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1.0 SUMMARY

This program has investigated four-wave mixing (4-wm) in nonlinear waveguides,

with particular emphasis on waveguides with gain and a resonant enhancement.

In 4-wm a signal or probe beam is scattered off of a grating induced in a

nonlinear medium due to interaction with two pump beams. Under appropriate

conditions, the scattered beam will be an amplified phase-conjugate (PC) or

frequency-shifted replica of the signal beam. Such a scattered beam has

applications in laser device phase locking, beam steering, and optical comput-

ing. Phase conjugation by 4-wm in nonlinear waveguide with gain and/or a

resonant enhancement has the potential to be a high-speed process requiring

only modest power levels.

To understand the basic physical processes which determine the formation,

duration, tunability, and fidelity of the scattered optical signal, a general

analytical framework has been developed for studying nonlinear optical

processes in waveguides based on the coupled-mode formalism. This approach

has the advantage of developing a model of 4-wm which is similar to the

coupled-wave formalism used to describe nonlinear optics in bulk media. The

influence of diffusion on those media where the nonlinearity is dominated by

mobile particles, such as free carriers in a semiconductor under current

injection, can be incorporated through a Lorentzian dependence on spatial and

temporal frequency of the interacting modes. Our theoretical analysis shows

that there are strict limits on the speed and spatial fidelity of the phase

conjugation process in a multimode waveguide. However, these limits can be

relaxed by using an array of single-mode waveguides.

The theoretical framework gives as a requirement for maximum possible fidelity

in conjugate generation, that there be no degeneracy among the guided modes.

An experiment using an optical fiber showed that the degeneracy between the

two orthogonal polarizations in the circularly symmetric medium leads to

polarization scrambling through both linear inhomogeneities as well as non-

linear interaction. Polarization scrambling reduces fidelity and complicates

the analysis of the nonlinear interaction.
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Laser diodes are a particularly interesting nonlinear waveguide due to the

simultaneous combination of strong nonlinearity, resonant gain, and a Fabry-

Perot cavity. Previous work has shown conjugate signal generation with

intensities 1,000-fold larger thau the input signal intensity. It has been

demonstrated that the action of a nearly-degenerate, weak signal beam is to

phase modulate the output of a laser diode through 4-wm. To be a phase

modulation, the 4-wm signal must be essentially equal in amplitude with the

amplified input signal and maintain a specific phase relationship with respect

to the input signal and the counterpropagating pump beams. In the semicon-

ductor medium under current injection, the nonlinearity acts to minimize

carrier fluctuations induced by the probe beam through the generation of a

conjugate beam, oppositely shifted in frequency with respect to the

free-running diode.
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2.0 INTRODUCTION

Nonlinear optical processes using 4-wm in bulk media have been demonstrated

and studied in a variety of applications (Ref. 1). Recently, much of the

scientific work has gone into the investigation of photorefractive materials

such as BaTi0 3. Four-wave mixing in photorefractive materials can be achieved

at low intensities relative to media using other nonresonant properties or

stimulated Raman or Brillouin scattering (Ref. 1). There have been a variety

of studies showing application of 4-wm in BaTi0 3 to the multiple coupling and

locking of lasers (Refs. 2, 3, and 4), beam steering (Ref. 5), and optical

computing (Refs. 6 and 7). However, there are stringent bounds on the speed

of photorefractive materials at low laser intensity (Ref. 8) due to the time

required for the photo-generated carrieis to achieve sufficient density and

separation to create the internal electric field. Since many applications

demand high speed and modest power levels, there are limitations on the

utility of bulk materials in 4-wm applications.

Phase conjugation by 4-wm in waveguides containing a nonlinear medium with

gain and/or a resonantly enhanced nonlinearity would not be limited by these

considerations. Four-wave mixing in waveguides was originally investigated to

take advantage of the waveguide's capability to maintain high intensity over a

long interaction length and the guide's reduced alignment requirements

(Refs. 9-12). Following these initial reports, there was no further activity

for several years because there were no suitable nonlinear materials

(Ref. 13). Recently, there has been a report of 4-wm in a semiconductor laser

(Ref. 14) and an observation of large optical nonlinearities in GaAs/AlGaAs

multiple quantum wells (MQW) (Ref. 15). Subsequent analysis of the 4-wm in

the semiconductor laser has not included the effects of the guided-wave

structure (Refs. 16-19) and there have been no studies of 4-wm using the MQW

excitonic resonance in waveguides. A theoretical study is proposed to make

the connection between the new semiconductor materials, with gain and resonant

enhancement, and the particular requirements and advantages imposed by multi-

mode waveguides, as outlined by Hellwarth (Ref. 11), on the problem of 4-wm.

The goal of this study is to understand the basic physics involved, with

attention to the feasibility of the system to applications such as laser

coupling and phase locking.

3



2.1 BACKGROUND

Hellwarth's article was the first to show the general utility of "generation

of a PC of a free wave at - entrance of a waveguide" (Ref. 11). The system

is depicted schematically in Figure 1. His analysis pointed out that as long

as the pump and probe beams occupy many modes and are well guided, the output

of the 4-wm process will be the PC beam. Further, beam alignment is not

critical; it is only necessary to inject the beams into the guiding modes.

Simultaneously, experimental work demonstrated the advantages of the long path

length, high intensity interaction region possible in waveguides (Refs. 10

and 12). Lower pump levels relative to bulk media were possible, but the

ratio of conjugate beam power to input beam power was less than unity. The

waveguide medium, CS2 , did not hav.a sufficiently strong nonlinearity to pro-

duce stronger outputs. For this reason, the theoretical analysis was limited

to the regime of small conjugate reflectivities. Subsequent work showed

equally small conjugate reflectivities in waveguides where CS2 was used as the

cladding, rather than guiding, medium (Ref. 20).

The recent observation of 4-wm in an AfGaAs semiconductor laser showed

conjugate reflectivities approaching 104 due to the resonant enhancement and

gain in the laser medium (Ref. 14). The nonlinearity, created by carrier-

density modulated index gratings, has a response time governed by carrier

spontaneous lifetimes, independent of excitation intensity (Ref. 18). These

lifetimes are on the order of 1 ns in III-V semiconductors. Recent calcula-

tions show that response times as short as 10 ps are possible in semiconductor

lasers (Ref. 19). The theoretical modeling of the single-mode laser diode

structures has focused on the nonlinear semiconductor medium without consider-

ing the waveguiding aspects of the interaction (Refs. 16-19). Therefore, the

connection remained to be made between these recent materials studies and the

issues of 4-wm in multimode uaveguides raised by Hellwarth.

This program has addressed the issue of conjugate generation through 4-wM in

waveguides containing both nonlinearity and resonant amplification. A general

formalism for studying waveguide nonlinear optics is developed in Section 3.0.

The effects of carrier diffusion are analyzed in Section 4.0. These topics

have been summarized in two publications (Refs. 21 and 22). Section 5.0

reviews some of the factors which limit the speed and fidelity of conjugate

4
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Figure 1. Schematic Illustrations of two arrangements for generating an optical
beam, E, which is PC to an input beam by 4-wm with pump beams
G and H (Ref. 11). a) Three-beam configuration with F being phase
conjugated. If the waveguide is a laser, G and H are the Intracavity
oscillating beams (Ref. 14). b) Two beam configuration where one
of the pump beams, G, is phase conjugated.

formation in a nonlinear waveguide. An array of multimode waveguides is

proposed as a way to overcome these limits (Ref. 23). The array format shows

that the nonlinearity in laser diodes can be used for conjugate formation.

The results of experimental investigations of 4-wm in laser diodes are

described in Section 6.0, along with experiments on optical fibers. The laser

diode work shows that the action of an injected, nearly-degenerate signal is

to phase modulate the optical output in a way that works to minimize the fluc-

tuations of free carriers in the device. The fiber work illustrates some

complicating effects of polarization on the nonlinear interaction in a system

where the two orthogonal polarizations yield nearly degenerate modes.

Section 7.0 summarizes the results of the program and suggests directions for

future research.
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3.0 COUPLED-MODE THEORY FOR NONLINEAR WAVEGUIDES

3.1 INTRODUCTION

The unique nonlinear optical effects in waveguides have recently become an

area of intensive research (Ref. 24). Because of the optical confinement in a

waveguide, guided optical waves can maintain high-power densities over a long

distance for efficient nonlinear optical interactions at relatively low total

power levels. Many important optical systems, such as optical communications

and signal processing systems, involve guided-wave optics. Many desirable

optical operations, such as optical PC, optical bistability, and optical

switching, require nonlinear optical interactions. It is therefore important

to understand the nonlinear optical wave behavior, including the propagation

and coupling of the optical fields, in the waveguides.

There has been some recent work on the propagation and coupling of optical

waves in nonlinear waveguides (Refs. 24-26) and nonlinear couplers (Refs. 27

and 28). Usually the techniques used are coupled-mode theory (Refs. 29-31)

and beam-propagation method (Refs. 32-34). Strictly speaking, the concept of

normal modes is applicable only for linear waveguides. The extension of the

coupled-mode theory to nonlinear waveguides is a good approximation only when

the nonlinear polarization is relatively small compared to the input fields.

On the other hand, the beam-propagation method is not limited by this

restriction and can be a more accurate approach for nonlinear waveguides.

However, the beam-propagation method is formulated in terms of a scalar field

(Refs. 32-34). This restricts the method to cases in which the electromag-

netic (EM) fields can be separated into linearly polarized components, such as

the transverse electric (TE) and transverse magnetic (TM) modes in slab

waveguides, so that scalar-wave equations can be used to describe the problem.

In many practical cases, such as optical-fiber waveguides with a circular or

elliptical cross section and waveguides with a strong confinement, the

polarization of the guided fields can become very complicated. Then the beam-

propagation method becomes limited while the coupled-mode approach may still

be good so long as the nonlinearity is not very large. It appears that each

of these two methods has its own advantages and limitations and should be used

in different situations.
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Past work applying the coupled-mode formalism to nonlinear waveguides has

assumed a real, isotropic dielectric constant and negligible contribution to

the nonlinear polarization from the longitudinal field components

(Refs. 24-27). However, many practical optical waveguides are fabricated with

anisotropic materials, such as LiNbO3. Because of the tensorial nature of

nonlinear susceptibilities, the longitudinal component of the nonlinear polar-

ization can be significant in a nonlinear waveguide. Recently, there is also

much interest in nonlinear waveguides with an active gain, i.e, with a complex

dielectric constant, such as III-V semiconductor waveguides under current

injection (Refs. 14, 17, and 35). This report considers the coupled-mode

approach for nonlinear waveguides formally for various conditions of interest,

including anisotropic waveguides and waveguides with a gain or loss.

3.2 WAVE EQUATIONS

The EM fields in a nonlinear waveguide are governed by the following Maxwell's

equations,

VxE--- 1 - (1)C at

VxH= 1 E i d (2)

c at c at

V. (E + 49P) - 0 (3)

VH = 0 (4)

where the material is assumed nonmagnetic so that B - H The total

polarization is given by the sum of the linear and nonlinear polarizations

(Ref. 25)

P(z,t) _ PL(r,t) + PNL(Z,t) (5)

7



where

PL(rt) = fX(1) (r - r', t - t') (r', t')drdt' (6)

PNL(r, t) f= (x2) (r- rl t - t;r-r2--t - t 2)

SE(r 1 , t2 ) E (Z21 t 2 ) drdr2dtldt 2

+ X(3) (r - r',t - t ; r -r2,Ft -t2 r- r3, t 3

E(rl, t1 )E(r 2 , t 2 )E(X 3, t 3 )d r 1 dX2dr 3dtjdt 2dt 3 + (7)

At a given frequency w, the electric and magnetic fields are

E(r,t) =E(r,w)exp(-ijt) +E*(r,ca)exp(iat) (8)

H(r,t) = H(r,w)exp(-iwt) + H(r,c)exp(iwt) (9)

and the complex polarization, P(r,,), is similarly defined. In case the

linear and nonlinear electric susceptibilities are temporally nonlocal but

spatially local functions, they depend on the light frequency but not on the

wave propagation constants. Then, one can write the nonlinear Maxwell's

equations in terms of E(r,c() , H(r, 6)) , and PNL(Z,() in the frequency

domain,

VxE- "A) H (10)
C

Vx -- i---EE i47 p NL (11)

C C

V. (c •E + 4 1PNL) 0 (12)

V H =0 (13)

8



The linear and nonlinear polarizations in the frequency domain are given by

pL(r, 0 ) - x (' ) (r,w) Z (r, w) (14)

pNL(rW) = ( 2 ) (zw = + 2) : E(r,wil)E(r,W2 )

+ X(3) (Z,w = cal + 0 2 + (3) : 2(r,c )E(, 1 2 )E(Z,G)3)

+ .(15)

The linear dielectric constant is in general a 3 x 3 tensor defined by

E (z,c) = I + 47rX ( 1 (r,) (16)

so that

Z + 4 =pL = E " (17)

in the frequency domain. Here the local spatial dependence of X and e

accounts for the spatial variation of material properties in the waveguide

structure.

In what follows, take the z-coordinate as the longitudinal direction of the

waveguide. The fields can be separated into the transverse components in the

cross-sectional xy-plane and the longitudinal components parallel to the

z-direction of wave propagation in the waveguide,

E = ZT + z  (18)

H HT + Hz (19)

and the operator V can be written as V - VT + B/az. Notice that the third and

fourth Maxwell's equations (Eqs. 12 and 13) can be obtained by taking the

divergence of the second and first Maxwell's equations (Eqs. 11 and 10),

respectively, and do not provide more information than that obtained from the

first two Maxwell's equations alone. Therefore, in most situations do not

invoke them in the formulation of the problem.

9



3.3 NORMAL MODES OF THE LINEAR WAVEGUIDE

Without the nonlinearity, there exists a complete set of normal modes of the

waveguide structure. When e(r,w) does not have z-dependence, at frequency W

each normal mode is characterized by a set of mode fields,

Ea(Zt) = 4ra(x,y)exp(iPaziit) + * (x,y)exp(-iI3z +iwt) (20)

Ha (r,t) = (pa(x,y)exp(i Paz -i wt) + p.* (x,y)exp(-iP*z +ict) (21)

where P.a is the propagation constant of the ath mode. These normal mode

fields propagate in the z-direction and satisfy the linear Maxwell's equa-

tions, which are obtained by setting PN - 0 in Equations 1-4, with

appropriate boundary conditions determined by the waveguide structure.

The complex mode fields of the ath mode at the frequency w are

Ea (r, w) = #a (x,y) exp (iaz) = *a, (x,y) exp (iPaz)

+ *az (x,y) exp (i aZ) (22)

Ha (Z, w) = Pa (x,y) exp (iPaZ) = paT (x,y) exp (i Paz)

+ p. (x,y) exp (i Pz) (23)

where *.aT - Oac + OayY and *az 0 az. These complex-mode fields satisfy

Equations 10-13 with PNL - 0. With the complex normal mode fields in

Equations 22 and 23 and from the first two linear Maxwell's equations

decomposed into longitudinal and transverse components, one has

*az - zV X (PaT - CEz* " aT (24)

CT ' + .ET -- (VT X Ta, + iPaM X PaT) (25)

10



'Paz i VT X +aT (26)

PaT (VT X *,z + i%32 X *,T) (27)
1i)

In Equations 24-27, e - ex + ey + ez - T + cz was used with the following

definition

ex E (xx EX + EY + %zEz) (28)

ey • E = 9 (Tx Ex + + Ey + CzEz )  (29)

F z • E = 2 (zXE X + CZYEy + CzzEz) (30)

Since the coupled-mode theory is based upon the linear normal modes of the

waveguide, the properties of these normal modes will be examined before using

them to formulate the problem involving nonlinearity in the waveguide.

3.3.1 Backward-Prooazatiny Modes

For each normal mode, a bazkward-propagation mode can be constructed by

time-reversal or space-inversion in the z-direction or both, depending on the

property of the waveguide material, i.e., the property of c. Since only

nonmagnetic (reciprocal) materials are considered in this report, the

dielectric tensor is symmetric, eki - ejk (Ref. 36), but it can be anisotropic

as well as complex. In the following, the subscript -a will be used to

represent the mode propagating in the backward direction with respect to the

mode with the subscript a which propagates in the positive z-direction.

Certain useful properties of the modes can be obtained by considering the

relationship between the forward- and backward-propagating modes.

CASE 1. e is real, e(w) - e*(w), but it can be a general 3 x 3 tensor with

nonvanishing real elements. This includes the case when the waveguide

material is real but anisotropic.

11



In this case, time-reversal can be used, but not z-inversion, to construct the

backward-propagating modes from the forward-propagating modes. By replacing

time t with -t for time-reversal in the linear Maxwell's equations for the

normal modes, the following relations are obtained

4 (31)

'P-a = -Pa (32)

and

pa = Pa 
(33)

For the propagating modes, 8a is real and there is a corresponding

backward-propagating mode with s-a - "fa- For the evanescent modes, 6-a = la -

if: is purely imaginary and there is no separate backward evanescent modes.

CASE 2. e(z) - c(-z) or c is cylindrically symmetric with respect to the

z-axis. The tensor elements of e(w) can be complex, i.e., the waveguide has

gain or loss.

In this case, the longitudinal z-axis of the waveguide is along one of the

principal axes of the material, or the tensor c can be transformed to a form

of cylindrical symmetry

EXX EXY 0

eyx E 0 (34)

0 0 ezz

Then, z-inversion can be used, but not time-reversal, to construct the

backward-propagating modes from the forward-propagating modes by replacing z

with -z in the linear Maxwell's equations for the normal modes. The following

relations are obtained

-aT - *aT *-az , -az (35)
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'P-aT = -PaT ' lP-az = 'Paz (36)

and

-a = -Pa (37)

where ,, ,, and fa " A
8 + 18, are all complex in general.

CASE 3. e is both real and cylindrically symmetrical with respect to the

waveguide longitudinal z-axis, i.e., e(w) - e*(w) and e(z) - c(-z). This

includes the simplest situation when e is real and isotropic.

In this case, both time-reversal and z-inversion apply and the results in

CASE 1 and CASE 2 can be combined to obtain the following relations

*aT = *aT = l-aT = *-aT = real (38)

1az = -*a.z = -1 -,z = *-az = purely imaginary (39)

qaT = qaT - -P-aT = -aT - real (40)

(paz = -4paz : 'p-az = -P-az = purely imaginary (41)

and

-a = -Pa = real for propagating modes (42)

-a = Pa = purely imaginary for evanescent modes (43)

CASE 4. e(w) 0 e*(w) and e(z) o e(-z).

The material has a linear loss or gain and does not have a cylindrically-

symmetrical optical property with respect to the waveguide z-direction. In

13



this case, both time-reversal and z-inversion do not apply and no simple

relations can be obtained for the mode fields and propagation constants

between the forward- and backward-propagating modes.

3.3.2 Orthogonality and Normalization

The linear normal modes of a waveguide form a complete orthonormal set.

However, the orthogonality relations between the normal modes depend on the

property of the waveguide material. The orthogonality and normalization

conditions can be derived for each case discussed earlier using the results in

Equations 31-43 and the reciprocity of the fields in a nonmagnetic medium

where c is symmetric. The Lorentz reciprocity theorem states that at any

point for which the fields are source-free there is the relation (Ref. 37)

V . (E1 x H 2 - E 2 x H1 ) = 0 (44)

for any two sets of EM fields at the same frequency existing in the same

linear, reciprocal medium. Taking E l - Olexp(ioiz), H, - plexp(ipiz), and E2

- 02exp(i02z), H 2 - P2exp(if 2z) for the fields of any two normal modes and

integrating Equation 44 over the waveguide structure, one gets (Ref. 38)

(1+ 0 2 ) f f dxdY2 -(*1T X 2T- 4*2T X V1T) o (45)

in terms of the transverse-mode field components.

CASE 1. e(w) - c*(w), real but anisotropic.

Taking 1 - a and 2 - -b for Equation 45 and using Equations 31-33, one gets

-P) f f dXdY2 (T X (P;T + CT X (PaT) (46)

14



If both modes are propagating modes, Pa and fib are both real and P; fi b. The

following orthogonality relation is obtained

f fd.'XdY2 -(*.aT X VPbT + *;T X V.aT) = *28a 47

The factor 2 in the above equation is introduced to give the modes the

following normalization,

ffdxdy2 • Re (*r x 9Tz) = ffdxdy2 - Re (*a x V.) = *1 (48)

In Equations 47 and 48, the positive sign is used if mode a propagates in the

positive z-direction and the negative sign corresponds to mode a propagating

backward. Notice that 6. - 0 if a - -b in Equation 47. The backward-

propagating mode is orthogonal to its corresponding forward-propagating mode

in this case with anisotropic media.

For the evanescent modes, f becomes purely imaginary. From Equation 46, if

one or both of the modes are evanescent, the integral in Equation 47 vanishes

even when a - b. This is because both terms in the integrand of Equation 47

become purely imaginary and are complex conjugate of each other when a - b for

evanescent modes. Therefore, the normalization condition for the evanescent

modes is

f f ddy2- .aT X f&- ffddy2 - 4. x (p i (49)

The integral in Equation 48 vanishes for evanescent modes since the evanescent

modes cannot propagate and do not carry power (Ref. 37).

CASE 2. E(z) - e(-z), cylindrically symmetric but complex.

Taking 1 - a and 2 - -b for Equation 45 and using Equations 35-37, one gets

(Pa - Pb) f f dxdy2 -(PT X 'PbT * bT X (PaT) Wo (50)
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Taking 1 - a and 2 - b, one obtains

(Pa + Pb) ffdxdy2 • (*aT X VbT - *bT X VaT) T 0 (51)

Multiplying Equations 50 and 51 by P. + fib and Pa - fb, respectively, and

summing the results, the orthogonality relation obtained is

f fdxdy2 * ar X VbT 0, if Pa* ± Pb (52)

If one takes mode a to propagate in the positive z-direction and uses

Equations 35-37, one can normalize the mode fields to get

f fixdy2 -*T X 9T z -fdxdy2 - T X P.T

=- f f CXdy2 *-.T X 9 .T

= _f f dXdY2 1-*-T X 4P-.T =1(53)

Since the mode fields 0S and W are complex in this case, normalization to yield

Equation 53 will involve complex normalization constants. Notice that

different from the orthogonality relations in CASE 1, the forward and

corresponding backward-propagating modes are not orthogonal in this case and

the orthogonality and normalization relations in Equations 52 and 53 are in

terms of *.T and #bT, instead of *aT and

CASE 3. e(w) - c*(w) and e(z) - e(-z).

In this case, both *.T and 9,T are real and Equations 47 and 52 are equivalent.

Also, Equation 48 is equivalent to Equation 53. Then the orthogonality and

normalization relations are the same as those in Equations 52 and 53, but with

f f dXdY2 • ,*. X '0 - ff dxdy2 • *.P X V;T (54)

Equation 49 applies for evanescent modes in this case, too.

16



CASE 4. e(w) 9 c*(w) and e(z) o c(-z).

In this case, there are no simple relations between the field components

between the forward- and backward-propagating modes. The orthogonality

relations can only be derived directly from Equation 45.

The orthogonality relations derived in this section are in terms of the cross

products of the transverse-mode fields. Orthogonality relations can also be

obtained in terms of the dot products of the mode fields in CASES 2 and 3 and

are given in Appendix A.

3.4 NONLINEAR COUPLED-MODE EQUATIONS

The nonlinear fields are solutions of the nonlinear Maxwell's equations

(Eqs. 10-13). Since Equations 12 and 13 are not independent of Equations 10

and 11, only Equations 10 and 11 have to be used, which can be decomposed into

longitudinal and transverse components,

' C 1XT - 1 4n NL (55)iz z T x T - - z " ET - - z 5
1W=ezz Ezz

C __ T X .+ lT , 4 7t L (56)

ET "ET + T " Ez =--'i CA Hz

Hz --L VT x ET (57)

1W (58)

3.4.1 Normal Mode ExDansion

Strictly speaking, the linear normal modes form a complete basis only within

the space of solutions for the linear Maxwell's equations. The solutions of

the nonlinear Maxwell's equations in Equations 10-13 do not span the same
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solution-space as that for the solutions of the linear Maxwell's equations and

cannot be precisely represented as linear combinations of the linear normal

modes. However, if the nonlinearity is not large so that

14nPN I< < E-El1 (59)

the nonlinear polarization PNL may be treated as a perturbation to the linear

polarization. Then, expansion of the fields in the nonlinear waveguide as

linear combinations of the linear normal modes of the waveguide structure can

be considered as a good approximation to represent the fields in a nonlinear

waveguide. If Equation 59 is not satisfied, the coupled-mode approach fails

for the nonlinear waveguide and beam-propagation method can be used if the

fields are sufficiently linearly polarized so that the wave equations can be

reduced to scalar-field equations.

When expanding the EM fields in terms of linear combinations of normal modes,

the same set of expansion coefficients are normally used for all the electric

and magnetic-field components to keep the mode identity,

E(r,o) = EA.(z) *. (x,y)exp(i Pz) (60)
a

H(r,W) = YA(z)p,(x,y)exp(i 6 z) (61)
a

where L sums over all forward and backward discrete guided propagating modes

and integrates over the continuum of radiation modes. The evanescent modes

should also be included in these expansions for completeness. However, since

the evanescent modes do not propagate and are important only near sources or

discontinuities of a waveguide, these fields will not be considered in the

coupled-mode equations.

The nonlinear waveguide fields are described by Equations 55-58, while the

normal mode fields satisfy Equations 24-27. The field expansion in Equa-

tions 60 and 61, with the same expansion coefficients for all field components

to retain the mode identity, forces P1z to vanish in order for Equations 24

and 55 to be satisfied simultaneously. However, in general, PNL 0 0 in
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nonlinear waveguides, particularly when the waveguide has a strong confinement

in which Zz is significant or when the waveguide material is anisotropic in
NL NLwhich Pz can be induced by Er. When Pz o 0, the linear mode identity

cannot be completely retained in the expansion of the nonlinear-guided fields.

The mode identity has to be relaxed and the coefficients for the six electric

and magnetic-field components cannot all be the same. This is consistent with

the observation that the solutions for the nonlinear system do not necessarily

span the same solution-space as that for the linear system. However, there is

no unique choice to relax the mode identity. In principle, all the expansion

coefficients for the six field components can be different once the mode

identity is not retained. It appears that the choice depends on how well the

nonlinear fields can be approximated and whether the expansion coefficients

can be easily solved. The linear mode field components are then used solely

as a mathematically convenient function set to approximate the

nonlinear-guided fields.

One simple choice is to relax Ez when Pz o 0. By assuming a different set

of expansion coefficients, say B,(z), for Zz while maintaining the same set

of expansion coefficients A.(z), for the other five field components,

Equations 55-58 can be satisfied while simultaneously fulfilling the

requirements of Equations 24-27. Therefore, when P L o 0, one can choose the

following expansion,

ET = EAa(z)*aT(x,y)exp(iPaz) (62)
a

Ez = EAa(z)4Vaz(x,y)exp(iPaz) pz (63)
a ezz

HT u EA a (Z) T(x,y) exp (i Pz) (64)
a

RZ - -Aa (z) 9aT (x, y) exp (i Pz) (65)
a
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From the definition PNL in Equation 15, it is clear that Ez cannot be solved

directly from the amplitude coefficients, Aa(z), but that Equations 62-65 must

be solved by iteration. When PNz - 0, Equations 62-65 reduce to those in

Equations 60 and 61 which can be solved directly.

3.4.2 Couoled-Mode Eguations

The fields in the nonlinear waveguide satisfy Equations 55-58. For

generality, assume z o 0 and substitute the field expansion given by

Equations 62-65 in Equations 55-58. Then, using Equations 24-27, the

following are obtained

dAi 4r (L (66)
a dz z

a exp(iPaz)2x = 4 RVT X -(67)
Ezz

Using these two equations and the orthogonality relations obtained in

Subsection 3.3, the coupled-mode equations will be derived for the nonlinear

waveguide in each case discussed earlier.

CASE 1. e(w) - c*(M), real but anisotropic.

Taking the sum of the dot product of - T with Equation 66 and that of Twith

Equation 67, integrating the resultant equation over space, and using the

orthogonality relation for CASE 1 in Equation 47, one gets

dAa [[

dz 2n 2exp(-P~z) ff dxdy I~T VT x z

+ I _ *__ .. N. 1C (68)
P; -jPT *aT r zC CE rIzz J
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Using vector identities and Equations 24-27, it can be shown that

VT X(in) =i "(, z L
L X +0aT (69)

EZ C *a.CEZZ V EZX9*

Substituting Equation 69 into Equation 68 for the first term of the integrand,

the following coupled-mode equation for a nonlinear waveguide is obtained

dA. .i2 NW exp (-i PaZ) f f dx y N
dz c

+ 27cexp(-i az) ff dxdy VT r X (P aT (70)

Since every realistic waveguide is transversely bounded by vacuum in which

PNz - 0, the last in integral Equation 70 can be shown to vanish by convert-

ing it into a closed line integral at transverse infinity. Therefore, one

gets

d-& " i2.c exp (-iaz) ffdxdy L •(71)

where the plus sign is chosen if mode a is a forward-propagating mode in the

positive z-direction and the minus sign is chosen if mode a is a backward-

propagating mode.

According to the normalization with Equation 48, the power in each guided

propagating mode a is

P.(Z) - - IA (z)exp(iPz) 12 - C IA. (z) 12 (72)2n 2w

were P. is real for any propagation mode a in this case.
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CASE 2. E(z) - e(-z), cylindrically symmetric but complex.

In this case, ET - 0 and Equations 66 and 67 become

dA 74 ()NL (73)--exp ( i Paz) 2-X PT - -T

a dz C

- exp(iPaz ) 2 X *aT = 4nVT X -- (74)
a dz e2z

where 6. - #a + if, is a complex propagation constant. In this case, the

forward-and corresponding backward-propagating modes are not independent.

Using the orthogonality relations in Equations 52 and 53, one finds

dA. dA_ i_______
d ~ d-ai47;1a) f fdxdypNL - *T (75)dz exp (i Pz) - d-exp (-iz) - dxd T"

dAa dAa i47W N (76)
dz exp (iP.z) + dz exp(-ipz) - JJdxdyP, 76z

Combining these two equations, one gets

da i 2'Aw(pcpN*. (77)
d--- - exp(-iaz) ff dxdy( .,2' - T77)

dAa (i2P) i ff dy NL - (78)
dz C

Notice the difference between Equation 70, where the components of *: are
used, and Equation 77, where *, has to be used, because of the difference in

the orthogonality relations, Equations 47 and 52, respectively, for the two

cases.
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The total power in the guided field is

P IA. (Z)Ab (z)exp (i(. + P)z) ff dy2 -Re(*T x (pT) 1 ( 7 9 )

2na, b

Since the orthogonality relation and the normalization condition are given by

Equations 52 and 53, respectively, in terms of *aT and 9iT, mode power is not a

well-defined concept here. However, when the gain or loss in the waveguide is

small such that P. ' fi , *±aT and 9±aT are approximately real functions

according to Equations 38 and 40. Then the power in each guided mode can be

approximated by

P±a - -IAEa(Z) 12exp(F 2  z) (80)2n

CASE 3. e(w) - e*(w) and e(z) - c(-z).

In this case, following the same procedure in CASE 2, Equations 75 and 76 and

Equations 77 and 78 are still obtained, but with real propagation constants Pa

S-P-a for propagating modes. The power in each guided mode is given by

Equation 72.

CASE 4. e(w) o c*(w) and e(z) - e(-z).

In this case, a simple coupled-mode equation cannot be obtained because there

are no simple relations between the mode field components and no simple

orthogonality relations.

3.5 DISCUSSION

In Subsection 3.4, the coupled-mode equations have been written for the

amplitude coefficients, A., using the electric-field pattern of the corre-

sponding mode. This is the general practice used in the literature (Refs. 24,

25, 27, and 29), where real and isotropic nonlinear waveguides with negligible P Z

have been considered. Because the mode orthogonality relations depend on
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waveguide material properties, our equations for more complicated materials

have different forms. Equation 71 (for the case of an anisotropic, real

dielectric tensor), contains *:, while Equation 77 (for cylindrically symme-

tric, complex dielectric tensors), contains *aT and *az" The coupled-mode

equations can be written in a general form using the electric-field patterns

of the counterpropagating modes

d- ± i iexp (-iPz) ffcdxdy pNL (81)

The plus sign is used when mode a propagates in the positive z-direction,

while the minus sign is used when mode a propagates in the negative

z-direction. This equation applies to all the cases where the orthogonality

relations can be derived.

Most of the commonly used waveguide materials, including nonlinear dielectric

crystals such as LiNbO3 and all III-V semiconductors such as GaAs, have aniso-

tropic nonlinear optical properties. In this case, depending on the waveguide

geometry with respect to the crystal optical axes, the TE-field components,

ET, can induce a large longitudinal nonlinear polarization, Pz. In addition,

to increase the power density for efficient nonlinear interaction, a strong

optical confinement is usually needed in nonlinear waveguides. The strong

confinement can result in a large longitudinal electric-field component, Ez,

which can contribute to Pz in the third-order process even if the material

is isotropic. Therefore, in general, the longitudinal nonlinear polarization,

ILz, does not vanish and can become very important in waveguides of special

geometry.

Subsection 3.4 shows that when P'z o 0, the linear mode identity cannot be

retained in the expansion of the nonlinear waveguide fields. In this case,
there is no unique way of doing the expansion. In Subsection 3.4, the choice

was to relax E, only. Another simple possibility is to choose one set of

expansion coefficients, say A.(z), for all three electric-field components and

a different set, Ba(z), for all three magnetic-field components. By doing so,

the coupled-mode equations become substantially more complicated and can be

reduced to a simple form only under certain special conditions. This is
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because the orthogonality relations, as given in Subsection 3.3, are all in

terms of TE and TM mode fields, *aT and 9a4T, together. Therefore, using

different expansion coefficients for Er and H makes it mathematically com-

plicated. It is more convenient to choose the same coefficients for Er and

RT . In general terms, when the mode identity cannot be retained, it probably

does not matter how the fields are expanded so long as the fields and the

nonlinear polarization can be approximated as accurately as possible and the

resulting equations are mathematically as simple as possible. It appears that

the choice used in Subsection 3.4 does this better than other possible

choices. If the material is magnetic with a nonvanishing longitudinal non-

linear magnetization, then H z has to be relaxed and be expanded similar to E.

in Equation 63.

When PZ- 0, the coupled-mode equations can be solved as coupled

simultaneous equations for Aa(z) directly since PT can be expressed explic-

itly in terms of products of Aa(z) through Equations 15 and 60. When P. o 0,

P cannot be explicitly expressed in terms of products or combinations of

Aa(z) any more because of Equation 63. Then, the coupled-mode equations

cannot be reduced to simple and direct simultaneous equations for Aa(z). In

this case, the nonlinear fields can only be solved iteratively using the

coupled-mode equations together with Equation 15 and Equations 62 and 63.

Aa(z) and PN. can be solved successively using the procedure outlined in

Appendix B until a self-consistent solution is obtained.

The contribution of PL to the coupled-mode equation becomes important when

Z and *.. are both significant, as can be seen from Equations 71, 77 and 78.

This can happen when the waveguide material is anisotropic and the fields are

tightly guided. When this contribution is negligible because _z vanishes or

because kaz is very small such as in weakly guiding system, one has

dA expz(ipz) + .Zexp(-ipz) = 0 (82)

-edz pz dz

for CASES 2 and 3. In this case, taking a slowly varying amplitude

approximation for the forward-propagating wave is equivalent to neglecting the

backward-propagating wave (Refs. 25 and 40). This does not apply to CASE 1
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since the forward and backward modes are independent in CASE 1. When the
NL

contribution P, is not negligible, Equation 82 is not valid. Then the

relation between the forward- and backward-propagating waves can become more

complicated.

The linear and nonlinear electric susceptibilities, X, and the dielectric

constant, c, are assumed all spatially local functions so that pL(r,w) and

PNL(r,w) can be written in the forms given by Equations 14 and 15, respec-

tively. However, in certain cases of interest, such as in a semiconductor

waveguide under carrier injection and the carriers have a diffusion length

longer than the wavelength of the guided wave, X and E are nonlocal spatially

as well as temporally. Then pL(r,w) and PNL(r,w) have to be expressed as

spatial convolution integrals of X and E. In this case, the z-dependent

expansion coefficients, Aa(z), are also involved in the convolution integrals

when the field expansion is substituted into the nonlinear wave equations. It

seems that there is no simple coupled-mode approach in this situation.
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4.0 EFFECT OF CARRIER DIFFUSION ON PHASE CONJUGATE FOUR-WAVE MIXING IN

SEMICONDUCTOR WAVEGUIDES

4.1 INTRODUCTION

Four-wave mixing in a nonlinear optical waveguide has the advantage of long

nonlinear interaction length and high field intensities due to the optical

confinement of the waveguide. Phase conjugation by 4-wm in optical fibers was

proposed by Yariv, et al. (Ref. 9). They showed that if a multimode optical

fiber is excited with two counterpropagating single-mode pump beams both

coupled into the lowest-order transverse mode, a third probe beam launched in

the waveguide can be replicated with high fidelity through the PC 4-wm process

in the waveguide. The multimode fiber has to accommodate a number of

propagating modes equal to the number of resolution elements contained in the

probe field for sufficient image resolution (Ref. 9). Subsequently, Hellwarth

(Ref. 11) carried out a more detailed analysis on the generation of a PC

replica of a free wave at the entrance plane of a multimode waveguide by 4-wm

in the waveguide. The pump power required in the waveguide is orders of

magnitude less than that needed for phase conjugation with unguided beams in a

bulk medium. Furthermore, unlike for unguided waves, beam alignment is not

critical (Ref. 11). It is only necessary to sufficiently couple the beams

into the guided modes.

Hellwarth's analysis also showed that the two counterpropagating pump beams

can be multimode without spoiling the fidelity of the PC replica, as long as

the nonlinear coupling between the pump beams and the probe beam does not vary

from mode to mode (Ref. 11). It is also possible to replicate the image

carried by a multimode pump beam in the presence of a counterpropagating pump

beam at the same frequency in the waveguide. In this two-beam configuration,

the first pump serves as both the pump and the image beam. Both the three-

beam and two-beam arrangements for phase conjugation were simultaneously

demonstrated by Jensen and Hellwarth with a multimode glass waveguide filled

with liquid CS 2 (Ref. 10). The pump powers required were nearly an order of

magnitude lower than that required in the bulk medium. However, the conjugate

reflectivity was less than unity because of the small optical nonlinearity of

CS2.
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Recently, there have been a series of experimental (Refs. 14, 17, 35, 39 and

40) and theoretical (Refs. 16 and 41) studies of nearly degenerate 4-wm in

semiconductor lasers and amplifiers. A large signal gain of 30 to 40 dB,

which corresponds to a conjugate reflectivity of 103 to 104, has been observed

(Refs. 14 and 17). This is caused by the optical gain and the resonant

enhancement in addition to the large optical nonlinearity in the semiconductor

laser medium (Ref. 35). Using a noncollinear phase conjugation geometry in a

broad-area diode laser, Lucente, et al. (Refs. 42 and 43) showed that the 4-wm

signal is emitted in the PC direction.

It becomes obvious that if the semiconductor waveguide can be used for the

generation of optical PC signals, a very large PC reflectivity could be

realized, in addition to the various advantages of using a dielectric wave-

guide demonstrated by Hellwarth (Refs. 10 and 11). Since it is relatively

easy to control the optical gain in a semiconductor waveguide by current

injection, the signal intensity can also be easily varied without changing the

pump intensity. So far, the experimental and theoretical investigations on

the nearly degenerate 4-wm in semiconductor waveguides have focused on the

nonlinear properties of the semiconductor medium without much consideration on

the waveguiding and mode properties of the interaction (Refs. 14, 16, 17, 35

and 39-42). Most of these studies have considered only single-mode semicon-

ductor waveguides. However, as has been pointed out by Yariv, et al. (Ref. 9)

and by Hellwarth (Ref. 11) for the generation of a PC image a multimode

waveguide with a large number of guided modes is necessary for sufficient

resolution of the image. In addition, the nonlinear coupling between modes

has to be uniform for high-fidelity phase conjugation (Ref. 11).

In a semiconductor waveguide under current injection for an optical gain,

carrier diffusion can affect the efficiency of nonlinear wave coupling in a

4-wm process (Refs. 41 and 43). In fact, using a noncollinear arrangement

Lucente, et al. (Ref. 43) were able to measure the ambipolar carrier diffusion

constant directly by measuring the spatial and frequency dependence of the

conjugate signal efficiency in a broad-area laser diode. Carrier diffusion

can also degrade the mode identity in a multimode waveguide. The effect of

carrier diffusion on PC 4-wm in semiconductor waveguides is studied for the

possibility and limitations of using semiconductor waveguides under current

injection for efficient generation of PC image signals.
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4.2 CARRIER-INDUCED POLARIZATIONS

The 4-wm process is considered with two counterpropagating pump beams in a

multimode semiconductor waveguide under current injection. The generic scheme

is shown in Figure 2 where the z-direction is taken to be along the waveguide

axis. The waveguide is assumed to be index-guided with a rectangi.ar cross

section of dimensions w and d in the x- and y-directions, respectively, as is

shown in Figure 3. The intrinsic refractive index of the guiding core is n

and that of the surrounding clad is no < n for index guiding. The forward-

and backward-propagating pump fields are EP and Ep,, respectively. Ei is the

input image (probe) field and E8, is the returned signal (conjugate) field.

Here a prime is used in the field indices for the backward-propagating fields,

i.e., those propagating in the -z direction. The forward-propagating fields

are indexed without a prime. For generality, consider nearly degenerate, but

nondegenerate, 4-wm with degenerate pump frequency, wp - WP - w, and detuned

probe frequency, cii - w - 0. The returned signal is then at frequency

WS. - w + Q. The degenerate case when wp - w., - i - ,n- will be discussed in

Subsection 4.4.

The complex field at a particular frequency wj is given by

Ej(r,t) = Ej(z,wj)exp(-ijt) (83)

where Ej(r, wj) contains the spatial information, and the real field can be

obtained from EZ(r,t) + Ej(r,t) . In a multimode waveguide, the spatially

dependent parts of the fields can be expanded in terms of the normal mode

fields of the waveguide. In a nonlinear waveguide where the longitudinal com-

ponent of the nonlinear polarization, P,1L, does not vanish, the longitudinal

z-component of the electric field can, in general, have different expansion

coefficients from those for the transverse field components. In addition, the

backward-propagating modes, *-a, are not generally identical to the forward-

propagating modes, *a. However, for the discussions in this report, these

differences will be ignored for simplicity in the formulation. Therefore, the

spatially-dependent parts of the fields can be expanded as follows

=() A (AT (z) *a(x, y) exp (iP.z) (84)
a
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Figure 2. Schematic diagram of PC 4-win with a multimode wavegulde.
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Figure 3. Waveguide cross section.
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,(r)= EA," (z)*.(x,y)exp(-iPz) (85)
a

Ei (z) A(.) (z) a (x,y)exp((ipa-ap.) z) (86)
a

Be/ = Aa ')(Z ) Z (x,y)ex p (- i (Pa + Pa) Z) (87)
a

where Pa is the propagation constant of mode a. Here, *, is assumed the
normal mode of the intrinsic waveguide structure without current injection.

Therefore, P, is approximately real since the imaginary part, K", contributed
by the intrinsic waveguide loss is generally very small in comparison to real

part, Pa. In this case, the optical gain contributed by the injected current

is not included in .. The contributions of the carrier-induced gain and

optical nonlinearities are described by the total carrier-induced polarization

P with linear and nonlinear components. The mode field pattern *.(x,y)

depends only on the transverse coordinates and are characterized by two wave

numbers, a and %,, which describe the transverse spatial frequencies of 0a in

the x- and y-directions, respectively. For guided modes, these constants

satisfy the following conditions

+ + + 1=2k 2  (88)

and

ko < Pa < k (89)

where ko - now/c and k - nw/c.

To obtain the carrier-induced polarization, one has to calculate the linear

and nonlinear susceptibilities of the semiconductor medium in the presence of

the injected current and the multimode optical fields. A formal and rigorous

approach is to calculate the carrier distribution with the band structure of

the semiconductor and then to employ the density-matrix formalism for the

interaction of the optical fields and the medium (Ref. 44). This approach
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will enable a moAe accurate accountability for the microscopic properties of

the semiconductor medium, such as the band structure and the crystal symmetry.

However, it is mathematically much more involved. Since the interest is

primarily in the effect of carrier diffusion in this report, the microscopic

nature of the semiconductor medium will not be considered. Instead, a pheno-

menological approach will be taken with the rate-equation approximation. In

this approach (Refs. 41-43), the carrier diffusion is described by an ambi-

polar diffusion constant, D, and the intensity gain, g(N), as a function of

the carrier density, N, as approximated by (Ref. 41).

g(N) = a(N - N 0) (90)

where a is the gain coefficient and No is the minimum carrier density needed

for optical transparency in the semiconductor medium. The total carrier-

induced susceptibility can then be approximated by (Ref. 41).

x(N) = - cn (b + i)g(N) (91)
41r

where b is the antiguidance factor (Refs. 45 and 46). Since the interest is

also in the possibility of a large signal gain, only the situation of small

pump-probe detuning is considered (Ref. 41), 1 IT 1 , where r is the carrier

recombination lifetime. The 4-wm efficiency is much higher in this case, when

compared to the case of a large detuning such that 1OIT > > 1 (Refs. 41-47),

and the rate-equation approximation is valid.

A procedure similar to that outlined by Agrawal (Ref. 41) is followed for a

single-mode waveguide. However, because the 4-wm is being considered in a

multimode waveguide, the mode properties (including intermode coupling) must

be taken into account in the formulation. Begin by considering the spatial

and temporal variations of the carrier density, N(r,t) described by the rate

equation (Refs. 41 and 43)
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dN(r,t) - J - N(z,t) cn g)
dt ed 2 g  ' w

+ DV 2 N(r, t) (92)

where J is the injection current density, e is the electronic charge, and D is

the ambipolar diffusion constant. The total field in the waveguide is

E(r,t) = ;pexp(-iat) + i, e-p(-iWt) + Eiexp(-i(6 - Q)t)

+ Z., exp (-i ((+Q) t) (93)

where EFP,Ei and Z,/ are given by Equations 2-5, respectively. Taking the

strong-pump approximation that I1E + E.P,1 >> I'I and 1E8,,, one can write

IE(r, t)If - I + +,1 {[(E + EP,) '

+ (E+ , Z,,,] exp(-i~t) + c.c.) (94)

where the first term is time-independent but can be strongly spatially

dependent, as are the time-dependent terms in the equation, because of the

multimode mixing. To solve Equation 92, one writes (Ref. 41)

N(r,t) = N.(z) + [N(r)exp(-igt) + c.c.] (95)

where N. contains the effect of gain saturation due to the pump fields and N.

accounts for the contributions from the wave mixing with the probe image and

conjugate signal fields. Substituting Equations 94 and 95 in Equation 92, one

obtains

L 2 V 2 N, = (1 + ICP + EP, 12/I) No- (N (1) + NoIEP + E,12/I ) (96)

L 2V2 N. = (1 - iQr + 11% + p,l/Ir)Nm

+ (Ni - NO) [(ip + P,) •-z + (E + E;,). E,,] 1' (97)
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where L - V5 is the carrier diffusion length and I. = 2XW/ (cna) is the

saturation intensity scaled to the unit of 1E12. The carrier density in the

absence of the optical fields is NM1 ) - Jr/ed, which gives the unsaturated and

unperturbed linear gain

g(l) = a(N(') _ NO) (98)

The corresponding unsaturated linear susceptibility is

X(1) cn (b + i)g(l) (99)

In the presence of optical fields and carrier diffusion, Equations 96 and 97

are usually approximated by spatially averaging the fields to account for the

carrier diffusion and then by dropping the diffusion terms (Ref. 48). To more

accurately trace the effect of carrier diffusion, this approach has not been

taken. Instead, Equations 96 and 97 were solved by expanding N,(r) and

N3 (z) in spatially-dependent Fourier series containing terms of longitudinal

and transverse spatial frequencies corresponding to those generated by mixing

between field modes. The effect of carrier diffusion is to include in the

wave-mixing efficiency a Lorentzian lineshape function

S(ka &,bI1a ± nb Pa ± Pb;) = {1 + [(&. ± &b) 2

+ (%1 ± nIb) 2 + (P, ± Pb)'] L 2

- i } - 1 (100)

which depends on the spatial and temporal beat frequencies of the mixing

modes. Therefore, each term in the Fourier series will have a different

Lorentzian multiplier depending on the beat frequencies. With this

understanding, the Fourier-series solutions can be written for N. and Nm in

the following concise forms,

(1) - (N' ) - NO) (0) +, * P'12/I, (101)

:I + 5(0) Fa~ a a' a/3
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NM= =- N)) (3 + -,) *E+(E;+E,) E,,]/I, (102)+ a E (I) (. .P) + I(p')) /I
a a a +

where 2(0) - 2(0 - 0) and

N gI  E N a(l (P) + I T'))I

N =N (103)
I + E a(IC a a 8)/I

is the background carrier saturation which does not depend on the mixing

spatial frequencies of the modes. I = IA () 12 and I (P ')=IA{P ') 12 are the

spatial-frequency-independent average intensities in individual pump modes.

The spatial-frequency dependencies of 2(0) and 2(0) vary with the mixing modes

and can only be determined after the fields are expanded using Equations

84-87.

Using Equations 101-103 and Equations 90 and 91, one can write

_ )x("SE(o) l .+E ,/1I/i
Xs= - (104)I + (0) E. (I(p) + I 'a/r

X'~() [(EP + ZP,) Z! + (1+ E*, /I
X M = - ] 1 (105)

1 + ( )) + )

where X. is the susceptibility corresponding to the saturated gain and Xm is

the susceptibility responsible for the wave mixing. The saturated carrier-

induced background susceptibility is

) (106)

1 a + I(I + a
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In the strong-pump approximation, one can then write the total carrier-induced

polarizations at the pump, image, and signal frequencies,

P(W) = (W) + P5 (W) = X, + ,) (107)

- f =. - + (c-Q) = * + + ,) (108)

P(G)+Q) =P,(W + 0) + ( + X, E,,/ + Xm(EP + EP/) (109)

where PF and P. are polarizations containing forward- and backward-

propagating wave vectors, respectively, i.e.,

PF - sum of exp (ipz) , exp (i3oz) , . . .terms (110)

PB - sum of exp (-iPz) , exp (-i3z), . . .terms (111)

4.3 EFFECT OF CARRIER DIFFUSION

The total carrier-induced polarizations given in Equations 107-109 contain the

linear and nonlinear polarizations. In general, the total pump intensity can

easily be comparable to or larger than the saturation intensity, I,, in a

semiconductor waveguide, which is typically of the order of 3 to 5 mW/Am2

(Ref. 49). Therefore, the wave-mixing process has to be described by

Equations 107-109 together with the total Xs and X, given in Equations 104 and

105, respectively. One can expand X, and X,,

Xis X a ) + (.. , , P)+ + (.;,> + (E., 11)3)

(3) -Cj*) + (% -> * +%, ; ; < -"It,/) + <.;," - Es/3) (13
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where

x(8) = - ~(O)X 8
) /I (114)(3 k (0a p)  I a')I

X = - () (115)
1 + 9(0)E a + I )

The symbol (i Z,, for example, indicates that the spatial-frequency

((3)

dependencies of 2(fl) in X m- for the first term in Equation 113,

X )  • O . depends on the spatial beat frequencies of the mode components

of the multimode fields E, and ZE. It does not mean that spatial averaging

has been taken for E , "i. Using Equations 112 and 113, one can expand

P(wa),P(Co-0) , and P((a + Q) in Equations 107-109, respectively. Since

the phase-matched or nearly phase-matched nonlinear are the only interested

processes, keep only terms -exp(ioz) for PF and those -exp(-Dz) for P. and drop

terms with higher-harmonic propagation constants. Then one has

Pr (CO = ~( zX) +(z1)>) ;*Ez, (116)

p (C.) - 0) x , Lp, + X . <%,, >,)E+)

MO(~ j + (E"-EiPP + (EP *,)P

(117)

P,(C + 0) + x. ; ,,., + xM3 ((; "W)> (118)

and

=()( - E;)E,/ + (Z,,t Z,X, + (119))EP

.(.- C ) + Z • (,. ,,,,) (120)
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Pe((A)+ 0) = x 1)z , + X (1 • 3 .'- + (Z"' E%, Z* .,I

+ XMkxp iEt+ (E * + 3,)A

+ (z,(121)

Here PF((a) and P.(W) contribute to the forward and backward pumps,

respectively, PF(0 - 0) and P.(W + 0) and contribute to the probe image

and returned signal fields, respectively. The other two polarizations

PF(W + 0) and P,(W - 0) generate, in addition, a forward-propagating field

at w + 0 and a backward-propagating field at w - fl through the 4-wm process.

In the nondegenerate case, these two additional fields can be easily separated

from the image and signal. In the degenerate case, they can become additional

sources of complications for the PC process. This is discussed in

Subsection 4.4.

With these carrier-induced polarizations, the mode-amplitude coefficients of

the multimode fields in Equations 84-87 satisfy the following coupled-mode

equations.

dAT ) = i2KCA exp(- . ffdxyP(w) *4a(12

d (p')

a - i2- exp(iPz) f dxdyP() -. (123)

dz C

dA ' i2n(o - 0) expf(-i (P.-4P)Z).f f dxdyP( - ) *a (124)

dz C

a _) i2n(0 + )exp(i(P+ .)z)ffdxdyP -ft., (125)
dz C

In these equations, the total carrier-induced polarizations, P1 = P(1) + P(3)

(1) +p(3)and P. = P 4 PB C, which include the carrier-contributed saturated optical

gain in P(1) and P(1) were used. This is because the defined waveguide modes

were in terms of the intrinsic waveguide structure without injection, as has
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been discussed in the previous section. In the strong-pump approximation, if

the pump intensities are kept constant, the carrier-induced background

saturated susceptibility, X 1) , does not vary with the mixing fields. Also

included is X(s in the total linear dielectric constant of the waveguide used

to define the modes. Then PF and P. in each of Equations 122-125 should be
(3) (3)replaced by P F and P(B , respectively. However, j6 and 0. then become

complex since the total linear dielectric constant becomes complex with the

linear gain included. Both approaches give the same result, but the first one

is more convenient for the analysis in this report.

The nonlinear mixing terms in Equations 116-121 stem from various physical

origins. There are four categories,

N( -"E,),(4 -"E,) standing grating -cos2 1z (126)

<E , / l>,< •F E;,) I moving grating -cos (2 z + Qt) (127)

(lip, (Z; ,E J

(EP " ,%, "E*,> transverse grating -constant in z and t (128)

( oscillating index -cos (Ot - 8Pz) (129)

Notice that in addition to the z- and t-dependencies, every term has x- and

y-dependencies which set up transverse standing gratings. For the E. E )

and (E,/ "p>) terms, the background saturation contributions, which do not

depend on the spatial frequencies, have already been accounted for in X,(') and

are included in P P and PB . Therefore, these terms in p 3 and P B

include only those transverse gratings set up by mixing between different

modes in the pump fields. They disappear with single-mode pumps. The

standing and moving gratings in Equations 126 and 127, respectively, are
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created by interference between counterpropagating fields while the index-

saturating transverse gratings and the time-dependent index oscillations, in

Equations 128 and 129, respectively, are generated by copropagating fields.

In the absence of carrier diffusion, such as 4-wm in an optical fiber, the

spatial-frequency dependencies of the mixing efficiency through the Lorentzian

function in each term disappear completely. In this case, every term in these

equations contributes and the symbols, ( and ), for the spatial-frequency
dependence can be dropped. Where carrier diffusion is present, the spatial-

frequency dependencies are important and the four categories of contributions

have very different efficiencies. In a typical semiconductor waveguide, such

as one of GaAs, no - 3.5, A - 2rc/w -0.8 Am, and L - 2 Am. From Equation 89,

this results in 2fL > 2k0L > 100.

Therefore, the nonlinear terms contributed by the standing and moving gratings

vanish in the presence of carrier diffusion because of their vanishingly small

efficiency according to Equation 100. Notice, that unlike the conclusion

derived from spatial averaging discussed by Bogatov, et al. (Ref. 48) and that

the effect of the moving gratings depends on the detuning frequency 0, the

analysis shows that the moving gratings vanish irrespective of the detuning

frequency, as can be seen from Equation 100. One conclusion can be immedi-

ately drawn from these discussions: In the presence of carrier diffusion, the

copropagating fields in the 4-wm process cannot be orthogonally polarized,

while the relative direction between polarizations of counterpropagating

fields does not affect the wave-mixing efficiency at all. For maximum

efficiency, the copropagating fields have to be polarized in the same

direction.

Equations 124 and 125 describe the coupling between the probe image field and

the conjugate signal. The relevant carrier-induced polarizations are

PF(w - Q) and P,(0 + 0) with the standing and moving grating terms dropped

from Equations 117 and 121, respectively. For the signal field (E, in

Eq. 87) to be the PC of the image field (Ei in Eq. 86) with high fidelity, it

is necessary that A - KaA a for every mode a with a mode-independent

constant, Ka - K. The generation and development of the amplitude for each

mode in the signal field is governed by
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dA 127 (ca +)

dz i exp(i(P. +8a).z) fjfdxdy,. {X-.Z

+ r4 + (1, -,;,) ) Z., + X < ",;>E,

+ x. (z,, Z.. I

S_ 2 + 0) (SG + SM + PC + SC) (130)
C

The signal is first generated by scattering off the backward-propagating pump

by the oscillating index fluctuation created by interference between Ep and

EZ. This process is described by the PC term. The first (SC) term provides

the growth of the signal amplitude through the saturated gain, which is

partially responsible for the very large signal efficiency in the 4-wm

experiments with the semiconductor active medium (Refs. 14 and 17). The

second and third terms (SM) account for the scattering and modulation of the

signal induced by the transverse standing gratings created by the mixing

between the modes of the strong forward- and backward-propagating pump fields,

respectively. Once the signal is generated by the PC term, it is amplified

and modulated by the SG and SM terms. In addition, it can beat with the

backward-propagating pump field to create an oscillating index fluctuation

which scatters off the backward pump field Z-p/ into the signal. This process

is described by the last (SC) term. The SG and SM processes do not create

complexities in cross coupling between different modes in the image and signal

fields, while the PC and SC processes are the source of complexities. The

effects for these two terms are similar. To understand the effect of carrier

diffusion, it suffices to examine only the PC term.

With the multimode fields given in Equations 84-87, one has

PC = "Z*Z,-,',exp (i (P,a )Z)

= C. hAa(P )A;P)A;()expU(i2 8 az ) + E C abb (V) (P) M )ex i26

boa

boa aabbA; N bA exp (8Pa+80b)Z) (131)
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where only the nearly phase-matched terms are kept. The subscript indices of

the nonlinear coupling coefficients, Cbba and C3,b, correspond to the modes in

the four mixing fields in the s'p'p i sequence. These nonlinear coupling

coefficients are functions of spatial and temporal beat frequencies which

depend strongly on the mixing modes,

Cabba =

X ffbdxdy.. + + ; ) .*'a

a( 1 ++(132)

Caabb

1 a dxdyS(Pb;)*b (133)

i s~- fc x ( I + ( b;Q )E a( ( 1 p )  + l P ))/ 1 )

where Equation 115 was used and the transverse-spatial-frequency dependencies

of 2 are determined by the transverse patterns of the modes in the angle

brackets. The dependence of 2 on 6 in Equations 132 and 133 can be neglected

since 6PL - rnQL/c - 10-5 for Or - 1. Ca580 can be obtained by setting a - b in

either Equation 132 or 133. Without loss of generality, it is also assumed

that the injection current is uniformly distributed so that X a is a

spatially-independent constant in the guiding region. To illustrate the full

spatial-frequency dependencies of the nonlinear coupling coefficients, take

the mode pattern of the strongly index-guided mode (Ref. 50) as an example.

With the origins of the transverse x- and y-coordinates defined at the center

of the waveguide, the transverse mode pattern in the guiding regions, -w/2 5 x

S w/2 and -d/2 : y : d/2, can be written (Ref. 50).

*$(Xy) - 2 cos (R8x + aa) COS (Oay + y.) e. (134)

where e. is the unit polarization vector of mode a, and w and d can be

considered effective cross-sectional dimensions of the guiding region

(Ref. 50). For simplicity, neglect the exponentially decaying fields outside

the guiding region in the integration for Cbb and Cabb. Since the interest

is in multimode waveguides with many guided modes, most modes will be well
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guided and this simplification will not change any general conclusions. It is

also assumed that the copropagating fields are polarized in the same direction

for maximum 4-wm efficiency.

4.3.1 Low Saturation, Za(I.lpl + I.p'))/I, << 1

In this case, since , + Ea(I(P) + Ia(p'))/I. = 1. For a , b,

one obtains

Cuaa - { (2&a, 2%ll, 0; 0) + 2$ (2t, 0, 0; 0)I 4wdI.

+ 2Sf (0,211a, 0; 0) + 4 (135)

(1)

Cabba = B -S ( { t + b'l% + 'IbI Pa - Pb; rl)C' a - 4wdI

+ S (&a + b"na - Tlb1P - Pb;a) ( + 8, b )

+ S (C. - tb'n% + b ,P, - Pb;a) (1 + 64.,C0

+ i (&a, - &b"'. - qb,Pa - Pb;Q) (1 + 8C..,) (1 + 8a,.-b} (136)

X(1)Xaabb =( {2S(0, 2Tal 0;O) 8,&, b
Cwd1 5 4wdIb

" 2S(2&a, 0, 0; 0)6 .,b + 4) (137)

From Equations 130 and 131, the mode intensity in the conjugate signal I.s') a

IA.(")J' ) ld2 01212. From Equation 100, if any one of the following

conditions,

(i) I a +  b L  , (ii) [1a ± IbIL ! 1, or (iii) 10a ± ObIL - 1 (138)

is not valid, 1212 will be reduced to _<0.25. If any two of these three

conditions are violated, then 1212 < 0.1. Using Equations 88 and 89, it can

be shown that if Conditions (i) and (ii) are both satisfied, l, - OblL < 1.

Since the 2 functions in Equations 135-137 depend only on P. - fb and not on
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P. + fb, only Conditions (i) and (ii) need to be considered in the evaluation

of the contribution of each term Caaaa, C~ba, and Caabb to the conjugate signal.

For the strongly index-guided modes given in Equation 134, one has a - qir/w

and 17a - mair/d, where qa and m. are positive integers. The numbers of guided

modes in the x- and y-directions are Q - 2nw/A and M - 2nd/A, respectively,

and the total number of guided modes is N - QM. With n - 3.5, X - 0.8 Am, and

L = 2 Am Conditions (i) and (ii) in Equation 138 become

(i) Iqa*qbl O.OISQ and (ii) Ima ± mb I O.018M (139)

These conditions are hard to satisfy for the terms with spatial sum-frequency

dependencies in Equations 135-137 unless Q and M are extremely large and a and

b are modes of very low order. Therefore, except for a few low-order modes,

one will expect

Caaaa - Caab X (140)

Cabba 4 u(a bI 1aT1 PaPb +-C d

(1 + 8 1,1b) (141)

Notice that for Caba in Equations 131 and 141, the mode index a refers to the

modes in the image and signal fields and the index b refers to the modes that

exist simultaneously in the two pump fields. For the spatial difference-

frequency dependencies in Equation 141, the conditions in Equation 139 can be

satisfied only when a and b are neighboring modes. However, even when a and b

are directly adjacent modes such that 1q. - qbI - 1 or Ima - mbl - 1, Equa-

tion 139 requires a minimum number of guided modes, Qin > 55 or Min > 55,

respectively.

From Equation 131, the desirable PC signal A."') - KSA(i)* comes from the

contributions of the first two terms associated with C.... and Caba, respect-

ively. The third term associated with C..b actually creates cross-talk

between different modes in the image and signal fields and is not desirable,
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although it usually exists in the case of multimode pumps. The Ca.aa term

accounts for the generation of the mode amplitude A" ') in the conjugate signal

when both pumps are also coupled into the mode a. The term associated with

Cba describes the more general source of generation of A."') by all the other

modes in the pump fields. In the case without carrier diffusion, this term is

the major source of contribution (Ref. 11). Then, either single-mode (Ref. 9)

or multimode (Ref. 11) pumps will work well to generate a PC signal. With

single-mode pumps, the complication due to the Cab term also disappears.

These nice features are not available in the presence of carrier diffusion

because of the requirement of Conditions (i) and (ii) in Equation 139 on Cb 8.

As an example, assume that both pumps are coupled into only one mode, say the

fundamental mode, and the waveguide supports a large number of guided modes in

both the x- and y-directions such that N - QM >> 552 - 3,000. Then, out of

the total N available modes, the signal will be generated through Cb 8 only

within the -3 x 10-4 N modes closest to the pump mode. With multimode pumps,

the C~b. term only creates signal in modes around the pump modes. From

Equation 140, C... - constant and Ka a A,('' AP0, except for a few very low-

order modes. Therefore, although the Ca.a. term always exists, the signal

amplitude A."" in each mode depends on the amplitudes of the pump fields in

the particular mode. From the discussions in this section, the conclusion is

that the diffusion of carriers in a semiconductor waveguide severely compli-

cates the coupling between various modes and limits the possibility of the

generation of a high-fidelity PC signal. In fact, the only possibility of

generating a high-fidelity PC signal with sufficient image resolution in a

multimode semiconductor waveguide with carrier diffusion may be by coupling

both pump fields into all the guided modes uniformly. Then the C.... and Caba

terms will generate A" ') - KA'i)* for all the guided modes a with K depending

little on the mode index. However, even in this situation, the Caab term

exists and contributes to some undesirable cross-talk coupling between modes.

4.3.2 High Saturation, Z,(I. p) + I(P'))/Is > 1

In semiconductor laser waveguides, it is common to have significant gain

saturation. When IJ(Q)Z,(IlP) + IaP'))/I.I 2 1, the 2 functions in Equa-

tions 135-137 for Cas, Caba, and C&.b, respectively, have to be replaced by

t/{l + iZ,(I(P) + I P'))/I.), as can be realized from Equations 132 and 133.
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This makes Caaaa, C~b, and C,.hb look very complicated, but it does not change

much of the conclusions obtained in the case of low saturation. However,

since now + I.(P°)/I 3 > 1, it is possible that I2z.(I,.pl + I.P'))/Isl > 1

even when Conditions (i) and (ii) are not satisfied and 121 is small. The

effect of gain saturation is to relax Conditions (i) and (ii) in Equation 138

to

(iv) a &bIL <  (I (P + I

(v) In. ± TbIL (I () + I T I) 1/2  (142)

This is equivalent to the following relaxed conditions in place of

Equation 139,

(i) jqa ± q (P) + I 8Q/) 113)1/2

(V) Ima ± mbj O.O18M(Z.(Ia~1 + Iav')) a I.}1/2 (143)

Therefore, for those terms in Ca... Cbba, and C,.bb which have spatial

frequencies satisfying Conditions (iv) and (v), 21(l + 2Za(IIP) + IP ' )) /I,)

I./z.(I.p) + I.(P)). They become independent of the spatial beat frequencies.

If the waveguide becomes so severely saturated that Za(I.(P) + IP'.)) /I5 >> 1

and Conditions (iv) and (v) are satisfied for the sum and difference beat

frequencies between any two guided modes, the Cbba and C..bb become totally

independent of the spatial and temporal frequencies and, for a # b,

(1)

Cal&& = -X (144)

Ca = Caa --- 4wd X(Ip + 2(I"))2 +2 + 4) (145)

These are exactly what will be obtained in the case of no carrier diffusion.

However, the nonlinear coupling coefficients and, therefore, the 4-wm

efficiency are severely reduced by the increase of saturation. Notice that in
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addition to the {Za(I.'p + I P"))}- dependence in Equations 144 and 145, XSM

is also inversely proportional to Za(I.p ) + I.P')) according to Equation 108.

Therefore, although gain saturation relaxes the stringent limitation of

coupling the power of a pump mode to other modes in the signal due to carrier

diffusion, this comes at a price of severely reducing the overall nonlinear

coupling efficiency. In fact, 121 falls off quickly when either of Conditions

(i) or (ii) is not satisfied. For the transverse gratings generated by beat

frequencies which satisfy Conditions (iv) and (v) but not Conditions (i) or

(ii), their contributions to the nonlinear coupling efficiency becomes unim-

portant although Equations 144 and 145 apply. The conclusion is that gain

saturation can relax the limitation caused by carrier diffusion but in a very

undesirable way. For Equations 144 and 145 to apply for a large enough mode

so that a high-fidelity PC signal can be generated with sufficient resolution,

the saturation needed would be so high that the nonlinear coupling coeffi-

cients become vanishingly small and the signal disappears altogether.

4.4 DEGENERATE FOUR-WAVE MIXING

In the degenerate case, when w. - cp. - w c " , 0 0and 60 - 0. Then, the

moving gratings identified in Equation 127 become standing gratings like those

in Equation 126 and the time-dependent oscillating index terms in Equation 128

become only time-independent transverse gratings like those in Equation 129.

In the presence of carrier diffusion, those terms with a longitudinal grating

of spatial frequency 2P certainly do not contribute also in the degenerate

case. Therefore, still only those terms identified in Equations 128 and 129

are kept for the carrier-induced polarizations.

As discussed earlier and expressed in Equations 124 and 125, in the

nondegenerate case only P,(W-0) and PS(W+a ) contribute to the generation,

growth, and modulation of A.") and A."'), respectively. The polarizations

P,((+Q) and P,(W-0) are also generated in the 4-wm process, but they can

be easily distinguished from the contributions of P1(W-0) and P.(W+Q) and

do not affect A.") and A." '), directly. The major difference between the

degenerate and nondegenerate cases is that in the degenerate case this

distinction disappears and the coupling between A.") and A.s') is complicated
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by these two additional polarizations, P,(cO+ 0 ) and P,((A-0) , as 0-0. In

the strong-pump approximation and in the presence of carrier diffusion, one

can then write

P' (o) = , + X61 (< • E)Z + R(,ED) (146)

dIio e + (qaton 122 (147)p~~~~') W~ + *( (3) ~ + z~* 18

Pi5' Z,) = zz, (
(3 * (j,*EW)E*

+ X jj + (E L ;) 1  (149)

Pw() and PB(w)) replaced by P(. and P(Bp3 (6)) , respectively. Therefore, in

the strong-pump approximation, Fhe pumps are not changed by frequency degen-

eracy. However, the coupled-mode equations for A and A given in

Equations 124 and 125 have to be modified by replacing PF( -O) and

(3) Ca')Z

PE(aO) with P1 and Pi(en(a), respectively, in addition to setting v - 0

and p - 0. Therefore, the generation, development, modulation, and coupling

of Asop') is now described by

dAa 1 2- _(SG + SM + PC + SC + AM} (150)
dz c

where the SG, SM, PC, and SC terms are the same as those defined in

Equation 130.
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They also provide the same contributions and limitations to the PC 4-wM

process as described in Subsection 4.3 for the nondegenerate case. The

existence of the anomalous mixing (AM) terms in Equation 150 is due to the

fact that P,(W-Q) given in Equation 120 also contributes to P((')) in the

degenerate case,

Am = ff dXdyX ' ((z . ) , + ( 3)) r)•, xp(iIz) (151)

The effect of carrier diffusion on the multimode-field mixing of the AM terms
.n Equation 151 is similar to that discussed in Subsection 4.3 for the PC

term.

From Equations 150 and 151, it is obvious that the effect of frequency

degeneracy is to couple A."'" to the modes of Ei and Ej, directly. As a

consequence, one can expect that A "') becomes a sum of many different contri-

butions. In addition to the desirable PC contribution, KaA a , discussed in

Subsection 4.3, there is a non-PC contribution, K.A ai + E-.K/A(', to the

backward-propagating signal amplitude Als'). There is also a backward-

propagating amplitude proportional to A.m')* due to the second AM term in

Equation 151. Obviously, these extra contributions in the degenerate case

tend to destroy the PC signal. With a single-mode waveguide, it can be seen

that the returned signal in a degenerate 4-wm process can never be the PC of

the probe field because the AM terms are as effective as the PC term in

generating the backward-propagating signal in this case. However, as is

discussed earlier, in order to have sufficient image resolution in a PC image

replication process, a multimode waveguide with a large number of guided modes

is necessary. It can be shown through a more detailed study of the AM term

that the non-PC backward-propagating signals proportional to Ei and E1 , are

only generated in the modes where both pumps exist. Therefore, if the

multimode waveguide is pumped with single-mode pump fields, all the modes in

the signal will not be affected by the AM terms except the one mode where the

pumps exist. However, this is only possible in a waveguide without carrier

diffusion since carrier diffusion makes the coupling of the power from a pump

mode to a different mode in the signal very inefficient, as has been discussed

in Subsection 4.3.
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On the other hand, it seems that even when the waveguide is pumped with

multimode pump fields, the effect of the AM contributions is not to destroy

the PC replica of the image but only to reduce the efficiency by coupling pump

powers to a non-PC background noise signal. This is because only the PC

components of the backward-propagating signal field can add together at a

certain distance away from the waveguide entrance to reproduce the image,

while the non-PC components, not having the correct total z-dependent phase

relationship among the modes, tend to diverge and .average out as a background

noise at a distance. This probably explains why Jensen and Hellwarth

(Ref. 10) could observe PC image replication through a degenerate 4-wm process

in a waveguide pumped with multimode pump fields.

Finally, there is a question as to how small 0 should be when it can be

considered degenerate. To our understanding, so long as there are externally

applied strong pumps as the arrangement shown in Figure 2, 0 is limited only

by the ability to resolve the frequencies. In other words, the frequency

degeneracy is instrument-defined. However, with a semiconductor laser wave-

guide, it is possible to drive the laser above threshold and use the internal

lasing fields as pumps. In this case, 0 has to be kept larger than the

injection-locking range (Ref. 17). Otherwise, the laser waveguide can become

injection-locked and the PC process no longer exists.

4.5 CONCLUSIONS

Four-wave mixing in a semiconductor waveguide under current injection has a

very large signal gain due to the large carrier-induced optical gain and

optical nonlinearity in the semiconductor medium. The interest is in the

possibility of utilizing this large conjugate signal gain for optical PC image

replication. For the generation of a PC replica image with a multimode wave-

guide, the participation of a large number of guided propagating modes is

needed for sufficient image resolution. In addition, the PC efficiency has to

be uniform across the modes in the image field for high-fidelity PC. Carrier

diffusion in a semiconductor waveguide under current sets many limitations on

these requirements.

The effect of carrier diffusion on PC 4-wm in multimode semiconductor

waveguides has been studied. Several conclusions are obtained from the

50



analysis. First of all, the gratings set up by counterpropagating fields in a

4-wm arrangement are always washed out by carrier diffusion. The whole

process relies on the transverse gratings and the time-dependent index oscil-

lation set up by beating between copropagating fields to provide any conjugate

signal reflectivity. Therefore, the copropagating fields cannot be orthogon-

ally polarized. For maximum efficiency, they have to be polarized in

parallel. On the other hand, the relative direction between polarizations of

the counterpropagating fields does not affect the efficiency. The major

effect of carrier diffusion is to severely limit the efficiency of coupling

the power in a particular pump mode to other modes in the signal and image

fields. In a typical semiconductor waveguide, the power in each pump mode can

be coupled to only a very small fraction of all guided modes. Even in a wave-

guide with a very large number of guided propagating modes, only modes very

closely neighboring a pump mode can be generated in the conjugate field. This

makes it totally impossible to pump with single-mode pumps. The only possi-

bility is to couple both pump fields into all the guided modes with uniform

amplitudes across the pump modes, which is certainly very difficult if not

impossible. Gain saturation by strong pumps, which is common in semiconductor

waveguides, relaxes this limitation. The power in a pump mode can be coupled

to more modes in the signal field as the saturation increases. In the limit

of very high saturation, the effect of carrier diffusion becomes unimportant

and the nonlinear mode-coupling coefficients reduce to those of no carrier

diffusion. However, this does not solve the problem since gain saturation

severely reduces the 4-wm efficiency. To the extent that saturation suffi-

ciently removes the effect of carrier diffusion, the conjugate signal also

disappears altogether.

The experimental observation of Lucente, et al. (Ref. 43) is consistent with

our conclusions. In their experiment, PC 4-wm was performed with a noncol-

linear geometry in a broad-area semiconductor laser waveguide. The PC signal

was observed to have spatial- and frequency-dependencies of a Lorentzian

lineshape function. In this experimental setup, the pump and probe fields

were obviously coupled into only one spatial mode but were separated by the

noncollinear geometry. The grating responsible for the generation of the

conjugate signal was created by the noncollinear wave vectors of the forward-

propagating pump and the probe fields. This is equivalent to the last term in
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C.M.. Among all the terms discussed in Subsection 4.3, only this term existed

in their experiment because the noncollinear pump and probe fields were

coupled into only one mode.
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5.0 CONJUGATE GENERATION REQUIREMENTS IN MULTIMODE WAVEGUIDES AND THE

UTILITY OF WAVEGUIDE ARRAYS

5.1 INTRODUCTION

The formalism developed in Sections 3.0 and 4.0 shows that some stringent

requirements must be satisfied in order to generate a PC beam in a multimode

waveguide. In the first part of the section, these requirements are discussed

and placed in the context of previously published work. The additional

constraints imposed when the nonlinear interaction is subject to diffusion

effects are also considered. Finally, the idea of using 4-wm in an array of

single mode waveguides as a means of overcoming the limitations imposed on

multimode waveguides is introduced. The use of the array also allows optical

control of the propagation direction of the conjugate wavefront, a feature not

possible in multimode waveguides and only achievable in some bulk media using

precise wavelength control of the interacting beams.

5.2 MULTIMODE WAVEGUIDE PHASE-CONJUGATION REQUIREMENTS

The first requirement for high fidelity phase conjugation is that the pump

beams must not be depleted by the nonlinear interaction. As with bulk media,

the "undepleted pump approximation" is necessary to keep the phase of the

generated beam in each mode (or wave vector in the bulk case) from phase and

amplitude variations due to the z-dependent amplitude coefficients of the pump

beams. This is quite reasonable given the similarity between first-order

differential equations for the coupled-wave and coupled-mode formalisms.

Except for the overall proportionality factors and a replacement of the

k-vector delta function in the bulk case with the transverse overlap integral

of the mode patterns in the waveguide (Ref. 25), the two formalisms similarly

relate the generated field amplitude to the input field amplitudes.

A second constraint that generally arises relates to the fact the Pz must be
XLtreated differently from PT in the coupled-mode formalism. If the longitud-

inal nonlinear polarization plays a significant role, then the coupled-mode

equations must be solved iteratively, as shown in Section 3.0. This iterative

process will not retain the phase relationship between the conjugate of the

input signal and the generated beam and, therefore, lead to a degrading of the
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phase conjugation fidelity. Though there are specific cases where P . will

not play a role due to the specific geometry or material properties, in

general, phase conjugation in multimode waveguides is limited to those

situations where it can be ignored. This requires that all modes involved in

the nonlinear interaction be guided and that the condition of weak guiding

hold (Ref. 29). Weak guiding requires that the modes vary slowly, with

respect to the optical wavelength, in the transverse directions. Because the

longitudinal component of the electric field is related to the transverse mode

derivatives in Maxwell's equation, the z-components of the electric field and

nonlinear polarization can generally be ignored when all modes involved in the

interaction are weakly guided.

Ni
Assuming that Pz can be neglected, the mode expansion for the electric field

leads to overlap integrals,

= ~ xy a ( 3 ) ! bcd(152)
Cabcd = ffdXdYl.a X *b4 cd

and phase factors, exp(-i(fBa-ib-fc-8d)z), in the coupled-mode equations. In

general, Equation 152 implies coupling among all combinations of modes in the

mixing process. However, Hellwarth has pointed out that only pairwise mode

combinations, e.g., (a,b,c,d) - (a,b,-a,-b) or (a,.a,b,-b), etc., make

significant contributions in the case where the waveguide length, 2, is

sufficiently large and the waveguide modes are nondegenerate (Ref. 11). In

this case, the overlap integrals essentially become intensity overlap

integrals plus a term which describes polarization overlap of the modes and

Cacd - Ce. With a proper choice of input field polarization, all excited

modes can be made collinearly polarized in the weakly guiding waveguide

required for negligible PZ (Ref. 29).

The coupled-mode equation for the PC can be written in the form,

X_ (w +) ISM + PC) (153)
dz c
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where

SM = 2C,(IA (" 12 + IA (P'1 12)A ('1) + E.. lA I2 + IA ' 12)A Cab

-a -a CuAA (P) 12" +#ex (i2(P'Z1+ (Ab A? +A A A 154)p

bea

-a -b + 8 Nb) z)} (155)

5 a and 6 b in Equations 154 and 155 arise from the frequency detuning, f .
Because intensity overlap integrals are not expected to show a strong mode-to-

mode variation (Ref. 11), the first two terms in both SM and PC have the same
form as the bulk case. The last term in SM and PC arise from the spatial

overlap of pump and probe beams. Therefore, as in bulk media, phase

conjugation by 4-wm in waveguides requires undepleted pumps and is only

possible when P'T can be ignored, i.e., the weak-guiding or slow transverse

variation limit. If the image and pump beams occupy the same modes, then the

image beam cannot be depleted in the 4-wm interaction. This is the case

analyzed by Hellwarth (Ref. 11). Yariv, et al., analyzed the case when the

pump and probe beams occupy different modes and showed that image depletion

and conjugate amplification may occur (Ref. 9). Phase conjugation spatial and

temporal bandwidth in a multimode waveguide are limited by the requirements of

sufficient guiding so that only pairwise spatial overlap integrals contribute,

and no dephasing of the spread of pump and image frequency components over the

interaction length. These two requirements can be summarized:

- I >1 (156)
S

and

2 <1 (157)
C
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where S is the effective cross section of the waveguide. It can be approxi-

mated (Ref. 29),

S - 2n An A (158)

where A is the core cross-sectional area and an is the index mismatch between

core and cladding. Putting Equations 156 and 157 together limits the number

of modes to on the order of 103 at a gigahertz bandwidth. Jensen and

Hellwarth observed phase conjugation in multimode waveguide containing on the

order of 105 modes but the conjugate images they reported could have been

formed from only the lower order modes of their waveguide (Ref. 10).

In addition to the above considerations, diffusion must be considered in those

situations where the nonlinearity results from mobile particles, such as the

free carriers in a semiconductor under current injection. In a rectangular

waveguide, each transverse mode field pattern, k(x,y), is characterized by two

transverse wave numbers, ta and .,, associated with the transverse spatial

frequencies of 0. in the x- and y-directions, respectively. These wave

numbers satisfy the following condition (Ref. 50),

a+ a +  = K2  (159)

Due to the carrier diffusion, the nonlinear susceptibilities depend on the

spatial and temporal beat frequencies through a Lorentzian function,

SUE, ± nb'a 1 61bP. ± Pb; Q )

= {1 + [(&,a &b) 2 + (ha ± nb) 2 + (P, ± Pb)2]L - (160)

where t is the carrier lifetime and L is the carrier diffusion length.

As was discussed in Section 4.0, the contribution of a term in the nonlinear

susceptibility becomes negligible unless the transverse beat frequencies in

the 2 function of this particular term satisfy (i)t., ± tbIL 5 1 and

(ii)1q. ± qbIL : 1. These conditions set stringent limitations on the

efficiency of coupling the power from a mode in the pump fields to other modes

in the signal. As an example, in a typical semiconductor waveguide with
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n - 3.5, A - 2c/w - 0.8 pm, and L - 2 pm, each pump mode can only couple to

the nearest neighboring modes within <0.024/VFn- of the total guided modes in

both x- and y-directions. This means that in a truly two-dimensional

waveguide with a sufficiently large number of modes for image resolution, each

pump mode will couple to only <6 x 10-4/An of the total two-dimensional guided

modes. As a result, to uniformly couple all the guided modes, the index step,

An, cannot be >6 x 10-4 . This results in a very weakly guiding waveguide with

a small acceptance angle of -7 deg at the input from the free space and a very

small number of guided modes in the waveguide. When the index step is

increased to improve the pixel resolution and the acceptance angle, the

multimode coupling becomes highly nonuniform in a waveguide with carrier

diffusion.

5.3 FOUR-WAVE MIXING IN A WAVEGUIDE ARRAY

To avoid the problems involved in a multimode waveguide while still keeping

the advantages of a waveguide, 4-wi in an array of single-mode waveguides is

proposed. The geometry of such an arrangement is shown in Figure 4.

Y

x

SeEe

go

00.0

E21

El

Figure 4. Geometry for 4-wm In a waveguide array with incident pump beams
E1 and E2, signal beam E., and generated beam Ec.

A periodic array of identical waveguides is located with faces in the x-y

plane at z - 0 and z - -L and with confined propagation along the z axis.

Each waveguide supports only one mode with a propagation constant P, which may
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be complex, and an electric-field pattern with the transverse component O(x,y)

polarized along the y axis. Three beams are incident upon the array; two on

the z - 0 face and one on the opposite face, with the constraints that their

propagation directions fall within the acceptance angle of the waveguide and

that their amplitudes are slowly varying across the array face with respect to

the interwaveguide spacing. Two of the beams, one on each face, are pump

beams at the same frequency, w0 , while the third is shifted by an amount 0.

Within the waveguide mode all beams are spatially degenerate, but 4-wm

involving the probe beam is frequency shifted from the nonlinear mixing of the

two pump beams.

Coupling between the guided mode of each waveguide and the radiation fields is

completely determined by the continuity of the tangential electric-field com-

ponents at the interface and the constraints on the propagation constants in

the guided region and free space. If all three incident fields have their

tangential polarization along the y axis, to match the guided-mode polariza-

tion, then the coupling of the three fields into the waveguides will be

determined by their angles of incidence. The angle of incidence will also

determine the phase relation between the fields incident at each waveguide.

The three input waves are decomposed into a linear superposition of plane

waves,

Ej (xY, Z) =ffdkkdkjy exp [ikj • X1 Z (kjx,kjy) (161)

where the subscript j is s, 1 or 2 for the signal and first and second pump

waves, respectively. In free space,

2

jk12 = k 2 X+ 02 + - _j (162)

and

•kj = 0 (163)
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allowing the z components of and ki to be determined in terms of the x and

y components. If the surface reflection can be ignored because of, for

example, an antireflection coating, then the electric field from the signal

beam coupled into the waveguide array at the interface will be (Ref. 51),

E,(x,y,0) =1 Emn(X, y,0)
m. n

E A.(0 )(x-mx 0 ,y-ny0 ) (164)

Mun

where x0 and Yo are the center-to-center element spacing in the array and m

and n denote the individual waveguides. The amplitude coefficients are deter-

mined by the mode-plane wave overlap,

Aai0j)(=)ffdkSxdkayry (kx. kay)
A , m n ( ) = f Y s , S

xffdxdy w (x-mx0 , y -ny0 )

x exp [i (kxX +k.Yy) ] (165)

=ffdkxdkayg y(k,,, ky)

x exp [i (mkxxo +nksyyo ) I y (k.x, kay) (166)

T (kxy, ky) =ffdxdy (x, Y) exp [i (kxX+kayy) 1 (167)

where 1,, is the tangential component of the input plane wave. Similar

expressions hold for the two pump waves. Note that the phase of each plane

wave at all waveguides is explicitly retained and that waves ranging over the

waveguide acceptance angle are all coupled into the mode. Propagation of the

coupled light within the waveguide is determined by the propagation constant,

P, and the nonlinear interaction. All light not coupled into a waveguide mode

is assumed to be absorbed.

The usual approximations can be made for a nearly degenerate 4-wm interaction,

slowly varying amplitudes and undepleted pump beams (Ref. 1). In the wave-

guide, the nonlinear susceptibility x(3) is weak enough that the linear mode

59



pattern O(x,y) describes the TE-field patterns. The frequency range, Q, is

small enough so that both x(
3
) and 0 are constant over the interval w0 ± .

The 4-wm interaction for a single-mode waveguide has been solved to show that

the generated field E, is proportional to the conjugate of the input field

(Ref. 41). If there is negligible coupling between waveguides in the arrays,

then

E. (x,y, 0) = Ac. n (0) * (x - nx.,y - nyo) (168)

A'Mn (0) = F (AJ=,A2mn , W0, O,P, L,r) A =n* (0)

= FmnAS=n* (0) (169)

Field confinement effects are contained in the parameter r,

r(a) =ffdxdy X (x,y, w 1D) I* (x,y) I' (170)

To determine the generated field propagating in free space, the previous

procedure was followed, expanding the output mode patterns as a superposition

of plaie waves (Ref. 51).

E(x, y, z) =ffdkcdk%,

x exp (ik c -r) E tcmn (kCXI kCY) (171)
m, n

9, (kCX kcy) _ ff E(x,y, 0)4 2

X exp [-i (kcx + ky) ]dxdy (172)
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Insertion of Equations 168 and 169 into Equations 171 and 172 yields,

E(X,y, Z)-1f dkcxdky exp (ik C . r)
4 2

Xf kxky y, (kax, key) y (-kc,, -ky)

x *(kx,key) E Fmn exp [-i (mksxx o
m~n

+ nkyy0 + mk~x0 + nky 0)] (173)

If F, is a constant, then the summation over waveguides reduces to a set of

angularly separated 6 functions, corresponding to the diffraction orders of

the array, when the array sufficiently samples the plane-wave components of

the signal beam. Therefore, within an angle defined by the separation of

diffraction orders, k., - -ksu, - -k.y, and

e(x,y,z) = F ff dksxdk,,

x exp (-ik/ • r) ly (ksx, key) 12 Ze. (ksx, key) (174)

where the propagation vector, k,', is slightly shifted relative to k, caused

by the frequency difference, 20, between the signal and generated beams. E,

is an essentially counterpropagating, high-quality conjugate of the input

field pattern if 7 is a constant when e. is nonzero. To a good approximation,

this condition will be met if the spread of the incident wave vectors is small

compared to the acceptance angle of the waveguide. A constant F requires

identical waveguides and pump beams that look like counterpropagating plane

waves, not necessarily at normal incidence. The transverse polarization of

each waveguide mode in the array and all input beams must be aligned to

prevent excitation of orthogonal polarization components.

To quantify the conditions for a high-quality conjugate image, consider, as an

example, an array where each waveguide element has a Gaussian profile with a

beam waist of w0 - lOk'1- Using Equations 156 and 174 limits the spread of k

vectors to -10 mrad for beams no more than 175 mrad (10 deg) from normal

incidence. The angular separation of array diffraction orders is increased by

61



decreasing the interelement spacing (Ref. 52). A 3wo spacing yields an

angular separation of -70 mrad. The required number of elements in the array

depends on the length scale of phase-front and amplitude variations in the

signal beam. The array must be large enough to generate a diffraction-limited

spot size equal to the inverse of twice the highest spatial frequency in the

signal beam (Ref. 53). In this example, 1-mrad resolution requires =2 x 104

elements. For 1-Mm-wavelength light, these numbers correspond to 5-pm

waveguides on centers of :50 pm, yielding a total array area of :0.5 cm2. A

signal beam generated by an object of 1 mm2 in area, located 10 cm from the

array and containing =100 emitting area elements, would be imaged by the

backpropagating conjugate beam. This image is also replicated in the multiple

orders of the array output that fall within the acceptance angle, -4w(kwO)-1,

of the waveguides.

If the pump waves are plane waves but are not counterpropagating, then an

additional phase between waveguides is introduced. For instance, if pump

beam 1 is not at normal incidence and pump beam 2 is, then the amplitude

coefficient A, will have the phase term exp[i(mkl1 x0 + nklyY0 ], as can be seen

by examining Equation 166. By absorbing the phases into the amplitude

coefficients,

Ac = AC.. exp - (mklxXo nklyYo) (175)

A *I = A.*. exp (mklx 0 + nklyy0 ) (176)

the coupled equations describing the 4-wm interaction in a single-mode

waveguide return to their original form, but the phase relation between the

signal and generated beams is changed. This changes the location of the 6

function that occurs when the summation over waveguides is made in Equa-

tion 173. Now kCX - -k8x + k,. and k,, - -kSY + kly, changing the propagation

direction of the generated field but not the fidelity of the replication. The

conjugate beam generated in a multimode waveguide by 4-wm remains counter-

propagating when a pump beam angle of incidence is changed (Ref. 11).
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In conclusion, it has been shown that nearly degenerate 4-wm in an array of

identical waveguides can yield a high-quality conjugate beam. However, the

range of wave vectors present in the signal beam must be small enough so that

there is nearly equal coupling into the waveguides. Stringent phase-matching

conditions that apply to the 4-wm interaction in bulk media are lifted by the

ability to couple light into a waveguide mode over an acceptance angle. Beam

steering of the generated beam can be achieved by changing the propagation

direction of one of the pump beams, without destroying the 4-wm interaction

and while maintaining the spatial coherence of the generated field pattern.
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6.0 EXPERIMENTS ON OPTICAL FIBERS AND LASER DIODES

6.1 INTRODUCTION

Experimentally testing much of the theoretical framework developed in Sections

3.0 to 5.0 is impractical given the current minimal availability of complex

nonlinear waveguiding structures. In this program, two key points have been

illustrated using a nonpolarization-preserving, single-mode optical fiber and

GaAs-AIGAs heterostructure and quantum well laser diodes. The first point is

the importance of removing degeneracy between the waveguide propagating modes

(Ref. 11). A nonpolarization preserving single-mode optical fiber actually

contains two degenerate, orthogonal, linearly polarized modes in the weak-

guiding limit (Ref. 29). The experiments show that polarization scrambling

between the two modes can be as strong a nonlinear effect as phase modulation.

The second set of experiments, using the laser diodes, measures the amplitudes

and relative phases of the output beams generated in the nearly degenerate

4-wm interaction. The experiments show that, in the weak probe limit, the

nonlinear interaction in a laser diode acts as a phase modulation of the laser

diode and that the generated conjugate beam acts to minimize the free carrier

population pulsations responsible for the third-order nonlinearity.

6.2 FIBER NONLINEAR BIREFRINCENCE EXPERIMENT

Nonpolarization-preserving, single-mode optical fibers are an example of a

weakly guiding nonlinear waveguide with degenerate modes. The circularly

symmetric core leads to two orthogonally polarized modes with identical propa-

gation constants. Small inhomogeneities or temperature and stress effects can

cause coupling of the two modes even in the linear regime. The purpose of

this experiment is to show that the fiber nonlinearity causes further modifi-

cation to the polarization of a beam after propagating through the fiber. A

schematic of the experimental apparatus is shown in Figure 5. A continuous-

wave (cw) mode-locked Nd:YLF laser, producing =72-ps pulses, is used. The

beam is passed through a quarter-wave plate and two polarizing beamsplitters

to produce temporally-spaced, orthogonally polarized pulses which could be

injected into a 215-m-long silica fiber. A variable beamsplitter is used to

adjust input intensity. The light transmitted through the fiber was passed

through a polarizer before detection with a Si-photodiode.
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Initially, the s-polarized path through the beamsplitters was blocked and the

p-polarized input was detected as a function of power. The polarizer was

rotated to determine the intensity ratio at the orthogonal angles of maximum

and minimum transmitted intensity. Figure 6 shows the behavior for two

consecutive runs. At low intensities the ratio is large. An infinite ratio

signifies linear polarization. As the intensity increases, the polarization

ratio tends to oscillate. While the general oscillation trend is clear, there

are clear differences between the two consecutive runs that are plotted. The

s-polarized light displays a similar intensity dependence, as shown in

Figure 7. Note that this third displayed p-polarized data run differs

slightly from the two plotted in Figure 6.

In addition to the polarization ratio, the angle of the polarization ellipse

is important. Figure 8 shows the angle of the polarizer at maximum transmis-

sion intensity, the major axis of the polarization ellipse, for the two

orthogonal input polarizations as a function of laser power. The reference

plane is laboratory horizontal and the low-power angle is arbitrary due to

fiber inhomogeneities so that the relative rotation with increasing power is

the important measured parameter. The oscillating features of the polariza-

tion ratio data are somewhat mimicked in the ellipse rotation data. Note,

that the orthogonal polarization relation is not maintained at many power

levels.

The importance of the scrambling of polarization on the interpretation of

other measurements is illustrated by a second set of experiments. The

modified experimental apparatus is shown in Figure 9. The output optical

train from the fiber now includes a Mach-Zehnder interferometer. One arm of

the interferometer has a variable delay so that the delayed s-polarized pulse

in one arm can be made to temporally overlap with the p-polarized pulse of the

second arm. In this case, three pulses will arrive at the detector, with the

output displayed using a sampling oscilloscope. Without polarization scram-

bling there would be no interference between the overlapping s and p pulses.

However, interference effects can be shown with small displacements of the

optical delay line. Two cases of relatively large interference effects at

different power levels are shown in Figures 10 and 11. The interference is

quite strong at 100 mW/pulse less so at 300 mW/pulse. Referring back to

Figure 7, the polarization ratio is closest to one near 100 and 300 mW and,
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Figure 6. The polarization ratio as a function of output power from the
fiber for the p-polarized input light.
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Input power.
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Figure 10. Oscilloscope trace of the fast photodiode output using the
apparatus shown in Figure 9. Average power through the
fiber is 100 mW.
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Figure 11. Oscilloscope trace of the fast photodiode output using the
apparatus shown In Figure 9. Average power through the
fiber Is 300 mW.
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using Figure 8, the ellipse rotation angle is more nearly orthogonal at the

higher power level. This explains the relatively strong interference effects

at both power levels and the greater interference at 100 mW/pulse.

Polarization changes obscure phase changes due to the degeneracy of the two

orthogonal modes. Clearly, such nonlinear polarization coupling of modes

would destroy the fidelity of a PC beam. Deciphering these effects is further

hindered by the sensitivity of the polarization behavior to external factors

such as temperature and stress. These types of effects accoult for the

variability between the data of Figures 6 and 7. Though displaying

interesting behavior, interpretation of effects in basic optical fibers is

less straightforward than the highly nondegenerate slab geometry of

semiconductor waveguides.

6.3 LASER DIODE EXPERIMENTS

Four-wave mixing experiments have been performed in single-mode laser diodes

(Refs. 17, 54 and 55), travelirg wave amplifiers (Refs. 40 and 56), and broad-

area Fabry-Perot devices (Ref. 43). The traveling %:zve amplifier interaction

has also been theoretically modeled (Refs. 16 and 41). To date, the

measurements of 4-wm have concentrated on the amplitude of the amplified

input, or probe, beam and generated 4-wm signal with little investigation of

the phase relations between the interacting optical beams. In this work,

nearly-degenerate 4-wm measurements have been performed in the weak injection

limit of a laser diode. In this regime, the optical phase of the counter-

propagating pump beams ( 0), the amplified input signal (V1), and conjugate

4-wm signal ((P2), satisfy the relation,

2 = 2 90 - P1 (177)

Further, the amplitudes of the electric fields E1 and E2, corresponding to the

amplified input and generated 4-wm mixing fields, respectively, are nearly

equal. This is equivalent to saying that injecting a near-resonant optical

signal, offset by frequency 0, induces a phase modulation of the laser diode

at 0. Because of nonlinear interaction results from modulations of the
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carrier density (Ref. 41), this phase relation means that the generated 4-wm

beam acts to minimize the density modulations induced by the amplified,

injected probe.

A schematic of the experimental apparatus is shown in Figure 12. One laser

diode acts as a probe. It is optically isolated against back-reflected light

from any components in the optical train. The output is then passed through

an acousto-optic modulator where a small fraction, on the order of 10 percent,

of the beam is deflected and shifted in frequency by 80 MHz. The main beam,

at an optical frequency ml, passes through a variable attenuator and a second

optical isolator to the measurement apparatus. The shifted beam is injected

into a second laser diode, operating at a frequency P0, slightly shifted from

v, by an amount 0. The output from the second laser diode is partially

reflected off of the variable beamsplitter so as to become collinear with the

v, beam. Both laser diodes are temperature and current stabilized. To bring

them to nearly degenerate operating frequencies, the temperature is adjusted

for gross frequency changes and then the current is adjusted for fine tuning.

Three different laser diodes were used in the measurements. Two are commerci-

ally available GaAs-AlGaAs heterostructure lasers, the Sharp LTO15MD (with an

output power of 30 mW and operating wavelength near 830 nm), and the Hitachi

HL 7838G (operated at =10 mW and 784 nm). The third type of laser was a GaAs-

AlGaAs quantum well laser operating near 830 nm and 5-mW output power. This

laser had a Fabry-Perot cavity length of 600 pm, more than twice as long as

the commercially available diodes, which gave it greater frequency stability

(Ref. 57).

To measure the spectrum of the emitted light, two spectrum analyzers were

used. The first was a Newport SR-240 high-finesse scanning Fabry-Perot with

detector. This instrument had a free spectral range of 8 THz and finesse of

20,000, giving an optical frequency resolution of 400 MlHz. Alternatively, the

laser diode output was detected by a fast photodiode, 3-dB point at 2 GHz, and

the photodiode signal was displayed on a radio frequency (RF) spectrum

analyzer. Because the photodiode is a square-law detector, its output will

have a spectrum corresponding to the difference in frequencies between various

optical frequency components.
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Figure 12. Schematic of the experimental arrangement for 4-wm in laser
diodes.

Detection of four optical frequency components can be expected. They are the

two diode operating frequencies, v0 and vj, the acousto-optically shifted

frequency, v, + 80 MHz, and the 4-wm frequency, 2v0 - (vl + 80 MHz). However,

80 MHz is an insufficient frequency shift to be resolved by the Fabry-Perot.

With the RF spectrum analyzer, there will be potentially many mixing

components, but assuming that the optical frequency components at V0 and v1

are strong compared to the others, the primary frequency components should be

at 80 MHz, 0, 2 0 ± 80 MHz, and 0 ± 80 MHz. The plus or minus sign will

depend on the magnitude of P1 , with respect to v0. The first three radio
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frequencies result from the mixing of the three output frequencies from laser

diode #2 with v1, while the fourth is the beat frequency between M0 and its

two sideband frequencies.

Figure 13 displays the output of the optical spectrum analyzer when the two

laser diodes are tuned to near degeneracy. The main peak is at v0 and the

larger side-peak is primarily at v1. Oppositely shifted from v0 is the

generated nearly-degenerate 4-wm signal. If the v, beam is blocked just

before the variable attenuator, only the output from laser diode #2 is

displayed. This is shown in Figure 14. Now the amplified version of the beam

injected at v, + 80 MHz is shown to the left of the Y0 signal. Note that it

is at approximately the same magnitude as the 4-wm signal.

When the fast photodiode and RF spectrum analyzer are used, a typical RF

spectrum is shown in Figure 15. The frequency range that could be measured

was limited by a 500-MHz bandwidth amplifier that followed the photodiode.

There are three RF features that result from the mixing of optical frequen-

cies. The two small peaks near zero frequency are noise artifacts. An

instrument resolution limited feature at 80 MHz is generated by v, and the

amplified probe signal at v, + 80 MHz. This signal does not result from

reflections off of optical components. This was verified by tuning the

current of laser diode #2 which moved the operating frequencies. Unless P,

and P0 were nearly degenerate, the 80-MHz signal disappeared. The tuning

range will be discussed further. The second, and largest, feature in the RF

spectrum is due to the mixing of vo and v1. It is broadened due to the

inherent frequency jitter of the free-running diodes. Finally, at higher

frequency, there is a second broadened feature at a frequency corresponding to

2 0 to 80 MHz. Therefore, it is the mixing signal between v, and the

generated 4-wm frequency.

Significantly, there is no RF feature at the difference frequency 0 - 80 MHz,

though there are certainly optical frequency components with this spacing.

This is even more surprising given that the strength of the optical power

detected at v0 is more than an order of magnitude larger than at 1i. Refer-

ring back to Figure 14, note again that the two sideband components are of

nearly equal amplitude. The photodiode signal, measuring optical power rather

than field amplitude, shows no power modulation at 0 - 80 MHz. This point
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Figure 13. Optical spectrum analyzer trace using the apparatus shown in
Figure 12. The upper trace is an offset, 100x expansion of the
lower trace.
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Figure 14. Optical spectrum analyzer trace using the apparatus shown in
Figure 12, except that the direct optical path from laser diode #1
to the beamsplitter has been blocked. The upper trace is an
offset, 100x expansion of the lower trace.
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Figure 15. Radio frequency spectrum analyzer trace using the apparatus shown
In Figure 12.

requires that the optical sidebands represent a phase modulation of V0 and

that the phases of the three frequency components generated by laser diode #2

be related according to Equation 177. The fact that the RF feature at 80 MHz

is resolution limited means that the amplified input signal remains injection-

locked, while the broadening of the other two features shows that the two

lasers remain unlocked.

It is now generally accepted that the 4-wm signal in laser diodes results from

free-carrier population pulsations in single-mode devices and gratings in

broad-area devices (Refs. 41 and 43). The pulsations and gratings are assumed

to be set up by modulation of the carrier density at 0 due to the injected

beam. The phase relation between the three optical beams means that the

nonlinear interaction acts to limit the population pulsations induced by the

injected signal. Using Agrawal's theory (Ref. 41), if the amplified injected

signal were absolutely equal in amplitude, there would be no free-carrier or

refractive index modulations. The generated beam acts to cancel the intensity

modulations experienced in the laser diode and keep the carrier pulsations to

a minimum. Previous work has shown that the generated 4-wm signal saturates
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with increasing injected signal power (Ref. 54). This implies that the

amplified injected signal becomes less efficient at modulating the carrier

density as it tends toward saturation.

A requirement of an optically-induced real population pulsation or grating

through 4-wm is that the beams involved in the mixing have collinear polariza-

tion components. There is no field mixing with orthogonal polarizations.

Using a half-wave plate inserted in the v1 - 80 MHz beam path, the amplified

injected beam signal and 4-wm signal were verified and resulted only from the

polarization component injected parallel to the circulating laser field

polarization in laser diode #2. As the half-wave plate was rotated, the

amplified injected signal and 4-wm signal scale proportional to the intensity

of the component parallel to the circulating laser-field polarization. The

orthogonal (vertical) polarization was neither amplified nor did it induce a

signal in the parallel (horizontal) polarization direction.

There are several interesting effects which appear as the frequency of the

signal injected into the diode is varied. Figures 16-18, along with Figure 15

are a sequence of RF spectra showing changes as the injection laser is scanned

through the oscillation frequency of the second laser diode. In all cases,

the injected signal is very weak so that the 4-wm signal is =10- of the main

signal strength. Continuing the convention, the laser diode #1 is at V1, the

acousto-optic modulator generates a beam at v1 + 80 MHz and the second laser

diode operates at P0. Figure 15 is the spectrum with v1 tuned well below Mo.

As the frequency of v, is increased, the Y. - v1, and 2(po - I) - 80 MHz

features shift to lower frequencies until the injected signal locks the second

laser diode. An injection-locked spectrum is shown in Figure 16. There is a

single, sharp feature at 80 MHz, the acousto-optic frequency shift. The

feature sits atop a pedestal that is broadened by the phase and amplitude

noise of the two diodes. Continuing to increase the frequency of V1, now >v0,

the injection-locking range is less than -50 MHz with this weak signal, so

that when Pi - vo there are simultaneously narrow and broad features, at

80 MHz, as shown in Figure 17. The narrow feature is the amplified-injected

signal and the broad feature is the symmetrically offset 4-wm signal with the

frequency inverted. There are two weak features at 160 and 240 MHz which are

electronic noise generated by the acousto-optic modulator power supply.

Finally, as v, is increased further, the v, - v0 peak and 4-wm peaks move to
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Figure 16. Radio frequency spectrum analyzer trace using the apparatus shown
In Figure 12 when the two laser diodes are phase locked.
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Figure 17. Radio frequency spectrum analyzer trace using the apparatus shown
in Figure 12 when the two laser diodes have a frequency difference
of -80 MHz.
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Figure 18. Radio frequency spectrum analyzer trace using the apparatus shown
In Figure 12 when laser diode #2 operates at a higher frequency
than laser diode #1.

higher radio frequencies, again reflecting the RF spectra display of the

absolute frequency difference. In this case, however, the 4-wm signal is now

at 2(p, - v0) + 80 MHz, as shown in Figure 18. Except over the narrow

injection-locked frequency range, the spectra are qualitatively similar.

A second series of spectra, taken with the optical spectrum analyzer, are

shown in Figures 19-23. The injected power is approximately a factor of 5

larger than in Figure 15 in this series. Again, frequency increases from left

to right and only the output from laser diode #2 reaches the detector. In

Figure 19, the injected signal is the small peak -8 GHz below the main
feature. Also, there is an even smaller, oppositely-shifted 4-wn signal.

There are also symmetric shoulders on the main peak that correspond to the

relaxation oscillation resonance (R.tfs. 17 and .8). The resonance results

from the photon-free carrier coupling and is at a frequency between the

inverse laser cavity photon lifetime, on the order of a few picoseconds, and
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Figure 19. Optical spectrum analyzer trace of the output from laser diode #2
when the Injection frequency is offset by -8 GHz. The upper trace
is a 50x expansion of the lower trace.
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Figure 20. Optical spectrum analyzer trace of the output from laser diode #2
when the injection frequency is offset by the relaxation resonance
frequency. The upper trace is a 10x expansion of the lower trace.
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Figure 21. Optical spectrum analyzer trace of the output from laser diode #2
when the injection frequency is offset by -3 GHz. The upper trace
Is a 25x expansion of the lower trace.
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Figure 22. Optical spectrum analyzer trace of the output from laser diode #2
when the Injection frequency is offset by -1 GHz. The upper trace
is a 1 Ox expansion of the lower trace.
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Figure 23. Optical spectrum analyzer trace of the output from laser diode #2
when It is phase locked. The upper trace is a 10x expansion of the
lower trace.

inverse free carrier lifetime, on the order of a nanosecond. When the injec-

tion frequency is offset from the free-running frequency by greater than the

relaxation frequency, as shown in Figure 19, the 4-wm interaction and the

amplification of the injected signal are quite weak. At the relaxation

resonance, these signals are nearly a factor of 50 larger, as shown in

Figure 20. Peaks at twice the relaxation frequency, due to the relaxation

peaks of the injected signal mixing with the sidebands of laser diode #2, are

also visible. The signals are reduced by somewhat more than a factor of 3 at

half the relaxation frequency (Fig. 21) and only become as strong again when

the offset is reduced to =1 GHz, as shown in Figure 22. Also note that there

is some asymmetry in the amplitude of the two sidebands, indicating that

amplitude as well as phase modulation is playing a role in the laser diode

operation. Figure 23 shows injection-locked operation. These re3ults are

consistent with those previously reported (Ref. 17).

88



A final series of spectra taken with the optical spectrum analyzer are shown

in Figures 24-28. These were made using the Sharp laser diodes, which had a

much stronger relaxation oscillation than the Hitachi diodes measured in

Figures 19-23. For these spectra, the injected signal was quite strong,

approximately an order of magnitude larger than the previous series. The

free-running output of laser diode #2 is shown in Figure 24, and a weakly

amplified input signal well offset is shown in Figure 25.

As vi is tuned toward the relaxation resonance peak, the frequency spectra

change dramatically. Representative spectra are shown in Figures 26-28. The

offsets are = -6, -3, and +3 GHz, respectively. Figures 27 and 28 show strong

evidence of a set of closely-spaced or continuous-frequency components over a

range of the spectra. This could be evidence of coherence collapse and/or

chaotic phenomena, but verification requires a more detailed study with higher

frequency resolution than was available in the current program.

The spectra identify several key features. First, there are at least three

operating ranges of injection intensity. At low levels, the injected signal

acts as a phase modulator generating symmetric sidebands. At intermediate

levels, the sidebands become asymmetric while at high levels spectral broaden-

ing and multiple asymmetric features dominate the optical spectrum. A key

parameter in determining signal strength is the relaxation resonance. This is

to be expected given the basis of the 4-wm signal as the coupling between the

photon and free carrier densities. Finally, it should be noted the two lasers

could never be stably injection-locked by the 4 -wm sidebands. When the two

lasers showed locking behavior, the output frequencies of the two laser diodes

were always degenerate.
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Figure 24. Optical spectrum analyzer trace showing the free-running output of
the Sharp LT015 laser diode with its relatively strong resonance
sidebands at - ±3 GHz.
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Figure 25. Optical spectrum analyzer trace showing the LT015 laser diode
under strong optical injection -10 GHz below the main peak.
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Figure 26. Optical spectrum analyzer trace showing the LT015 laser diode
under strong optical injection -6 GHz below the free-running
f requency.
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Figure 27. Optical spectrum analyzer trace showing the LT015 laser diode
under strong optical injection -3 GHz below the free-running
frequency.
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Figure 28. Optical spectrum analyzer trace showing the LT015 laser diode
under strong optical injection -3 GHz above the free-running
frequency.
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7.0 CONCLUSIONS

This program has investigated 4-wm in nonlinear waveguides, with a

concentration on generation of a conjugate output beam in materials that

exhibit both a strong nonlinearity and resonance with linear gain. The

coupled-mode theory was used to develop a general formalism to describe

nonlinear optical interactions in a waveguide. Under a wide range of

experimentally and technologically relevant configurations, the basic result

can be summarized:

dA& - ± i exp(i .z) If dxdy P1L (r, w) "Ia(x,y) (178)
dz C

Here, the ± refers to propagation along the ±z (waveguide) direction, the

*a(X,y) and Pa are the linear mode transverse field patterns and propagation

constants, respectively, and the A. are the amplitude coefficients for each

mode, which vary due to the nonlinearity. The modes are used to describe the

electric field patterns:

E(r,t) = -Aa(z)ra(x,y) exp[i(Paz-c(t)] (179)
a

The mode amplitudes become coupled through the effect of the nonlinear

polarization:

PL(ro 0 ) = X (2 ) ( r, = ol + ( 2 ): Z(r,() Z(r,o 2 )

+ X( 3 ) (r, = 1 + )2 + )3 ) : E(r, ) E(r,c. 2 ) E(r, 3 )

+ (180)

An important feature of Equation 178 is its similarity to the coupled-wave

formalism which has been used to successfully model nonlinear optical inter-

actions in bulk media. Nonlinear phenomena in waveguides, such as 4-wm, can

be modeled similarly to the bulk interaction, with the overlap integral of

Equation 178 accounting for the spatial confinement effects. An important

requirement for the use of a single amplitude coefficient, A., with each

guided mode is that all fields involved in the nonlinear interaction can be
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described by the propagating modes of a weakly guiding system. Though the

coupled-mode theory can handle situations where all modes are not confined and

the weakly guiding approximation does not hold, these situations will almost

always tend toward reduced fidelity in replication of an input beam through

the 4-wm process. This result, in combination with results of Hellwarth's

earlier analysis (Ref. 11), puts strict limits on the speed and image fidelity

of PC generation by 4-wm in nonlinear waveguides.

Of particular interest in this study are materials where the nonlinearity

results from density gradients of mobile particles, such as semiconductors

under current injection. In these materials, carrier diffusion acts to limit

gradients of high-spatial frequency. Semiconductor waveguides generally have

rectangular cross sections and transverse mode patterns which are, in general,

described by two transverse spatial frequencies (Ref. 50). Nonlinear optical

coupling will only occur between those modes where the spatial frequency

difference is, approximately, less than the inverse diffusion length. This

limits the divergence angle of an optical beam, or the angle between two

incident beams, to a few degrees in a typical III-V semiconductor material.

The experimental results of Lucente, et al. (Ref. 43) are consistent with this

analysis.

To overcome these limitations in multimode waveguides, the use of an array of

uncoupled, identical, single-mode waveguides was proposed. In addition to

offering the potential of high-fidelity phase conjugation, the array can

produce conjugate wavefronts whose propagation direction can be controlled by

the pump beams. Unfortunately, a suitable array cannot be obtained to test

the predictions of the model. In fact, understanding of 4-wm using two or

three single-mode waveguides has yet to be achieved.

A particularly important waveguide is the laser diode. A variety of nonlinear

phenomena, from saturation to chaotic behavior, have been observed. Specific-

ally, 4-wm in laser diodes and traveling wave amplifiers has been investigated

experimentally (Refs. 17, 43, 54 and 55) and theoretically (Refs. 16 and 41).

Past work has shown large nonlinear amplification due to optically-generated,

free-carrier density pulsations or gratings. The nearly degenerate 4-wm

interaction has been shown to cause the laser diode to respond as a phase
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modulated device, in the limit of a weak injection signal. In effect, the

laser diode acts to minimize carrier modulations by generating a new frequency

components.

This result, when compared with previously published results on 4-wm in laser

diodes, raises several tantalizing questions. First, all previous results

were made outside of the weak injection signal limit and show asymmetric

sidebands on an optical spectrum analyzer. Because no RF spectra have been

taken, carrier response in this regime has not been determined. The influence

of two or n input beams on the diode output has not been measured, nor has the

influence of the transverse coupling that exists, for example, in a diode

array. Further, the nonlinear interaction medium is a Fabry-Perot. Placing a

material with a strong nonlinear optical response within an optical cavity

couples the amplitudes and phases of the circulating optical fields. While

the importance of the optical feedback on the 4-wm has been recognized, the

specific effects, particularly on phase relations between interacting beams,

are not clearly understood. Recently, it has been demonstrated that a diode

laser can be mode-locked when it is coupled to a linear, empty external cavity

which provides direct feedback to the laser.* This implies strong nonlinear

inturactions between th. laser medcs under self-feedback. Because of the

importance of optical phase relations to problems of technological interest,

including the generation of a coherent optical output by arrays of laser

diodes, further investigation of the basic physics of multiwave mixing in

active nonlinear waveguides is an important task.

* G. Yao, P. Wang, Y.C. Chen, C.M. Harding, R.J. Dalby, R.G. Waters, J.M. Liu,

and K.K. Lee, "Self-Starting Additive-Pulse Mode Locking in Semiconductor
Lasers with Linear External Cavity," submitted to Opt. Lett.
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APPENDIX A

DOT PRODUCT OTHOGONALITY RELATIONS

A simple set of dot-product orthogonality relations can be derived for CASES 2

and 3, when the propagation axis is an axis of symmetry for e. This follows

from the identity

V (za X Hb) -(Ha * )b 
+ i_ ]C * F * ] (A-l)

C C

Integrating the equation over the transverse cross-sectional area and using

Equations 52 and 53 in Subsection 3.3.2, the left-hand side of the equation

vanishes for P. o f. This leaves

ffdxdy(*a ' 6 * *b + 9C " (b ) = 2 a,b

)(A-2)

Using the relations between the forward- and backward-propagating modes in

Subsection 3.3.1 yields

fJdxdy (*aT " T bT + (azbz) - C a,b + 6a,-b) (A-3)
CA)

ffdxdy(Ezziaz*bz + P&T * 9bT) - CPa ( 6 a,b - 6 a,-b) (A-4)

Equations A-3 and A-4 hold for both real and complex e(w) so long as z is a

symmetry axis for e. No such simple relations are possible when z is not a

symmetry axis.

It is important to note from Equations A-3 and A-4 that, in general,

ffdxdya 'e "b*0 and ffdxd1aT. e T "*bT * 0 (A-5)

ffdxdy,9a "b * 0 and ffdxdyaT VT * 0 (A-6)
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When the transverse variation of the mode fields is slow on the scale of -,

then the z-component will be small relative to the transverse part of the

fields. In this case, the integrated transverse dot product of different

modes will be approximately zero. Alternatively, this term will be zero in

specific geometries even though the z-component exists, such as the slab

geometry where there is no dielectric variation along a transverse direction.

For systems with cylindrical symmetry in general, the relations in Equations

A-3 and A-4 complement the cross-product relations derived in Subsection

3.3.2.

1
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APPENDIX B

NL
ITERATIVE PROCEDURE FOR E WHEN P z * 0

NL

When Pz o 0, Equations 62 to 65 have to be used to expand the nonlinear

field components in a waveguide. The mode coefficients, Aa(Z), cannot be

solved directly through the coupled-mode equations. Instead, they can be

solved self-consistently through an iterative procedure outlined below.

1. Initially set Pw - 0.

2. Write

ET = Y Aa (z)) aT (xy) exp (iP.z) (B-1)
a

Ez = E Aa (z) !az (x,y) exp(i az) - 4__! pz (B-2)
a Czz

In this step, Aa(z) are unknown coefficients to be solved later, but an

explicitly known PNz given by the initial condition or calculated from the

last iteration is used.

ML NL3. Using Equation 15, express PT and Pz for the current iteration in

terms of Aa(z).

4. Write coupled-mode equations using Equation 81 and solve for Aa(z).

5. Calculate PT and P'z explicitly using expressions obtained in

Step 3. Calculate ET and Ez using the newly calculated values of

Aa(z) and PZ-
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6. Compare the new values of E and PN with those of the last

iteration.

a. If significant difference exists, go to Step 2 using the newly

calculated value of Pz for the input.

b. Otherwise, a self-consistent solution for E and PN L is obtained.
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