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Abstract

A first order diffraction analysis of an optical interferometer, Coherent Gradient Sensor

(CGS), for measuring surface gradients is presented. Its applicability in the field of

fracture mechanics is demonstrated by quantitatively measuring the gradients of out-of-

plane displacements around a crack tip in a three point bend fracture specimen under

static loading. This method has potential for the study of deformation fields near a

quasi-statically or dynamically growing crack.
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1. Introduction

Presently, several optical methods are being used for measuring elastic or plastic

crack tip deformations under quasi-static or dynamic loading conditions. Among the

commonly used techniques, photoelastiiy [1] measures principal stress differences while

moir6 methods and interferometry [ -4] map in-plane or out'of-plane displacements. In

the method of caustics, non-uniform displacement gradients due to crack tip deforma-

tions result in the formation of a shadow spot [5,61. Subsequent interpretation of these

optical measurements through an assumed asymptotic field description enables one to

evaluate the so-called stress intensity factor (SIF) K or the J-integral which are widely

used in characterizing fracture behavior of materials.

In most of the above methods [1-4], one often encounters the difficult question of

whether the chosen experimental technique provides adequate control over the sensitiv-

ity of measurement. This becomes relevant because of the wide range of magnitudes

of deformation that may occur near a crack tip. Typically, interferometric methods are

preferred for the measurement of elastic deformations while for larger deformations the

resulting fringe density often overwhelms the recording capabilities. As a result, geomet-

ric moir6 methods are used when large deformations exist. Howev 5 7 n fracture studies

one often needs a method which can satisfactorily perform in both regimes.

In this paper, we propose an optical interferometer - coherent gradient sensor (CGS)

to measure in-plane gradients of out-of-plane surface displacements around a crack tip.

The method produces high contrast fringes and provides some degree of control on the

sensitivity of measurement during quasi-static experiments. In addition, it involves a

simple optical set-up and, when compared to other interferometric techniques, it is rel-

atively insensitive to vibrations which makes it a potential candidate for dynamic crack 4
growth applications. Finally, the insensitivity of this method to rigid body motions is

highly attractive for solid mechanics applications...........

CGS employs the basic principles of the so-called 'moir6 deflectometry' used widely
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in a variety of problems by Kafri and his associates [7,8]. However, CGS takes advantage

of coherent optics by using wave front division (by means of high density Ronchi rulings)

and their subsequent interference. By incorporating an online spatial filtering procedure,

one could not only realize high contrast fringes in real time, but also use high density

diffraction gratings for the purpose.

In the following, we present a diffraction analysis of the method and experimental

evidence to demonstrate its applicability for elastic and elasto-plastic crack tip deforma-

tion studies.

2. Experimental Method

2.1 Experimental Set-up

In Fig.(1) the schematic of the experimental set up is shown. It consists of a spec-

ularly reflective fracture specimen illuminated by a collimated bundle of coherent laser

light. Normal incidence is achieved using a beam splitter. The reflected object wave is

incident on a pair of high density Ronchi rulings, G1 and G2 , separated by a distance A.

The principal direction of the rulings is coincident with either the x1- or X2-coordinate

axes to obtain (8u3/89X 1) or (8u93/0X2), respectively, where u3 (A 1 , X2) denotes the out-

of-plane surface displacements. As shown in the schematic, the origin of the coordinate

system is located at the crack tip of the specimen. The field distribution on the G 2 plane

is spatially filtered by the filtering lens L, and its frequency content is displayed on its

back focal plane. By locating a filtering aperture around either the ±1 diffraction orders,

the information regarding the displacement gradients is obtained on the image plane of

the lens L 2. It should be pointed out that by using cross gratings instead of line grat-

ings, one could obtain both gradient fields simultaneously by filtering the corresponding

diffraction orders on the filter plane. In the following sections, a first order diffraction

analysis is performed to demonstrate that the information displayed on the image plane

indeed corresponds to gradients of the out-of-plane displacement u;.
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2.2 Principle

Figure (2) explains the working principle of the CGS interferometer. For the sake of

simplicity, and without losing generality, the line gratings are assumed to have a sinu-

soidal transmittance. For the case of a plane wave reflected from the flat surface of

an undeformed specimen and propagating along the optical axis, the incident wave is

diffracted into three plane wave fronts Eo, E and E- 1 by the first grating GI. The

magnitude of the angle between the propagation direction of Eo and E±1 is given by the

grating equation 0 = sin-1 (A/p), where A is the wave length and p is the grating pitch.

Upon incidence on the second grating G2, the wave fronts are further diffracted into E0,0,

E0,1,, E ,, E1,1 etc. These wave fronts which are propagating in distinctly different

directions, are then brought to focus at spatially separated diffraction spots on the back

focal plane of the filtering lens. The spacing between these diffraction spots is directly

proportional to sin 0 or inversely proportional to the grating pitch p.

Now, consider a plane wave normally incident on a deformed specimen surface. The

reflected light bundle incident on G, now carries surface displacement gradient informa-

tion, and is constituted of light rays travelling in arbitrary directions. If a large portion

cf such a bundle of light has its light rays nearly parallel to the optical axis, each of the

diffraction spots will be locally surrounded by a dispersed light field due to the deflected

rays. The extent of this dispersion depends on the angle of deflection of the reflected rays.

By using a two dimensional aperture at the filtering plane, information existing around

one of the spots can be further imaged. This leads to an important but subtle point

that should be noted. Since each of the diffraction spots is surrounded by dispersed light

containing surface deflection information, overlapping of the information could occur on

the filtering plane when the deflection of the ray is sufficiently large ( i.e., > (A/2p)).

However, as will be shown in the following sections, this limitation can easily be overcome

bv the use of higher density gratings.
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2.3 Analysis

Consider a specimen whose reflective surface occupies the (z, z 2 ) plane in the unde-

formed state. Upon deformation the reflector surface can be expressed as,

F(xlX 2,X 3 ) = z + f z,z 2) = 0. (1)

Consider now, a plane wave which is incident on the specimen along the -x 3 direction.

The unit surface normal N at a generic point O(z1 , X2) is given by,

VF f,e + f,2e2 + e3N =JVFJ = /1+ f? (2)

where ei denote the unit vectors of the Cartesian coordinate system (see Fig.(3)) and f.,

implies differentiation with respect to xe,. Let d be the unit vector along the reflected

ray whose direction cosines are ao, 80 and -yo. From the law of reflection, the coplanar

unit vectors d, N and e3 are related by d N = e3 N. This leads to

d = (2e 3 .N)N - e3. (3)

By substituting Eqn.(2) in (3),

d = (aoel + floe 2 + -yoe 3) = 2(f,e1 + f,2 e2 + e3)
+-e3. (4)

Thus, the direction cosines of d can be related to the gradients of the function f by

__2f._ 2f,2 (i - f-f)
(1 +f )' 7 (1- fjf) (5)

The ray along d upon incidence on the grating G, is split into rays propagating

along do, d+1 whose amplitudes Eo(x'), EI(x') and E. 1(x') can be represented by,

Eo(x') = aoexp[ikdo - x'], E1(x') = a, exp[ikdl, x], EI(x') = a, exp[ikd-l • x'], (6)
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where ao and a, are constants and the wave number k = 27r/A. Due to diffraction by the

sinusoidal grating G1, the propagation directions of the resulting wave fronts are related

by,

d+1 = ffl 1 do, (7)

where fl.1 are rotation tensors whose matrices of components axe given by,( 1 0 0 )
ff = 0 cos0 :sinO ) (8)

I0 T sin0 cos0

and 0 = sin-(A/p). From Eqns.(7) and (4) we find

d±1 = [aoe, + (8 cos 0 ±-to sin O)e2 + (-,o cos 0 :Fosin )e]. (9)

Now, with reference to Fig.(3), on plane G 2 we have

Eo (0B) = ao exp [i kdo .07B]. (10)

In addition, since IO'Bldo .e3 = 1O" 781o = A, one finds that 10'B = (A/ 7 o). Hence,

Eo(OrB)=aoep [ik((6)] (11)

In like manner,

IO'Ald, .e3 = IO'Al(focos0- lo sin0)= A, (12)

IO'B'Ild- 1 e3 = 1OSB'j(-jo cos 0 + 3o sinG)= A, (13)

and thus,

E 1(O'A) = aj exp[ikd1 . O'A - a1 exp ik(C - (14)

E-,(OrB') = a, exp[ikd-. . O'TB'j = at exp [ik (]ocos 0+ 80osin)
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2.4 Spatial Filtering

Let the field distribution on the G2 plane due to the amplitudes E0, E, and E-1

be H(zx, z) where the double primed coordinate system is obtained by the translation

of (XI, X2) coordinate system. Further, let the transmission function of the sinusoidal

grating G2 , whose principal direction is parallel to the z-axis, be

t(Xz,z ) = b 1 + cos-,), (16)

where b is a constant. Then the field distribution immediately after G2 is

R(4,x")=b i +cos--i)(E 0+E1 +E-U = b(1+cos x2') H(x',x"). (17)

The lens L1 performs a Fourier transform of the above field distribution. Thus, the

amplitude distribution on the filtering plane is

YF[R(x", x")] b [6(WI, W2) + I6(WI, W2 - )+ Ib(W1, W2 + 1] *.F[H(x",x'1)], (iS)

where wi = z'/AfL, denote the in-plane coordinates of the filtering plane, fLi is the focal

length of the filtering lens L1, 6 is the Dirac function, and * denotes convolution. It is

clear from the above expression that the information regarding the surface deflections

(direction cosines of d), which is contained in H(z, z), can be filtered out by locating

suitably an aperture centered at w2 = ±(l/p) on the filtering plane. Imaging this infor-

mation through the second lens L 2 is equivalent to performing a Fourier transform on

the filtered field which gives us the amplitude distribution on the image plane as,

= . [:(H(4x)).6(Lw 2 1 ) = 2b H(-x,-x",)exp (2 ). (19)

The intensity distribution on the image plane can now be calculated as,

AM, = EiE*,n = bg + 2b2 + 2bob1 cos kA [o(o 0 1)o--0s]in }
+2bob1 cos {kA ['o(cos a- 1) + A sin0]

+2bcos {k .[(2 coS2 -o sin 2 , (20)
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where bo and b, are constants and Ei,. is the complex conjugate of Ei,,. Under small 0

approximation the above equation reduces to

Ii, = b + 2b2+b ob cos (kA6o + 2h2 cos 2kA66 . (21)

Thus, Ii,,, denotes an intensity variation on the image plane whose maxima occur when

k70 O -" 2n , n = 0, ±1, ±2,.... (22)
_2

From Eqn.(5) the direction cosines ao, /& and -0 are related to the gradients of the

function f. Then, the above equation can be rewritten as,

kAO [242 ( 1 + ,f, 2  2nr. (23)L \(1 - IVfI12)5h
When IVf 12 << 1, Eqn.(23) becomes,

f.2 ( ( ) n = 0, ±1, ±2, .... (24)

where the fact that 0 - (A/p) and k = 27r/A are made use of. Similarly, when the

gratings are oriented with their principal direction coinciding with the x1-axis,

(2pn m = 0, ±1, ±2, .... (25)

Thus, Eqns.(24) and (25) are the governing equations for the method of CGS. It should

be noted that these equations are similar in form to those of moir6 deflectometry [8] and

reflection moir6 methods [9] based on geometric optics. It is clear from the above two

equations that the sensitivity of the method could be increased by either increasing the

grating separation distance A or decreasing the grating pitch p. However, for small A,

one needs to exercise caution in order to avoid the formation of gap moir6 fringes when

the lens system is arranged such that the object surface is in focus. Another interest-

ing point to be noted is that Eqn.(21) provides an explanation for the high contrast of

the fringes obtained in this method. Under the assumption that the gratings used have

sinusoidal transmittance, the expression for intensity distribution Ir,,, indicates a fringe

sharpening effect due to the existence of higher frequency term (2AO/-/0). The use of
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Ronchi gratings with nearly rectangular transmittance leads to further fringe sharpening

due to the existence of several of such higher order frequencies.

3. Experimental Results

Two experiments are performed to demonstrate the applicability of CGS in solid

mechanics in general and fracture mechanics in particular. First, the gradients of a

known function f were used to test the reliability of the measurements. For this purpose,

a spherical wave front was generated using a convex lens of focal length fl=546 mm. Line

gratings of density 40 lines per mm were oriented with their principal direction coincid-

ing with the z 2-axis and were separated by a distance of A=22mm to produce fringes

that are shown in Fig.(4). The fringe spacing (X2/n) corresponding to the gradients in

the X2- direction namely, f,2 measured from the fringe pattern is 0.66 mm/fringe. The

spherical wave front emerging from the convex lens can be described by,
f~xlX2)=x + A

f(X 1,X 2 ) 2 (26)

and hence (in transmission).

=0=f2 (27)

which corresponds to straight line fringes as shown in the figure. For the experimental

parameters used in this demonstration, the fringe density expected from the above equa-

tions is 0.63 mm/fringe which is in good agreement with the experimental measurements.

Secondly, CGS was used to obtain gradients of the o .t-of-plane displacement u3 (x1 , X2)

(- -f(x1, X2)) around a deformed crack tip in a three point bend fracture specimen made

of AISI 4340 steel. The dimensions of the specimen and the experimental set up are shown

in Figs.(5) and (6). The specimen has an electro-discharge machined notch which is 25

um wide and 30 mm deep through a 10 mm thick plate. The specimen was heat treated

to have a yield stress of 1350 MPa. One of the surfaces of the specimen was lapped and

polished to obtain a flat reflective test surface. The specimen was statically loaded in a
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hydraulic loading frame in displacement control mode. The load and the load point dis-

placements were measured during the test. The optical set up has two Ronchi rulings of

40 lines per mm density and are separated by a distance (A) of 21 rn giving a sensitivity

of measurement 6.05x10 -O rad/fringe. In Fig.(7) fringe patterns representing contours

of constant (Ou3/&Or) and (aUO3/1X 2 ) corresponding to three load levels P/P=0.38, 0.61,

0.71 are shown where P is the plane stress limit load for the specimen. For the lowest

load level of the three patterns shown (Fig.(7a)), the near tip out-of-plane displacement

field was assumed to be given by the linear elastic, asymptotic, plane stress expression,
_ v h [ o u , ) + ' ( , ]

f(r, 0) = -U3(, = A a ( +

Ecos(i2)+ A o + o(1), as r -- 0, (28)
E V2 -7 r 2E) 1

where r = -+ 2, 0 = tan-'(X2/Xl), h is the specimen thickness, E is Young's

modulus, v is Poisson's ratio, ao' is the constant term in the asymptotic expansion for

the stresses, and K1 is the mode-I stress intensity factor to be determined by CGS.

By using Eqns.(24) and (25), the stress intensity factor can now be obtained from the

fringe pattern, Fig.(7a), through:

2Ev/2-r3/2 / mp
(KI)CGS = ., * -)m= 0,±1,±2, .... (29)

In the above expression, m is the fringe order and (KI)CGs denotes the experimentally

obtained value for the stress intensity factor. Note that the constant term a°1 does not

appear in Eqn.(29) because the measurements are sensitive to surface gradients only.

(Kr)cGs can now be computed from different fringes corresponding to different (r, 0)

pairs. If the out-of-plane displacement field of the specimen surface is indeed given by

Eqn.(28), the experimentally obtained (KL)cGs should be independent of the location

of measurement (choice of r, 0 pairs in Eqn.(29)). In such a case, (KI)cGs should agree

with the stress intensity factor (KI)2D obtained from boundary value measurements by

means of a two dimensional analysis [101.

However, near the crack tip three dimensional effects are expected to violate the plane

stress assumption which leads to Eqn.(28). Indeed, the experimental results reported by
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Rosakis and Ravi-Chandar [12] and supported by the analytical investigations of Yang

and Freund [11] have shown that Eqn.(28) is a good description of the surface out-of-plane

displacements only for radial distances greater than 0.5h. This behavior is also evident

from the current experimental results displayed in Fig.(8). Here, (KI)2D is obtained

through the boundary load and the results compiled in Ref.[10]. (KI)CGS is obtained

from fringes at different radial distances along the 4 = 0 line by using Eqn.(29). It is

clear from the figure that the measured value of (Kj)cGs is in good agreement with (KI)2D

for (r/h) > 0.5. However, for (r/h) < 0.5, a marked under estimation of the inferred

stress intensity factor is observed. This is consistent with the results shown in Figs.(5)

and (6) of Ref.[121 which are obtained by using the optical method of caustics. This is

to be expected since both caustics and CGS rely on surface out-of-plane displacement

gradients.

The fringe patterns in Figs.(7b,c) correspond to substantial near tip plastic deforma-

tions and as such the use of Eqns.(28) and (29) is inappropriate. Direct comparison of

the experimentally obtained displacement fields with a three dimensional elastic-plastic

finite element analysis of the specimen is underway.

4. Conclusions

This paper provides a detailed diffraction analysis of the proposed interferometer,

Coherent Gradient Sensor. The analysis indicates that the resulting interference fringes

represent contours of constant surface gradients. Although the method bears similarities

in its operating principle with moir6 deflectometry [81, it has additional advantages be-

cause it uses coherent optics. Unlike moir6 deflectometry, which is limited by diffraction

effects, this method utilizes such effects by making use of high density gratings and spa-

tial filtering procedure. Also, spatial filtering enhances the contrast and sharpness of the

fringes.

The feasibility of CGS as a means of quantifying crack tip deformation fields has
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been demonstrated in the elastic and plastic regimes. Simplicity of the optical set up,

sharp and high contrast fringes and limited loss of light intensity make CGS a suitable

candidate for dynamic crack initiation and propagation studies. Its relative insensitivity

to laboratory vibrations comes as an additional advantage.
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Figure Captions

Figure 1. Schematic of the Experimental Set-up for COGS

Figure 2. Working Principle for CGS

Figure 3. Diffraction of a Generic Ray in the CGS

Figure 4. Contours of Constant f,2 for a Spherical Wave Front

Figure 5. Specimen Geometry of the 3-point Bend Fracture Specimen

Figure 6. Experimental Arrangement for Fracture Experiment Using CGS

Figure 7a. Contours of (8u3 /0z1 ) and (au3 /OX 2 ) for (P/Po)=0.38

Figure 7b. Contours of (aus/016) and (8uO3 /& 2) for (P/Po)=0.61

Figure 7c. Contours of (au3 /xO1 ) and (ou3 /aX 2 ) for (P/Po)=0.71

Figure 8. Experimental Results from (&U3 /aXI) fringes along (r, = 0) line for (P/Po)=0.38
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