, and selecting assignment decision k

7r, Steady state probability that system is in state i

Q, Set of qualified tasks for a type y maintenance specialist

q, Routing probability from operational station to maintenance station z

R Aircraft sortie generation rate

r' Transition rate from state i to state j under assignment decision k

pb Probability that an operational activity requires dependent machines of

group size b

sj Number of maintenance personnel assigned to a transition task from system
state i to state j

T, Time until completion of next type -f activity

t Time

7 Index for term of military service

Ur Average value of annual pay and benefits for personnel in service term r

1 Reenlistment bonus for type y maintenance specialists

v, Relative value of finding system in state i

u,. Portion of maintenance workforce in service term r

zX Number of type y maintenance specialists employed in a manpower structure

ix

1' Total number of maintenance specialty types

y Index for maintenance specialty types (y E {1, 2,)

Z Total number of maintenance stations in system queuing network

z Index for network stations (z E {O,1, .,Z})

qn, Set of task types which must be completed before a type m task can be
initiated

Chapter 1

Introduction

1.1 Motivation

The United States Air Force operates an inventory of over 3,000 tactical

fighter aircraft at locations throughout North America, Europe, and the Pacific.

These aircraft are extremely complex machines which require maintenance support

from a variety of specialized personnel. Due to pressures for peacetime monetary

efficiency, fighter units and support forces typically operate at fixed installations

which can harbor large concentratiois of aircraft. These centralized forces are be-

coming increasingly vulnerable to qualitative improvements in the aerial bombard-

ment and surface-to-surface missile capabilities of potential wartime adversaries.

Consequently, Air Force leadership has endorsed a deployment strategy which "calls

for decentralized, small-unit autonomy with the mobility and flexibility to survive

and sustain dispersed combat operations" [38, p. 2]. Planners are now considering

unit deployments involving very small numbers of aircraft. Unfortunately, such

decentralization could substantially increase maintenance manpower requirements.

One study has shown that dispersing aircraft to small unit bases could increase

needed manpower by two-thirds just to ensure the availability of minimum crew

sizes for all specialized tasks [4]. Even more manpower would be needed to limit

queuing delays to a level where current standards of operational effectiveness could

be maintained.

The apparent need for more manpower competes with the constraints im-

2

posed by a decreasing budget and shrinking supply of enlistment-aged citizens. An

alternative approach under consideration is a restructuring of maintenance special-

ties so that required tasks can be accomplished by fewer personnel having a wider

range of skills. The higher costs of recruiting, training, and retaining maintenance

"generalists" may be more than offset by the efficient manpower utilization that

could be preserved under dispersed operations. This possibility motivates an impor-

tant question: what specialization strategy will maximize operational effectiveness

for a given level of manpower expenditure?

1.2 Problem Statement

The general problem of optimal specialization for maintenance manpower

could apply to myriad military and industrial concerns. Many enterprises depend

on the steady operation or availability of complex machinery. For example, a

transportation entity (airline, trucking firm, overnight delivery service, etc.) cannot

function competitively without a well-maintained fleet of vehicles. A manufacturing

facility may rely critically on sophisticated production equipment. Timely main-

tenance of these machines requires skills which are expensive to develop, and the

personnel possessing these skills are valuable resources. Nevertheless, the division

of labor among maintenance personnel can often reflect traditional organizational

boundaries rather than efficient allocation with respect to the overall objectives of

the parent enterprise. This thesis presents a general method for determining an

optimal specialization strategy, that is, for optimizing the number of maintenance

specialties and the allocation of tasks to specialties. The optimization method ex-

plicitly recognizes the economic tradeoff between the lower per-person costs and

the lower average utilizations resulting from specialization.

As indicated in Figure 1.1, determination of an optimal specialization strat-

3

Specialization Manpower ----- Assignment
Strategy Structure Policy

OPT01N1XIA

OPTIOPTIMAL

Figure 1.1: Components of the Manpower Problem

egy requires suboptimization at two levels. First, an optimal strategy cannot le

identified without determining an optimal manpower structure, which specifies ex-

act quantities for each type of specialist in the manpower force. Further, to find

an optimal structure, it is necessary to determine an optimal assignment policy.

The assignment policy defines comprehensive decision rules for dispatching man-

power to specific pending tasks as the enterprise operates over time. The number

of possible manpower struc' ,tres and assignment policies can be quite large for a

particular application, so determining an optimal specialization strategy by exhaus-

tive enumeration may be computationally intractable. Enumerative evaluation of

all manpower structures and assignment policies can be avoided through the ana-

lytical method developed in this thesis.

4

1.3 Assumptions

The approach pursued in developing the optimization method assumes that

the modeled enterprise has the general characteristics listed below. Relaxation of

some of these assumptions is considered as the model development progresses.

1. The enterprise employs a fixed inventory of N machines with identical po-

tential maintenance requirements. Any machine not requiring maintenance is

immediately utilized in operations.

2. Operations are conducted continuously, so the goal of the enterprise is to max-

imize steady-state performance. This is achieved by maximizing the expected

number of machines operating at a random point in time.

3. A finite set of M tasks describes all possible types of machine maintenance.

Each task m E {1, 2,..., M} is characterized by a required number of person-

nel am and a known average completion rate jL. The time required to perform

each task is represented by an exponentially distributed random variable [33,

pp. 201-209].

4. A required maintenance task can be generated by a corresponding type of ran-

dom malfunction, or by completion of a time-limited operational activity (e.g.,

refueling after each aircraft sortie). The operating time between random mal-

functions of any type m is represented by an exponentially distributed random

variable with rate \,A for each machine. Each type of random malfunction is

independent from all other types, and all machines operate independently.

5. The duration of each operational activity is represented by an exponentially

distributed random variable with rate , 0 . Maintenance tasks generated due to

5

random malfunctions can be deferred until completion of the next operational

activity, so a machine can reach a condition where several types of tasks are

required. In this case, the required tasks can be performed sequentially or in

parallel, depending on a specified compatibility of the task types.

6. Each type of maintenance task must be allocated to a particular type of main-

tenance specialty. The number of specialties in a particular specialization

strategy can range from one (one specialty for all tasks) to M (a separate spe-

cialty for each task). Thus, the number of specialties Y to be considered across

all possible strategies cannot exceed an upper bound of F-[(A) = 2A! - 1.

7. Continuous manning of any maintenance specialty y E {1, 2... , Y} incurs

a known cost of cy units per specialist. The enterprise is constrained to an

upper bound of C units for total maintenance manpower expenditure. Thus,

any feasible manpower structure must satisfy the constraint E cYX, z C

where xy is the number of type y specialists employed under the structure.

These assumptions provide a framework for analyzing the interacting ef-

fects of machine characteristics and manpower availability on overall system per-

formance. At any point in time, an individual machine may be operating, or it may

require a finite number of maintenance tasks. The state of the overall system can

be described by listing the number of machines in each possible condition. If the

number of machines requiring a particular maintenance task exceeds the allocated

number of specialists, the excess machines will queue for an available specialist

and potential operating time will be lost. Thus, each maintenance condition could

correspond to a station in a "queuing network," with the stations connected by

the possible movement of a machine from one condition to another. Since oper-

ating times and maintenance times are modeled with exponential distributions,

6

the movement of machines through the network can be described as a continuous-

time Markov process [37, pp. 39-45]. Several analytical methods can be applied to

evaluate a system conforming to this general model.

1.4 Literature Review

The published literature generally associated with the disciplines of in-

dustrial engineering, management science, and operations research makes scarce

reference to the specific issue of optimal manpower specialization. However, the

general topic of resource utilization in a queuing environment is well developed,

and many theoretical contributions can be applied to the manpower problem. In

addition, several government studies have quantitatively addressed some manpower

issues associated with complex military systems. Many types of machines with de-

fense applications (particularly aircraft) tend to have a high ratio of maintenance

man-hours to operating hours, and the resources required to perform maintenance

are expensive.

1.4.1 Queuing Network Analysis

The high requirements and costs of aircraft maintenance motivated the first

published investigations of queuing network behavior. In 1954, the concept of a

cyclic queue was introduced by J. Taylor and R. R. P. Jackson as a model for

relating maintenance rates and spare engine supply to the availability of a fleet of

aircraft [36]. Taylor and Jackson considered the movement of P finite supply of

customers (aircraft engines) through a series of service stations with infinite queue

capacities and exponentially distributed service times. In the same journal, R. R.

P. Jackson published another article which addressed a similar problem with an

infinite arrival population [19]. Jackson theorized that the output distribution of a

7

service station was identical to the input distribution. This result, proved by Burke

in 1956 [7], permitted independent treatment of each queue in a series. In 1957,

J. R. Jackson published Networks of Waiting Lines, which formalized the earlier

results of R. R. P. Jackson and extended them to include systems of queues in

which transitions of customers from one queue to another at service completion are

random events [20]. Such systems are now often referred to as "Jackson networks."

In the original Jackson network model, customers arrive from an infi-

nite external source according to a Poisson process. Each service station con-

tains one or more parallel servers, and all service times are exponentially dis-

tributed. Any state of a system with Z + 1 stations can be represented by a

vector ii = (no,n1,...,nz) where n. > 0 is the number of customers at each sta-

tion z E {0, 1,.. . , Z}. The equilibrium probability that the network is in state il

is denoted by P(il) = P(no, n,..., nz), and the marginal probability of finding n.

customers at a station z is denoted by pz(n,). Jackson proved that the equilib-

rium probability of a given state ii can be factored into the product of each of the

marginal distributions; that is,

ZP(no, nl,..., nz) =1Ip.,(n.) (1. 1)
z=0

This "product form" relationship, coupled with Burke's earlier result, greatly sim-

plified the analysis of many queuing systems.

In 1967, Gordon and Newell extended the product form result to obtain the

equilibrium state probabilities for closed Markovian networks [14]. They studied a

system with a finite number of customers N cycling through a network of stations

with multiple parallel servers. The state of the system is again described by a

vector i = (no, n,...,nz), but now an additional constraint is imposed; that is,

8

EZ=0 n, = N. Gordon and Newell proved that the equilibrium probability of state i!

also satisfies a product form

P(n, ni,...,nz) I n) (1.2)
z=0

where each function f, depends only on the characteristics of the zth station and

r(N) is a normalization constant chosen to make all the feasible state probabil-

ities sum to one. Although the product form developed by Gordon and Newell

was easily expressed, direct calculation of the state probabilities was often com-

putationally expensive and inaccurate because of the large number of operations

required to evaluate the normalization constant. In 1973, J. P. Buzen developed

an efficient algorithm for evaluating F(N) [8]. Buzen also studied methods for ob-

taining the performance measures of a queuing system as a simple function of the

model parameters and the normalization constant.

Certain types of queuing networks do not conform to the product form

model. In 1978, P. J. Denning surveyed an "operational approach" to queuing sys-

tem analysis and thoroughly studied the conditions required for solution of queuing

network models. The first condition needed for determination of equilibrium state

probabilities is "flow balancing," meaning that the transition rates in and out of

each system state must be balanced. This condition permits construction of a set

of global balance equations (one equation for each state) which can be solved simul-

taneously by traditional methods. Unfortunately, even modest-sized networks can

generate a large number of simultaneous equations. The product form approach

circumvents this problem, but requires that two additional conditions be met:

1. Multiple customer arrivals and departures are not observed, so that the rate at

which the system enters or leaves a state depends only on the rate of customer

9

flow between stations ("one-step behavior").

2. The flow rate out of a station depends only on the station's queue length, and

not on how customers are distributed elsewhere in the system ("homogene-

ity").

Under these circumstances, the global balance equations decompose into a set of

local balance equations and the product form result can be applied. However, not

all queuing systems satisfy the required conditions. For example, the homogeneity

condition is violated by systems which involve some sort of "blocking," where an

event at one station can prevent another station from serving customers. This can

occur if resource conflicts exist, such as when queues must share servers. Unfor-

tunately, this is precisely the situation that arises when several maintenance tasks

require one type of resource and total task requirements exceed the number of

available resources. Thus, the manpower specialization problem requires solution

techniques which do not rely on product form methods.

Researchers concede a lack of progress in obtaining exact solutions for large

queuing networks that do not have product form state probabilities [29]. Two prin-

cipal approximation methods for attacking these networks have emerged: diffusion

and decomposition. The diffusion approximation attempts to reduce the com-

plexity of the global balance equations by treating individual queue lengths n, as

continuous random variables [21]. This technique can be particularly useful for han-

dling nonexponential service time distributions and for finding transient solutions

[22]. Unfortunately, diffusion methods can be difficult to implement and are based

on an assumption of "heavy traffic" which would always favor highly specialized

manpower structures. Thus, approximation methods based on diffusion are less

applicable to the manpower specialization problem than approximation methods

10

based on decomposition.

The decomposition approach was introduced in 1975 by P. J. Courtois as

a tool for performance evaluation of complex computer systems [11]. An example

of this approach might consist of analyzing a subsystem in isolation and then re-

placing the subsystem with a single composite server which imitates the behavior

of the originally isolated subsystem. Courtois reported that such an approximation

is accurate if the rate of interaction within the subsystem is substantially higher

than the rate of interaction between the subsystem and the rest of the overall

network. The decomposition approach was further developed by Chandy, Herzog,

and Woo, who applied Norton's theorem from electrical circuit theory to queuing

networks which obey local balance [9]. Chandy et al. demonstrated that, given

a network with Z + 1 stations, it is possible to replace Z of the stations with a

single composite server having load-dependent service rates. They also presented

an approximate procedure for modeling this "complementary queue" in a network

which does not obey local balance. These techniques permit construction of ap-

proximate models of otherwise intractable systems by defining stations which are

"flow equivalent" to major portions of an original network. This notion of flow

equivalence has significant applicability to the problem of determining an optimal

manpower specialization strategy for a large system.

1.4.2 Military Manpower Analysis

The high maintenance requirements of complex military systems suggest

that maintenance manpower would be a major consideration in system design.

However, quantitative methods have not always been applied to thoroughly ad-

dress manpower issues. In 1960, a research memorandum produced by the RAND

Corporation for the U. S. Air Force reported:

11

Manpower planning, until recently, has played a rather passive role in
the research and development of future Air Force weapon and support
systems. Plans for the best utilization of people in new systems have
been developed late in the R&D cycle and usually after decisions have
been made about hardware and basic operational characteristics. [16,
p. 1]

The RAND memorandum described a general approach for analyzing manpower re-

quirements, but did not provide specific quantitative techniques. In the years since

this early report, manpower issues have been studied extensively, but almost exclu-

sive.y through models which employ discrete event simulation of logistic systems

[30]. One notable exception is the DYNA-METRIC model, which is an analytical

tool used primarily to measure the impact of spare parts management on aircraft

sortie generation [17, 34]. In current manpower analysis, the tool most frequently

used is a widely accepted computer simulation known as the Logistics Composite

Model (LCOM).

Simulation models can be constructed to capture an arbitrary level of detail,

but the price for this advantage includes uncertain accuracy, substantial expense,

and a lack of analytical insight into causal relationships. Simulation is particularly

poorly suited for optimization problems, since the random nature of results hinders

iterative convergence on an optimal combination of many input variables. Math-

ematical queuing models have occasionally been employed in manpower studies,

but usually in analyzing particular system components rather than the interactions

between all maintenance requirements and available manpower. The manpower

specialization problem addressed in this thesis involves a broader context than has

thus far been addressed with mathematical methods.

In 1964, H. R. Barton and others developed an early analytical method for

investigating the logistical requirements of alternative system designs [1, 32]. The

method employed queuing tables to analyze tradeoffs between manpower levels,

12

spare parts inventory, and machine downtime. Machine components were consid-

ered separately for specified levels of service demand that were externally deter-

mined. This general approach typified subsequent applications of queuing theory

to military logistics problems, including the DYNA-METRIC model and its prede-

cessors [17, p. 11].

In 1975, J. R. Phelan employed simple queuing network analysis to predict

the impact of maintenance manpower levels on aircraft operational effectiveness.

Different types of maintenance requirements were modeled in separate cycles, and

interactions were explicitly ignored [31, p. 23]. Interestingly, the computational

methods used in this analysis relied on global balance, even though product form

solution techniques could have been applied. The effort also presented some jus-

tification for considering manpower issues separately from other dimensions of the

overall logistics system (spare parts, etc.).

Beginning in the mid 1980s, the specific problem of optimal task allocation

for aircraft maintenance specialties became the subject of keen interest. This inter-

est was partially motivated by increased equipment sophistication and maintenance

complexity, which raised the aptitudes and skills required of maintenance person-

nel. Competing demands for the same aptitudes and skills in other occupations

(military and industrial), coupled with projected demographic changes, presented

serious manpower challenges. These challenges were amplified by an institutional

goal to improve aircraft survivability through dispersal, an operational concept that

would stretch maintenance resources even further.

In 1983, M. Berman and C. Batten used the TSAR simulation model (The-

ater Simulation of Airbase Resources) to estimate the number of aircraft sorties

that could be generated under differing degrees of dispersal [4]. Variables consid-

ered in the analysis included manpower, spare parts, and aircraft reliability and

13

maintainability characteristics. While Berman and Batten did not explicitly con-

sider maintenance costs, they concluded that specialty consolidation could improve

operational performance or reduce manpower requirements.

Simulation analysis was also employed by C. H. Shipman in 1985 to evalu-

ate the potential manpower savings realizable through specialty consolidation. He

employed the Logistics Composite Model to simulate ground attack fighter opera-

tions. Shipman found that a dispersed unit of eighteen aircraft could be maintained

by 27% fewer technicians through "minor" specialty consolidation (combining two

or three specialties into one), and by 37% fewer technicians through "major" spe-

cialty consolidation (combining six specialties into one). Shipman recognized the

existence of "tradeoffs between the manpower savings of combining specialties and

the additional skill/training requirements these combinations generate" 35, p. 161.

He recommended that these tradeoffs be studied to determine an optimal level of

consolidation.

In 1986, G. A. Gotz and R. E. Stanton considered the impact of main-

tenance specialty cross-training on operational effectiveness [151. They simulated

a simple aircraft operation that involved two types of repairable components and

two maintenance specialties. Gotz and Stanton concluded that cross-training is

particularly important if wartime failure rates and repair rates differ significantly

from pre-war expectations. They also pointed out that, when maintenance special-

ists with multiple skills are introduced, decision rules must also be implemented to

specify which malfunctioning components will be repaired first.

The Air Force recently engaged in a major initiative to broadly address

maintenance manpower issues. The initiative, called "Rivet Workforce," succeeded

in generating some institutional momentum toward specialty consolidation. The re-

suiting need for an analytical framework to evaluate particular consolidation strate-

14

gies motivated a recent study effort called SUMMA, or Small Unit Maintenance

Manpower Analysis 24, 28, 38]. A major product of the SUMMA project is a

computerized decision aid to assist in the derivation of optimal task allocations.

The computer model employs a practical analytical method which is based on as-

sumptions that all sortie durations and maintenance times are deterministic, all

aircraft fly sorties and receive maintenance in "batches," and all aircraft mainte-

nance tasks are performed in series. The task allocations and manpower estimates

derived through the analytical method are refined through iterative simulation ex-

periments. While the complexity of the overall maintenance system guarantees a

significant role for simulation modeling, substantial insight can be gained through

additional mathematical treatment of the problem. The system structure suggests

a meaningful role for queuing network analysis.

Chapter 2

Model Development

Development of a manpower specialization model using queuing network

analysis is perhaps best illustrated through a simple example. In this chapter.

global balance is used to obtain an optimal specialization strategy for a small

commercial enterprise called "Mike's Flying Club."

2.1 Problem Formulation

Mike operates an around-the-clock flying service at a municipal airport. His

rented facility will support only two aircraft (N = 2), and demand for flying sorties

is high enough that both machines can be employed whenever they are available.

Mike attributes this high demand to his reasonable fees, so he is very interested in

controlling his expenses. He is particularly concerned about the high costs of good

aircraft mechanics and is determined to keep his maintenance payroll below $100

per hour (C = 100).

In the course of day-to-day operations, Mike's airplanes can require any of

three different types of maintenance tasks:

1. Routine "turn-around" maintenance, such as refueling and routine inspection,

which is always required between sorties. This task is completed at an hourly

rate ji, = 1.0 by a single mechanic (a, = 1).

2. Unplanned "airframe" maintenance, which is required when an aircraft returns

from a sortie with a reported malfunction not related to the aircraft engine.

16

This task is accomplished at rateA/2 = .25, and also requires one mechanic

(a2 = 1).

3. Unplanned "engine" maintenance, which is required when an aircraft returns

with reported engine problems. The service rate for this task is U3 = .5, and

two mechanics are required (a 3 = 2).

Occasionally, a returning aircraft will require both airframe and engine mainte-

nance. In this case, the two types of repair can be initiated simultaneously, provided

sufficient mechanics are available. Turn-around maintenance is never initiated until

an aircraft completes all unplanned airframe and engine maintenance. These rela-

tionships are illustrated in the network representation shown in Figure 2.1. Each

station in the network can be characterized by a set of pending tasks P. and a set

of eligible tasks E_. Pending tasks are those which must be accomplished before a

machine at the station will become operational. Eligible tasks are those which can

be initiated immediately if qualified manpower is available.

The number of states realizable by the complete system is determined by

the number of ways in which N = 2 aircraft can occupy Z + 1 = 5 stations. This

is a standard occupancy problem [13, p. 36], so the total number of states I can

be calculated as (,'z) = (1) = 15. The system will transition to a new state

whenever an aircraft completes an activity (sortie or maintenance task) and moves

to a new station. Since all sortie durations and maintenance times are modeled with

exponential distributions, the system is Markovian and exhibits one-step behavior.

Each feasible transition from one state i to another state j can be characterized by a

losing station z-(ij) and a gaining station z+(ij). This information is portrayed in

Table 2.1, along with an index -y(ij) which identifies the activity which an aircraft

completes at transition. A value of 7 (ij) = 0 implies completion of an aircraft

17

0: aircraft operating

1: turn-around maintenance
P1 = {1}, El = f 1}

2: airframe maintenance 0
P2 = {1,2},E 2 = {2}

3: engine maintenance
PS = f1,3},E 3 = 13}

4: airframe and engine
maintenance
P4 = {1,2,3},E 4 = {2,3}

Figure 2.1: Possible Conditions for Individual Aircraft

sortie, while a value of -y(ij) E {1, 2, 3} implies completion of a corresponding type

of maintenance task.

The transition rates between system states will depend on the sortie rate,

maintenance rates, and the number of personnel available to perform the various

types of maintenance. It is also necessary to translate aircraft malfunction rates

into network routing probabilities for aircraft as they complete sorties. Aircraft

maintenance records for Mike's operation reveal average airframe and engine mal-

function rates of A2 = .2 and A3 = .25 respectively. Flight log-books indicate that

an average sortie has a duration of 2.0 hours, yielding an average sortie completion

rate of io = .5. For any aircraft beginning a sortie, let To be the sortie completion

time, let T2 be the time until the next airframe malfunction, and let T3 be the time

until the next engine malfunction. Routing probabilities q, for z E {1, 2, 3, 4} can

18

Table 2.1: System States and Transitions (z-z+)

01234 1 1 1 _o 1 40 11 12 13 14
20000 1 01 02 03 04

0 0 0 0

11000 2 10 - 1 02 03 0,4
_ _ 1 0 0 0 0

10100 3 2 1 0 1 0 2 03 04
2 0 0 0 0

10010 4 3 1 0 1 02 03 04
_ _3 0 0 0 0

10001 5 4 2 4 3 0 1 0 2 03 0 4
_ _3 2 0 0 0 0

02000 6 1 0
I

01100 7 1 0 2 1
_ _1 2 _

01010 8 1 0 3 1
1 3

51001 9 1 0 4 2 4 3
_ _1 3 2

00200 10 2 1
2

00110 11 31 2 1
3 2

00101 12 2 1 4 2 4 3
2 3 2

00020 13 3 1

00011 14 3 1 4 2 43
3 3 2

00002 15 42 43
3 2

19

be computed as follows:

qI = P(To < T2,T 0 < T3)

= P{To < min(T 2, T3)}

=O =.5 .5263

Lo + A2 + A3 .5+.25+.2

q2 = P(To ! T2 , TO < T3)

= P(TO < T3) - P(TO < T 2, To < T3)
po .5

ILO-- -- - - .5263 =.1404

Ao+A 3 .5+.25

q3 = P(TO < T2 ,TO _> T3)

= P(To < T2) - P(T < T2 , To < ' 3)
lto .5

- O _ ql -= .5263 = .1880
ILO + T2 .5 +.2

q4 = P(TO T2 ,To2 > T3)

S1- P(To < T2, To < T3) - P(To > T2, To < T) - P(T < T2, To T3)

S1- q - q2 - q3 = 1 - .5 26 3 -. 14 04 - .1880 = .1454

These computations can be generalized for an arbitrary network with any number

of stations. First, let A be the set of tasks which are always required between

operational activities. Clearly, any station whose pending tasks do not include all

tasks in A can not be entered directly from station 0. Thus, q, = 0 V z : A V P.

20

For all other stations,

q,= P(To < Tm V m Pz U A) - E qC
C .PC CPz

+ - (2.1)
O + E- mPUA M C:PC CPz

The routing probabilities are well suited for sequential computation if the main-

tenance stations are ordered by increasing numbers of tasks in their pending task

sets.

Once the routing probabilities are computed, global balance equations can

be constructed to compute the equilibrium state probabilities iri resulting from a

particular manpower assignment policy. To facilitate a general representation of an

assignment policy, it is useful to define a variable sij as the number of mechanics

assigned to perform each transition task -y(ij) E {1,2,...,M}. The maximum

value of each ij is limited by the number of machines requiring maintenance;

i.e., s 0 < a_,(,#)n.-(j#) V ij E {1,2,...,I}. The values are also constrained by

manpower availability; i.e., j:,(ij)EQ, Sj :_ z V i E {1, 2 ,..., I}, y E {1, 2,..., Y}.

Since the system is Markovian, the rate of a transition task completion can clearly

be represented as [sij/a_(2 j)]p11,(ij). It is also clear that this expression must reduze to

P (ij) when task yf(ij) is the only one pending in the system, since there would be no

potential for a resource conflict. Using these facts and the information presented in

Table 2.1, global balance equations for each state of the example can be constructed

as follows (rate out=rate in):

7r1 2,u0 = 7 2 1LI (2.2)

7r2 (,Ul + Ilo) = 7r1 2 q, Ao + 7r3/12 + 7r4A 3 + 7r686 2 l (2.3)

21

r8531

7 3 (A2 + isO) 7r12 q2 A0 + 75 [-T5} JL3 + 777 3 /L1 (2.4)

7r4(LA + AO0) =7r,2q3/L0 + 7r5 S54/L2 + 77S4 ptl (2.5)

r8531 26
7['53]/J3 + S5 4 /A2 + 14} = 7rj 2 q4,o + 7r9 8 9 5/1 (2.6)

7r6s 6 2 A] = 7r2qj/L + 7t7876/L2 + S- -j/ 3 (2.7)

897
7r7{ 73 /I + 87 6 1L2} = 7r2 q2/.0 + 7r3q1/Lo + 7 9 [-1]t 3 + 710,8107A2 + rll-[1JL3 (2.8)

2 2

7r81401~ + -. A.!3} = 7r2q3/.L0 + 7r4q1 /Lo + 7r9 S 9 8 IL2 + 7rI 1 81 1 8/.2 + 7T 3 [L-]/- (2.9)
2 2

8 .97 S ' 14 91

7r9{8q95/kI + [S-7 .s3 + S98/L1} = 7r2 q4 ,00 + 7rsqiuo + 71~2S12g/It2 + 7r 1 [4-]/1I3 (2.10)
2 2

r81210 (.1

710S107/A2 = r3q2Ao + 7rl 2 [J]/,A3 (2.11)
8r171 814111

7r11[[T 7] 3 + 811 8 A 2 } = 7r3 q 3 / 0 + 7r 4 q 2 A0 + 7r 12 1L2 + 7r1 4 [2 3 (2.12)

81210 81512
r12fS29t2 + + 2 813S2 w2} = r 3 q + 7r 5 q2Ao + 75 2 (2.13)

7r13 8JU3 = 7r 4 q3/LO + 7r] 4 8 1 4 1 3 A 2 (2.14)

8"94 9" r81411 8-7f '+7-lL+T - " (2.15)

"'14['--1/3 + [j]/L3 + S14 13 L2 } - 7 4 4r,O + 7r5q30 + 7r15S1 14,.2

7158[S15123 + 815 141L2 } = rsq4/o (2.16)

Since flow must be balanced for each state, any one of the above equations will

be redundant. A solution for the state probabilities can be realized by arbitrarily

deleting Equation 2.16 and replacing it with the normalizing constraint

15

= 1 (2.17)

Once the 7ri are obtained by simultaneous solution of the balance equations, the

22

expected number of aircraft operating at a random point in time can be calculated

as
E5n-) n(0 (2.18)

E(n0) = 7r, = 27r1 + 7r2 + 7r3 + 7 4 + 7r5
i=1

Mike's expected sortie generation rate (sorties per aircraft per day) can be com-

puted as
R = 24.0E(no) = (2 4)(.5)E(n) = 6E(n0) (2.19)

R=4o N 2 -6~o

The sortie generation rate is a standard measure of effectiveness for aircraft oper-

ations.

It should be emphasized that the balance equations require specific input

values sii for the number of mechanics designated to perform specific tasks at

specific stations in each system state. Twenty-two of these values appear in Equa-

tions 2.2 through 2.16, and each must be treated as a variable in optimizing system

performance. This is true because system performance will be determined not only

by a prespecified manpower structure, but also by Mike's decisions on how the

manpower will be utilized when each system state is encountered. For example,

suppose Mike currently employs three types of mechanics, specializing in each of the

three different types of maintenance tasks (maximum specialization). Specifically,

suppose that Mike's payroll includes two turn-around mechanics (xi = 2), one air-

frame mechanic (X2 = 1), and two engine mechanics (X = 2). When the system is

in state 12, so that ii = (0, 0, 1, 0, 1), the single airframe mechanic could be assigned

to perform an airframe task on the aircraft in condition 2 (S129 = 1, S1211 = 0) or

the aircraft in condition 4 (S129 = 0, S1211 = 1). A similar conflict exists for engine

mechanics in state 14, resulting in a total of 2 x 2 = 4 assignment policies. The

potential for this kind of resource conflict increases if specialization is reduced so

that a mechanic can perform more than one type of task. Thus, an optimization

23

method must consider not only an overall manpower structure, but also a com-

prehensive policy for assigning manpower to specific tasks when resource conflicts

exist.

2.2 Optimal Specialization Strategy

Currently, Mike employs shifts of turn-around, airframe, and engine me-

chanics at hourly wages of $10, $20, and $25, respectively. He has observed that

mechanics are sometimes idle because their special skills don't always correspond

with existing maintenance requirements. Mike knows he could improve manpower

utilization by hiring mechanics who are qualified in multiple types of maintenance,

but he would have to pay significantly higher wages. The hourly wage for each

available type of mechanic Y, E {1, 2,..., 5} is shown in Table 2.2. Also shown is

the set of tasks Qy for which each type of mechanic would be qualified.

Table 2.2: Costs and Skills of Available Manpower

I11 1 2 131 4 5

cy II$10i$201$251 $30 $33
Qy {1} {21 {3} {2,31 {1,2,31

Mike wants to determine the maintenance manpower structure (and hence,

the specialization strategy) that will maximize his sortie generation rate without

exceeding his constrained level of manpower expenditure. A particular manpower

structure can be represented by a vector i = (z1 , z 2,.. . , XS), where each zx is the

number of type y mechanics employed. An acceptable structure will satisfy the

following conditions:

24

1. Total hourly manpower expenditure will not exceed the fixed budget; i.e.,

E5 I %z < 100.

2. Each task type will be assigned to only one type of mechanic; i.e.,

if Qy n Qy, $ 0, then zxy , = 0 V y,y' E {1,2,...,5}, y 0y'.

3. Sufficient mechanics will be qualified to perform each type of task; i.e.,
X > maXmEQy(am) Vy E {1,2,... ,5}.

4. Mechanics of each type will have a potential for simultaneous utilization; i.e.,

X: < max,.E{,.2,3.4}(FE9,nQi a. N) Vy E {1,2,..

Table 2.3 lists all manpower structures which satisfy the above constraints and re-

quire a total expenditure as close to $100 as possible without exceeding this limit.

Let G = 5 be the total number of candidate manpower structures and H = 3 be

the total number of specialization strategies. For each structure g E {1, 2,... , G}

and corresponding strategy h E {1, 2,... , H}, the table lists the number of poli-

cies generated by all combinations of manpower assignment decisions. To find

an optimal structure by exhaustive enumeration, it would be necessary to solve

4+2+24+12+36=78 sets of I simultaneous equations.

Fortunately, enumeration can be avoided by employing a continuous-time

Markov decision model [18, pp. 92-114]. Development of the model begins with the

generation of a list of manpower assignment decisions which are possible for each

state across an unrestricted range of manpower structures. Table 2.4 displays all

of the possible decisions k for the "Mike's Flying Club" example. For each specific

structure g and system state i, a subset Dg, of nondominated feasible decisions can

be identified. A nondominated feasible decision is one which does not permit any

avoidable idleness of the resources available within a particular manpower structure.

25

Table 2.3: Manpower Structure Alternatives

g hg i x2 X3 I 4 I x5Policies Iterations E(no)I R
1 1 2 1 2 0 0 4 1 .8080 4.848
2 1 1 2 2 0 0 2 1 .8159 4.895
3 2 2 0 0 2 0 24 2 .7900 4.740
4 2 1 0 0 3 0 12 2 .8103 4.862
5 3 0 0 0 0 3 36 2 .8409 5.045

For example, consider structure 5, which provides three mechanics qualified in all

types of maintenance. Suppose the system is in state 15, so that two aircraft require

airframe and engine maintenance. The set D515 contains two nondominated feasible

decisions. One option would be to assign all the mechanics to one aircraft, with two

mechanics performing the engine task and one mechanic performing the airframe

task (91512 = 2,S1514 = 1). Alternatively, two mechanics could be assigned to

perform the airframe tasks on both aircraft, with one mechanic unavoidably idle

(S1512 = 0,81514 = 2). As indicated in Table 2.4, these options correspond to

decisions 5 and 7, so Ds 15 = {5, 7}. The nondominated feasible decisions for every

manpower structure and system state are displayed in Table 2.5.

Once all nondominated feasible decisions are identified, an efficient Markov

decision algorithm can be employed. It can first be noted that the underlying

Markov process is completely ergodic, meaning that the steady-state probabilities

for the system states are independent of starting conditions since all states are

accessible from each other. Under this condition, the following "policy iteration"

algorithm can be used to converge on an optimal assignment policy for each man-

26

Table 2.4: Possible Manpower Assignment Decisions

i I k IManpower Assignment i I k I Manpower Assignment
1 1 no maintenance reqd. 1 S129 = 1, S1210 = 2, S 12 = 1
2 1 S21 = 1 2 s129 =1, S1210 = 2, 51211= 0
3 1 S32 = 1 3 S129 = 1, S 1 2 1 0 = 0, 81211 = 1
4 1 S42 = 1 12 4 8129 =1, S1210 = 0, S1211= 0

1 S53 = 2, S 5 4 = 1 5 S129 =0, S1210 = 2, S1211 1
52 3 4= 2,54= 0 6 S12 9 = 0, s 12 1 0 = 2,S 12 11 = 0

3 S53=0, S54 = 1 7 S129 = 0, S121 = 0, S1211 = 1
6 1 S62 = 2 13 1 8138 = 4

2 S62=1 2 S138=2

1 S73 = 1, S76 = 1 1 S149 = 2, S1411 = 2, S1413 = 1

7 2 73 = 1, S76 = 0 2 8149 = 2, S1411 = 2, S1413 = 0

3 S73=0, S76= 1 3 S149 =2, 81411 =0, S1413 = 1

1 S84= 1, S86=2 14 4 S149=2, S1411 =0, S1413=0

8 2 S84 = 1, S86 = 0 5 149 =0, S1411 = 2, S1413 = 1
3 s4 = 0, $86 = 2 6 8149 = 0, S1411 = 2, S1413 = 0

1 s95 = 1, s97 = 2, s98 = 1 7 S149 = 0, S1411 = 0, S1413 = 1
2 S95 = 1, S97 = 2, s98 = 0 1 S1512 = 4, S1514 = 2
3 s95 = 1, S97 = 0, S98 = 1 2 s1512 = 4, S1514=1

9 4 s9 = 1, s97 = 0, 898 = 0 3 S1512 = 4, S1514 = 0
5 S95 = 0, S97 = 2, 98 = 1 15 4 S1512 = 2, S1514 = 2
6 895 = 0, S97 = 2, s98 = 0 5 81512 = 2, 81514 = 1
7 S95 = 0, S97 = 0, 898 = 1 6 S1512 = 2, S1514 = 0

10 1 9107 = 2 7 S1512 = 0, S1514 = 2
2 S107 = 1 8 S1512 = 0, S1514 = 1
1 s11 7 = 2, 8118 = 1

11 2 s11 = 1, sI 8 = 0

3 8117 =0, sl8= 1

27

Table 2.5: Nondominated Feasible Decisions (Dgi)

9

1 J 2 [3 4 5
1F {1} {1} {1} {1} {1}

2 {I} {I} {} {} {I}

3 {1} {I} {I} {i} {1}
4 {1} {I} {I1} {i} {}
5 {1} {1} {2,3} {i} {1}
6 {1} {2} {1} {2} {1}
7 {1} {1} {1} {I} {i}
8 {1} {1} {1} {1} {1}
9 {i} {I1} {2,3} {1} {2,3,5}
10 {2} {1} {1} {1} {1}
11 {i} {I} {2,3} {,, {I}

12 {2,5} {I} {3,6} {2,3,5} {2,3,5}

13 {2} {2} {2} {2} {2}
14 {3,5} {3,5} {4,6,7} {3,5} {3,5}
15 {5} {4} {6,7} {5,7} {5,7}

28

power structure g (see Appendix A):

1. Initialization. For each state i and each decision k e Dg,, compute transition

rate values r, as follows:

r = n), q+(, j)o - (ij) = 0
rij I[S k a.(,i)]lu.v(,i) ".1(ij) E f{1, 2,...,IM I

k = - k

Select an initial assignment policy (a decision k' for each state i).

2. Value Determination. Let v, be the relative value of occupying a particular

state i under the current policy. Use rk' for the current policy to solve the set

of equations

IE(no) = no) vi i= 1,,., (2.20)

for all relative values v, and unknown E(nu) by arbitrarily setting vi to zero.

3. Policy Improvement. For each state i, find the decision k" E D., that maxi-

mizes the expression El=, r kv using the relative values of the current policy.

If k" is unchanged from k' for all states, stop with the optimal policy. Other-

wise, decision k" becomes the new current decision, so each r is set equal toStep

r. Return to Step 2.

The number of iterations required by the algorithm can be minimized by choosing a

"good" initial policy. A suitable initial policy is fortunately represented by a set of

"greedy" assignment decisions; that is, decisions which always favor the movement

of machines which are closest to an operating condition. Such a policy results from

29

a left-to-right assignment of manpower to tasks as arrayed in Table 2.1. Transitions

could be similarly arrayed for a system of any size. Table 2.3 presents the number of

iterations required to converge on optimal assignment policies when this initializa-

tion rule is applied for the "Mike's Flying Club" example. Like the enumeration of

a particular policy, each iteration of the policy iteration algorithm involves the solu-

tion of I simultaneous equations. Thus, the algorithm requires about 8/78 = 10.3%

of the computational effort required by exhaustive enumeration.

Application of the policy iteration algorithm to the example problem yields

the results shown in the last two columns of Table 2.3. The table displays the

expected number of operating aircraft and sortie generation rate achievable with

each manpower structure. It is apparent that Mike could improve the performance

of his enterprise by replacing his five specialized mechanics with three more costly

mechanics qualified in all types of maintenance (g = 5). This alternative would

produce a sortie generation rate of 5.045, which is higher than the maximum rate

of 4.848 achievable with the current manpower structure (g = 1). The ,,ntimal

manpower structure represents a fully "generalized" specialization strategy.

2.3 Linear Programming Model

While the policy iteration algorithm eliminates the need to enumerate solu-

tions for every assignment policy, it still requires a complete solution for each man-

power structure. Assignment decisions and manpower structures can be considered

simultaneously through a linear programming formulation of the decision model.

Linear programming (LP) provides an established method for solving Markov de-

cision problems with finite state spaces [27], and the general approach can be effi-

ciently applied to the manpower specialization problem.

30

2.3.1 Concurrent Approach

All candidate manpower structures and assignment policies can be eval-

uated concurrently in a single linear program. First, decision variables Pgik are

defined as the joint probabilities of employing structure g E {1, 2,.. ., G}, finding

the system in state i E {1, 2,..., I}, and selecting assignment decision k E Dg,. An

LP model can then be written as follows:

Maximize
G IW

E(no) = -- 1 n(opgik (2.21)
9=1 i 1 kEDg i

subject to

(I S 1(3 ski

Pgik no I= + [-IL'~ Pgjk no qp+(iA + _ _~i
kED 9 i %(ij) I j=I kEDgi Ia%(-)J

g=1,2,...,G i=1,2,...,I-1 (2.22)

G I k: = 1 (2.23)

g=1 i=1 kEDgi

Pgik>0 g=1,2,...,G i=1,2,...,1 kEDgi (2.24)

The constraints represented by Equations 2.22 ensure that global balance for the

queuing system is satisfied. Equation 2.23 is a normalization constraint for conser-

vation of probability. Excluding the non-negativity restrictions imposed by Equa-

tions 2.24, the formulation will generate G(I - 1) + 1 constraints. The number of

decision variables Pgik will depend on the total number of nondominated feasible

31

assignment decisions for all system states and manpower structures. For exam-

ple, formulation of the "Mike's Flying Club" problem requires 71 constraints and

95 decision variables. When this model is implemented on a microcomputer using

a standard software package [6], a solution is obtained in only a few seconds of

processing time. The following decision variables have non-zero optimal values:

p511 = .1803 P562 = .0445 P5113 = .0399

P521 = .1803 P573 = .0678 P5125 = .0342

P531 = .1564 P583 = .0491 P5131 = .0263

P541 = .0951 pj95 = .0342 P5 14 5 = .0168

P,553 = .0484 P5102 = .0219 P5153 = .0047

The example results provide a useful vehicle for examining some important

characteristics of the LP solution. First, it should be noted that there is exactly one

non-zero decision variable for each system state. The non-zero variables therefore

represent the steady-state probabilities 7r,. They also identify the optimal assign-

ment decisions. While the model permits randomization between decisions, the

optimal solution will force all probability for a given state to the decision which

produces the largest rate of increase in the objective function. Similarly, only one

manpower structure is represented in the final solution (g = 5), even though the

model permits randomization between structures. The global balance equations

ensure that all state probabilities for a given structure and policy maintain con-

stant relative proportionate values. Therefore, the optimal solution will force all

probability into the best structure.

The concurrent LP provides a compact representation of any manpower

specialization problem. The model and supporting data can be easily formatted in

a generalized algebraic language for computer implementation, so the formulation

32

can be useful for small problems. When solved using a standard simplex or revised

simplex algorithm, the concurrent formulation will normally require a smaller num-

ber of LP iterations than would be required if the problem were decomposed to find

separate optimal solutions for each manpower structure. However, each LP itera-

tion for the concurrent formulation will require a much larger number of arithmetic

operations. Thus, the concurrent formulation has limited practical value since a

decomposed version of the problem will generally require less computational effort.

Issues concerning computational storage and analytical insight also impact

the practical utility of the concurrent approach. Every candidate manpower struc-

ture g generates I - 1 constraints and at least I - 1 decision variables, so a problem

involving a large number of structures and system states could easily exceed com-

putational storage limits. Furthermore, while solution of the concurrent LP yields

an optimal structure and associated system performance, it does not provide di-

rect insight on how the optimal specialization strategy compares with others under

consideration.

2.3.2 Sequential Approach

The disadvantages of the concurrent formulation can be overcome through

a new algorithm which sequentially evaluates all candidate manpower structures

but benefits from commonality of arithmetic operations. First, a single LP is

formulated which permits any assignment decision that is feasible for at least one

structure under consideration. Solution of this LP will produce an upper bound on

the optimal system performance. Then, for each individual manpower structure, a

constraint is added which forces all infeasible decision variables to zero. Integration

of the new constraint into the linear programming tableau renders the original

solution infeasible. However, feasibility can be restored by performing dual simplex

33

iterations [26]. These iterations are terminated when either a feasible (optimal)

solution is reached or the objective value falls below a known lower bound for the

specialization strategy employed by the current structure. This lower bound is

established by the best objective value from previously evaluated structures which

employ the same specialization strategy.

The algorithm can be accelerated by evaluating all manpower structures in

order of their estimated relative performance (best to worst). A good estimate for

relative performance of a structure g can be obtained from the parameter

I I" I k' -

g]W-(:,)J (2.25)

where k' = min(k E Dg;). A structure with a low value of 9g will tend to produce

favorable system performance since maintenance-intensive states will have relatively

short transition times (inverses of transition rates). The ranking derived from 0g is

only an estimate since "greedy" (not necessarily optimal) assignment decisions are

assumed and transition times are not weighted by steady-state probabilities.

The sequential linear programming algorithm can be concisely stated as

follows:

1. For each system state i, define a set of decisions Di = UG=I Dgi. Let Pik be the

joint probability of finding the system in state i and selecting decision k E Di.

Formulate and solve the bounding LP,

Maximize

E(no)= Z Pik (2.26)
i=1 kEDi

34

subject to

'11 32]pini~ +(Oo i

Pzik n o +-= = E E P, q z(3i)/.Lu + -kEDi La-(ij) -=1(kE) = k Dj

(2.27)

= pik = 1 (2.28)
i=1 kED i

Pik 0 i=1,2,...,I kEDi (2.29)

Store the linear programming tableau.

2. For each specialization strategy h E {1, 2,... , H}, define incumbent optimal

performance values E(no)h with initial values of zero. Reorder all manpower

structures g E {1,2,...,G} such that 01 02 ... < OG where each Og is

defined by Equation 2.25. For g = 1,..., C,

(a) Define a set of infeasible decisions Dg, = {k: k E D,, k ' Dg,}. Modify

the LP tableau from Step 1 by adding the constraint

P ilk = 0 (2.30)
=1 kEDg i

(b) If the addition of Equation 2.30 results in an infeasible current solution,

perform dual simplex iterations [2, p. 182] until E(no) E(no)hg or E(no)

is optimal. If E(no) is optimal, then let E(no)hg = E(no).

35

3. Identify an optimal manpower manpower specialization strategy h' such that

E(n0)h, >! E(no)h Vh E f{1, 2,..., H}.

The sequential algorithm minimizes computational effort by taking advan-

tage of state relationships which are common to different manpower structures and

assignment decisions. For the "Mike's Flying Club" example, Step 1 of the al-

gorithm requires 15 LP iterations to establish the initial bounding solution, and

Step 2 requires 3 + 1 + 3 + 3 + 1 = 11 iterations to evaluate the individual man-

power structures. The 26 total iterations generate performance results for all three

specialization strategies under consideration.

Two variations of the sequential algorithm may be useful for particular ap-

plications. In some cases, it may be desirable to gain additional computational

speed in exchange for less analytical insight. This is accomplished by modifying

Step 2 so that all incumbent optimal objective values E(no)h are replaced by a sin-

gle global value E(n0)op) . For each manpower structure g, dual simplex iterations

are performed until E(no) _ E(no)opt or E(no) is optimal. If E(no) is optimal, it

becomes the new E(no)opt. The modified algorithm identifies only a global opti-

mal manpower structure rather than an optimal structure for each specialization

strategy. However, execution of this "speed" version of the algorithm can require

a significantly smaller number of LP iterations.

Another variation of the algorithm can provide full analytical insight by

completely evaluating all manpower structures. For every structure, dual simplex

iterations are continued until an optimal objective value is achieved. No benefit is

derived by evaluating structures in a particular order, so the reordering procedure

can be deleted. However, more LP iterations are required by this "insight" version

of the algorithm.

36

All three versions of the sequential linear programming algorithm (normal,

speed, and insight) are implemented in the computer program described in Ap-

pendix B. Table 2.6 displays computational performance results (number of LP

iterations) for each version when applied to three example problems of different

sizes. Each iteration count includes all pivots to establish an initial "greedy" solu-

tion to the bounding LP, all primal pivots to optimize the bounding solution, and

all dual pivots required by Step 2 of the algorithm. The iteration counts are com-

pared against a baseline number of iterations which are required if separate linear

programs are solved for each manpower structure. It is noteworthy that the normal

version of the algorithm requires 28.1-33.8% of the baseline computational effort,

and the speed version requires 13.4-27.9% of the baseline effort. The LP iteration

counts correlate approximately with comparative run times for each problem size.

Table 2.6: Computational Performance of Sequential Algorithms

- Nmber of LP Iterations 1
Problem Baseline Insight T Normal Speed
Mike's Flying Club (N = 2, C = 100) 15 5 79 31 26 22
Mike's Flying Club (N.- 4, C = 200) 70 8 613 291 172 122
YF-XX (see Chapter 3) F455 11 5618 2825 1897 774

2.4 Network Reduction Procedure

Even when manpower structures are considered sequentially, problem di-

mensionality can still be an important issue. For example, consider a system with

three machines and six task types, where all tasks can be accomplished simul-

taneously. The corresponding queuing network will have Z = E6 = 255

37

maintenance conditions, so the system will have I = (3+255) = 2.829 x 106 states.

Fortunately, the routing probabilities and average service times associated with

many of the maintenance conditions could be very small, so a very good approxi-

mate solution could be obtained by "collapsing" these conditions into others. The

notion of flow equivalence can be applied to form a new reduced network that will

approximate the behavior of the original network.

Like all previous concepts, the network reduction approach can be demon-

strated using "Mike's Flying Club." Suppose computational facilities are so limited

that any system with more than ten states is intractable. It is therefore necessary

to develop a new network that will approximate the original example network while

reducing the total number of system states. This can be done by eliminatng sta-

tion 4 and adjusting the characteristics of the stations which can be entered directly

from station 4 (stations 2 and 3). The adjusted characteristics include the rout-

ing probabilities and service rates. The resulting reduced network will have three

maintenance stations and (5) = 10 states.

Routing probability can be conserved by adjusting q2 and q3 to new values

q2 and q as follows:

q2 q2 +q4 " 2 J3

= .1404 + (.1454) .25 .5 2373

= .1880 + (.1454) 2 .5 = .2364

This operation distributes q4 to succeeding stations in proportion to the relative

38

probabilities of machine entry from station 4. It is now necessary to decrease the

service rates at stations 2 and 3 to reflect the longer service times for machines

requiring both types of maintenance:

qq2 (-) + q4 (P)3

q2 q2 + q4 +.±a..)

=q2 {q2(3) + q4 (~i 3 (+ ~ LI 2 2 +11 A2 A2 +7 A3s

.2373
= - .22001.0785

{q3 (-L) + q4 (P2) + M)

q3q3 + q4 (+2

q {q3 ()+ q4 (2.3 1
IL3 2 "+ /1 3 P2 "+ A3

.2364= = .4400

.5376

The reduction in service rates compensates for the deletion of station 4.

This example reduction can be expanded into a general procedure. First,

let I' < I be a maximum number of system states imposed by computational

limitations. The maximum number of reduced network stations can therefore be
represented as Z' < Z, where (S') < I' < (Nz+j). If all maintenance stations

are ordered by increasing numbers of tasks in their pending task sets, a network

reduction procedure can be constructed as follows:

1. Define station-dependent task rates jt(,) for each station and applicable task.

Initially, let #(Z) = t_ for each z E {1, 2,..., Z} and each eligible task m E E,.

Define z- as the current station to be removed from the network. Initially, let

z--Z.

39

2. Let S.- be the set of stations which can be directly entered from station z-.

For each station z+ E Sz-,

(a) Identify the task E E E_.- which causes machine movement to station z+

on completion.

(b) Compute a new routing probability as

z
qz+ = q + qz- (-) (2.31)

(c) For each task m E E,+, compute a new service rate as

=,2-) z q'+ {qZ+ (2.32)

+ q,- (A7sz)(E+~z + E -

3. For each z+ in S,-, let q.+ = q'4 and (= '() VmE E. Let

z- = Z- - 1. If z- = Z', then stop with the final reduced network. Otherwise,

return to Step 2.

This procedure will transfer maintenance time at stations with many pend-

ing tasks to stations with fewer pending tasks. Consequently, the reduced network

will not capture the queuing delays caused by resource conflicts between the eligi-

ble tasks at each eliminated station. The approximation will therefore overestimate

system performance. However, an approximate flow equivalent network can pro-

vide very accurate results unless multiple task eligibilities are very common and

resource availability is very low. When solving the example problem using the re-

duced network, an optimal sortie generation rate of 5.130 sorties per aircraft per

40

day is obtained. This represents an error of only 1.75%, even though a sizable

portion (.1454) of the network routing probability is redistributed. More impor-

tantly, the optimal manpower structure is unchanged from the full network solution,

; = (0,0, 0,0, 3).

Chapter 3

Application

In the previous chapter, a simple example was used to develop a queuing

network approach to maintenance manpower specialization. In this chapter, the

method is applied to a larger problem which is more representative of potential

"real world" applications. The problem objective is to derive an optimal manpower

structure for dispersed operation of a notional military aircraft.

3.1 The YF-XX Aircraft Maintenance Problem

The YF-XX is a notional tactical fighter in the prototype phase of weapon

system development. Since the earliest stages of the system design, significant effort

has been focused on reliability and maintainability characteristics. Consequently,

substantial analysis has been conducted to estimate subsystem failure rates, repair

times, and task personnel requirements. Since extensive test data has not yet

been accumulated, precise forms for probability distributions of failure and repair

times are not known. However, efforts to eliminate known failure mechanisms

suggest that subsystem malfunctions can be regarded as "random" and can thus be

accurately represented by exponentially distributed failure times. The exponential

distribution is also postulated as a suitable model for maintenance task time at the

major subsystem level. The aggregate maintenance data for the YF-XX are shown

in Table 3.1.

The operational concept for the YF-XX involves a wide variety of mission

profiles with an average duration of 1.6 hours (p0o = .625). Turn-around mainte-

42

Table 3.1: Task Data for YF-XX Tactical Fighter

m I Task Description TA mA
1 Munitions Upload - 2.400 3
2 Aircraft Turn-Around - 2.000 1
3 Avionics Repair .0713 .4191 1
4 General Aircraft Repair .0269 .2390 2
5 Engine Repair .0250 .2301 2
6 Electrical Subsystem Repair .0232 .2107 1
7 Pneudraulic Subsystem Repair .0144 .4223 2
8 Fuel Subsystem Repair .0103 .1812 2
9 Armament Subsystem Repair .0091 .3200 2]

nance and munitions upload are accomplished between all sorties. All unsched-

uled maintenance generated by subsystem malfunctions must be performed prior

to aircraft turn-around, and turn-around must be completed before munitions up-

load. Additionally, all electrical subsystem repair must precede any work on the

aircraft avionics (communications, navigation, electronic counter-measures, etc.).

Figure 3.1 displays a reduced network which captures these requirements. The fig-

ure also displays the adjusted routing probabilities associated with each network

station. While the unreduced network included 129 maintenance stations, less

than 2.5% of the total routing probability had to be redistributed among stations 3

through 12 using the procedure described in Section 2.4.

3.2 Maintenance Cost Model

The basic maintenance concept for the YF-XX assigns the nine task types

to seven manpower specialties. However, wartime operation plans dictate that a

significant number of aircraft will operate in groups of three at dispersed locations.

It is anticipated that some maintenance specialty merger will be required for dis-

43

1 1 1 2 1 3 4 4 5 1 6 ! 7 8 j1 11 12

PI 11) 1 i 1.2) J 1.2.3) 1 2.4} f1.2.5} 1 f1.2.61 f1.2.71 1.2. If1.2.91 {1 .4) j 11.2. 3.5} 11.:T6}
il 1 {2} 131 1 {4} 51 {6} {7} 1 1 J91 J3.l} 1 3.5) 16} I

q. Ut1 .7762 .0787 1 .0304 .0284 .0262 .0173 1.U137 .U113 .0063 .0058 .0059

10 11 12

0

Figure 3.1: Reduced Network for YF-XX Aircraft Maintenance

persed forces in order to satisfy manpower cost constraints. Table 3.2 lists thirteen

types of specialties which appear in various consolidation schemes under consid-

eration. The table displays the task qualifications for each specialty and provides

additional information that can be used to develop cost estimates. The estimated

length (in days) of the initial training period for each type of specialty is indicated

as L.. All training generates a direct cost of $200 per person per day. Also shown

is the expected monetary bonus V (in dollars) which would be paid to each type

of specialist if he were to reenlist after a four-year term of service. This value is

largely determined by the demand for personnel with similar skills in the civilian

economy.

An expected profile of the entire maintenance workforce is presented in

Figure 3.2. This profile is adapted from a demonstrative model used in the Air Force

SUMMA project [28, p. 10]. The model asserts that about 60% of the workforce will

44

Table 3.2: Maintenance Specialties for YF-XX

YI1 Q"L7 J ; I I cy
1 {1,9} 90 - 20,934
2 {2,4} 100 5,000 21,637

3 {3} 120 10,000 22,679
4 {5} 120 5,000 22,302
5 {6} 95 10,000 21,851
6 {7} 90 - 20,934
7 {8} 90 - 20,934
8 {3,6} 180 10,000 24,799
9 {5,8} 150 5,000 23,338
10 {5,7,8} 200 5,000 25,174
11 {1,2,4,9} 150 5,000 23,338
12 {1.2,4,5,7,8,9} 270 12,000 28,531
13 {1,2,3,4,5,6,7,8,9} 360 15,000 32,924

depart after a single four-year term of service, and 40% of the remaining workforce

will depart after a second term of service. Bonuses are to be paid for second

and third term reenlistments in order to restrict workforce attrition to these levels

for all specialties. It is further postulated that all personnel who have completed

three terms of service will remain until retirement after a 20-year career. These

parameters establish portions of the workforce w, for each term T E {1, 2,... ,5}.

The average annual cost of pay and benefits U, for personnel in each term is also

shown. Pay and benefits do not vary with specialty.

Training costs, retention costs, and the information presented in Figure 3.2

can be aggregated to produce total annual costs for each specialty as follows:

c w((4)(365) (200~ +U
S= ' k(4)(365) - I.,,, ,L ' +)

+ W2 (U2 + KIV + W3 (U3 + TY + W4U4 + wsU5 (3.1)

45

.125 (I[[U,.1 .4717 15,000

.100 1 2 .1887 17,000
3 .1132 19,000

075 4 .1132 23,000
Workforce 5 .1132 28,000

Density .050
7- 2

.025 r=3 r=4 1 r=5

4 8 12 16 20

Years of Service

Figure 3.2: Profile of YF-XX Manpower Force

The aggregate cost parameters listed in the last column of Table 3.2 are computed

using this formula. Note the the first term of the equation includes an expression

which accounts for the opportunity cost of training time. Clearly, training and

retention factors cause a significant increase in the unit cost of maintenance per-

sonnel as specialization decreases. Table 3.2 indicates that the annual cost of a

maintenance technician with a full range of skills is roughly 50% more than that of

a typical technician with a highly specialized skill.

3.3 Manpower Optimization

The annual maintenance manpower budget for the YF-XX is constrained to

a level of $120,000 per aircraft. Since wartime plans assume that each maintenance

technician will be on duty for a 12-hour shift daily, the total expenditure limit

per shift at each dispersal base can be calculated as C = (3)(12/24)(120,000) =

180,000. As indicated in Table 3.3, this constraint translates to a total of 11 can-

didate manpower structures. Note that the expenditure limit will not support a

46

fully specialized structure. Several specialty types do not appear in any of the

acceptable alternatives.

Table 3.3: Manpower Structures for YF-XX

g XI=, -T2 X3X4 X5 X=6 X7 X8lX91JolX1 I X1,21,3! E Cy l 1 (noj) I R
1 0 0 1 0 1 0 0 0 0 0 2 3 0 164,892 1.271 6.353*
2 0 0 1 0 1 0 00 0 0 0 0 4 158,654 1.308 6.539*

3 0 0 1 0 3 0 0 0 0 0 0 0 3 173,825 1.216 6.080
4 0 0 2 0 2 0 0 0 0 0 0 0 3 174,653 1.223 6.115
5 0 0 3 0 1 0 0 0 0 0 0 0 3 175,481 1.220 6.100
6 0 0 0 0 0 0 0 1 0 2 4 0 0 168,499 1.319 6.593*
7 0 0 0 0 0 0 0 2 0 2 3 0 0 169,960 1.283 6.415
8 0 0 0 0 0 0 0 1 0 0 0 5 0 167,454 1.345 6.724*
9 0 0 0 0 0 0 0 2 0 0 0 4 0 163,722 1.322 6.610
10 0 0 0 0 0 0 0 3 0 0 0 3 0 159,990 1.223 6.115
11 0 0 0 0 0 0 0 0 0 0 0 0 5 164,620 1.369 6.844**

* local optimum for specialization strategy

** global optimum

Table 3.3 also displays the performance results obtained when queuing net-

work analysis is applied. The reduced network shown in Figure 3.1 generates

(32) = 455 system states, so the problem is quite tractable when solved using

the sequential linear programming algorithm. Results are shown for each man-

power structure, indicating a steady improvement in sortie generation capability

as specialization decreases. Dispersal bases will operate most effectively if each

maintenance shift is manned by five personnel that are qualified on all aircraft sys-

tems. Structure 8 also produces good results and might be favored in the context

of broader manpower issues. This structure employs one avionics/electrical system

specialist, and five technicians qualified in all other types of maintenance.

Chapter 4

Extensions

The general model presented in this thesis can be adapted to capture a

variety of maintenance concepts which might arise in specific applications. In this

chapter, the versatility of the model is demonstrated by extending it to address

some issues which might apply to the aircraft maintenance problem represented by

the "Mike's Flying Club" example.

4.1 Cross-Training

It has been shown that a queuing network model can be used to optimize

the basic structure of a maintenance manpower force. This same approach can be

extended to determine optimal "cross-training" for maintenance specialists so that

they possess secondary skills.

Suppose the "Mike's Flying Club" enterprise currently employs a fully spe-

cialized maintenance force consisting of two turn-around mechanics, one airframe

mechanic, and two engine mechanics. Maintenance specialists with broader skills

are not immediately available, but Mike has the opportunity to provide some em-

ployees (current or future) with additional training. Specifically, he can qualify one

or more airframe mechanics to assist an engine specialist with engine repairs. The

cost of this training would translate into an incremental expense of $10 per hour.

In addition, cross-trained airframe mechanics could be further upgraded to perform

turn-around functions at an incremental cost of only $3 per hour.

The cross-training options selected for this example result in a set of po-

48

tential maintenance specialties with unit costs and task qualifications which are

identical to those used in earlier analysis (see Table 2.2). However, the concept

of cross-training produces a very different set of acceptable manpower structures.

The earlier requirement that a maintenance task can be allocated to only one type

of specialist is now eliminated. Instead, an acceptable manpower structure must

satisfy the following constraints:

1. Total hourly manpower expenditure must not exceed the fixed budget; i.e.,

F51Y= cYXY < 100.

2. Sufficient mechanics must be qualified to perform or assist in each type of task;

i.e., FY:mEQy XY _ a,, Vm E 1,2,3}.

3. Sufficient primary-skilled mechanics must be available for each type of task

requiring multiple personnel; i.e., Z3 _> I (at least one engine mechanic must

be available).

4. All skills must have a potential for utilization; i.e.,

Yy:mEQy Xy a,.N Vrm E {1,2,3}.

These constraints, in general form, will apply to a problem of arbitrary size. The

fact that cross-trained specialists may not be as effective in their secondary skills as

they are in their primary skills can be reflected in lower task completion rates. For

this example, assume that an engine mechanic and cross-trained airframe mechanic

can accomplish engine repairs at a slightly degraded rate of .45 tasks per hour. Sim-

ilarly, assume that a cross-trained airframe mechanic can accomplish turn-around

tasks at an average rate of .9 per hour. Table 4.1 summarizes the rate capabilities

for each type of specialist and lists all of the candidate manpower structures.

49

Table 4.1: Manpower Structures with Cross-Training

Sg XI] X2 I X X I x5 I E(no)I R

1 2 1 2 0 0 .8080 4.848
2 1 2 2 0 0 .8159 4.895
3 2 1 1 1 0 .8322 4.993
4 2 0 2 1 0 .8080 4.848
5 1 1 1 0 1 .8302 4.981
6 1 0 2 0 1 .8062 4.837
7 1 0 1 2 0 .7970 4.782
8 1 0 1 1 1 .8302 4.981
9 0 0 1 0 2 .8065 4.839
IL 1.0 0.90
A2 0.25 0.25 0.25
AL3 0.50 0.45 0.45

The policy iteration or linear programming optimization methods can be

applied to solve a cross-training problem with minor adaptation. The set of man-

power assignment decisions for each state may expand, since some decisions may

need to reflect a choice of which specialist type(s) are assigned to each transition

task. Transition rates are determined not only by manpower assignment variables

A, but also by corresponding task completion rates Uk

The last two columns of Table 4.1 display the performance results for the

"Mike's Flying Club" problem with cross-training. The optimal sortie generation

rate of 4.993 is achieved with manpower structure 3, where i = (2, 1, 1, 1, 0). Mike

should therefore dismiss an engine mechanic, hire another airframe mechanic, and

provide cross-training for one airframe mechanic in engine repairs. This new man-

power structure will improve his average sortie generation rate by about 3% over

the original rate achieved with structure 1.

50

4.2 Dependent Machine Operations

Another modeling problem which may be encountered in applications is a

need to operate two or more machines together (e.g., flights of multiple aircraft).

Suppose half of the flights scheduled in the "Mike's Flying Club" enterprise are ac-

robatic formation flights which require two aircraft. This operational requirement

can be modeled using the network shown in Figure 4.1. The network station 01

represents the operating condition for single aircraft flights, while station 02 repre-

sents the operating condition for formation flights. Station 02 is also used to hold

a single aircraft that has completed maintenance and is waiting for a companion

aircraft. In general, a network station 0b is required for every group size b E E,

where B is the set of all required group sizes (B = {1, 2} for the example). The

expected number of operating machines can be computed as E b[n /b

02: aircraft holding/operating
in formation

01: aircraft
operating

1: turn-around
maintenance

2: airframe

maintenance

3: engine
maintenance

4: airframe and engine _

maintenance

Figure 4.1: Dependent Aircraft Operation

51

Table 4.2 describes the 21 states for the example system with N = 2 aircraft

and illustrates the feasible state transitions. Transition activities for the lower

right portion of the table are identical to those for the example without dependent

aircraft operations (see Table 2.1). However, transition rates involving maintenance

task 1 now reflect the different stations which an aircraft can enter from station 1.

Define pl = .5 as the probability that the next scheduled flight requires a single

aircraft. Similarly, define p2 = .5 as the probability that the next scheduled flight

requires two aircraft. Transition rates can be expressed as [skja,(jj)] p 1-y(jj) for
(ij) E {(8,7),(12,8),(13,9),(14,10),(15,11)} and as [s j/a.(,.)]p,(;j) for (i,j) e

{(8,2),(12,3),(13,4),(14,5),(15,6)}. For the case where an aircraft is holding for

a formation companion (state 3), probabilistic branching does not apply since the

next aircraft leaving station 1 must enter station 02.

Table 4.2: Transition Activities (-y) for Dependent Operations

2 ' 1 i 1 1 2 13 1 [4 I 5 16 1 7 1 8 1 11 l12[1 13 115116117 1 s] 19120121020000 13420MM,, I I I2 U, 0-' o W 2 07 0 2 02 W
110000 2 01 01 0L 01

101000 3 1
100100U 4 2
100010 5 3
100001 6 3 _

020000 7 01 1) o
l

UI1I0LKK 8 1 1 1 01 670
]

0

010100 9 1 2 01 0
t 0W 0 -

Olu1 10 01 Oo
j

01 101

O10001 11 3 2 1 0 01 ()1 0)J

tMO2Ot) 12 1
0OO 1o 13 1 1 2

OO 10 1 14 11 1 3
00100 15 11 1 3 2

0001 6 1 13 1 20y0200 12

(00I110 17 3 2

000101 18 2 3 2
00020 19 3

oX)11 20 3 3 2
000002 21 3 2

52

While a single gaining station z+(ij) was formerly associated with each

transition, this parameter must now be replaced by a list of gaining stations Z+(ij).

The routing probabilities q,+ must also be displaced by new values qb+ for each

station 0b. The computation of a routing probability qz+ for a single aircraft

completing a sortie is unchanged from previous analysis, but more effort is required

to obtain probabilities for aircraft completing a formation flight. Let T02 be the

duration of the flight, let T1 2 be the time until an airframe malfunction occurs

for the first aircraft in the formation, and let T13 be the time until an engine

malfunction occurs for the first aircraft. Similarly, let T22 and T23 represent the

malfunction times for the second aircraft. Routing probabilities qz+ can then be

computed as follows:

q 2, - PTo, < min(T12,T1 3 ,T2 2,T2 3)} o = .3571
f- /LOj + 2A2 + 2A3

q1.21 = P{T02 < min(T12, T1 3 , T2 3), T02 > T22}

+ P{T02 < min(T13,T2 2,T23), T02 > T1 2}

= 2 (O+ 2 3 -qf'} = .1190

q2,31 = PITo2 < min(T12,T2 2,T2 3), To, > T13}

+ P{To2 < min(Tl2 ,T22 ,T13), T02 > T2 3 }

= 2 (+ A -qii} = .1553

q2,1.4 = P{T 02 < min(T12,T13), 02 > max(T22,T2 3)}

+ P{To, < min(T22 ,T23), T02 > max(T12,T13)}

53

= 2 (+ ° 2 q.2 q{ 3} = .0641AO + A2 2 2 -3 }

q .)= P{T 02 < min(T13, T23), T0 2 > max(T12, T22)}

A -+ 2A 1,, - q{2= .0238

q(2.3} - PfT0 2 < min(T12, T23), T2 > max(T13 , T2 2)}

+ PTo2 < min(T22, T13), T2 > max(T12,T23)}

q2 2)
=A 2 / 11.2} qf 1 =.64= /2(Jo + A\2 + A3 2 2{ 0641

2qf2 4) = PfT0 2 < T13 , T2 > max(T12, T22,T23)}

+ P{[T0 2 < T2 3 , T2 > max(T12,T1 3 , T22)}
2 2 2

AO____ 2 2 q 1 .3 } _ qfl.4 1 2 q{2.3 }=2 2 -q{ 2.2 }- 2 .0500

q{3.3}= P{TO2 < min(T12,T2 T02 > max(T13 , T23)}

-L + 2A 2 } - q21,3} = .0431

qf3 4} = PTo2 < Ti 2 , T02 >_ max(T13 , T22,T23)}

+ P{T 02 < T2 2, T02 > max(T12,T1 3 , T23)}
2 2 2

= 2 - 2 q{,2}_ 2 q 41 2 q .0704
"- o + A2 'I q{ 1 ,3} 2 q{3 ,3 2 -0

q24.41 = Pf To2 max(T12 , T13 , T2 2,T23)}

=1- q - q21.2}- q2
1,3} - q2

- -- f {{,4 }

2 2 2 2 2- f22- qf 2 ,3 1- qf 2,4) - q(3 ,3 }- q(3 4 } = .0532

54

Unlike previous versions of the queuing network model, the dependent ma-

chine extension does not exhibit one-step behavior. However, since the policy itera-

tion and linear programming approaches are based on global balance, both solution

methods can still be applied. For notational convenience, rates r are defined for

every possible system transition:

Sb' b

[nb,/ V] qZ+ (i) o, 3b' E B: z-(ij) = 0b'

k k 3' B: Z+(ij) =
n(;) -b[n()/b] = 0 V b E Bob -- t b J

[skj/a.,cij)]iu.yj) otherwise

An extended version of the concurrent linear programming formulation can then

be written as follows:

Maximize
b[-- -]pgk (4.1)

g-I t=1 kEDg i bEB

subject to

! I

pi = Z prkkr k g=1,2,...,G i=1,2,...,I-1 (4.2)
kfEDg i j=l =1 kEDgj

G I

, E g = 1 (4.3)
g=1,l 1kEDg

i

Pgik >0 g= 1, 2,.. , G i = 1,2,...,1 k E Dg, (4.4)

55

Table 4.3 displays performance results for all manpower structures in the

extended "Mike's Flying Club" example. It is assumed that average sortie dura-

tions are identical for single aircraft flights and formation flights (joi = U02 = .5),

although this is not required in the general model. Sortie generation rates with and

without dependent machine operations are shown comparatively with performance

ranks in parenthesis. Note that overall performance declines significantly with de-

pendent machine operations. This loss can be attributed to the idle time expended

by ready aircraft that must wait for a formation companion. While the fully gen-

eralized manpower structure is optimal for each case, the performance ranks for

the other structures vary. Dependent machine operations thus have a significant

impact on the relative merit of the various manpower structures.

Table 4.3: Results with Dependent Machine Operations

-I X 2 -
4 X5 1t R R (dep.)

1 2 1 2 0 0 4.848 (4) 3.989 (2)
2 1 2 2 0 0 4.895 (2) 3.984 (3)
3 2 0 0 2 0 4.740 (5) 3.920 (5)
4 1 0 0 3 0 4.862 (3) 3.956 (4)
5 0 0 0 1 0 3 5.042 (1) 4.093 (1)

Chapter 5

Conclusions

In a survey of analytical methods for cyclic queues and closed queuing

networks, a prominent theoretician observed that "despite the extent of their ap-

plications, the richness and explanatory power of these methods have not been

appreciated or understood by many practitioners " [23, p. 605]. This thesis has

demonstrated that the conceptual framework of a closed queuing network can offer

valuable insight into a "real world" problem which practitioners have tradition-

ally approached through other methods. Through specified modeling assumptions

which enable the use of Markov decision analysis, a queuing network model can be

employed to determine an optimal level of specialization and optimal task alloca-

tion for a maintenance manpower force. The method can be specifically applied

to the problem of maximizing the operational effectiveness of a dispersed unit of

military aircraft subject to a constraint on maintenance manpower expenditure.

Two important techniques can be applied to solve a queuing network model

for manpower optimization: policy iteration and linear programming. The policy

iteration approach allows an analyst to conjecture optimal task assignments for

each manpower structure under consideration. If these conjectured assignments

are good, a policy iteration algorithm will quickly converge to a solution. The

policy iteration approach is particularly useful for problems where the number of

candidate manpower structures is relatively small. The main disadvantage of this

technique is that at least one set of simultaneous equations must be solved for every

manpower structure under consideration.

57

Linear programming is another powerful tool which can be marshalled to

find an optimal specialization strategy. A concurrent LP formulation can theoret-

ically be developed to simultaneously consider all candidate manpower structures

and assignment policies in a single model. The concurrent model is mathemat-

ically simple, but computational inefficiency and high storage requirements limit

the utility of this approach for larger problems. These shortcomings can be avoided

through an algorithm which sequentially solves models for each structure but elim-

inates much of the computational effort required for each solution. The sequen-

tial approach also provides full insight into the relative merits of all specialization

strategies under consideration.

The queuing network approach to manpower optimization cannot com-

pletely displace all other evaluation methods. Some required assumptions may not

be appropriate for a particular application. The extensions presented have demon-

strated that creative modeling techniques can increase the flexibility of queuing

network analysis, but the range of this flexibility is constrained. Another limita-

tion is imposed by problem complexity. The queuing network model suffers from

the "curse of dimensionality" [3, p. 323]. As the numbers of machines and task

types increase, the system state space enlarges rapidly. Approximation methods

which compromise the "discreteness" of machines in the system are not helpful

because they mask an important characteristic of the problem. The use of approx-

imate flow equivalence to reduce network size offers vital relief, but the practical

applicability of the queuing network approach is still restricted to simple systems

or highly aggregated analysis of complex systems.

Problem size, violations of assumptions, or the need to capture the effects of

other dimensions of an overall logistics system may force a primary reliance on sim-

ulation modeling. However, a queuing network model may provide valuable insight

58

when used as an adjunct to simulation. For example, the analytical model can de-

termine the assignment policies to be employed by candidate manpower structures

in a simulation study. The simple "Mike's Flying Club" problem would require

78 simulation experiments to exhaustively evaluate all policies and structures, and

multiple replications would be required to place statistical confidence bounds on

each result. Preliminary queuing network analysis could instantly narrow the range

of policies which merit investigation. The analytical model could also be employed

to produce "external control variates" for increasing the computational efficiency

of a simulation effort [25, p. 359]. Other adjunct uses are possible, such as using

the analytical model to identify a starting point for a simulation search.

The principal value of the queuing network method lies is its ability to

quickly reveal the relationships between key parameters, evaluate tradeoffs, offer

fundamental insights, and answer basic questions. Listed below are some ques-

tions which might arise in the context of manpower analysis for military aircraft

maintenance:

" How does a change in the manpower budget affect operational effectiveness?

Is the optimal specialization strategy altered? How much effectiveness is lost if

the budget declines but the specialization strategy remains unchanged? What

effects result from changes in manpower training costs?

" What effect does changing the reliability or maintainability characteristics of

a particular aircraft subsystem have on operational effectiveness? What is the

impact of such a change on the optimal specialization strategy? How does the

cost of improving the subsystem compare with the manpower costs that might

be saved?

" What is the cost of dispersed operations? How much sortie generation capa-

59

bility is lost if aircraft are dispersed without an increase in total manpower?

How much of an increase in manpower expenditure is required to maintain a

specified sortie generation rate?

These questions are representative of myriad possible concerns. Similar issues might

arise for many other enterprises which employ maintenance personnel of varying

skills. These issues can be explored through the analytical method contributed by

this thesis.

Appendix A

Policy Iteration Algorithm

This appendix includes a derivation and convergence proof for the policy

iteration algorithm presented in Section 2.2. The algorithm can be described as a

special case of the general policy iteration method developed by R. Howard [18].

Consider a machine maintenance system with Markovian transition rates

r,j defined as follows:

nu) q+(,j)/Lo "1(ij) = 0

rij= [ya(,j)]A.y(,j) ^(ij) E {1, 2,..., M}

0 otherwise

During the time the system is in state i, it accumulates machine operating time at

a rate n () . Let dt be an infinitesimal time interval such that a system in state i

will transition to state j in dt with probability rijdt. Let rj(t) be the probability

that the system will be in state j at time t after the start of the Markov process.

Further, let vi(t) be the total machine operating time that the system will achieve

in time t if it is initialized in state i. Using these definitions, it follows that

7rj(t + dt) = 7rj(t){1 - Trjidt} + 7r,(t)rjjdt j = 1,2,... ,I (A.1)

v,(dt + t) = (1 - Ejrdf){n(')dt + v(t)} + E rjdt vi(t) i = 1,2,... , I (A.2)
joi 1 '

61

Equations A.1 and A.2 can be simplified by defining ri, = - Y2# rij and substitut-

ing to yield

7rj(t + dt) = 7rj(t){1 + rjjdt} + 1_Z7ri(t)rijdt

- 7rj(t) + 7 ri(t)rijdt (A.3)

vi(t + dt) = (1 + r2idt){n()dt + vi(t)} + Zrijvj(t)dt
jii
I

- n()dt + vi(t) + n(o)ridt2 + E rijvj(t)dt (A.4)

Simple algebraic manipulation yields the expressions

rj(t + dt) - 7rj(t) t (A.5)
dt

I

v2(t + dt) -nv(t) = oi) + no riidt + E rijvj(t) (A.6)
dt j=1

Taking the limit dt -+ 0 produces the constant-coefficient differential equations

dir,(t) '
dt , (t)r=1,2,..., (A.7)

i=1

dvi(t) = (o)d(+ Er±jZj(t) i 1,2..., 1 (A.8)
dt j=1

These equations relate state probabilities to transition rates and govern the total

expected machine operating time for the system in time t.

For all large t such that a Markov process reaches steady-state operation,

62

it is known that dirj(t)/dt - 0 for each state j. Thus, Equations A.7 demand that

7ririj = 0 j=1, 2,... II (A.9)

where each ri is a steady-state probability for all large t. Further, each vi(t) in each

Equation A.8 can be replaced with an asymptotic expression E(no)t + vi, where

E(no) is the slope of the asymptote (rate at which the system accumulates machine

operating time) and vi is the intercept. Equations A.8 then become

I

E(nu) = 0) + r,{E(no)t +vj}

I I

= no + E(no)t r ?aj + r i:jvj (A.10)
j=1 j=1

The expression = rij is zero by definition, leaving the value determination equa-

tions

I

E(no) =n4) + ' ',vj i= 1,2,...,I (A.11)
j=1

This set of I equations has I + 1 unknowns. Each vi represents the relative value

of beginning in a certain state, so any one of them can be set to an arbitrary value.

For consistency, set vi = 0.

Now consider two manpower assignment policies represented by decisions

k' and " for each system state. Assume that the policy improvement step of

the algorithm in Section 2.2 has produced each decision k" as a successor to each

decision k'. It is therefore known that

I I

4 -_E rI' , (A.12)

63

or
1 I

k" e
6,rij~v 4v1 (A. 13)
j=1 j=1

where 6 > 0. From the value determination Equations A.11, it is known that

I

E(no)" = no + ri" ,'. (A. 14)
j1l

I

E(no)' = n() + V v (A.15)
j=1

Subtracting Equations A.15 from A.14 yields

I I

E(no)" - E(no)' = E r '' "- E P v

j=1
j=1

I I
= E r j v " + 6i -l II r kl v

"-- 2.j?'j

3=1 j=1

1 I II

6i + E r ' (v" - v') (A.16)
j=1

Let E(no)A E(no)" - E(no)' and v, v' - v,. Equations A.16 then become

E(=o)- = 6i + Zr v4 i = 1,2,...,I (A.17)
j=1

Multiplying each Equation A.17 by a corresponding steady-state probability 7r' and

summing over all i yields

I I I

E(no)A = S.r + r"r' V
3=1 i=1 j=1

I + v

j= =

64

However, Equations A.9 require that 17r' r = 0 for each state j. Thus,

I

E(no)A = 67r (A.19)
z=1

Since all r' > 0 and all bj _> 0, it follows that E(no)A >0 . Thus, E(no)" will be

greater than E(no)' if decisions k" can be found such that E=l r k v j > El k'

for any state i.

It remains only to show that a better policy cannot exist without being

found at some time by the policy improvement step. Assume that E(no)" > E(nu)'

but the algorithm has converged on the policy represented by decisions k'. Then

6i < 0 for all i when all 6, are defined by Equations A.13. Since 7r,> 0 for all i,

Equation A.19 demands that E(no)" - E(no)' < 0. However, this contradicts the

assumption that E(no)" > E(no)'. It is therefore impossible for a superior policy

to exist but remain undiscovered at the completion of the algorithm.

Appendix B

Program MAINTOP

B.1 Description

Maintenance resource optimization using the sequential linear program-

ming approach is implemented in a portable computer program called MAINTOP

(MAINTenance OPtimization). The program is written in standard Pascal and is

listed in the next section of this appendix. The listing includes file statements for

both mainframe and microcomputer implementations. Some internal documenta-

tion is provided, including variable definitions and brief descriptions for each sub-

routine. An overview of the relationship between the various program components

can be obtained from Figure B.1.

Program MAINTOP makes extensive use of recursive calls to subroutines.

This approach achieves programming efficiency in constructing the queuing net-

work, building the system state space, defining alternative resource structures, and

identifying nondominated feasible decisions for resource assignments. The program

also employs pointer variables and linked lists to preserve computer memory and

thus increase the tractable problem size. Maximum use of computer capability

can be achieved by adjusting the constant parameters listed at the beginning of

the program. During program execution, network reduction will be performed as

necessary to limit the size of the system state space.

To use program MAINTOP, data should first be entered into a text file

called NAINTOP.DAT in accordance with the format displayed in Table B.1. The

66

prgrml
MIAINTOP

R 'e d a tM k e e w r J R e d u c e -

Re~d~ata ake~etwor Node~apNetwork itewr

proced r proceur l proed r i proceure l
Mk - k- Make-
Sae Pace Ct U ras~kc Ah N esr ptimzere:

p~rocedure procedure procedure

L. Node DM ake-c Daimplex

prprocedure

Mak~tteMakeTrans NextTrans

procedure
NextAvlRsrc

procedur
MakeDec

Figure B.l: Relationship between Components of Program MAINTOP

67

general format is paralleled by a sample data file for the "Mike's Flying Club"

problem introduced in Chapter 2. Precise character position is not critical, provided

the data is sequenced properly and placed in separate lines for each maintenance

task and resource. For each task m, the set ', is defined as the set of all tasks

which must be completed before task m can be initiated. A value of 0 in the

A,, position indicates that a task is always required between operational activities.

A value of 0 is also used as an "end of list" character for the task and resource

parameters. Care should be taken to avoid trailing blanks on any line of data.

Table B.: Data Format for Program MAINTOP

N g.o C 2 0.50 100.0

1 1.00 1 0 23
m jm am Am 4m 2 0.25 1 0.20

3 0.50 2 0.25
0 0

1 10.00 1
Y Cy Q1 2 20.00 2

3 25.00 3
0 4 30.00 2 3

5 33.00 1 2 3
0

Output from the program is recorded to a text file called NAINTOP. OUT. The

output includes an echo listing of input parameters, a description of the generated

model, and a presentation of performance results. Sample output for the "Mike's

Flying Club" problem is listed in the final section of this appendix.

68

B.2 Program Listing

program MAINTOP(input ,output ,Data,Out);

P Determines optimal specialization and task allocation for maintenance *}
P resources using a queuing network formulation.

{* uthors: Dennis C. Dietz and Matthew Rosenshine
Department of Industrial and Management Systems Engineering *
Pennsylvania State University, University Park, PA 16802 *

P Language: Standard Pascal -- program is suitable for mainframe or *
microcomputer implementation.

const MaxTasklO0; {maximilm number of task types)
MaxRsrc=25; {maximulm number of resource types)
MaxSpec=10O; {maximum number of specialization strategies)
Max~ode=250; {maximum number of network nodes)
MaxStateSOO0; {maximum number of system states)
MaxDec=2000; {maximum number of decision variables)

type TaskSet = set of 1. .MaxTask;
lodeSet =set of 0. .Maxlode;
RsrcSet = set of 1. .MaxRsrc;
TaskType =record

TaskRate: real; Irate of task completion)
ReqRsrc: integer; {number of maintenance resources required)
FailRate: real; Irate of random failure)
Precede: TaskSet {set of tasks this task must precede)

end; {TaskTypel
Taskkrray = array [1. .MaxTask] of TaskType;
TasklntArray =array [l. .MaxTask) of integer;
TaskTstArray = array (l. .MaxTask) of boolean;
Rsrcype = record

Cost: real; {unit cost of resource)
Taskual: TaskSet; {set of tasks this resource cam perform)
Minlsrc: integer; {minimum resource availability)
MaxRsrc: integer; {maximum resource availability)
StpRsrc: integer {availability increase increment)

end; {RsrcTypel
RsrcArray = array [i.. MaxRsrc) of Rarcype;
RsrclntArray = array [i. .MaxRsrc) of integer;
NodeType =record

Prob: real; frouting probability)
RedAdj: real; Irate adjustment for network reduction)
Pending: TaskSet; {set of pending task.)

69

Eligible: TaskSet; {set of eligible tasks)

NextNodes: NodeSet {set of succeeding nodes)

end; {NodeTypej

NodeArray = array [O..MaxNode] of NodeType;

NodelntArray = array [O..MaxNode] of integer;

OccupyPointer = OccupyType;

OccupyType = record
Node: O..MaxNode; {occupied node identification)

Machs: integer; {number of machines at node)

NextOccupy: OccupyPointer {pointer to next occupied node)

end; {OccupyTypel

StateArray = array [1..MaxState] of OccupyPointer;

StateIntArray = array [1..MaxState] of integer;

StateRealArray array [1..MaxState] of real;

TransPointer = "TransType;

TransType = record

NextState: 1..MaxState; {new state after transition)

LossNode: O..MaxNode; {node which loses a machine)

GainNode: O..MaxNode; {node which gains a machine)

TransTask: 1..MaxTask; {task completed at transition)

NextTrans: TransPointer {pointer to next transition)

end; {TransType}
TransArray = array [1..MaxState) of TransPointer;

DecMatrix = array [O..MaxState,O..MaxDec] of real;

ExPointer = ExType;
ExType = record

ExDec: 1..MaxDec; {excluded decision)
NextEx: ExPointer {pointer to next excluded decision)

end; {ExType}

AltPointer = -AltType;
AltType = record

Structure: RsrclntArray; {resource structure)

SpecCode: 1..MaxSpec; {specialization strategy)

Excluded: ExPointer; {pointer to excluded decisions)

CrntEx: ExPointer; {pointer to current excluded decision)

Accept: boolean; {indicator for acceptable structure)
GoodGuess: real; {estimater for relative performance)
Optimum: real; {expected number of operating machines)
NextAlt,PrevAlt: AltPointer {pointer to next/previous alternative)

end; {AltType)

OptArray = array [1..MaxSpec] of AltPointer;

var NumMach: integer; {number of machines in system)

NumTask: integer; {number of task types)

NumRsrc: integer; {number of resource specialty types)

NumNode: integer; {number of nodes in network)

NumState: integer; {number of system states)

NumDec: integer; {number of decision variables)

NodeLimit: integer; {number of nodes in reduced network)

OpsRate: real; {rate of operational activity completion)

CostLimit: real; {resource expenditure limit)

70

Method: char; {solution method)
TaskData: TaskArray; {array of task data)

LowNode: TasklntArray; {array of low number nodes for task set size)
RsrcData: RsrcArray; {array of resource data)
NodeData: NodeArray; {array of node data)
StateData: StateArray; {array of state data)

TransData: TransArray; {array of tranisition data)
AltData: AltPointer; {pointer to list of structure alternatives)

Dec: DecMatrix; {matrix of decision coefficients}

BasicDec: StatelntArray; {array of basic decisions)

Data,Out: text; {input and output text files)

procedure ReadData(var NumMach,NumnTask ,NumRsrc: integer;

var Opsftate,CostLimit: real;

var Method: char;
var TaskData! TaskArray;

var RsrcData: Rsrckrray);

---)
{ Reads model parameters from input data file and echos to output.)

{ Calling Routines: program MAINTOP)
{ Called Routines: none}

---)

var I,J: integer; {local counter variables)

begin
writeln('** Reading Data ... '1);

vriteln(Out,'**** INPUT DATA SUMMARY***)
writeln(Out);
readln(Data,Num~ach,OpsRate ,CostLimit);
writeln(Out, 'Number of Machines: ',NumMach:8);

writeln(Out, 'Operations Rate: ',OpsRate:8:4);

writelnCOut, 'Expenditure Limit: ',CostLimit:8:2);
write(Out,'Solution Method: ')

writeln;
vriteln('--- Solution Method Menu --- 'Y);

writeln(' N. Optimize each specialization strategy (NORMAL)');

writeln(' I. Evaluate all resource structures (INSIGHT)');
vriteln(' S. Find optimal structure only (SPEED)');

write ln;

repeat

write('Select solution method-> ')
readln(Method);

writein

until (Method in ['N','n','','i','S','s'));
writeln;

71

case Method of

'N','n': writeinCOut,' NORMAL');

'I','i': writeln(Out,' INSIGHT');
'S','s': writeln(Out,' SPEED')

end; {case}

writeln(Out);

writeln(Out);

NumTask:0O;

for I:=l to MaxTask do TaskData[I2.Precede:=[j;

read(Data,I);

while (1<>O) do begin

writeJln(Out, 'Task ',1:2);

NumTask:=NumTask+l;
with TaskData[NunTask) do begin

read(Data,TaskRate ,Reqasrc,FailRate);
writeln(Out, 'Repair Rate: ',TaskRate:8:4);
writeln(Out, 'Resources per Task: ',ReqRsrc:8);

write(Out, 'Failure Rate:

it (FailRate>O.O) then writeln(Out,FailRate:8:4)

else writeinCOut,'

end; {with}
write(Out, 'Prerequisite Tasks: ');

while not soln(Data) do begin

read(Data,J):
write(Out,3:4);

with TaskData[J) do Precede:=Precede+(-IJ
end; {while}

writeinC Out);

writeinC Out);

read(Data,I)
end; {while}

writeln(Out);

NumRsrc :=0;
read(Data,I);
while (I<>O) do begin

writeln(Out,'Resource ',1:2);

NumRsrc :=NumRsrc+l;
with RsrcDatA[NumRsrc) do begin

read(Data,Cost);
writeln(Out,'Unit Cost: ',Cost:8;2);

TaskQual: = 0;
write(Out,'Qualified Tasks:')

while not eolnCData) do begin

read(Data,J);
write(Out,J:4);

Taskual: =TaskQual+ [3)

end; {while}
end; {with}

writeln(Out);
writeln(Out);

read(Data,I)

72

end; {uhile}
writelnC Out);

end; {ReadData}

procedure MakeNode (var TaskSetSz ,NuniTask ,Numode: integer;
var Opsftate.RateSui: real;

var TaskData: Taskkrray;

var Low~ode: TasklntArray;

var NodeData: NodeArray;
var TmpTaskSet ,PrecedeSet: TaskSet);

f{--}
{ Creates a network node and computes node parameters.}

f
{ Calling Routines: procedure Next~ask}

f Called Routines: none}

{ -- }

var I,3: integer; {local counter variables)

begin
Numode:=NumNode+l;
if (LowNode[TaskSetSz)0O) then LowNode UlaskSetSz :=NunNode;

with NodeatatlumNode) do begin

Pending: =TmpTaskSet;
Eligible: =TmpTaskSet-PrecedeSet;
Prob :=OpsRate/RateSum;

for I:1l to NumTask do

if (TaakData[IJ.FailRate=0.0) and not (I in Pending) then Prob:0O.O;
if (Prob>O.O) then

for I:=l to NumNode-I do

if (NodeData[I) .Pending<=TmpTaskSet) then
Prob: =Prob-NodeData [I) Prob;

RedAdj :=1.O;

if (TaskSetSz~l) then Nextlodes:=[O)
else begin

NextNodes:=[J;

for I:=LowNode[TaskSetSz-1) to LowNode[TaskSetSzJ-l do

for 3:1l to NuniTask do

if (J in NodeData[NvluNode) .Eligible)

and (NodeData[I) .Pending+[E3>TmpTaskSet) then

NextNodes:=Nextjc~des+ [I]
end; {elsel

end; {with}

end; {Makelode}

procedure NextTask (I ,TaskSetSz: integer;

73

var HiFirstTask,TaskCnt: integer;
var NumTask,NumNode: integer;

var Opsate: real;
var TaskData: TaskArray;

var LowNode: TasklntArray;
var NodeData: NodeArray;

var TmpTaskSet: TaskSet);

-- }
{ Recursively builds a pending task set and determines if a node with the }
{ current pending task set should be created.}

{ Calling Routines: procedure MakeNetwork, procedure NextTask
{ Called Routines: procedure MakeNode

-- I

var 3: integer; {local counter variablel
RateSum: real; {sul of eligible task completion ratesl
PrecedeSet: TaskSet; {tasks which miust precede all pending tasks)

AiwaysSet: TaskSet; {pending tasks which are always requiredl

begin
if (NumNode<MaxNode) then begin

TmpTaskSet :=TmpTaskSet+ El];

TaskCnt :=TaskCnt+l;
if (TaskCnt=TaskSetSz) then begin

PrecedeSet:=[];
AlwaysSet:=El;
RateSum:=OpsRate;

for 3:1l to NumTask do

if (J in TmpTaskSet) then
PrecedeSet :=PrecedeSet+TaskData [3 . Precede

else RateSum:RateSumITaskData[3) .FailRate;
for J:=1 to Num~ask do

if (3 in PrecedeSet) and (TaskData [3).FailRateO0.O) then
AlwaysSet :=AlwaysSet+ [3];

if (AlwaysSet<=TmpTaskSet) then
MakeNode(TaskSetSz ,NuzTask,NumNode,OpsRate ,RateSumTaskData,
LowNode ,NodeData, TmpTaskSet ,PrecedeS et)

end else begin

HiFirstTask :=HiFirstTask+1;
for 3:=I+l to HiFirstTask do

NextTask(3 ,TaskSetSz,HiFirstTask,TaskCnt ,NunTask,NumNode,
Opsate ,TaskData,LowNode ,NodeData,TmpTaskSet);

HiFirstTask :=HiFirstTask-1

end; {else}

TmpTaskSet :=TmpTaskSet- (I);

TaskCnt :=TaskCnt-1
end;

end; {IextTask}

74

{**}*

procedure MakeNetwork(var NumTask,NumNode: integer;

var OpsRate: real;

var TaskData: TaskArray;

var LowNode: TaskIntArray;
var NodeData: NodeArray);

{---}
{ Creates a queuing network from model parameters. }
{ }
{ Calling Routines: program MAINTOP }
{ Called Routines: procedure NextTask }
{---}

var I: integer; {local counter variable}

TmpTaskSet: TaskSet; {temporary set of pending tasks}

HiFirstTask: integer; {highest numbered first task in set}

TaskSetSz: integer; {number of tasks in set}

TaskCnt: integer; {task counter}

begin

writeln('** Building Network ...');

for I:=l to NumTask do LowNode[I]:=O;

NumNode:=O;
TmpTaskSet:=[];

TaskCnt:=O;
for TaskSetSz:=l to NumTask do begin

HiFirstTask:=NumTask-TaskSetSz+i;
for I:=1 to HiFirstTask do

NextTask(I,TaskSetSz,HiFirstTask,TaskCnt,NumTask,NumNode,
OpsRate,TaskData,LowNode,NodeData,TmpTaskSet)

end; {for}

end; {MakeNetwork}

{**}*

function NodeCap(var NumMach,NumNode: integer): integer;

{---}
{ Returns the maximum number of nodes permitted by the maximum system }
{ state size (MaxState). }
{ }
{ Calling Routines: program MAINTOP }
{ Called Routines: none }
{--

var I: integer; {local counter variablel
StSpaceSz: integer; {state space size)

75

begin
StSpaceSz:=NuinMach+l;

while (I<=NumNode) and (StSpaceSz<MaxState) do begin

I:1I+I;

StSpaceSz :=StSpaceSz*(NumMach+I) div I

end; {vhile}

NodeCap :=I-1
end; {NodeCap}

procedure ReduceNetwork (var NumTask ,NumNode ,NodeLimit: integer;

var TaskData: TaskArray;
var LowNode: TasklntArray;

var NodeData: NodeArray);

f{--}
{ Reduces network size and adjusts node parameters.

{ Calling Routines: program MAINTOP
f Called Routines: none

f{--I

var I,J,K: integer; {local counter variables)

TaskSetSz: integer; {number of tasks in set)

RateI: real; {departure rate from losing node)

RateJ: real; {departure rate from gaining node)
ProbIJ: real; {transition. probability from losing to gaining node)

NewProbJ: real; {adjusted routing probability)

NewftateJ: real; {adjusted departure rate)

begin
writeln('** Reducing Network ... ')

for I:=NumNode downto NodeLimit+1 do begin
TaskSetSz : O;

for K:=1 to NumTask do begin
if (K in NodeData[I).Pending) then TaskSetSz:=TaskSetSz+i;
if (K in NodeData[I) .Eligible) then

RateI:=RateI+TaskData (K) TaskRate

end; ffor)
for J:=LowNode[TaskSetSz-1) to Lowlode[TaskSetSz)-I do

if (J in NodeData(I) .Nextlodes) then begin

Rate.T:0.O;
for K:=l to IumTask do begin

if (K in NodeData[JJ.Eligible) then
Rate :=RateJ+TaskData[K) .TaskRate;

if (NodeDataE3) .Eligible+[K]=NodeData[I) .Eligible) then
ProbIJ: =TaskData(K) .TaskRate/RateI

end; ffor)

76

NewProb3 =NodeData [3] .Prob+NodeData El) Prob*ProbIJ;
NewRatel:=NewProb3/(NodeData [3].Prob/(RateJ*NodeData [3).RedAdj)
+NodeData [I] Prob*ProbIJ*(1 .O/(Ratei*NodeData [3).RedAdj)

+1.O/(RateI*NodeData[I) .RedAdj)));

NodeData[3] .Prob:=NewProbJ;

NodeData [3].Redkdj :NewRateJ/(RateJ*NodeData[3] .Redidj)
end; {if}

end; {for}

end; {ReduceNetwork)

procedure ListNetwork(var NumTask,NumNode,NodeLimit: integer;
var NodeData: NodeArray);

f{--}
{ Writes network parameters to output file.}

{ Calling Routines: program MAINTOP

{ Called Routines: none}

--- I

var 1,3: integer; {local counter variablesl

begin

writeln(Out,'**** MODEL SUMMARY**')
writeln(Out);

writeln(Out,'Number of maintenance nodes in full network: ',NumNode:4);

if (NodeLimit<NumNode) then
writeln(Out,'Number of maintenance nodes in reduced network: ',

NodeLimit :4);

if (NodeLimit<NumTask) then
writeln(Out,'WARNING: Fewer allowable nodes than tasks.');

writeln(Out);
for I:=l to NodeLimit do begin

writeln(Out,'Node 1,1:4);

with NodeData[I) do begin

writeln(Out,'Routing Probability: ',Prob:5 :4);
if (NodeLimit<Numlode) then
writeln(Out, 'Reduction Adjustment: ',Redkdj :5:4);

write(Out,'Pending Tasks: 1);

for 3:=I to NumTask do

if (3 in Pending) then write(Dut,3:4);

writein(Out);
write(Out,'Eligible Tasks: ');
for 3:1I to Numask do

if (3 in Eligible) then write(Out,3:4);
writeln(Out)

end; {with}
writeln(Out)

end; (for)

77

end; {ListNetwork}

procedure MakeState(var NodeLimit,NumState: integer;
var StateData: StateArray;
var TmpState: NodelntArray);

{--}
{ Creates a system state. The machine distribution is stored in a linked }

{ list of occupied nodes. }
{ }
{ Calling Routines: procedure NextTrans }

{ Called Routines: none }

{--

var I: integer; {local counter variable)
CrntOccupy: OccupyPointer; {pointer to current occupied node}

begin
NumState:=NumState+l;

for I:=O to NodeLimit do
if (TmpState[I]>O) then begin

if (StateData[NumState]--nil) then begin
new(StateData[NumState]);

CrntOccupy:=StateData[NumState]

end else begin

new(CrntOccupy-.NextOccupy);
CrntOccupy:=CrntOccupy .NextOccupy

end; {else}

with CrntOccupy- do begin

Node:=I;

Machs:=TmpState[I];
NextOccupy:=nil

end; {with}

end; {if}

end; {MakeState}

procedure NextNode(I: integer;
var NodeCnt,NodeLimit,NumState: integer;

var StateData: StateArray;

var TmpState: NodeIntArray);

{--
{ Recursively distributes machines to network nodes and identifies system I
{ states. I
{ I

{ Calling Routines: procedure MakeStateSpace, procedure NextNode I
{ Called Routines: procedure MakeState I

78

var J: integer; {local counter variable)

begin

NodeCnt:=NodeCnt+1;

if (NodeCnt=NodeLimit) then begin

TmpState[NodeCnt):=I;
MakeState(NodeLimit,NumState,StateData,TmpState)

end else

for J:=O to I do begin

TmpState[NodeCnt2:=I-J;
NextNode(J,NodeCnt,NodeLimit,NumState,StateData,TmpState)

end; {for)
NodeCnt:=NodeCnt-1

end; {NextNode}

{**}*

procedure MakeStateSpace(var NumMach,NodeLimit,NumState: integer;

var StateData: StateArray);

--- }
{ Creates the system state space.)
{ }

f Calling Routines: program MAINTOP

f Called Routines: procedure NextNode

S --

var I: integer; {local counter variable)

NodeCnt: integer; {node counter)

TmpState: NodelntArray; {temporary state data}

begin
writeln('** Defining System States ...');

for I:=l to MaxState do StateData[I]:=nil;

NumState:=O;

NodeCnt:=O;
for I:=O to NumMach do begin

TmpState[NodeCntJ:=NumMach-I;

Nextlode(INodeCnt,NodeLimit,NumState,StateData,TmpState)

end; {for)

writeln(Out,'Number of system states: ',NumState:6);

writeln(Out)

end; {MakeStateSpace}

{ ************* *********.** ************* ********* ********

procedure MakeTrans(I,3: integer;
var Loser,Gainer,NumTask: integer;

var TaskData: TaskArray;

79

var NodeData: NodeArray;
var TransData: TransArray;

var CrntTrans: TransPointer);

--- I
{ Creates a data record for tran~'sition parameters.

{ Calling Routines: procedure MakeTransSpace

{ Called Routines: none

--- I

var K: integer; {local counter variable}

TmpTaskSet: TaskSet; {temporary set of pending tasks}

begin
if (TransData[I)=nil) then begin

new (TransData [I))
Crnt Trans :=TransData (Il

end else begin
new(CrntTrans-.NextTrans);
Crnt Trans :=CrntTrans-. NextTrans

end; {else)
with CrntTrans- do begin

NextState: =3;
if (Loser0O) then begin

LossNode: =0;
GainNode: zGainer;

TransTask: =0
end else begin
LossNode :=Loser;

Gainliode :=Gainer;

if (Gainer=O) then TmpTaskSet:=[]
else TmpTaskSet:=NodeData[GainerJ .Pending;

for K:=1 to NumTask do

if UCK)+TmpTaskSet=NodeData (Loser) .Pending) then TransTask: =K

end; {elsej
NextTrans :=nil

end; {withl
end; {MakeTrans}

procedure MakeTransSpace (var NumTask, NunState, NodeLimit: integer;

var NodeData: Nodekrray;
var StateData: StateArray;

var TransData: Transkrray);

f{--I
{ Creates a table of transition data. For each state, transition data is

{ stored in a linked list of records to save memory.

80

f Calling Routines: program MkAINTOP I
f Called Routines: none I

f{--}

var I,J,K: integer; {local counter variables)

ChgMach: integer; {change in machines at a node)
Loser,Gainer: integer; {losing and gaining nodes)
TmpStateI,TmpStateJ: NodelntArray; {temporary state data)

CrntI,CrntJ: OccupyPointer; {pointers to current state data)

CrntTrans: TransPointer; {pointer to current transition)

OneStep: boolean; {indicator for one-step behavior}

begin
writeln('** Defining Transitions ..2);

for I:1l to NumState do begin

TransData [I) :=nil;

for K:0O to Nodelimit do TmpStateI(K):=O;
Crnt : =StateData [I];

while (CrntI<>nil) do begin
TmpStateI(CrntI-~.NodeJ :=CrntI-.Machs;
Crntl:=CrntI-.NextOccupy

end; {while}

for J:1l to NumState do if (I<>J) then begin
for K:0O to NodeLimit do TmpStateJ[K):=O;

CrntJ:=StateData[J) ;
while CCrntJI<>nil) do begin

TmpStateJ[CrntJ-.Node :=CrntJ-.Machs;

CrntJ :Cr~tJ^.NextOccupy
end; {while}

OneStep:=true;

Loser:=-1;

Gainer:=-i;

while COneStep=true) and (K<NodeLimit) do begin

Chgxach:=TmpState3 (K)-TmpStatel (K];

if (abs(Chg~ach)>1) then OneStep:=false

else case ChgMach of
-1: if (Loser>0O) then OneStep:=false else Loser:=K;
1: if (Gainer>=O) then OneStep:=false else Gainer:=K

end; {case}
K:=K+l

end; {while)

if (OneSteptrue) and
((oser~o) or (Gainer in NodeData(Loser].NextNodes)) then

MakeTrans(I ,3,Loser,Gainer ,NunTask,TaskData,NodeData,TransData,
CrntTrans)

end; ffor)

end; ffor)
end; {MakeTransSpace}

81

procedure Makeklt~var SpecCnt: integer;
var AltData,CrntAlt: AltPointer;
var TmpStructure: RsrclntArray);

--- }
{ Creates a maintenance resource structure alternative.

{ Calling Routines: procedure NextAvlRsrc}
{ Called Routines: none}

--- }

begin
if (AltDatanil) then begin

new(AltData);
AltData-. Prevklt :=nil;
CrntAlt :=AltData

end else begin

new(CrntAlt' .NextAlt);
Crntklt-.Nextilt-.PrevAlt:=CrntAlt;

CrntAlt :=CrntAlt-. Nextilt
end; {else}

with CrntAlt- do begin
Structure:=TmpStructure;
SpecCode:=SpecCnt;
Excluded:=nil;
CrntEx :=nil;

NextAlt:=nil
end; {with)

end; {Makeilt}

procedure NextAvlRsrc(I: integer;
Costftem: real;

var SpecCnt,Numksrc: integer;
var RsrcData: RsrcArray;

var AltData,CrntAlt: AltPointer;
var TmpStructure: RsrclntArray);

--- }
{ Recursively adds available maintenance resources to create structure}

f alternatives.}

f
f Calling Routines: procedure Add.Alts, procedure NextAvlRsrc}

f Called Routines: procedure MakeAlt}

f{--I

var J1: integer; {local counter variablel

var Accept: boolean; {indicator for acceptable alternativel

82

begin
while (I<=NumRsrc) and (TmpStructure[I]=0) do I:1I+1;

if (I>NumRsrc) then begin

if (Costfem>0O.0) then begin
Accept:=true;

for J:=l to NumRsrc do
with RsrcData[3] do

if (TapStructure[3) >0) and (Maxfsrc-TmpStructure [3] >Stpftsrc)
and (Cost*StpRsrc<=Costtem) then Accept:=false;

if Accept then MakeAlt(SpecCnt ,AltData,CrntAlt ,TmpStructure)

end; {if}

end else
with RsrcData[I) do begin

3 :MinRsrc;
while (3<=Maxftsrc) do begin

if (CostRem>0.0) then begin
TmpStructure [I]:J
NextkvlRsrc(I+1 ,Costftem,SpecCnt ,NumRsrc,RsrcData,

AltData,CrntAlt ,TmpStructure)

end; {if}

3: =3+StpRsrc;
CostRem: =Costftem-StpRsrc*Cost

end; {while}
end; {with}

end; {NextkvlRsrc)

procedure Addklts(var SpecCnt ,Numilach,NumTask ,NodeLimit ,NumRsrc: integer;

var CostLimit: real;
var TaskData: TaskArray;

var NodeData: NodeArray;

var Rsrcata: RsrcArray;
var AltData,CrntAlt: AltPointer;

var TmpStructure: RsrclntArray);

--- }
{ Adds resource structure alternatives to a linked list.}

Caln Rotns}rceueNx~r
{ Calling Routines: procedure Next~Rsrc}

--- I

var I,J,K: integer; {local counter variablesl

NodeReq: integer; {number of resources required at node}
CostRem: real; {remaining available exponditurel

begin
CostRem:=CostLimit;

SpecCnt :=SpecCnt+l;
write(Out,SpecCnt:8,' f)

83

for I:=l to NumRsrc do begin
if (TmpStructure[I)>0) then begin

write(Out,I:1,' ');
vith RsrcData(I) do begin

Min~src:=0;

Maxftsrc:=0;
Stpasrc:=9999;
for J:=1 to WumTask do

if (J in Taskual) then begin

if (TaskData[JJ .ReqRsrc>MinRsrc) then

MinRsrc:=TaskData [3] .ReqRsrc;

if (TaskData[J) .ReqRsrc<StpRarc) then
StpRsrc:=TaskData [3). Reqftsrc

end; {if}

f or 3:1l to NodeLimit do begin

Nodefteq:=0;
for K:=l to NumTask do begin

if (K in Taskual) and (K in NodeData[J] .Eligible) then

NodeReq: =Nodefteq+TaskData[K] .Reqftsrc*NumMach;

if (Nodefteq>MaxRsrc) then Maxksrc:=NodeReq

end; {f or)
end; ffor)

Costftem:=CostRem-MinRsrc*Cost
end; {uith}

end; {if)

end; ffor)

writeln(Out, '1');

Nextkvlftsrc(I ,CostRem,SpecCnt ,NumRsrc ,RsrcData,AltData,Crntflt ,TmpStructure)

end; {AddAlts)

procedure NextRsrc(I: integer;

TaskCover: TaskTstkrray;

var SpecCnt ,NuiMach,NumTask,NodeLimit ,NujnRsrc: integer;

var CostLimit: real;
var TaskData: TaskArray;

var NodeData: NodeArray;
var RsrcData: Rsrcirray;

var AltData,CrntAlt: AltPointer;
var TmpStnicture: RsrclntArray);

f{--}
{ Recursively determines acceptable resource specialization strategies.

f Adds alternative resource structures whenever an acceptable strategy}

is found.

{ C.1.1ing Routines: procedure MakekltSpace, procedure NextRsrc}

{ td.led Routines: procedure AddAlts

--- }

84

var J: integer; {local counter variable}
Cont: boolean; {indicator for continued addition of resource types)
Accept: boolean; {indicator for acceptable strategy}

begin

TmpStructure[I]:=l;
Cont:=true;
for J:=1 to NumTask do

if (J in RsrcData[I].TaskQual) then begin
if TaskCover[J] then Cont:=false else TaskCover[J]:=true

end; {if}
if Cont then begin

Accept:=true;

for J:=l to NumTask do
if not TaskCover[J] then Accept:=false;

if Accept then
AddAlts(SpecCnt,NumMach,NumTask,NodeLimit,NumRsrc,CostLimit,
TaskData,NodeData,RsrcData,AltData,CrntAlt,TmpStructure)

else for J:=I+1 to NumRsrc do
NextRsrc(J,TaskCover,SpecCnt,NumMach,NumTask,NodeLimit,NumRsrc,

CostLimit,TaskData,NodeData,RsrcData,AltData,CrntAlt,
TmpStructure);

end; {if}

TmpStructure[I]:=O;
end; {NextRsrc}

{***}*

procedure MakeAltSpace(var NumMach,NumTask,NodeLimit,NumRsrc: integer;
var CostLimit: real;
var TaskData: TaskArray;
var NodeData: NodeArray;
var RsrcData: RsrcArray;

var AltData: AltPointer);

{ --
{ Creates a linked list of resource structure alternatives.
{
{ Calling Routines: program MAINTOP
{ Called Routines: procedure NextRsrc
{--

var I,J: integer; {local counter variables)
SpecCnt: integer; {counter for specialization strategyl
TaskCover: TaskTstArray; {indicator for covered tasks}
TmpStructure: RsrcIntArray; {temporary resource structure}
CrntAlt: AltPointer; {pointer to current alternativel

begin
writeln('** Building Resource Structures

85

AltData:=nil;
SpecCnt:=0;
for I:=1 to NumRsrc do TmpStructure[I]:0O;

writeln(Out, 'Specialization Resources');

writeln(Out,' Strategy Employed');

for I:=l to NuniRsrc do begin
for J:=l to NuniTask do TaskCover[J]:=false;
NextRsrc(I ,TaskCover ,SpecCnt ,NumMach,NumTask,NodeLimit ,NumRsrc,

CostLimit ,TaskData,NodeData,RsrcData,AltData,CritAlt ,TmpStructure)

end; {f or)

writeln(Out);
writ elh(Out)

end; {MakeAltSpace}

procedure MakeDec(var I,Numflec: integer;
var TmpState: NodelntArray;

var AltData: AltPointer;
var TmpDec: StateRealArray;

var Dec: DecMatrix;

var BasicDec: StatejntArray);

--- }
{ Creates a nondominated feasible resource assignment decision.}

{ Calling Routines: procedure NextTrans}

{ Called Routines: none}

--- }

var J: integer; {local counter variable)

CrntAlt: AltPointer; {pointer to current alternative)

begin

NumDec :=Numnfec+l;
if (BasicDec[I]=O) then BasicDec[I :=NumDec;

Dec [O,NumDec :=TmpState [0];

Dectl,NumDec] :0.O;
for J:=I to NumState do if (1<>J) then begin

Dec [3,NumDec :=-TmpDec[i];
Dec [I ,NumDec :=Dec[I,NumDec+TmpDec[J)

end; {f or)
Crnt Alt : Altflata;
while (CrntAlt<>nil) do begin

if not CrntAlt-.Accept then begin
if (CrntAlt-.Excluded-nil) then begin

new(CrntAlt-.Excluded);
CrntAlt-.CrntEx:=Crntklt .Excluded

end else begin
new(CrntAlt-.CrntEx-.NextEx);

CrntAlt-.CrntEx:=CrntAlt- .CrntEx .NextEx

86

end; f{else}
with Crntilt-. CrntEx- do begin

ExDec:=NumDec;
NextEx : nil

end; {with}
end ; {if}

CrntAlt :CrntAlt-.NextAlt
end; Jwhile}

end; {MakeDecj

procedure Nextrans (I: integer;
var CrntTrans: TransPointer;
var TmpState: Nodelntkrray;
var AssnTask ,MaxAssntTask: TasklntArray;
var TmpDec: StateftealArray;
var NumTask,NumRsrc,NuiState: integer;
var Opsate: real;
var TaskData: TaskArray;
var RsrcData: RsrcArray;
var NodeData: NodeArray;
var AltData: AltPointer;
var Dec: DecMatrix;
var BasicDec: Statelntkrray);

f{--}
{ Recursively considers possible transitions to build an assignment}
f decision.}

f Calling Routines: procedure MakeDecSpace, procedure NextTrans
f Called Routines: procedure MakeDec
f{--}

var 1,K,L: integer; (local counter variables)
Accept: boolean; {indicator for acceptable decision)
CrntAlt: AltPointer; {pointer to current alternative)
UnassnRsrc: integer; {resources not assigned to tasks)

begin
if (CrntTrans--nil) then begin

Accept:=false;
CrntAlt :=AltData;
while (CrntAlt<c>nil) do begin

CrntAlt-.Accept :true;
for .11I to NumRurc do

if (CrntAlt- .Structure [3J>0) then begin
Unasnsrc:=CrntAlt-.StructureLjl;
for K:=l to Numask do
if (K in RarcData3J].TaskQual) then

Unassnksrc :=Unasasnsrc-AssnTask [K] *TaskData[KJ .Reqftsrc;

87

if (UnassnRsrc<O) then Crntklt-.Accept:=false

else for K:=l to NunTask do

if (K in RsrcData[3) .TaskQual) and
(As snTask [K) <MaxAssnTask[K)) and

(UnassnRsrc>=Taskflata [K] .DeqRsrc) then
CrntAlt-.Accept:=false

end; {if}
if CrntAlt-.Accept then Accept:=true;
CrntAlt :=CrntAlt-.NextAlt

end; {while}

if Accept then
MakeDec(l ,NumDec ,TmpState ,AltData,TmpDec ,Dec ,BasicDec);

end else begin

S:=CrntTrans-.NextState;

if (CrntTrans-.LossNode=O) then begin

TmpDec [3):=TmpState [0) *psRate*NodeDataECrntTrans-.Gainllode) .Prob;

NextTrans (I, CrntTrans .Next7rans ,TmpState,AssnTask,MaxAssnTask,
TmpDec ,NumTask,NumRsrc ,NumState ,Opsfate,TaskData,RsrcData,

NodeData,AltData,Dec ,BasicDec);

end else begin

L: =CrntTrans-.TransTask;

for K:=TmpState[CrntTrans-.LosslodeI downto 0 do begin
TmpDec [3) =K*TaskData[L) .TaskRate

*NodeData ECrntTrans'.LossNode) Redkdj;

AssnTask EL : =AssnTask EL)+K;
NextTrans (I ,CrntTrans-.NextTrans,TmpState ,AssnTask ,MaxAssnTask,
TmpDec , umTask, NumRsrc ,NunState, Opsate ,TaskData ,RsrcData,

NodeData,AltData,Dec ,BasicDec);

AssnTaskEL) :=AssnTask EL)-K

end; {for}

end ; {else}
end; {else}

end; {NextTrans}

procedure MakeDecSpace(var NumTask,NunRsrc ,NodeLimit ,NumState ,NumDec: integer;

var Opsate: real;
var TaskData: TaskArray;
var NodeData: NodeArray;

var RsrcData: RsrcArray;

var StateData: StateArray;

var AltData: AltPointer;

var Dec: Dec~atrix;
var BasicDec: StatelntArray);

--- I
{ Determines nondominated feasible decisions for each system state and
{ resource structure.

{ Calling Routines: procedure Optimize

88

{ Called Routines: procedure NextTrans

f{--I
var 1,J: integer; {local counter variables)

TmpState: NodelntArray; itemporary state data)

TmpDec: StateRealArray; {temporary rate data)
AssnTask: TasklntArray; {nujnber of tasks assigned resources)

MaxAssnTask: TasklntArray; {maximun number of assignable tasks)

CrntOccupy: OccupyPointer; {pointer to current occupied node)

Crntrans: TransPointer; {pointer to current transition)

begin
for I:=1 to NumState do begin

BasicDec[I) :0;
for J:=O to NodeLimit do TmpState[3]:0O;
Crntnrcupv:=StateData[IJ;

while (Crntoccupy<>nil) do begin
TmpState[CrntOccupy .Node :=Crntlccupy-.Machs;

CrntOccupy:=CrntOccupy-.NextOccupy

end; {while)

for J:1l to NumTask do begin

AssnTask [3) :0;
MaxAssnTask [3) :0;

end; {for}

CrntTrans :=TransData LI);
while (CrntTrans<>nil) do begin

3:=CrntTrans-.TransTask;
if (O>W then
MaxAssnTask [3) :=axAssnTask [J] +TmpState[CrntTrans-.Losslode];

CrntTrans:=CrntTrans-.NextTrans
end; {while)

for J:=l to NumState do TmpDec[J):=O.O;

CrntTrans:=TransData [I];
NextTrans(I ,CrntTrans ,TmpState ,AssnTask,NaxAssnTask,TmpDec ,NumTask,

NumRsrc ,NuxnState ,Opsfate,TaskData,RsrcData,NodeData,AltDataDec,

BasicDec)
end; ffor)

for I:0O to HumState do begin

Dec [1,0) :=0.O0;
Dec[I,NwnDec+1J :0.0

end; {f or)
for J:0O to NumDec do Dec[HumState,J:=1.O;
BasicDec [NumState+ I) HumDec+ 1;
writeln(Out,'Number of Decision Variables: ',NumDec:4)

end; {MakeDecSpace}

procedure OrderAlts~var HumState: integer;
var AltData: AltPointer;

var Dec: Dec~atrix:

89

var BasicDec: StatelntArray);

---}
{ Employs a selection sort to order resource structure alternatives by }
{ estimated performance.}

{ Calling Routines: procedure Optimize}

{ Called Routines: none}

---}

var 1,J: integer; {local counter variables}

Crntilt,Minklt,LastAlt,Tmpklt: AltPointer; {pointers to local alternatives}

begin

Crntilt :=AltData;
MinAlt :=Crnt Alt;

while (CrntAlt<>nil) do begin
for J:=1 to WumDec do Dec[NumState+l,J]:0O.O;

with Crnt~lt- do begin

CrntEx :=Excluded;
while (CrntEx<>nil) do begin

Dec ENumState+l,CrntEx-.ExDec :=1.O;
CrntEx: =CrntEx-.NextEx

end; {while}
GoodGuess :0.O;

for 1:=1 to Uutate do begin
J:=BasicDec El);
while (Dec[lumState+1,3)=1.O) do J:3J+1;
GoodGuess :GoodGuess+l.O/DecEI,JI

end; {for}

if (GoodGuess>MinAlt-.GoodGuess) then MinAlt:=CrntAlt;
end; {vith}

if (CrnitAlt^.NextAlt-nil) then Lastilt:=CrntAlt;
CrntAlt : Crntilt-.NextAlt

end; {while}
while (MinAlt<>LastAlt) do begin

if (AltData=MinAlt) then begin
AltData:=MinAlt-.IextAlt;

AltData-.PrevAlt :=nil
end else begin
MinAlt-.PrevAlt-.NextAlt:=MinAlt- .NextAlt;

MinAlt-.NextAlt-.Previlt:=MinAlt-.PrevAlt

end; {elsel

TmpAlt :=LastAlt-.NextAlt;

MinAlt-.UextAlt :TmpAlt;
if (Tmpilt<>nil) then Tmp~lt-.PrevAlt:=MinAlt;

MinAlt-.PrevAlt :=Lastilt;

CrntAlt :=AltData;
MinAlt :=CrntAl.;

while (Crnt~lt<>LastAlt-.lextAlt) do begin

90

if (Crntklt- .GoodGuess>Minklt .GoodGuess) then MinAlt:=CrntAlt;

CrntAlt : CrntAlt -.Nextilt

end; {whilej

end; {uhilej

end; {OrderAlts}

procedure DualSimplex(var NwnState ,NumDec ,Spec: integer;
var OpMach: real;

var Method: char;

var OptAlt: AltPointer;
var SpecOpt: OptArray;

Dec: DecMatrix;
BasicDec: StatelntArray);

--- }
{ Determines optimal perf ormance for a resource structure by performing
{ dual pivoting operations.

{ Calling Routines: procedure Optimize
{ Called Routines: none

--- I

var I,J,Row,Col,Numltn: integer; {local counter/identifier variablesl
Rate,Ratio,Min,Max: real; {local linear programming variablesl

ShortStop: boolean; {indicator for early exitl

begin
for I:=1 to NumState do begin

Col: =BasicDec (I];

if (Dec[NumState+1,Col)<>O.O) then

for J:=0 to NumDec+1 do
Dec [NumState+1 ,3 :=Dec [NumState+1 ,J]-Dec [I ,J)

end; {f cr1

Numltn:0O;
ShortStop:=f alse;

repeat
Row:=O;

Max:=-O.OOO0i;
for I:=l to UumState+i do

if (Dec[I,O)<Max) then begin

Row:=I;
Max:=Dec[I,O)

end; {if}
if (Row<>O) then begin

Numltn: =Numltn+ 1;

Col:0O;
Min:=99999.9;
for J:=l to NuznDec+1 do

if (Dec[Row,J)<O.O) then begin

91

Ratio:=Dec [0,3)/Dec [Row, 3);

If (Ratio<Min) then begin

Col:3J;

Min:=Ratio
end; {if}

end; {if}
Rate:=Dec [Row, Col];

for J:0O to NumDec+1 do Dec[Row,J):=Dec[Row,J]/Rate;
for I:=0 to NumState+1 do

if (I<>Row) and (Dec[I,Col)<>0.0) then begin

Rate:=Dec[I,ColJ;

for J:=O to NumDec+1 do Dec[I,3 :=Dec[I,J]-Dec[Row,J)*Rate

end; ffor)

BasicDec [Row) :Col
end; {if}

OpMach:=-Dec [0,0];
case Method of

'N', 'n': if (SpecOpt[Specl<>nil) then

if (OpMach<=SpecOpt[Spec) .Optimum) then ShortStop:=true;

'S','s': if (OptAlt<>nil) then

if (OpMach<=OptAlt .Optimum) then ShortStop:=true

end; {case}

until (Row=O) or ShortStop;

write(Out,'Expected Number of Operating Machines: ',OpMach:8:4);

if (Row>O) then writeln(Out,' (or less)') else writeln(Dut);

writeln(Out, 'Iterations: ',Numltn:4);

writeln(Out)

end; {DualSimplex)

procedure Optimize(var NuznTask ,Numksrc,NodeLimit ,NumState ,NumDec: integer;

var Opsate: real;
var Method: char;

var TaskData: Taskirray;

var NodeData: NodeArray;

var RsrcData: Rsrcirray;

var StateData: Statekrray;

var TransData: Transkrray;
var AltData: AltPointer;
var Dec: Dec~atrix;
var BasicDec: StatelntArray);

f{--}
{ Determines optimal resource structure using sequential linear programming}

f algorithm.}
f
f Calling Routines: program MAINTOP}

f Called Routines: procedure MakeDec~pace}

f{--}

92

var I,J,Row,Col,Spec,Numltn: integer; {local counter/identifier variables)
Rate,Ratio,Max,Min: real; {local linear programming variables)
TotalCost: real; {total cost of resource structure)
OpMach: real; {number of operating machines)
Basis: StatelntArray; {array of basic variable identifiers)
SpecOpt: OptArray; 4specialty strategy optimums)
Crntklt: AltPointer; {pointer to current alternative)
Optklt: AltPointer; {pointer to optimal alternativel

begin
writeln('** Optimizing ...'1);

writeln(Out, '**** OPTIMIZATION SUMMARY**')
writeluC Out);

NumDec:.=O;

writeln(' * Building Decision Space ... ')

MakeDecSpace(NumTask,NumRsrc ,NodeLimit ,NumState ,NumDec ,OpsRate ,TaskData,
NodeData,RsrcData,StateData,AltData,Dec ,BasicDec);

if not (Method in ['''')then OrderAlts(NumState,AltData,Dec,BasicDec);
writeln(' * Solving Initial Linear Program ..)

for Row:=1 to NumState do begin

Col:=BasicDec [Row);
Rate :=Dec [Row, Col);
for J:=O to NumDec do Dec[Row,JJ:=Dec[Row,Jl/Rate;

for I:0O to NumState do if (I<>Row) and (Dec[I,ColJ<>0.O) then begin
Rate:=Dec [I, Coll];
for J:=0 to WumDec do Dec[I,J):=Dec[I,J)-Dec[Row,3J*Rate

end; {f or)
end; {f or)

Numltn :=NumSt ate;
repeat

Col:0O;

Max :=0 .00001;
for J:=l to Nuaflec do

if (Dec[O,J)>Max) then begin
Col:=3;
Max : =Dec (0, J]

end; {if)
if (Col<>0) then begin

Numltn:=Numltn+l;
Row:=0;

Min:=99999.9;
for I:=l to NumState do

if (Dec[I,Col3>0.0) then begin
Ratio: =Dec [1,0)/Dec [I ,Col);

if (Ratio<Min) then begin

Row:=I;

Mmn:=Ratio
end; {if)

end; {if)

Rate: Dec [Row, Col);
f or J:0O to NumDec do Dec[Row,3J:=Dec[Row,J)/Rate;

93

for I:0O to NuniState+1 do
if (I<>Row) and (Dec[I,Collk>0.O) then begin

Rate:=Dec[I,Col);
for J:=0 to NumDec do Dec[I,J):=Dec[I,J)-DectRow,J)*Rate

end; ffor)
Baa icDec [PowJ : Col

end; {if)

until (Col=O);

writeln(Out, 'Initial Iterations: ',Numltn:4);

writeln(Out);
writeln(' * Starting Sequential Analysis .. 1);

writeln;
for I:=1 to MaxSpec do Specapt[I):=nil;

Crntklt :=AltData;

OptAlt:=nil;
while (CrntAlt<>nil) do begin

TotalCoat: =0.0;
write(Out,'Resource Structure: (');
for I:=1 to NumRarc do begin

write (Out ,CrntAlt-.Structure [I) :4);
TotalCoat:=TotalCost+CrntAlt-. Structure [I]*RsrcData[I .Coat;

end; ffor)
writeln(Out,'))
writeln(Out, 'Total Coat: ',TotalCoat:8:2);
for J:=0 to NumDec do Dec[NumState+1,iJ:=0.0;

Dec [NumState+i ,NumDec+l) =1.0;
with CrntAlt- do begin

CrntEx :=Excluded;

while (CrntEx<>nil) do begin
Dec [NumState+l,CrntEx-.ExDec :1I.0;
CrntEx :=CntEx-. NextEx

end; {while)

end; {with)
Spec:=CrntAlt-. SpecCode;
DualSimplex(NusState ,NuniDec,Spec ,OpMach,Method,OptAlt ,SpecOpt ,Dec,

Baa icDec);
CrntAlt .Optimum:=OpMach;

if (Optklt=nil) then OptAlt:=CntAlt
else if (OpMach>GptAlt^.Optimum) then OptAlt:=Crntilt;

if not (Method in ['S','a'J) then begin

if (SpecOpt[Spec]=nil) then SpecOpt[SpecJ:=CrntAlt else
if (OpMach>SpecOpt [Spec) -. Optimum) then SpecOpt [Spec) : CrntAlt;

end; {if}
writeln('Current Optimum: ',OptAlt-.Optimua:8:4);
Crntilt :=CrntAlt^. NextAlt

end; {while)

writeinCOut);
writeinCOut, 'OPTIMAL SPECIALIZATION STRATEGY: ',OptAlt-. SpecCode :4);

write(Out,'Resource Structure: (');
for I:=1 to Numlsrc do write(Out,OptAlt-.Structure[I):4);

writein(Out,'))

94

writeln(Out,'Expected Number of Operating Machines: ',Optklt-.Optimum:8:4);
if not (Method in ['S','s')) then begin

writeln(Out);
writeln(Out);
writeln(Out,'DPTIMAL PERFORMANCE FOR EACH SPECIALIZATION STRATEGY');
writeln(Out);

while (SpecOpt[IJ<>nil) do begin

with SpecOpt[I]- do begin
writeln(Out, 'Specialization Strategy: ',SpecCode :4);
write(Out,'Resource Structure: (');

for J:=l to NumRsrc do writeCOut,Structure[J):4);
writeln(Out,')');
writeln(Out,'Expected Number of Operating Machines: '

Optimum:8:4);
writeln(Out)

end; {with}
I:1I+1

end; {while}
end; {if}

end; {Optimize}

begin
open(Data, 'MAINTOP .DAT' ,old); {VAX/VMS Pascal}
operLCOut, 'MAINTOP .OUT' ,new); {VAX/VMS Pascal}
{assign(Data, 'MAINTOP.DAT') ;} {Turbo-Pascal}
{assign(Out, 'MAINTOP.OUT') ;} {Turbo-Pascal}

reset (Data);

rewrite (Out);
writelnC 'RUNNING PROGRAM MAINTOP');
ReadData(NumMach,NumTask,NumRsrc,OpsRate ,CostLimit ,Method,
TaskData,RsrcData);

close (Data);
MakeNetwork(NunTask,Numlode ,Opsftate ,TaskData,LowNode ,NodeData);
NodeLimit:=lodeCap(NunMach,umiNode);

if (NodeLimit<NumNode) then
Reduceletwork(NumTask ,NumNode ,NodeLimit ,TaskData,Lowlode ,NodeData);

Listletwork(NumTask,Numlode,NodeLimit ,NodeData);
MakeStateSpace(NumMach,NodeLimit ,NumState ,StateData);

MakeTransSpace(NumTask,NumState ,NodeLimit ,NodeData,StateData,TransData);
MakekltSpace(NuznMach,NumTask,NodeLimit ,NumRsrc ,CostLimit ,TaskData,NodeData,
RsrcData.AltData);

Optimize(NumTask,NumRsrc ,NodeLimit ,NuzState,NumDec,OpsRate ,Method,TaskData,
IodeData,RsrcData,Stat.Data,TransData,AltData,Dec,BasicDec);

close(Out);

writeln;

writeln('ALL DONE (Output written to file "MAIITOP.OUT")')
end. {MIINTOP}

95

B.3 Sample Output

**** INPUT DATA SUMMARY ****

Number of Machines: 2

Operations Rate: 0.5000
Expenditure Limit: 100.00

Solution Method: NORMAL

Task 1
Repair Rate: 1.0000

Resources per Task: 1
Failure Rate: --

Prerequisite Tasks: 2 3

Task 2

Repair Rate: 0.2500
Resources per Task: I

Failure Rate: 0.2000

Prerequisite Tasks:

Task 3
Repair Rate: 0.5000

Resources per Task: 2

Failure Rate: 0.2500

Prerequisite Tasks:

Resource 1

Unit Cost: 10.00

Qualified Tasks: 1

Resource 2
Unit Cost: 20.00

Qualified Tasks: 2

Resource 3

Unit Cost: 25.00

Qualified Tasks: 3

Resource 4

Unit Cost: 30.00

Qualified Tasks: 2 3

Resource 5
Unit Cost: 33.00

Qualified Tasks: 1 2 3

96

**** MODEL SUMMARY ***

Number of maintenance nodes in full network: 4

Node 1

Routing Probability: 0.5263
Pending Tasks: 1
Eligible Tasks: 1

Node 2

Routing Probability: 0.1404

Pending Tasks: 1 2
Eligible Tasks: 2

Node 3
Routing Probability: 0.1880

Pending Tasks: 1 3
Eligible Tasks: 3

Node 4
Routing Probability: 0.1454

Pending Tasks: 1 2 3
Eligible Tasks: 2 3

Number of system states: 15

Specialization Resources

Stiategy Employed
1 {123}

2 {141

3 {5}

97

**** OPTIMIZATION SUMMARY ****

Number of Decision Variables: 35
Initial Iterations: 15

Resource Structure: (0 0 0 0 3)
Total Cost: 99.00
Expected Number of Operating Machines: 0.8409

Iterations: 3

Resource Structure: (1 2 2 0 0)
Total Cost: 100.00
Expected Number of Operating Machines: 0.8159

Iterations: 1

Resource Structure: (1 0 0 3 0)
Total Cost: 100.00

Expected Number of Operating Machines: 0.8103

Iterations: 3

Resource Structure: (2 1 2 0 0)
Total Cost: 90.00
Expected Number of Operating Machines: 0.8080 (or less)

Iterations: 3

Resource Structure: (2 0 0 2 0)
Total Cost: 80.00
Expected Number of Operating Machines: 0.8027 (or less)

Iterations: 1

OPTIMAL SPECIALIZATION STRATEGY: 3
Resource Structure: (0 0 0 0 3)
Expected Number of Operating Machines: 0.8409

OPTIMAL PERFORMANCE FOR EACH SPECIALIZATION STRATEGY

Specialization Strategy: 1

Resource Structure: (1 2 2 0 0)
Expected Number of Operating Machines: 0.8159

Specialization Strategy: 2

Resource Structure: (1 0 0 3 0)
Expected Number of Operating Machines: 0.8103

Specialization Strategy: 3

Resource Structure: (0 0 0 0 3)
Expected Number of Operating Machines: 0.8409

References

[1] Barton, H. R. et al. A Queuing Model for Determining System Manning
and Related Support Requirements. Technical Report AMRL-TDR-64-21.
Aerospace Medical Research Laboratories, Wright-Patterson AFB, OH, Jan
1964.

[2] Bazaraa, M. S. and J. J. Jarvis. Linear Programming and Network Flows. 2nd
ed. New York: John Wiley and Sons, Inc., 1990.

[3] Bellman, R. E. and S. E. Dreyfus. Applied Dynamic Programming. Princeton,
NJ: Princeton University Press, 1962.

[4] Berman, M. B. and C. Batten. Increasing Future Fighter Weapon System
Performance by Integrating Basing, Support, and Air Vehicle Requirements.
Project Report N-1985-1-AF. The RAND Corporation, Santa Monica, CA,
Apr 1983.

[5] Bruell, S. C. and Gianfranco Balbo. Computational Algorithms for Closed
Queueing Networks. New York: North Holland, Inc., 1980.

[6] Brooke, Anthony et al. GAMS: A User's Guide. San Francisco, CA: The Sci-
entific Press, 1988.

[7] Burke, P. J. "The Output of a Queuing System," Operations Research, 4:
699-709 (1956).

[8] Buzen, J. P. "Computational Algorithms for Closed Queueing Networks with
Exponential Servers," Communications of the A.C.M., 16: 527-531 (1973).

[9] Chandy, K. M. et al. "Parametric Analysis of Queuing Network Models,"
I.B.M. Journal of Research and Development, 19: 36-42 (1975).

[10] Chandy, K. M. et al. "Approximate Analysis of General Queuing Networks,"
I.B.M. Journal of Research and Development, 19: 43-49 (1975).

[11] Courtois, P. J. "Decomposability, Instabilities, and Saturation in Multipro-
gramming Systems," Communications of the A.C.M., 18: 371-376 (1975).

[12] Denning, P. J. and J. P. Buzen. "The Operational Analysis of Queueing Net-
work Models," Computing Sureys, 10: 225-261 (1978).

[13] Feller, William. An Introduction to Probability Theory and Its Applications,
Volume 1. 2nd ed. New York: John Wiley and Sons, Inc., 1957.

[14] Gordon, W. J. and G. J. Newell. "Closed Queuing Systems with Exponential
Servers," Operations Research, 15: 254-265 (1967).

99

[15] Gotz, G. A. and R. E. Stanton. Modeling the Contribution of Maintenance
Manpower to Readiness and Sustainability. Project Report R-3200-FMP. The
RAND Corporation, Santa Monica, CA, Jan 1986.

[16] Heuston, M. C. Concepts for Estimating Air Force Manpower Requirements for
Planning Purposes. Project Number RM-2611. The Rand Corporation, Santa
Monica, CA, 1960.

[17] Hillestad, R. J. DYNA-METRIC: Dynamic Multi-Echelon Technique for Re-
coverable Item Control. Project Report R-2785-AF. The Rand Corporation,
Santa Monica, CA, Jul 1982.

[18] Howard, R. A. Dynamic Programming and Markov Processes. Cambridge, MA:
The M.I.T. Press, 1960.

[19] Jackson, J. R. "Networks of Waiting Lines." Operations Research, 5: 518-522
(1957).

[20] Jackson, R. R. P. "Queueing Systems with Phase Type Service." Operational
Research Quarterly, 5:109-120 (1954).

[21] Kobayashi, H. "Applications of the Diffusion Approximation to Queueing Net-
works: Part 1, Equilibrium Queue Distributions," Journal of the A.C.M., 21:
316-328 (1974).

[22] Kobayashi, H. "Applications of the Diffusion Approximation to Queueing Net-
works: Part 2, Transient Queue Distributions," Journal of the A.C.M., 21:
459-468 (1974).

[23] Koenigsberg, Ernest. "Twenty-five Years of Cyclic Queues and Closed Queue
Networks: A Review," Journal of the Operational Research Society, 33: 605-
619 (1982).

[24] Lamb, Theodore et al. Small Unit Maintenance Specialties for the F-16: Task
Identification, Data Base Development, and Exploratory Cluster Analysis.
Technical Paper AFHRL-TP-87-23. Air Force Human Resources Laboratory,
Brooks AFB, TX, Dec 1987.

[25] Law, A. M. and W. D. Kelton. Simulation Modeling and Analysis. New York:
McGraw-Hill Book Company, 1982.

[26] Lemke, C. E. "The Dual Method for Solving the Linear Programming Prob-
lem," Naval Research Logistics Quarterly, 1: 36-47 (1954).

[27] Manne, A. S. "Linear Programming and Sequential Decisions." Management
Science, 6: 259-267 (1960).

100

[28] Moore, S. et al. Aircraft Maintenance Task Allocation Alternatives: Ex-
ploratory Analysis. Technical Paper AFHRL-TP-87-10. Air Force Human Re-
sources Laboratory, Brooks AFB, TX, Nov 1987.

[29] Muntz, R. R. "Queueing Networks: A Critique of the State of the Art and
Directions for Future Research," Computing Surveys, 3: 353-359 (1978).

[30] Nolte, L. H., Jr. Survey of Air Force Logistics Capability Assessment Concepts-
Definitions-Techniques. Project Report AFLMC-781029-1. Air Force Logistics
Management Center, Gunter AFB, AL, Aug 1980.

[31] Phelan, J. A. Maintenance Manpower Assessed by Stochastic Models. M.S.
Thesis. Naval Postgraduate School, Monterey, CA, Sep 1975.

[32] Purvis, R. E. et al. Validation of Queuing Techniques for Determining System
Manning and Related Support Requirements. Technical Report AMRL-TR-65-
32. Aerospace Medical Research Laboratories, Wright-Patterson AFB, OH,
Mar 1965.

[33] Ross, S. M. Introduction to Probability Models. 4th ed. Orlando, FL: Academic
Press, Inc., 1989.

[34] Sherbrooke, C. L. "METRIC: A Multi-Echelon Technique for Recoverable Item
Control." Operations Research, 16: 122-141 (1968).

[35] Shipman, C. H. An Investigation of the Potential Manpower Savings of Com-
bining Air Force Specialties in Aircraft Maintenance. Project Report ACSC-
85-2390. Air Command and Staff College, Maxwell AFB, AL, Apr 1985.

[36] Taylor, J. and R. R. P. Jackson. "An Application of the Birth and Death
Process to the Provision of Spare Machines." Operational Research Quarterly,
5: 95-108 (1954).

[37] Walrand, Jean. An Introduction to Queueing Networks. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1988.

[38] Wilson, M. G. et al. Optimizing Aircraft Task/Specialty Allocations. Technical
Paper AFHRL-87-46. Air Force Human Resources Laboratory, Brooks AFB,
TX, May 1988.

