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1 Introduction1  When these conditions are met the actual and modeled atmospheres are
said to have dynamical similarity.

There are two fundamental methods of simulating atmospheric flows Two of these bracketed terms are defined as

- physical models and mathematical models. With the first technique, ALIS 1R.
scale model replicas of observed ground surface characteristics (e.g., to-
pographic relief, buildings) are constructed and inserted into a chamber and
such as a wind tunnel or a water tank. The flow of air or other gases
or liquids in this chamber is adjusted so as to best represent the larger v/LS = 1/Re,
scale, observed atmospheric conditions. Mathematical modeling, by con-
trast, utilizes such basic analysis techniques as algebra and calculus to where R, is the Rossby number and Re the Reynolds number; and
solve directly the conservation laws of motion, heat, moisture, and other
atmospheric constituents. gL (60/0) /$2 = Rib

is the bulk Richardson number. (68 represents the potential temperature
perturbation and is the same order as the temperature perturbation 6T).

2 Physical models From Eq. (2), to maintain dynamic similarity, it is implied that to
represent all of the terms in the equation properly:

Using order of magnitude estimates for the dependent variables and as- 1. the ratio of the subgrid scale kinetic energy to the grid-volume
suming that L and S are the representative length and velocity scale of average kinetic energy must be kept constant;S

2 rw2 W V WU""l
the circulation of interest (i.e., -2 = maximum of -L2 "-L' W j )

then a scaled version of the conservation of motion equation can be writ- 2. reducing the length scale L in the physical model requires:

ten as (a) an increase in the magnitude of the horizontal temperature
perturbation 60 or a reduction in the simulated wind flow

IS2 - . [,2~ 1 speed S or both,
" = B, (b) an increase in the rotation rate f0 or a reduction in S or both,

[_.L + 6. (1) (c) a decrease in the viscosity v or an increase in S or both;

3. an increase in 60 in the pressure gradient term necessitates that S
1"[g] kba3- [515 2crijk!5k - [ S] 82 also increase.

where a circumflex ( ) over a dependent or independent variable indi- Unfortunately, it is impossible to satisfy all of these requirement si-

cates that it is nondimensionaJ. The scaling parameter e, is a measure multaneously in existing physical models of mesoscale atmospheric circu-

of the subgrid scale velocity correlations that can be estimated from the lations. Such physical models are constructed inside of buildings, which
mean subgrid scale kinetic energy i.e., limits the dimensions of the simulated circulations to the size of meters,

whereas actual mesoscale circulations extend over kilometers.

To illustrate the difficulty of obtaining dynamic similarity in a phys-
e= -- ''--/2) 

.  
ical model for all terms in Eq. (2), let the horizontal scale of a mountain

Including an estimate for the molecular viscous dissipation and mul- ridge be 10 km, whereas the physical model of this geographic feature uti-
tiplying (1) by L/S 2 (to obtain a nondimensional equation for the local lizes a 1 m representation. The scale reduction is, therefore, 10'. Thus,
acceleration) results in if S = 10 m s-1 in the real situation and air is used in the scaled model

584 [atmosphere, then the simulated wind speed would have to be 105 m s
= - &-, - 1z u~u- 00 to maintain identical Reynolds number similarity! In addition, to have

the same Rossby number for this example, the physical model must ro-
- I + - + [681 V6,3 (2) tate 10,000 times more rapidly than the earth or the wind speed must

IS IJbe reduced by 10,000. Reducing the speed, of course, is contradictory

ij,kflj,-i [f-] e&'. to what is required to obtain Reynolds number similarity' Only if the
- sresults are relatively insensitive to changes in these nondimensional quan-

To use a scaled physical model to represent accurately the conservation- tities, as suggested, for example, by Cermak (1975) for large values of

of-motion relation in the atmosphere, it is essential that the Reynolds number in simulations of the atmospheric boundary layer,
can one ignore large differences in the nondimensional parameters.

1. the individual bracketed terms be equal in the model and in the
atmosphere, or

2. the bracketed terms that are not equal must be much less in mag- 'This note was extracted ad modified somewhat from that presemted in Pielke

nitude than the other bracketed terms in Eq. (2). (19S4, Chapter 5).



From the exs-mple just given, however, it should be dear that it is temperature profiles scaled according to the nondimensional relations
impossible to obtain exact dynamic similarity between mesoscale atmo- given by Eqs. (2) and (4) and that the flow will be close to equilibrium
spheric features and the physical model when all of the terms in Eq. (2) (i.e., Ouzi/Nt and DO/Oi are small, relative to the remaining terms in
are included. Eqs. (2) and (4)). In addition, such bottom conditions as surface tem-

Using the same assumptions applied to produce Eq. (1), the conserva- perature and aerodynamic roughness must be scaled so as to produce
tion-of-heat relation, represented by the potential temperature equation, kinematic, dynamic, and thermal similarity in the lowest levels of the
can be written as physical model. These requirements are referred to as boundary similar-

ity and their creation necessitates a comparatively long fetch from the
input region of the laboratory apparatus to the region of simulation, as[-1 -u-9" + 7 ,, (3) well as obstacles such as a lattice placed upwind in the flow to generate

Ott L I ,i _specific velocity profiles and turbulence characteristics.

where epe. is a measure of the subgrid scale correlation between the With all of these requirements, physical modeling of the mesoscale

fluctuating velocities and temperatures, with es perhaps represented by has been primarily limited to stably stratified flows over irregular ter-
rain. Even for this case, however, such observed features of the real

ea = [(i'"/2)]1/ 2 .  atmosphere as the veering of the winds with height, radiational cooling,
and condensation cannot be reproduced.

If the molecular conduction of potential temperature C# is included in
(3) and represented in analogy with the viscous dissipation term as 3 Use of numerical models to provide bound-

C , 0= 9 . ke M ary conditions for the physical modelsPC, c8xiixi ICC, T2_

where ke is the potential temperature molecular conduction coefficient, Pielke (1984) reviews in depth the techniques of numerical modeling of

then multiplying by L/69S and including the order of magnitude esti- atmospheric flows. For the purpose of this paver, such numerical models
can be used to remove some of the constraints placed on physical modelsmate of C, yields by providing:

C8 a 89 eoe] 8 k, 92 (4) 1). the appropriately scaled velocity, temperature, moisture, and other
-- t uj-- [ J]+ [ C--,] - (4) atmospheric constituent profiles in the inflow stream to the physical

8 model;

The ratio

and

k,/poCpv = Pr - I  2). the appropriate surface fluxes of heat, moisture and momentum, as

is called the Prandtl number and is of order unity for air. scaled for the physical model (e.g., eC/S2 from (2), and eee/69S
Thus to obtain thermal similarity between the mesoscale circulation from (4)).

and its laboratory representation, the Reynolds number must also be
very large and the partitioning of heat transport between the subgrid In this approach, the numerical-physical models are linked in a one-way
scale and resolvable fluxes must be the same. If in Eq. (2), for ex- nested grid approach where the numerical atmospheric model provides
ample, the temperature perturbation 6 must be increased in the bulk a realistic flow simulation for a larger scale domain at a scale where the
Richardson number Ribu to compensate for a decrease of L in the labo- physical model suffers from similarity limitations. This time-evolving
ratory model, then in Eq. (4) the turbulent fluctuations in the simulated flow information is used as boundary conditions for the smaller domain
atmosphere must also be increased, physical model. The physical model can provide realistic simulations on

The nondimensional source-sink term for potential temperature S. the smaller scale where the numerical model suffers from computational
is included in the analysis. However, the mathematical procedure of limitations due to the small domain size and resultant large sensitivity
representing it as a single variable masks its physical complexity. This of the results to even slight errors in the lateral boundary conditions of
term includes such effects as radiative flux divergence, phase changes of the numerical model (Pielke, 1987). In addition, the numerical models
water, etc. and is an involved function of the dependent variables. Thus fail to adequately resolve nearly discontinuous obstacles such as cliffs,
it is extremely difficult to evaluate this term using scale analysis, and, buildings, individual trees, etc.
in practice, physical modelers exclude it in their representation of at-
mospheric flows. An equivalent similarity analysis can be performed for 4 Acknowledgements
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List of Symbols

Dependent Variables

u= velocity vector

9 = potential temperature

a = scaled pressure; r = C,(p/1000 mb)R / C where C, is the
specific heat at constant pressure, p is pressure in millibars

Constants

R = gas constant

f? = rotation rate of the earth in radians per second

v = kinematic viscosity of air

g = gravitational acceleration

ke = molecular coefficient of conduction of potential temper-
ature

Mathematical Operations

(-) = grid-volume average of dependent variable, e.g., i,9,
etc.

( )' = resolvable perturbation of dependent variable from
domain-average variable

()o = domain average

= nondimensional variable

()"= subgrid scale perturbation of dependent variable from
grid-volume average

Scaling Values

L - length scale

69 = scaled temperature gradient

S = scaled velocity

Independent Variable

z, = spatial independent variable

t = time
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