
AD-A243 514 "

PHASE COMPARISON TIME DELAY ESTIMATION USING

WIDEBAND SIGNALS

J. D.. Hatlestad D
EL. O ES EC1919 4

Technical Memorandum
File No. 85-136

31 July 1985

Contract No. N00024-85-C-6041

Copy No. -5

The Pennsylvaina State University
Intercollege Research Programs and Facilities

APPLIED RESERACH LABORATORY

Post Office Box 30

State College, Pa. 16804

NAVY DEPARTMENT

NAVAL SEA SYSTEMS COMMAND

Sf,. 91835 I9

91-18359
l 111 ill Il 1111 lIIIiii illil! H 11 liii



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

85-136
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Phase Comparison Time Delay Estimation Using

Wideband Signals FINAL
6. PERFORMING ORG. REMORT NUMBER

7. AUTHOR(s) 
8. CONTRACT OR GRANT NuMBER(s)

J. D. Hatlestad N00024-85-C-6041

9. P RFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

APPLIED RESEARCH LABORATORY 
AREA & WORK UNIT NUMBERS

The Pennsylvania State University
P.O. Box 30, State College, PA 16804

1I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Sea Systems Command, Code 63R-34 31 July 1985

Department of the Navy 13. NUMBER OF PAGES

Washington, DC 20362 76

14 MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of this report)

1Sa. DECLASSIFICATION DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report)

Approval for public release: distribution unlimited NAVSEA Oct. 1, 1985.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary ad identify by block number)

20. ABSTRACT (Continue on reverse side If necesaery and idonrify hv block number)

A method of phase comparison time delay estimation using large time-band-

width product signals is presented. This method compares the phases of the

matched filters for each channel, and it is shown that for signals with symmetr c

power spectra, a meaningful estimate of time delay can be extracted from this

phase information and knowledge of the carrier frequency of the signal.

The estimator is evaluated while operating in white Gaussian noise which

is in general correlated between channels, and curves are given for the density

FOP"

DD , jAP73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When flata Entere"



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(Then Dots Entered)

function, mean, and variance of the estimator for various noise assumptions.

The estimator is shown to take advantage of the processing gain of large

time-bandwidth product signals to reduce the variance of the time delay

estimate.

SECURITY CLASSIFICATION OF THIS PAGE(Whn Does Entered)



iii

ABSTRACT

A method of phase comparison time delay estimation using large

time-bandwidth product signals is presented. This method compares the

phases of the matched filters for each channel, and it is shown that for

signals with symmetric power spectra, a meaningful estimate of time delay

can be extracted from this phase information and knowledge of the carrier

frequency of the signal.

The estimator is evaluated while operating in white Gaussian noise

which is in general correlated between channels, and curves are given for

the density function, mean, and variance of the estimator for various

noise assumptions. The estimator is shown to take advantage of the

processing gain of large time-bandwidth product signals to reduce the

variance of the time delay estimate.

By ...................

Dirt IDis:t i ,;.,,:'

lt-f i ~.. . ..... ...



iv

TABLE OF CONTENTS

Page

ABSTRACT . . . . .......................... ii

LIST OF TABLES . . . . . . ............ . . . . . . .. v

LIST OF FIGURES . . . . . .............. . . . . .. vi

ACKNOWLEDGEMENTS . . . . . . . . ........ . . . . . .. . vii

CHAPTER

I. INTRODUCTION . . . . . .................... I

II. RECEIVER STRUCTURE .......... .................... 3

III. UNCORRELATED NOISE. . ................... 11

IV. CORRELATED NOISE ........ ..................... . 26

V. EFFECT OF T-s MISMATCH .................. 49

VI. SUMMARY AND CONCLUSIONS......... . . . . . . . . 60

APPENDIX A: CORRELATED NOISE MODEL .... ............... . 62

APPENDIX B: CHANGE IN CORRELATED PROPERTIES DUE TO
COMPLEX MULTIPLICATION . . . . . .......... 64

APPENDIX C: FORTRAN SOURCE CODE FOR PHASE

BIAS OF REAL-ENVELOPE SIGNALS ............... . . 66

BIBLIOGRAPHY . . . . . . . . . . .................. . 68



v

LIST OF TABLES

Table Page

3-1. Theoretical Versus Sample Means and Variance . . . ... 25

5-1. Phase Bias for Real Envelope Signal ... ........... . 55



vi

LIST OF FIGURES

Figure Page

2-1 Receiver Structure.......................................... 4

3-1 Probability Density of Estimator for Uncorrelated Noise,
Nh=1,2,5,1O ..................................... 19

3-2 Probability Density of estimator for Uncorrelated Noise, -

Nh=1O,20,50,100 .....o.......o..... ....o........o.....oo....... .. 20

3-3 Variance of Estimator for Uncorrelated Noise. o..........21

3-4 Ambiguity Function for Signal Used in Example...... ..... 24

4-1 Probability Density of Estimator, p=.67, X=.67, o=0 . . . . . .. .36

4-2 Mean Density of Estimator, p=,67, X=.67, o=0 . . . . . . .. . . . . ... 37

4-3 Variance Density of Estimator, p=.67, X=.67, o=0 . .. . . . . . .. . 38

4-4 Probability Density of Estimator, p=O, X=.9, *o=0 . . . . ..o. . .. . 39

4-5 Mean Density of Estimator, p=O, X=.9, *o=O.................40

4-6 Variance Density of Estimator, p=O, X~=.9, 00=0 ........ .... 41

4-7 Probability Density of Estimator, p=.67, X=.67, 0=0.. ...... 42

4-8 Mean Density of Estimator, p=.37, X=.67, 0=O...............43

4-9 Variance Density of Estimator, p=.67, X=.67, o=0. . . . . .. . .. . 44

4-10 Probability Density of Estimator, p=.9, X=,0=0-...........45

4-11 Mean Density of Estimator, p=.9, X=,=0' o . .. ... . .. . . . . .. . . . 46

4-12 Variance Density of Estimator, P=.9, X= 0 =oo=0. 47



vii

ACKNOWLEDGEMENTS

I would like to thank my committee members for their helpful

criticisms and suggestions regarding this work. In particular, I would

like to thank Dr. Dennis W. Ricker for originally suggesting my thesis

topic, and for providing continued support throughout the research and

writing periods. I would also like to thank Michael Matuson and

John Sacha for their help in working out some of the details, and David

Drumheller for his help in designing the signal used in the examples.

Additionally, I would like to thank Phyllis McGarvey for her work

in typing this thesis.

This work was supported by the Applied Research Laboratory of The

Pennsylvania State University under contract with Naval Sea Systems

Command.



CHAPTER 1

INTRODUCTION

The problem of time delay estimation has received much attention in

the literaturel - 6 . In its simplest terms, the problem is to estimate

the time difference of arrival of similar signals in two different

channels. In general, the literature can be divided into two distinct

categories passive and echo location.

In the passive mode, the receiver "listens" to a source in each of

two receiver channels, and estimates the time difference between the two

channels. In this case, very little may be known about the form of the

signal. In echo location, a signal is transmitted in the channels, and

the receiver "listens" for reflections in the channel. Here the signal

form is known to be a (possibly distorted) time delayed replica of the

transmitted signal, and the task is to measure the difference of the

time delays in the channels.

In each of these modes of operation there are two common methods

used to estimate the time delay: cross-correlation methods, and phase

comparison methods. The first of these methods performs a cross-

correlation of the two received signals, selecting as the estimate of

the time delay that value which maximizes the magnitude of the cross-

correlation.

In the phase comparison method, the analytic signal from one

channel is conjugated and multiplied by the signal from the other

channel and the phase of the resultant product is averaged over the time
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duration of the signal. In order to assign a meaningful estimate of the

time delay from the phase information, the signal must be assumed

narrowband.

In the literature cited above, these estimators and variants

thereof have been extensively analyzed under various hypotheses.

This thesis presents a method of time delay estimation which was

originally developed by Ricker7 . This method is inherently an echo

location estimator of time delay which uses a comparison of the phase of

the matched filter for each channel to estimate the delay. It will be

seen that, under the proper assumptions, this estimator is capable of

using large time-bandwidth product signals and still giving a meaningful

estimate of the time delay from the phase information.

Other advantages of this method include the fact that it handles

Doppler-shifted channels with ease, and that with proper signal design,

it can isolate multiple scatterers in the channels and estimate the time

difference for each scatterer. With this estimator, one may utilize

signals with large time-bandwidth products that resolve well both in

time and in frequency so that one can simultaneously estimate the total

propagation delay, the time stretch (Doppler), and the time difference

of arrival.

The next chapter will present the receiver structure and the

estimation procedure. Chapters 3, 4 and 5 will evaluate the perfor-

mance of the receiver operating in additive white Gaussian noise, and

Chapter 6 will summarize and suggest further work in this area.
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CHAPTER 2

RECEIVER STRUCTURE

This chapter will discuss the method in which the received signals

are processed, and will present notation and assumptions that will be

used in the chapters that follow. The receiver structure is shown in

jWk t
Figure 2-1. It is assumed that a signal f(t)e o , was transmitted

and that the received signals, r1(ti) and r2(ti), are samples of two

time-delayed, time-stretched replicas of the transmitted signal plus

additive noise. The function f(t) is known as the complex envelope of

the signal, and w is equal to 21fo, where f is the carrier frequency.

The received signals, r1 and r2 can be written as follows

rI(ti) = 0F f[s(ti-TI)]e0 s(o - T + n1(ti)

r2(ti) = E° f[s(ti-T 2 )]e Wo s(t - 
T 2 ) + n2(ti)

It is assumed both signals are of the same energy, and that the complex

envelope is normalized such that

X f[s(tiTk) ] 2 = 1 k = 1,2 (2-1)

so that in the absence of noise, the energy of each sampled signal is Eo.

The time-stretch factor, s, is assumed to be the same in each channel,

and is related to the Doppler shift, d, as

s 1- )fo (2-2)
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The time delays for each channel are denoted by T1 and T2 , and the dif-

ference in time delays, Ar = T2 - TI, is the quantity to be estimated.

The noises nI(ti) and n2(ti) are assumed to be white, complex proc-

esses with circular symmetry8 ,9 , and with variance of real and imaginary

2parts equal to a . The real and imaginary components for each channeln

are denoted as

nk(ti) = Xk(ti) + Jyk(ti) k = 1,2.

The received signals are processed according to Figure 2-1. The

processing signal, r(ti), is a time-delayed, time-stretched replica of

the transmitted signal with hypothesis time-aelay and time-stretch

values of r and s obtained through some previous estimation procedure.

The processing signal is denoted as follows:

r(ti) = f*[(ti-)]eIwos(ti-T)

The processing sigkdJ is assumed normalized to unit energy, i.e.

2 = [ f[;(tiT)] =1

In the absence of noise, the output of each summation in Figure 2-1

is

N

Xk = r r(ti)rk(ti)

N ,^
=E f [s(t i )]f[s(t - T )]ejoS(ti- Tk-S(t i - T )

) (2-3)
0 - 1k
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which, when viewed as a function of T and s, can be considered as a

two-dimensional correlation between the received and processing signals.

The estimates, t and s, are often obtained by processing the

received signal with a matched filter. The matched filter concept is

based on the examination of the magnitude-squared of a function

X(Ts, ,s) over an appropriate grid of t and s values, choosing as the

estimate of the time-delay and time-stretch those T,s pair3 which

maximize the magnitude squared, IX(T,s, ,s) 12 . Note that for signals

with sufficient resolution, the matched fil'er approach is capable of

resolving multiple reflections, identifying the T and s values of each

reflector as distinct maxima on the r,s grid.

An important function that arises out of the discussion of matched-

filters is the ambiguity function. The ambiguity function depends only

on the particular signal employed, and is equivalent to the matched fil-

ter for a noiseless scattering channel consisting of a point scatterer.

The accuracy with which one can estimate ime-delay and -stretch

depends on the behavior of the signal ambiguity function near the

origin. For the reader unfamiliar with matched filter concepts, rather

thorough treatments are given in Van Trees1 0 , and in Cook and Bernfeld l l

for the narrowband case, and in papers by Altes 12 ,13 for the wideband

formulation.

The time delay estimator of Figure 2-1 works as follows. First,

the received signal, r(t), representing a composite of the signals rl(t)

and r2(t) (or a related signal) is matched-filtered over an appropri-

ate ;-s grid, yielding IX(t,s,r,s)1 2 . This function is .xamined over
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the grid, with those peaks that are above a pre-selected tbreshold

representing substantial reflections in the channel with different time-

delay and -stretch values estimated by the corresponding : and s values.

Once a peak has been located, the r and s values corresponding to

the peak are used to process the received signal for channels I and 2,

yielding x I(TS,,) and X2 (T 2 ,s, ,s). For each peak, the complex numbers-

XI(TIS,;,S) and X2(T2 ,s,r,s) are multiplied together, yielding (in the

absence of noise)

Q = XX 2  Eo.(If*[s(ti-)]f[s(ti-Tl)]ejWo(S-S)t).

i

qIf[s(t i- )]f*[s(t i-T 2 )]e-jW0(S-S)t l~e JW0S(T 2- T1

i

= E. (f*[s(ti-)]f[s(ti-TI)]
ij

f [s(tj-;)]f* [s(tj-T 2 )]eJWo (S-S)(ti-t j))ejwoS(2-Tl) (2-4)

If the time-stretch estimate is assumed correct (i.e ;=s), the

first line of (2-4) reduces to

Q = E "lf*[s(ti-T)f[s(ti-)T).
i

i

= Eo.(A A2)e (2-5)
1 2



8

where

Ak = E f [s(ti-T)If[s(t i-T)],
i

0O = W 0s ( T 2 - T I )

Hence, it is seen that if the time-stretch estimate is correct, the time

difference of arrival can be obtained from the phase of 0 as

00

W s
0

if the quantity (A1A2 ) is real. Note that if T 2  T1, then A2 = A 1 so

that the quantity A1A2 is real. However, with arbitrary AT, A1 and A2

must be real independent of one another for most signals of interest,

and it is desired to find sufficent conditions for which this occurs.

To do this it is more convenient to utilize the continuous-time domain.

In this domain

Ak = ff*(st-s;)f(st-sTk)dt,

where the energy conserving factors have been ignored, as they are

unimportant in the discussion. Defining

g(u) = f(u-a) <=> G(M) = e-JwaF(w)

h(u) = f(u-b) <=> H(w) = e-JwbF(w),

Parseval's relation,

f g (u)h(u)du = f G (w)H(w)dw
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can be used to obtain

Ak = f G*(w)H(w)d = f IF(w)j 2 jW ) dw.

If IF(-w)I = IF(w)I, this reduces to

Ak= 2 f IF(w)I2 cos WS(Tk-T)dw, (2-6)
0

which is a real quantity. Hence, a sufficient condition for Ak to be

real has been established. If the complex envelope has a symmetric

2 = 2power spectrum, IF(-w)I = IF(w)I , then Ak is real. Note that this

is dependent on the proper time-stretch estimate but is independent of

the delay estimate. Throughout this thesis, it is assumed that this

condition is satisfied so that A1 and A2 will be real quantities.

The performance of this estimator depends on two factors. First,

the additive noise inherent in the channels will degrade performance by

adding unwanted terms to (2-5), thereby corrupting the phase, t

Second, the estimates, T and s will not exactly match the true values.

If the estimate T is reasonably close to the true values T and T2,

performance will not be adversely affected, since the only effect of

this is that the factors A1 and A2 in (2-5) will become smaller relative

to the additive noise terms as can be seen from the cosine term in

(2-6). If the estimate s is incorrect, however, the estimator becomes

biased due to the additional exponential that appears in (2-4). The T

and s estimates obtained from the matched filter will obviously become

less accurate as the noise level increases.
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In Chapters 3 and 4, the first of these problems is addressed, i.e.

that of the unwanted noise terms. In these chapters it is assumed that

the estimates of T and s are correct. In Chapter 5, the effect of a

T-s mismatch is discussed using a Cramer-Rao lower bound approach. To

simplify the analysis and notation, it is assumed throughout the follow-

ing that the channels contain only one scatterer.



CHAPTER 3

UNCORRELATED NOISE

The first case to be considered is that of the receiver operating

in white Gaussian noise uncorrelated between channels. The complex

noise process is assumed stationary, ergodic, zero mean, circularly

2
symmetric, with variance of real and imaginary parts equal to n . The

real and imaginary components for each channel are independent, and

are denoted as follows:

nI(ti) = XI(ti) + Jyl(t 1 )

n 2 (t i ) = x 2 (ti) + jy 2 (ti)

or more succinctly as

nki = Xki + JYki k = 1,2

where the first subscript identifies the channel, and the second is the

time index.

The white noise assumption requires that

E{Xki Xkj } = E{yki Ykj } = ° 2 6ij k 1,

where 6ij is the Kronecker delta

1,i=j

6iJ O,i~j

Circular symmetry requires that

E{xki Yki = 0 for all i; k = 1,2

and the additional assumption of noise uncorrelated between channels

requires that

Ex i x2j Efy 1 i Y2J = E{xi y2j)} E{x 2 1 Yj } = 0

for all ij. (3-1)
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The magnitude-squared of the noise process has expectation

E{Inki12} = E{x2i + y2i } = 2G2 k = 1,2.

The received signal for each channel at time ti is

rk(t.) = /E f[s(ti-Tk)]eJuos(ti- Tk) + nk(ti)

or

rk rE f eJwos(ti-Tk) + nk.

where fki f[s(ti-Tk)I is the complex envelope of the received signal.

If the processing signal r(ti) is denoted as follows:

(ti) = r= f ejwos(ti-T)

kti f i e

where f [s(ti- )] represents the complex envelope of the processing

signal, then the output of each summation block in Figure 2-1 can be

written

Xk r r ki = E fo kie j  s(t-T) k

= Z /F f f eJwoL[(s-s)ti+ST-sTk] 
+  fie JWoS(ti-T)

0 i k k

= f JWoS( T-Tk -'oS( ti-T)E ifki e 0o k + -of tieT (if s=s) (3-2)

where the last line assumes the proper time-stretch estimate, s = s.
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Since the Gaussian noise components are all assumed independent of

one another, the explicit and implicit phase factors in the second term

of (3-2) can be absorbed into the noise process without altering the

statistics of the situation. This yields

k /W--e jwoS(T--rk) ki ~Iitn k = 1,2. (3-3)

The second term, being the sum of independent, zero-mean Gaussians is

itself a zero-mean Gaussian, which shall be denoted by nk" The real and

imaginary parts of this term have variance

°2 2 1 11,12 2
an n i f an

since E Ifi12 = 1, so that (3-3) can be written as

Xk = /0 Ak ejW os( k)+ nk  k = 1,2,

where Ak = E fif k.

The output, Q, of the estimator of Figure 2-1 is then

(E* Ale o + n Ie-J 0( A 2) e*

SXx2  1  e + o2 + 2

= E A A eJo1(T2-TI + /O A n0 + Eo A i2 + n n (3-4)
o 12 0 21 0 1 2 1 2

where, as above, the complex exponentials have been absorbed into the

noise terms without altering the statistics.

It has been previously assumed that s=s. If it is now also assumed

that the time difference of arrival, AT, is small and that the time delay

estimate, r is accurate such that T - Tk (k = 1,2), then fki " fit

so that Ak - E Ipi 12 = 1.
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To see what is meant by the words "small" and "accurate," one needs to

examine (2-6) where it is seen that if cos wmaxS(Tk- ) " 1, then Ak will

be at its maximum, which is 1. Here w denotes the maximum frequency

of the complex envelope (i.e., w equals one-half the signal band-max

width). In this case (3-4) reduces to

Q eJoS( T1 + Fn i n + n
QEoej ST 2-T I) + rEo nl +  or n2 + nl 2 (3-5)

o 1 o 2 1 2 (

The presence of the last term in (3-5) renders further analysis

intractable, so it is desired to quantify conditions under which this

term becomes negligible. The expectation of the magnitude-squared of

of the process can be found as

E{lhI 2
21 = E*Re( 2 + E{[Im(rj n 2

= 4a
4

n

where E{'} is the expectation operator. Thus, if the input signal-to-

noise ratio is defined as

h Input Signal Energy Eo Eo

Expected Input Noise Energy N2E{Inkil2 2N '

then the ratio of the magnitude-squared of the first term of (3-5) to

that of the second or third term has expectation

E 2  E
0 - = Nh (3-6)

E{Eo-nkI
2 } 2a2

Inki n

while the ratio of the magnitude of the first term to that of the last

term has expectation
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E 
2

o = (Nh) . (3-7)
4a 4

n

Here, as in the previous chapter, N is the number of input samples. By

comparing (3-6) and (3-7), it is seen that the last term of (3-5) is of

second order. For example, if there is a OdB input SNR (h=l) and there

are 1000 input samples, then the second and third terms are 30dB below

the first, while the last term is 60dB below the first. For the rest of

the development, it is assumed that the quantity Nh is large enough so

that the last term of (3-5) can be ignored. It will be seen that for

values of Nh as small as 10, this approximation yields variances con-

sistent with those obtained through computer simulations.

It is seen that for large Nh, the output SNR, given approximately

by (3-6), is N times as large as the inpuL SNR. The factor N can thus

be considered as a processing gain. For a receiver sampling at a

frequency equal to the bandwidth of the signal, N is equal to the

time-bandwidth product of the signal, so that the receiver structure of

Figure 2-1 is seen to have a processing gain equal to the time-bandwidth

product of the signal.

Defining n3 such that

n3 = iEyo ( n+n*)

(3-5) reduces to

Q = E eoJ 0o(T 2- T1 ) + n3 9 (3-8)

where n3 is a complex Gaussian process with variance of real and

imaginary parts equal to

o2 = 2E a2 (3-9)
3 o n
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Q can be written in terms of its real and imaginary parts as

Q =E ejo + T3o 3o

E (COSo0 + jsino ) + u+jv

- a + u + j(b+v)

where

0' 0(T2-T )o a 1

a = ECOS0 , b = E sin °

u = Re{n 3}, var(u) = a2

v = Im{n}, var(v) = 23 °3'

so that our estimate of o'.0, denoted by 4, is
ta I b+v

tan (ki-+). (3-10)

In the absence of noise it is noticed that 4 +o as desired.

In order to evaluate the performance of this estimator, it is

desired to find the probability density function for 0, denoted by f(4).

The density function, f(4) would be more precisely notated as f(4flo),

and might be more properly regarded as a likelihood function. 14 Also,

it is noted that the estimator to be derived is a maximum likelihood

estimatorll, 15 of 4o for the uncorrelated noise case.

The numerator and denominator of the arctan argument in (3-10)

are independent and have Gaussian densities with mean b and a,

respectively. The joint density for numerator and denominator is thus

the product of the two marginal Gaussian densities, and to find the

density for 4, one may convert to polar coordinates as follows, and

integrate over 0 4 r4 -. Letting u+a = rcos and v+b = rsin, the joint

density becomes
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f(uv) - 1._ -1 2 2
2 o exp- 2-3 (u2+v 2 ) +

lo3 2a2
3 3

f(r,) r exp -1o [(rcos-a)2 + (rsin4-b)2],
2 23

where the factor r is the Jacobian of the transformation. The desired

density is obtained by integrating over r:

f(M) = f f(r, )dr
0

CO

- 1-1 2 b21 r2xp-

2 exp ---2 [a +b f r exp2 - [r - 2r(acosO + bsin )]dr.
.r3 2oJ 0 2a03

Recalling that a = E cos4 ° and b = E0 sino, and using a well known

trigonometric identify, the above expression becomes

2-E 2
2= exp •* f r exp 1 [r - 2E rcos(- )1dr,

T 2 ep2 2 00
oo3  3 

- o)]dr

or, making a change of integration variable,

2 2
E 2.-E2

f _ r exp ---- [r - 2 cos(4- )r + 1]dr,2 o o 203

33

E

which is a function only of 4-4o and (_2)2 Recall that 02 2E and

2o 3 oE , nd

h = E /2No, so that
2 2'

E2  E2

0 0
2 2E 2

3 o n

Here again, h is the input signal to noise ratio, and N is the number of

input samples. Finally, then, the density is written
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-NhNh e-Nfr x -Nh 2
f) e 2 f r exp - 2 2 cos(p- o )r]dr, (3-11)

0

which is a function only of 4-o and the quantity Nh.

Unfortunately, the density given by (3-11) cannot be expressed in

closed form. The integral in (3-11) can be found in the tables by

Gradshteyn and Ryzhikl6 (#3.462.5), where it is expressed in terms of

the error function, but the solution is only valid in our case for

cos(p- 0) < 0. The density of (3-11) is integrated nuwtrically on a

VAX 11/782, yielding the curves in Figures 3-1 and 3-2. Note that

although these densities are defined over -n < - o 4 n, in Figures 3-1

and 3-2 they are shown over a smaller range to better see their shape.

Also, a curve of the variance as a function of the output signal to

noise ratio Nh was generated digitally, yielding Figure 3-3.

It must be noted that the moment quantities depend on the inte-

gration limits chosen. Mathematically, any limits of the form

0 ' < 0 + 27 will do, however for the application here, the choice

is clear. Choosing the limits €o- n < o0 +n, the mean, w, is given by

0 7r

= f #f($)d = f (¢+ o)f(O+)o )d

0- 
--

f C +f(4+p )d¢ + 0 f fo+o)d¢
-it - T

0 0



19

0

0

0
o

C

o 0o

oo

0

U

c'J

II I

oo

0

C)J

Ol 0

0 0

0 Aj

(n

0 0

0

cz

o oo

4-1

C

oo 0

0 A

m d. m m N m In •

0 0 0 0 n 0 N 0 T- 0 0 00 0 0 0

'uo



20

0

AD
0

C

C)
0

0

o C

0 z

C)C

o C

C)C

0

00

0

i 0

Q

-4

o

! l

0
4

o
I- -I

00

IN Nl • r r- 0 0 0 0

oilsu0



21

I-

00

0 C)

0
z

-

0

0

E
'41

44

0

u
-

C)
IA4

0
Wf 0

o 0 0 0 0 0
T- T, V- V

(pa4onbc a...J~.p) QOUOIJOA



22

where the first integral is zero due to its odd integrand integrated

over symmetric limits, and the second integral is 1 since it represents

the area under density, f(). Hence, with this choice of integration

limits, the mean is equal to the true value (i.e., the estimator is

unbiased), so that the variance is a measure of the fluctuation of $

about the true value, $o"

The estimate of time delay is given by

0

which has mean equal to the true value (if s=s), and variance

E{AT} = " = 
W s

0 0

var{A} = 1 2

0

where a2 = var(O) is shown in Figure 3-3.

From Figure 3-3, it is seen that the variance of this estimator

decreases approximately as 1/Nh. Under previously stated assumption, N

can be replaced by the time-bandwidth product of the signal, and the

time delay estimator is seen to take advantage of the processing gain of

large time-bandwidth product signals to reduce the variance of the time

difference estimate.
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In order to test the validity of the variance curve of Figure 3-3,

the estimation procedure of Figure 2-1 is simulated on a computer. The

signal used for the simulation is based on a Welsh construction 17 with a

real envelope. The signal is of the following form

f(t)ej
2 fot

where

f = 30,000Hz i i

1 550
f(t) = w(t)cos21f it (i-l)T s 4 t < iTs  2 7503 650

Ts = subpulse length 4 700
= .05 seconds 5 350

6 850
w(t) = 50 dB Taylor Window 19  7 600

8 400
9 500

10 450
11 800
12 300

The ambiguity function of this signal is shown in Figure 3-4. Note

that this signal has good resolution both in T and in s, due to its

large time-bandwidth product. Note also that by giving the signal a

real envelope, one obtains a symmetric spectrum as required by (2-6).

The signal is sampled at 1700Hz and matched-filtered using the

correct T amd s values, T = T 1.0, s = s = 1. Next, 1000 complex

Gaussian noise samples were generated, normalized as in (3-9), and added
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to Q as in (3-8) to obtain a sample mean and variance to compare with

the theoretical unbiased mean and the variance of Figure 3-3. The

results are summarized in Table 3-1 table for o = 0 and o = 450.

Table 3-I

Theoretical versus Sample Means and Variances

Nh 10 100 [ 1000 [ 10,000

ITheoretical Mean (Deg) 0.000 0.000 0.000 0.000

= 0 ISample Mean 0.068 0.045 0.015 0.005
0 1

ITheoretical Variance 1 380.0 33.2 1 3.3 1 0.36

ISample Variance 369.0 34.0 3.4 0.34

ITheoretical Mean 45.00 1 45.00 1 45.00 1 45.00 1

1 = 450 Sample Mean 45.84 45.25 45.09 45.05
0 1

ITheoretical Variance 380.0 33.2 3.3 0.36

Sample Variance 379.6 35.0 3.5 0.34

It is seen that the expressions derived above for the density func-

tion of the estimator generally predict variances consistent with the

sample variances of the simulations even for values of Nh as low as 10,

and the sample mean approaches the theoretical mean, 0 , for large values

of Nh.

This concludes the analysis of the estimator operating in uncorre-

lated noise. The next chapter will discuss the considerably more com-

plicated case of noise which is correlated between channels.
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CHAPTER 4

CORRELATED NOISE

In this chapter, the receiver performance is evaluated when

operating in white Gaussian noise which is correlated between channels.

As in the previous chapter, the noise is assumed to be a white, cir-

cularly complex Gaussian process, so that

E{xkiykiI = 0 for all i; k = 1,2

E{xkixkj) = E{ykiYk 2 6 k = 1,2.kij kj =i 1,2.

The noise process is assumed to be correlated as follows: 6

E{x x ) = E~y1 y a=2E{Xll2j} = EYY2j} = n 6ij

E{x iY 2 jI = -E{x 2jYi} = 2o 6
ii 2j2j ii n ij*

A physical interpretation of p and X is given in Appendix A. It is

noted here for future reference that p and X are such that

p' + 2 < 1. (4-1)

This can be seen from examining eigenvalues of the covariance matrix

for the density f(x ,yl,x 2 ,y2 ), noting that since the covariance matrix

is positive definite, its elgenvalues must all be positive.
1 9

The development of Chapter 3 may be followed up to (3-2) without

modification. Equation (3-2) is repeated here for convenience:

Xk = E e° +0 nkifi e- 0s( k = 1,2.
i (4-2)
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Xk represents the output of the kth summation block in Figure 2-1, and

(4-2) assumes the correct time-stretch estimate. Since the complex

noise is assumed correlated between channels, more care must be taken

when absorbing the complex exponential of the last term of (4-2) into

the noise process.

If the second term of (4-2) is written in terms of its real and

imaginary components,

Enifi eJuos(t i T) =u+ jv k

i

then the correlation coefficients for ul, vi, u2, v2 can be expressed

in terms of the input correlation coefficients, p and A. Using the

results of Appendix B and the fact that the time samples of the noise

are independent, it can be shown that ul, v, u2, v2 have the

same correlation coefficients as xii, Yli' x2i, and y2i; that is,

E{u U 2 }  = E{v v = p 2

1 2 1 2 n

E{u V = -E{u v = I 2
1 2 2 1 =ATn

It is noted that the variances also remain unchanged, due te the fact

that the processing signal is of unit energy.

As in the previous chapter, this processed noise term is denoted

by nk ,

nk =Uk + jvk= n fi e-Jit k =1,2
ii

2
with variance of real and imaginary parts equal to .

n
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If Ak is again defined as

Ak = Y fifki k = 1,2,

then the output of each summation block in Figure 2-1 can be written as

jW (T-Tk

Xk =  E- Ak eJo k + nk k =1,2

so that the output Q, is given by

= x1 2  [EoA1 eJ0So T-) + n I[ rEA 2 e-j 0S(T-T 2) + T2

A 2 Jo 2 1 1 0F 2 ~ 2 E

E *AiA e 0os(2-Tr) + EoA nle - 0 S(T-T2) + ne ol

0A 1 2  0o21 o1 2

+ nln* (4-3)

Defining

S = le- 0 T2) u I + J 1

2 =  2e-j (t u 2 + iv2

it is again desired to find the correlation coefficients of U, V1,

u2, v2 in terms of P and A. The results follow from direct application



29

of Appendix B, and are summarized below:

E{U -- E{v l } = (cp - dX)o 2  a 2

1 2 1 2 n n

E{UV 2 = -E{VlU 2 } = (cA + dp)o
2 =0 2

12 12 n n

where

c = cos WoS(T2-T I )

d = sin woS(T 2-TI).

and the new correlation coefficients, P and A are introduced to simplify

notation in the following development. It is noted for future reference

that

-2 + X2 = (c2 + d2)(P2 + X2 )

P 2 + X2

where p 2 + X2 < I as in (4-1).

Equation (4-3) can now be written in terms of nI and n2 as

Q Eo.A Ae T 2-T1) + (EoA2; + rEoA n2 + nne o 0'2-T1
o 0 12 eJ 0o2-2 1

EoeJoS2-1 + E(n + n2) + n -2 I , (4-4)
0 0 1 2 1 21

where the last step assumes that the estimate of time delay is correct,

and that the time difference of arrival is small so that A, 2 1 and

A2 a 1, as in the previous chapter.
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Again, as a concession to tractability, conditions under which the

last term is negligible are quantified. The expectation of the

magnitude-squared of the process rn2 can be found directly through

tedious integration to be

E{lJrl2 12
} = E{[Re(;l2) 2} + E[iIm(; n )]2
111 2 1 2

4(l + 2 + X2) < 8a4
n

Where the inequality arises from the fact that p2 + 12 < 1. Thus

with the input signal-to-noise ratio defined as

E
0

2No2

n

the ratio of the magnitude-squared ef the first term of (4-4) to that of

the second or third term has expectation

E
2

0 Nh (4-5)
E{( E 0o-k 2 }

as in (3-6), while the ratio of the magnitude-squared of the first term

to the expected magnitude-squared of the last term is

E2 E2 (Eo

0 :0 0 = I =  0 -- = fI Nh )2 (4-6)

From (4-5) and (4-6) it is seen that the last term of (4-4) is again of

second order, becoming negligible for large values of Nh. For example,

if Nh = 1000, then the second and third terms are 30dB below the first,
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while the last term is at least 57dB below the first. Throughout the

rest of the chapter, the last term of (4-4) is dropped.

In terms of its real and imaginary parts, 0 can be written as

jWs( ET- T.o
0= E e 2 1 + ol n o E2

=-e+ /-n + En*
o o o2

= a e~ + Ejob + E'E-o-l o v

= a + jb + Eo[U1 + U2 + j(v1 - v2) ]

= a + fEo(uI + J2 ) + j[b + Eo(v I - ur)

where

o o 2 -

a E cosl b = E sin4
0 o 0 0

U1 = Re{l 1 Im{n }

u2 = Re{f2} 22 2Im{ 2

var } = var }= a2  k =1,2

varn k n

E{u U 2 } = E{ 2 1 p a

E{u V 2 } = -E{ U2 } = - 2

P= p cos - A sin
0 0

= p sins° + X cos ° .
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The estimate of 0 is then given by 4, where

b + /E_ (V lb+y

= tan - 1 (- 0 -V) = tan- 1(b + '
a + E(Ul+U2)x

and where x E UI+ u2, y = v v2. In order to evaluate the

statistics of this estimator, it is necessary to find the covariance

matrix for the numerator and denominator of the argument of the arc-

tangent. Denoting this by Rxy, it is seen that

R = E(x2 } E{xy} = 2E .a2 +

- xyx

a oo a

=1x 2  xy x y 1

xy xy y

where

*2  2E o'2 (1 + P)xn

*= 2E"on (I - P)
y o

Vl-2S=xy /-;2

It is noted that p < I since -2 + 2 < 1. The joint Gaussiar, density
xy

is then8

f(x,y) - I exp 1/2 [xyJ R

R_xy / 2 , y _
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1 exp (x -2P XY + y
2 2(1-p2) a x ay

2naXa y xy- xy X Y

Once again, the change of variables x + a = r cos,, y + b = r sin, is

made to obtain the density for tan 'After considerable
x+a

algebraic manipulation the joint density f(r, ) is obtained:

f(r, ) r e-k e- + 2v E

21TO a /1-p
2

x y xy

where

1 2 b 2 abk 2- + 22px

2(1-p2 y) xy Ga

0 l Cos, b + n -( sin , +b cs
2(I0 Y x y

_ x y

The desired density, f( ) is again obtained by integrating the joint

density, f(.-, ) over all val~ies of r, i.e.

f(2) f f(r,-)dr.

0

This integral is of the same form as that of (3-11), but with consid-

erably more complicated coefficients in the exponential. These coef-

ficients can be substantially simplified by writing ox ,y y and pxy in
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terms of an, p, and X and by recalling that a = E coso and b = E sin ,
n0 0 0 0

yielding

E
k = -2 [i - P cos(20 ) + 2 X cos ° sino]

4a (1-P2_) 0n

E
2 [2 -0 cos(20) + 2 A cos sin1]

4o - 2_2)
n

E
0

O2 -2  [COS(- o ) - P cos(0+t ) X A sin(y+o)0. (4-7)

n

The density is then written

-k
f = e f r exp[- i(.I_) 2 + 2v(!-)]dr

4 rE 02 ,i-2-1 2  o E o
on

-k
Ee

f r exp-u r + 2vr]dr (4-8)
42 -1_2_-2 O

n

Where the second line results from a change of integration variable.

Once again the integral for f(0) cannot be put in closed form. It is

seen that for the correlated noise case, the density f(t) is a rather

unwieldy function of several parameters: E/O, , , and " In
0 n

addition, ; and 1 are in turn functions of 0 and the input noiseo

correlation coefficients P and X. The auantity E /a2 in (4-7) and (4-8)o n
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is replaced by the quantity 2Nh to get the density in terms of the input

signal-to-noise ratio.

Roughly speaking, the quantity E / 2 controls the sharpness of the
0 n

density, while the correlation coefficients alter its shape. The

density is integrated numerically for various combinations of parameters

yielding Figures 4-1, 4, 7, and 10.

The densities are then used to generate curves of the mean and

variance of the estimator for these combinations of parameters, yielding

the continuous curves in Figures 4-2, 5, 8, 11 and 4-3, 6, 9, 12. It is

again noted that the moment quantities depend on the integration limits

chosen. For the correlated noise case, the choice of these limits does

not seem as clear as it was for the uncorrelated noise case, because the

estimator is now biased. If the same limits are chosen for this case

however, the estimator will become unbiased for large values of Nh, so

the integration limits are again chosen as 0 - w 4 0 0 + ir.
0 0

Tnese curves are again verified using the same signal and sampling

parameters as in the previous chapter, yielding the discrete points in

the mean and variance curves. The noise model used in these simulations

is described in Appendix A, with the incoherent noise correlation

coefficient, Pi set equal to zero so that the incoherent noise is uncor-

related between channels. The coherent noise is the same in each channel

except for a phase delay,

c -.i~ c
n i = e cn ci
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where *c = tan-'(.), P and X being the input noise correlation coeffi-
C P

cents. The incoherent noise has variance of real and imaginary parts

a = (1-r) n 2

while the coherent noise has variance

2 2
c n

where r = P2+2, and a 2 is the total noise variance.n

From these figures, it is seen that both the sample and theoretical

means approach the true values for large values of Nh. Also, the vari-

ances predicted by theory are consistent with the sample variances gen-

erated by the simulation for large Nh. The theoretical curves are

accurate only for Nh of about 100 or greater due to the approximation

made by developing the last term of 4-4.

Again it is seen that for large Nh, the variance drops of as I/Nh.

Replacing N with the time-bandwidth product of the signal (as in the

previous chapter), it is again seen that the estimator takes advantage

of the processing gain of large time-bandwidth signals to reduce the

estimator variance.

The analysis of this and the previous chapters has assumed that the

time-stretch and -delay estimates are correct. In most cases these

estimates will not be exaLtlV correct. The effect of a T-s mismatch is

the subject of the following chapter.
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CHAPTER 5

T-s MISMATCH

In Chapters 3 and 4 it was assumed that the estimates of time-delay

and -stretch were correct. In practice, these estimates will not be

exact, and this will affect the performance of the time difference

estimator. In order to examine the effects of a T-s mismatch, it is

necessary to go back to Equation (3-2), before any assumptions about

T and s were made. The second line of (3-2) is repeated here for

convenience:

f^ eJ°[(ss)ti + s -stk] + Z nki fi e-oti-Xk 0 1 ho. fifki
i i

where Xk represents the output of the kth channel in Figure 2-1. This

can be rewritten in the following form:

Xk = /E 'e JW os(T-T k) e-jw°( s-s)T . E ffk e jW 0(s-s)ti + nk

Xk 0 e o *Eiki ifk

= /E--eJ~k e j B E f f ejai + nk
0 i 1ki k

where

k = 0oS( -Tk)

a,= 0 (s-)t, = 0(S-)

fj ejSo(t -T)nk = n ki fi e-o
i
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The output of Figure 2-1 is then written as

* '~ e 8 ~ E f*e*• eJ o ej ( - B) r il Jai * *j~ e-jaJ
Q = XIX 2  E0e o e. ii e j2j eE°

** -JaiIe * eJai

+ /EJ-e-J 2 
e - JB n E ffj e-N + /E-eJl n2 Z f f e i

0o 1 j 2J 0 2 ii

+ n1 2 (5-2)

where

00 = 01 - 02 = WoS(T 2-I) "

In this equation, eJ~o represents the true signal phase difference, and

it is seen that the bias represented by the factor e cancels itself,

so that the only bias remaining in the first term is that contributed by

the double summation. It is also noted that the factors e and e J i

do not affect the correlation coefficients between the second and third

terms (see Appendix B). The last term will be dropped under previously

stated SNR assumptions.

If the assumption is again made that th- time difference of

arrival, T 2 -T 1 is small relative to the bandwidth of the signal as in

previous chapters, then f 21 f li' so that the first term in (5-2)

becomes

J0 .,a -J* .o(l ) IJai 2

Eo'eJ i f i  e.a i " f f2j e j E JE fl fl i 2
ii

(5-3)
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so that there is no bias in the estimate of o due to an incorrect time-

stretch hypothesis. There still remains, however, a bias in the time

difference estimate. This bias occurs from using the estimated time

stretch, s, rather than the true time-stretch, s. The estimated time

difference (in the absence of noise) is

At =~ W s +o - was (i = At(I - ) (5-4)

0 0 0

where AT is the estimate of T 2 -T 1 , AT is the true value, 00 = 1-02 =

W0S(T 2 -T 1 ), and where a binomial expansion yields the approximation.

For reasonably good time-stretch estimates (i.e., Is-s!<<l) this bias

will be negligible.

Comparing the magnitude-squared factor in (5-3) with (2-3) and

noting the discussion following (2-3) it is seen that this factor is the

magnitude-squared of the matched filter output whose main peak is at

T = TI, s = s, evaluated at the point (T,s) corresponding to the esti-

mates of the the true values. If the T and s estimates are not exactly

correct, the magnitude-squared factor in (5-3) will become smaller,

effectively lowering the signal-to-noise ratio.

Thus, it is seen that a T-s mismatch does not affect the noise terms

(or change any bias due to the noise terms), and if the time difference

of arrival is small, the only effect is a slight bias represented by

(5-4), and a decrease in the signal-to-noise ratio due to the magnitude-

squared factor in (5-3).
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If the time difference of arrival cannot be assumed small, as was

necessary to derive (5-3), then the sum must remain as in the first term

of (5-2). The problem thus becomes more difficult, and the performance

depends on the particular signal employed.

A special case of interest here is that of a real envelope signal

(such as that employed in the examples of the previous two chapters). In

this case, the double sum in first term of (5-2) can be written as

follows:

ja *W e~j=ff e (ss)(t t)
E fi f e i E jf2j fii j2j (55)

i j 55

(where the complex conjugate symbols have been retained for future

reference) so that a crude upper bound can be placed on the phase bias

contributed by this term:

[ob[ wolso sIT (5-6)

where Ob denotes the phase bias and T is the signal duration.

It is desired to obtain an idea of the typical size of the estima-

tion errors for the time-stretch. The estimation errors for matched

filter receivers have been considered by VanTrees 10 and by Cook and

Bernfeldll, who use a Cramer-Rao lower bound approach to derive an

expression for the minimum error variances for this estimate, and who

show that the estimation errors approach the Cramer-Rao bound for

maximum-likelihood estimators.

In general, the estimation error for s will be coupled with that for

T, but a sufficient condition under which these estimates become

uncoupled is that the signal employed has a real envelope1 0 , which has

already been assumed.
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Adapting the discussion in Cook and Bernfeld, and noting equation

(2-2), the variance for the time-stretch estimate is bounded as follows:

(1/ )2

E{(s_;)2} 2 (5-7)

where h is the input SNR, and & is the RMS signal duration, given by

T/2
2 = 1 f t22f(t) 2dt

E -T/2

where E is the signal energy, and f(t) is the unsampled signal envelope.

Following the example given in the paper by Ricker,7 if the real

1
envelope has constant amplitude, w, and bandwidth B>> -1, the energy

becomes

1 2
E = w ° T

and

2 2 T/2 2 T2

2 f w t dt 6
w T -T/2

0

so that

E{(s-;)2} 6 2 (5-8)
(w T) h

0

If the standard deviation corresponding to (5-8) is considered a

useful estimate of the magnitude of the error in the time-stretch

estimate, then (5-4) becomes
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F w sT wT
0 0

so that the bias term is seen to be negligible for most situations, where

V-h w T >> /6". Using the standard deviation in (5-6) yields
0

.ii 6 (5-9)

This expression appears somewhat disappointing, but in practice,

this large bias estimate is often due to the crudeness of the bound,

rather than to poor performance of the estimator. in many situations,

the time difference of arrival is known to have an upper bound (i.e.,

AT4AT ), and for a given signal, one can use this "worst case" timemax

difference in (5-5) along with the estimate of Is-si in (5-8) to calcu-

late an estimate of the bias, *b* Indeed, this estimator is inherently

limited to estimating delays that fall within a range corresponding to

the time required for the carrier to complete one cycle, i.e.

Omin 4 0 <;  min 
+ 271

or

W oSATmin < o S A T  W 0oSATmin + 21T

AT .< AT 4 AT
rin max

where

Amin min

win 0 0

1
AT = AT +

ax main f 0
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In essence, a priori knowledge of the range of possible time dif-

ferences i3 required so that one can assign the proper time-delay value

to an observed phase difference. If, for example, AT is known to be

small and positive then ATi will be selected as zero, AT = 1

min max f
0

and the phase, , is defined on (0,2n).

If, for AT AT max the coefficients f and f are nearly the same

then the imaginary part of the product of the two sums on the left-hand

side of (5-5) will be nearly zero. For example, if the carrier frequency

is 30kHz, the modulation is a 850Hz pure tone, the signal duration is

1
600 msec, the sampling frequency is 1700Hz, and T = 0, AT

min max f
0

then the bias in phase is calculated numerically for real envelope

signals to yield the following table:

TABLE 5-1

Phase Bias for Real Envelope Signal

Input SNR ATmax (psec) 1 bl (degrees)

20 dB 0.0333 - 0

0.333 9.49 x 10-6

3.33 1.49 x 10- 4

33.3 (= 1/fo ) 1.44 x 10- 3

10 dB 0.0333 3.43 x 10- 5

0.333 1.55 x 10- 4

3.33 1.47 x 10- 3

33.3 1.47 x 10-2

0 dB 0.0333 1.97 x 10- 4

0.333 1.54 x 10-2

3.33 1.63 x 10-2

33.3 1.65 x 10-1
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One would expect that for more complicated real-envelope waveforms

with modulation frequencies no greater than 850Hz the bias values would

be somewhat less than those of Table 5-1, since for lower modulation

frequencies the coefficients f and f would be more nearly the same.

Hence, the simplified numerical computations yielding Table 5-1 would

provide a means of estimating the bias error of receivers utilizing

more complicated real-envelope waveforms of a given bandwidth.

Because the method used to generate Table 5-1 appears to be of a

more general usefulness, the process is parameterized, and the FORTRAN

source code is included in Appendix C. The parameterization is useful

because with it one can perform the computations once for a whole class

of signals, rather than having to repeat the computations for each

specific signal used. This parameterization is explained in the comments

of the FORTRAN source code.

If the signal used is not a real-envelope signal as was assumed

above then the above procedure is not valid, but the bias can still be

evaluated numerically in the same fashion for each specific signal using

the maximum time difference and the standard deviation obtained from the

Cramer-Rao bound. It is mentioned here that if the signal does not have

a real envelope, then in general the estimates of T and s will in general

be coupled. In this case the bound given by (5-7) will still be valid,

but will not be as tight as possible. A tighter bound that accounts for

T-S coupling is discussed in Van Trees and in Cook and Bernfeld.

It is desired to combine the results of this chapter with those of

previous chapters in order to come up with a rule of thumb measure of the

total performance of the estimator. Here the noise will be assumed
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uncorrelated (as in Chapter 3). The measure of performance to be

derived will be E{( -0o) 2}, which represents the expectation of the

squared deviations of the estimator from the true value, 00. The

previous discussion in this chapter implies that the effect of the t-s

mismatch can be taken into account by replacing 0° with 0 + b where b

is a zero-mean random process with variance determined from the

Cramer-Rao bound as discussed above. Without loss of generality, 0°

will be assumed zero, so that the variance of Figure 3-3 will now

represent E{(G- b) 2}. The densities of Figures 3-1 and 3-2 will here be

represented as f(flb ) in accordance with the discussion following

Equation 3-10. Denoting the marginal densities for the bias, b and for

the total estimate, 4, as f( 0) and f(4), respectively, the density f( )

9
can be expressed as

it

f(o) = ff(oIb)f(0b)d b•-t

Then

7

E{( - 0o2 } = E(f2 } = f 02 f( )d
-t

f I 02 f(oIob)d0}f( b) d4 b

-T -7
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where the order of integration has been interchanged. Noting that
2= 2

2 ( ) 2 2 b+ 2 b, the inner integral becomes

2w2

b b f(b)d = 0

7- 2 +f 2

0b 
f f(010b)d + 2'b f )d

-it - Tr

In this equation, it is noted that the first integral is precisely the

variance 2, plotted in Figure 3-3, the second integral is equal to

unity, and the third integral is precisely 0b' so that

2 = f [G2 + 21f( b)0

2 + b 2 (5-10)

Hence, under the assumptions stated, one may merely add the

variance obtained from the Cramer-Rao bound to the variance 02 from

Figure 3-3 to obtain a rule-of-thumb value for the deviations of the

estimator about the true value. Note that while this rule-of-thumb

was derived for the uncorrelated noise case, it is also valid for

the correlated noise case if the signal-to-noise ratio is high enough

that the mean of the estimator is nearly equal to the true value, *
0
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This concludes the discussion of the effects on the estimator of a

T-s mismatch. To summarize, if the time difference of arrival is small,

then the only effect of a T-s mismatch is a slight bias as in (5-4) and

a decrease in the effective signal-to-noise ratio. If the time

difference of arrival is not small, then the phase becomes biased. A

crude estimate of this bias is given in (5-9). This estimate is

independent of the properties of the signal. A better estimate can be

obtained by assuming a maximum time difference, and by considering the

properties of the signal employed. For real envelope signals, this

process can be parameterized and computed via the program in Appendix C.

For more general signals, one must use the specific signal to calculate

the phase of (5-5). A mismatch in T still affects only the effective

sigal-to-noise ratio.

2
The variance, ab, can be added to the rariances given in the graphs

in the previous chapters to provide a rule-of-thumb measure of the

estimator performance.
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CHAPTER 6

SUMZARY AND CONCLUSIONS

It has been shown in the previous chapters that wideband signals may

be used for phase-comparison time delay estimation provided the signals

employed have a symmetric power spectrum. Chapter 3 analyzed the

performance of the estimator operating in uncorrelated noise, while

Chapter 4 discussed the performance in correlated noise. The

uncorrelated assumption is often used in practice, where correlation

properties of the noise may not be available.

It was shown that in correlated noise the estimator becomes biased,

but approaches an unbiased estimator for favorable signal-to-noise

ratios. For signal-to-noise ratios in which the densities derived are

1
valid, the variances fall off as Nh, and the sample means and variances

approach tha derived theoretical values. By expressing the number of

input samples, N, as the time-bandwidth product of the signal, the

estimator was shown to use the processing gain of large time-bandwidth

produci: signals to reduce the estimator variance.

In Chapter 5, the effects of a T-s mismatch were examined. Central

to this is the Cramer-Rao lower bound on the time-stretch estimate. A

rule-of-thumb was given for estimating the squared deviations of the

estimator from the true value.

This method of time delay estimation has advantages over existing

methods in that it can handle Doppler shifted channels with ease, and

that it can identify and estimate the time delay for resolvable scat-

terers each wl'h distinct T-s values.
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Zurther work remains in evaluating the estimator for multiple point

channels, and investigating possible interference phenomena between the

different point reflectors. Also, work remains in designing signals with

desirable characteristics under the new constraint that the signal's

spectrum be symmetric.
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Appendix A - Correlated Noise Model

This discussion of the noise correlation coefficients is taken

directly from Merchant 6 . The noise model assumed here consists of two

components: an incoherent component plus a coherent component, i.e.,

n nki + nc k = 1,2 (B-I)
ki nki ki

where the superscript "i" denotes the incoherent component, and the

superscript "c" denotes the coherent component of the noise. The vari-

ances of the real and imaginary parts of the incoherent and coherent

2 2
components are a2 and ac , respectively, where

2 2 20 =0 +0n i c

The incoherent noise component has the following covariance properties

Z i x2} i f'y i Pa2
li E{Yi Y2 j = p1 ai 

2 ij

i i i i

E{x Y I = E{xi Y1 =0.
ii y2j 21 ylj

where pi is the in-phase correlation coefficient of the incoherent

noise.

The coherent noise is assumed to be the same in each channel ex-

cept for a phase factor:

c c -j~c
21 e c1
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If the ratio of the coherent noise power to the total noise power is

2
a

C
r -

2a
n

then the covariance matrix for the Gaussian density f(xlY 1 ,X2,Y2)

becomes

2 Pi2 O2OS 2s n

a 0 p a + cos4 a 2sinn ii c c c c

R 0 a 2 -a2 sino Po a2 +a2 coso
n1 ,n2  n c c ii c c

Pi2a +ac2COS -a 2SinO an2 0

a 2sina 2+0 2COs 0 0nc c Pii c c

so that the noise correlation coefficients used in Chapter 4 become

E{XlX 2 }

P 2  r cos + (-r)P i

E{x vIY2
2 cr sinc

a
n

If the incoherent noise is uncorrelated between channels (i.e., pi = 0),

p and A can be considered as the real and imaginary components of a

"complex correlation coefficient," Y = re
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APPENDIX B

Change in Correlation Properties

Due to Complex Multiplication

Consider two circularly symmetric complex process

ni = X 1 + JYl

n2 = x2 + jY2

with correlations

E{x x 2 = MyY2 Po

E{x 1Y21 = -E{x2Y I} =r2

If these processes are each multiplied by complex numbers of unit

norm, it is desired to find the new correlation properties. Let

u + jvI = (a + jb)(x I + jy1) = ax I - by1 + j(bx I + ay )

u2 + jv2 = (c + jd)(x 2 + jy2) = cx2 - dy 2 + j(dx 2 + cy2 )

where (a + jb) and (c + jd) represent arbitrary complex numbers of unit

norm. Then

EUIU2  E{(ax - byl)(cx 2 - dY2 )}

="E{acx1x2 + bdYvY 2 - adxlY 2 - bcylX 2 }

2
=[ac + bd)p + (bc - ad)l]o



65

Similarly,

E{vlV2 } = [(ac + bd)O + (bc - ad)X]o
2

E{u 1v2 } = [(ad - bc)p + (ac + bd)WA] 2

E{v u = - [(ad - bc)p + (ac + bd)X]0
2

E{u Iv 1 Eu 2 v -11UVI  ={u 2 v2 =0 .

Two special cases are worthy of consideration. First, if both

processes n1 and n2 are multiplied by the same number, then a = c and

b = d, so that

E{U12 = E{v 1v 2 = (a2 + b2)po = Po 2

E{u 1V = -E{V 1U = (a2 + b2 )Xo2 =X 2

2 b2 2 d2

where a + b = c + d 1 via the assumption of unit norm multipliers.

Hence if each process is multiplied by the same complex number, the

correlation properties do not change.

Another special case is that in which only one channel is multiplied

by a complex number, e.g., a + jb = 1 (a 1, b = 0). In this case

E{U1U 2 } = E{vIv 2 } = (cp - dX)o
2

1{uv2} = g{vu 2 = (dp +c)o 2 .

It is noted that the general case can always be broken down into

consecutive application of the two special cases (i.e., let c + jd =

(a + jb)(e + jf)).
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APPENDIX C

Fortran Source Code for Phase Bias of Real-Envelope Signals

* This program calculates the phase bias for real envelope
* signals as per pp. 54-55 of this thesis (Hatlestad, J.D.,
* "Phase Comparison Time Delay Estimation Using Wideband

Signals" The Pennsylvania State University, December,
* 1985).

* The input parameters are as follows:
,

* "time bandwidth product" (FBTEND) -- This parameter is
* the time bandwidth product of the signal. Since
* the signal is assumed to have a real envelope the
* bandwidth used to calculate this must be equal to
* TWICE the maximum modulation frequency.

* "ratio of bandwidth to carrier frequency" (BWRAT) -- See
* ahove note for "time bandwidth product."
,

* "ratio of time difference to modulation period"
* (FBDELT) -- This parameter is the ratio of the
* maximum time difference to be estimated to the
* modulation period of the signal (1/fmax).
* See page 55 of thesis.

* "ratio of sampling frequency to bandwidth" (FSRAT) --

* Must be greater than or equal to one.
,

* "input signal to noise ratio" (SNR) -- Signal to noise
* ratio in dB.

*************** ********** ***** **************** *********** ***

COMPLEX SUMI,SUMJ,DSUM
PI - 4.0*ATAN(1.O)

C
C Query user for signal parameters

WRITE(6,10)
10 FORMAT($,- Enter time-bandwidth product of signal: )

READ(5,15) FBTEND
15 FORMAT(F20.10)

FBTEND - FBTEND/2.0
WRITE(6,20)

20 FORMAT($,' Enter ratio of bandwidth to carrier

& frequency: )
READ(5,15) BWRAT
BWRAT - BWRAT/2.0
WRITE(6,30)

30 FORMAT($,' Enter ratio of time difference to modulation
& period ")
READ(5,15) FBDELT
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WRITE(6,40)
40 FORMAT($,' Enter ratio of sampling frequency to

& bandwidth: ~
READ(5,15) FSRAT
WRITE(6,50)

50 FORMAT($,' Enter input signal-to-noise ratio (dB): )
READ(5,15) SNR

C
C Convert SNR from dB to decimal

SNR = 0.Q**( SNR/lO.0)
C
C Compute auxiliary variables (in radians)

NP -NINT( FBTEND*2.0*FSRAT ) -

FOTEND FBTEND/BWRAT ! Product of carrier and
C signal duration

FBTINCR FBTEND/FLOAT(NP) ! Product of bandwidth and
C, time increment

FOTINCR =FOTEND/FLOAT(NP) ! Product of carrier and f

C ti-e increment
C

DELS = SQRT(6.0/SNR)/(2.0*PI*FQTEND) !Expected erro~r
C for s estimate

S - 1.0 + DELS
C
C Convert arguments of trigonometric functions to radians

FBTINCR -2.0*PI*FBTINCR
FOTINCR = 2.0*Pl*FOTINCR
FBDELT -2.0*PI*FBDELT

C,
C 'ntialize sums

SUMI -CMPLX(0.0,O0Q)
SUMJ -CMPLX(O.0,0.0)

C
C Compute first sum

DO I-O,NP
COSCOSI=COS( I*FBTINCR )*COS( S*I*FBTINCR)
-SUMI=SUMI + COSCOSI*CEXP( CMPLX(0.0,DELS*I*FQTINCR))
ENDDO

C
C C-ompute second sum

DO J-0,NP
COSCOSJ=COS( J*FBTINCR )*COS( S*(J*FBTINCR+FBDELT))
SUMJ=SUMJ+COSCOSJ*CEXP( CMPLX(0.0 ,-DELS*J*F0TINCR))

ENDDO
C
C multiply sums

DSUM -SUMI*SUMJ
C
C Compute phase bias

PHIB - ATAN( AIMAG(DSUM)/R-EAL(DSUM))
PH13 - PHI3*180.0/PI
WRITE(6,60) PHIB

60 FORMAT(' PHIB (DEGREES) -,El0.4)
C
STOP
END
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