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The results of the research effort include four parts:

1. a) The Effect of Cementation on the Elastic Properties of Gran-
ular Material and b) Seismic Velocities in Compacting Sediments
2. a) The Mechanics of Hollow Grains and b) Pillow Basalts Com-

paction due to Grain Collapse

3. Modeling the Granular Structure of Rocks

4. Anisotropic Poroelasticity and Biot's Parameters

PART 1 A simple analytical model has been developed to describe the
mechanics of cemented granular material, for which a solution has been ob-
tained to model the normal and shear deformation of a cement layer with
straight boundaries. The problem of the normal compression of two con-
tacting circular elastic grains and an elastic cement layer between them has
been reduced to a linear integral equation. This problem has been solved
both for two-dimensional (cylindrical grains) and three-dimensional (spher-
ical grains) cases. The elastic modulus of such a combination is strongly
increased by cementation compared to the case of a classic Hertzian con-
tact. The stiffness of the cemented system increases with the length of the
cement layer and with the relative stiffness of the cement. It significantly
exceeds the stiffness of the Hertzian system at low confining pressure. A
small increase in the amount of cementation results in significant growth
of the contact zone between grains and, thus, dramatically increases the
stiffness of the system.

The theory of cementation is used in a theoretical model for the compaction



of sediments formed by quartz grains separated at their contacts by a ce-
menting component. Compaction occurs due to lithostatic pressure that
results in increasing contact stresses with burial. As the stresses at the con-
tacts become larger, the cementing material yields, the separation between
the grains decreases, and the radius of the contact becomes larger. This
changing geometry gives rise to an increase of P- and S- velocity with con-
fining pressure, and therefore with depth. Seismic velocities are evaluated
using standard formulas relating the elastic properties of granular material to
the contact stiffness between two grains and the average number of contacts
per grain. Velocities increase rapidly during the initial stage of compaction.
As compaction continues, the velocities gradually approach constant values
that correspond to direct contact of the grains. An interesting effect of
smooth peaks in P- and S-velocity before they reach their constant values
is predicted if cementation is very soft compared to the grain material (e.g.
quartz grains in silt). This is due to the fact that the normal stiffness of
two spherical grains separated by a thin layer of a soft cement can be higher
than that of directly contacting grains.

PART 2 In order to model the mechanical behavior of pillow basalts,
we have developed a theory for the two-dimensional deformation of hol-
low grains under external loading. We model the grains as cylindrical shells
of a closed cross-section. This theory allows us to describe the deformation
of arbitrarily-shaped grains with walls of varying thickness. Calculating the
normal and shear stiffness of hollow grains, one will be able to determine
effective elastic properties of their aggregate using the expressions devel-
oped for a random packing of spheres. Not only can this theory be directly
applied to estimating the acoustical and mechanical properties of basaltic
pillows, it is also appropriate for studying the behavior of pelagic sediments
when these are composed of hollow grains (for example, diatomites or other
microfossils).

Assuming that the compaction of these materials is by grain collapse due
to an increase in confining pressure that exceeds their strength, we next
derived simple criteria for the collapse of 2-D thick-walled, and thin-walled
circular grains. These criteria can be used to estimate the depth of transition
between low-velocity (high porosity) and high velocity (low porosity) zones.

PART 3 The interaction of rock grains with friction and slippage is modeled
using an analytical solution for plain elastic deformation of cylinders. The
model explains the difference between "static" and "dynamic" elastic moduli
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of natural rock. The numerical experiments performed on a four-grain unit
predict the dependence of "static" elastic moduli on confining pressure, on
the friction coefficient between grains, and on their initial positions. The
"dynamic" elastic moduli depend only on the relative initial positions of the
grains and on the confining pressure. Four-grain units with varying initial
configurations and friction coefficients can be used for modeling granular
material. The "static" and "dynamic" moduli of this material will depend
on the statistical distribution of the above-mentioned properties.

PART 4 Prediction of wave propagation in a submarine environment re-
quires modeling the acoustic response of ocean bottom sediments which
generally consists of porous granular materials partially or wholly saturated
with water. The effect of anisotropy has to be incorporated into the model
in order to simulate more realistic responses. Following Biot's theory we
present a formulation for seismic wave velocities in a general anisotropic
poroelastic medium. We also identify the anisotropic parameters that need
to be evaluated or measured for the purpose of estimating the velocities.

The motivation for the work summarized above and appended below has
been to understand the physical properties of materials in the upper few
hundred meters of the shallow ocean floor (both sediments and basalts).
Particularly, we wanted to study the relationship between physical proper-
ties (e.g. elastic- wave velocity and attenuation, or strength under load) and
the state of the material (micronechanics, porosity, composition and mor-
phology). The approach we chose was to construct simple physical models,
isolating these parameters to individually determine their effects on physical
properties. The parameters we chose to concentrate on were (1) the geom-
etry of grains and (2) the characteristics of the material at their contacts,
which must transmit vibrations and static stresses within the material. In
general, it is these properties which control both the initial properties of the
materials as they are deposited, and the change of those properties during
compaction, lithification, and diagenesis. Five of the six papers we append
deal specifically with the development of theories to describe the effects of
cement (Papers la and ib) and grain geometry (Papers 2a, 2b, and
3). The last paper (Paper 4) is a summary of Biot theory, which was
undertaken to provide a framework for future work in relating our microme-
chanical models to a generally accepted macroscopic model. This summary,
although not at the level of application, is important in defining directions
for theoretical work to be undertaken in the future.
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The application of the theories we developed in the past year to the prop-
erties of sediments are (1) to understand the increase of velocity with depth
of sediments due to compaction and prior to diagenesis, and (2) to investi-
gate whether mechanical effects may play a role in the abrupt increase in
velocity often observed at so-called "diagenetic fronts". After developing a
model for the elastic properties of grains with cement (Paper la), we used
this model to calculate the velocities of wave propagation in sediments with
three principal components: grains, cement, and fluid-filled pore space. The
state of the sediments is controlled by the average number of grain contacts
and the properties of those contacts. Two models were developed to study
the change of these properties with depth. The first was a simple frictional
model with which predictions could be made regarding the behavior of gran-
ular materials under load (Paper 3), and their recovery upon the removal
-of load. The second model (Paper ib) allows the construction of an initial
material (the sediment as it is deposited) and the prediction of its behavior
under steadily increasing load (as it is buried by further sediments). These
theories are complementary. Both also allow us to investigate the capability
at any depth of such materials to carry static loads (for example, from struc-
tures on the seafloor). The latter model predicts, once the material begins to
deform, a smooth variation in velocity with depth similar to that presumed
by phenomenological models for compaction. However, the compaction rate
and hence the rate of change of velocity is determined by the strength of the
material between the grains. As this strength can be measured, the model
can be tested quantitatively.

One interesting result of these models is that under certain circumstances,
materials with a small residual cement layer are stiffer than materials for
which the grains are in direct contact at a point. Although this must be in-
vestigated more carefully, it does offer an intriguing mechanical explanation
for the occasional observation of a high-velocity "layer" at a diagenetic front.
A consequence of the frictional model is that the rate of change of veloc-
ity is quite modest until the frictional strength of the contacts is exceeded,
whereupon a rapid compaction and consequent rapid velocity increase oc-
curs. Again, this mimics the characteristics of a diagenetic front.

Obviously, neither of these overly simple models provides a complete answer.
However, each provides useful, testable insights into processes that must
occur in compacting sediments. And the rates of change of velocities in
each case are controlled by the strengths of the contacts between the grains,
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whether such contacts are cemented or are free to slip.

Attempts to adapt models of granular materials to the behavior of basalts
have previously met with some resistance from members of the scientific
community. For example, volcanologists and others feel that the underlying
physics is entirely wrong. This is largely because of the conceptual hurdle
that must be overcome, because we must adapt the scale so that pillows are
the "grains", which are several orders of magnitude larger than grains in sed-
iments. Once these hurdles are overcome, however, the analogies developed
through these exercises, which again have been found to be in quantitative
agreement with data, can be quite valuable.

With this in mind, we developed a model for the behavior of a cylindrical
tube with arbitrary cross-section under load (Paper 2a). Such a model
was selected because of the common observation that pillow lavas often
form as tubes through-which material in passing leaves a frozen shell and
a partially evacuated interior. These tubes are often cut by radial cracks
generated by cooling stresses. Once the characteristics of these tubes have
been determined, construction of an aggregate is straightforward. Again, the
aggregate has several useful properties. First, it is substantially "weaker"
than the basalt itself, leading to very low elastic-wave velocities. Second,
it is capable of rapid velocity increase (and porosity reduction) at a depth
corresponding to the collapse pressure of the tubes (Paper 3b. One of the
principle results of this work is that there is no way to predict the relation-
ship between velocity and porosity for such materials, particularly inasmuch
as the properties of the tubes are controlled by the position and number of
radial cracks. This model complements our earlier work describing the ef-
fects of grain contact stiffnesses in pillows on the properties of the aggregate.
Thus the grain contact stiffness results can be incorporated quite naturally
into a more complete model for pillows using as a model for the grains the
thin-walled hollow cylinder developed under this contract.

The attached summaries and preprints deal primarily with the first phase of
this work - that is, development of the models. The next step - application
of these models to sediments and basalts, and comparison of the predictions
to real data, is now under way. This requires quantitative measurements of
the properties of the components of the aggregates. Specifically, we need to
know the moduli of the matrix material and of the cement, in the case of
the elastic properties measurements, and the yield strength of the cement
in the case of the plastic model for compaction. In studying the collapse of
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basalt pillow tubes, we need to know the strength of the matrix material
(basalt). These data are in some cases available in the literature. In the
case of basalt strength, however, there is relatively little data, and these
measurements are now being made by members of our group.

Over the next several months these results will be incorporated into the
models, and the predictions will be tested quantitatively against in situ
measurements of velocity. Two papers (one invited) will be presented at the
American Geophysical Union Fall 1991 Meeting:

Dvorkin, J. and D. Moos (1991), Seismic velocities in compacting sediments
(abstract), EOS, Trans. AGU 72: Fall Meeting 1991 Program and Abstracts.

Moos, D. and J. Dvorkin (1991), Modeling the seismic properties of shallow
oceanic crust: Effects of extrusive morphology on seismic velocity (Invited
abstract), EOS, Trans. AGU 72 Fall Meeting 1991 Program and Abstracts.

Other publications acknowledging support from this contract include:
Dvorkin, J., Mavko, G. and Nur, A. (1991), The effect of cementation on the
elastic properties of granular materials, in press (Mechanics of Materials).

The remaining papers attached to this report will also be modified and
submitted for publication.
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The Effect of Cementation on the Elastic
Properties of Granular Material

Jack Dvorkin, Gary Mavko and Amos Nur

Abstract

A simple analytical model is developed to describe the mechanics of ce-
mented granular material. The two-dimensional problem of the deforma-
tion of an arbitrarily-shaped cement layer has been reduced to an ordinary
differential equation of the second order. A simple analytical solution is
obtained to model the normal and shear deformation of a cement layer with
straight boundaries. The problem of the normal compression of two con-
tacting circular elastic grains and an elastic cement layer between them has
been reduced to a linear integral equation. This problem has been solved
both for two-dimensional (cylindrical grains) and three-dimensional (spher-
ical grains) cases. The elastic modulus of such a combination is strongly
increased by cementation compared to the case of a classic Hertzian con-
tact.

Introduction

The acoustic and mechanical characteristics of sedimentary rocks may be
strongly affected by the properties and structure of intergranular bond ma-
terial. The deformational pattern of cement material and its interaction
with elastic grains is important for estimates of stress-strain behavior of
granular material, as well as for its failure criteria. Sedimentary rocks of
interest with intergranular cementation span a wide range from diagenetic
sediments and sand-clay mixtures to tar sands.

Numerous publications on the mechanics of granular media were dis-
cussed by Stoll (1989). The theoretical description of granular material has
been based on the classical solution for the problem of a normal compression
of elastic spheres or disks by Hertz (Johnson, 1985) as well s on the results
regarding the oblique compression of elastic spheres and disks (Mindlin,



1949; Walton, 1978). All these models consider the direct contact of elas-
tic bodies. The dimension of a contact zone changes with varying external
forces.

The situation is different for the contact of initially cemented grains. In
this case the dimension of a contact zone between two bodies is predeter-
mined and does not change in the process of interaction. Bruno and Nelson
(1990) examined the inelastic mechanical behavior of cemented granular
material using a two-dimensional discrete element procedure. Intergranular
interaction through cementation was modeled using a linear spring scheme.

In this paper we concentrate on the description of cement layer defor-
mation as well as on the interaction of elastic grains with an elastic cement
layer. To investigate two-dimensional cement layer deformation when the
layer is thin and grains are much stiffer than the cement we have derived a
simple analytical model. The approach used is similar to those commonly
employed in approximate theories of thin plates and shells. This approach
was used by Matthewson (1981) to model an axisymmetric contact on thin
compliant coatings. The problem of a two-dimensional arbitrarily-shaped
cement layer deformation has been reduced to an ordinary differential equa-
tion of the second order. A simple analytical solution has been derived for
the case of a cement layer with straight boundaries under compression and
shear.

We show that a cement layer under normal compression can be approx-
imately treated as an "elastic foundation" between two grains. Using this
result we reduce the two-dimensional problem of interaction between two
elastic grains and an elastic cement layer to a linear integraJ equation. Solv-
ing this equation we are able to estimate the elastic modulus of cemented
granular material. We also employ the "elastic foundation" approximation
to solve the problem of the normal compression of two cemented spherical
elastic grains. The presence of a cement layer dramatically increases the
elastic modulus compared to the case of an intergranular Hertzian contact.

These theoretical models can be used to predict the influence of cement
content and location on the properties of sediments.

Deformation of a Cement Layer

General Equation

To examine the plane deformation of an elastic cement layer we introduce
a coordinate system (z, z) in the cross-section of an intergranular boundary
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(Figure 1). The z axis is directed along the surface of the lower grain; the z
axis is directed upward. The problem will be solved in a linear formulation,
so that in spite of the possible curvature of the grain surface the z axis can
be still considered as being directed along this surface.

Hook's law for the plane theory of elasticity is:

a.= (A + 2p)u. + Aw,,

U = Au. + (A + 2p)w2, (1)

azz = /j(u + wy).

The equations of static elasticity are the following:

o7-+ 49- = 0; --- 0+ =0. (2)

In equations (1) and (2) ar, o, and a.. are normal and shear stresses;
u and w are displacements in the z and z directions; lower indexes z and z
denote partial derivatives; A and p are Lame's constants of the cement.

To find an approximate solution for the problem we assume that the
displacements u and w can be expressed in the following form:

u(x, z) = (z)z +13(z)z 2; w(X, z) = E(X)z, (3)

where the functions a, / and c are to be found. This assumption can be
ia.uitively validated by the deformation pattern of initially straight fibers
of the cement (Fig. 2).

We also assume. that the coordinate system (z,z) is connected with the
surface of the lower grain, thus displacements u(z,O) = w(z,0) = 0 at
z = 0. The surface of the upper grain moves relative to the lower grain, and
displacements u and w are given along this surface:

w = W(Z); u = U(z)

at z = h(z), where h(z) is the thickness of the cement layer.
These boundary conditions lead to the following relations between the

functions a, 3 and c, and known functions W(z), U(z) and h(x):

c(z) = W(z)/h(x); (4)

a(z) = U(z)/h(x) - /(z)h(z). (5)
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Substituting (3) into (1) we arrive at the following expressions for the
stresses in the cement layer:

0 = (A + 2p)(a'z + 1'z2 ) + AC,

4,Z = A(a'z + #'Z2) + (,\ + 2#),, (6)

UXZ = I(a + 2,6z + E'z).

Integrating the first equation (2) in the z direction from 0 to h(x) we
arrive at the following relation:

o a z + dz + axzz=h - GZZIz= O = 0.

Substituting expressions (6) into this relation and using (5), we obtain
the following equation for the function O(z):

3' + A(z)f' + B(zx) = C(z), (7)

where

A = 6h'/h; B = 1[h" 2(1 - 2v)
hh(1 - v) '

C= 3[6"+ C' ; - g

h'

v is the Poisson's ratio of the cement.
To set boundary conditions for this equation we will introduce normal

force N in the z direction:

N - j , dz = (A + 2p)(a'h 2 /2 + #'h 3 /3) + Ach.

This force is assumed to be zero at the left and right sides of the cement
layer: N = 0 at x = 0 and x = L, where L is the length of the layer in the
z direction.

This assumption leads to the following boundary conditions for the equa-
tion (7):

X 3h' 6 6' V
h= 2 +h(I"v)' (8)

at z = 0 and z = L.
The ordinary differential equation (7) can be solved numerically using the

boundary conditions (8). Once the functions a and 3 are computed, stresses
ca, ax, and a,, can be found from relations (6). The resulting normal and
shear forces of interaction between two grains are to be computed as the
integrals of stresses in the x direction along the cement layer.
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Special Case - Normal Compression of a Straight Cement Layer

Considering the special case of a straight cement layer under compression
we have the following conditions for the functions U(z), W(x) and h(z):

U = 0; W = const; h = const.

Equations (7).and (8) become:

1 6(1 - 2v)." k =0; k = , T 1 6(

A'= C; C - 6 v
h2 (1 - V)

at x = 0 and z = L.
Resolving this system we find

C ekr(1 - e -kL) + e-kx(1 - ekL)

T ekL _ e- kL

If the length of the cement layer significantly exceeds its thickness (L > h),
we have the following estimates:

UL L 6(1 - 2v) 1; ekL > 1; e-kL 1;

h I v

h I --o - ( - 2v)(1 -_ )

Normal stress in the z direction a,. can be estimated as follows:

a,. , (A + 2p)W/h.

The ratio of maximum shear stress to normal stress -y at the interface of the
cement layer is the following:

v 3(1 - 2v)

The maximum value of - is equal 0.47 at v = 0.4. Thus, if the friction
coefficient between the cement and the grain surface is more than 0.47, the
cement layer will not be torn from the grain under normal loading.



Special Case - Normal Compression and Shear of a Straight Ce-
ment Layer

In this case we consider a shear displacement superimposed on the normal
loading. Namely, we put

U = const 0 0; W = const; h = conast.

In this case we have the following relations between a and 3:

0 = 6 - f h; a' = -,i'h.

The equation and boundary condition are identical to the ones in the
previous case of pure normal compression. The expression for the normal
stress a,, does not change: a., ; (A + 2M)W/h. Shear stress a., is: o'z =
y(6-,3h) at z = 0, and a., = j(6+ Oh) at z = h. In this case the maximum
shear stress at the interface "grain-cement" is approximately:

U W V6L2
O'zzmaz Z: A + P TV( F -2V)(1 _ V).

The ratio -y of the maximum shear stress to normal stress is:

1-2v U 6v2
2(1 - V)[W " +  (1 -v)(1 - 2v) '

In this case parameter - can be large enough depending on the ratio U/W.
Thus, the separation of a cement layer from a grain surface can occur.

Numerical Examples - Tapered Cement Layer; Layer Between Two
Circles

In the first example we examined the deformation of a tapered cement layer
under normal compression (Fig. 3). The length of the layer is 2mm; the
minimal thickness of the layer at its left end is 0.1 mm; the tangent of
its tilt is 0.2. The elastic constants of the cement are: Young's modulus
E = 2 • 10' Pa; Poisson's ratio v = 0.3. The normal displacement of the
cement upper surface towards its lower surface is 10- 4 mm. Average normal
and tangential stress distributions along the cement layer are given in Fig.
3. Actual normal stresses (bold curve) are compared with normal stresses
computed using an approximate formula of uniaxial deformation: a-.,
(A + 21p)W(r)/h(x) (thin curve). These two curves are very close.
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In the second example we examined the deformation of a cement layer
between two identical circles of a radius I mm (Fig. 8, a). The length of
the layer is 0.3 mm; its minimal thickness is 0.01 mm. Elastic constants and
compressional displacement are the same as in the first example. Average
normal and tangential stress distributions along the cement layer are given
in Fig. 4. In this case actual normal stresses (bold curve) are also compared
with normal stresses computed using the uniaxial deformation approxima-
tion (thin curve). This example also proves the accuracy of approximate
uniaxial deformation formula.

These examples show that noticeable shear stresses may develop under
normal compression in a cement layer of changing thickness. Normal stresses
in such a layer can be approximately calculated using the assumption that
the material in every cross-section of the layer deforms uniaxially: o_. z
(A + 21 )W(x)/h(x).

Introducing the Elasticity of Grains - 2D Case

The solution for the problem of two-dimensional deformation of a cement
layer between two grains presented above can be incorporated into a more
general problem where the deformation of grains is taken into account. The
approximate solution of such a problem can be obtained using the result of
the previous section:

S(A + 2y)W(z)/h(x). (9)

Assuming as well that shear stresses at grain surfaces do not significantly
*0 influence their compressional deformation (Johnson, 1985) we conclude that

the concept of "elastic foundation" (ibid.) can be used to model the cement
layer compressional deformation between two deforming grains (Fig. 5).

Examining the plane deformation of an elastic body on a cement layer -
"elastic foundation" - we have the following relation between the displace-
ment of the cement W(z) and the displacement of the body v(z) (Fig. 6):

v(-) = f + W(W), (10)

where f is the rigid translation of the elastic body. Here and below we
consider the deformation of the elastic body and the cement layer relative to
some fixed rigid surface (Fig. 6) that may be the plane of symmetry between
two identical grains (Fig. 8). Assuming that stress distribution in the elastic
body is close to one in a half-plane with the identical surface deformation
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(this assumption is valid provided that the interface "grain-cement" is much
smaller than whole grain surface), we arrive at the following relation between
the displacement v(x) and normal surface stress a.,(z) (Johnson, 1985):

V(2) = 2- v2 a O(s)n aids + const, (11)

7rEj J.

where vi is Poisson's ratio and El is Young's modulus of the elastic body;
a = L/2 is the half-length of the cement layer; the origin of the coordinate
system x is in the middle of the cement layer (Fig. 7). Equation (11) implies
the linearization of the problem, i.e. the assumption that the contact part
of the grain surface can be approximated by the interval IzI < a on the x
axis.

Substituting (9) and (10) into (11) we arrive at the following integral
equation:

W(x) = A . h)ln Ix - sds + const, (12)

A - 2(1 - LI)(A + 2 11)
rEj

This equation can be solved numerically to find function W(x). The con-
stant in the right-hand part of the equation will be calculated using the
condition of a given integral compressional force F, per unit length of cylin-
drical grains:

F~c =/aC- (A + 2p)W(z)dx"
Fc= -a(x)dx

La. h(x) d.

Cementation Between Circular Grains

If a cement layer separates two identical circular grains of radius R (Fig. 8,
a), its thickness 2h(x) is related to coordinate x as follows:

h(x) z:ho+x2
2R'

where 2h0 is the minimal separation between grains. In this case equation
(12) has the following form:

W(x) = 2RA P W(s) In Ix - sids + const,
a nR 2 + s2

J- 8



where n = 2h/R. A very important special case is the one where grains
have a point contact (Fig. 8, b) and, thus, ho = 0. Equation (12) in this
case is:

W(-) = 2RA. -;2 Inz- .Ids + const. (13)

Here we cannot neglect the deformation of grains even if the cement is very
soft. If grains are absolutely rigid, this combination will not deform at all.

The intriguing question is: how the rigidity of this combination can be com-
pared to the rigidity of two-grain combination without cement between them
(Hertzian contact). The principal difference between the example under con-
sideration and the classical Hertzian contact is that in the first case grains
will keep a point contact under increasing loading, whereas the Hertzian
solution implies the development of a finite contact zone. To answer this
question we solved equation (13) numerically using the quadrature method
(Delves and Mohamed, 1985).

We examined the deformation of a two-grain combination with cemen-
tation between them. The grains of radii R = 1 mm have a point contact.
Young's modulus of grains E = 2. 1011; Poisson's ratio vi = 0.3.

Stress distributions along the grain surface between z = 0 and z = a
(Fig. 8, b) are given in Fig. 9. In this example (a = R/3) we examined
eight different cases depending on the ratio of cement to grain stiffness m =

ELE 1 . The Poisson's ratio of the cement was 0.3. The shape of the stress
distribution dramatically changes depending on the value of m, whereas the
integral of normal stress along the contact interface is constant and equal to
the compressive force.

The shape of stress distribution between cemented grains (Fig. 10, bold
curve) is completely different from the classical Hertzian case (Fig. 10, thin
curve). The dimension of the contact interface between two grains is also dif-
ferent: in the Hertzian case this dimension increases with confining pressure,
whereas the contact region between cemented grains remains constant.

To calculate the deformation and the stiffness of the two-grain combi-
nation we used the solution for the problem of deformation of an elastic
cylinder subjected to external stresses (Novozhilov, 1961). Stress distribu-
tion at the grain surface was used to find the deformation of the system
under a given confining pressure. The stiffnesses of cemented and nonce-
mented systems are compared in Fig. 11. In this case we used parameters:
m = 0.5; a = R/30. When the confining pressure is small, the stiffness of
the cemented system significantly exceeds the stiffness of the Hertzian sys-
tem. The stiffness of the Kertzian system increases with confining pressure;
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so does the contact interface. The stiffness of the Hertzian system reaches
the stiffness of the cemented system at the confining pressure where the con-
tact interfaces within these two systems become approximately equal. The

* stiffness of the cemented system does not depend on the confining pressure.
The stiffness of the cemented system for different m and a is compared to

the stiffness of the Hertzian system (Fig. 12). The stiffness of the cemented
system increases with the length of the cement layer and with the relative
stiffness of the cement m. It significantly exceeds the stiffness of the Hertzian
system in the range of confining pressure under consideration.

Introducing the Elasticity of Grains - 3D Case

To model the normal compression of two spherical elastic grains interlaid
with an elastic cement layer we employ an approach similar to that in a two-
dimensional case. Examining the axisymmetrical deformation of a system in
a meridional plane (Fig. 8) we assume that normal stresses in a cement layer
can be approximated by the "elastic foundation" concept and, therefore,
expressed by equation (9): a,, - (A + 2p)W(x)/h(z), where z is the axis
of symmetry and the z axis is placed in the meridional plane. We also use
the fact that shear stresses do not significantly influence the compressional
deformation of the system (Johnson, 1985). In the case under consideration
the displacement of the cement W(x) and normal displacement of a grain
surface v(z) are related by equation (10): v(x) = + W(z), where f is the
rigid translation of a grain.

Following the classical Hertzian solution we assume that stress distri-
bution in the elastic grain is close to one in a half-space with the identical
surface deformation. In addition we linearize the problem assuming that the
contact region on the grain surface can be approximated by a circle izI < a
in the z = 0 plane.

These assumptions lead to the following relation between the displace-
ment v(z) and normal stress at the grain surface a... (Timoshenko and Good-
ier, 1970):

V()= 2.Vi d / in oUZ(s, W)ds. (14)

The integration in this equation is implemented in the z = 0 plane, inside
the circle IzI < a, where a is the radius of the cement layer (Fig. 13); s and
W are the variables of integration.

* 10
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The problem under consideration is an axisymmetrical one, thus the
function a,.(s, V) depends only on the r coordinate in the polar coordinate
system (r,e) in the z = 0 plane. This argument can be expressed through
arguments s and V as follows: r = Vz 2 + s2 - 2za cos W. This means that
azz(sw) = a..(r) = oaz(v/z2 + s2 -2zscosp). Substituting this expres-
sion into equation (14) and using equations (9) and (10) we arrive at the
following integral equation for the function W(z):

A dp r co +o) -x2 finT 
(p W( X/z2 + 8s - 2xs cos ) d -

w(X) = o p 0  h( r/x2 + _2 - 2zscos o)

where R is the radius of the grain; A. = [4R(1 - v2)(A + 2p)]/(rEj). Using
the fact that for the cement layer between two contacting spherical grains

2h(z) 2-7, we transform this equation to the following one:

W(x)= -A. 7r d XCosW+V/2-2'.n'W (/z + s - 2xscos V)ds-0 dXj 2 +,9 2 - 2xs cos V

(15)
The constant in this equation can be calculated using the condition of a
given integral compressional force Fc acting on the grains:

F, = -o 2 (z)27rzdx.

Equation (15) can be solved numerically similar to equation (13). In
this case the quadrature method is applied to the double integral. Once the
stress distribution along the grain surface is found, the deformation and the
stiffness of the two-grain combination can be calculated. To find the grain
surface displacements we used the solution for the problem of deformation
of a symmetrically loaded elastic sphere (Lur'e, 1964).

Numerical Examples - Cemented Spherical Grains

We examined the deformation of two contacting identical cemented elastic
spheres (Fig. 8., b). AU constants were chosen to be identical to those in
the 2D case above.

Axisymmetrical stress distributions at the grain surface differ from the
Hertzian stress distribution; they are qualitatively similax to the pattern
observed in the 2D case.

0 11



The stiffness of cemented system is compared to the stiffness of a Hertzian
system for different values of m and a/R (Fig. 14). The stiffness of the ce-
mented system does not depend on the confining pressure. It exceeds the
stiffness of the Hertzian system at low confining pressure even when the
cement is soft and the radius of the cement layer is small.

Conclusions

The two-dimensional problem of deformation of an arbitrarily-shaped ce-
ment layer has been reduced to an ordinary differential equation of the
second order. A simple analytical solution has been derived for the case
of a cement layer with straight boundaries under compression and shear.
A cement layer under normal compression can be treated approximately as
an "elastic foundation" between two grains. Using this result we reduce the
problem of interaction between two elastic grains and an elastic cement liyer
to a linear integral equation. A cement layer dramatically increases the elas-
tic modulus compared to the case of intergranular Hertzian contact. The
shape of stress distribution between cemented grains is completely different
from the classical Hertzian case. This shape dramatically changes depend-
ing on the ratio of cement stiffness to grain stiffness. The stiffness of the
cemented system does not depend on the confining pressure. The stiffness
of the cemented system increases with the length of the cement layer and
with the relative stiffness of the cement. It significantly exceeds the stiffness
of the Hertzian system at low confining pressure. The small increase of the
cementation content results in significant growth of a contact zone between
two contacting grains and, thus, dramatically increases the stiffness of the
system.
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Seismic Velocities in Compacting
Sediments

Abstract

We present a theoretical model for the compaction of sediments formed by
quartz grains separated at their contacts by a cementing component. Com-
paction occurs due to lithostatic pressure that results in increasing contact
stresses with burial. As the stresses at the contact become larger, the ce-
menting material yields, the separation between the grains decreases, and
the area of the cemented contact increases. This results in an increase in
P- and S-wave velocity with depth. The rate of increase depends on the
strength of the cement. Similarly, the rate of porosity reduction, which is
dependent on the reduction of separation of the grains, also depends on the
strength of the cement. Although the compaction of the sediment occurs
due to plastic yield of the cementing component, the material as a whole
behaves elastically in response to seismic wave excitation. Our estimates of
the seismic properties of compacting sediments are based on the theory of
cemented granular material (Dvorkin et al., 1991) that is used to compute
the contact stiffness of cemented grains. Seismic velocities are evaluated
using standard formulas that relate the elastic properties of granular mate-
rials to the contact stiffness and the average number of contacts per grain.
The results indicate that the velocities steeply increase on the initial stage
of compaction. As compaction continues, the velocities gradually approach
constant values that correspond to the direct contact of the grains. If the ce-
ment is extremely soft relative to the grains, a velocity maximum occurs just
prior to the pressure at which the grains contact. Our theoretical predictions
agree qualitatively with velocity-depth profiles within oceanic sediments.

Introduction

In this paper we develop a theory for the compaction of granular sediments
due to increasing lithostatic pressure. We assume that rigid grains are sep-
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arated by a cementation material that is being pushed out of grain contacts
as confining pressure increases. Using simple yield criterion we find the
separation between grains and the size of the cemented zone at the grain
contacts. The knowledge of the geometry of the grain contacts allows us to
apply our theory of cemented elastic grains (Dvorkin et al., 1991). Then we
use formulas that relate acoustic velocities in random sphere packs to the
normal and tangential contact stiffnesses and the number of contacts per
grain (Winkler, 1983).

It is important to mention that in spite of the plastic regime of the
compaction of sediments, we assume that they react elastically to the seismic
wave excitation.

In addition we give approximate formulas for velocities in cemented sed-
iments obtained under the assumption that grains are absolutely rigid.

Plastic Compaction of Granular Sediments

We assume that two adjacent spherical grains are separated at their con-
tact by a given constant amount of cementing material. As contact pressure
increases, cement is being pushed out of the contact zone. This process re-
suits in smaller intergranular separation and increasing area of the cemented
contact zone (Fig. 1).

We use the following simple speculation in order to find the geometry of
the cemented contact zones as a function of the confining pressure. If the
confining pressure is Pc then the total force Ft acting upon the surface of a
spherical grain of radius R is F = 4wR 2 P,. This force, if distributed among
C contacts, produces a forces per contact Fc = F/C = 47rR2Pc/C.

The average normal stress o in a cement disk of central angle e0 (Fig.
2) is:

F_ 4P,

w(R8o) 2 -CO*

This formula allows us to relate central angle 0o to the confining pressure
and the yield limit of the cement o:

66 = V Co.
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Compaction and the Contact Geometry

The half volume of the cement disk of central angle 9 (Fig. 2) is:

where h0 is the half-distance between two adjacent grains.
Assuming that the volume of the cement at the contacts does not change

with compaction and is given by the constant ratio of cement to grain volume
k, we find that the total volume of cement per grain is

4 3V. = k,5 7rR.

Thus the volume V can be calculated as

4irR3

Now the half-distance between two adjacent grains h0 can be related to
the radius of a grain R as:

h o 4 k , 0 02 (2 )
R =  3C(o2 )

Equations (1) and (2) determine the geometry of the cementation at
the contact depending on the confining pressure. Given this geometry, the
normal contact stiffness of two spherical grains can be calculated using our
theory of intergranular cementation (Dvorkin et al., 1991).

Seismic Velocities and Contact Stiffnesses

To find seismic velocities V and V as functions of confining pressure we use
formulas relating V and V to the normal and tangential contact stiffnesses
S,, and St (Winkler, 1983):

0 3C (S 2 C 3 (3)= 2orRpS + 3S's 2rp0_f(s" + 2st),

where p is the density of the grain material. These formulas were derived
for the random packing of identical elastic spheres. Stiffness is defined as
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the ratio of an acting force to the displacement it produces. A convenient
interpretation of (3) in terms of bulk and shear moduli K and G is:

K=-S, = 2 S. + St). (4)
121R 12207r

Seismic velocities can be expressed through K and G as:

KP i/u (5)

where p, is the density of the rock.
Given the Poisson's ratio of the rock v, the shear modulus G can be

expressed through the bulk modulus K as:

G = K 3 (1 - 2v)
2(1 + v) (6)

Formulas (4) - (6) can be used to calculate Vp and V given the normal
stiffness of two grains and the Poisson's ratio.

Seismic Velocities and Confining Pressure

In this section we use the solution for the problem of the normal compression
of cemented circular grains (Dvorkin et al., 1991) in order to find V and V,
versus confining pressure P,. The order of calculating the velocities is the
following:

equation (1) is used to find 00 as a function of Pc;

equation (2) is used to find the half-distance ho;

results of Dvorkin et al. (1991) are used to find normal stiffness S,;

the bulk modulus K is calculated from (4);

a certain value is assigned to the Poisson's ratio v of the rock;

formulas (6) and (5) are used to calculate G, and V and V,.

The results of calculations with v = 0.3 are presented in Fig. 3. Different
curves Vp-P, and V-Pc were obtained for various values of ratio m = ECEO,
where Ec and E, are the Young's moduli of the grain material and the
cement. We also varied the amount of cement in the rock (parameter k,).

Plots of V and V versus Pc for the case where m=0.07 k,=0.2 are
presented in Fig. 3A. Velocities steeply increase on the initial stage of com-
paction. As compaction continues, the velocities gradually approach con-
stant values that correspond to the direct contact of grains. Fig. 3B gives
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plots of V and V versus P, for m=0.07 k,=0.1. Veloctits here are smaller
than in the first examle, that is due to reduced amount of the cementation.

An interesting effect of peaks in P- and S-velocity before they reach their
constant values is shown in Fig. 3C. In this case the cementation is very
soft compared to the grain material (m=0.01) and k,=0.1. This is due to
the fact that the normal stiffness of two spherical grains separated by a thin
layer of a soft cement can be higher than that of directly contacting grains.

Our theoretical predictions have a qualitative agreement with velocity
measurements in oceanic sediments.

Simplified Formulas for S, and St

Simple formulas for evaluating the contact stiffnesses of two cemented grains
can be obtained under the assumption that the grains are absolutely rigid.
These formulas can be applied only if the cementation is very soft compared
to the material of the grains and if grains are not in the direct contact.

In the following derivations we use the result of Dvorkin et al. (1991)
that a cement layer can be treated approximately as an elastic foundation.
Namely, we assume that a normal stress in the cement layer (in the direction
perpendicular to the surface of the grain) is:

,, = (A + 2#)W/h, (7)

where W is the displacement of the cement normal to the grain surface; h
is the thickness of the cement layer between two grains; and A and / are
Lame's constants of the cement.

For the shear stress r we will use the following formula:

r = AUh, (8)

where U is the tangential displacement between two grains.
The thickness of the cementation between two circular grains is (Fig. 2):

2h )= 2(ho +~ (9)

From (8) and (9) we find that

_u _ pUR
( h(z) X 2 + 2Rho"
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The resulting tangential force T between two grains produced by the
displacement U is for the 2-D case:

T = 2 r(x)dx = pU ./ _arctan( ).

The normal force produced by the displacement W can be found from
(7):

N = (A + 2AWrRh rta(2VRh)

These formulas can be used now to find the normal and tangential stiff-
nesses between two grains for the two-dimensional case:

St = T/(U/2) = 2pv'karctan(8oVirk/),

S, = N/(W/2) = 2(A + 2A)Viikarctan(Ool/ /2),

where k = R/ho.
For the 3-D case of two cemented spherical grains we have:

T = W 21rxr(x)dx = 7rpURln(1 + 02k)

N = -(A + 2p)WRln(1 + k),
02

St = 27rpUln(1 + -L-k), (10)
2

S, = 27r(A + 2ji)R In(1 + 2) (11)

Velocities Vp and V can be calculated now from (3).
Formulas (10) and (11) can be used only for the rough, an order of

magnitude estimates of seismic velocities.

Conclusions

We developed a theoretical model for the compaction of sediments formed
by rigid grains separated at their contacts by a cementing component. Com-
paction occurs due to lithostatic pressure that results in increasing contact
stresses with burial. Our estimates of the seismic properties of compacting

6



sediments are based on the theory of cemented granular material that is
used to compute the contact stiffness of cemented grains. The compaction
of sediments occurs as a plastic process but they react elastically to the
seismic wave excitation. Velocities Vp, and V. steeply increase on the ini-
tial stage of compaction. As compaction continues, the velocities gradually
approach constant values that correspond to the direct contact of grains.
An interesting effect of smooth peaks in P- and S-velocity before they reach
their constant values is predicted if cementation is very soft compared to the
grain material (e.g. quartz grains in silt). Our theoretical predictions have
a qualitative agreement with velocity measurements in oceanic sediments.

References

1. Dvorkin, J., Mavko, G. and Nur, A., "The Effect of Cementation on
the Elastic Properties of Granular Material," 1991, in press (Mechanics of
Materials).

2. Winkler, K., "Contact Stiffness in Granular Porous Materials: Compari-
son between Theory and Experiment," 1983, GRL, 10 (11), 1073-1076.

7



A Pc

Grain - -
• .... -:.Grain

C e e n . ..,- 
.. 

.- ..'... ... .

4PC
Deformation of cement layer

due to increased confining
pressure

Figure 1 : Deformation of the cementation between two spherical grains
due to increasing confining pressure.



Cement ho x

R

Grain

Figure 2 :Cementation layer on a spherical grain.



a II

oo

~II
A4 -I

ad.



Seismic Velocities in Compacting Sediments 1. 1991 Fall Meeting

Jack jjrjn and Daniel Moos (both at: Department of Geophysics, 2. 010019507
Stanford University, Stanford, CA 94305)

3. (a) Jack Dvorkin
We present a theoretical model for the compaction of sediments Department of Geophysics

formed by quartz grains separated at their contacts by a cementing Stanford University
component. Compaction occurs due to lithostatic pressure that Stanford, CA 94305
results in increasing contact stresses with burial. As the stresses at
the contact become larger, the cementing material yields, the (b) Tel: 415-725-9296
separation between the grains decreases, and the area of the cemented
contact increases. This results in an increase in P- and S-wave (c) Fax: 415-725-7344
velocity with depth. The rate of increase depends on the strength of
the cement. Similarly, the rate of porosity reduction, which is 4. T
dependent on the reduction of separation of the grains, also depends 5. (a) T04 Oceanic Crustal Evolution
on the strength of the cement. (b) 3025

Although the compaction of the sediment occurs due to plastic yield 5129
of the cementing component, the material as a whole behaves (c)
elastically in response to seismic wave excitation. Our estimates of 6. --
the seismic properties of such a material are based on the theory of a
cemented granular material (Dvorkin, et al., 1991) that is used to 7. 0%
compute the contact stiffness of cemented grains. Seismic velocities
are evaluated using standard formulas that relate the elastic properties 8.
of granular materials to the contact stiffness and the average number
of contacts per grain.

The results indicate that the velocities increase rapidly on the initial
stage of compaction. As compaction continues, the velocities 9. C
approach constant values that correspond to the direct contact of the
grains. If the cement is extremely soft relative to the grains, a 10. none
velocity maximum occurs just prior to the pressure at which the
grains contact. Our theoretical predictions agree qualitatively with 11. No
velocity-depth profiles within oceanic sediments. However, the
importance of these effects depends on the strengths of the materials
involved.

Dvorkin, J., Mavko, G. and Nur, A., 1991, The Effect of
Cementation on the Elastic Properties of Granular Material,
Mechanics of Materials, in press.



Modeling the Granular Structure of
Rocks

Abstract

The interaction of rock grains with friction and slippage is modeled using
an analytical solution for plain elastic deformation of cylinders. The model
explains the difference between "static" and "dynamic" elastic moduli of
natural rock. The numerical experiments performed on a four-grain unit
predict the dependence of "static" elastic moduli on confining pressure, the
friction coefficient between grains and their relative initial positions. The
"dynamic" elastic moduli depend mainly on the relative initial positions of
grains and confining pressure.

Four-grain units with varying initial configurations and friction coeffi-
cients can be used for modeling granular material. The "static" and "dy-
namic" moduli of this material will depend on the statistical distribution of
the above-mentioned properties.

Introduction

The theoretical description of granular material regarding the mechanical
behavior of natural rock has been a published subject for more than 30 years.
In many publications the authors employed regular packing of spherical
grains (Gassman, 1951, Duffy and Mindlin, 1957, Deresiewicz, 1958, White,
1965, Walton, 1975).

Digby (1981) investigated the behavior of identical, randomly stacked,
spherical particles. Contacting particles are initially bonded together across
small areas. The solution predicts the dependence of elastic wave speeds on
the confining pressure and adhesion radii of contacting particles.

Walton (1987) derived the effective incremental elastic moduli of random
packing of identical elastic spheres. The spheres are assumed to be either
infinitely rough or perfectly smooth. The results derived are applicable to
dense packing.
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Our goal is to examine the deformation of unconsolidated rocks under dif-
ferent types of loading conditions. Using the exact analytical solution for the
deformation of an elastic cylinder under arbitrary external forces distributed
along its perimeter (Novozhilov, 1961) we model the interaction of circular
grains with friction and slippage. Employing the simple combination of four
identical circular grains we explain the observed difference between "static"
and "dynamic" elastic moduli of unconsolidated rocks assuming that in the
later case no slippage occurs. Considering frictional forces we explain the
hysteresis effect in stress-strain relationships for granular materials.

Deformation of Circular Cylinder

The solution of the plane problem for a circular cylinder (Novozhilov, 1961)
is based on the general theory derived for plane deformation of elastic bodies.
Here we use the following relationship between displacements u and v and
complex functions V(z) and O(z) in a complex plane z = z + iy (Fig. 1):

where E and v are the Young's modulus and Poisson's ratio of the cylinder;
A = 3 - 4v; '(z) and () are functions conjugate with respect to pl(z)
and O,(z).

The complex functions W(z) and O(z) can be found using boundary con-
ditions for normal f, and tangential fe traction on the cylinder perimeter.

The functions V(z) and O(z) are regular within the region under consid-
eration, and can be represented in the form of power series

z) = O _k (z)= 01 z, P,(Z) Mk Zk-. (2).R k -

k=1 k--i k=1

The coefficients ak and P3k are connected with the boundary tractions as
follows:

a, = A1 /2; Ckk = Ak, k > 1; .8k = A__- (k + 2)Ak+ 2.

Ak -_Ek J (f. + ife) exp[-i(k - 1)8]dO.
2nk 0o

Here R and 6 are the modulus and argument in the complex z plane.
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Conditions at Grain Contact

To describe a normal stress distribution along contact surfaces we use the
Hertzian approach (Johnson, 1984). The contact stripe between two cylin-
ders pressed against each other by a force N has a width 2a, where

a2 = 4NR(I - v2 ) (3)
rE

and R, is the cylinder radius.
Pressure distribution along the contact surface can be presented in the

following form:

= v- - C, (4)

where is the local coordinate system (see Fig. 2).
To model the distribution of a tangentional traction along the contact

surface of two cylinders when slippage occurs we use the Coulomb law of
friction:

fe =

where K is the coefficient of sliding friction.
The modeling of tangential traction distribution in the absence of sliding

is more complicated. Mindlin's (1954) solution of this problem predicts
that if two spheres are pressed together by a constant normal force and
then tangential forces are applied, the pattern of normal traction remains
unchanged while the resulting distribution of tangential tractions tends to
infinity at the periphery of the contact area. Since infinite stresses are
not physically possible, stress relief in the region of stress concentration is
allowed. This effect gives rise to a tangential traction distribution that is
not proportional to the normal traction.

Walton (1987) obtained part of the solution corresponding to shear using
the assumption of perfect adhesion: that is, no relative slip between the
two spheres is allowed over the contact area, while the final state is being
attained. The resultant configuration and the occurence of slippage are
strongly dependent on whether the two spheres are first compressed and
then sheared or whether the two motions are occuring simultaneously. In
this case the tangential traction distribution has a form similar to the one
given by Eqn. 4. In this case if slippage occurs, it will be in the form of
sliding over the whole of the contact area.
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In our model we use Walton's solution for the shear traction distribution:

fe(z) = (5) 2- 2

where T is the resulting tangential force applied to the contact area.
The dimensions of the contact area between two cylinders is usually

very small compared to cylinder size. This allows us to use in this case
Saint-Venant's principle, according to which statically equivalent systems
of forces distributed over a small part of the boundary of an elastic body
produce in the body systems of stresses which differ from each other only
in the immediate vicinity of the area of loading. However, at sufficient
distances from this area, the stresses aroused by one or the other system of
forces are practically identical. Thus, under certain conditions the form of
shear traction distribution is not really important to compute the resulting
deformation of cylindrical grains.

Four Cylinders System - Active and Reactive Forces

To understand the peculiarities of grain interaction we examine a simple
combination of four identical cylinders (Fig. 3A) subjected to the internal
loadings P, and P2.

The equilibrium condition of four cylinders system can be presented in
the following form:

Pi = 2(N cosa + Tsina), P2 
= 2(N sin a - Tcosa), (6)

where N and T are the normal and tangential reactive forces acting between
two cylinders (Fig. 3B); a is an angle defining the relative position of the
cylinders.

When slippage occurs the relationship between N and T is defined by
the Coulomb law of friction: I T J= icV. When there is no relative motion
between two cylinders the reactive forces are connected by the following
formula: J T 1< ieN. Making use of Eqn. 7 we arrive now at the following
relation between the internal forces P and P2 provided there is no slippage:

P2 < PI(tana - r)/(1 + r. tana). (7)

Once the slip occurs this relation turns into the following strict equation:

P 2 = P(tana - .)/(1 + r. tan a). (8)
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Considering P2 in Eqn. 9 as the function of tan a and taking the first deriva-
tive with respect to this argument we can arrive at a positive expression.
Thus, to achieve an equilibrium of the four cylinders the side force P2 must
increase with increasing a. It means that if P2 is constant, and P1 exceeds
a limiting value dictated by Eqn. 9 the system cannot stay in balance. In
this case the system collapses and the angle a changes from its initial value
to its upper limit of 600.

The system collapse can be prevented provided that displacement bound-
ary conditions are used. We can simulate the axial loading of the system
increasing the vertical force P and assuming that the system is limited in
its expansion, so that the points S1 and S2 of the side cylinders (Fig. 4)
do not suffer any displacements that can increase the system width. Thus,
we arrive at the uniaxial deformation of the system. This computational
experiment can be used to find the elastic modulus M = A + 2y, where A
and p denote the Lami elastic constants of the cylinders material, and, thus,
to estimate P-wave velocity.

To perform this experiment we applied at the beginning a certain con-
fining pressure, and then gradually increased the vertical force P 1. Once
slippage occured Eqn. 9 was used to calculate the force P2 during the
loading process. The angle a was changed to meet the conditions of zero
displacements for the points S and S2.

Unloading the system we gradually decreased the vertical force P check-
ing the slippage condition (Eqn. 8). To find the force P2 during the slippage,
in the case when the tangential force T is directed to prevent the cylinder's
upward motion, we used the following equation instead of Eqn. 9:

P2 = P (tan a + K)/(1 - K tan a). (9)

Eqns: I - 9 can be used to compute the displacements of the system
during loading and unloading.

Numerical Examples

The computations were performed for the system of glass cylinders (E=62.27
GPa, v,=0.2466); the cylinder radius was 0.0375 mm. These parameters were
used by Marion (1990) in his experiments conducted on glass beads. Friction
coefficient, initial confining pressure (P,) and initial geometry of the system
were changed in our computational experiments to find the influence of these
parameters on the elastic constants.
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Four Cylinders System - Uniaxial Deformation

The stress-strain relationship for the four cylinders system during loading
and unloading is presented in Fig. 5. In this case the initial parameters
values were the following: a = 570, r = 0.3, P, = 0. The initial value of
angle a was about its upper limit of 600. A vertical stress a was calculated
as a ratio of the vertical force P to the width of the system. A displacement

was found as the ratio of a vertical displacement and the initial vertical
size of the system.

The stress-strain curve presented in Fig. 5 is similar to the theoretical
curves obtained for the uniaxial strain loading of spheres in a face-centered
cubic array, and the results of experiments performed on Ottawa sand (Stoll,
1989). The hysteresis effect appears due to the change of friction force
direction at the contact area between adjacent cylinders. The initial pattern
of the system deformation under loading condition is elastic. After sliding
begins the system deforms plastically with the angle a increasing. In the
beginning stage of unloading the upper cylinder is stuck between the side
cylinders and the system deforms elastically. Ultimately, when sliding in the
upward direction begins, the system deforms plastically.

The relationship between modulus M and vertical stress a is presented
in Fig. 6 for the case a = 57, Pc = 0.3 for two different values of the initial
confining pressure: 0 and 10 MPa. The curve A corresponds to the curve in
Fig. 5. Vertical lines connecting the bottom and top branches of the curve
A represent the change of M when unloading is initiated at certain points
of loading path and the system deforms elastically. These increased values
of M are very close to those computed during the monotonous unloading of
the four cylinders system (the top branch of the curve A). The difference
between the bottom and the top branches of the curve A corresponds to a
difference between "static" and "dynamic" elastic moduli of a grain material.
In this example the ratio of the "dynamic" M to the "static" one has the
order of 5.

The curve B in Fig. 6 corresponds to the case when the initial confining
pressure is 10 MPa. The system becomes less compliant than in the case
when P, = 0. The last part of the unloading path (the top branch of the
curve B) is close to an elastic pattern unlike the last part of the curve A
when intensive plastic deformation occurs.

The computational uniaxial compression experiments were conducted on
the four cylinders system for different angles a, friction coefficients i and
initial confining pressure P.
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The loading-unloading curves for a = 570, P, = 0 and r. - 0.6 and 1.2
are given in Fig. 7.

The increase of the friction coefficient r results in increased "static"
modulus (curve B, the bottom branch) and decreased "dynamic" modulus
(curve B, the top branch). The latter effect is not as strong as the former
one. The origin of observed difference between two unloading paths (curves
A and B, the top branches) is the loading history.

The case of a = 450 and P, = 0 is presented in Fig. 8. The values
of friction coefficient were 0.6, 0.9, and 1.2. In the last case the system
deformed elastically without a difference between loading and unloading
patterns (curve C). Loading curves correspond to plastic deformation in the
cases when ic = 0.6, and K = 0.9. The "static" modulus M increases with
increasing x.

For a = 300 (the lower limit of this parameter) the system deforms
elastically when the friction coefficient K is as small as 0.6 (curve B, Fig.
9). The system deforms elastically even at K = 0.3 provided that initial
confining pressure is applied (curve C, Fig. 9).

If K = 0.3 and P, = 0 the system shows plastic behavior when loaded
(the bottom branch of curve A, Fig. 9). The "dynamic" moduli calculated
along the loading path are very close to those obtained from the elastic
unloading path (the top branch of curve A, Fig. 9).

The above examples indicate the increasing stiffness of the system when
angle a decreases. The difference between the "static" modulus (M.) and
the "dynamic" one (Md) also decreases , so that the ratio Md/M, decreases
from the order of 5 for a = 570 to the order of 1.5 for a = 300.

The change of angle a along the plastic deformation curves is very small
and has the order of 0.50.

Four Cylinders System - Bulk Modulus

To calculate a bulk modulus K of the four cylinders system we apply equal
vertical and horizontal forces: P = P2. Making use of this condition and
Eqns. 6 we arrive at the following expression for the ratio of tangential to
normal force at the contact zone:

T tana - 1
JV tan a+ 1

This relation gives the following range of TIN variation when angle a
changes between 300 and 600: -0.268 < TIN < 0.268. The realistic values
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of friction coefficient . do not fall into this interval. Thus, the deformation
of the system when equal vertical and horizontal forces are applied, follows
an elastic pattern.

The relationships between the bulk modulus K and confining pressure P,
for different a are presented in Fig. 10. The values of K increase significantly
when a decreases.

Reducing System's Stiffness

To reduce the stiffness of four cylinders system we assume that it is sur-
rounded by rows of identical cylinders with zero displacements of the right
and left external points (Fig. 11).

The results of uniaxial strain experiments for such a system are presented
in Fig. 12. In this case the four cylinders system was surrounded by twelve
cylinders on both sides. The values of angle a and friction coefficient were
the following: a = 450, i = 0.6.

The reduced stiffness of the system strongly affects the "static" modulus
M (the loading curve, Fig. 12). The reduction of this parameter has the
order of 5 for the example under consideration.

Discussion

Making use of an exact analytical solution for the plane deformation of an
elastic cylinder and conducting computational experiments on the simple
combinations of cylinders we observed the difference between "static" and
"dynamic" elastic moduli for grain material. This approach allows the em-
ployment of more complicated and realistic combinations of cylinders for
modeling granular material.

The simplest approach to model a granular aggregate is to combine four-
grain units with different friction coefficients and initial configurations in
rows and columns. The distribution of mentioned parameters will depend
on actual properties of unconsolidated rocks. The numerical experiments
conducted on such models result in relationships similar to those presented
in Figs. 5 - 10. The values of elastic moduli for the aggregates are equal to
weighted averages of these parameters for single four-grain units.

Conclusions

Considering the system of four elastic cylinders interacting with friction we
discover the difference between "static" and "dynamic" elastic moduli when
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slippage occurs.
The "static" modulus of the system depends strongly on initial configu-

ration, friction coefficient and confining pressure. The "dynamic" modulus
depends mainly on initial configuration and confining pressure.

The system's stiffness can be significantly reduced due to mild boundary
conditions (four cylinders surrounded by rows of cylinders).

The elastic properties of aggregates of four-grain units having different
initial configurations and friction coefficients are similar to those of single
units. The values of elastic moduli are equal to weighted averages of these
moduli for four-grain units.
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The Mechanics of Hollow Grains

Abstract

We develop a theory of the two-dimensional deformation of hollow grains
under external loading, modeling them as cylindrical shells of a closed cross-
section. This theory allows us to describe the deformation of arbitrarily-
shaped grains with walls of varying thickness, and external and internal
fractures. Fractures dramatically reduce the stiffness of the grains and may
result in the collapse and compaction of hollow grains under lithostatic pres-
sure. Calculating the normal and shear stiffness of hollow grains, one will
be able to determine effective elastic properties of their aggregate using the
expressions developed for a random packing of spheres. The theory pre-
sented in this paper can be directly applied to estimating the acoustical and
mechanical properties of basaltic pillows and pelagic sediments.

Introduction

The acoustic and mechanical characteristics of oceanic crust and seabottom
sediments may be strongly affected by the properties of individual grains
that compose the material. Almost all theoretical models for the deforma-
tion of a granular material treat an individual grain as an elastic element
without voids, typically as a disk (2D) or a sphere (3D). Recently, Bruno
and Nelson (1990) examined the effect of intergranular microfractures on the
inelastic behavior of sedimentary rock. The deformation of the aggregate
of arbitrarily-shaped grains can, in principle, be modeled using the numer-
ical simulation of the deformation of an individual grain combined with a
numerical model for granular assemblies (Cundall and Strack, 1979).

However, there are at least two cases where grains with interior voids
have to be considered: (1) basaltic pillows that are present in the oceanic
crust, and (2) pelagic sediments formed by hollow shells. In this paper we
concentrate on the theoretical description of the deformation of a hollow



arbitrarily-shaped grain under given loading. We model a grain as a cylin-
drical shell of arbitrarily-shaped middle surface and varying thickness. This
approach allows us to introduce external and internal cracks in the walls of
the grain as well as to examine the effect of differently-shaped internal holes.
The problem is reduced to a system of ordinary differential equations that
requires numerical solution. We show how the shape and fracturing affect
the stiffness of grains.

This is a two-dimensional theoretical approach, but it can quantitatively
predict the characteristics of elongated basaltic pillows, and can give quali-
tative estimates of behavior of topologically complicated pelagic sediments.

Deformation of Cylindrical Shells

In this section we derive a general theory for the 2-D deformation of cylindri-
cal shells using assumptions common for the theory of thin shells. Typically,
a shell is considered to be thin if the ratio of its thickness 2h to the radius of
curvature of its middle surface R is less than .05. This condition guarantees
the accuracy of results within a 5% range. However, the theory of thin shells
can be also applied (with decreased accuracy) for thick shells with the ratio
2h/R having the magnitude up to 1/3 (Grigoluk and Kabanov, 1978). Thus
the theory of deformation of hollow gxains based on the theory of shells is
accurate enough to quantitatively estimate the acoustical and mechanical
properties of basaltic pillows and pelagic sediments.

Displacements and Forces in Cylindrical Shells

To examine the 2-D deformation of an infinitely long cylindrical shell (Fig.
IA), we introduce a local cylindrical coordinate system (6, r) in the normal
cross-section of the shell (Fig. 1B). The center of the (0, r) coordinate system
is placed in the local center of curvature of the middle surface of the shell.
We also introduce a local rectangular coordinate system (z, z) with the origin
in the middle surface of the shell, the z axis tangent to this surface, and the
z axis directed along the radius of curvature. These two coordinate systems
are related to each other as:

z=R; z=r-R. (1)

The displacements of the shell are fi(x,z) in the z direction and e(z, z)
in the z direction. We assume the following form of functional dependence
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of these displacements on the z and y arguments:

f(x,z) = U(z) + zO)z); CO(z,z) = w*(X). (2)

This assumption implies that a straight fiber initially perpendicular to the
middle surface keeps its straight shape after deformation and tilts at angle
0 to its initial direction (Fig. 2A), and the thickness of the shell does not
change.

We examine the case of a plane deformation of the shell: ey = 0, where
eyy is a normal deformation in the y direction perpendicular to the plane of
deformation. This condition and Hook's law yield:

a v 0 77 + 0'0 = 0, (3)
T E

where E is Young's modulus; v is Poisson's ratio; aoy, ar and aea are
components of a stress tensor in the shell.

Commonly, in the theory of plates and shells it is assumed that the nor-
mal stress in the direction perpendicular to the middle surface is small com-
pared to the other normal stresses (Timoshenko and Woinowsky-Krieger,
1959): ar, + a00 ; aee. This assumption and (3) yield:

VoY = V08. (4)

Using (4) and Hook's law we arrive at the following relations between
the components of the stress and deformation tensors:

E E
- eee; O.. = (5)ae= 1 - Ge (5)

The components of the deformation tensor can be related to the dis-
placements fi and fi, and functions uO, wO and 4 in the (6, r) cylindrical
coordinate system as:

1 8i ~ 1lOu0  84)

2ee =1 W +1 fi 18w, u0  
_ 4z80 0 r r5- r r

Using (3) and assuming that r f R in the shell, we transform these
equations to:

Ou0  8 t °  Ow° u9 0z
Ox = R R (6)
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We introduce integral normal N and shear Q forces in the shell, and

bending moment M (Fig. 2B) created by normal stresses as:

hh hN J- j uedz; Q L or).gdz; M f cr ug9zdz. (7)

Using these definitions and relations (5) and (6), we express the integral
forces and the bending moment through functions u*, w0 and 0:

Eh (!wO + u . N = 2Eh 0Ou ° + 2Eh3 8.(
imo1+ rat tO mn M = 3(1 - v2)0 z (8)

It is important to mention that the x coordinate can be continuously
counted along the middle surface of the shell by varying z between 0 and L,where L is the shell's perimeter. This approach will not change the above-

derived formulas as they include only the differential dx. Parameters R and
h have to be considered as functions of z.

Equations of Shell's Deformation

The equations for the deformation of the shell under external forces will be
derived from the equations of static elasticity:

8(ra,,) +are
o 0 0; (9)

Or + ~+areo (10)
ar 08

Integrating (9) from -h to h in the z direction and using (1) and (7) we
have:

R(a,,- 1 -h) + RL- - N = 0,

or OQ _ N

Ox R(z) = -F(z), (11)
where F(z) = ardh - arrl-h is the difference between external and internal
normal tractions acting on the shell.

Integrating (10) from -h to h in the z direction and using (1) and (7)
we have: aR(reh - rel-h) + R + Q = 0,
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or ON Q 
(12O R -- -T(x), (12)

where T(x) = oaleh - orelI-h is the difference between external and internal
shear tractions acting on the shell.

Multiplying (10) by z and integrating from -h to h in the z direction
and using (1) and (7) we have:

rO O'ee OM h Oo,.e
h r + -8-" + 2r)zdz -+ h (R + zz--adz.

The last integral in this equation is:

h h

(R + z)zoaeIh- h (R+ 2z)oredz sz -RQ + (R+ h)har0Ih + (R- h)ha-9Ih.

Using these formulas we arrive at the equation that includes the bending
moment M: OM

- Q = $(z),(13)

where S(z) = (1 + h/R)ho'rolh +(1 - h/R)hreI-h is the ratio of the moment
due to external and internal shear tractions to the local radius of curvature.

Substituting (8) into equations (11)-(13) we arrive at the following equa-
tions in terms of displacements:

w h+WL-uo 3-v 2wu uO R, h.+ h, F(1 +v)h=+=.--u R(1 - v) t-=(1 - v)R 2  R- R h') T Eh--

o 3 - v 0 w° R _ h ,) _ u°(1- v) (14)
UZ 2R x h ,( h 2R 2

0(1-v) = T(1-v 2 )

2R 2Eh
0 = w3(1"2-v) '3z +°3(1- v) 3(1 -s)= 3S(1I- V 2 )

h4XX - W: 2h 2RhO.+u-_ h 462h 2 Eh2

Subscripts "x" and "xx" in these equations indicate partial derivatives from
functions u*, w* and 0.

We introduce normalized variables u, to and as:

to0 = Lw; uo = Lu; x = Le.
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Substituting these formulas into (14) we have:

wa + a( )wt - uo'() - + O - w + uc()b(C) + Oa(C) = -f

utf + a(C)ut + w c()3  V- - ()b(() 2(C )
2 2 ~ (5

-00lV) =_402 -

S+ 3a(C)C - w(3(1 - v) + 3(1 - v) ()u - 3(1-)-W 2(t) + 20 ()" Wc(t)  80

where

a(C) = d( h); b( )=d(ln R) = -- ); E(f)

SF()(I + ()L 4,= T()(1 _ V2)L 3 S()(1 - V2)L 2

Eh() ; - 2Eh() 2 Eh 3 (C)

This system of -,:dinary differential equations of the second order can be
solved with the following boundary conditions:

w(O) = u(O) =()= W() = U(1) = 0(i) = 0. (16)

Conditions (16) express the requirement of continuity of displacements along
a shell of a closed cross-section. In addition, we fix the displacements at the
origin of the x coordinate system setting them equal to zero. This is a usual
condition of fixing a point in an elastic body in order to predefine its rigid
translation.

Equations (15) with boundary conditions (16) allow us to find the dis-
placement of the shell in the x coordinate system. The x coordinate is
counted along the cross-section of the middle surfare of the shell; the direc-
tion of the displacement depends on the local geometry of the middle surface
as w is perpendicular to the middle surface and u is tangent to it.

The Shape of the Shell

In order to relate the displacements of the shell in the z coordinate system
to its geometrical configuration, we introduce a reference rectangular coor-
dinate system (zo, yo) in the plane of deformation (Fig. 3). The geometry of
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the middle surface of the shell can be given in the (zo, yo) coordinate system
in a parametric form:

Z = Xo(T), Yo = Yo(N), (17)

where parameter r spans an interval 0 < r < T. This parameter can be
chosen, for example, as a central angle a changing between 0 and 27r.

The length L and the local curvature radius R(r) can be found as:

L =j C 2dr; R((r) = _o -3oo18)

The local coordinate x is related to the parametric equations (17) as:

' V + j / dr. (19)

Normalized coordinate = z/L is calculated using (18) and (19).
The process of calculating the deformation of a shell under a given load-

ing includes the numerical solution of equations (15) with boundary condi-
tions (16), and consequent calculation of the shape of the shell after defor-
mation in a reference coordinate system (zo, iyo). The latter procedure has
simple numerical implementation based on the fact that displacement u is
tangent to the middle surface of the shell and w is normal to this surface.

Numerical Examples

In this section we give two numerical examples considering: (1) the de-
formation of a circular hollow grain with and without cracks; and (2) the
deformation of an elliptical hollow grain. In both cases grains deform due
to compression along the vertical axis. The magnitudes of acting forces are
highly exaggerated in order to make the deformation visible in the plots pre-
sented below. In reality, the forces of such magnitudes will result in plastic
yield of grains.

Circular Grain

We examine the deformation of a circular hollow grain with and without
radial cracks (Fig. 4) due to compression along the vertical direction. Two
radial fractures dramatically reduce the stiffness of the grain (Fig. 5). This
effect may be used to explain the existence of the shallow low velocity zones
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in pillow basalts. The closure of cracks due to confining pressure increasing
with depth will result in a sharp stiffness, and seismic velocity increase.

Normal (w) and tangential (u) displacements along the surface of the
circular hollow grains are plotted in Fig. 6. Displacements in the fractured
grain (curves a and c) are significantly larger than in the grain without
cracks (curves b and d).

Elliptical Grain

Computations show that the stiffness of an unfractured elliptical hollow
grain (Fig. 7) in the vertical direction is close to the stiffness of an un-
fractured circular grain. However the stiffness of the elliptical grain in the
horizontal direction is more than twice its vertical stiffness. The deformed
shape of the vertically loaded elliptical grain (a) is compared to its initial
shape (b) in Fig. 8.

Conclusions

We presented a theory of the two-dimensional deformation of hollow grains
under external loading, modeling them as cylindrical shells of a closed cross-
section. This theory allows us to describe the deformation of arbitrarily-
shaped grains with walls of varying thickness, and external and internal
fractures. Fractures dramatically reduce the stiffness of the grains. This
fact may be used to explain the existence of the shallow low velocity zones
in pillow basalts. The closure of cracks due to confining pressure increas-
ing with depth will result in a sharp stiffness, and seismic velocity increase.
The theory presented in this paper can be directly applied to estimating
the acoustical and mechanical properties of basaltic pillows and pelagic sed-
iments.
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Figure 4: Circular hollow grain with two radial cracks.
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displacement w in the fractured (a) and unfractured (b) grain; displacement
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Pillow Basalts Compaction due to Grain
Collapse

Abstract

A possible mode of compaction of pillow basalts and pelagic sediments (both
formed by hollow grains) is by the collapsing of the grains due to increas-
ing confining pressure. We derive simple criteria for the collapse of 2-D
thick-walled, and thin-walled circular grains subject to external and inter-
nal pressure.

Introd uction

Assuming that the compaction of pillow basats and pelagic sediments may
occur as the collapse of hollow grains that form those rocks, we derive simple
criteria for the compaction due to increasing confining pressure.

We examine the deformation of a 2-D thick-walled cylinder due to in-
ternal and external pressure. To find the criterion of the collapse of such
a cylinder we employ the solution for the elasto-plastic deformation of a
thick-walled tube. The collapse occurs if the entire cylinder is in the mode
of plastic deformation. In this solution we use the Mises plastic criterion.

In addition we give simple formulas for the collapse of a thin-walled
cylindrical tube (shell).

These formulas can be used for estimating the depth of transition from
low-velocity to high-velocity zones in the ocean bottom rocks. This transi-
tion is presumably connected with the compaction of hollow grains.

Deformation and Collapse of a Thick-Walled Shell

In this section we follow the solution for the elasto-plastic deformation of a
thick-walled tube (e.g. Godfrey, 1969).

The equation of balance of a thick-walled tube subjected to the internal
pressure PI and external pressure P2 (Fig. 1) in the cylindrical coordinate



system (r,0) is:
dO-rr a- rr

dr r

where age and arr are normal stresses. Equation (1) holds both for plastic
and for elastic zones of the tube.

The solution of (1) with the boundary conditions ar = P at r = a and
a,, = P2 at r = b for the elastic deformation of the tube is:

P1 a2 - P2b2  a2b2(P 2 -P) 1
V o b a2  V -a 2  r2' (2)

P=a 2 - P2b2  a2b2(P2 -P) 1
S = a2 b2 - a2  r2 (3)

where a is the internal and b is the external radius of the tube.
The Mises plasticity condition in the cylindrical coordinate system is:

F = ,r - oeI = 2k, (4)

where k is the plastic limit under pure shear conditions, and k = a0[vf,
where a0 is the plastic limit under pure tension.

Substituting (2) and (3) into (4) we find that if P2 > P

F -2a 2b2(p 2 - P) 1
b - a2  r2 '

The function F increases with decreasing r. This means that the plasticity
zone will be initiated at the internal surface of the tube if F = 2k, or

P A k(b 2 - a2 )

b2

As the difference between P2 and P1 increases, the plastic zone propa-
gates through the tube towards its outer surface. The whole tube will be in
the plastic state if the plastic zone reaches the external radius b.

Substituting (4) into (1) we find that in the plastic zone

do', _2k=e7  2k- (5)
dr r

Solving (5) with the boundary condition a,. = -P, at r = a we find

r
Uor =-2kIn -- A1  (6)

a
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The plastic zone reaches r = b if ar = -P 2 at r = b. Substituting this
condition into (6) we find that this happens if

P2 - P1 = 2kln-.b (7)
a

Criterion (7) can be used for estimating the confining pressure causing
the collapse of a hollow grain.

Given k= 2- 10 Pa and b/a=1.1, we find that collapse will occur at the
differential pressure P2 - P1=380 bar.

Collapse of a Thin-Walled Shell

Normal stress acting parallel to the surfaces of a thin-walled cylindrical shell
under differential pressure P can be easily found as:

PR
T

where R is the radius and h is the thickness of the shell (see "The Mechanics
of Hollow Grains").

Thus the shell collapses if

P = aoh= .rk (8)h h,

Criterion (8) is slightly different from (7). The latter has the following
approximate expression as a approaches b:

P = 2k In(b/a) ;, 2k(b - a)/a = 2kh/a.

This difference is due to the thin shells theory approximations.

Conclusions

Assuming that the compaction of pillow basalts and pelagic sediments (both
formed by hollow grains) is the result of the collapse of the grains due to
increasing confining pressure, we derived simple criteria for the collapse of
2-D thick-walled, and thin-walled circular grains. These criteria can be used
for estimating the depth of transition between the low-velocity and the high
velocity zones.
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Elastic zone

Figure 1 Elasto-plastic deformation of a tlhick-ivJ~ed shel..



Modeling the Seismic Properties of Shallow Oceanic 1. 1991 Fall meeting
Crust: Effects of Extrusive Morphology on Seismic
Velocity 2. 000253806

D. Moos, J. Dvorkin, (both at: Dept. of Geophysics, Stanford U., 3. (a) D. Moos
Stanford, CA 94305: 415 723-3464) Department of Geophysics

Stanford University
Recent seismic data indicate that seismic velocities at the top of very Stanford, CA 94305

young Oceanic Layer 2 basalts are Vp02.5 km/s and Vs = 0.6-0.8
km/s. The low velocity zones (LVZ's) are less than 200 m thick and (b) Tel: 415-723-3464
have velocities that are either independent of depth or increase very
slowly. Some results suggest that these zones are absent at ridge (c) Fax: 415-725-7344
crests, increasing in thickness with crustal age. We present here a
series of micromechanical models to explain these results in terms of 4. T
the observed characteristics of the dominant morphologies of
extrusive basalts. The principle result of these exercises is that there 5. a. T0)4 Oceanic Crustal
is no simple relationship between seismic velocities and porosity. Evolution

b. 3025
These models rely on the concept of pillow basalts and basalt 5129

breccias as granular aggregates of unit elements. The velocity of c.
these aggregates is dependent on the stiffness of the elements and of
their contacts. This approach contrasts with effective medium 6.
theories, which explain velocity variations by adding to a
homogeneous solid material a set of isolated cracks with a well- 7. 0%
defined porosity and distribution of aspect ratios. Early results to
calculate velocity variations by varying the radius of contact of 8. $50.00 charge to
pillows modeled as solid spherical elements provided a good fit to the
velocity data. We present here an extension of the model in which
pillow tubes are approximated as thin-walled cylinders. The model
can accommodate arbitrary pillow cross sections, and can include 9. I
radial (cooling) cracks. Depending on wall thickness and the number
of cracks, pillow tubes modelled in this way can have very small 10. none
stiffnesses, resulting in seismic velocities for aggregates composed
of these elements that are quite small. An increase in contact pressure 11. No
accompanying burial has very little effect on the properties of these
tubes; however, when the pressure exceeds the strength of the
cylinders, they will collapse. At depths corresponding to the collapse
pressure, a rapid increase in velocity may result. The results agree
qualitatively with seismic data. Coupled with earlier attempts to
model contact stiffnesses of pillows, these results extend our efforts
to understand the velocity structure of the shallow oceanic crust in
terms of the properties of the dominant morphological types.



Anisotropic Poroelasticity and Biot's
Parameters

Abstract

Prediction of wave propagation in a submarine environment requires mod-
elling the acoustic response of ocean bottom sediments which generally con-
sists of porous granular materials partially or wholly saturated with water.
The effect of anisotropy has to be incorporated into the model in order to
simulate more realistic responses.

Following Biot's theory, we present a formulation for seismic wave ve-
locities in a general anisotropic poroelastic medium. We also identify the
ansotropic parameters that need to be evaluated or measured for the pur-
pose of estimating the velocities.

Introduction

Poroelasticity or the mechanics of porous media is of fundamental impor-
tance in a variety of fields and has received a great deal of attention in
recent times. It is believed to play a major role in rock failure phenom-
ena and triggerring of natural and induced seismicity; in proper selection of
underground waste disposal sites; enhanced oil recovery; and in underwa-
ter acoustics involving wave propagation in water saturated porous marine
sediments of the ocean bottom.

Fluid saturation affects the acoustic properties of porous media by tend-
ing to stiffen them in comprepsion and to either stiffen or soften them in
shear. The effects depend in complicated ways on the geometry and stiff-
ness of the pore space, the stiffness and viscosity of the fluid, the density of
all components and the frequency of wave propagation.

The more complex the internal structure and constituents of the rocks,
the greater is the number of parameters needed to characterize its proper-
ties. For the most simple case of isotropic, elastic, non-porous solid only two



independent parameters are needed; four parameters are necessary to char-
acterize an isotropic porous medium while for anisotropic porous media the
number increases depending upon the symmetry class of the anisotropy with
28 independent parameters being required for the most general anisotropic
poroelastic medium.

Much of our understanding of saturation effects and poroelastic phe-
nomena has been based on the formulations of Biot (1-6) whose equations
have formed the basis for solving particular problems in poroelasticity and
has long been regarded as a sort of standard. A great deal of the literature
pertinent to the study of sediment acoustics (e.g. 7-10) has however focused
on the isotropic aspects of Biot's theory and there has been a general lack of
using the corresponding anisotropic theory for realistic granular sediments
and rocks. We have begun to extend these descriptions to anisotropic porous
solids starting with the anisotropic constitutive equations presented by Biot.

Biot's Theory

Biot's theory is a promising approach for modelling acoustic wave propa-
gation in ocean sediments which generally consist of elastic or viscoelastic
porous granular materials saturated with water. It is a phenomenological
theory with no restrictions being made a priori regarding the geometry and
shape of cracks and pores. The fluid constituent is modelled as an inter-
connected compressible continuum within the porous solid matrix, each of
them capable of having independent motions. Biot considered both low and
high frequency limits in his analysis of propagation of harmonic waves in
an unbounded fluid-saturated porous elastic medium and predicted the ex-
istence of three kinds of body waves: two compressional or dilational and
one rotational. The two distinct types of compressional waves are called the
fast and slow waves or P-waves of the first and second kind.

The P-waves of the first kind are similar to those observed in ordinary
elastic media and is characterized by high phase velocity, small dispersion
and low attenuation due to the fact that the motions of the porous frame and
the fluid are nearly in phase and hence viscous losses are relatively small. On
the other hand, compressional waves of the second kind are diffusive waves,
have low phase velocities, large dispersion and are highly attenuated with
the frame and fluid components moving largely out of phase. In general it is
quite difficult to observe the slow wave in real situations, but the cumulative
effect of energy conversion from fast to slow waves at interfaces between
dissimilar porous media and between a fluid and a porous medium (e.g.
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ocean bottom) is quite significant and leads to considerable dissipation of
the fast P-wave.

Anisotropic Poroelasticity: Derivations

In this section we present a formulation for estimating seismic velocities in
general anisotropic porous solids. Following Biot's theory (5), the constitu-
tive equations for poroelasticity in the most general case of anisotropy may
be written as (summation convention implied):

9i = Ciklekl + Mi'( (1)

P1 = Mje;, + MC (2)

where ai is the stress tensor, eki is the strain tensor, pi the fluid pressure,
Cijkl, Mij and M are material constants, C represents the increment of fluid
content and is given by

C=-V.w (3)

where
w =q(U- u) (4)

Here U is the average fluid displacement vector, u the displacement of the
solid matrix and 0 the porosity.

The equations of motions governing wave propagation are (5):

Ckkekl, + Mi.(,, = pI + p!t i (5)

- Mjel - MCj = pj iii + mnji .+ bijwj (6)

or
Cejklt .k. - Mi.w,,j = Pi, + pif),i (7)

- Af,,juia + MwZ = pji-E + Lij(w.) (8)

where p = (I - O)p, + 4pf , p. and pJ being the solid and fluid density
respectively. rnij and bi, are the anisotropic virtual mass and drag coeffi-
cients, together forming the viscodynamic operator L,.. These six equations
for the unknown vector components ui and w, govern the propagation of
waves in general anisotropic porous media.

First consider the high frequency limit which is the same as the case of
an inviscid fluid since for large frequencies the phase velocity with viscous
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dissipation tends towards that for inviscid fluid. In this limit the term
in the first derivative of wi may be dropped from the second of the two
equations of motions. Take plane wave solutions of the form ui = Aif(T) and
Wi = Bif(r) where r = t- nizi/V, ni are the components of the unit vector
along the direction of propagation and V the phase velocity. Substituting
this into equations (7) and (8) after dropping the viscous dissipation term
we get:

CijktninkA - MiinkniBk = pV 2Ai + pfV 2Bi (9)
- MijninAj + MnknlBk = pjV 2Al + mnjV 2Bj (10)

These formulas can be written as:

rjjAj - VikBk = pV 2Ai + pjV 2Bj (11)

- 7jA 3 + OkLBk = prV2 Al + mnjV 2 Bj (12)

where ri, = Cijkmnjnk is the Christoffel tensor (e.g. 11, 12), 'Yik = Mijnjnk
and 0k! = Mfnknj. Solving equation (12) for B gives:

B = ('yjj + PfV2)D-1 A (13)

with Dil = ,1 - mIV 2. Substituting this in equation (11) we get

rLA - (vjs + pjV 2 )2 (0,1 - miV2 )-'Ai = pV 2 Ai (14)

This can be written in the form of Christoffel's equation as

(f-, p17,2 b.) Al = 0 (15)

where hii is the Poroelastic Christoffel Tensor given by:

fit = ri, - (vjj + pf V 2 ) 2 (,1 - MiV 2 ) - 1  (16)

The roots of the determinantal equation

IF,, pV~j.1 I 0 (17)
give the velocities (or eigenvalues) corresponding to the At-eigenvectors.
Now if we solve equation (12) for A we get

A4 = (G Mi V )E (18)
('y,, + p1 VI)
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which on substituting back in equation (11) gives

- pv2jk) Bk = 0 (19)

where w;k (rij - pv2)(8,i - m,kV 2 ) - ik (20)
-f,, + pfV 2

Here again the determinantal equation

1..k- _1 pV2 6,kI 0 (21)

gives the eigenvalues corresponding to the Bk-eigenvectors.
Considering two limiting cases: one when ( = -divw = 0, the equations

of motion reduce to:

CijkuI,kj = P6il (22)

MijUj, = -pJiUi (23)

Again substituting plane wave solutions of the form ui = Aif(t-nix/V)
we get:

(ri - pV2&j)AI = 0 (24)

,tiA. = -pV 2 Aj (25)

Solving these gives an initial value for V 2 which can be used in equations
(16) and (17).

Another limiting case is when p1 = 0. Now we get

riAt - yikBk = p/ 2 A + pIV 2Bi (26)

pjAl + mijBa = 0 (27)

These two equations ultimately give

(fr- pV2&,1) Al = 0 (28)
with

= r + ('y, -+ p1 V 2)p! (29)

So far the derivation was without fluid viscosity which is appropriate
for the high frequency limit. Now taking into account fiuid viscosity i/
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and again substituting plane wave solutions in the equations of motions we
get a frequency-velocity (w - V) relationship expressed in the form of a
determinant as:

SPV2 ij - ij pV2 i,Tj -I_ 0

pyV2&j + j WV 2m 1 - i,1V 2 bij - wej
(30)

Each term is a 3 x 3 determinant making the whole a 6 x 6 one. In the
above, the solid skeleton is considered to be perfectly elastic and dissipation
is only due to fluid viscosity.

Biot's Parameters

The basic parameters of Biot's theory can be divided into two categories: the
passive constants ( Cikt, Mij, M ) which depend on the stiffnesses and bulk
modulus of the solid and fluid components, their densities and the porosity
and a second category ( Lij - the viscodynamic operator ) which includes a
number of interrelated parameters dependent on the relative motion of the
fluid with respect to the skeletal frame. The viscodynamnic operator involves
the first and second derivative with respect to time of the variable wi.

82 8
Lij = ( + bij.) (31)

The coefficients m, and bj depend on the fabric or microstructure of
the constituents and the wave frequency.

The fundamental problems associated with the application of these equa-
tions to wave propagation consists of determination of the various moduli
and coefficients in terms of the solid, fluid and porous media properties and
comparision with suitable experimental data. Perhaps a better understand-
ing of the parameters may be obtained by considering wave propagation in
isotropic porous media. Then the equations of motion simplify to (5):

Auijj + (H - ,)ej,j - CCi = pil. + p ti', (32)

Cejj, - MCi = pjla + mi3 + bWi, (33)

It has been shown (13, 14) that the coefficients H, C, M and # can
be expressed in terms of the porosity, the properties of the fluid and solid
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constituents and the elastic moduli of the dry porous medium. The results
can be written as (15):

M = K./[1 - Kb/IK. + 4(K./K 1 - 1)] (34)

C = (1 - KbIK.)M (35)

H = (1 - Kb/K.)C + Kb + (4/3)IL (36)

where K1 is the bulk modulus of the fluid, K. that of the solid and Kb and
p are the bulk and shear moduli of the dry porous medium, also known as
the skeletal frame moduli.

In a few cases these coefficients or some equivalent parameter have been
determined for porous material by carrying out jacketed and unjacketed
hydrostatic compression tests and shear tests (16, 17, 18). It has been
suggested (19), that the moduli of the skeletal frame Kb and p should be
assumed to be complex to account for viscous effects.

Apart from these constitutive constants the equations of motion for a
fluid saturated permeable solid also has the frequency dependent viscody-
nainic operator L(w,) = mfi . btb+ which contains the inertial drag and
viscous dissipative effects due to the pore fluid motion. The simplest form
for m and b as originally proposed by Biot is b = v/k and m = ap!/0 where
v is the dynamic fluid viscosity, k the permeability for steady state flow and
o is a structure factor for the pore space, This simple form of L is implicitly
a low frequency approximation as it uses the steady state Darcy term plus a
first order inertial correction term. Biot presented a method for evaluating
the drag coefficient by determining the average velocity of liquid in a circu-
lar cylinder subject to an oscillating pressure. A closely related method for
evaluating the drag and virtual mass coefficients for specific pore geometries
has been presented (20) wherein the coefficients are determined by solution
of a boundary value problem for S viscous, compressible fluid in a single pore
of specified shape. Using finite difference or finite element solutions for fluid
displacement it is now feasible to determine (for the isotropic case) the drag
and virtual mass coefficients in Biot's equations as a function of frequency
for more complicated pore gr )metries (21).
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Conclusions

Biot's phenomenological theory for wave propagation in fluid saturated porous
media presents a promising framework for modelling the interaction between
seismic waves impinging on the sea floor and the submarine sediments. Much
work has been done for isotropic porous media. However to simulate more
realistic response the effect of anisotropy has to be taken into account.

We have presented a mathematical formulation based on Biot's anisotropic
constitutive equations for estimating seismic velocities in a general anisotropic
poroelastic medium. Two cases have been considered: that of an inviscid
fluid (which is appropriate for the high frequency limit) and that of a viscous
fluid, which is valid for all frequencies. In order to solve the determinantal
equations for the wave velocities, one needs to know the relevant anisotropic
rock parameters, the poroelastic material constants and the anisotropic vir-
tual mass and drag coefficients which together form the viscodynamic oper-
ator.

While measurements and estimates of Bot parameters (both the mate-
rial constants and the viscodynamic operator) for isotropic material have
been made, the corresponding anisotropic Biot coefficients remain to be
determined and an important obstacle to the comparision of theory with
acoustic measurements in anisotropic porous media still remains.
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