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ABSTRACT

A method of phase comparison time delay estimation using large
time~bandwidth product signals is presented. This method compares the
phases of the matched filters for each channel, and it is shown that for
signals with symmetric power spectra, a meaningful estimate of time delay
can be extracted from this phase information and knowledge of the carrier
frequency of the signal.

The estimator is evaluated while operating in white Gaussian noise
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CHAPTER 1

INTRODUCTION

The problem of time delay estimation has received much attention in
the literaturel™®, 1In its simplest terms, the problem is to estimate
the time difference of arrival of similar signals in two different
channels. In general, the literature can be divided into two distinct -
categories passive and echo location.

In the passive mode, the receiver "listens™ to a source in each of
two receiver channels, and estimates the time difference between the two
channels. 1In this case, very little may be known about the form of the
signal. In echo location, a signal is transmitted in the channels, and
the receiver "listens"” for reflections in the channel. Here the signal
form is known to be a (possibly distorted) time delayed replica of the
transmitted signal, and the task is to measure the difference of the
time delays in the channels,

In each of these modes of operation there are two common methods
used to estimate the time delay: cross-correlation methods, and phase
comparison methods. The first of these methods performs a cross-
correlation of the two received signals, selecting as the estimate of
the time delay that value which maximizes the magnitude of the cross-
correlation.

In the phase comparison method, the analytic signal from one
channel is conjugat;d and multiplied by the signal from the other

channel and the phase of the resultant product 1is averaged over the time




duration of the signal. In order to assign a meaningful estimate of the
time delay from the phase information, the signal must be assumed
narrowband.

In the literature cited above, these estimators and variants
thereof have been extensively analyzed under various hypotheses.

This thesis presents a method of time delay estimation which was
originally developed by Ricker/. This method is inherently an echo
location estimator of time delay which uses a comparison of the phase of
the matched filter for each channel to estimate the delay. It will be
seen that, under the proper assumptions, this estimator is capable of
using large time-bandwidth product signals and still giving a meaningful
estimate of the time delay from the phase information.

Other advantages of this method include the fact that it handles
Doppler~shifted channels with ease, and that with proper signal design,
it can isolate multiple scatterers in the channels and estimate the time
difference for each scatterer. With this estimator, one may utilize
signals with large time-bandwidth products that resolve well both in
time and in frequency so that one can simultaneously estimate the total
propagation delay, the time stretch (Doppler), and the time difference
of arrival.

The next chapter will present the receiver strvcture and the
estimation procedure. Chapters 3, 4 and 5 will evaluate the perfor-
mance of the receiver operating in additive white Gaussian noise, and

Chapter 6 will summarize and suggest further work in this area.




CHAPTER 2

RECEIVER STRUCTURE

This chapter will discuss the method in which the received signals
are processed, and will present notation and assumptions that will be
used in the chapters that follow. The receiver structure is shown in
Figure 2-1. 1t is assumed that a signal f(t)ejmot, was transmitted
and that the received signals, rl(ti) and rz(ti), are samples of two
time-delayed, time-stretched replicas of the transmitted signal plus
additive noise. The function f(t) is known as the complex envelope of
the signal, and W, is equal to 2nfo, where fo is the carrier frequency.

The received signals, r and r, can be written as follows

1 2
(t,- 1))

rl(ti) = /E; f[s(ti—rl)]ejwos i 1 nl(ti)
(e -

r(t,) = /E, f[s(ti-rz)]ejwos 1 "2, n,(t,)

It is assumed both signals are of the same energy, and that the complex

envelope is normalized such that

N

!

i=1

f[s(ti-rk)]lz =1 Sk =1,2 (2-1)

so that in the absence of noise, the energy of each sampled signal is Eo.
The time-stretch factor, s, is assumed to be the same in each channel,

and is related to the Doppler shift, ¢4, as

£ . (2-2)
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The time delays for each channel are denoted by 1, and 12, and the dif-

1
ference in time delays, At = Ty, = T is the quantity to be estimated.

The noises nl(ti) and nz(ti) are assumed to be white, complex proc-
esses with circular symmetrys,g, and with variance of real and imaginary
parts equal to oi. The real and imaginary components for each channel
are denoted as

nk(ti) = xk(ti) + jyk(ti) k=1,2,

The received signals are processed according to Figure 2-1., The
processing signal, f(ti), is a time-delayed, time-stretched replica of
the transmitted signal with hypothesis time-uelay and time-stretch
values of T and s obtained through some previous estimation procedure.

The processing signal 1Is denoted as follows:
a * R a -' -~ —A
B(r) = £ (8(e,~D)]e %S

The processing siguai is assumed normalized to unit energy, 1.e.

N

)

i=1

r(t )I = lf[s(t -1)]
i 1=1 i

2 .,

In the absence of noise, the output of each summation in Figure 2-1

is

Il 2

X, = r(t )r, (t,)
k 121 S s §

VE, f*lg(ti—;)]f[s(ti—rk)]ejwols(ti—Tk)_s(ti—r)] (2-3)

ez

i=1




which, when viewed as a function of T and §, can be considered as a
two-dimensional correlation between the received and processing signals.

The estimates, T and §, are often obtained by processing the
received signal with a matched filter. The matched filter concept is
based on the examination of the magnitude-squared of a function
X(T,S,%,g) over an appropriate grid of T and s values, choosing as the
estimate of the time-delay and time-stretch those ?,g pairs which
maximize the magnitude squared, |x(r,s,?,§)|2. Note that for signals
with sufficient resolution, the matched filter approach is capable of
resolving multiple reflections, identifying the t and s values of each
reflector as distinct maxima on the T,s grid.

An important function that arises out of the discussion of matched-
filters is the ambiguity function. The ambiguity function depends only
on the particular signal employed, and is equivalent to the matched fil-
ter for a noilseless scattering channel consisting of a point scatterer.
The accuracy with which one can estimate -ime-delay and -stretch
depends on the behavior of the signal ambiguity function near the
origin. For the reader unfamiliar with matched filter concepts, rather
thorough treatments are given in Van Treesl0, and in Cook and Bernfeldll
for the narrowband case, and in papers by Altes12,13 for the wideband
formulation.

The time delay estimator of Figure 2-1 works as follows. First,
the received signai; r(t), representing a composite of the signals rj(t)
and ry(t) (or a related signal) is matched-filtered over an appropri-

ate ;-; grid, ylelding ]x(t,s,r,s)lz. This function is ¢xamined over




the grid, with those peaks that are above a pre-selected threshold

representing substantial reflections in the channel with different time-

delay and -stretch values estimated by the corresponding T and s values.
Once a peak has been located, the T and s values corresponding to

the peak are used to process the recelved signal for channels 1 and 2,

yielding xl(rl,s,;,g) and xz(rz,s,?,g). For each peak, the complex numbers-

xl(Tl,s,?,g) and x;(rz,s,Q,g) are multiplied together, yielding (in the

absence of noise)

* % A - -
Q = X;X, = Eo'(zf [s(ti-r)]f[s(ti—rl)lej“’o(S $)ty).
(Xf[g(ti—?)]f*[s(ti-rz)]e—jmo(s-s)ti)ejwos(TZ_Tl)
i
= £ (1167 18Ce~DIEls(e 1))
ij
flg(tj_;)]f*[s(tj_Tz)]ejwo(s—S)(ti—tj))ejwos(TZ-Tl) (2-4)

If the time-stretch estimate i{s assumed correct (i.e §=s), the

first line of (2-4) reduces to

Q = Eo-(Ef*[§<:i—%>1f[§<:i-rl>1)-

(T£05Ce,~DI£718Ce 1,01 Jed oS (T27T))
i

x 3
= Eo-(AlAz)eJ¢o (2-5)




where

L f*[s<:i-%)1f[s<ti-rk>1.
i

>

¢ = mos(rz-rl).

Hence, it is seen that if the time-stretch estimate is correct, the time

difference of arrival can be obtained from the phase of 0 as

*
if the quantity (AlAZ) is real. Note that if Ty =T then A, = A so

*
that the quantity A1A2 is real. However, with arbitrary At, A, and A

1

must be real independent of one another for most signals of interest,

2

and it is desired to find sufficent conditions for which this occurs.

To do this it is more convenient to utilize the continuous—-time domain.

In this domain

A'k = ff*(st-s;)f(St-sTk)dt’

where the energy conserving factors have been ignored, as they are

unimportant in the discussion. Defining

f(uma) <=> G(w) = e J¥3F(y)

g(u)

h(u)

f(u-b) <=> H(w) e'j”bF(w),

Parseval's relation,

[ & (wh(wde = [ ¢*(wH(w)dw

-0 -

-




can be used to obtain

A = i @nde = [ [rw)]? I Dy,

1f |F(-w)| = |F(w)|, this reduces to

A =2 / |F(w)|2 cos ws(Tk-?)dm, (2-6)
o

which is a real quantity. Hence, a sufficient condition for Ay to be
real has been established. If the complex envelope has a symmetric
power spectrum, |F(-w)|2 = |F(w)|2, then A 1is real. Note that this
1s dependent on the proper time-stretch estimate but is independent of
the delay estimate. Throughout this thesis, it is assumed that this
condition is satisfied so that A] and Ap will be real quantities.

The performance of this estimator depends on two factors. First,
the additive noise inherent in the channels will degrade performance by
adding unwanted terms to (2-5), thereby corrupting the phase, ¢o.
Second, the estimates, T and s will not exactly match the true values.
If the estimate T is reasonably close to the true values Tl and Ty
performance will not be adversely affected, since the only effect of
this is that the factors A1 and AZ in (2-5) will become smaller relative
to the additive noise terms as can be seen from the cosine term in
(2-6). 1f the estimate s is incorrect, however, the estimator becomes
biased due to the additional exponential that appears in (2-4). The T

and s estimates obtained from the matched filter will obviously become

less accurate as the noise level increases.
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In Chapters 3 and 4, the first of these problems is addressed, i.e.
that of the unwanted noise terms. 1In these chapters it is assumed that
the estimates of T and s are correct. In Chapter 5, the effect of a
T-s mismatch is discussed using a Cramér—Rao lower bound approach. To
simplify the analysis and notation, it is assumed throughout the follow-

ing that the channels contain only one scatterer.
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CHAPTER 3

UNCORRELATED NOISE

The first case to be considered 1is that of the receiver operating
in white Gaussian noise uncorrelated between channels. The complex
noise process is assumed stationary, ergodic, zero mean, circularly
symmetric, with variance of real and imaginary parts equal to ci. The
real and imaginary components for each channel are independent, and

are denoted as follows:

npleg) = x(e) + 3y ()

n, () = x,(t) + jy,(ey)
or more succinctly as

LIPS S + jyki k=1,2

where the first subscript identifies the channel, and the second is the
time index.

The white noise assumption requires that

= o2 -
E{xki xkj} = E{yki ykj} =0 61j k =1,2

where §;4§ is the Kronecker delta

6, = I
] 0,1%j

Circular symmetry requires that

E{xki yki} =0 for all i; k = 1,2

and the additional assumption of noise uncorrelated between channels
requires that

E{xlixzj} = E{yli y2j} = E{x11 yzj) = E{x } =0

21 713

for all 1i,j. (3-1)




The magnitude-squared of the noise process has expectation

2, 2 2, _ .2 _
E{|nki| b= Elxp + oy ) = 200 k = 1,2.

The received signal for each channel at time tj is

- _ jwgs(t.-1,)
rk(ti) /Eo f[s(ti rk)]e i k7 + nk(ti)
or

- jwes(t,-1.)
Ty = 7Eg £y @ L k% +

where fki = f[s(ti—rk)] is the complex envelope of the received signal

If the processing signal f(ti) is denoted as follows:

- - _ —jwog(ti-;)
r(ti) ri fi e

12

~ * A -
where fi = f [s(ti—r)] represents the complex envelope of the processing

signal, then the output of each summation block in Figure 2-1 can be

written

Xy = i Ty Tpi =

VE F £ ejmo[(s-g)ti+§;—sr —jwog(ti-%)

] -~
o Ti'ki k® + my,fe

]
™~

[N

VES £ f | e39%S(TTT) nk.f.e-jwos(ti_ﬂ
o 1 ki ii

]
[y}

(if s=s) (3-2)

S

where the last line assumes the proper time-stretch estimate, s = s.
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Since the Gaussian noise components are all assumed independent of
one another, the explicit and implicit phase factors in the second term
of (3-2) can be absorbed into the noise process without altering the
statistics of the situation. This yields

. juos(t-1.) | 5 7 : - -
X, = 'E, e k E fifg * §|fi|nki k=1,2. (3-3)

The second term, being the sum of independent, zero-mean Gaussians is
itself a zero-mean Gaussian, which shall be denoted by Ny - The real and

imaginary parts of this term have variance

2 2 ¢ 12 2
%h = %n g Ifil = %

2 -

since I |fi 1, so that (3-3) can be written as

x, = /E. A eJ9oS(T-Ty ) n k=1,2,

where Ak = I fifki’

The output, Q, of the estimator of Figure 2-1 1s then

_ * jw s(T-1,)
Q= x;X, = iﬁ; Ae” o 17+,

. /E; Aze-Jmos(T—TZ) +n

0o * |

E A A eroS(TZ-Tl) + /E; A2n

%* *
SALA, + /E; A, + nn (3-4)

I 2 172

where, as above, the complex exponentials have been absorbed into the
noise terms without“altering the statistics.

It has been previously assumed that s=s. If it is now also assumed
that the time difference of arrival, At, is small and that the time delay
estimate, T is accurate such that T =~ T (k = 1,2), then fki - Ei’
so that Ak ~ I |f1|2 = 1.
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To see what 1s meant by the words “small” and "accurate,” one needs to
examine (2-6) where it is seen that 1f cos wmaxs(rk—r) ~ 1, then A will
be at its maximum, which is 1. Here 0 x denotes the maximum frequency
of the complex envelope (i.e., 0 ax equals one-half the signal band-

width). 1In this case (3-4) reduces to

- jw s(t,-1 ) * * _
Q=Ee o 21+/§n1+/§n2+n1n2 (3-5)

The presence of the last term in {3-5) renders further analysis
intractable, so it is desired to quantify conditions under which this
term becomes negligible. The expectation of the magnitude-squared of

of the process can be found as

B n, 1%} = EllRe(n 1)1} + E{{In(n n3)17)

4
Acn ,

where E{*} 1is the expectation operator. Thus, if the input signal-to-

noise ratio 1is defined as

Input Signal Energy Eo Eo

= Expected Input Noise Energy N-E{In |2} 2N02
ki n

then the ratio of the magnitude-squared of the first term of (3-5) to
that of the second or third term has expectation

£, £,
=—%- - (3-6)

2
E{Eo'lnkl }oo20,

while the ratio of the magnitude of the first term to that of the last

term has expectation




15

EZ
o

— = ()2 . (3-7)
4a

n

Here, as in the previous chapter, N is the number of input samples. By
comparing (3-6) and (3-7), it is seen that the last term of (3-5) is of
second order. For example, if there is a 0dB input SNR (h=1) and there
are 1000 input samples, then the second and third terms are 30dB below
the first, while the last term is 60dB below the first. For the rest of
the development, it is assumed that the quantity Nh is large enough so
that the last term of (3-5) can be ignored. It will be seen that for
values of Nh as small as 10, this approximation yields variances con-
sistent with those obtained through computer simulations.

It 1s seen that for large Nh, the output SNR, given approximately
by (3-6), is N times as large as the input SNR. The factor N can thus
be considered as a processing galn. For a receiver sampling at a
frequency equal to the bandwidth of the signal, N is equal to the
time-bandwidth product of the signal, so that the receilver structure of
Figure 2-1 is seen to have a processing gain equal to the time-bandwidth
product of the signal.

Defining N4 such that

*
ng = /i (n+n,),
(3-5) reduces to

Q= Eoejwos(TZ-Tl) + Nq» (3-8)

where N3 is a complex Gausslan process with variance of real and
imaginary parts equal to

2 _ 2 )
oy = ZEoon . (3-9)
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Q can be written in terms of its real and imaginary parts as

Q= Eoe3¢o + n3
= Eo(cos¢o + JSln¢°) + utjv
= a + u+ j(b+v)
where
¢o = mos(rz-rl)
a = Eocos¢°, b = Eosin¢o
u = Re{n,}, var(u) = 02
3°? 3
v = Im{n,}, var(v) = o2
3 ’ 3 bl

so that our estimate of ¢o’ denoted by ¢, is

¢ = tan-l(gzﬁ . (3-10)

In the absence of noise it is noticed that ¢*¢o as desired.

In order to evaluate the performance of this estimator, it is
desired to find the probability density function for ¢, denoted by f(¢).
The density function, f(4) would be more precisely notated as f(¢|¢o),
and might be more properly regarded as a likelihood function.l4 Also,
it is noted that the estimator to be derived is a maximum likelihood
estimatorll,15 of ¢o for the uncorrelated noise case.

The numerator and denominator of the arctan argument in (3-10)
are independent and have Gaussian densities with mean b and a,
respectively. The 5oint density for numerator and denominator s thus
the product of the two marginal Gaussian densities, and to find the
density for ¢, one may convert to polar coordinates as follows, and
integrate over 0 < r< =, Letting uta = rcos¢ and v+¢b = rsind, the joint

density becomes
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f(u,v) = 5~ exXp -2 (u2+v2) >
2ﬂ03 203
f(r,¢) = 12 r exp —é [(rcos¢-a)2 + (rsin¢-b)2] ,
2n03 203

where the factor r is the Jacobian of the transformation. The desired

density is obtalned by integrating over r:

£(¢) = [ £(r,¢)dr
o]

= 1 exp -; [a2+b2] . f T exp _é [r2 - 2r(acos$ + bsind)ldr.

2
21rc3 203 o 203

Recalling that a = Eocos¢o and b = Eosin¢o, and using a well known

trigonometric identify, the above expression becomes

1 'Ei = -1 ;.2
£(¢) = exp * [ r exp [t© - 2E rcos(4-¢ )]dr,
2 2 2 o o
2n03 203 o 203

or, making a change of integration variable,

Ei P 'Ei 2
£(¢) = > f r exp —5 [t = 2 cos($-4 )r + 1]dr,
2ro o 20 o
3 3
E
. 042 2 g
which is a function only of ¢—¢0 and (E_) . Recall that 03 = ZEO 0’ and
h =E /2N02, so that
o n
Ei E2
5> = g = Nh.
o) 2E°a
3 on

Here again, h is the input signal to noise ratio, and N is the number of

input samples. Finally, then, the density is written
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L) _Nh
e 2 r exp —— [t

2

£(¢) = g%

-2 coq(¢-¢o)r]dr, (3-11)

O *— 8

which is a function only of ¢—¢o and the quantity Nh.

Unfortunately, the density given by (3-11) cannot be expressed in
closed form. The integral in (3-11) can be found in the tables by
Gradshteyn and Ryzhikl® (#3.462.5), where it is expressed in terms of
the error function, but the solution is only valid in our case for
cos(¢—¢o) < 0. The density of (3-~11) is integrated nuwerically on a
VAX 11/782, yielding the curves in Figures 3-1 and 3-2. Note that
although these densities are Jdefined over -m < ¢-é, < m, in Figures 3-1
and 3-2 they are shown over a smaller range to better see their shape.
Also, a curve of the variance as a function of the output signal to
noise ratio Nh was generated digitally, yielding Figure 3-3.

It must be noted that the moment quantities depend on the inte-
gration limits chosen. Mathematically, any limits of the form
6 < ¢ < 8 + 21 will do, however for the application here, the choice

is clear. Choosing the limits ¢0-n < ¢ < ¢o+n, the mean, p, is given by

¢O+ﬂ -
W= [ E(8)de = [ (44 )E(4+o )as

m -

1]

ut w
[ ofCo+o )b + b [ £(4+6 )do

-7 -

0+ =,
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where the first integral is zero due to its odd integrand integrated
over symmetric limits, and the second integral is 1 since it represents
the area under density, f(¢). Hence, with this choice of integration
limits, the mean is equal to the true value (i.e., the estimator is
unbiased), so that the variance is a measure of the fluctuation of ¢

about the true value, ¢o.
The estimate of time delay is given by

AT = -8

-~
w s
o

which has mean equal to the true value (if ;=s), and variance

E{AT} r_ .9

var{A?} =— o]
(wos)

where 02 = var(¢) is shown in Figure 3-3.

From Figure 3-3, it is seen that the variance of this estimator
decreases approximately as 1/Nh. Under previously stated assumption, N
can be replaced by the time-bandwidth product of the signal, and the
time delay estimator is seen to take advantage of the processing gain of

large time-bandwidth product signals to reduce the variance of the time

difference estimate.
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In order to test the validity of the variance curve of Figure 3-3,
the estimation procedure of Figure 2-1 is simulated on a computer. The
signal used for the simulation is based on a Welsh constructionl!’/ with a

real envelope. The signal is of the following form

f(t)eJZNfot

£ = 30,000Hz f

i
550
750
650
700
350
850
600
400
500
10 450
11 800
12 300

rh
~
cr
~
1]

w(t)cosanit (i—l)'I‘s <t < iTs

T_. = subpulse length
= .05 seconds

w(t) = 50 dB Taylor Windowl?

O 00 NN E W )

The ambiguity function of this signal is shown in Figure 3-4. Note
that this signal has good resolution both in 1 and in s, due to its
large time-bandwidth product. Note also that by giving the signal a
real envelope, one obtains a symmetric spectrum as required by (2-6).

The signal 1s sampled at 1700Hz and matched-filtered using the
correct T amd s values, T = 1, = 1.0, s=s =1, Next, 1000 complex

1

Gaussian noise samples were generated, normalized as in (3-9), and added

-
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to Q as in (3-8) to obtain a sample mean and variance to compare with
the theoretical unbiased mean and the variance of Figure 3-3. The

results are summarized in Table 3~1 table for ¢° = 0 and ¢° = 45°,

Table 3-1

Theoretical versus Sample Means and Variances

Nh 10 100 1000 10,000 |

Theoretical Mean (Deg) 0.000 | 0.000 | 0.000 0.000 =

¢o = 0° |Sample Mean } 0.068 : 0.045 i 0.015 0.005 :
Theoretical Variance = 380.0 { 33.2 % 3.3 | 0.36 :

ISample Variance I 369.0 l 34.0 ‘ 3.4 l 0.34 ‘
Theoretical Mean } 45.00 } 45.00 : 45,00 : 45,00 %

¢0 = 45°|Sample Mean } 45.84 } 45.25 % 45.09 ‘ 45.05 l
‘Theoretical Variance I 380.0 : 33.2 ‘ 3.3 I 0.36 1

,Sample Variance E 379.6 E 35.0 i 3.5 } 0.34 E

It is seen that the expressions derived above for the density func-
tion of the estimator generally predict variances consistent with the
sample variances of the simulations even for values of Nh as low as 10,
and the sample mean approaches the theoretical mean, ¢o’ for large values
of Nh.

This concludes the analysis of the estimator operating in uncorre-
lated noise. The next chapter will discuss the considerably more com-

plicated case of noise which 1Is correlated between channels.
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CHAPTER 4

CORRELATED NOISE

In this chapter, the receiver performance is evaluated when
operating in white Gaussian noise which is correlated between channels.
As in the previous chapter, the noise is assumed to be a white, cir-

cularly complex Gaussian process, so that

E{xkiyki} =0 for all i; k = 1,2

2
E{xkixkj} = E{ykiykj} =0 Gij k =1,2.

The noise process 1s assumed to be correlated as follows:6

~ 2
Elxyy%p5) = Ely 3y} = poy 844

2
E{ } = -E{ } = Xon §

*11Y23 *23714 13°

A physical interpretation of p and A is given in Appendix A. It is

noted here for future reference that p and A are such that

2
pT+ AT < 1. (4-1)

This can be seen from examining eigenvalues of the covariance matrix

for the density f(xl,yl,xz,yz), noting that since the covariance matrix

is positive definite, its eigenvalues must all be positive.19

The development of Chapter 3 may be followed up to (3-2) without

modification. Equation (3-2) is repeated here for convenience:

1,2.

Xy = /E_eros(T_Tk) . z Eifki +)n f e‘jmos(ti—T) k
° { { (4-2)
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Xy represents the output of the kth summation block in Figure 2-1, and
(4-2) assumes the correct time-stretch estimate. Since the complex
noise is assumed correlated between channels, more care must be taken
when absorbing the complex exponential of the last term of (4-2) into
the noise process.

If the second term of (4-2) is written in terms of its real and
imaginary components,

f nki%i e_jmo;(ti—;) = u + jvk

then the correlation coefficients for Ups Yy Uy, v, can be expressed
in terms of the input correlation coefficients, p and A. Using the
results of Appendix B and the fact that the “ime samples of the noise
are independent, it can be shown that Ups Yy Uy, Vg have the

same correlation coefficients as X140 Y1g0 Xoqs and yZi; that {s,

2
E{uluz} E{Vlvz} = po_

_ 2
E{ulvz} “E{u,v,} = Ao .
It is noted that the variances also remain unchanged, due tc the fact
that the processing signal is of unit energy.
As in the previous chapter, this processed noise term is denoted
by nk’

o . - S =jw s(t,=-1) -
e T U + 3vy . Ny fi e " o i k 1,2

. 2
with variance of real and imaginary parts equal to On.
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If Ak 1s again defined as

A = ) £,f4 kK =1,2,
i

then the output of each summation block in Figure 2-1 can be written as

w ;(;—1 )
X, = /EZ A 3% k' +n k =1,2

k

so that the output Q, is given by

Q = x* = [VE a

jw _s(T-1,) -ju_s(T-t,) , *
1X2 Bfre o 17 + nl][/E;Az e~ o 2 nz]

R ~ _ s a A— * ~ A_
8,030 7271 4 VB n 73905 TTTR) 4 v e e

B tA18y 2

+nyn, (4-3)
Defining
R P C % W
n ne o 2 uy + jv1
- _ -jw s(T-1,) _ = ~
n2 nze o 1 u, + jv2

it 1s again desired to find the correlation coefficients of ;1, ;l’

Uy Yy in terms of p and A. The results follow from direct application
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of Appendix B, and are summarized below:

E{uluz} V2

i}
o]
Py
<
<
gt
]
~~
[g]
©
|
[o W
>
St
Q
1]
©
Q

E{Gle}

~ _ 2_-
E{vluz} = (cA + dp)on = Ao

where -

[¢]
]

cos wos(rz-rl)

[=9
il

sin mos(rz—rl).

and the new correlation coefficients, p and X are introduced to simplify

notation in the following development. It 1s noted for future reference

that

52 + 32 = (2 + ah(o? + 22
o2+l <1

where p2 + Xz <1 as in (4-1).

Equation (4-3) can now be written in terms of n, and 52 as

1

L
]

. jw s(t,-1.) ~ ~k o~ -k g s(t.-1,)
EcAjAe’ o2 17 + /E;Aznl + /E;Alnz +ngne’ o2 L

= E °ejwos(TZ_Tl)

~k iy e -
o eJmoS(TZ Tl)

- - -~
+ v’E;(n1 +n,) + 00,

’ (4—4)

where the last step assumes that the estimate of time delay 1s correct,

and that the time difference of arrival is small so that A1 = ] and

AZ = ], as in the previous chapter.
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Again, as a concession to tractability, conditions under which the
last term is negligible are quantified. The expectation of the
PR
magnitude-squared of the process nn, can be found directly through

tedious integration to be

B[R 512} = E{(Re(A, )12} + E{[In(A 75)1%)

2 4

n

4(1 + p° + Xz) < 8¢

2 2

Where the inequality arises from the fact that p“ + A° < 1. Thus

with the input signal-to-noise ratio defined as

the ratio of the magnitude-squared cf the first term of (4-4) to that of
the second or third term has expectation

2
0

PPy
E{(/E;nk) }

E
(4-5)

as in (3-6), while the ratio of the magnitude-squared of the first term

to the expected magnitude-squared of the last term 1is

2 2
E E E
e L L
Et|n n,[“} 8¢ o
12 n n

From (4-5) and (4-6) it is seen that the last term of (4-4) is again of
second order, becoming negligible for large values of Nh. For example,

if Nh = 1000, then the second and third terms are 30dB below the first,




while the last term is at leasc 57dB below the first. Throughout the

rest of the chapter, the last term of (4-4) is dropped.

where

In terms of its real and imaginary parts, Q can be written as

3 ~ - *
=g o198 /Eqn, + /En,

Q o
: *
-k 3% + JEn, + /En
o ol o2
=a+ jb+ /E;[ul +u, + iy, - vz)]
=3+ /E;Iul + u2) + j[b + /E;(VI - VZ)]
¢’o B mos(TZ - Tl)
a = E cosd b =E sind
0 o o o
u, = Re{ﬁl} vy = Im{ﬁl}
u, = Re{nz} vy = Im{nz}
var{- } = 02 var{; } = 02 k =1,2
Y n k i
E{a.6.} = E{v.v.} = p d°
172 12 n
E{.v.} = ~E{v.a.} = % o2
12 172 n
o =

X

I

P cos¢0 -2 sin¢o

+ L ]
P sin¢o A cosqbo

31
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The estimate of ¢0 is then given by ¢, where

o B Ev ) “Ib+y
$ = tan ( — ) = tan " ),
a + /E;(ul+u2) arx

and where x = Gl+ 52, y = Gl- ;2. In order to evaluate the
statistics of this estimator, {t is necessary to find the covariance
matrix for the numerator and denominator of the argument of the arc-

tangent. Denoting this by Bxy’ it is seen that

-, - . -
R = E{x"} E{xy}| _ 2k _02 (L + p) -
—xy 9 o n .
E{xy} E{y"} A (1 -p)
o2 o oa
_ |l x Xy Xy
p_._ o 0 o 2
Xy xy y
where
2 _ L2 =
ox = ZEO on(l + p)
2 2 ~
oy = ZEO on(l - p)
.
ny = = .
Yl-p
It 1is noted that pxy < 1 since 52 + ;2 € 1. The joint Gaussiar. density
is then8
f(ny) *117_2' exP (— % [X,}’] R _x— )
2n|R_ | Y
XYy
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1 -1 2 x 2
= exp (55— -20 T+ Zi*) .
2 2(1—p2 ) 02 xy 0xoy o
J1-
2ncxcy 1 pxy _ Xy X Yy _

Once again, the change of variables x + a = r cos¢, y + b = r sin¢ is
made to obtain the density for ¢ = tan_‘(%zg). After considerable

algebraic manipulation the joint density f(r,$) is obtained:

r 2 r
f(r,¢) = r e k e—u(?) + 2v (E-)
3 1) o
2m0 o Yl-p
Xy Xy
where
- ) _
k = _—1——-— .a_. -+ .b_ -— 2p ab
2(1_02 ) O2 02 Xy oxoy
Xy’ [ X y -~
2 - _
Eo cosz¢ sin2¢ sindcosd
U= + - 29 —_—T
2(1_92 ) 02 02 Xy oxoy
xy” |_x y _
Eo lg-cos¢ b sind a siné + b coséy
v = + + o, ( ) -
2(1_‘)2 ) o2 o2 X oxoy
xy” | x y

The desired density, f(¢) is again obtained by integrating the joint

density, f(-,$) over all valnes of r, i.e.
£(%) = [ f(r,$)dr.
)

This integral is of the same form as that of (3-11), but with consid-
erably more complicated coefficients in the exponential. These coef-

ficients can be substantially simplified by writing o, oy and pxy in
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terms oi Gn’ p, and X and by recalling that a = Eocoscbo and b = Eosin¢o,

yielding
EO - -
k = — 7 [1 -p cos(zcbo) + 2 A c05¢° sin¢o]
47 (1=-p"=2")
n
E, ) )
Wy [1 - p cos(24) + 2 X cosd sind]
407 (1=-p " =1")
n
E, } .
Ve [cos(¢—¢o) - p cos(¢+e ) + ) sin(¢+¢o)]- (4-7)

4% (1-52-32)
n

The density is then written

£(s) = e [~ exp[-u(%—)2 + Zv(é— ]dr
47E o2 /1-52-X2 ° ° °
on
-k
E e @ 2
= ° f r exp[-u r + ZVr]dr (5_8)

Anoi /1—52-X2 o

Where the second line results from a change of integration variable.
Once again the integral for f(é) cannot be put in closed form. It is
seen that for the correlated noise case, the density f(¢) is a rather
unwieldy function Qf several parameters: Eo/ci, 5, i, and ¢o. In

addition, p and A are in turn functions of ¢o and the input noise

2
correlation coefficients p and A. The quantity Eo/cn in (4-7) and (4-8)
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is replaced by the quantity 2Nh to get the density in terms of the input
signal-to—~noise ratio.

Roughly speaking, the quantity Eoldi controls the sharpness of the
density, while the correlation coefficients alter its shape. The
density is integrated numerically for various combinations of parameters
yielding Figures 4-1, 4, 7, and 10,

The densities are then used to generate curves of the mean and
variance of the estimator for these combinations of parameters, yielding
the continuous curves in Figures 4-2, 5, 8, 11 and 4-3, 6, 9, 12, It is
again noted that the moment quantities depend on the integration limits
chosen., For the correlated noise case, the cholice of these limits does
not seem as clear as it was for the uncorrelated nolse case, because the
estimator is now biased. If the same limits are chosen for this case
however, the estimator will become unbiased for large values of Nh, so
the integration limits are again chosen as ¢o -nm< ¢ < ¢o + n,

Tnese curves are again verified using the same signal and sampling
parameters as in the previous chapter, yielding the discrete points in
the mean and variance curves. The noise model used in these simulations
is described in Appendix A, with the incoherent noise correlation
coefficient, Di set equal to zero so that the incoherent noise is uncor-
related between channels. The coherent noise is the same in each channel

except for a phase delay,
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where ¢c = tan-l(%J, p and A being the input noise correlation coeffi-

cents. The incoherent noise has variance of real and imaginary parts
2 2

o = (l—r)cn .

while the coherent noise has variance

where r = ¢p2+x2, and onz is the total noise variance.

From these figures, it is seen that both the sample and theoretical
means approach the true values for large values of Nh. Also, the vari-
ances predicted by theory are consistent with the sample variances gen-
erated by the simulation for large Nh. The theoretical curves are
accurate only for Nh of about 100 or greater due to the approximation
made by developing the last term of 4-4.

Again it is seen that for large Nh, the variance drops of as 1/Nh.
Replacing N with the time-bandwidth product of the signal (as in the
previous chapter), it is again seen that the estimator takes advantage
of the processing gain of large time-bandwidth signals to reduce the
estimator variance.

The analysis of this and the previous chapters has assumed that the
time-stretch and -delay estimates are correct. In most cases these
estimates will not he exactly correct. The effect of a T-s mismatch is

the subject of the following chapter.
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T-s MISMATCH
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In Chapters 3 and 4 it was assumed that the estimates of time-delay

and ~-stretch were correct. 1In practice, these estimates will not be
exact, and this will affect the performance of the time difference
estimator. 1In order to examine the effects of a t—-s mismatch, it is
necessary to go back to Equation (3-2), before any assumptions about
T and s were made. The second line of (3~2) is repeated here for
convenience:

ejmo[(é-s)c1 + é%-srk] vt f e-jwoé(ci-?)

X .
k o iki { ki 1

]
X

.
[y}
rh)

where X, represents the output of the kth channel in Figure 2-1. This

can be rewritten in the following form:

= /E;ejwos(r—rk) e-jmo(s-s)t . 3 ejwo(s—s)t

Xy Lff L+n
i
- jé, B ¢ 2 ja
/E;e k e f B fq e 1+
where
¢k = mos(r-rk)
a, = wo(s-s)ti , B = wo(s-s)t
~ » —jw s(t,-T)
nk = L nki fi e o i

i
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The output of Figure 2-1 is then written as

* 3 - A ak -
Q= XX, = Eo-ej¢o JBB) g2 3% g Eifyy e 394

- - ak * 3 -~ 3
+ /E e J¢2 e i8 n, Lff . e jai + /E_eJ¢l eJB n. ¢ E.f . e3%
o 1 j 3723 o 1 i7141
*
. +nn, (5-2)
where
g = &) T 4y = s(TymT)
In this equation, ej¢o represents the true signal phase difference, and

it is seen that the bias represented by the factor ejB cancels itself,
so that the only bias remaining in the first term is that contributed by
+i8 tja
the double summation. It is also noted that the factors e and e i
do not affect the correlation coefficients between the second and third

terms (see Appendix B). The last term will be dropped under previously
stated SNR assumptions.

If the assumption is again made that thz time difference of
arrival, Tz-Tl is small relative to the bandwidth of the signal as in

previous chapters, then f,, = fli’ so that the first term in (5-2)

21

- becomes

ak %k ~-ja. S J(¢ -4,.) - ja, 2
fjfzj e~ j=Eee "1 "2 li £ £ 1]

tde ™M

(5-3)
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so that there is no bias in the estimate of ¢o due to an incorrect time-
stretch hypothesis. There still remains, however, a bias in the time
difference estimate. This bias occurs from using the estimated time
stretch, ;, rather than the true time-stretch, s. The estimated time
difference (in the absence of noise) is

¢ ¢ 2

AT = o = o n ~ ¢ (1 - ﬁ) = AT(I - E:S—) (5"'16)
w s w s + mo(s-s) o s

where AT is the estimate of 7T At is the true value, ¢° = ¢l-¢2 =
mos(rz-rl), and where a binomial expansion yields the approximation.

For reasonably good time-stretch estimates (i.e., |s-§|<<1) this bias
will be negligible.

Comparing the magnitude-squared factor in (5-3) with (2-3) and
noting the discussion following (2-3) it is seen that this factor is the
magnitude-squared of the matched filter output whose main peak is at
T = T s = s, evaluated at the point (?,;) corresponding to the esti-
mates of the the true values. If the t and s estimates are not exactly
correct, the magnitude-squared factor in (5-3) will become smaller,
effectively lowering the signal-to-noise ratio.

Thus, it is seen that a T-s mismatch does not affect the noise terms
(or change any bias due to the noise terms), and if the time difference
of arrival is small, the only effect is a slight bias represented by
(5-4), and a decreéﬁe in the signal-to-noise ratio due to the magnitude-

squared factor in (5-3).
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If the time difference of arrival cannot be assumed small, as was
necessary to derive (5-3), then the sum must remain as in the first term
of (5-2). The problem thus becomes more difficult, and the performance
depends on the particular signal employed.

A special case of interest here is that of a real envelope signal
(such as that employed in the examples of the previous two chapters). In
this case, the double sum in first term of (5-2) can be written as

follows:

s, e e - B £, £e. eJ¥o(s=s)(ty-t.)
i j 14 13 J 4 (5-5)

(where the complex conjugate symbols have been retained for future
reference) so that a crude upper bound can be placed on the phase bias

contributed by this term:

|¢b| < mols-slT (5-6)

where ¢b denotes the phase bias and T is the signal durationm.

It is desired to obtain an idea of the typical size of the estima-
tion errors for the time-stretch. The estimation errors for matched
filter receivers have been considered by VanTreesl0 and by Cook and
Bernfeldll, who use a Cramer-Rao lower bound approach to derive an
expression for the minimum error variances for this estimate, and who
show that the estimation errors approach the Cramer-Rao bound for
maximum-likelihood estimators.

In general, the estimation error for s wiil be coupled with that for
T, but a sufficient condition under which these estimates become
uncoupled is that the signal employed has a real envelopelo, which has

already been assumed.
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Adapting the discussion in Cook and Bernfeld, and noting equation

(2-2), the variance for the time-stretch estimate is bounded as follows:

, (/e )2

- (s}

E{(s-8)"} > —>— (5-7)
£%h

where h is the input SNR, and £ iIs the RMS signal duration, given by

T/2
[ e21£0) ) ae
~T/2

1| v

where E is the signal energy, and f(t) is the unsampled signal envelope.
Following the example given in the paper by Ricker,7 if the real

envelope has constant amplitude, W and bandwidth B>>-l, the energy

becomes
1 2
E——Z'wo T
and
T/2 2
£2 ~ g [ w 2 24 = L
w T =T/2
o
so that
E{(s-5)%} > —2— (5-8)
(on) h

If the standard deviation corresponding to (5-8) is considered a
useful estimate of the magnitude of the error in the time-stretch

estimate, then (5-4) becomes
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AT - at(l ¢
/h wosT /h moT

so that the bias term is seen to be negligible for most situations, where

vh on >> Y6. Using the standard deviation in (5-6) yields
/6

This expression appears somewhat disappointing, but in practice,
this large bias estimate is often due to the crudeness of the bound,
rather than to poor performance of the estimator. in many situations,
the time difference of arrival is known to have an upper bound (i.e.,
AT<ATmax), and for a given signal, one can use this "worst case"” time
difference in (5-5) along with the estimate of |s-§| in (5-8) to calcu-
late an estimate of the bias, ¢b. Indeed, this estimator is inherently
limited to estimating delays that fall within a range corresponding to

the time required for the carrier to complete one cycle, i.e.

¢min << ¢min + 2n

or

w sAt ., < w slAt < w sAT + 2
o min o (o} min

At . <€ At € AT
max

min
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In essence, a priori knowledge of the range of possible time dif-
ferences is required so that one can assign the proper time-delay value
to an observed phase difference. 1f, for example, AT is known to be
small and positive then Ar will be selected as zero, AT - L

min max fO
and the phase, ¢, is defined on (0,2n).

If, for At = At the coefficients f and f,. are nearly the same

max 11 2i
then the imaginary part of the product of the two sums on the left-hand
side of (5-5) will be nearly zero. For example, if the carrier frequency
is 30kHz, the modulation 1s a 850Hz pure tone, the signal duration is

: ) - -1
600 msec, the sampling frequency is 1700Hz, and Toin - o, Armax = fo ,
then the bias in phase is calculated numerically for real envelope
signals to yield the following table:

TABLE 5-1

Phase Bias for Real Envelope Signal

Input SNR ATpax (usec) [¢p| (degrees)
20 dB 0.0333 =0

0.333 9.49 x 1076

3.33 1.49 x 1074

33.3 (= 1/£,) 1.44 x 1073

10 dB 0.0333 3.43 x 1079

0.333 1.55 x 10~4

3.33 1.47 x 1073

33.3 1.47 x 1072

0 dB 0.0333 1.97 x 102

0.333 1.54 x 1072

3.33 1.63 x 10~2

| 33.3 | 1.65 x 10-1 |

-
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One would expect that for more complicated real-envelope waveforms
with modulation frequencies no greater than 850Hz the bias values would
be somewhat less than those of Table 5-1, since for lower modulation
frequencies the coefficients f11 and fzi would be more nearly the same.
Hence, the simplified numerical computations yielding Table 5-1 would
provide a means of estimating the bias error of receivers utilizing
more complicated real-envelope waveforms of a given bandwidth.

Because the method used to generate Table 5-1 appears to be of a
more general usefulness, the process is parameterized, and the FORTRAN
source code is included in Appendix C. The parameterization 1is useful
because with it one can perform the computations once for a whole class
of signals, rather than having to repeat the computations for each
specific signal used. This parameterization is explained in the comments
of the FORTRAN source code.

If the signal used is not a real-envelope signal as was assumed
above then the above procedure is not valid, but the bias can still be
evaluated numerically in the same fashion for each specific signal using
the maximum time difference and the standard deviation obtained from the
Cramer—Rao bound. It is mentioned here that if the signal does not have
a real envelope, then in general the estimates of T and s will in general
be coupled. 1In this case the bound given by (5~7) will still be valid,
but will not be as tight as possible. A tighter bound that accounts for
T-s coupling is diéﬁussed in Van Trees and in Cook and Bernfeld.

It is desired to combine the results of this chapter with those of
previous chapters in order to come up with a rule of thumb measure of the

total performance of the estimator. Here the noise will be assumed
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uncorrelated (as in Chapter 3). The measure of performance to be

derived will be E{(¢—¢o)2}, which represents the expectation of the
squared deviations of the estimator from the true value, ¢o. The
previous discussion in this chapter implies that the effect of the 1-s
mismatch can be taken into account by replacing ¢0 with ¢o + ¢b’ where ¢b
is a zero—-mean random process with variance determined from the
Cramer-Rao bound as discussed above. Without loss of generality, ¢0
will be assumed zero, so that the variance of Figure 3-3 will now
represent E{(¢-¢b)2}. The densities of Figures 3-1 and 3-2 will here be
represented as f(¢l¢b) in accordance with the discussion following

Equation 3-10. Denoting the marginal densities for the bias, ¢b and for

the total estimate, ¢, as f(¢o) and £f(¢), respectively, the density f(¢)

9
can be expressed as

m
£(4) = [ £(o[o,)E(8))dd, .
-

Then

m
E((s-0 )%} = E(s7} = [ o7 £(8)ds
-n

n n

[ €] 6% £o]0,)a83eC0,) doy

- -7
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where the order of integration has been interchanged. Noting that

¢2 = (¢‘¢b)2 - ¢§ + 2¢¢b, the inner integral becomes

T 42 T 2
[ 67 £Colo,)ds = _{ (6=0, ) £(o ]9, )do

-1

2 7 .
- 4 _{ £(o14,)dé + 26, _{ FICIEIL LI

In this equation, it 1is noted that the first integral is precisely the
variance 02, plotted in Figure 3-3, the second integral 1s equal to

unity, and the third integral is precisely ¢b, so that

E{(6-8 )%

]
A A

2 2
[0 + ¢b]f(¢b)d¢b

= o~ + oy - (5-10)

Hence, under the assumptions stated, one may merely add the
variance Oi obtained from the Cramer—Rao bound to the variance 02 from
Figure 3-3 to obtain a rule-of-thumb value for the deviations of the
estimator about the true value. Note that while this rule-of-thumb
was derived for the uncorrelated noise case, it 1s also valid for
the correlated noise case if the signal-to-noise ratio is high enoﬁgh

that the mean of the estimator is nearly equal to the true value, ¢ .
o




59

This concludes the discussion of the effects on the estimator of a
1~s mismatch. To summarize, if the time difference of arrival is small,
then the only effect of a 1-s mismatch is a slight bias as in (5-4) and
a decrease in the effective signal-to-noise ratio. If the time
difference of arrival is not small, then the phase becomes biased. A
crude estimate of this bias is given in (5-9). This estimate is
independent of the properties of the signal. A better estimate can be
obtained by assuming a maximum time difference, and by considering the
properties of the signal employed. For real envelope signals, this
process can be parameterized and computed via the program in Appendix C.
For more general signals, one must use the specific signal to calculate
the phase of (5-5). A mismatch in 71 still affects only the effective
sigal-to-noise ratio.

The variance, 02

e can be added to the variances given in the graphs

in the previous chapters to provide a rule-of-thumb measure of the

estimator performance.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

It has been shown in the previous chapters that wideband signals may
be used for phase-comparison time delay estimation provided the signals
employed have a symmetric power spectrum. Chapter 3 analyzed the
performance of the estimator operating in uncorrelated noise, while
Chapter 4 discussed the performance in correlated noise. The
uncorrelated assumption is often used in practice, where correlation
properties of the noise may not be availlable.

It was shown that in correlated noise the estimator becomes biased,
but approaches an unbiased estimator for favorable signal-to-nolse
ratios. For signal-to-noise ratios in which the densities derived are
valid, the variances fall off as *%g, and the sample means and variances
approach th2 derived theoretical values. By expressing the number of
input samples, N, as the time-bandwidth product of the signal, the
estimator was shown to use the processing gain of large time-bandwidth
product: signals to reduce the estimator variance.

In Chapter 5, the effects of a 1-s mismatch were examined. Central
to this is the Cramér-Rao lower bound on the time-stretch estimate. A
rule-of-thumb was given for estimating the squared deviations of the
estimator from the true value.

This method of time delay estimation has advantages over existing
methods in that it ;an handle Doppler shifted channels with ease, and
that it can identify and estimate the time delay for resolvable scat-

terers each wi*h distinct t-s values.




61

Jurther work remains in evaluating the estimator for multiple point
channels, and investigating possible interference phenomena between the
different point reflectors. Also, work remains in designing signals with
desirable characteristics under the new constraint that the signal's

spectrum be symmetric.
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Appendix A - Correlated Noise Model

This discussion of the noise correlation coefficients is taken
directly from Merchant®. The noise model assumed here consists of two

components: an incoherent component plus a coherent component, i.e.,

1 = -
Ny = My + nki k=1,2 (B-1)

where the superscript "1i" denotes the incoherent component, and the
superscript "c¢" denotes the coherent component of the noise. The vari-
ances of the real and imaginary parts of the Incoherent and coherent

components are 012 and ocz, respectively, where

The incoherent noise component has the following covariance properties

i 1}

. ~ i1y

dlxyy x5t = Ely g vl =y 947 8y
1 i, 1 1,

E{x1i y2j} = E{x21 ylj} = 0.

where pi is the in-phase correlation coefficient of the incoherent

noise.

The coherent noise is assumed to be the same in each channel ex-

cept for a phase factor:
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If the ratio of the coherent noise power to the total noise power is

then the covariance matrix for the Gaussian density f(xl,yl,xz,yz)

becomes
i 2 2. 2 2 ]
+0
on 0 pioi c cos¢c oc sin¢c
= 0 02 -02 siné P 02 +02 cosd
n, ,n n c c i1 c c
172
2 2 2 2
pici +oc cosqbc oc sin¢c on 0
2
2 2 2 0 o
+
cc sin¢:c pioi oc cosrbc n

so that the noise correlation coefficients used in Chapter 4 become

E(xlxz}
p = ———— =1 cosd + (l-r)p
2 c i

o

n
A= E{lez} = r sind .

2 c
o
n

If the incoherent noise is uncorrelated between channels (i.e., p, = 0),

i

p and A can be considered as the real and imaginary components of a

“complex correlation coefficient,” v = re‘J¢C.
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APPENDIX B
Change in Correlation Properties

Due to Complex Multiplication

Consider two circularly symmetric complex process

ny = x) + iy,

j=]
0

2 T Xt Iy,
with correlations

= = o002
E{xlxz} = E{ylyz} po

]

E{xlyz} = -E{xzyl} Ac”

If these processes are each multiplied by complex numbers of unit

norm, it is desired to find the new correlation properties. Let

]

+ 3 . . - _ .
up + vy = (a+ §b)(x, + jy ) = ax; - by, + j(bx; + ay,)

u, + jv, = (c + jd)(x2 + jyz) = cx, = dy, + j(dx, + cyz)

where (a + jb) and (¢ + jd) represent arbitrary complex numbers of unit

nornm. Then

E{uluz} E{(ax1 - byl)(cx2 - dyz)}

E{acxlx2 + bdyly2 - adxly2 - bcylxz}

[(ac + bd)p + (bec - ad)xlcz .
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Similarly,

[(ac + bd)p + (be - ad)r]a’

E{vlvz}

[(ad = bc)p + (ac + bd)A]o2

E{ulvz}
E{vluz} = - [(ad - be)p + (ac + bd)k]c2

E{ulvl} = E{uzvz} =Q .

Two special cases are worthy of consideration. First, if both

processes n, and n, are multiplied by the same number, then a = ¢ and

b = d, so that

.2 22 2
E{uluz} E{V1V2} = (a“ + b")po” = po

~ L 2,202 2
E{UIVZ} = E{vluz} (a” + b7 )Ao Ao

where a2 + b2 = cz + d2 = ] via the assumption of unit norm multipliers.

Hence 1f each process 1s multiplied by the same complex number, the
‘ correlation properties do not change.
Another special case is that in which only one channel is multiplied

by a complex number, e.g., a+ jb=1(a=1, b=20). In this case

(cp - dA)o2

E{uju,} = E{v,v,}

(dp + cX)OZ .

E{ulvz} = E{vluz}

It is noted that the general case can always be broken down into
consecutive application of the two special cases (i.e., let c + jd =

(a + jb)(e + jf)).




APPENDIX C

Fortran Source Code for Phase Bias of Real-Envelope Signals

% % % % N % H ¥ % N X % B % o % % ¥ ¥ N ¥ ¥ ¥ F * O & ¥ ¥ F

c
c

10

15

20

30

This program calculates the phase bias for real envelope
signals as per pp. 54-55 of this thesis (Hatlestad, J.D.,
"Phase Comparison Time Delay Estimation Using Wideband
Signals”™ The Pennsylvania State University, December,
1985).

The input parameters are as follows:

"time bandwidth product”™ (FBTEND) -- This parameter is
the time bandwidth product of the signal. Since
the signal is assumed to have a real envelope the
bandwidth used to calculate this must be equal to
TWICE the maximum modulation frequency.

"ratio of bandwidth to carrier frequency”™ (BWRAT) ~-- See
ahove note for "time bandwidth product.”

"ratio of time difference to modulation period”
(FBDELT) -~- This parameter is the ratio of the
maximum time difference to be estimated to the
modulation period of the signal (l1/fmax).

See page 55 of thesis.

"ratio of sampling frequency to bandwidth™ (FSRAT) --
Must be greater than or equal to one.

"input signal to noise ratio” (SNR) —- Signal to noise
ratio in dB.

khkkkkkhkhkkhkhkkhhkhkkhkhhhkhkhkhkrhrkkhkhhkkhkkhkhkhkkhhkhhkhkhkhkhAhkkhkkhkkhkhkhhkk

COMPLEX SUMI,SUMJ,DSUM
PI = 4.0*%ATAN(1.0)

Query user for signal parameters
WRITE(6,10)
FORMAT(S$,” Enter time~bandwidth product of signal: ~)
READ(5,15) FBTEND
FORMAT(F20.10)
FBTEND = FBTEND/2.0
WRITE(6,20)
FORMAT(S,” Enter ratio of bandwidth to carrier
& frequency: )
READ(5,15) BWRAT
BWRAT = BWRAT/2.0
WRITE(6,30)

FORMAT(S,” Enter ratio of time difference to modulation

& period 7)
READ(5,15) FBDELT

Rl
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WRITE(6,40)
40 FORMAT(S$,” Enter ratio of sampling frequency to
& bandwidth: 7))
READ(5,15) FSRAT
WRITE(6,50)
50 FORMAT($,” Enter input signal-to-noise ratio (dB): °)
READ(5,15) SNR

C Convert SNR from dB to decimal
SNR = 10.0**( SNR/10.0 )

C
C Compute auxiliary variables (in radians)
NP = NINT( FBTEND*2.0*FSRAT ) .-
FOTEND = FBTEND/BWRAT ! Product of carrier and
C signal duration
FBTINCR = FBTEND/FLOAT(NP) ! Product of bandwidth and
C time increment
FOTINCR = FOTEND/FLOAT(NP) ! Product of carrier and
C ti~e increment
C

DELS = SQRT(6.0/SNR)/(2.0*PI*FOTEND) ! Expected error

o for s estimate
S = 1.0 + DELS

C Convert arguments of trigonometric functions to radians
FBTINCR = 2.0*PI*FBTINCR
FOTINCR = 2.0*PI*FOTINCR
FBDELT = 2.0*PI*FBDELT

C "ntialize sums
SUMI = CMPLX(0.0,0.0)
SUMJ = CMPLX(0.0,0.0)

aOo0n

“ompute first sum
DO I=0,NP :
COSCOSI=COS( I*FBTINCR )*COS( S*I*FBTINCR )
SUMI=SUMI + COSCOSI*CEXP( CMPLX(0.0,DELS*I*FOTINCR) )
ENDDO

a0

Compute second sum
DO J=0,NP
C0SC0SJ=C0S( J*FBTINCR )*COS( S*(J*FBTINCR+FBDELT) )
SUMJ=SUMJ+COSCOSJ*CEXP( CMPLX(0.0,~DELS*J*FOTINCR) )
ENDDO

aOn

Multiply sums
DSUM = SUMI*SUMJ

a0

Compute phase bilas
PHIB = ATAN( AIMAG(DSUM)/REAL(DSUM) )
PHI3 = PHIB*130.0/PI
WRITE(6,60) PHIB

60 FORMAT(” PHIB (DEGREES) = “,E10.4)

STOP
END
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