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1. INTRODUCTION

As a decision maker, a person or a machine bases decisions on information received from

the environment. Often, information pertinent to a specific decision comes from many sources.

The purpose of this report is to develop the formulas to be used for linearly combining estimates.

It is conceived that the estimates are being generated by some form of measurement where the

uncertainty can be described as a Gaussian function. Examples of this type of measurement can

include sensor systems, experimentation, or value judgements. To use these methods, the

uncertainty associated with each source is assumed to be known. This report starts with the

simplest situation and then looks at increasingly complicated fusion problems.

As an example, consider an active protection system for a tank. The tank may have several

sensor systems that estimate properties of an incoming projectile. Interferometers, range

sensors, and velocity sensors can be combined to give several independent estimates of a

projectile's position at a specific time. Each of these estimates should be combined into a single

improved estimate of position. This improved position estimate is then used to estimate the

projectile's trajectory.

Least-squares estimation selects the values of the parameters in a mathematical model that

minimize the squared differences between the mathematical model and a set of observations.

Data fusion methods are based on a priod knowledge of a source's measurement error and result

in a weighted average of the observations. Three general data processing approaches to

estimation are "en bloc," recursive, and iterative estimation. The iterative approach calls for

multiple passes through the data and will not be discussed in this paper. In the "en bloc" method,

all the data is processed at once to calculate the estimate. When the weights are calculated "en

bloc," each weight indicates the relative value of the source. The recursive method, where the

data is processed one observation at a time, develops the combination rule used in Kalman

filtering. Although there is a statistical problem with the recursive method in the initialization of

the process, the recursive formulation of the least-squares solution seems to be preferred in many

fields, including electronics, economics, and biology. The recursive least-squares method has

several pragmatic advantages over the "en bloc" method in real time cases. These include:
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1. An estimate and its error distribution are always available.

2. A decision can be made based on the current error distribution.

3. It can provide more insight to the actual problem.

4. It can be modified into different approximation techniques when the underlying

least-squares assumption are compromised.

In recursive estimation, the estimate is updated each time an observation becomes available.

The weight associated with the observation indicates the value of the observation in relation to

the value of the current estimate. The change in the estimate as a result of the update is called

the gradient.

A fundamental process in data fusion is to find a representation of the target, or unknown

system, so that updates based on new information depend only on the current estimate and the

new data. This characteristic is referred to as the Markov property. In some situations, a list of

resources, a deployment pattern, some doctrinal procedures, and a location may constitute a

Markov representation. When the new information becomes available, the estimate is changed

by a gradient that reflects the uncertainty associated with both the estimate and new observation.

The ideas discussed herein can be used to determine the proper gradient when the uncertainty

is known.

Consider the intelligence problem of a command center. Information must be combined and

processed to identify enemy locations, type of units, identity of units, and the intentions or orders

of the unit. Sources of information are reports from imagery intelligence, signal intelligence, and

human intelligence. The value of each report depends on its source and its timeliness. As new

information comes in, the current target estimate must be updated. Each report can be thought

of as producing a gradient. When mathematical models of the target are available, it is possible

to develop automated methods resulting in the best update. Even when automated methods are

not possible, it is usually desirable to find a Markov representation and use this type of reasoning.
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The report progresses on a case by case basis. The first seven cases deal with "en bloc"
procedures while the last two methods are recursive. Case One considers the problem of

estimating a single parameter from two noisy estimates. The basic method for solving the

problem is demonstrated, and the formula for combining information is given. Case Two

discusses the modifications to the basic formula if the uncertainty is a function of some variable
(time or range for example). Case Three and Case Four introduce correlation between

observations to the first two cases. Cases Five and Six extend the ideas to three observations

and present the solution in the form of the general solution. Case Seven presents the general

"en bloc" solution as a summary of the previous situations. Case Eight presents the recursive
method for solving this type of problem. Case Nine introduces the recursive method for

combining vector estimates.

2. CASE ONE

The method described here is for combining two different uncorrelated pieces of information
from different sources. The quantity to be estimated is X; the goal is to find the form of the

estimator R.

2.1 Problem. Find the best way to linearly combine two observations, Z, and Z2, if

Z = X + V1, I V1 - N(O, o2 ),

Z2 ' X + V2, V2 - N(O, c?2), and

E(V1 V2) = 0.

The estimator will have the form Rc = I, Z + k2Z2 .

2.2 Solution. If the estimator is to be unbiased, then

E(X,-X) - 0
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or

E(kZ + k2Z2 - X) = 0

E(k1X + kjV, + k2X + k2 V2 - X) = 0

k1X + k2X - X + k1E(V,) + k2E(V 2) = 0

k, +k 2 -1 =0

k,=1 -k 2 .

Since ks + k2 = I, we can simplify the notation by letting k, = k and k2 = 1 - k. After doing this,

the form of the estimator is

R = kZ1 + (1 - k)Z2 .

The variance of this estimator is found as follows:

E(R - X)2 = E(kZ, + (1 - k)Z2 -X)
2

= E(kX + kVI + (1 -k)X +(1 -k)V 2 -X) 2

= E[(k +(1 -k) - 1)X + kV, + (1 - )?

= E(kV + (1 - k)V 2)2

= E(k2V2 + (1 - k)2V2 + 2k(1 - k)VV 2)

= k20 2, + ( - k)2o02 + 0.

To find the minimum variance estimator, take the derivative of the variance with respect to k, set

this expression equal to zero and solve for k.

a E(R - X) 2 - 2k 2
1 - 2(1 - k)0 2 2 0k

k&j + ko2 2 = 
22

k= 022

k 2 2

01 + 02

Finding the second derivative verifies that this value of k is a minimum.
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The form of the estimator is

02 01

2 2 1 2 2 z
021 + (;22 01 . 02

The variance of the estimator can then be found.

2 22
22 2 2

0201 10;12
Var(R 22 Var (Z,) + Var (Z2) + 2 E(Z, 72)

VarY: I ; + (Y 2 1 1 + 0221 (CY21 + Y2 2 )2

4Y 2 C Y 1 C Y4 1 C 2 2

(Y21 + 022)2 (021 + 022)2

S21 022 (022 + 021)

(C21 + C;22)2

2 20;102

0 21 + 22

To summarize, the estimate is

22 2 2 2 1
CY21 + 022 021 + 02

with a variance of

C 2 1 (2 2

0Y21 + 022

3. CASE TWO

In this section, the results of the previous case are extended to consider the situation where

the uncertainty has a functional form. For example, the uncertainty of a measurement may be

a function of the magnitude of the measurement. This is the case for radars measuring range

and for value judgements. Also, the uncertainty associated with some information may increase

5



over time. This happens in Kalman filtering when the current estimate is propagated forward in

time as a prediction based on the state model.

If the variance of the estimator is a function of a variable, then the results of Case One can

be rewritten as follows.

Assume
Z, = X + V1, V1 - N(0, f(R)),

Z2 = X + V2, V2 - N(O, f(t)), and

E(V 1 V2) = 0.

Then,

f(t) f(R)
f(t) + f(R) f(t) + f(R) Z 2

and

Var ( f(t) f(R) 1
f(t) + f(R) = 1 1

f(t) f(R)
Consider the following applications:

- Example 1.

Find the properties of the best estimator for two sensors if one has a constant

standard deviation of 1 m and the other has a standard deviation of .05R where R is the range

in meters; i.e.,

V1 - N(O, 12)

V2 - N(0, (.05R)2).

By the above results,

(.05R) 2  + 1 Zand
1 + (.05R) 2 '1 1 + (.05R 2 ) 2

(.05R)2  1
Var (X)= 1 + (.05R) 2 = 1 + 1

(.05R)
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It can be seen that when R is large the variance approaches one and when R is small then it

goes to (.05R)2 (and then to zero as R goes to zero).

Example 2.

Find the properties of an estimator that combines information whose variance increases

exponentially with time; i.e.,

V1 - N(O,e'1&a)

and

V2 - N(0,e'2a) 

If we assume the estimates were made at t1 and t2 time units in the past, then

e2 y2 2 e ,1 Y2
1e 2l 2 ' + 22 2 Z 2ell Y 1 e'2(y 2 e 11 cy + e'2 Cy

and

e,1 ( 2 2e,1 a 21
Var(X) X)

ell, ,1 +W o

e I t2+1 y 2 2
e 2 1 +e 2

In many situations, the results of Case One can be extended to find a quantitative data-fusion

technique. The variations will depend on specific knowledge of the situation.

4. CASE THREE

Case Three extends Case One to consider the effects of correlated errors. Sometimes the

information sources are not independent and the errors associated with each contain some

common components. If we know the amount of association, the form of the estimator can be

derived.
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For two variables with correlated noise, the assumptions are:

Z, = X + V , 9V 1 - N(O, o),

Z 2 = X + V2 ,  V2.- N(O,( 2 ), and

E(V 1 V2) = poo 2 .

As in Case One

= kZ1 + (1 -k)Z 2 .

Under the assumptions, the variance of the estimator is

E( X) 2 = E (k2 V2
1 + (1 - k) 2 V2

2 + 2k (1 - k) V1 V2)

= k20 2
1 + (1 - k)2 022 + 2k (1 - k) po(1 2.

The minimum variance estimator is found as follows.

a E(k _ X)2 = 2kc 2 1-2 (1 - k)0 2
2 + 2 pol o 2 - 4kpa1 o2

= (2a21 - 4 pol (; 2 + 2o 2
2 )k - 2022 + 2po, 2 .

After setting the partial equal to zero and solving for k, we get

k22 - Pl C2

2 1 + 022 - 2pl ; 2

Putting this value into the above variance expression, we have the following steps to arrive

at a simplified variance expression.
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Var (X) = k2C 2
1 + (1 - k)20 2

2 + 2k(1 - k)po, o 2

(,02 2 - P Cy2)2021 + (0 2 1 - p Coy02 )20 22 + 2(0 2 2 - p al 1 2 ) (o 2 1 - p o 1 0 2 ) p a, 02

(021 + 022- 2 p0 0 2 ) 2

021 (Y22 (022- 2 p0 1 0 2 + p2 a 21 ) + 02102 (021 -2 p 0 1 0 2 + P2 P22)

(021 + (
2 2 - 2 p 0 0 2 )2

2po( 2 (0
21; 22 - p 3 1o 2 - pol 3 2 + p2; 21 022)

(521 + 022 - 2 p 0l 0 2 ) 2

021 2 1+ 22 + p2 021 + 2 ;22 - 4 p al 02 + 2 p a, a2 - 2 p 2 2 2p 02+p3l2

(02, + 022 - 2 p a, 0 2 ) 2

0 022 I021 + C22 _ p2o0l _ p2 -2_2cp ;,0 2 + 2 p3 0 0 2 ]

(021 + o 2
2 - 2pa,1.o 2 )2

021 022 (1 p2) (0 2 1 + 02 2 p0 1 0 2 )

((21 + 02 2 -2p 01C02 ) 2

02, 022 (1 - p2)

0
21 +022- 2 p0ol 0 2

In summary, the estimator has the form

022-P 01 2  - 021 -p01 0 2  z
2 2Z + 2 2

0 1 + 022- 2 p00 2  021 + 022- 2 p0 1 0 2

with variance

Var (X 1$021022(1 _p 2 )

0Y1 +02 - 2 p01 0 2

9



5. CASE FOUR

This case presents the most general form of an estimator for combining two pieces of

information. Case Three is extended to consider the case when the uncertainty associated with

correlated information has a functional form. The variance is expressed as a function of a

variable such as time, range, or degrees from boresight. With correlated observations, the form

is similar to Case Two.

Assume

Z1 = X + V1' V - N(0,f(r)),

Z2 = X + V2, V2 - N(O,g(t)), and

E(VI V2) = h(r,t).

When combining two pieces of information, the most general form of the estimator is

g(t) - h (r,t) + f(r) - h (r,t)
f(r) + g(t) -2h(r,t)z +  f(r) + g(t) -2h(r,t) Z 2

with a variance of

f (r) g(t) 1 - h (rt )2

Var (I) = g(t)f(r)_
f(r) + g(t)-2h(r,t)

6. CASE FIVE

In this case, three data points with uncorrelated measurement errors are combined as a single

estimate. This extends Case One so that three pieces of information can be processed at one

time. The assumptions for i = {1,2,3} are

10



Z, = X + VIP VI - N(0.621)

E(VVJ) = 0 if i * j.

Using the same reasoning as in Case One, it can be shown that 1 =k + k + k3 . Note that

k3 = 1 -k - k2; thus, k3 can be eliminated. The form of the estimator is X = k1 Z1 + k2 Z2 +

(1 - - k2) Z3 . To find the values of k, and k2 which minimize the variance, the partial

derivatives of Var (R) are found and set equal to zero. This set of equations is then solved for

k1 and k2 . The following equations realize these steps.

Var (R) = k a + k~a2
2 + (1 - k - k2)2 3

°k (Var (X)) = 2k a -2(1 - k1 - k2)a 3

(Var())) - 2k2 a 2
2 - 2(1 - ki - k2) 23

Setting the partials equal to zero, we have the following two equations:

(a21 + a2
3) k + o2

3 k2 = o
2
3, and

a2
3 k1 + (a2

2 + o2z) k2 M e2
3.

Using matrix notation, these equations can be written as[ 2 a[] [1
02 1 + ( 3 2

23 22+ 3 2 3

The above matrix equation can be rewritten as

11



(21

a 2 
+023 k

c 2 1 k21 "
02

From this, the determinant can be seen to be

T21 02 021 022det - + - + -
4 2 02

03 03 03

C21 T22 + C21 C23 2 3

4
03

By Cramer's rule, we find

k2 = , and k2 2
2 2 21 2 2 22 2 2 2 02 2 2

;12+32 +  3 2 3 1 2 + 021 3 +0 2;3

The variance of the estimator is

Var (X) = k 2
1 

, + k 2; 2 + k 2
3 3

4 2 ; 2 4 20 2030 1 + 04103 ;22 + 041 0;2 0C3

(,21 022 + o21 023 + 022 023)2

02 2 2

1 2 2 2 2 3 ;2 2
0102 + 0103 + 0203

12

01 032 0 3

The variance of the estimator has the same form as the resistance of a parallel circuit. From an
electrical engineering perspective, the ideas could be expressed as resistance to the flow of

12



information. Indeed, a circuit of parallel transistors would be able to simulate this situation. The

gate voltage would be set to create the proper resistance and the current through the circuit

would be the variance of the estimate. For N independent measurements, this can be

generalized to

Nn' 021

I-I

1,,1 k*1

In general, one would have the estimate

N= ki Zi
iI

with a variance of

1Var ())= N 1

In summary, for three observations the form of the estimator is

a2 2 2 12 2 C 2
( 023 021023 1 022

2 2 2 2 2 2 1 +  1 ( 2 2 2 2 2 2 2 2 302102+ 01 03 + 020 3 02102+02103 +02203 0210;2 +02103 +02203

The variance of X is

Var (X) = 021 02 0 2

2 2 2 22 201022 + 013 + 0203

13



7. CASE SIX

This case extends Case Five by including the effects of correlated noise. The matrix

representation used in this and the previous case is needed for the general case presented in the

next section. The assumptions for i = {1,2,3} are represented as follows

Z, = X + V1, V1- N(0, a2)

E(VI Vj) = pjo,j if i j .

As in Case Five, 1 = kI + k2 + k3 . Due to the correlation between observations, the variance

expression is more complicated. It is

Var () = kC; + k 2022+ k3C2
3 + 2p 12 k, k2o1 C2 + 2p 13k, k3 a1 C3

+ 2p 23 k2 k3 02a3

= k 1o2
1 + k22 + (1 -k- k)2o 2

3 + 2p,2k , k2'3 1 0 2

+ 2p 13 kt (1 -k 1 -k 2)a1 o 3 + 2p 23 k2 (1 -k 1 -k 2)o 2 0 3

To find the minimum variance, the partial derivatives are set equal to zero and then the resulting

matrix equation is solved.

a Var ( 2) = 22 k1 - 2(1 - k1 -k 2 ) oY3 + 2pl 2 o o2 k2

oaki

+ 2 p,3 a,0 3(0 -2k, -k 2 )-2p 23o 2o3 k2

=2(;23 + p 12 C1 (2 -P 13 C1 O3 -P 23o 2o 3 ) k 2

+ 2(o21 + o23-2p 13a 1o 3) k1

-2( 3-P 13 1 03)

0

14



Similarly,

Var (X) = 2(023 + p12 o1 o2 -p 13G, 03 -p 23o72 3) k,Dk2
22

+ 2(022 + O2 3 -2p 2 3 0 2 0 3 ) k2

-2(a 23 - P23 o2 o3 )

-0

In matrix representation, this is

2- 3 + P12 0 1 (Y2 -P 13 01 3 -P 2 3 0 2 03 k
03 + P 1 2( 1 (Y2 -- P 1 3 ( 1 Y3 P2 3 ( 2 3  22+3- 2P 2 3 2 0 3  k2

(Y23--P13(YI (13

Cy23 -P23 (Y2 (Y3

The above can be solved by using Cramer's rule, or some other matrix algebra technique.

8. CASE SEVEN

The general case for finding the optimal set of weights {ki} is developed in this section. This

is the last "en bloc" method discussed. The results are derived by finding the partial of the

variance expression with respect to one variable (k,) then, after setting this expression equal to

zero and solving it, the proper matrix equation is shown. The approach taken is to break the

expression into a series of terms. Each term is examined in sequence then these results are

combined into the partial of the variance with respect to the selected variable.

The variance of the estimator for the general case is

n n-1 n

Var (X) = o 2 k 2 + E2 2p 1iookik01 . (1)
I-I I-1 J=,

15



Note that

n (1 El! km

To get the partial of the variance with respect to the k,, 0 < I < n-1, the partial of the first term of

Equation (1) is found and then the partial of the second term. For the first term, we have
nn -1 n -1

01
2k2 1 i o22 k 2  . o (1- km) 2

n-1

= 2a,2 ki-2an2 (1 - E kin)
rn-1

n-1

=2a, 2 k,-2an2+2a'k, +2 o 2k . (2)
I*1

The second term is more complicated than the first term.

E: F, 2 p~jyojk, kj =

nn-1 _n-1
n2 E 2pljoajkikj + -. E 2pinany, k(1 E k.)

Each of the above terms will be considered (and referred to as the third and fourth term). In the

third term, note that i * j; so, if the partial term is nonzero, either i = I or j = I. For example, let

n = 5 and / = 3, then if i = 1 and j = 3, a nonzero partial term is obtained; likewise, when i = 2 and

j = 3, and when i = 3 and j = 4, nonzero partial terms are obtained. The partial of the third term

can be written as follows:

n-1

2 n- E 2 pjo ojk j, if i=/
ai(jk ,----") I-1

oki  I j 1 [ E 2p,1aoik, if j=/
I-1

16



Combining this result into a single expression, we have

n-1
12p.oyak, (3)

as the partial derivative.

The fourth term will now be evaluated; i.e.,

i E 2jnOnak 1 (1 - E k)
k i.1 m.1

For exactly one value, i will equal I; also, for every value of i, one k. will equal k,. Consider the
case i * I; recall that exactly one km will be k,.

n-1 n -I n-I. 2p1nanaok(1 - E km) = - 2p1n'nOkj (4)
kt m=1 it

Consider the case i =.

S-1 m-1

n-i=2Plna. 'j-2pj, Yna (Y ki - 4 p ino lan k , .  (5)

The next task is to collect the various expressions (2, 3, 4, 5) that make up the partial

derivative and then to organize them in some meaningful format. There will be three groupings;
terms containing k,, terms containing no variables, and terms containing variables other than

ki.

Terms associated with k, are

2a, 2 k1 + 2an2 k/ - 4pInaaOnk i .

Terms that do not contain a variable are

17



-2an2 + 2p/na'/Gn

Terms associated with a variable ki, where i Iare

n-I n-1 n-i n-I
2 E On2 k + 2 pa, 1ak i -2 Y pnnOj k i -2 PinOGOnki

The above represents the partial derivative of one variable; by doing this for each variable, setting

the result equal to zero, and dividing by two we can formulate a matrix equation for the general

case.

The indices i, j will be used in place of I and i. The form we wish is

AK = C

where K is the variable vector of length n - 1, C a vector of constant terms of length n - 1, and

A the coefficient matrix of size (n - 1) x (n - 1) of the vector K.

The diagonal terms of A, (a), will be

a1 = 2 + O2 - 2 pInai; n,

and the off diagonal terms of A, (aj), where i j will be
2

aq = a n + p 1 1 a - pjn'anP - pln

The elements of the vector C, (ci), are

C = On2 
- Pl Tn

18



The values of K can be found using matrix algebra ( K = A1C). As with the two observation

cases, functions can be substituted for the variance terms to produce classes of variable

estimates.

The matrix A above can also be generated using the covariance matrix by the following

method:

Let E be the covariance matrix with

P 0Ij rl .

If we generate the following matrices

1 . -1 201l 012••1 0 a l

0 1 1
0 0 -112 2

D 2

-J (n -1)x L " nxn

1 0 0

0 1 0 ...

0 0 1 ...

D'=

-1 ~ ~ -1 -1(n -1)

then A - D E D'.

19



9. CASE EIGHT

In contrast to "en bloc" procedures, recursive methods process the data one piece at a time

and keep updating the estimate. As an example, assume unassociated observations Z1 and Z 2

become available.

Assume one piece of data is available, our first estimate will be R1. The process is initialized so

that

1 = Z1, Var (X) =12i •

If observation Z2 becomes available, then

C2 2102 1

2 2 ;2 e2 1 I - 2 2 2

2 2

12 2 2 2 2

with Var (X2) = 1 02
2 2

01 + 02

Assume Z3 becomes available, then

023 Var ( 2)R<3 =- X 2 + 2 Z3'Var (X2) + 023 Var (X 2) + 023

with

Var (X2) 023Var (X<3) =

Var (R 2) + 03

It can be verified that this result agrees with Case Five.
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Note that the number of steps used in the recursive solution is a linear function of the number

of data points. (To update the estimate and its variance takes two additions, three multiplications,

and two divisions.) The recursive method is usually preferred for real time applications and in

control systems.

Recursive techniques express the estimate as a weighted average of the old estimate and the

new observation. In many formulations, this is expressed as the old estimate plus the change

as a result of the new information. The recursive estimator is:

a2 11Var (R,)
Xa, 2 X, 2 Z1.1

Var ()() + Cy Var (k1) + 2 ,1

which can be rewritten as:

- Var (kJ (1 1  )
Var (X,) + 1-1

The second term represents the gradient due to the (i+l)st observation.

10. CASE NINE

To extend the idea of a recursive estimator to the vector situation is straightforward. Let

and Zi represent vectors and replace the variance terms with the covariance matrices E that

represent the uncertainties associated with each vector to be estimated. Note X X is

represented by X 2 and K is a matrix. The separate observations are assumed to be uncorrelated.

Zi = X + V1 ,I V1 - N(0,E,),

Z2 =X +V 2 , and V2 -N(0, T 2).

Using the same method as Case One, but with vectors

E(K 1 Z1 + K2 Z2) = E[K1 X + K1 V, + K2 X + K2 V2]

= K1 X + K2 X

= (IS + K2) X.
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If the estimator is to be unbiased, then

[Kj + K21 X = X.

Thus, K, + K2 = I. The next example shows a method of solution when the two covariance

structures are diagonal.

- Example 3.

When E, and E2 are diagonal, we have a problem that can be decoupled into two problems

similar to Case One. Consider finding the proper weights for two vector observations with the

following error structure. Let

= [], and

61

Both error structures are diagonal so the matrix problem will be broken into two separate scalar

estimation problems (as in Case One). In the first problem, a, = 5 and 02 = 3, yielding weights

of 3/8 and 5/8. In the second, a, = 4 and 02 = 6 giving weights of .6 and .4 to the observed

value of the second variable. In matrix notation, the above process for finding the value to

associate with the second vector observation can be written as follows:

K2 0 40] 0.10 ]

[ o]125 0]
625 0
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This example demonstrates that new concepts are not needed when the covariance structure is

diagonal.

The following observations simplify the calculations for the nondiagonal case. There is a

theorem that states for any two covariance structures there is a basis in which they both are

diagonal (Dempster 1969; Fukunaga 1972). Assume the appropriate change of basis is made.

Then, using the method of Example Three, the appropriate weights can be found. A change of

basis back to the original coordinate system will result in a matrix of full rank. We proceed to find

a minimum variance estimator as follows:

E + K2 Z2 - X)2 E(K, V, + K2 V2)2]

Since the different observations are uncorrelated, this can be written as

= E[(K, V,)21 + E[(K 2V2)21

= Ki 1 K'1 + K2E 2 K'2.

In the above, K2 can be expressed in terms of K,

= K1 F1 K'1 + (I - K,) E(l - Kl)'.

The error in this case is represented by a covariance matrix. Minimizing the trace of this

covariance matrix will minimize the total estimation error. The rules for manipulating the trace of

a matrix are discussed by Athans (1965). From his summary, the rule

D trace(AXBX') = A'XB' + AXB
ax

is used letting A be the identity matrix, B be the covariance matrix, and X be K1 . The minimum

occurs where
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K1 (El, + E2) =- E2;

thus,

K1 + E 2 (E1 + E2) - 1

and

K2 = El(- + E:2)-1.

The general vector solution can be written as a recursive estimator

R1.1 =KI 1 + K1+1 Z1. 1

= £z,., (EX ,.1 + £Ez,.) ,  + Ej'(Ej, + £Ez,.,) -1 Z,,

= + F (EX, + £z,.,)-1 (Z,. 1 - RX).

This should be interpreted as follows: the new estimate is the old estimate plus the product of

the value of the new information, and the distance between the old estimate and the new
observation. The gradient is the change to the old estimate. In many instances, the true error

structure is not known. In these situations, it is sometimes possible to derive performance models

from domain specific knowledge (usually based on analytic models of the system). These models

can then be used to predict the error structure associated with a specific observation. Under

different sets of assumptions, there are analytic and heuristic methods for finding a gradient.

• Example 4.

This example demonstrates the method for recursive estimation of a location in the x-y plane.
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- (oo 5
Let R 100 and I, 0 5

100 53

The correlation between successive estimates is assumed to be negligible.

Let the new observation be Z 1 = with covariance 15
matrix1 110 151]

The new estimate R,., is:

*10= E O:0 )] [ [1 0  + [150 ] [ 10 100) ]

j0, 50 5 415 -15 1 I5

I100) 30 15 25 ) 900

97.6639
t, 108.75

1 . CONCLUSION

Consider again the estimation problem of a system that protects a tank from an incoming
projectile. One Markov representation of the projectile is its trajectory in the X, Y, and Z
dimensions. If there is more than one sensor estimating the location of the projectile at a given
time step, then these should be combined into a single location estimate. If it is acceptable to
assume a projectile travels at a constant velocity over the last portion of its path, the following
three equations can be used to independently estimate the projectile trajectory in each dimension.

X - o1 + t

Y - 1 + 02t

Z - 1 + Y2t
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Note that independence means parallel computations are possible. Each of the above can be

solved using recursive least-squares processing. Improvements in the estimation are made by

using recursive weighted least-squares estimation where the weights are based on estimates of

the error in each dimension. To utilize all the information of the covariance structure of each

estimate requires "en bloc" type updating using six by six matrices at each step of a recursive

weighted least-squares process. After evaluating the available techniques, a final decision can

be based on concerns of computation speed and acceptable accuracy of the estimator.

The wide array of uses for least-squares estimation testifies to its effectiveness. The key to

structuring a problem for a least-squares solution is finding a Markov representation of the

problem. This representation defines a recursive approach to estimation. When multiple

estimates are available at each time step, the processing time can be decreased by using data

fusion networks to reduce the information to a single estimate. Hierarchical networks using both

parallel and serial combination of data can be devised. The cases presented herein can be used

to preprocess the data for any recursive least-squares method.
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