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ABSTRACT

Experiments and analyses designed to develop an extension of the method of caustics

to applications in dynamic, elastic-plastic fracture mechanics are described. A relation be-

tween the caustic diameter, D, and the value of the J integral was obtained experimentally

and numerically for a particular statically loaded specimen geometry (three point bend)

and material (4340 steel). Specimens of the same geometry and material were then loaded

dynamically in impact. The resulting caustics, recorded using high speed photography,

were analyzed on the basis of the J versus D relation to determine the time history of the

dynamic value of J, Jd(t). The history of jd thus obtained is compared with good agree-

ment to an independent determination of Jd(t) based on a two dimensional, dynamic,

elastic-plastic finite element analysis, which used the experimentally measured loads as

traction boundary conditions.
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1. INTRODUCTION

For two-dimensional, monotonically loaded, stationary cracks, the J integral, defined

by Rice[jljs a path independent line integral evaluated over an open contour surrounding

the crack tip, and its value is a measure of the intensity of the crack tip strain singu-

larityf2,3]_,The critical value of J for crack initiation is commonly used as a measure of

fracture toughness in ductile materials.

For three-dimensional plates of uniform thickness containing through cracks, the J in-

tegral is defined over a cylindrical surface surrounding the entire crack front(see Budiansky

and Rice[4] and Broberg[5]).For monotonic loading or for materials obeying the deforma-

tion theory of plasticity, the value of this integral is independent of the choice of surface.

In addition, for materials obeying the deformation theory of plasticity this integral may be

interpreted as the energy release rate for self-similar crack extension along the entire crack

front. A per thickness value, denoted in the rest of this paper as J, can be obtained by

dividing the above surface integral by the thickness of the plate. .This value can be shown

to be equal to the through the thickness average of the local definition of J [6,7,8] (denoted

here by J(x 3 ), where x 3 is the coordinate through the thickness of the body). Assuming

that the variation of the intensity of the crack tip strain singularity through the thickness

of the body is locally governed by J(x 3 ), the value J may be interpreted as an average of

the intensity of the fields through the thickness.

Since the experimental evaluation of the local value, (x 3 ), along the crack front is

not possible, the goal of experiments involving plates of uniform thickness can only be

to measure the average value of J corresponding to crack initiation. The availability of

analytical models relating J and J for specific specimen geometries may subsequently make

it possible to investigate the validity of a local criterion for crack initiation at the center

plane of the specimen.

For dynamically loaded cracks, J loses its surface independence. However, if J is

defined only in the limit as the cylindrical surface shrinks to the crack front, then for

materials obeying the deformation theory of plasticity, this limiting value of J equals the

energy release rate. For materials obeying incremental plasticity, this value is not equal to

the energy release rate but may still have the interpretation of the average intensity of the
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crack tip strain singularity through the thickness. Assuming that this is true, it is expected

that dynamic fracture toughness may still be characterized by the J integral, keeping in

mind that now this integral is evaluated over a cylindrical surface which has shrunk to

the crack front. Although there are well proven experimental techniques for measruing

J under static loading, few proven experimental techniques exist for measurement of the

time history of J, Jd(t), under dynamic loading conditions.

For example in quasi-static experiments J may be aeciirately inferred from established

procedures based on the measurement of boundary conditions. However, such procedures

generally fail to accurately determine J under dynamic loading. Nevertheless there exist

cases where careful choice of specimen geometry and loading histories allows for the mea-

surement of jd based on the use of dynamic boundary value measurements interpreted

on the basis of quasi-static formulas for J. A characteristic example of such an approach

is described by Costin, Duffy and Freund[9], who estimate jd by measuring the tran-

sient load displacement records and by using the quasi-static formula for deeply notched

round bars. A dynamic finite element analysis of their particular specimen geometry and

material, described by Nakamura, Shih and Freund[10], has indeed confirmed that this

approximate procedure gives accurate values of jd, at least for times close to the time

of crack initiation. Unfortunately, such a conclusion will not hold for other specimen ge-

ometries [11,121 where alternative methods of measuring Jd(t) should be investigated. A

recently developed procedure, reported by Douglas and Suh [13] and by Sharpe, Douglas

and Shapiro [141, provides an alternative way of obtaining dynamic fracture toughness at

high loading rates. In their work, the results of a rate sensitive dynamic finite element anal-

ysis modeling a three point bend specimen made of HY-100 steel, loaded by a projectile,

are compared to experimental measurements performed by means of the interferometric

strain-displacement gauge technique described in [14]. The goal of the comparison is to

provide the critical value of CTOD (crack tip opening displacement) and thus the critical

value of J, corresponding to crack initiation.

An additional factor that complicates dynamic fracture testing procedures in ductile

solids is the question of the accurate determination of the fracture initiation time. For

quasi-static experiments, crack initiation can be detected by a number of techniques, for
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example those involving measurement of changes in the electrical resistivity or variations

of the compliance of the specimen. In dynamic testing, however, crack initiation may be

very difficult to detect unless local optical crack tip measurements are possible.

Optical techniques have a number of advantages for dynamic, local crack tip measure-

ments. Their interpretation does not rely on prior knowledge of the complex, transient

boundary conditions or on the availability of complicated, dynamic analytical or numerical

models of the experiments. Their time response is virtually instantaneous compared to

the time scale of the mechanical response. Finally, due to the local nature of the mea-

surements, optical methods can be expected to be sensitive enough to detect local events

such as the onset of crack tunneling or gross crack initiation. In this work we describe the

initial states for development of such an optical technique.

The optical method chosen is the method of caustics by reflection, which has al-

ready found many useful applications in elastic, dynamic fracture mechanics. This paper

describes experiments designed to develop an extension of the method of caustics to ap-

plications in dynamic elastic-plastic fracture mechanics.

The method of caustics was originally developed by Manogg [151 for measuring the

stress intensity factor in thin, transparent, elastic plates. A series of important contri-

butions on the subject is also summarized by Theocaris [161. The first extensions of the

method of caustics to elastic-plastic fracture were made by Rosakis and Freund [17] and

Rosakis, Ma, and Freund [18], based on the assumption of validity of the plane stress,.

HRR, asymptotic crack tip field [2,3] and it was demonstrated that under certain condi-

tions the value of the J integral can be measured with caustics. Nonetheless, the recent

work of Zehnder, Rosakis and Narasimhan [19] showed that the two-dimensional asymp-

totic approach severely limits the applicability of the method. This is true because such

an analysis cannot deal with either three-dimensional effects near the crack tip or with

large scale yielding effects, both characteristic of finite test specimens.

A new approach is taken here that allows for accurate measurement of the thickness

average of J for any planar test specimen geometry and material [20]. In brief, the approach

is to make a calibration of J versus the caustic diameter, D, for a particular specimen

geometry (three point bend specimen) and material. It is shown that this calibration may
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be performed experimentally or numerically with equal accuracy.

The relation between D and J is then used for the interpretation of caustics obtained in

dynamic experiments. The dynamic experiments use the same three point bend specimen

geometry as in the static tests, but loaded in a drop weight tower. The resulting caustic

patterns are recorded with a rotating mirror high-speed camera and provide a time history

of jd up to the point of crack initiation. Crack initiation times are obtained by observations

of changes in caustic shapes corresponding to the tunneling action through the specimen.

This measurement is to our knowledge the first direct optical measurement of Jd(t)

performed under dynamic loading conditions. Comparison is made between the Jd(t)

record measured by caustics and Jd(t) obtained by a dynamic finite element calculation

modeling the impact event.

The success of this approach suggests than the procedure discussed below can be used

as a method for measuring Jd(t) in any plate specimen geometry regardless of loading rate.
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2. CAUSTICS BY REFLECTION

2.1 The mapping equations

Consider the flat surface of an opaque plate specimen of uniform thickness h, con-

taining a through crack. In the undeformed state, this surface, assumed to be perfectly

reflective, will occupy a region in the x 1 , x 2 plane at X3 = 0. When loads are applied on the

lateral boundaries of the plate, the resulting change in thickness of the plate specimen is

nonuniform and the equation of the deformed specimen surface can in general be expressed

as:

X 3 +f(xl,x 2 ) = 0. (2.1)

Consider further, a family of light rays parallel to the x3-axis, incident on the reflecting

surface. Upon reflection, the light rays will deviate from parallelism (see Figure 1). If

certain geometrical conditions are met by the reflecting surface, then the virtual extensions

of the reflected rays (dashed lines) will form an envelope which is a three-dimensional

surface in space. This surface, called the "caustic surface", is the locus of points of highest

density of rays (maximum luminosity) in the virtual image space. The virtual extensions

of the rays are tangent to the caustic surface. The reflected light field is recorded on a

camera positioned in front of the specimen. The focal plane of this camera, which will be

called the "screen", is located behind the plane x3 = 0 (occupied by the reflector in the

undeformed state) and intersects the caustic surface at the plane x 3 = -ZO, z 0 > 0. On

the "screen", a cross section of the caustic surface is observed as a bright curve (the caustic

curve), bordering a dark region (the shadow spot). The resulting optical pattern depends

on the nature of the function f(x1, x2 ) and on the focal distance zo.

The reflection process can be viewed as a mapping of points (x 1 , x 2 ) of the plane

occupied by the reflector in the undeformed state, onto points (X 1 , X 2 ) of the plane X3 =

-zo (the "screen"). The mapping equations based on geometrical optics are given by [211:

Vf
X=x.2(zo - f) IVf 2

where X = X 0,e, x = x,,,, and e, denote unit vectors. In the subsequent discussion

Greek subscripts have the range 1,2.

7



When zo > f, as is usually the case in most practical applications, the above simplifies

to

X = x- 2zoVf. (2.3)

Relations (2.3) are the mapping equations what will be used in the rest of this discussion.

2.2 The initial curve and its significance

Equation (2.2), or its approximation (2.3), is a mapping of the points on the reflecting

surface onto points on the "screen". If the "screen" intersects the caustic surface, then the

resulting caustic curve on the "screen" is a locus of points for which the determinant of

the Jacobian matrix of the mapping equations (2.3) must vanish or

I(x1,X2,zo) = det[X,,] = det[6,, - 2zof,,#] = 0. (2.4)

The above is a necessary and sufficient condition for the existence of a caustic curve. The

locus of points on the reference plane (X l ,X 2,x 3 = 0) for which the Jacobian vanishes is

called the initial curve and its equation is given by (2.4). All points on the initial curve

map onto the caustic curve. In addition, all points inside and outside this curve map

outside the caustic. Since the light that forms the caustic curve originates from the initial

curve, essential information conveyed by the caustic comes from that curve only.

Equation (2.4), defining the initial curve, depends parametrically on z0 . Thus by

varying zo, the initial curve position may be varied. If z0 is large, then the initial curve

will be located far from the crack tip. If z0 is small, then the initial curve will be close to

the crack tip. Variation of z0 can easily be achieved experimentally by simply varying the

focal plane of the recording camera system. This is an essential property of the method

of caustics and it can be utilized to "scan" the near tip region and to obtain information

regarding the nature of deformation field at different distances from the crack tip. For the

case of a crack tip surrounded by a plastic zone, varying z0 will move the "initial curve"

inside or outside the plastic zone, providing information on the plastic strains as well as

on the surrounding elastic field.

2.3 The interpretation of caustics on the basis of plane stress analyses

The discussion of the previous section is intentionally kept as general as possible,

and Ai not restricted by the form of the function f(._, 1 2) that describes the shape of
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the deformed specimen surface. In general, f(x1,x 2) can be identified as the out of plane

displacement field u 3 (xI, x 2) evaluated on the surface of the plate specimen.

For a cracked plate of uniform thickness and finite, in-plane dimensions, u 3 will de-

pend on the constitutive law of the material, on the applied load, and on the ctetails of

the specimen geometry (in-plane dimensions and thickness). Given the lack of full-field,

three-dimensional analytical solutions in fracture mechanics, such information must be

obtained by numerical computation. Nevertheless, there exist certain special cases where

available asymptotic solutions, based on two-dimensional analyses, may provide adequate

approximations for the surface out of plane displacement field u 3 (xI,x 2 ). In particular,

it is often argued that conditions of plane stress will dominate in thin, cracked plates

provided that both the crack length and the in-plane dimensions are large compared to

the plate thickness. In such cases, u3(xl,x2) may be approximated by means of available

analytical solutions based on plane stress analyses.

2.3.1 Caustics obtained on the basis of plane stress asymptotic crack tip fields in linear

elastostatics.

In linear elastic fracture mechanics, the principal application of the method of caustics

is to the direct measurcmert of tkl_- mode-I and i-ode-II stiess intcriity factorb. By sub-

stitution of the u 3 displacements for a Mode-I, plane stress crack [22] into equations (2.3)

and (2.4), it was shown by Manogg [15] (see also Theocaris [16] and Beinert and Kalthoff

[23]) that K1 is related to the maximum transverse diameter D of the caustic (width of

caustic in the direction perpendicular to the crack line) by

K1 = 1E.5h' (2.5)

where E is the elastic modulus, v is the Poisson's ratio, h is the specimen thickness, and

K1 is the mode-I stress intensity factor.

The equation for the initial curve is obtained directly from (2.4) and can be shown to

be a circle of radius r0 where
_( 3hvKlzo 2/5

ro = 0.316D (E3/Kizo ) (2.6)

2/5
It should be observed here that for a given Kt, r0 - z0 .A variation in zo, the distance

behind the specimen at which the camera is focused, will result in changes in r0 .
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2.3.2 Caustics obtained on the basis of the asymptotic, plane stress HRR field.

For stationary cracks and within the framework of small displacement gradients and

proportional stress histories the value of the J-integral can be considered as a plastic

strain intensity factor. The viewpoint is adopted here that J is the scalar amplitude of

the deformed shape of the surface of an elastic-plastic fracture specimen at points within

the region of dominance of the plane stress HRR field.

Substitution of the U3 displacement given by the asymptotic plane stress HRR fields

into equations (2.3) and (2.4) provides a relation between D and J, found by Rosakis, Ma,

and Freund [18] to be
2 E +2

J = S o ('oEh) D 3n- (2.7)

where a0 is the yield stress, n is the hardening exponent for the Ramberg-Osgood material

model and S, is a scalar function of n tabulated in [18]. Unlike the elastic case, the initial

curve is no longer circular; its shape depends on the hardening exponent n of the material.

It should be noted at this point that equations (2.5) and (2.7) are obtained under the

assumption of the validity of particular asymptotic plane stress fields at the vicinity of the

crack tip. It is also implicitly assumed that the initial curves generating the caubtics lie

within the regions of dominance of such fields.
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3. THE TECHNIQUE FOR MEASURING J

3.1 General -pplicability of caustics in the absence of asymptotic plane stress

dominancL

The interpretation of caustics on the basis of plane stress, asymptotic fields, limits

the applicability of the method to specific, restricted specimen geometries where such

fields may adequately describe the near tip out of plane displacements. However, in many

cases of practical interests, sizeable regions of three dimensionality surrounding the crack

tip may preclude the existence of regions of dominance of two-dimensional (plane stress)

asymptotic expressions for u 3. In such cases, caustics can still be accurately analyzed

provided that u3(xI,x 2 ) and thus f(x 1 ,x 2 ) can be obtained by means of full field three-

dimensional numerical calculations modeling the specific specimen geometry and material

characteristics.

In this section, an approach is described which will allow for the prediction of the
relation between the average value of J in cracked specimens of uniform thickness and the

caustics diameter,D, regardless of specimen geometry, dimensions and load level. In brief

this approach consists of a calibration of J versus the caustic diameter, D, for a particular

three-dimensional specimen configuration and a particular value of zo. This calibration

is performed first experimentally and then numerically by means of a three-dimensional

elastic-plastic finite element calculation simulating the specimen. The two calibrations are

compared to establish agreement between the experiment and the numerical calibration.

The resulting relation between J and D, fully reflects the complex three-dimensional and

nonlinear nature of the near tip deformation fields.

As one might think, a specimen dependent calibration of this sort is not of partic-

ular use for static measurements of J where other techniques, based on boundary value

measurements, can be used. On the other hand the availability of such a calibration may

prove very useful for the optical measurements of the time history of the dynamic value

of J(Jd(t)). In particular. if the same specimen geometry and material are subjected to

dynamic loading (e.g., impact), the resulting caustic patterns, recorded by means of a high

speed camera, may be analyzed on the basis of such a calibration.

It should be noted that since this procedure makes use of a "static" calibration relation
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between J and D, it is expected to provide accurate results for j only if the material

tested is relatively rate insensitive, (e.g., 4340 carbon steel at room temperature [24]). In

this work, see section 4. the accuracy of the approach outlined above is examined for the

case of a 4340 steel three point bend specimen loaded dynamically in a drop weight tower.

The time history of jd thus obtained is compared to an entirely independent prediction of

jd obtained on the basis of a fully dynamic elastoplastic finite element calculation, which

made use of the experimentally measured boundary loads as traction boundary conditions.

3.2 The static experiments

The static experiments (discussed in detail in [25]) used three point bend specimens

(numbers 67 and 69) with a 4:1 length to width ratio. The specimen dimensions are given

in Figure 2. The material used was a 4340 carbon steel, heat treated at 843°C for 1.5 hours.

oil quenched, then annealed for 1 hour at 538C. The yield stress was 0 = 1030 AIPa,

and the hardening experiment n = 22.5 for a fit to the piecewise power hardening law. In

uni axal tension this is equivalent to

a0 -

(3.1)

where eo0 is the yield strain.

The experiments proceeded by loading the specimen in small steps. During the load-

ing, the load cell and the load-point displacement signals were recorded. When the loading

was stopped at a particular step, caustics photographs were recorded. This process was

repeated until the point of fracture initiation.

The load and load point displacement were recorded with a 100,000 lb. capacity load

cell and a strain gage extensometer. The specimen geometry was chosen to take advantage

of the load-displacement methods for estimating the .J integral. For ductile three-point

bend specimens, Rice, Paris, and Merkle[26] demonstrated that J may be estimated by

integration of the load-displacement record as follows:
1) 6 C

J hC Pdb, (3.2)

where P is the load applied to the specimen, h is the specimen thickness and C is the

uncracked ligament length. The quantity 6, is the load-point displacement due to the
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presence of the crack, i.e., b, = 6 - 6,, where 8 is the total load point displacement and

b,,, is the load-point displacement of an uncracked, elastic beam of the same dimensions

as the fracture specimen.

The resulting J integral, plotted as a function of load P, is given in Figure 3. Shown

in the figure are J calculated from equation (3.2) using the experimental results and J

calculated from the numerical analysis (see next section). The agreement between the

numerical and experimental results is quite good, indicating that J may be calculated

accurately either way.

3.3 The static 3-D numerical calculation

The numerical calculation, described in detril by Narasimhan and Rosakis [27] mod-

eled in three dimensions, one quarter of the three point bend specimen shown in Fig. 2,

using five layers of elements for half the thickness. An incremental J2 plasticity theory

was used. The material obeyed the von Mises yield condition and followed the piecewise

power hardening law of equation (3.1) with n = 22.5 and ao = 1030 MPa, corresponding

to the material used in the experiment. The J integral calculated numerically is shown

here as a function of load in Fig. 3. This J corresponds to an integral evaluated over a

cylindrical surface surrounding the entire crack front and as discussed earlier, is equal to

the thickness average of the local definition and J along the crack front, (see [8]).

3.4 The relation between J and D.

In earlier work reported in [25,27], the resolution and accuracy of the three-dimensional

elastic-plastic calculation was established by comparison of the numerical results for the

out of plane surface displacements u3 to experimental measurements of U3 obtained by

means of Twyman-Green interferometry. The excellent agreement of the analysis and

the experiments reported in [25] indicate that the numerical calculation has sufficient

refinement to generate accurately numerical (synthetic) caustic patterns which can be

used to provide the relation between J and D.

Caustics are first recorded experimentally for specimens 67 and 69 using a fixed value

of zo = 100 cM. The sequence of caustic patterns for increasing loads up to fracture

initiation, is shown in Figure 4. For the same value of z0 , and the same loads, caustics

are also generated numerically from the results of the 3-D finite element analysis. This
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was achieved by smoothing the U3 displacements at the specimen surface obtained by the

numerical solution using a least squares numerical scheme as described by Narasimhan and

Rosakis [28]. Caustic patterns were simulated by mapping rays point by point from this

smoothed surface using equation (2.3). The numerically simulated caustics are also shown

in Figure 4. All of the caustic curves, both experimental and numerical are reproduced

here in the same scale. The values of J shown in the figure are related to the applied load

through the J - P record of Figure 3. Figure 4 shows that there is good agreement, in

shape and in size, between the experimental and numerical caustics.

Both experimental and numerical results were used to obtain a relation between caustic

diameter, D, and the J integral which is shown in Figure 5 in a nondimensional form. J

was obtained from Figure 3 and D was measured directly from the experimentally and

numerically generated caustics. Also shown in the figure are the J vs. D relations obtained

on the basis of the plane stress elastic analysis, equation (2.5), and on the basis of the plane

stress HRR field, equation (2.7). The solid line in Figure 5 is a fit through the experimental

and numerical data points.

It is seen that the experimental and numerical results are in excellent agreement. This

demonstrates that such an approach can provide an accurate analysis of caustics in the

form of a calibration for measuring the J integral. The best curve fit shown in Figure 5

serves here as an empirical relationship between the caustic diameter and the J integral

when the relationship based on two-dimensional asymptotic analyses are invalid. This

relationship is valid only for the specimen geometry and material tested here and only for

z0 = 100 cm. It should be noted here that the relation between J and D reported here, fully

reflects the complex three-dimensional and nonlinear nature of the near-tip deformation

fields and does not suffer from the shortcomings of relation (2.7), discussed in section 2.

It should also be emphasized once more that this calibration relation is strictly ge-

ometry, material and z0 dependent and as such its usefulness is very restricted in a static

experiment where alternative ways of evaluating J may be desirable. On the other hand,

in a dynamic setting such a calibration can prove invaluable for the dynamic measurement

of the time history of J, as described in the next section.
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4. DYNAMIC FRACTURE EXPERIMENTS

The relationship between J and D discussed above will be applied here for the mea-

surement of dynamic fracture toughness of a ductile metal (annealed 4340 steel).

4.1 Description of experiments

Three point bend specimens (numbered 70-77) of the same geometry, material and

heat treatment as the specimens used for the static experiments (see Fig. 2) were used for

the dynamic experiments. As was done for the statically loaded specimens, the initial crack

length of 30 mm was machined using a wire electric discharge machine (EDM) producing

an initial crack tip diameter of 0.3 mm. Two specimens (numbered 74 and 75) were fatigue-

cracked an additional 4.0 mm.

The test specimens were dynamically loaded in 3-point bending by the Dynatup 8100A

drop weight tester shown in Fig. 6. The drop weight is variable from 1910 N to 4220 N (430

lb. - 950 lb.) and the maximum impact speed is 10 rn/s. In the present experiments the

weight was 1910 N and impact speeds of 5 and 10 m/s were used. The impact speeds and

initial crack tip conditions are summarized in Table 1 along with estimates for critical values

of J. The tup (impact hammer) and the supports are instrumented with semiconductor

strain gages allowing for the recording of the dynamic loads on a Nicolet 4094 digital

oscilloscope.

Two LED-Photodiode switches mounted on the drop weight tower provide trigger

signals for the camera and the oscilloscope. A flag mounted on the falling weight interrupts

the infrared radiation going from the LED to the photodiode, causing a trigger pulse. One

switch is positioned so that it pulses when the tup hits the specimen. This triggers the

oscilloscope and the pulsing of the laser used for the high speed camera. The camera's

mechanical capping shutter must open before impact, thus a second switch is mounted

higher on the tower to provide a trigger for the shutter 20 ms before impact.

The rotating mirror, high speed camera (see Figure 7) used for photographing the

caustics can record 200 frames at up to 200,000 frames per second. In these experiments

it was operated at a rate of 100,000 frames per second. Although it operates as a streak

camera with no internal shuttering, discrete frames are obtained by pulsing the laser light

source. Due to the short pulse width of the laser the exposure time of each frame is very
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short (15 ns) resulting in sharp photographs. To photograph the caustics, the camera is

placed in front of the specimen to collect the reflected light and is focused a distance z0

behind the specimen. In order to use the J vs. D relation of Figure 5, the same z0 value

of 100 cm was used for these dynamic experiments as was used for the static experiments.

4.2 Results

Selected caustic photographs from the test of specimen 71 are shown in Figure 8. The

time shown in the frames is the time in microseconds since impact. The values shown for J

were obtained by measuring the caustic diameter,D, for each frame and then determining

J from Figure 5.

The shape of the caustics obtained dynamically agrees very well with the shape of the

caustics obtained statically, as can be seen through comparison of Figures 4 and 8. Only

the last frame of Figure 8 which is elongated parallel to the crack does not correspond to

the static results. As will be discussed later, this elongation is evidence of crack tunneling

prior to fracture. The value of J corresponding to crack tunneling will be denoted here

by Jt. Gross fracture initiation is defined here to have occurred when the crack has grown

across the entire thickness of the specimen. The value of J corresponding to gross fracture

initiation will be denoted here by Ji. Crack growth following tunneling in these thin,

ductile specimens occurs in a shearing manner, i.e., the fracture surface is inclined at

approximately 450 to the specimen surfaces as shown in Figure 9. The figure also shows

that shear fracture is preceeded by an area of flat crack growth due to tunneling. This

type of fracture surface was observed to produce an asymmetry in the caustic, causing

the caustic to not close back on itself, similar to mixed mode caustics in linear elastic

fracture. It is the appearance of this asymmetry that allows us to estimate the gross

fracture initiation time and the corresponding value of J for gross fracture initiation.

The records of the time history of the J integral as measured with caustics are shown

in Figure 10 for five tests, four at 5 m/s impact and one at 10 m/s impact. The results

are given only up to the time of gross fracture initiation. It is seen that in comparison to

the tup and support loads, shown in Figure 11, Jd(t) increases in a smooth manner. The

inertial effects tend to shield the crack tip from the highly dynamic impact loads. Similar

results were reported by Kalthoff et al.[11] for experiments on linear elastic specimens. The
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average loading rate of the 10 m/s impact specimen (J z 17 x 10N/m s) is substantially

higher than that of the 5 m/sec specimen (J : 6 x 1ON/m - s). Even so, Jd(t) is still

relatively smooth. Good repeatability is demonstrated for Jd(t) except during the time

period from 320is to 450pis, where there is a discrepancy of 20% in jd.

Accurate predictions of dynamic fracture initiation require data on dynamic fracture

toughness obtained through experiments on initially notched and prefatigued specimens.

Although no static experiments on fatigue cracked specimens were performed, so we cannot

say precisely what the static fracture toughness of this material is, it is interesting to

compare the fracture initiation values of J from the static and dynamic experiments.

Although the caustics clearly indicate the onset of unstable crack growth, there are

some problems in exactly defining the fracture initiation time. There is evidence from strain

gages fixed to the specimen near the crack tip and from the elongation of the caustics, see

Fig. 8, that crack tunneling, or propagation of the crack in the interior of the specimen,

occurs before gross crack initiation is observable on the specimen surface. By a careful

analysis of the degree of elongation of the caustics, the time and the value of J, (Jr), where

tunneling appears to begin was estimated. These values are summarized in Table 1. For the

5 m/s impact speeds Jt z 240 kN/m, and for the 10 m/sec impact speeds Jt , 380 kN/m.

Tunneling was observed in the static experiments [251 at Jt : 200 - 250 kN/m. The

time that tunneling began was approximately 400,us for the 5 m/sec experiments. Note

that it is in this very same time range that the Jd(t) records disagree the most. If the

initiation of tunneling occurs at slightly different times in each experiment, it may explain

the discrepancies in Jd(t). Crack tunneling changes the specimen stiffness resulting in

different measured values of j.

Recent three-dimensional calculations by Narasimhan and Rosakis [27] show that the

magnitude of stresses and strains near the crack tip, in the interior of the plastically de-

forming specimen are substantially higher than those near the surface. Such a distribution

of deformation and stresses will clearly promote crack tunneling (see Figure 9). Further,

experimental evidence demonstrating tunneling was obtained by first heat tinting and

then breaking open at liquid nitrogen temperature (77°K) a specimen that was previously

loaded statically at room temperature to just below the gross fracture initiation load. The
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crack was found to have tunneled 6 mm in the center of the specimen.

It is interesting to note that some preliminary three-dimensional calculations by

Narasimhan, Rosakis and Moran [291 based on a damage accumulation model of the Gur-

son type, predict that crack tunneling will initiate when J at the center plane of the

specimen is equal to 250 kN/m. Using the through the thickness distribution of J in [27],

this value of J corresponds to an average value of J of 210 kN/m; remarkably close to the

experimental values of J = 240kN/m.

In the static experiments [25] on specimens with EDM cut crack tips, it was found

that Ji z 420 kN/m. In the present experiments when the impact speed was 5 m/s,

Ji z 350 kN/m regardless of the crack tip condition. For the higher rate of loading, the

toughness appears to be greater, Ji :z 420 kN/m. Unfortunately, from this limited data,

no trends can be drawn regarding gross fracture toughness as a function of loading rate.

The results of these experiments indicate that it is possible to measure the J integral

dynamically using the method of caustics regardless of the loading rate. Nonetheless one

must ask whether the accuracy of this technique will be affected by inertial effects and by

material strain rate sensitivity. From the dynamic finite element analysis to be discussed in

section 6, the strain rates at a distance of about 2 mm from the crack tip were estimated to

be of the order of 10's' for the 5 specimens corresponding to 5 m/s impact speed. High

strain rate experiments on a similar heat treatment of 4340 steel [24] show that the rate

sensitivity of this material is relatively low and would result in an increase in flow stress

of less than 7% for strain rates of the same order as above. Thus rate sensitivity will not

affect the accuracy of the present experiments, although it may affect similar experiments

involving highly rate sensitive metals.

In the next section the accuracy of the results obtained by caustics will be examined

further, through comparisons with analytical and dynamic numerical models simulating

the experiments.
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5. COMPARISON WITH THE MASS-SPRING MODEL

A back of the envelope type of calculation of Jd(t) can be achieved by using a lumped

mass-spring model of the experiments. This calculation provides only an approximate

verification of the caustics results for Jd(t).

Williams [30,31] recently suggested that dynamic fracture problems may be adequately

analyzed by means of lumped mass-spring models. For this analysis Williams' system was

modified by using a single spring, single mass model as sketched in Fig. 12. The stiffness

K of the model is chosen to be the stiffness of the actual test specimen (5 x 10 7N/m). The

effective mass, m, of the model is chosen so that the kinetic energy, T, of the model and

of the specimen will be identical when the model and the specimen have equal load point

displacement rates, S(t); see [30] for details. Following [30], the effective mass, m, is found

to be 17/35 -M, where M is the actual mass of the specimen (m = 0.88kg).

The load P(t) applied to the mass is the measured tup load for the experiment, Fig.

11. The displacement 6(t) is calculated from the mass-spring model. The reaction force

P1 (t) of the spring is then given by PI(t) = K6(t). The J integral is estimated by treating

the model as if it was a linear elastic specimen subjected to quasi-static loading, i.e.,

J(t) f .Pf(t)E "'

where f is a function of specimen geometry, given in [32], that relates J to the applied

loads for static problems, and E is the elastic modulus.

Using the above procedure the tests for specimen 71 (5 m/s impact) and for specimen

75 (10 m/s impact) were analyzed. The results, shown here in Fig. 13, compare the caustics

results to the mass-spring model. It is seen that on the average the mass-spring model

agrees well with the caustics results for both loading rates. The agreement is poorest at

shorter times (t < 400pis), when strong stress wave effects dominate. In this time range the

simple mass-spring model is not expected to capture the complete dynamic behavior of the

specimen. On the other hand, for t > 400jus, the model and the experimental results agree

well despite the simplistic linear nature of the mass-spring model. Nevertheless, despite this

agreement, final verification of the proposed optical procedure must be obtained through

dynamic, elastic-plastic, finite element simulation of the experiment.
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6. DYNAMIC FINITE ELEMENT ANALYSIS

To provide a more reliable verification of the experimental results, an elastic-plastic,

two-dimensional dynamic finite element simulation was performed.

The experimentally measured tup and support loads, given in Fig. 11 for specimen

71, were ued as the traction boundary conditions for the simulation. One half of the

specimen was modeled using a J2 incremental plasticity theory with isotropic hardening

and a piecewise power hardening law, which for loading in uniaxial tension takes the form

of equation (3.1). The values of ao and n are 1030 MPa and 22.5, corresponding to the

particular heat treatment of 4340 used here (see section 4). The dynamic J integral was

computed using the domain integral formulation of Shih et al. [7].

The resulting Jd(t) record from the finite element analysis is shown in Fig. 14 along

with the caustics results up to 400 ps. The time of 400 ps corresponds with the time that

crack tunneling begins as detected by the elongation in the caustic shapes. Since the two-

dimensional finite element analysis cannot model tunneling, it will clearly be inapplicable

for longer times. The analysis and the experimental results agree very well in this time

range. It might be of interest to note here that at the time when the experimental results

indicated tunneling, the numerical calculation, if carried further, deviates from the exper-

imental measurements. Also note that there is a great deal of high frequency oscillation

in the finite element results. This is a consequence of the high frequency noise in the tup

and support load records, Fig. 11, that were used as traction boundary conditions. Much

of the high frequency noise represents the dynamic response of the tup and supports and

thus does not represent the true boundary loads.

The conclusions that we draw from the good agreement of the experimental and

numerical results for Jd(t) is that interpretation of the dynamic caustics in terms of the

static calibration procedure provides an accurate measure of Jd(t) up to the time when

crack tunneling begins. After crack tunneling begins the numerical analysis provides no

confirmation of the caustics results, and in addition J loses its strict meaning as a fracture

parameter.
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7. PROCEDURE FOR THE MEASUREMENT OF jd.

The favorable agreement between Jd(t) measured by caustics and calculated by the

dynamic finite element model (section 6) leads us to propose a procedure for the dynamic

measurement of J in arbitrary dynamic loading. This procedure is outlined as follows:

1. To determine the dynamic fracture toughness of a given material, select a planar test

specimen geometry that is amenable to both static and dynamic loading.

2. Perform a static experiment to determine the relationship between the J integral and

the caustic diameter, D, for loads up to fracture initiation and for a fixed value of

zo. The J integral may be determined through standard load-displacement methods

as discussed in section 3. A three dimensional elastic-plastic finite element analysis is

not necessary for this step, although one was performed for the current investigation.

3. Use the same specimen geometry and material in a dynamic test, such as drop weight

impact.

4. Use a high speed camera to record caustics for a duration at least as long as the

fracture initiation time, using the same z0 as was used for the static experiments.

5. Use the J vs. D calibration of step 2 to interpret the caustics and obtain the time

history of jd(t). Examination of changes in caustic shape can be used to provide the

time of crack initiation (see section 4).

21



ACKNOWLEDGMENTS

Support of the Office of Naval Research through contract N00014-85-K-0599 is grate-

fully acknowledged. The computations were performed using the facilities of the San Diego

Supercomputer Center and are made possible through an NSF-DYI grant MSM-84-51204

to the second author. The authors would like to acknowledge the contribution of Mr. R.

Pfaff toward the upgrading of the high speed camera. The second author would also like

to acknowledge his many useful discussions with L. B. Freund.

22



References

[1] J. R. Rice, Journal of Applied Mechanics, 35 (1968) 379-386.

(2] J. W. Hutchinson, Journal of the Mechanics and Physics of Solids, 16, (1968) 13-31.

[3] J. R. Rice and G. F. Rosengren, Journal of the Mechanics and Physics of Solids, 16

(1968) 1-12.

[41 B. Budiansky and J. R. Rice, Journal of Applied Mechanics, 40 (1973) 201-203.

[5] B. Broberg, Journal of Applied Mechanics, 54 (1987)458-459.

[6] F. Li, C. F. Shih, and A. Needleman, Engineering Fracture Mechanics, 21 (1985)

405-421.

[7] C. F. Shih, B. Moran, and T. Nakamura, International Journal of Fracture, 30 (1986)

79-102.

[8] T. Nakamura, C. F. Shih, and L. B. Freund, Engineering Fracture Mechanics, 25

(1986) 323-339.

[9] L. S. Costin, J. Duffy, and L. B. Freund, in Fast Fracture and Crack Arrest, ASTM

STP 627, American Society for Testing and Materials (1977) 301-318.

[10] T. Nakamura, C. F. Shih, and L. B. Freund, Engineering Fracture Mechanics 22 (1985)

437-452.

[11] J. F. Kalthoff, W. Bohme, S. Winkler, W. Klemm, in proceedings of CSNI Special-

ist Meeting on Instrumented Precracked Charpy Testing, Electric Power Research

Institute, Palo Alto, CA (1980).

[12] A. T. Zehnder and A. J. Rosakis, "Dynamic Fracture Initiation and Propagation in

4340 Steel under Impact Loading", Caltech report SM86-6, submitted to International

Journal of Fracture (1988).

[13] A. S. Douglas and M. S. Suh, "Impact fracture of a tough ductile steel", to appear in

proceedings of the 21sr ASTM National Fracture Symposium, AnNapolis, Maryland,

June 1988.

[14] W. N. Sharpe, Jr., A. S. Douglas and J. M. Shapiro, "Dynamic fracture toughness

evaluation by measurement of C.T.O.D.", Johns Hopkins Mechanical Engineering

Report WNS-ASD-88-02, February 1988.

[15] P. Manogg, Ph. D. Thesis, Freiburg, West Germany (1964).

23



[16] P. S. Theocaris, in Mechanics of Fracture, Vol. VII, G. Sih (ed.), Sijthoff and Noord-

hoff (1981) 189-252.

[171 A. J. Rosakis and L. B. Freund, Journal of Engineering Materials and Technology 104

(1982) 115-120.

[18] A. J. Rosakis, C. C. Ma, and L. B. Freund, Journal of Applied Mechanics 50 (1983)

777-782.

[19] A. T. Zehnder, A. J. Rosakis, and R. Narasimhan, to appear in Nonlinear Fracture

Mechanics, ASTM STP 995, American Society for Testing and Materials (1988).

[20] A. T. Zehnder, Ph. D. Thesis, California Institute of Technology (1987).

[21] A. J. Rosakis and A. T. Zehnder, Journal of Elasticity 15 (1985) 347-367.

[22] M. L. Willliams, Journal of Applied Mechanics, 24 (1957) 109-114.

[23] J. Beinert and J. F. Kathoff, in Mechanica of Fracture, Vol. VII, G. Sih (ed.). Sifthoff

and Noordhoff (1981) 281-320.

[24] S. Tanimura and J. Duffy, International Journal of Plasticity, 2 (1986) 21-35.

[25] A. T. Zehnder and A. J. Rosakis, "Three Dimensional Effects near a Crack Tip in

a Ductile Three-Point Bend Specimen Part II: An Experimental Investigation Using

Interferometry and Caustics", Caltech report SM88-7, submitted to Journal of Applied

Mechanics (1988).

[26] J. R. Rice, P. C. Paris and J. G. Merkle, in Progress in Flaw Growth and Fracture

Toughness Testing, ASTM STP 536, American Society for Testing and Materials

(1973) 231-245.

[27] R. Narasimhan and A. J. Rosakis, "Three Dimensional Effects near a Crack Tip in

a Ductile Three Point Bend Specimen Part I: A Numerical Investigation", Caltech

report SM88-6, submitted to Journal of Applied Mechanics (1988).

[28] R. Narasimhan and A. J. Rosakis, Journal of the Mechanics and Physics of Solids 36

(9188) 77-117.

[29] R. Narasimhan, A. J. Rosakis, and B. Moran, Caltech Report (1989).

[30] J. G. Williams, International Journal of Fracture 33 (1987) 47-59.

[31] J. G. Williams and G. C. Adams, International Journal of Fracture 33 (1987) 209-222.

[321 H. Tada, P. C. Paris, and G. Irwin, The Handbook of Stress Intensity Factors. Del

24



Research Corporation (1973).

25



Table I, Summary of Experiments

Specimen Crack Tip Impact Speed Tunneling Gross initiation
m/S J,,kN/m tI.s JL kN/m tts

70 0.3 mm dia. 5 240 400-500 350 650-700
71 0.3 mm dia. 5 240 400-500 350 650-700
74 fatigue 5 250 400-500 350 650-730
75 fatigue 10 380 320-370 500 370-430
77 0.3 mm dia. 5 250 400-510 420 680-800
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Fig. 11 Load records for specimen 71. (a) Tup load. (b) Support load.
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