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Preface

Richard W. Barker
The University of Texas at Austin, 1991

Supervising Professors: Melvin J. Hinich and Georgia-Ann Klutke

This study balances the development of theory and its application to real
and simulated incipient fault data from systems which have cyclostationary prop-
erties. The study’s theoretical contribution reveals the advantages of approaching
estimation of time series in a general framework where estimation of the cumulant
spectrum can reveal implications for threc classes of stochastic processes: station-
ary, cyclostationary, and nonstationary. The developed cumulant spectrum esti-
mation capability provides estimates for [eature construction in addition to
bispectrum and power spectrum estimates of stochastic process data. Actual ex-
perimental data is obtained to study the incipient wear process of manufacturing
drill bits cutting through epoxy-glass composite material used for construction of
electronic semiconductor panels. The fluctuating vibrations caused by the drill bits
cutting through the epoxy-glass composite are not subject to precise prediction, nor
are the cxternal noise, measurement errors, and other disturbances in the trans-
mission of the vibration signal to threc accclerometers mounted on the drilling
machine considercd to have the same characteristic of unpredictability. - Tiven
though there is some element of determinism in the generated signal data due to the

common periodic excitation of the rotating drill spindle, the vibration signals and




noises do vary with time. The randomness which exists from sample function to
sample function throughout a complete ensemble (inherent sampling varnability) is
a characteristic of any stochastic process. But there is also a randomness from time
instant to time instant from an object sample function to the same sample function
as the object wears over time. This is the other clement of randomness that is of
primary focus in this research. The application portion of the study consists of
pattern recognition analyses of simulated and actual experimental data to determine
the incipient fault discrimination and classification ability of classifiers using fea-
tures with and without higher-order statistical (HOS) information. Exploitation of
probabilistic and statistical concepts has led to a new incipient fault detection ap-

proach for rotating physical systems.
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INCIPIENT FAULT DETECTION
USING HIGHER-ORDER

STATISTICS

Publication No.

Richard William Barker, Ph.DD.
The Universitv of Texas at Austin, 1991

Supervising Professors: Melvin 1. Ilinich and Georgia-Ann Klutke

A new analvtical approach is developed for detecting incipient faults of
rotating machinery whose periodical characteristics generate time series data repre-
sentable as cyclostationary processes. The new approach is a higher-order statis-
tical (HOS) mecthod as nonstationary time series estimation, in addition to
stationary and nonlinear estimation, provide the basis for enhanced feature infor-
mation of the random fault mecchanisms under study. An algorithm selects and
combines diflferent transformed estimates of the raw time series, second-order
cumulant spectrum (nonstationary), power spectrum (stationary), and bispectrum
(nonlincar), for investigation of incipient fault discrimination and classification
power of multivariate classifiers using different extracted feature information sets.
The HOS approach (cumulant spectrum, bispectrum, and power spectrum), is

tested and evaluated against a traditional power spectrum approach with simulated

vili




and actual experimental data. Robustness of the HOS approach is first investigated
in simulated time series signals with amplitude and phase modulation indices and
differing levels of additive Gaussian noise as parameters. Simulations show that
use of HOS features improves incipient fault detection capability of a linear
classifier and is less sensitive to Gaussian noise within the signal environment.
Actual vibration signals from a rotating drill wear monitoring study are also ana-
lyzed. The drills are used in the manufacturing of electronic circuit cards from
epoxy-glass composite. Combining HOS features with power spectrum features
improved the overall classification performance of parametric and non-parametric
classifiers. Additionally, the 11OS approach is less sensitive to changes in drilling
process parameters such as circuit card construction and chip load. The pattern
recognition analyses performed in this research provide strong statistical evidence
that HOS estimation and feature extraction is beneficial for discrimination and
classification of incipient (ailures of rotating tools, a difficuit mechanical system

monitoring problem.
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Chapter 1

Introduction

1.1 Introduction

This dissertation is concerned with the problem of detecting incipient faults
of rotating machinery. Because of their periodic nature, these types of physical
systems are mathematically represented as cyclostationary processes. Rotating ma-
chine research studies have proposed various monitoring methods (Micheletti, 1976,
and Jetly, 1984) but for reasons such as instrumentation difficulties in obtaining
measurements at or near the cutting surface of rotating tools, implementation of
most monitoring methods in industry is limited. Some of the better monitoring
techniques appear within the vibration analysis literature (Braun, 1986, and Shives
and Mertaugh, 1986) where vibration monitoring is shown to significantly reduce
the cost of maintenance, increase reliability, and decrease the probability of cat-
astrophic failure of rotating machinery. Milner (1988) lists bispectrum analysis, a
particular higher-order statistical (HOS) method, as a possible approach for moni-
toring vibration of small rotating machines in a NASA spacecralt. However, he
did not investigate bispectrum analysis due to the lack of adequate computational
methods. HOS methods arc defined in this study as statistical approaches which
analvze stochastic processes and their generated time series data associated with
nonlinear and also nonstationary phenomena. The bispectrum provides a first

glimpse at nonlinear effects as it is the Fourier transform of the third-order moment




function of a stochastic process while the power spectrum, the IFourier transform
of the second-order moment, is most useful in problems estimating linear processes.
Recent findings (Dan and Mathew, 1990) conclude that no single condition moni-
toring method appears suitable for all machine operations and material combina-
tions. Consequently, condition monitoring research is better directed towards
improving instrumentation effectiveness, collecting better data on the functional
relationship between wear and measured parameters, and developing sensor fusion
methods which combine data from difTerent sensors and features to improve system
monitoring accuracy.

There are many examples of models using a combination of sensors and
signal features for monitoring rotating tool wear. A vector autorcgressive moving
average model developed by Yao (1990) used three axis tool force measurements to
estimate tool wear in turning of steel. Spindle vibration, cutting torque, and force
in monitoring of milling were input to power spectrum analyses to extract peak
values which were then input to a linear classifier (Elbestawi, 1989). A linear
classifier was also used for detecting crankshaft drill wear (Liu and Wiu, 1990) using
thrust force and axial acceleration amplitude signals. Acoustic emission spectrum
features and cutting force signals input to a neural network classifier demonstrated
the applicability of neural networks for noise suppression and also that there are
an optimal number of features (Rangwala and Dornfeld, 1990) for classification
purposes. Time and frequency domain characteristics of drilling (orces for carbon
steel (Braun and lenz, 1986) used a feature based on probability distribution mo-
ments of intensities and times of occurrences of a single oscillating signal pattern.
Braun and Lenz (1986) also stated that the choice of appropriate [eatures, whether

single or combined, need to be based on test results or experimental databases.




These studies are a few examples of recent sensor fusion techniques in milling,
drilling of metals, and turning operations. Significantly with regard to this rescarch,
feature construction of sensor signals in these recent studies is limited to the power
spectrum rather than any higher-order forms of spectra.

However, one study using bispectrum analysis as a HOS technique to di-
agnose abnormal states of a machine from the normal one was conducted on gear
noise signal data (Sato et al.,, 1977). Its results showed that the gear noise signals
were almost periodical under proper loading and normal operating conditions. But
when heavy load conditions scored the gear surfaces, the periodic signal character-
istics were reduced and the signals appeared more random. This change in ran-
domness caused the modulus of the bicoherence function, defined as the normalized
bispectrum with respect to power spectra, te decrease significantly. The more exact
diagnosis which considered the nonstationary properties of the noises was left as
future work, and an experimental design strategy with an associated statistical
classification approach also was nor evident in this first HOS monitoring approach.
This first HOS approach also investigated severe faults rather than incipient faults.
Incipient faults are those failures which are just beginning to appear in the me-
chanical system.

To overcome the deficiencies of this first ITOS monitoring study this re-
scarch developed time serics estimation procedures based on a nonstationary or
cumdant spectrim representation of the stochastic process under study. An exper-
imental design strategy and statistical pattern recognition framework was imple-
mented to allow strong inferences (rom the data anaiysec  Furthermore, the
developed 1108 approach is evaluated for its abilitv to detect incipient, rather than

severe, faults. Thus, the types of monitoring problems addressed in this rescarch




are more difficult than those previously studied. The developed HOS approach
combines different forms of spectrum measurements (power, second-order
cumulant, and bispectrum) from sensors in a statistical classification scheme not
only to improve a monitoring system's classification performance, but also to reduce
its sensitivity to variables other than machine condition. These variables include,
but are not limited to, process environment parameters such as workpiece matcrial
construction, cutting conditions, and noise. The developed HOS approach is a new
type of sensor fusion technique which Dan and Mathew (1990) state as one of uie

maost important open areas in condition monitoring research.

1.2 Problem Statement and Scope

The goal of this study was developmen: of a new analytical approach for
detecting incipient faults in physical systems which have a periodic driving force
mechanism generating potential signature data. The approach is the first to incor-
porate nonstationary (sccond-order cumulant spectrum) in addition to nonlinear
{bispectrum) and linear (power spectrum) characteristics of signature time series for
use as feature sets to improve the discriminatory power of a multivariate classifier.
Signature denotes signal patterns which characterize a specific system state.

Investigation of hispectrum analysis as a fault detection approach is moti-
vated by the fact that fault processes of rotating mechanical structures are known
to generate highly nonlinear time scries data through the generation of sum and
differrnce frequencics (Braun, 1986). Nonlinearity 1s a result of intermodulation
between the frequency components of the driving process and produces spectra with

sideband structure. Without phase information, the presence of nonlincaritics is not




detectable. The bispectrum captures this relative phase information among fre-
quency components. Investigation of cumulant spectrum analysis is motivated by
the fact that the signal data generated by faults in physical systems under study is
not only nonlinear, but also nonstationary due to the modulation effects of the
random fault mechanisms.

A good condition monitoring approach is insensitive to paramcter changes,
noisc disturbances, and nonlinearitics which are intrinsic to the random processes
under study. So cvaluation of the developed 110S approach includes marginal and
sensitivity studies of both simulated and acrual experimental databases. Marginal
analyses determined the incremental value of 11OS features to power spectrum fea-
tures for discrimination and classification tasks. Sensitivity analyses determined the
impact of different classification algorithms, stochastic process parameters, and
noise on classification performance of classifiers utilizing spectral feature sets with,
and without, HOS information.

Simulation experiments of modulated signals explored potential robustness
properties of the new HOS approach. Single tone amplitude and phase modulation
indices of a cosine-wave carrier signal (representing the periodic driving force of a
rotating machine system) and standard deviation of Gaussian noise are the simu-
fation paramecters. Incipient faults such as initial wear of rotating machinery can
appear as amplitude and phase modulation changes. Morc emphasis is directed to
changes in phase modulation as amplitude modulation changes are assumed related
more directly to deviations in the process environment such as differences in
workpiece properties and cutting parameters rather than slighr changes in process
state. Single tone modulation and the values chosen for the modulation index pa-

rameters should not hmit the applicability of the simulation study results.  In-




creasing the complexity of the signal modulation simulations would generate
additional frequency interactions and modulations and consequently provide more
frequency support in each of the higher-order spectral principal domain regions.
Hence, the possibility of strengthening, rather than weakening, the value of the
HOS approach is afforded by increasing the complexity of the modulation simu-
lation experiments. Analyses of simulated data provide a first step in developing
estimates of actual classification error rates and also allow an evaluation of the im-
pact of Gaussian noise on classification using feature sets with and without HOS
information.

Since not much condition monitoring research addresses high-speed circuit
card drilling of epoxy-glass composite, IBM (Austin) conducted an expcrimental
drill wear study. Ramirez (1991) discusses the IBM circuit card manufacturing
process and drilling mechanics which generated the experimental drill wear data.
An indirect online wear monitoring approach using drill spindle acceleration, dis-
placement, and speed responses was investigated. A major conclusion of the
Ramirez (1991) study was particular vibration power spectrum harmonics from the
thrust axis accelerometer were the most uscful responses for drill wear monitoring,
Also, since circuit card matcrial composition plays a key role in generating vi-
bration, variations in card construction can mask the effects of wear of vibration
power spectra.  The developed HOS approach is investigated for its potential use
in the industrial environment by analyzing IBM cxperimental drill wear data of
three factors: drill bit age, circuit card stack matenal, and chip load cutting condi-
tion. Accclcrometer data obtained were from three axial positions (X.Y, and 7)
gathercd on two types of bits defined by their number of circuit card holes dniled

(0 and 8000), two types of stack matcrials (NIP and 682P), and two types of chip




load (3 and 4 mil/rev). Chip load is the amount of axial distance travelled by the
drill bit tip in a single revolution or rotation. Actual wear data analyses will dem-
onstrate the margina! contribution of HOS features to power spectrum features for
detecting incipient faults of manufacturing drill bits. Actual wear data analyses will
also add supportive evidence for further investigation and possible implementation
of the new HOS approach in an industrial environment.

Both simulated and actual time scries data represent incipient failure con-
ditions rather than new and definitely worn conditions of a rotating machine proc-
ess. Intuitively, it should be harder to detect slight or moderate wear than advanced
wear of rotating machinery. This is logical as signals used to characterize advanced
wear are usually more pronounced than those signals characterizing slight wear.
Wear condition of drill bits from the IBM experimental study were optically
checked under a microscope to accurately classify wear states. Because time serics
waveforms are already grouped for their “similarity”, cluster analyses arc not
needed. Simulated and actual experimental data analyzed in this study are highly
non-Gaussian and nonlinear based on the Ilinich (1982) bispectrum statistical tests.
Iience, featurc cxtraction rather than an optimality approach (Shumway, 1982) is
the technique used for time series discrimination and classification.

Both background noise and signal propagation media interfcre with signa-
ture signals. Although there is some determinism due to the rotating machine’s
periodic driving force mechanism, cach of the signal tvpes (noise, propagation, and
signature) is characterized by an element of unpredictability. lence, an ensemble
of signals for difTerent states of cyclostationary processes arc analyzed to ensure an
effective study of aiternative classification approaches. Probability of false alarm

and probability of detection are the main performance measures. These measures




are averaged over the signal ensembles to decrease the variability of these per-

formance estimates.

1.3 General Research Approach and Presentation

This research focused on the development of two new methodologies:
cumulant spectrum estimation (second-order) and HOS feature extraction. In
Chapters 3 and 4, the new methodological developments are discussed which build
upon the background material given in Chapter 2. The HOS approach developed
in this work is tested with both simulated and actual physical phenomena to inves-
tigate and quantify the benefits of HOS estimation and [eature extraction for in-
cipient fault detection. New estimation code to perform second-order and
third-order cumulant estimation of time series is developed. So besides the
bispectrum, the second-order cumulant spectrum is investigated and employed in
discrimination and classification tasks. Presentation of results to just the second-
order cumulant spectrum is due to time constraints and some technical problems.
Because a large number of measurements result from the spectral transformations
of the raw time series, a [{OS feature extraction algorithm is developed to combine
the most useful spectral measurements for incipicent fault identification. Appropri-
ate measures of cffectiveness to evaluate the relative merit of spectral feature scts,
with and without HHOS information, arc devised for both simulated and actual ex-
perimental studies. These measures of effectiveness are in the results section of

Chapter 5 after each experiment description.




Chapter 2

Background

2.1 Introduction

Detailed information on the major methodologies investigated to develop
a new analytical approach to the research problem is given in this chapter. First is
a description of existing incipient fault detection techniques for rotating machinery
using vibration signals. Second is an examination of the statistical theory and
models which permit interpretation of multivariate or group differences. Some
special considerations for use of multivariate approaches for time series discrimi-
nation and classification are discussed. Third, different types of stochastic processes
and the mathematical functions used to describe them are defined. Existing theory

related to higher-order statistics (HOS) concludes the chapter.

2.2 Existing Incipient Fault Detection Techniques

Although many types of signals are used for diagnostic monitoring of ro-
tating machinery, there are more examples of the demonstrated use and success of
vihration monitoring for significantly reducing the cost of maintenance, increasing
reliability, and decreasing the probability of catastrophic failure of rotating ma-
chinerv (Braun, 1986, and Shives and Mertaugh, 1986). One success is TRACOR

Applicd Science’s (Austin) vibration monitoring program for the United States




Navy to improve the reliability and maintainability of the rotating machines on
their TRIDENT submarines and surface ships (Milner, 1990). They use signature
analysis of the accelerometer outputs, a common vibration monitoring technique.
Other incipient fault detection techniques using vibration signal monitoring include
demodulation of high frequency acceleration signals, statistical analysis of acceler-
ation amplitude, process modelling or parametric approaches such as auto-
regressive moving average (ARMA) time series niodels, phase-locked processing,
cepstrum analysis, transient analysis, Hilbert transforms, and general pattern re-
cognition. These major techniques are summarized for a general understanding of
their strengths and weaknesses. Braun (1986) and Shives and Mertaugh (1986) have
complete discussions of these methods including schemes that combine some of
them.

Signature analysis of acceleration outputs is used in many commercial ap-
plications in addition to TRACOR’s use for the Navy. Specific topics of analvsis
bands, resolution, accelerometer type and its placement, instrumentation, and
presentation of accelerometer output are peculiar to the particular application.
[However, a common thread among all applications is the reliance on association
of a particular failure mode with features of the vibration power spectrum. Tones
and other power spectral features present in rotating machinery vibration are gen-
erally due to predictable causes. There are many published relationships of fauits
versus power spectral featurcs for many different types of machines and their com-
ponents.  Braun (1986) contains the theory and applications of many different
methods within the field known as mechanical signature analysis. Signature analysis
is a very common technique as it has gencral applicability and proven success for

a large varicty of machine types. Also, the computation of the spectral amplitude
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at selected frequencies and the association of amplitude increases with specific
faults is a necessary first step of several other techniques (general pattern recogni-

tion, trend analysis and ; ‘ocess modelling at key frequencies, transient and

cepstrum analysis).

High frequency demodulation of acccleration signals extracts relatively low
frequency information from a high frequency signal that has been amplitude mod-
ulated by a mechanical defect. It is mostly applied for bearing fault detection. At
the ery early stages of a bearing fault, impulses due to the rolling element passing
over the fault will be very short in duratior and can extend as high as 300 kHz (Bell
et al., 1985). The impulses excite resonant modes of the machine and the envelope
of the resulting time signai is the amplitude modulated component of the desect
signal.  The envelope signal will contain discrete peaks with periodicities de.er-
mined by tne input rate of the defect. After cffectively bandpassing the signal,
power spectral analysis of the envelope will preduce a harmonic series with a fun-
damental Irequency that is -clated to the bearing frequencies. Other general arcas
of application of this technique include fault detection of gears and fluid film
bearings, and seal rub analysis (Darlow et al., 1975 and Drago, 1979). Because of
the high frequency range used "vith tivc rectunquc, there is a high defec. signal-to-
noise ratio which is often stated as an advantage. However, an asscdiated isad-
vantage is the requirecment that the particular frequency within the high range must
be predetermined before filtering and demodulation is performed.

Weighted likelthood ratio prucessing and kurtosis are two statistical tech-
niques used to process amplitude signals. Weighted likelihood ratio processing is
described later in this chapter so only kurtosis processing is described here. A

“universal” behavior noticed in wear-induced failures is that localized defects ap-

11




pear first and distributed types of defects follow. Hence, induced vibrations often
have an impulsive character with the appearance of a localized defect, changing to
a more continuous function over time. The sharp peaks at the onset of defects af-
fect the tails of a probability density function (pdf), and moments of the distribution
such as kurtosis can enhance the sensitivity to changes occurring at the pdf tail.
Kurtosis is the normalized fourth moment of a probability density function and
emphasizes the peakness of a particular signal pattern. Normalization is accom-
plished by removing the mean from the data and dividing by the fourth power of
the standard deviation. Kurtosis as a statistic is considered as an indication of
Gaussian versus non-Gaussian densities as it is equal to three for all Gaussian
densities. One example of the practical use of kurtosis is in the area of rolling ele-
ment bearing fault condition (Dyer and Stewart, 1978). The kurtosis value for good
bearings followed the Gaussian distribution value of three while significantly de-
graded bearings had large variations in the normalized acceleration distribution.
These large variations led to kurtosis values significantly different from three. The
authors stated more tests including simulation results for performance evaluation
arc neceded before conclusive remarks can be made on kurtosis as a fault indicator.

Process models are methods of detecting changes in expected wavelorm
structure. This technique generally involves mathematically modelling the system
outputs to determine if abnormalities exist in the signatures by statistically com-
paring them to normal model output. The extraction of features from the
parametric spectrum can mimic the methods applied to non-parametric spectra.
Another feature extraction approach is directly using system identified parameters
that describe the data (ic. AR, MA, ARMA). Classification of automobile engine

faults in a production assembly-line using a necarcst neighbor classificr was based
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on this latter type of feature extraction approach (Gersch, 1986). The Kullback-
Leibler measure of dissimilarity was employed which assumes the time series are
Gaussian-distributed (Kullback, 1959).

An approach related to Kalman filtering methods is based on analysis of
residuals after fitting of the parametric model to data. Variations in residual mag-
nitude, or statistical distributions different from normal meaning the fitted model
is no longer appropriate, can indicate a change in signal patterns. Specifically, an
approach called the Dynamic Data System (DDS) uses operational data from a
mechanical system and applies ARMA mathematical models to extract features
from the data with a high degree of sensitivity. The DDS model is combined with
statistical quality control chart concepts to monitor for abnormalities with a very
limited amount of data (Wu, 1977),

Phase-locked processing describes a general class of special processing
techniques that efficiently extract and filter periodic signals. Use of phase-locking
gives equivalent results in both time and {requency domains. This technique uscs
encoders to give an integer number of pulses per revolution (Braun and Seth, 1979).
The number of pulses from the encoder should be equal to two to the power of the
number of pulses per revolution as the discrete Fourier transform (DFT) is usually
computed with a Radix 2 fast Fourier transform. The rotationally locked compo-
nents are located at multiple points in the DFT indexed by p = N/M where N is
the number of pulses analyzed per revolution and M is the number of points in onc
period. By employing a filter whose response is sct to zero for all p # N/M the ex-
traction of the periodic signal from additional non-coherent interferences is

achieved. 1f additional signals non-coherent with the rotational frequency of the
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machine exist, windowing is employed to minimize errors in the signal extraction
process due to possible leakage problems.

Cepstrum analysis is used in echo detection and deconvolution problems.
Braun (1986) has a detailed discussion of the use and problems in the computation
of cepstra. A common signal processing problem is the analysis of signals which
are composed of a wavelet and one or more echoes which may overlap. A simple
form of this composite signal is x() = s(t) + a.s(t — ). Distortional effects such as
noise, overlapping of echoes and the wavelet, and different transmission paths ob-
scure the echo arrival time and basic wavelet shape. The signal plus echo may be
modelled as the convolution of s{r) with a time function d(1) + ad(z — to) and the
separation of these two convolved signals is performed with operations in the power
cepstrum analysis. For example, i€ x(0) = s(1) x (1), then
In | X(@)|*=1In |S(0)]’+ In | H{w)|’. There is also complex cepstrum analysis
which is more gencral than the power cepstrum as inverse operations can recover
the original time signal. Both the power and complex cepstrum methods are im-
pacted by smoothness and bandwidth of the wavelet. Additive noise is another
major degrading influence in the effectiveness of cepstral methods. A wide band-
width and smooth wavelet spectrum is necessary for a less erratic wavelet cepstrum
which subsequently helps distinguish echo spikes from the wavelet cepstrum. A
majority of rotating machinery applications using cepstrum analysis are on gear
faults (Randall, 1982). Generally, it has been determined that gears in good con-
dition normally contain frequency sidebands of nearly constant amplitude over time
in the power spectrum. Changes in the number and amplitude of the sidebands are
proposed as indicative of a deterioration of a gear’s condition and the cepstrum is

able to detect this change with an increase in amplitude of a single line. Thus, an
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advantage of using a cepstrum approach is not being confounded by several sets
of periodicities in the power spectrum causing difTiculty with a visual interpretation
of the data. However, Braun (1986) states this method is an interesting approach
to analysis of convolved signals, but it must be treated with caution and care for the
interpretation of its application to machinery diagnostic problems.

Because of their origins, transient signals usually have different durations,
peak amplitudes, repetition rates, frequencies, and bandwidths. Transient signal
detection schemes exploit varying degrees of a priori waveform structural informa-
tion. Most transient processors perform two primary functions: event capture and
transient analysis (Owsley and Quazi, 1970). Event capture involves continuous
loop data recording with a trigger signal that causes transfer to permanent data
storage. The trigger signal is driven by a simple detector of energy increases.
Transient analysis depends on the application and so varies significantly. Fourier
analysis is used to select key features such as the center frequency of a narrowband
transient and its bandwidth to classify the transient. Other extracted features in-
clude pulse duration and repetition rate (Nolte, 1968).

[lilbert transforms are another way to easily extract envelope information
from a modulated time signal. The Iilbert transform differs from the Fourier
transform because it leaves the signal in its original domain. It shifts the value of
a time signal by 1/4 wavelength or a 90° phase shift in frequency domain. Bell et
al. (1985) use the Hilbert transform for incipient fault detection of rolling element
bearings.

Many examples of machinery monitoring systems in the literature can be
categorized as a general pattern recognition approach. One excellent commercial

cxample is the statistically based system developed at Oak Ridge National Labora-
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tory for continuous, on-line, unattended surveillance of dynamic reactor signals
(Smith, 1983). Their monitoring system is based on identification of changes in the
power spectrum of measured variables where change is detected by using
discriminant functions formulated to emphasize relevant features. Discriminants
were constructed to detect the following: (1) a fluctuation in the integral power of
the spectrum; (2) spectral shape changes; (3) deviations in the magnitude of indi-
vidual spectral estimates at a given frequency; and (4) shifts in the frequency of
spectral peaks. Their system, typical of most pattern recognition systems, used
classification functions based on Bayesian estimation decision theory preceded by
a heuristic feature extraction process to transform the raw time series data. What-
ever features are used, the determination of thresholds is usually determined by ex-
perience where monitoring systems are fine-tuned as more information on the
process is obtained. Features are used for classification purposes and their statis-
tical properties affect monitoring performance. However, few references or studies
describe monitoring systems based on formal statistical aspects because of the dif-
ficulty of acquiring information and databases from sufficiently large sample pop-
ulations (Paul, 1977). Statistical pattern recognition is the general framework of
this research and simulation and actual time series databases are from sufficiently
large sample populations. The statistical approach employed in this research is
unique for constructed features are not restricted to power spectrum estimates, but

also include estimates of two higher-order spectrum forms.

2.3 Measuring Differences Among Multivariate Populations

Since the developed monitoring approach is described and evaluated from
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formal statistical aspects, this background section first discusses the types of anal-
ysis questions that arise when confronted with the problem of measuring differences
among multivariate populations. Decision theory definitions introduce the theore-
tical basis underlying discrimination and classification tasks. Estimation of class-
conditional probability density functions (pdfs) or discriminant functions under
various levels of assumption are discussed and compared. Performance assessment
issues of the developed feature extraction sets input to multivariate classifiers using
design and test sets are discussed. Mathematical details that address the partition-
ing of the total sample variance, a fundamental step in the development of tech-
niques which separate multivariate populations and statistical considerations in
measuring population differences, conclude the background section.

Several analysis questions are postulated when investigating multivariate
group differences. First, are the groups significantly different with respect to their
multivariate descriptions?  This is a multivariate equivalent to the sample
(univariate) t-test on population means. A sample mean vector, or centroid, for
cach population is formed, and the null hypothesis of equal population centroids
is tested using IMotelling’s 77 statistic, or equivalently, Wilks" A statistic when con-
sidering only two groups. If more than two groups or populations are involved,
multivariate analysis ol variance looks for differences among population centroids.
Second, what role do the measurement variables play in separating the groups? A
discriminant function which can be a linear, quadratic or some other transformation
of the measured variables answers this question. Its evaluation objective is to yield
similar valucs for cases from the same population and different values for cases
from different populations. Iixamining the discriminant function provides insight

on which measurement or [eature variables are most important in scparating the




groups. The population separation problem using only information about one of
the variables at a time usually is not very efficient and is suboptimal. For example,
two individual variables may not be good discriminators by themselves, but when
combined they may be highly effective. Developing a discriminant function corre-
sponds to the search for a vantage point which provides a view with maximum
group or population separation. This underlies the motivation for performing HOS
estimation and feature extraction in addition to traditional power spectrum meth-
ods. [t is conjectured that higher-order forms of spectra combined with power
spectra will provide a better vantage point. Moreover, HOS features will just sim-
plv be better discriminators than power spectrum features. Discriminant functions
can be constructed using stepwise selection of variables similar to stepwise selection
of variables used in multiple regression. When there are more than two groups,
multiple discriminant functions can be developed (beyond this study’s scope).
Third, if responses or measurements of the variables are known for a new observa-
tion, to which group does the case belong? This is the multivariate classification
problem while the first two questions concerned multivariate discrimination. In
many applications of discriminant analysis, classification is the major objective.
FFor example, if there is a description of new drill bits and slightly used drill bits in
terms of spectral fcatures calculated at times of different wear states, these spectral
featurcs can then be used in classification rules which would specify whether an-
other dnill bit is a member of one of the wear categories. Thus, classification rules
are developed from the discriminant functions.

Consider definitions from decision theory to explain the basis underlving
discrimination and classification. A decision rule partitions a space into regions

Q,,i=1,..N where N is the number of classes. An object, or time series. 1§
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classified as coming from class w, if its corresponding vector representation, x lics
in region Q.. The vector representation x can either represent direct time series
measureiaents or features, ¢ (x;), which are functions of the x,. The boundaries
between regions are called decision surfaces. Assume that prior probabilities,
P (w,) are known that an object comes from class w; (i=1, ..., N). Information in
the form of a vector, x, is then determined for an object to be classified. The Bayes
minimum error rule is formed by comparing the posterior probabilities of belonging
to each class using the information vector and classify according to whichever is

larger:

P(w,|x)>P(wy]x) forallj # k = xeQ,.

Since the posterior probabilities are rarely known, they need to be estimated from
samples of known classification. Another formulation of the Bayes minimum error
rule is obtained through application of Bayes Theorem to determine the class

membership probabilities;

p (x| w)P(w)

Pl = =

which results with

p(xlay) P(w)>p(x|w)P(w), forallj#k—>xeQ, (n

If p(x|m). the class-conditional pdfs are known, the problem is solved by substi-
tution of x into [ 1] for the time scries being classified and finding the largest value
of p(x|w) P (w,). But similar to P (w, ] x), the p(x | w,) are probablv unknown and

requirc estimation from a set of classificd samples.
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Bayes minimum error rule for the two case situation is:

p(xlw) _ Plwy) Q,
> — X €
p(x|w;) < P(w) Q,

This rule minimizes the overall error assuming equal misclassification costs but for
industrial manufacturing situations where misclassifying a worn tool may be more
serious than misclassifying a new tool, a different criterion which considers the dif-
ferent misclassification costs (Bayes minimum risk) may be more appropriate. Ad-
ditionally, if the prior probabilities of a new time series are unknown, a minimax
rule designed to minimize the maximum péssible risk is used. Hand (1981) develops
all three rules expressed as functions of x using the class-conditional pdfs p (x | w,).
Considering the absolute values of the probabilities not as relevant as their relative
magnitudes allows more general rules. For the two-class situation the general rule
1s:
Q,

h(x)Z constant — x €
Q,

where h is called a discriminant function. As before, the discriminant function will
require estimation from classified samples. Estimation procedures are categorized
by the level of assumptions used for the likelihood function: parametric and non-
parametric. Non-parametric approaches estimate the class-conditional pdfs or the
discriminant functions without any knowledge about their parametric form. In
parametric approaches, assumptions arc made about the form of the class-
conditional pdfs or discriminant functions and estimation of the unknown func-

tional parameters are performed with the ciassified samples. Parametric and
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non-parametric estimation methods applied in this research study are discussed

next.

2.3.1 Estimation Methods

If the class-conditional pdfs or discriminant functions forms are known,
then the tasks of discrimination and classification are simplified as likelihood func-
tton ratios with various risk thresholds are compared for its solution. Unfortu-
nately, this knowledge rarely exists but the general parametric form may be known
(rom some theoretical knowledge or from a study of the sampling distributions. In
this situation, samples are used to give estimates of parameters of the class-
conditional pdfs or more generally, sample distributions are used to estimate the
parameters of the discriminant functions. However, when simplifying assumptions
are not defendable, non-parametric methods are also applied. Lachenbruch (1975)
and Hand (1981) outline and compare various parametric and non-parametric pdf
estimation methods. After preliminary experimentation and application of several
of these estimation methods, three were chosen for their consistent classification
performance of the experimental data described in Chapter 5. The k-nearest-
neighbor (k-NN) method was the non-parametric method applied to actual time
scries data. Two parametric approaches, linear and quadratic discriminant func-
tions, were also applicd to the actual data. Linear discriminant functions were
constructed for the simulated experiments.

Assuming a multivariate normal distribution for the spectral features of
each time serics class resulted in discriminant rules based on the pooled covariance

matrix (yielding a linear function) or the individual within-group covariance matri-
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ces (yielding a quadratic function). Feature measurements are placed in the class
from which it has the smallest generalized squared distance or the largest posterior
probability.

The squared distance from feature vector x to class w is
2 e <
dw(x) = (x - xcu) va) (X - xw)

with V,, being the pooled or within-class covariance matrix and X,, being the feature

variable means in class w. The class specific density at x from class w is:
LX) = @01V, | 7 Pexp( —.5d,2(x))

and posterior probability of x belonging to class w is computed by applying Bayes

Theorem:

Pofu(X)

plwlx) =
> Pafax)
Q

where the summation is over all the classes.

Now, the generalized square distance {rom X to class w is
D(x) = d,}(x) + g,() + gy(w)

with g(w) = log,IV,! if within-class covariances are used (quadratic function),
g(w) = 0 if pooled covariance matrix is used (linear function), g)(w) = — 2 log.(q.,)
if prior probabilities are uncqual, and g{w) = 0 if prior probabilities are cqual.

The posterior probability of x belonging to class  is then
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exp( —-5D3(x))
Y exp( —.5D3(x))

Q

plo|x) =

Thus, an observation, or feature variable set, is classified into class Q if setting w
equal to Q produces the largest posterior probability or smallest value of D *(x).
The difference between the generalized squared distances of the class means is the
squared Mahalanobis distance measure,

Non-parametric estimates of class-specific probability densities of feature
sets are computed with a k-nearest neighbor approach. Squared Mahalanobis dis-
tance calculated from the pooled covariance matrices is used to determine proxim-
ity. The k-nearest neighbor does not have a complicated approach to its selection
of the smoothing parameter, k, as it is based on which gives the best classification
performance. Following Hand (1981), consider the probability that a point will fall

in a local neighborhood L of x for the multivariate pdf p (x | w,) as

8 = jp(yl(l)m)dy.
L

The following approximation is made if L. is small and has volume V:
O~p(x|w,)V
which vields

p(x|w,)=08/V.




A pdf estimator for 8 is then computzd by the proportion of the n, :ample points
falling in the local neighborhood L. Assign k to denote the number of sample
points ialling in . and obtain o = k/n. which then leads to the estimator defined

as:

k
n V'

m

px|w,) =

The volume V is made dependent on the data by fixing k and determining V needed
to enclose the k nearest points to x. Next, combine all the classes’ sample points
into one set of n points such that ;n,. = n. The hypersphere of volume V which
just encloses k points from this combined set is found. Now consider that among
the k points, %, occur from class w,. Thus, a k-NN estimator for class w., is de-

fined:

m

v

pixlwy) = ~

There are also the estimators f’(m,,) = ”—,;" and p(x) = n_kV_ Application of

Bayes Theorem gives:

A ; p S k
P(w,|x) = P (Xl on)P (@) = =z = I:" )

P (X) _k_
nV

So, the following classification rule is generated: classifv x as belonging to class 1 if

ki = max.(k.).
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2.3.1.1 Advantages and Disadvantages of Applied Estimation Methods

A disadvantage of k-nearest ncighbor 1s distance: ~om the feature vector
to all of the sample points must be determined. Ience, all of the sample points
must be retained and this can increase the amount of computer time for classifica-
ilon. [However, there are branch and hound techniques to reduce the amount of
data required so quicker computation is possible (Hand, 1981). It also has the
theoretical disadvantage of not being a pdf (iland, 1981). Assuming parametric
forms for the class-conditional pdfs allows quicker classifications of new samples
and no large databases of trairing set points are necessary to retain. [owever, an
incorrect distributional assumption will incur an associated cost in terms of an in-
creased misclassification error rate, but this cost may be acceptable if computa-

tional advantages outweigh it.

2.3.2 Other Estimation Approaches Considered

Several other estimation approaches investigated during the study were
weighted likelihood ratio and logistic discrimination. These methods were not used
to generate final study results for their results were not as good as the others.
[However, weighted likelihood ratio processing is described here as it was applied to
data proposcd as a future application for the developed HOS approach. logistic
discrimination is described because of its similarit to the linear discriminant ap-
proach.

Milner (1988) found that a likelihood ratio weighting technique of vibraticn

power spectra to be superior in detection performance for a wide range of problems
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in pump and fan data. This approach assumes a Gaussian density function of the
logarithmic amplitude of the power spzctrum. The binary test hypotheses, (a)
power spectrum indicates new object (K), or (b) power spectrum indicates slightly
uscd object (Kn), alter this Gaussian density in mean level only, and the power es-
timates of each bin or frequency are assumed independent. Given the definition of
the natural logarithm of the likelihood ratio derived from the Bayes criterion for

binary hypotheses, the log likelihood ratio is:

where S, is amplitude of the object vibration power spectrum in decibels (dB) at
frequency i, m,, is average log amplitude of frequency i of new object vibration
power spectrum, my, is average log amplitude of frequency i of slightly used object
vibration power spectrum, and M is the number of useful frequency tones. Com-

pleting the square and canceling common terms [2] becomes:

M

In (5;) = ZM (3]
o

i=1

[f [3] is greater than zero, the ohject is classified as slightly used. 1£[3] is less than

or ¢qual to 7zero, then the object is classified as new. Implementation of this test
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first computes power spectra for the set of new objects and for the set of slightly
used objects. Then values for m,; and m, are computed, and the bins with the
largest mean shift as compared to their stability receive the largest weights. These
weights are consequently indicators of the relative importance of specific frequen-
cies as indicators of object wear. A weighted sum over all usefil frequency infor-
mation for the particular time series is computed to detect the worn .ui.dition.

Weaknesses of this approach outweighed any advantage of incorporating
global spectral characteristics. The weaknesses are assuming the class distributions
are different in mean level only, and that power estimates at each frequency are
independent so a diagonal covariance matrix can be used. These assumptions werc
not appropriate for the actual experimental data analyzed in this study.

Logistic discrimination is a partial distribution classification method as it
assumes the log-likelihood ratio is lincar in the measured parameter vectors:

LK) ..
ln{m}—ﬂo + f'x, (4]

where f° = (B, ..., B,). Anderson and Richardson (1979) show three advantages
for using logistic discrimination versus a fully distributional or distribution-free
classification approach. First, the model given at [4] gives a simple form for the
posterior probabilitics:

for +InC+ f'x
(I +exp(fy +In C+ fi'x))°

(k| x) = exp
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where C = I1,/l1,, and 1, is the proportion of sample from K. with (s=1,2). Sec-
ond, once the parameters (', f and C) are estimated, the allocation of a new ob-

servation or feature vector set requires only a linear function calculation:

By + C+ Bx.

Third, this same estimation procedure is applicable with either continuous or dis-

crete predictor variables.

2.3.3 Mathematical Development of Analysis of Variance

A fundamental step in the development of statistical techniques based on
separation of muiltivariate populations is the partitioning of the total sample vari-
ance into components representing within class variation (variance of individual
observations about their class’s centroid), and among class variation (variance of
individual observations around the centroid for the combined sample). This parti-
tioning process is the multivariate equivalent of the partitioning sum-of-squares
accomplished in the univariate analysis of variance (ANOVA) model. In univariate
problems, hypotheses concerning equality of means can be tested using the two
sample t-test when two groups are involved, or F-tests using statistics derived from
one-way ANOVA when multiple groups are considered. In multivariate analysis,
cquality of mean vectors or centroids across groups or populations are tested. For
the two population case, Hotelling’s 77 provides the multivariate cquivalent to the
two sample t-test and test statistics derived from one-way multivariate analysis of
variance (MANOVA) provide the appropriate hypothesis tests for thc multiple

population situation. When there are onlv two groups or classes as in this research
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study, the one-way MANOVA is equivalent to the two-sample Hotelling's 77 test

and this is the presented approach.
2.3.3.1 Partitioning of Variance

Consider developed expressions representing the partitioning of an arbi-
trary linear combination of measurement variables into within and among class
components. Notation is defined:

xu =12, ,n; j=1,2,..,g represents the observed value on the j*
variable from the i* case in the k* class. There are g groups or classes and p
measured variables. Class k includes n, observations.

X = [xin ... xpx)' 15 2 p-clement column vector representing the complete
multivariate observation for the i* sample in the k* class.

X = [Xu...xx] is a p-element column vector representing the centroid
of the k* class.

The elements of x, are the sample means for each variable computed for
observations in the k* class, and denoted X ; j= 1.2, ..., p.

X = (—,l; )‘iln,. X: is a p-element column vector representing the combined
class centroid.

The elements of X arc the sample means of each variable computed for
obscrvations from all g classes, and n is the total sample size: n = El:n,,.

k=1
Consider a special vector representation of the matrix of sums-of-squares

and crossproducts of deviations from the mean. This matrix, when divided by (n-1)

for n total observations, is the sample covariance matrix. Also consider the fol-
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lowing product of the vector of deviations from the combined class centroid for a

specific observation and its transpose:

X = X
, Xpg — X3

(X — XN xy — x) =
lek - ip

(i — X — X2), - v(xipk - Ep)]

e — 510 (e = F) (X = %) .. (xnp — X N (Xjpi — Xp)

=12
= . (X — X%3)"

(xppp ~ fz)(xzpk - Ep) .

-2
(xlpk - xp)

(3]

The matrix which results from this multiplication of a column times a row vector

is a p x p matrix of squares and crossproducts of the deviations of the observation

for each variable from the corresponding sample mean. If these vector products

are calculated for each observation in the k* class and the results are summed, the

following square matrix will result:

Z(-"nk — X )(xlpk -
2

Z(x,,,k AL

*p

)

(6]




Summing [6] across g classes results in another symmetric matrix which looks like
[6] except for the double summations which accumulate results for all observations
across the g classes has the sums-of-squared deviations of each variable from its
mean on the diagonal. The off-diagonal elements are sums of crossproducts of de-
viations from the mean for all pairs of variables. If this matrix is scalar muitiplied
by 1/(n — 1), the sample covariance matrix for the combined class (rotal covariance
matrix) is obtained. The summation of [6] across all classes is the total sums-ol-

squares and crossproducts, and is denoted by T:

g

8
T= D0 D~ Do~ 5 (7]
k=1i=1

The total covariance matrix is:

g
1 _ = Y 8
=1 T and » n; (8]
A similar computation, performed by substituting the centroid for the k*
class for the overall centroid and summing only over the observation subscript (i),
yiclds the within class sums-of-squares and crossproducts matrix denoted by W, for

the k* class:

W, = Z(-J_Cm - Zk)(lik - X)) (9]

=1

31




If W, is scalar multiplied by 1/(n — 1), the sample covariance matrix for the k* class
is obtained.

For the discriminant analysis problem, the T matrix is partitioned into
matrices attributable to the within class (W) and among class (A) differences. This
partitioning process is analogous to the partitioning of the total sum-of-squares in
the univariate ANOVA model except this is working with vector rather than scalar
quantities. If the W matrix is multiplied by 1/3(m — 1) = 1/(n — g), the result is a
pooled estimate of the covariance matrix or within class covariance matrix
(multivariate analogy of the pooled estimate of variance used in univariate two-

sample t-test and the pooled estimate of the error variance used in univariate

1
n—g

There are different ways to manipulate combinations of time series meas-

ANOVA). This matrix is denoted by S, where S, = w.

urement or feature deviations from their centroids in the development of
discriminant functions and statistical tests for centroid differences. In a discussion
res.victes” to only linear discriminant functions, g, computational advantages will
result from a g that is linear in the components of the observation measurements
x, or features which are functions of the x. Considering only manipulating linear
combinations of feature vector deviations [rom their centroids, scores like the fol-

lowing are calculated:

P

Jie = Zaj(xi,,, - X;) 101

/:l

where a, is a coeflicient, i represents an observation index or i* time scries, and j is

a feature variable index. In matrix terms, [10] is:
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a

a
fu = @'(xy — X) where g = : [l

The partitioning of the total sum-of-squares of the f, scores into within and

among class components is required for developing the discriminant function. Since

ul n

i g
Z ik = Z Z[g’(;c,-k = X)(xi — X)'al
=1 k=1i=1

k=11l=
=a'Ta [

and recalling the partitioning of the T matrix:

Ry
ala = g’ZWkg +a'Aa = alWa+ dAa [13]
f=1

[137 is an equation with scalar terms as pre and post multiplication of the p x p
matrices by @' and g results in | x | matrix products. Pre and post multiplication
by g results with the first term of [13] representing the sum-of-square valtes of the
linear function defined by the coeflicients in g cvaluated for deviations of each fea-
ture vector observation from its class mean. The final term of [13] is a weighted
sum-of-squared values of the lincar function evaluated for deviations of class

centroids from the combined class centroid. Thus, {137 is used to partition the total
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variance in discriminant function scores into the between and within groups com-
poncnts as 2’ Wa represents the within group sum-of-squares, a4a the among group
sum-of-squares, and g’'Tg the total sum-of-squares. Considering a as a vector of
discriminant function coeflicients obtained using the l.agrange multiplier solution
technique to the maximization problem:

a'Ag

aWa
Subject to :g@’'Wa = n—g,

Find :

also obtains @’ Ag = A(n —g). The restriction @' Wa = n — g imposed to finding the

optimal discriminant function allows [13] to be rewritten:

dTa=(n—-g)+in—g) = (n—g}l + ). [14]

Since a'Ag = A(n — g) is the among group sum-of-squares, or the group separation
“explained” by the specific discriminant function which g defines, a reasonable
measure of the power of this discriminant function is the fraction of sum-of-squares

“explained™:

An—g) A
I+ Nn-g  (A+4)° [15)

The square root of [15] is the canonical corrclation coefficient and is an indicator
of the power of a specific discriminating function.  Another evaluation of
discriminant function ecffectiveness can be obtained by examining its statistical sig-
nificance. Tests for significance based on propertics of the within and among

groups matrices is examined next.
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2.3.3.2 One-Way ANOVA and MANOVA

Consider the univariate one-way ANOVA model:
xik=u+ak+f‘ik [ = l,...,nk; k = ‘,...,g [16]

where x, is the observed value of an interval scaled criterion variable, u is the
overall mean, a; is an effect due to the presence of the k* trcatment or experimental
condition, and ¢, is an error term analogous to the ¢, term in the multiple regression
model. In this model, i indexes a specific observation in one of the g groups of
observations collected using the various experimental conditions. By letting

v = p + ox, where g, represents the k* group mean, [16] is
Xig = et Eipe (173

If the random errors are independent normally distributed with common variance,
statistical tests for the significance of the a,.s are performed. The hypothesis tested

is:

”03#|=ﬂ2=~-~=#g

1T, . at least two p,.s differ.

The significance of the differences among group means is interpreted by
partitioning the total sum-of-squares of x, deviations from their sample mean into
the within groups component which represents an estimate of error variance, and
the among groups component which mcasures deviations (rom the null hypothesis
of no group differences. Let X represent the sample mean for the 4* group, and ¥

the overall sample mean. The partitioning is then:
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g ™ g M
Z Z(sz -5} = Z Z[(Xik - Z)+ (% - D)7
k=1i=1| k=1i=1

which equals:

3 g M

8 Ny
Z(xu, ~-¥ = Z Z(x,k — X + z Zm - x) (18]
k=ti=1

k=11i=1 k=1i=1

where the term on the LHS of [18] stands for the total sum-of-squares (SS;), the
first term of the RHS of {18] is the within groups sum-of-squares (SSy), and the
secorid term of the RHS of [18] is the among groups sum-of-squares (SS,). If the
null hypothesis of no group mean differences is true, the among group sum-of-
squares should be very small with most variation due to the within greups compo-
nent. If the crror terms, e, arc independent and normally distributed with common

variance and zero mean, the following statistic tests the group difference hypothesis:

_ SSg-1
T SSultn—g)

The statistic F, is distributed as an F-statistic with g-1 and n-g degrees of frcedom.
.arge values of I, lead to the rejection of the hypothesis that all group means are
identical.

In the multivariate equivalent to the one-way ANOQVA, scalar clements arc

simply replaced by vectors so xx is a p-element observation vector with elements
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Xy, @ is a p-element centroid for the overall population centroid, a. is the effect of

the A* treatment, and g, is an error vector. Hence, the tested hypothesis is:

Hy:py=py = .=y,

H, : at least two p,.s differ.

Rejecting the null hypothesis leads to the conclusion that there is a difference
among some of the group centroids.

Similar to the univariate case, the significance of the difference among
centroids is investigated by partitioning the sum-of-squared deviations of the ob-
servation vectors, X, from the combined sample group centroid denoted by x. This
is the same problem where the partitioning process results in expressing the total
sum-of-squares and crossproducts matrix, T, as the sum of within and among
groups components, Wand A, or T = ¥ + A. If the null hypothesis is true, matrix
W wiil be similar to matrix T. The evaluation of the relative magnitude of within
and among groups sum-of-squares is complicated by the fact that they are p x p
matrices. [However, Wilks (1963) developed a test based on the determinants of the
W and T matrices. His procedure represents a likelihood ratio test of the hypoth-

esis that all groups have identical centroids and the Wilks’ lambda statistic, A, is:

iwl 1wl
fA+ Wi 171

Thus, it is scen that small values of A lead to rejection of the null hypothesis of no
group centroid differences. The sampling distribution of A is complex because the

numbecr of groups (g), observations (n), and variables (p), are all paramcters, but
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various approximations for evaluating A are available. One is the F-statistic for the

one-way MANOVA model developed by Rao (Tatsuoka, 1971):

. Al/s 1
F,=1- AT ms — plg — l)/2+—m

where p is the number of variables, g is the number of groups or treatments,

m=n—1-{(p+g)f2and

_ 2 a12~______4___
s \/p(g ) JERTI

where s=1 if the numerator and denominator cquals 7ero. The statistic F, is dis-

tributed as F,;,, where v, = p(g — 1) and v, = ms— p(g — 1)/2 + 1. The critical

region for the test is:

Reject I, : py = ... =

=
L3

if F,> F, . ., where a is the significance level for the test, and v, and v, are the nu-

merator and denominator degrees of freedom, respectivelv.

2.3.4 Classifier Performance Measurement Criteria

A critical aspect for comparing alternative feature extraction approaches
input to several classification algorithms is a fair and consistent estimation of their
total misclassificction erro- rates. Lachenbruch (1975) discusses the lecaving-one-
out, or jacknife, mcthod for computing error rate estimates. This method estimates
the discriminant rule ontitting one sample time series and then ~rplies that rule to

classify the remainir 2 observational time series. Misclassifications arc tallied after
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the jacknife process is iteratively done for all observations. The various types of
error rates are discussed in the next section. Another measure of classifier per-
formance is the total cost of misclassification. Stated Tom a decision thcory per-
spective, a Type [ error, or lower probability of detection, is worse than a Type Il
error, or higher probability of false alarm. An actual total classification cost can
be computed for alternative classification approaches if the respective misclassi-
fication costs are known.

The casiest way of estimating a classifier's misclassification rate is calcu-
lating 10w many of the design or training set observations are misclassified. Early
work in pattern recognition research implemented this approach but it was discov-
ered that the estimated crror rates underestimated the actual error rate of the
classifier. This is because the classifier or decision rule is optimized on the design
set and unless this set perfcctly represents the population distribution, a new set,
which is random sample drawn trom the same distribution, will be different and so
the classifier will not be optimal. The error rate calculated by reclassifying the de-
sign sct is called the apparent crror rate. This is distinguishaole from the acrual error
rate which is the expected error rate of .h~ constructed classifier on future samples
from the same population distribiition as the training set.

The simnple approach of reclassifying the design set has an optimistic bias
so researchers investigated methods for estimating the actual error rate {rom a de-
sign set (Ilills, 1966). However, problems with still optimistically biasing the esti-
matjon of actual error rate caused rescarchers to concenirate on estimating the
expected actual error rate.  One way to estimate the expected actual rate, the
leaving-onc-out method, gives an wunbiased estimate and works welt with non-

Gaussian observations (Lachenbruch. 1975).  This is the method for computing
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classification error rate estimates for the experimental data in this research. But
another research strategy was not to restrict feature performance comparisons by
constructing a classifier and estimating its error rate from only a design set of data.
In simulation experiments, other independent time series were generated and used
as test sets so application of a designed classifier to these new sets yielded a
straightforward estimate of the actual error rates for the various feature
extraction/classification approaches. Special considerations are now discussed

about discrimination and classification of data that are in time series form.

2.4 Discrimination and Classification of Time Series

There are two major approaches for viewing, analyzing, and interpreting
time series--one based on the time domain and another based on the frequency or
spectral domain. The theoretical development of time series methodology has ex-
hibited a leader-follower pattern, first emphasizing one domain, then the other.
Spectral (FFourier) analysis decomposes functions representing fluctuating phenom-
cna in space or time into sinusoidal components that have varying frequencies,
amplitudes, and phases. Scveral texts specify the necessary mathematical condi-
tions for the existence of the Fourier transform (Brigham, 1974 and Braccwell,
1978). Ilere, let it suffice that the FFouricr translorm does exist for waveforms
physically observed in nature (Bracewell, 1978). For a given random process,

x = {x(1), t € R}, the continuous Fourier transform (CFT) definition X{ /), is:
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[ore]

X(N)=| xe ?"a,

—o0

and the inverse Fourier transform definition x (1) is:

()= | Xx(e™dr.

—O00

The inverse Fourier transform shows how the x random time function can be de-
scribed by a superposition of complex sinusoids e?, with the amplitude and phase
of those sinusoids lying in the spectral band between fand f+ df defined by
X(/)df. Hence, X(f)is a complex amplitude spectral density function. For ex-
ample, if X has the dimensions of volts, then X (/) has the dimensions of volts/Hz.
In addition to the Fourier transform being a function that represents the amplitude
and phase at each frequencys, it is an effective tool mathematically, statistically, and
computationally. It is of great mathematical use because the convolution operation
occurs so often and is greatly simplificd by the Fourier transform. Statistically, the
large sample propertics of the Fourier transform are much simpler than those of the
corresponding time domain quantities. Computationally, fast Fourier algorithms
allow cvaluation of interestcd parameters more raptdly with smaller round-off error
than by dircct time domain evaluation. Spectral analysis has an inherent consist-
ency and cfficiency in its application because the power spectrum and all higher-

order spectrum density functions use the cstimates provided by the direct discrete
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Fourier transform (DFT) of the raw time series. For these reasons, spectral analysis
is the time series processing method implemented for feature development and
subsequent input to a classifier. The decision for employing a feature extraction
approach rather than an optimality approach is discussed next.

Consider the time series discrimination problem where the observation of
a discrete parameter time series x at each of T points in time is given and the
standard objective is to classify the observed time series into one of k mutually ex-
ciusive and exhaustive classes with an overall low misclassification error rate. The
univariate sample time series can be represented as x = (x(0), ..., x(T — 1)) and so
the classification problem concerns finite dimensional random vectors where
standard multivariate approaches are applied. I[However, Neyman-Pearson likeli-
hood or Bayes criterion rules are usually applied to classifying multivariate vectors
where T is small, and the learning population is adequate for estimating the un-
known parameters. Generally, this is not the case for time series data. For exam-
ple, the simulated time series analyzed in this study have T of approximately 1200,
and the learning populations contain a maximum of 250 time series. Furthermore,
the actual time series data analyzed in this study have T of approximately 2500, and
the learning populations contain a maximum of 60 time series. Thus, the compu-
tations for discriminant function calculation and performance evaluation will in-
volve inversion of large covariance matrices which are also not of fuil rank. Ilence,
the numerical difficulties of time domain calculations motivated investigation of
other approaches for time series discrimination.

Shumway (1982) gives two distinct alternative approaches of spectral time
series discrimination. The first, or optimality approach, assumes very specific

Gaussian models and solutions are developed to satisfy definitive minimum crror
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criteria. This approach generally requires prior knowledge of the time series or
signal waveforms so that either linear or quadratic discriminant functions can be
constructed. Shumway discusses the use of the frequency domain discriminant
analysis approach where matrix inverses can be replaced by simple sums involving
discrete Fourier transforms (IDFT) and spectral density functions.  Since the DFT
of a weakly stationary process produces nearly uncorrelated random variables and
variances approximately equal to the power spectrum, estimation and hypothesis
testing problems are formulated in terms of sample spectral densities with simple
approximate distributions. Shumway (1982) gives results which make discriminant
analysis in the frequency domain framework a very promising approach. But
Shumway noted the danger or limitation of the optimal approach (either time or
{requency domain) is the fact that inappropriate assumptions of time series distrib-
ution structure can cause an “optimum” solution to be only a rough approximation
to the actual problem. In fact, the time series measurements within the exper-
imental databases in this research were found to be highly non-Gaussian and non-
linear based on the Hinich bispectrum-based statistical tests (IHinich, 1982). Thus,
feature extraction, the other distinct approach to time series discrimination and
classification, was the approach followed in this study. A HOS feature extraction
algorithm developed to combine various types of spectral features of the simulated
and actual time series is discussed in Chapter 4. Time series arc most often real-
izations [rom a stochastic process and mathematical representations called

covariance functions used to characterize its behavior are defined next.
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2.5 Stochastic Processes and Their Covariance Functions

A stochastic process X = {x(¢),te T} is a collection of random variables
that describes the evolution through time of some physical process. The index set
of the process, T, is usually the set of integers (discrete) or the sct of real numbers
(continuous). Consider here stochastic processes which are discrete-time processes
5o X = {x(1,) ne N} is a sequence of random variables. Let the means of {x(z,)} be

represented by u,. The n*-order covariance of x is:

Ro(ty, 1y, . 1) = E{x(ty — uy)x(ty — ) .. x(t, — 1)}

= E{x(t))x(ty) ... x(t,) — pox(t, _ ) — - — puyx(y)
= myx(ty) — oo = g x(8,) + gy e )
Ro(t,7) = EG(t)x(ty + 1) o x(ty_y + 7)) = mElxlty _ )} = = = s ECx(1,))

=y E{x(t, + )} — o E{x(yy + )} + uypy on,
= E{x(t)) ... x(t,_, + 1)} — mypty ... up
E{x(t)) ... x(z, _, + 1)}.

I

where the marginal terms all vanish as it is always assumed in this discussion that
random variable means are zero and that x has finite order moments. Clearly, there
are many possible orders (number of random variables in the joint probability dis-
tribution) that are used for describing x, but concern is presently with the
covariance of two random time variables or the second-order covariance function.
Let the means of x(1) and x(t;) be represented by u, and p; respectively. The

second-order covariance is:
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Ryx(ty, 1) = E{x(t; — p,)x(1; — py)}
= E{x(1)x(ty) — tax(ty) — myx(t3) + w19}
Rex(t, v) = E{x(t))x(ty + U} — pp E{x(1,)} — p E{x(t) + )} + 1ty [19]
E(x(t)x(t + 1) — i
E{x(¢))x(t; + 1)}.

where the second term vanishes as random variable means are zero. The second-
order covariance is thus a bivariate expected value which provides a summary of the
degree which two random time variables are associated.

When [19] is a function of only the time difference or lag parameter, t,

with t = 5, — g, so that

R (h. ) = R (1),

the x process is known as a wide-sense or weakly stationary stochastic process.
Requiring all marginal and joint density functions of a random process to be time
independent, or strictly stationary, is frequently too restrictive an assumption in
practice as it is hard to find a strictly stationary random process. But there are
physical situations in which the process does not change appreciably during the
time it is being observed. Hence, wide sense or weak stationarity is adequate to
guarantee that the covariance of any pair of random variables are constants inde-
pendent of the choice of time origin. In these cases, the relaxed wide sense sta-
tionary assumption leads to a convenient mathcmatical model to closely
approximate reality. However, it is the mathematical convenience when assuming
weak stationarity which tends to prevent the proper investigation and applicability
of other forms of joint random variable distributions of a particular stochastic

process under study. FEven if nonlinearity of a stochastic process is addressed
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through HOS analysis, these studies also frequently assume stationarity of the ran-
dom process.

For stationary time series, there exists a uniquely defined decomposition
into a deterministic and a purely nondeterministic component which are mutually
orthogonal (Wold, 1954). This decomposition forms the basis of a time-domain
analysis of a given stochastic process generalizing the well known properties of
stationary processes. Also, spectral analysis, rather than the time domain, provides
the powerful methods of harmonic analysis (Wiener and Masani, 1957). Harmonic
analysis is possible for stationary processes because spectral representations in the
form of Fourier-Stieltjes integrals exist for the process variable and the associated

covariance functions:

x(t,) = e™dA(f)

n=—on

where A,(f) is a stochastic process with orthogonal increments. Cramer (1960)
considers certain classes of nonstationary processcs having similar spectral repres-
cntations. e shows that without requiring A,(f) to have orthogonal increments,
one is led to a class of stochastic processes called harmonizable or cyclostationary
processcs.

A process is strictly cyclostationary if:

E{x(t) .. x(t,)} = E{x(t, + kT) .. x(1, + kT)}
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for k e N, for all n, and T denotes the period. When [19] is periodic in ¢ with period

T for a fixed time difference or lag parameter, 7, the second-order covariance is:

Rxx(’leZ) = E{X([‘)X(lz)}
E{x(t; + Dx(¢e; + T + 1)},

and the x process is known as a weakly cyclostationary stochastic process.
Cyclostationary processes are processes whose joint distributions vary over time,
and are thus nonstationary, but whose parameters vary according to periodic
functivns. Cyclostationary processes are a class of stochastic processes which ap-
pear in the physical world via a mechanism that provides some deterministic struc-
ture in the observed time series. These processes are therefore appropriate models
for phenomena involving cycles or when there exists some underlying periodicity to
the data-generating mechanism.

To successfully deal with problems of statistical inference connected with
stochastic processes, it is crucial to have an appropriate and convenient type of
analytical representation for the particular class of processes under study. This
analytical representation should express in mathematical form the essential features
of the random mechanism assumed to generatc the process. This ensures accurate
assessments are madc on the various statistical questions arising [fom process gen-
cration. Consequently, ITOS in addition to power spectrum, representations were
used and developed in this rescarch so that the intermodulation and nonfinear effects
of random fault mechanisms of cyclostationary processes such as rotating machine
systems are captured in the physical process representations. Background infor-

mation on cxisting S theory is given next.
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2.6 Higher-Order Statistical (HOS) Theory

For single time series, the idea of polyspectra, or higher-order snectra, was
originated by Blanc-Lapierre (1953). Algebraic and analytic Jdetail was provided by
l.eonov and Shiryacv (1959) and Shiryaev (1960), who also considered the spectral
representation for a cumulant, rather than for a product moment. Shiryaev attri-
buted this idea to Kolmogorov. Brillinger (1965) generalizes the definitions of these
earlier papers by considering k-dimensional time series. Brillinger (1965) also de-
veloped a theorem which explained the importance of cumulants rather than prod-
uct moments. The actual term, polyspectrum, is due to Tukey who began the
development of a calculus relating polynomial operations to higher-order spectra.

The power spectrum is a complex-valued function of frequency and is de-
fined as the Fourier transform of the second-order stationary covariance function,

1) = E[X(OX(r + 1)]:

0
P(f)= j ey(1)e ™2 dr.
—o0
Now, a specific case of polyspectra is the third-order spectrum, or bispectrum, a
complex-valued function of two frequencies and defined as the double Fourier
transform of the third-order stationary covariance function,

alt, ) = FLX(OX(+ o)Xt + 1))

B(fl'fZ) = J. J ey(ry. ‘rz)(’ﬁn”(f'” +fzfz)drl dr,.

— T —on
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From examining each spectrum’s Parseval relations:

E[yX0] = % f_wP( f) df, and

T s ana

27[)2 —o0 ¥ —o0

E[y (] =

it is clear that the power spectrum represents the contribution to the second mo-
ment over a particular range of frequency, and the bispectrum represents the con-
tribution to the third moment over of a particular pair of frequencies. Nikias and
Raghuveer (1987) list a wide range of bispectrum applications. Specific examples
of nonlinear structure detected in a variety of time series using bispectral analysis
include: nonlinear interaction of ocean waves in shallow water (Itasseiman et al.,
1963), analysis of acoustic gear noise (Sato et al., 1977), and nonlinear energy
transfers in plasma (Kim and Powers, 1978). More sophisticated statistical appli-
cations of the bispectrum are within studies of nonlinear spectral transfer of energy
in turbulence (Lii et al.,, 1976, Van Atta, 1979, and Helland et al., 1979). Pro-
ceedings from the 1989 Workshop on [ligher Order Spectral Analysis (Nikias and
Mendel, 1989) contain some rccent developments of bispectrum theories and ap-
plications of processing signals to extract information based on cumulants. The
latest developments of 1{OS theory and its various applications are in the [EEE
Proceedings from the 1991 International Signal Processing Workshop on Higher
Order Statistics (Georgel, 1991). In this research, in addition to the bispectrum, the

second-order cumulant spectrum not constrained by stationarity, is investigated for
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providing feature information to a multivariate classifier to detect incipient failures

of rotating machinery.

2.6.1 Moments and Cumulants

Following Rosenblatt (1983), consider the random variables (X, ..., X.).

Let ¢(x, ..., &) be the joint characteristic function of the random variables
k
Bl ot = E expd i) 4K 0 = $(0). [20]
ji=1

If mixed moments £ X" = E(le'... Xv:) = m,,

k k

v= (v, ) %20, |v|] = Zvj, vl = nvj/

Jj=1 j=1

exist up to a certain order [v] < 4, they are the coefficients in the Taylor expansion

of ¢ about zero

(1) = Z (il)":—;JrO(ltlk) dG(x) = z (i)’ ol {21}

v/
Ivl <k Ivl <k
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The joint cumulants ¢, = cum (Xv:, . Xv:) are the coefficients in the Taylor ex-

pansion of log ¢ about zero

0B 60 = ) (1" <5+ ofe1") (227

Ivi<k

Kendall and Stuart (1958) has formulas relating cumulants of order k or
less to the moments of order k or less, and l.eonov and Shiryaev (1959) has for-
mulas for the inverse relationship. The relationship of zero mean cumulants to
moments up to order six are shown on the next page. Rectangular brackets are
used to enclose cumulants, and curly brackets to enclose expectations. The curly
brackets with subscripted numbers are used to replace the enclosed term with (he
sum of all distinct terms in a combinatorial fashion (all permutations of the indices).
The subscript value denotes how many terms are obtained from the index permu-

tation operation.
(X=X} =0
X X] = (XX}
(X1 0X] = (XXX}
LY XXX = (XXX - (G OHGXG ),

(400X, 05) = (X XXX,X5) — ({X XX { XX} o
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+ {X XXX { X5 X6 s

These relationships show that cumulants are expectations with lower order
statistical dependence removed. If the cumulant of n random variables is desired,
the expectation of the product of all n random variables is constructed, and addi-
tional terms are added so the net result will completely vanish if any subset of the

variables is independent of any other subset. For the simple case of n=2,

(XX = (XX - (X)X, (23]

the RIIS of [23] vanishes if X, and X, are independent. For n =3,

[X|X2X3] = {X1X2X3}

— XGE) - LG5I - L)) — DOx)). B

In the zero mean case, the last four terms of the RHS of [24] are zero, and so the
third-order cumulant and third-order moment are the same. If X; and X, and X, are
independent, the entire RHS of [24] is zero.

Rosenblatt (1983) showed that the existence of all moments up to order k
is equivalent to the existence of all cumulants up to order k. Nevertheless, the
bispectrum is defined as the Fourier transform of the cumulant sequence rather than
the moment sequence. Brillinger (1965) gives three rcasons for this definition.
First, cumulants have better independence propertic: than moments as they are
constructed so each order cumulant has the dependence on lower order cumulants
removed. Second, for ergodic stationary stochastic processes, Fourier transforms
of cumulants arc mathematically better bchaved than Fourier transforms of mo-

ments. The third justification for the use ol cumulants is if the process is stationary
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Gaussian, then all of its k*-order moments for k > 3 do not provide any additional
information about the process. However, the cumulant function does provide ad-
ditional information as for k>3, cumulants are zero for Gaussian processes.
Hence, the cumulant, rather than the moment, is the function needed to detect de-

partures from a Gaussian structure or linearity.
2.6.2 Mathematical Properties of The Bispectrum

Mathematical properties of the bispectrum are discussed in many HOS lit-
erature references but Hinich and Patterson (1989) emphasize the concepts of line-
arity, Gaussianity, and stationarity. Consider a time series, x(t) generated by the

linear model:

o0

x(f) = Z a(n)e(t — n) [25]
n="oo

where {£(f)} is a purely random series. The weighting {unction, or impulse response,
a(n), is real for physically realizable systems, and from causality, is zero for ncgative
n. If the series {£(1)} is Gaussian, then the original process {x(#)} is also Gaussian,
and has a zero bispectrum. But if the series {¢(7)} is pure noise and non-Gaussian,
then {x(?)} is non-Gaussian, ana has a nonzero bispectrum. Also, [25] can be
nonlinear if {e(s)}, the input process, and a(n) are dependent and {x(f)} will be

nonlinear even if {¢(r)} is Gaussian, and the bispectrum will be nonzero.
Let {x(1)} be a itionary time scries with zero mean, and assume that all
expected values and ~ums used exist. The power spectrum of [25] is the Fourier

transform of the autocovariance function C..(1) = E [x(t + n)x(n)].
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(o]
S(f) = D Cealt) exp { —i2nfh).
n=0
If S (f) is constant, then {x(#)} is serially uncorrelated on a white noise process.!
The bispectrum of [25] is defined as the two-dimensional Fourier transform of the
bicovariance function C,..(n,m) = E [ x(¢ + n) x(t + m) x(¢)] which does not depend

on t hbecause the process is stationary:

B(/i3) = D ) Coudnm) exp { —i2afyn — i2nfym).

The two frequency notation hides the three frequency interaction which is impor-
tant in bispectral estimation applications so three frequency notation
B(f,g. —f— g) and the Cramer representation of [25] was introduced by Brillinger

and Rosenblatt (1967a):
X(f) = j  expli2nfu] dALS) [26]

where { dA,(f)} is a complex stochastic orthogonal increments process, and the

integral defined in [26] is in Sticltjes scnse. Now, because [25] is real, dA{ ~f) is

I Whiteness of a series does not imply the series is purely random. This is important as
somce time series techniques do stop fitting a model when the residual errors appear to be
white noisc. The assumption of Gaussian residuals is made for the sake of convenience
as scro correlation does imply independence in the Gaussian case, but if the series is non-
Gaussian, this assumption can lead to wrong inferences.
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the complex conjugate of dA.(f). The spectral density at f of [25] is
S(f)ydf = E{dA.(f)dA.~f)}, and the bispectral density for h=—f— g is

B(f g h)dfdg = E{dA([)dA(g) dA(h)}. (27]

Because of stationarity, [27] is invariant to time translations so for B(/, g. h) df dg
to equal B (f,g) df dg for all f and g, the sum f+ g+ h must be zero.
When {x(1)} is linear, [27] is shown by Brillinger (1975) to be

B(f g h)dfdg = u3A(f)A(g)A(h) (28]

where A (f) is the transfer function of the impulse response a(t), u3 = £ {¢%()}, and

{e(1)} is the innovation process. The spectrum of the linear process [25] is
) = ANA(=]) [29]

where o? is the innovation process variance.

The right hand side of [28] is invariant to permutations of the frequency
indices f, g, and h = — f— g. Thus, the bispectrum’s symmetry lines are as shown
in Figure 2.1 on page 56. Symmetry means that il values of the bispectrum are
known at all points in one region about a symmetry relation, values in the other
region can be determined through either a permutation and/or conjugation opera-

tion.
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1+20=0

2A0+eged

Figure 2.1: Symmetries of Bispectrum

Because dA(—f)=dANf), B(—f,—g —h)dfdg = B (f,g, h)dfdg. This skew

symmetry gives another threc symmetry lines:
g=~fh=—f(g=0)and h=—¢g(f=0).
Thus, the cone,
C={fg0<f0<g<f},

is the principal domain region of the continuous-time bispectrum in the ( f,g ) plane.
Principal domain is the minimum region or {requency space which estimates are
computed.

In physical reality, a continuous-time process is always sampled for some

finite period, so investigoted processes arc band limited at some cutoff frequency
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Jf.. Contribution of frequencies above the cutoff frequency to the process variance
is therefore zero, and so the continuous-time bispectrum is cut off at f = + £,
g = *f, and f+g = 1 f. Thus, the continuous-time set of positive support for

absolute value of [28] is the right isosceles triangle

IT={fg:0<f<f,0<g<fif+g =1}

shown at Figure 2.2 on page 58. But there is also a discrete-time bispectrum where

Hinich (1989) shows the discrete-time bispectral density with r as the sampling in-

terval:
B (fgmdfdg = E{d ALf)d.Ag)d.A(h)}
A k
=D D) BU R e+ B e L) drdg
Kk m n
k+m+
forf+g+h+ _(__g__n_)_ = 0, with signed integers k,m,n restricted to keep the

indices in the bispectrum’s principal domain (Brillinger and Rosenblatt, 1967a). But
since there is band limitation at f,, the summation is restricted to k,m, and n such

that

0 f+%sfc. 0<g+2<f,

IA

and

(k + m) 3

O<h+d = —————f~g</.

Sampling actually causes an infinite number of parallel symmetry lines defined by

A+g = —'1,1— and [+ 2g = % The cone C in Figure 2.1 on page 56 is cut by




both of these symmetry relations, but for a particular n*, the line f+ 2g = "T‘ is
at least to the line 2+ g = "T when both lines are within C. Hence, the principal

domain of the the discrete-time bispectrum, B, is the triangle
1 1
e Osfs-i;, 0<g<f Y+g =+

which is a proper subset of C. This triangle is the union of the sets IT and OT in
Figure 2.2. Statistical tests for Gaussianity and linearity (Hinich, 1982) and alias-
ing (Hinich and Wolinsky, 1988) of time series data use estimates calculated over

this discrete-time bispectrum principal domain region.

4
9
tegsir2e
fe02at2e
tag oT
IT
>
1/4¢ 12t

Figure 2.2: Discrete-Time Bispectrum Principal Domain
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2.6.3 Bispectrum-Based Statistical Tests

Ashley et al. (1986) showed the Hinich bispectrum-based statistical tests

(Hinich, 1982) to have substantial detection power for many common forms of

nonlincar serial dependence (bilinear, nonlinear and threshold autoregrcssive, non-
linear moving average). Also demonstrated was that the bispectral linearity test can
be applied to raw source data as well as to the fitting errors of an estimated linear
model. Consider now the development of these statistical tests.

If the mechanism gencrating a time series has non-zero terms in the third-
order cumulant function, then the bispectrum will be nonzero and vary with fre-
quency. This fact is the basis for the linearity and Gaussianity statistical tests
developed by Subba Rao and Gabr (1980) and Hinich (1982). Even though Rao
and Gabr first implemented Brillinger’s (1965) method for measuring the departure
of a process from linearity and Gaussianity by using bispectrum estimates of the
observed time series, their tests do not use the asymptotic properties of the
bispectrum developed by Rosenblatt and Van Ness (1965), Shaman (1965), and
Brillinger and Rosenblatt (1967a,b). There are two approaches to smoothing sam-
ple bispectra to obtain consistent and asymptotic Gaussian estimators with known
sampling properties for large samples. Rao and Gabr (1980) use a lag window
kernal to multiply the sample third-order covariance, or bicovariance, array com-
puted from a sample of the time scries; this weighted covariance is then Fourier
transformed to yield a bispectral estimator. Hinich (1982) applies a fast Fourier
transform to the data arrav, computes triple products of the discrete complex

Fourier coefTicients, and then uses a two dimensional smoothing filter in the
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bifrequency domain to obtain a bispectral estimator with known sampling proper-
tics. This allows for the tradeoff between variance and bias of the estimator. The
Hinich FFT approach uses fewer arithmetic steps than Gabr and Rao’s lagged
covariance products approach. Another element of Tlinich’s faster computational
approach is the breaking of the data record into intervals and then averaging the
sample bispectra for the record blocks. Additionally, Rao and Gabr (1980) did not
develop test statistics for the significance of individual bispectral estimates. On the
other hand, the Hinich statistical tests give chi-squared statistics for testing the
significance of the bispectra. For these reasons, the Hinich bispectral-based statis-
tical tests to detect departures from nonlinearity and non-Gaussianity are applied
to time series data in this research.

With a finite impulse response and two-frequency indsx notation, [25) is
B (finfy) = s AU AL A (S +6), [29]

where p; = E&40), A(S) = ia(l) exp( —i2nfn), and A° is the complex conjugate
of A. Trom [25] and [29] a functional relationship called the squared-skewness
Sunction of {x(1)} is defined and is the basis of the Hinich linearity and Gaussianity

tests:

M
S(HYS(HS(L+1f) o VAW RE [30]

1B (/i )] %
6

Ience, (307 is a standardized third-order cumulant spectral function as it is the
square of the bispectrum normalized by the power spectrum product of cach cor-
responding frequency. The degrec of dependence hetween two frequencies is

measurcd by [37]. [If [25] is lincar then [30] is constant over all frequency pairs




{(fi.f2) in the bispectrum principal domain. The test for Gaussianity of the time
series {x(f)} involves testing that [30] is zero. Since u; = 0 for the Gaussian case,
a non-zero value of the bispectrum rejects Gaussianity. Brockett et al. (1987) has
a more complete discussion of these tests and Hinich (1982) has the precise formu-
las and proofs concerning the test for linearity and the derivation of an

asymptotically normal test statistic based on [30].

2.6.4 Cyclostationary Processes and Higher-Order Spectra

TTOS research studies show that nonlinear phenomena can be studied by
computing higher-order spectrum estimates. Nonstationary phenomena can also
be studied by computing higher-order spectrum estimates which are not constrained
by the assumptions of stationarity. For example, there may be situations where it
is bencficial to compute estimates of the second-order cumulant spectrum and the
third-order cumulant spectrum rather than the power spectrum and the bispectrum,
respectively. This 1HOS study conducted a time series estimation approach which
computed lincar (power spectrum), nonstationary (second-order cumulant spec-
trum), and nonlinear (bispectrum) estimates of cyclostationary processes for con-
struction of feature information. Of interest 1n this research is mechanical vibration
monitoring and diagnosis for rotating machinery. In this situation, the periodicity
arises from rotation, revolution, or reciprocatior of mechanical structures such as
shafts, gcars, pistons, or propellers. This work presents evidence that frequency
support in the second-order cumulant spectrum principal domain (2-CSPD) region
provides additional and significant featurc information to bispectrum and power

spectrum features for wear signal characterization of rotating machinery. Devel-
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opment of the principal domain regions for the second and third-order random

variable cases is contained in the next chapter.

2.7 Summary

Pertinent details of the major methodologies investigated to develop a new
approach to the research problem were given .a this chapter. Reviews of existing
incipicnt fault detection techniques show an approach which employs HOS con-
cepts needs investigation. Measuring differences in multivariate populations, and
particularly time series, from a statistical perspective was discussed. [Feature cx-
traction is the time series discrimination method employed as the Gaussianity as-
sumption for an optimality approach does not apply to the highly non-Gaussian
and nonlinear time series data analyzed in this research. Even though different as-
sumptions are made about the form of the class-conditional probability density
functions (pdfs) used to characterize population differences, explanations in a
Bayesian decision theory framework show that the class-conditional pdf is estimated
in a way so similar values rcsult when the function is evaluated for features from
the same class, and widely differing values result when evaluated from different
classes. Statistical tests of the null hypothesis that the centroids of different classes
are equal are used. These tests are based on the partitioning of the matrix of
squared deviations of observational feature sets from the sample centroid into ma-
trices representing within and among class components. Closcly related to dis-
crimination is classification which applies the decision rule to assign a multivariate
feature sct with unknown class membership to its proper class. This rescarch ap-

plied linear, quadratic, and 4-ncarest-ncighbor classifiers. An unknown time series
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observation generated by a cyclostationary process, defined by “optimum”
discriminant feature sets, will be assigned to the class which has the highest classi-
fication function, or posterior probability value. Applying classification rules to
simulated and actual experimental time series data of known categorics will result
in measures of the classification power of the rules and their respective extracted
feature sets. Major concepts of existing HOS theory emphasize the importance of
justifying the use of certain limiting assumptions such as linearity, Gaussianity, and
stationaritv of the stochastic process under study. Use of proper spectral esti-
mation procedures which include cumulant spectrum estimation are investigated to
provide improvement to extracted featurc information for cyclostationary time se-
ries discrimination and classification. The development of this new analytical ap-

proach is contained in the next two chapters.
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Chapter 3

Cumulant Spectrum Estimation

3.1 Introduction

This chapter discusses the approach to cumulant spectrum estimation of
periodic time series data generated by physical systems such as rotating machinery.
Cyclostationary models are used to represent these physical systems as they contain
both deterministic and random components. The deterministic component is due
primarily to the constant periodic force of the machine. The random component
is due to various sources such as thc randomness of the process under study (ie. the
process of wear), different operating and maintenance conditions (process environ-
ment), and randomness of the machine manufacturing process (no two machines
are exactly the same).

In the time domain, various orders of covariance functions can be used to
describe random processes. Alternatively, random processes can be characterized
by the Fourier transforms of these various covariance functions. This chapter pre-
sents the key ideas underlying second-order cumulant spectrum cstimation for a
single time series. Second-order cumulant spectrum estimation is a new procedure
that provides information bevond the bispectrum and power spectrum cstimation
of the cxperimental time serics data described in Chapter 5. The spectral estimation
approach describes the estimation of stationary, cyclostationary, and nonstationary

processes in an integrated manner. [t has the potential with further development
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for use as tests for stationarity and periodicity of the observed time series but the
primary interest in this research is the use of second-order cumulant spectrum esti-
mates for feature extraction and incipient fault characterization of cyclostationary
processes.

This work is different from the previous HOS monitoring study (Sato,
1977) and other treatments of cyclostationary processes (Gladyshev, 1961 and
Ogura, 1971 and Hurd, 1969, 1989a, 1989b, and Gardner, 1989) in that it incorpo-
rates estimation concepts of several classes of stochastic processes (nonstationary,
stationary, and cyclostationary) in terms of spectral correlation functions calculated
over a second-order cumulant spectrum principal domain (2-CSPD) region. The
2-CSPD is derived from symmetry properties of the Fourier transform. There are
several important properties of the 2-CSPD region. Firsz, the support of the
2-dimensional cumulant spectral measure for purely stationary processes is con-
strained to a diagonal line defined by fi = —f; in the fourth quadrant of the
2-CSPD space. Cramer (1960) and Brillinger (1965) state this property so this idea
is not new. Second, the support for strongly harmonizable periodically correlated
processes (Gardner and Franks, 1975 and IHurd, 1989a, 1989b) or purely
cyclostationary processes (PCS) is consirained to a set of equally spaced paraliel
lines to this stationary support set where the Euclidean line separation distance
between correlated spectral components indicates the period or cycle exhibited in
the data set. 1However, the new result demonstrated in this research is that calcu-
lated sccond-order cumulant spectrum estimates not on a purely periedic support
grid arc those of concern and increased interest when studying incipient wear of
rotating machinery. The estimated frequency support not restricted to the funda-

mental periodic ~omponcnts and their harmonics for both stationary and
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cyclostationary support scts in the 2-CSPD represent intermodulations of the
stochastic process. These modulated frequency components are p:oposed to pro-
vide additional and better feature information for inc.nent wear signal character-

ization than periodic spectrum components.

3.2 Cumulant Spectra and Their Estimation

Let x (1) ..., x (tv) be N observations from a random time series sampled
onM = {n:n=20,1,-1.2,-2,...}. The {x(s), » € M} are random variables and
this notation is equivalent to X?i), ..., X(N) with N jointly distributed random var-
iables with a common marginal distribution and zero mean, but lower case x is used

in time serics literature. Consider the vector of time points
- N

where MY = M x M x M x - M . Let cum (t/N) denote the Nth-order cumulant
of the time series sample of any N dimensional subset {x(n), x(f,), ... , x(ty)} of the
jointly distributed random variables. In this notation,
cum(t/1) = E[X()] = E[x()] =0 for each ¢ because common marginal distrib-
utions have zerc mean. Strictly stationary processes have cum (1/N) depending
only on the N-I time points denoted by the vector d = (.~ t, ..., ty—1). Stnctly
periodically correlated or cyclostationary processes have cum (1/N) depending only
on the N/T time points where T denotes the period or cycle and denoted by the

vector p o= (&, ..., twr).




Consider the general nonstationary case and transform a vector of time
points, ¢ to its spectral representation, f = (f;, ..., fv). The Nth-order curulant

spectrum is now defined:
Cum S, (fIN) = Z cum (1IN Y exp[ —i27(7' £ )] (313
75MN

A strictly stationary process has the Nth-order cumulant spectrum replaced by the

N-1th order polyspectrum definition:
S((JIN=1) = D cum(dIN)exp[ —i2n(d’ fyr_ )] [32]
;;MN"

A strictly periodically correlated process has the the Nth-order cumulant spectrum

replaced by the Nth-order periodically correlated spectrum:
PCS(fINY = ) cum(BIN)expl —i2n(3' [ )], [33]
[_;»:MN

Applying [32] to [31], the general relationship between cumulant spectra

and polvspectra can be expressed as:

Cum S (fIN) = 6(f; + F LD SSIN = 1), [34]

where 8(f) is the Dirac delta function. The RIS of [34] is zero for

fi + fi + ... fu#0 due to the sifting property of delta functions. Thercfore,
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[34] states that correlated polyspectral components that do not sum to zero are
represented only in the cumulant spectrum principal domain.
Similarly, applying [33] to [31], a general rclationship between cumulant

spectra and periodic correlated spectra can be expressed as:

Cum S (fIN) = Maf, + -+ afy) PCS (fIN), [35]
where 8(af’) is the Dirac delta function and a = -17 denotes the period. Again,
since the RIS of [351is zero forafy + afy + ... + afw#0,+1, +2, .. dueto

the sifting property of delta functions, [ 357 implies that correlated periodic spectral
components whose values do not sum to zero or any integral multiple of the
periodicity are represented only in the cumulant spectrum principal domain.
Hence, periodically correlated spectra and polyspectra are both subsets of
cumulant spectra. Stated differently, purely periodic correlated spectra are con-
strained to a spectral support set that is constrained to equally spaced manifolds
defined by cycle frequencies that sum to zero or integral multiples of the period.
Polyspectra are constrained to a spectral support set where the individual frequency
variates sum to zero. In a practical approach to demonstrate these relationships
different orders of stationarity, cyclostationarity, and nonstationarity are investi-
gated. Consider first the covariance structure (or the two random time variable case

and its corresponding second-order cumulant spectrum domain represcntation.

3.2.1 Second-Order Cumulant Spectrum

Consider a zero-mcan second-order continuous-time stochastic process

x = {x(1),ie N} with
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E{x(1))x ()} = E{x(t))x(t; + 1)} = cumy (1, 1) = R (1, 7).

Assume the process is such that the expected value exists for all t and r with

t = hL— t, 15 not identically zero, and is continuous to avoid anomalous behavior.

If the second-order cumulant is a function of the time difference, t:
cum, (t]- 12) = Rxx (t2 - tl) = Rx_x (T)

then the random process x is weakly stationary. Now, if R,,(t, 7) is periodic in t
with period T for a fixed , then x is wide sense cyclos‘ationary or periodically

correlated, and the second-order cumulant function is:

= R (4, +T, 5, + T+ 1)
= R, (at,ar + 7)

with at = ¢t + T denoting the period.
This expectation or sccond-order cumulant time function has the following

second-order cumulant spectrum representation:

N-—1 N-1I

Z Z Z IIXkX,]eiZRfk(al)ellel(al + r)'

k=01=9

Using the properties of exponentiation and summing a over all possible integral

multiples of the fundamental period:
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- T 2 2 E [X,XJe™ (et o) igh:

Now, break the triple sum into two parts, afy = — af; and afs # — af; to obtain:

N N WAl Ao
s Lk=0
N—1 N—]| [36]
T—»oo Z Z ZE[XkXIJeﬂ"(aA+aﬁ)reizxf,f_

Close inspection of the spectral representation of [36] reveals some important im-

plications:

1.

Il x is a wide-sense stationary random process, the spectral correlation is only
a function of the time shift parameter, z. It is independent of the time param-
cter, f, and also the period parameter, a, so the second term of [36] vanishes
or is zero. Furthermore, the period parameter does not exist in the spectral
correlations. This is possible only if the random complex amplitudes, X, and
X, are uncorrelated or E[X, X, ] = 0 for all fi # —f. Thus, stationary
processes will have spectral correlation sunport in the second-order cumulant
spectrum principal domain (2-CSPD) region constrained to f, = — /..

If x is cyclostationary, spectral corrclations are non-zero at integral multiples
of a. This first implics that different random complex amplitudes are con-
strained to specific portions of the diagonal stationary support line in the

2-CSPD defined by af; = — af,. This correlation is defined as the first term of
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[36] and has stationary characteristics. Periodic correlation components are
also created from the second term. These are a function of ar and are off the
support set defined by afi = — af,, but rather are constrained to a support grid
in the 2-CSPD defined by: afi # — af. So, cyclostationary processes also
have nonstationary characteristics and provide a “bridge” between stationary
and nonstationary processes. In fact, cyclostationary processes are tractable
with generalizations of the tools used to study stationary processes (Cramer,
1960, Gardner and Franks, 1975, and Hurd, 1989a and 1989b).

3. If x is nonstationary, non-zero spectral correlation may occur not only at inte-
gral multiples of as but rather for any t. Note that this general class includes
cyclostationary and stationary processes as a subset. Also, only the general
second-order cumulant spectrum representation captures spectral correlations
beyond the various support sets defined by fi = —f, afi = —af, and
afe # — af. Correlated frequency components that are a function of any ¢
represent modulations of the purely periodic interacting components. Also, the
second term of [36] which has the periodic (requency components multiplied
by the sinusoid e?¥i* also represent modulations and has support off the purely
cyclostationary grid (see Figure 3.1 on page 72). These modulated dependent
frequencies are proposed as more uscful than single or coupled harmonic tones
in characterizing random incipient wear processes of rotating machinery.

It is shown how cyclostationary processes have both stationary and nonstationary

characteristics. More importantly, the investigation of a more powerful feature

characterization of periodic signal data for wear discrimination and classification
requircs cumulant spectrum estimation. The 2-CSPD region on which estimates are

computed for the joint random complex amplitude distribution is now developed.
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Figure 3.1:

SPECTRUM
BROADENING

f1 =12

Y

4

At2 ’

pti= -(p6)12
A Y
AY
4
Cyclostationary . pfi=-(p-5)12
Support
{Discontinuous) .~ §) ] pii=-(p4)t2
’I, b \\Q
T -
aq---"" \ pfis -(p3)t2
Support Off Periodic Grid 4
(Modulation Effects) For Both pti=-(p2)t2
v Power Spectrum and
Cyclastationary Spectrum
y i pti= -(p-1)12

Stationary Power
Spectrum
(continuous)

f1 =-f2

Spectrum Broadening Due to Modulation -- “Sidebands”

72




3.2.1.1 Principal Domain Development

Without assuming weak stationarity the continuous, second-order cumulant

spectral representation of a stochastic process is:

o0 poo
Cum S (f;.fo) = I j olty, L) 2T h Al gy gy, (37}
~00 ¥ =00

This cumulant spectrum equation defines each estimated quantity over the entire
(A, f2) planar region. However, it is not necessary to compute the second-order
cumulant spectrum over this entire frequency plane as the Fourier transform pos-
sesses two imporiant symmetry properties: permutation and conjugation. The
2-CSPD is defined as the minimum sp.ace on which second-order cumulant spec-
trum estimates arc computed. The following four step process can describe the PD
development for any order:
1. Apply permutation symmetry of Fourier transform (complex variates).
2. Apply conjugation symmetry of [Fourier transform (real variates).
3. Combine permutation and conjugation symmetry operations.
4. Bandlimit and properly sample the process.
The 2-CSPD is now developed with a corresponding graphical depiction.

Consider Cums,, (fi.f2) as an estimatc of the true second-order cumulant
spectrum which 1s based on the continuous I'ourier transform of a large but finite

record length, T, of the process x:

CumS o (fify) = - EAXCY XA [38]
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Now consider CumS., (i)

CumS e (fufi) = = E LX) XS
- T ELU) KAL)
CumS (S i) = CumSy(fiufy)

Because of this permuration symmetry, a 45° line divides the entire (], f2) plane into

two equivalent half-planes. See Figure 3.2.

Figure 3.2: Complex Second-Order Cumulant Spectrum Principal Domain

Consider only the right half-plane. The complex 2-CSPD is:
{fi-fy i —oo<fi< oo 7SN}

Now consider Cum.é.,( -f=N)
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CumSee (=i = f3) = S E(XC =) X( ~1£,))
T EXUX (L))

CumS o ( —fi~f,) = CumSlf.f).

where - denotes the conjugate operation. This is the conjugation symmetry prop-
erty. It exists because for x a real-valued stochastic process, X( - f) = X*(f). So,
cumulant spectrum values in quadrants I (II) are equivalent to those estimates

computed in quadrant 111 (IV). Consider only quadrants [ and IV. Sec

Figure 3.3.

Figure 3.3: Real Second-Order Cumulant Spectrum Principal Domain (1)

Thus, the 2-CSPD for a real-valued process is:
{f|.f2 : OSfl < o0, —co sz < oo}.

Now consider CumS.. ( — fi, — /i ):




LEX(-HXC-£)
+ E (XU X /)

Cumg;x(f, Ja)

Cumgxx( "'va "fl )

CumSee( = foo = f})

This property is due to the combination of the permutation and conjugation prop-
erties of the Fourier transform. [t states that the 45° line in quadrant [ and the
— 45° line in quadrant IV are both lines of symmetry. Thus the original two fre-
quency plane space (f;, f;) has been halved by the permutation property and then

this half-space is split into halves again (see Figure 3.4).

* t2 Ti1-t2
f1
‘ 2\
f1=-12
Figure 3.4: Real Second-Order Cumulant Spectrum Principal Domain (IT)

Ilence, both symmetry properties result in slicing the original planar region down

into a quarter of its size and the reduced 2-CSPD for a real-valued x i1s now:

(finhh : 0<fi<oo ILl <A}
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In actual implementation, the second-order cumulant spcctrum is evaluated
numerically through a digital signal processing scheme. Hence, to satisfy the well-
known Nyquist sampling theorem, the stochastic process is bandlimited and sam-
pled at of least twice the highest frequency component, f, to prevent aliasing.
Consequently, when the auto second-order cumulant spectrum is computed, it is
only necessary to compute estimates which reside in the triangular discrete 2-CSPD

region (see Figure 3.5) defined by:

(i 0<Ifl <fi<f})

f1=-12

Figure 3.5: Discrete Second-Order Cumulant Spectrum Principal Domain

The same four step process can be applicd to each succeedingly higher di-

mension. For the third-order cumulant spectrum:

o0 o0
Cum S (fio /o f3) =f f 65ty by 1) 2N H BB g g gp 139

—ND T —00
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each estimated quantity is defined over the entire (fi,fi, ;) cubic frequency space.
However, estimates need only be computed in the discrete 3-CSPD region defined

by:
{fihofs 1 O<Ifl <fi<hi <A}

The graphical depiction of principal domain regions in higher dimensions is more
difficult. Fortunately, a picture is not required by the computer to calculate the

estimates.

3.2.1.2 Estimation Procedure

This section describes the computational procedure to compute estimates
for the second-order cumulant spectrum (2-CS) from the direct discrete Fourier
transforms (DFTs) of finite record lengths. The procedure is basically an extension
of procedures for computation of traditional power spectra and it will be shown
that 2-CS estimates are computed from multiplying two discrete complex amplitude
spectral density functions. The same procedure can be followed for computing es-
timates for the third-order cumulant spectrum (3-CS) except that three complex
amplitude spectral density functions are multiplied and are computed over a differ-
ent principal domain region.

Begin with {38] which expresses CumsS.. (fi,f2) in terms of expectations of
two randam complex amplitude functions: X(f;) and X( ;). Performing the cx-
pectauon operation of random variables requires knowledge of an appropriate
probability density function which in most experimental studies is unknown. Thus,

enscmble averaging over a sequence of sample 2-CS is the approach for estimating
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the expectation of the two complex random variables. Consider N identical inde-
pendent trials or runs of an experiment. Each run yields an outcome denoted by
x¥)(1), where k = 1,2,..., N. The collection of individual realizations defines the
ensemble of a particular stochastic process. If it is impractical or too costly to
gather a large number of realizations of a particular stochastic process by repeating
the experiment N times, there is another way to obtain more samples. If the time
duration of the original ata record is long enough, it may be subdivided into indi-
vidual frames of sufficient length to maintain independcncé and subsequently im-
prove the quality of the estimates. Of extreme importance with processing time
series data from pcriodic phenomena is definition of the frame length as an integral
multiple of the fundamental rotational frequency of the process being studied.
Also, another constraint when characterizing incipient faults is to capture at least
two fundamental periods. This is the lower bound as frequency resolution of sam-
pled estimates is given by V/ = 1/T where T is the processed record length. Frame
lengths defined in this manner will capture modulations of the specified periodic
frequency which have been found to help characterize incipient wear states. No
data windowing techniques arc needed to reduce the effects of leakage if an integral
number of periods or cycles are captured with the defined frame lengths.

So consider the sct of N realizations or records for x, each record being T
seconds long. Each realization sampled with sampling interval 7, and consists of
N = Tft, samples. T and N arc determined from considerations previously dis-
cussed. lLet x®[n] represent the k* sampled realization and X®[ /] the corre-
sponding DFT of x*®[#]. On the basis of [38], the appropriate estimate of the k*

sample 2-CS is:
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CumS{finfy) = = X0 (/XD (). [40]
T

Consider the values of the CFTs at f; = [ Vf where Vf = 1/T. Then [38] becomes:

CumS ol fi11fi2) = XEGIXO ).

Now, the sample values of the CFTs in terms of their respective DFTs are:

X9

XU = =55

[41]

so expression of the continuous auto 2-CS in terms of its discrete auto 2-CS is:

CumSL 11, 1,]

(k)
CumS (i1 12) = sz

[42]

Substituting [41] and [42] into [40] to obtain the sample discrete auto 2-CS:

CumS®0 1,4, 1
vf?

_Lwh
T xr VfX(T 78

The final estimate of the discrete auto 2-CS is found by ensemble averaging over

all N realizations of the stochastic procese studied:

N
CumSol 1,1 = = ), Cums®L 14,1 [43]
k=1
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Note that if x = {x(?), r € N} is in volts, then the 2-CS estimate has the dimensions
of volts? and represents spectral components of two dimensional bandwidth cen-
tered at £ and £ contributing to the mean square value of the stochastic process.

[t is important t> mention that estimates of succeedingly higher orders of
cum ant spectra are found by a procedure similar to the one described for the
secont- ra r case. The only difference is the number of DFTs being multiplied over
a correspor. nely dimensioned PD region. Pseado-code for second-order cumulant
estitnation of cyclostationary time series is given below and the actual FORTRAN

program is at Appendix A.

Procedure Second-Order Cumulani Estimativa
Receive valid time series input narameters (# samples, sample rate, block length)
Load time series data into FFT work arrav

Calculate statistics (moments and cumulants) and subtract mean from data
While data blocks exist do

a) Subtract block mean lrom data

b} Perform DFT

¢) Calculate Secund-Order Cumulant Spectrum (double complex product)

d) Accumvlate Chi-Squared Statistics over 2-CSPD
End Do

Output block summary statistics and correlations and Global Statistics

END

Valid parameters imply that sufficient working storage space is defined o
handle the amount of samples in the time series and also the chosen block length
is at least twice the fundamental frequency of the system. Two or more funda-

mental periods in a processed data block will calculate second-order cumulant es-
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timates which correspond to intermodulation effects or nonstationary
characteristics of the random fault mechanism. Breaking the entire time series
record into proper block lengths is a method to increase estimation reliability by

decreasing estimate variability.
3.2.1.3 Reliability of the Estimates

Because of inter-machine variability, time series estimates of the
stochastic process under study are not perfect. Estimator quality is usually de-
fined by its bias and variance. Bias, b, is the difference in expected value of the

estimator and the “true” value:
A
b = El¢]— ¢,

and so an estimator is unbiased if E[¢] = ¢. Variance is the spread in value

about the expected value:

EL(é - E4]"]

FL$? - 26 ET$1 + EX[41]
F1$*] - 2E$1EH] + EX[]
H6%1 - E4].

Vgl = o

I

I

So, estimator variance is equal to mean square value of the estimator minus the
square of thc mean of the estimate. Now, consider mean square error which is
defined as the following and can be derived through expansion of the expectation

operation:
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e = E[(d - 6] = o>+ b2

Assume that the realizations are independent and that the process is ergodic.

Then with bar notation meaning expectation:

N

CumS [, ] = -[{7 Zafums;’;’[ Il ]
k=1
N
l e ——
=N Z CumS_[1,,]
k=1
= L Ncums [ 1. 1,1

N
CumS, [ 4, 5]

and hence the estimator in [42] is unbiased. Also, [42] has a variance given by:

Var{CumS[ 1,41} = == CumSLL 1, 1,1,

so that the variance decreases with the number of realizations. This agrees with
one’s intuition that averaging of more realizations of random processes creates

better estimators.




Chapter 4

HOS Feature Extraction

4.1 Introduction

A feature extraction algorithm is developed to exploit the additional in-
formation provided by the power spectrum and the HOS transformations of raw
time series data. Several thousands of spectral estimates are usually generated for
a particular time series analysis application so a finite subset of the spectral esti-
mates, or features, are chosen from the entire collection of spectral measurements
to provide “optimum” classification results. There are three reasons for investi-
gating alternative estimation and feature extraction methods and evaluating their
classification results rather than using only one type of spectral analysis approach.
First, there is a cost for performing many different types of spectral estimation
procedures and their subsequent feature extraction. Actual computing time to
perform HOS estimation is not the most prohibitive factor; it is the feature ex-
traction process and subsequent classification that takes time and additional
computing. It is possible that power spectrum estimation and feature extraction
may provide sufficient classification performance for a particular application.
However, performing HOS cstimation and [eature extraction can be worthwhile
if it improves the overall classification performance of the power spectrum-based
approach. Proper HOS transformations of the raw time series can lead to more

effective decision surfaccs because of the more accurate representation of the
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stochastic process structure being studied. Second, reducing the dimensionality
of the feature space eliminates redundancy as variabies which do not add to the
classification accuracy are not included in the final decision rules. Third, a lower
misclassification rate is sometimes achieved by using fewer feature variables.
Further discussion of this topic is in the next section. The significant outcome of
the feature extraction process is the exposure of the individual spectral feature
variables and their combinations in measuring differences of multivariate popu-
lations. Thus, the HOS feature extraction approach is not only multivariate, but

also multispectral.

4.2 Features and Their Relationship to Misclassification Rate

Previous pattern recognition research observed for a given design set, in-
creasing the number of feature variables, d, causes classification performance to
initially improve, but then to deteriorate (Fland, 1981). This occurs because the
decision surface better fits the design set with increasing d but generalizes less well
to new samples since the design set became more sparsely distributed and less
representative of the class-conditional pdfs. Fand (1981) explains this phenome-
non using Hotelling's 77 statistic.

Tlotelling’s 77 statistic, the distance between two sample means rclative
to the dispersion within the samples is:

n‘nz

nmn
= @ -R)VR %) =

n

D’
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where Xx; is the mean for class w;, V is the assumed common variance-covariance
matrix, and D? is the squared Mahalanobis distance measure defined in the back-
ground chapter. To investigate multivariate population differences, the question
asked is how often is 77 observed as large or larger than the 77 estimated from the
samples if the two populations are identical? The statistical criterion value de-

fined by:

n—1-d T2

J = (n—2d

is compared with the F distribution with d and (n-1-d) degrees of freedom. If the
probability of a large 77 is sufficiently low, one can conclude, with a certain risk
of error, that the populations are distinct.

Now, T? changes as d, number of measurement or feature variables, in-
creases (Liddell, 1977). Consider each feature variable as independent of every
other feature variable and the standardized difference between the sample means

is some constant, k , for each variable. This allows 1* = k3d and thus:
J = (n— 1= dynnk’df(n — 2)dn

B (n— l)n|n2k2 n,r12k2
(n—2n d (n—2n " (44]

[44] is a linear function of d, decreasing as d increases.

Van Ness and Simpson (1976) and Van Ness (1979) studied the rate at
which 1)? must increase as d increases in order to maintain a constant or decreas-
ing error rate. They analyzed data from normal populations and compared three

parametric and two non-parametric classification algorithms. T or each classifier,
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they produced plots to determine the discriminatory power lost by increasing d
with D? fixed, and how much D? must increase in order to justify increasing d.
Their results showed that the non-parametric algorithms were quite stable at high
dimensions, and also outperformed the parametric algorithms at smaller dimen-
sions. Nevertheless, feature extraction is necessary to “squeeze” the most infor-
mation from a stochastic process with the least amount of variables. Some

existing feature extraction approaches were examined for use in this work.

4.3 Existing Feature Extraction Approaches

Algorithmic approaches for finding a feature space spanned by a subset
of the original measurement space are categorized into two major areas: selection
and transformation. Feature variable selection is appropriate if cost or other
factors present prevent all of the original set of features to be measured and used;
it is a combinatorial analysis problem. When all the variables can be measured,
variable transformation is performed but increased reliability occurs if a lower di-
mensional space is used. Variable transformation approaches include lincar and
non-linear techniques. Both approach categorics assume the number of potential
features is much less than the number of training samples. This was not the case
with experimental time series cascs analyzed in this research. Consequently, a
hybrid approach was developed in this work. Before describing this hybrid ap-
proach, existing selection and transformation methods are given as some of their
aspects arc incorporated in the HOS feature extraction process.

Selection of a subsct from the complete set of variables is approached

with exhaustive search, branch and bound, and stepwise methods. FExhaustive
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search methods are only feasible when d is quite small. The major problem with
exhaustive search methods is how to test the many possible sets without the large
number of tests invalidating the significance level of each test. Branch and bound
algorithms accelerate the search of all variable sets but do not explicitly evaluate
all of them. Branch and bound is usually used on problems where the number of
possibilities evaluated increases exponentially with some fundamental parameter
of the problem. Unfortunately, even though branch and bound techniques slow
down the growth rate of possibilities, it remains exponential. Thus, suboptimal
search methods such as sequential forward selection and backward elimination
approaches are also used. Kittler (1978) gives empirical comparisons of these two
stepwise methods and extensions such as his generalized plus I-take away r se-
lection algorithm. This approach finds the particular 1-dimensional subset of
those variables not yet added which, when combined with the current set, leads
to the greatest J statistic [44]. Then each step examines the selected set to identify
those r variables, when discarded, reduce J by the least. His general conclusions
were that selection and backward selection methods which select/reject several
variables simultaneously were better than methods which select/reject one variable
at a time. Additionally, forward selection of two variables and backward deletion
of one variable gave the best results and was computationally favorable with
branch and bound methods. Sincc stepwise methods could continue indefinitely
if computation time is not a constraint, stopping criteria such as a test statistic
given by Rao (1970) tests whether an extra (4 — ') variables makes a significant
contribution to the discrimination task.

Variable transformation methods include canonical discriminant analysis

(CDA) which finds a set of axes spanning a subspace of the complete space where
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class separability is maximized. CDA is done in a similar fashion as principal
component analysis (PCA) for summarizing total variation. But, with PCA, only
one data set is analyzed, while CDA analyzes at least two data sets. PCA also
subtracts means so it is an analysis of variance/ covariance. CDA also does a
PCA of class variable means. Variables used for canonical discriminant compu-
tation need to have an approximate multivariate normal distribution within each
class and a common covariance matrix. However, a linear discriminant boundary
may be determined by a least squares argument without the assumption of
normality and common dispersions of the two parent distributions (Kendall et al.,
1983). If it is the case that the muitivariate ncrmality assumption is unjustified,
non-linear feature extraction methods have also been developed (Fukunaga and

Ando, 1977).

4.4 New Hybrid Approach

When the number of notential (eature variables is much greater than the
sample size, a hybrid approach that attacks such problems in stages is necessary
(Jain and Dubes, 1978). The HOS featurc extraction algorithm is composed of
three stages. First, visual plots of ensemble averaged spectra and their differences
between groups arc generated after each respective spectral estirnation process to
obtain a rough idea of which estimates to use as possible feature variables. This
is the graphical variable selection stage. 1linich and Clay (1968) describe the gen-
cral procedures followed for frequency domain estimation of a time scrics record.
The statistical tests of linearity and Gaussianity of a ime series (THimch, 1982) are

cxtended for use with sccond-order cumulant spectrum estimates. The modulus
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of the second-order cumulant spectrum and bispectrum estimates are statistically
transformed to chi-square values for subsequent use as feature measurements.
Hinich (1989) describes the statistical transformation process for bispectra moduli.
All types of spectral estimates are ensemble averaged for the frequency variates
of the particular spectral function after estimation of all time series records used
for training function computation is performed. Second, univariate analyses of
variance are performed and the resulting F-statistics are plotted for the corre-
sponding frequency principal domains of each spectra type to confirm visual dif-
ferences seen in the ensemble averaged plots. Spectral variables shown to be good
candidates for the feature set are selected based on their FF value. Only the top ten
of each spectra type are chosen as potential feature variables. This second stage
is a dimension reduction step to reduce each individual spectral space to represen-
tative variables. Third, a conventional variable selection algnrithm. stepwise se-
lection of variables available in SAS 6.0,! a statistical analysis software package,
is applied using the thirty spectral variables identified from the second stage.
Stepwise discriminant analyses are performed to obtain the best linear (power
spectrum) discriminators, the best nonstationary (second-order cumulant spec-
trum), the best quadratic (bispectrum) discriminators, the best linear and nonsta-
tionary discriminators, etc., so the important relationships of the reduced and
combined spectral feature space are considered. The “optimum” individual spec-
tral feature sets composed of ten potential feature variables, cither power spec-
trum, bispectrum, or second-order cumulant spectrum feature sets, are found to

be average discriminators by themselves. However, when the different spectral

SAS is a registered trademark of the SAS Institute, Inc.
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feature sets are combined according to certain statistical criteria, their discrimi-
nation and classification power significantly increase (see Chapter 5).

This hybrid feature extraction approach generates ensemble averaged
plots, F-test plots, and “optimum” feature sets. Once feature extraction for the
various types and combinations of spectra is complete, marginal and sensitivity
studies are conducted on simulated and actual time series to test and evaluate the
different approaches.

Before the HOS feature sets are presented and discussed for the simulated
and actual experimental data, statistical test results of raw time series from the
actual wear database are given. Bispectrum statistical tests are employed to in-
vestigate if the observed time series records are consistent with the hypothesis that
the underlying stochastic process has a Gaussian distribution, and whether the
process contains evidence of nonlinearity in the underlying physical mechanisms
generating the observed vibrations. The sample bispectrum is the two dimensional
Fourier transform of the expected value of the vibration signal at three time
points, and should be a standardized normal random variable if the process is
stationary, linear, and Gaussian (Hinich, 1982). Shown at Table 4.1 on page 92
and Table 4.2 on page 92 are the results from applying the Hinich lincarity and

gaussianity tests to the two bit classes for cach stack/load time scries.
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Table 4.1

Gaussianity and Linearity Test Statistic Results For New Bits--Actual Wear Ex-
periment. The Z statistic is a normal approximation of the central chi-squared
variate with large degrees of freedom. It is a N(0,1) random variable under the null
hypotheses of a Gaussian and a linear process.

Time Series Gaussianity Statistic (Z)| Linearity Statistic (7Z)

(Stack/Load) Mean Std Mean Std

NIP/3 54.2 39.7 54.8 42.4

NIP/4 356.4 2129 367.2 216.2

6S2P/3 40.8 32.1 40.2 35.8

6S2P/4 186.9 183.9 192.4 189.4
Table 4.2

Gaussianity and Linearity Test Statistic Results For Slightly Used Bits--Actual
Wear Experiment. The Z statistic is a normal approximation of the central chi-
squared variate with large degrees of freedom. It is a N(0,1) random variable under
the null hypotheses of a Gaussian and a linear process.

Time Series Gaussianity Statistic (Z)| Linearity Statistic (Z)
(Stack/Load) Mean Std Mean Std
NIP/3 105.4 674 108.4 69.3
NIP/4 358.7 326.1 367.0 3324
6S2P/3 56.8 43.9 56.5 479
6S2P/4 2573 229.3 229.9 192.8

These global icst statistics show that the drill spindle vibration time series
for the Z accelerometer are definitely non-Gaussian and nonlinear for both new and
slightly used drill bits. Also, the cnsemble averages and standard deviations of
both statistical measures are higher for slightly used bits than new bits. Possibly,

the increased nonlinear and non-Gaussian structure of slightly used bit spindle




vibrations are due to bit wear mechanisms such as flank or rake wear changing the
geometry of the bit cutting surface and causing the thrust forces to increase.
Possibly incipient bit wear causes more significant frequency coherence at certain
frequency components. Also Table 4.1 on page 92 and Table 4.2 on page 92 re-
veal as more panel stack material is cut with each revolution of the drill (4 mil/rev
versus 3 mil/rev), higher statistical values are obtained which correspond to the
increased “strength” of the interacting frequency components. Thus, these global
statistical measures are corresponding to the actual physics of the circuit card

cutting process.

4.5 Results

Even though th- -lobal Hinich statistical measures are indicative of class
distinguishability, feature extraction emphasis is on the statistical selection of
particular linear, nonstationary, and nonlinear spectrum cstimates for subsequent
input to an efficient classification algorithm. The ultimate aim is to reveal features
of a consistent relationship that have good classification performance. The se-
lected features can then potentially provide a decper understanding of the physics
of a particular physical process under studv. Ilence, the desired propertics of ex-
tracted features in order of priority are:

I. consistent classification performance,
2. physically interpretable with some correspondence to the physics of the
stochastic process, and

3. good visual discrimination ability.
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Feature cxtraction results are given generally for the simulation scenarios
and then details for all the database partitions of the actual experiment are given
in tabular format. (The simulated and actual wecar experiments are described in
Chapter 5). Feature extraction results will confirm the rescarch hypothesis that
HOS features, and particularly estimates of the second-order cumulant spectrum
not part of the purely periodic support grid within the 2-CSPD region provide
better features for incipient wear characterization.

Simulation feature cxtraction results for all the scenarios (sec Table 5.1
on page 115) are summarized as particular frequency values do not have any
physical meaning. The final ITOS extracted feature sets for all simulated scenarios
were composed of twenty-eight power spectrum, fifty-one bispectrum, and
twenty-{ive cumulant spectrum feature variables. For cach particular scenario, the
number of HOS features was larger than the number of power spectrum fcatures
and had a higher stat* * al significance level. Most significantly, twenty-one of the
twenty-five, or 84 percent, of the second-order cumulant spectrum variables were
ofT the pure cyclostationary support grid in the 2-CSPD. These features were also
in the middle to highest ranges of statistical significance with relation to the other
features selected. Thus, evidence [rom simulations weighs in favor that incipicnt
wear characterization is enhanced bv performing cumulant spectrum cstimation
and feature extraction. The real test of the hypothesis will be examination of
feature extraction results from actual wear data.

Visual inspection of cach type of cnsemble averaged spectral plots for the
two classes of drill bits give a preliminary look of which frequency variates are bit
class distinguishable. See Iligure 4.1 on page 96 and Figure 4.2 on page 97 for

ensemble averaged power spectrum plots and ensemble avcraged bispectrum
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chloropleth plots for new drill bits for a particular case of the actual wear data
des-ribed in Chapter 5. Also, see Figure 4.3 on page 98 and Figure 4.4 on page
99 for ensemble averaged power spectrum and ensemble averaged bispectrum
plots for slightly used drill bits of the same case.

These individual plots, Figure 4.1 on page 96 and Figure 4.3 on page
98, and Figure 4.2 on page 97 and Figure 4.4 on page 99, of the different drill bits
are combined so that differences in spectrum estimates for the two groups are
more visually apparent. See Figure 4.5 on page 100 and Figure 4.6 on page 101
for representations of the differences in ensemble averaged power spectrum and
ensemble averaged bispectrum.

Overlaying the representations of the two ensemble power spectrums and
their variability serves its purpose as a preliminary look at what range of fre-
quencies are bit class distingui-hable. Differences in ensemble averaged power
spectrum plots for all four stack/chip load cases were quite similar as that shown
in Figure 4.5 on page 100. Power spectra exhibited the presence of strong spec-
trum peaks at frequencies below 5 ki1z. These peaks occurred at the shaft spindle
rotational frequency, /., and its harmonics, 2f, and 4f,, and reflect the periodic
cutting forces due to hardness differences of the glass and epoxy material in the
circuit card layers. Most of the signal content occurs at the harmonic {requencies
and do not appear useful as outstanding wear indicators. However, there are two
frequency ranges which visually appear useful as potential wear indicators: fre-
quency values ncar one-half the fundamental rotational frequency of the driil
spindle, .5/, and between 14-14.5 kHz. Other researchers have noted this sub-
harmonic structure with journal bearings in high-speed turbomachinery, some-

times referring to it as a whirl frequency (Braun, 1986). This may be due to less
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Ensemble Averaged Chi—Square Statistics

Over Bi-Frequency Plane
Fac NIP Steck Chip Laad ) Wil/Rev

For New Bits
FREQ2
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>
>
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Figure 4.2:
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Ensemble Averaged Bispectrum--NIP3 Case (New
Drills). Ensemble averaged chi-square statistical measures are
transformations of bispectra moduli or squared gain. Legend
defined shows the magnitude of the chi-square statistic denoting
frequency interaction strength. No smoothing performed with a
sample block size required to capture two integral periods of the
process.
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Ensemble Averaged Chi—Squere Statistics

Over Bi-Frequency Plane
Far NIP Stack Chip Load 3 WI(/Rev

For Slightly Used Bits
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Figure 4.4: Ensemble Averaged Bispectrum--NIP3 Case (Slightly Used
Drills). Ensemble averaged chi-square statistical mcasures are

transformations of bispectra moduli or squarcd gain.

Legend

defined shows the magnitude of the chi-square statistic denoting
frequency interaction strength. No smoothing performed with a
sample block size required to capture rwo integral periods of the

process.
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DIFFERENCE OF ENSEMBLE AVERAGED POWER SPECTRUMN
NIF3 NEW HITHE AND SLIGHTLY USED ®)17T8

Figure 4.5:
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Ensemble  Averaged Power Spectrum  Differences--NIP3
Case. New bit ensemble average is denoted by squares and
slightly used bit ensemble average by circles. Small dashes are 95
percent confidence limits for new and larger dashes are those for
slightly used. No smoothing performed with a block size of 800
samples.
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Difference of Ensembled Averaged Chi—Square Statistics

Over Bi-Frequancy Plane
Far NIP Steck Chip Laed 3 NII/Rev
Between New Bits end Slightly Used Bits
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Figure 4.6:
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Ensemble Averaged Bispectrum Differences--NIP3
Case. DifTerences in ensemble averaged chi-square statistical
measures are transformations of bispectra moduli or squared gain.
Legend defined shows the magnitude of the chi-square statistical
differences of frequency interactions. No smoothing performed
with a sample block size required to capture two integral periods
of the process.
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frictional forces of a slightly worn driil bit. The higher range of frequency values
are near a torsional resonant {requency of the dnill spindle. As the top portion of
the spindle rotates in one direction, its body rotates the opposite direction (see
Figure 5.3 on page 127). The spindle rotation causes the drill bit to slightly go
up and down during the drilling process. It appears the spindle torsional mode is
more strongly excited by new drills than slightly worn drills. A decaying torsional
oscillation excited by contact of worn cutting surfaces of the drill is physically in-
tuitive.

The bispectrum difference chloropleth plots clearly show the general re-
gions and the particular {requency interaction pairs that are class distinguishable.
DifTerences in cnsemble averaged bispectrum chloropleth plots for ail four
stack/chip load cases are similar to Figure 4.6 on page 101. Differences of en-
semble bispectrum chi-square values first show drill class distinguishability in fre-
quency interaction regions composed of first through the eighth harmonics of the
fundamental rotational frequency of the drill spindle with frequencies greater than
14 kHz. A portion of this significant different frcquency structure may be due to
parametric coupling of the torsional resonant frequency with each of its lower
harmonics. This fact is significant as Ramircz (1991) discovered from his analysis
of extended drill wear data that the fifth through the eighth power spectrum har-
monics of the same accelerometer (7 or thrust axis) are the most scnsitive drill
wear indicators. Thus, a predictive capability may have been demonstrated with
bispectrum analysis of the incipient wear data. Also significant is that for all the
stack/load cases, bispectrum cstimatcs are most significantly different in the outer
triangle (OT) rcgion of the bispectrum principal domain. This was evidence and

motivation for further investigation with cumulant spectrum estimation and fea-
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ture extraction as it meant the existence of a nonstationary generating source in
the stochastic process (Hinich, 1989).

Extracted second-order cumulant spectrum features were consistently not
on the pure cyclostationary support grid in the 2-CSPD which confirms the major
theoretical proposition stated in Chapter 3. Furthermore, they were always the
most significant feature variables for all but one of the eight actual wear database
partition cases (NIP4). Significantly, the NIP4 is the only database partition
where no overall marginal improvement in discrimination and classification power
was obtained by incorporating HOS (eature information. This fact adds further
evidence that better incipient wear characterization is provided with 2-CSPD ecs-
timates off the cyclostationary support grid. Consider the following physical ex-
planation why these statistical correlations discovered by the feature extraction
algorithm are most important. Cards were manufactured in the same facility with
the same resin system but had different glass cloth and layer thicknesses. See
Figure 4.7 on page 104 for two examples of card construction. Because the glass
fibers (oval disks in diagram) cut during cach hole are not uniformly configured
in the card layers, the vibration signals will have periodic and aperiodic charac-
teristics and reflect the effects of many different cutting geometries randomly en-
countered by the drill. So the cutting forces and energy represented by the
vibration measurcments change within a certain layer of the card and also for each
revolution of the drill.  Vibration measurements carrying wear information of the
drill cutting edges will thus be more sensitive to spectral correlations that are not
integer multiples of the fundamental rotation of the drill spindle. Extracted fea-
tures shown in the following tables reveal the importance of second-order

cumulant cstimation.
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Figure 4.7: Circuit Card Construction

Table 4.3

Actual Experiment Feature Extraction--NIP/3 Case. Scum denotes the second-
order cumulant spectrum, Bisp denotes the bispectrum, and Spec denotes the power
spectrum. Feature variables are listed in the order entered by the SAS variable se-
lection algorithm. Cyclic frequency of the drill spindle is 764 Hz.

Frequency | Spectrum| F-Stat Off 2-CSPD

Value (Hz) | Type Value Periodic Grid?
9550,1910 Scum 16 yes
12224,1528 Scum 13 no
6876,8404 Bisp 8.5 n/a
14520 Spec 7.6 no
764,11460 Bisp 5.4 n/a
"1528,15281 | Bisp 6.7 n/a
8608 Spec 79 yes
13290 Spec 3.0 ves
13190 Spec 4.2 yes
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Table 4.4

Actual Experiment Feature Extraction--6S2P/3 Case. Scum denotes the second-
order cumulant spectrum, Bisp denotes the bispectrum, and Spec denotes the power
spectrum. Feature variables are listed in the order entered by the SAS variable se-
lection algorithm. Cyclic frequency of the drill spindle is 764 Hz.

[Frequency Spectrum| I'-Stat Off 2-CSPD
Value (Hz) | Type Value Periodic Grid?
8404,1910 Scum 17.3 yes
8786,1528 Scum 9.3 yes
4584,15281 Bisp 6.4 n/a
13520 Spec 5.8 yes
13060 Spec 4.6 yes
3056,25213 Bisp 3.1 n/a
5425 Spec 3.9 yes
4508 Spec 6.8 yes
9168,22157 Bisp 4.0 n/a
12988,1146 Scum 34 yes
Table 4.5

Actual Experiment Feature Extraction--NIP/4 Case. Scum denotes the second-
order cumulant spectrum, Bisp denotes the bispectrum, and Spec denotes the power
spectrum. Feature variables are listed in the order entered by the SAS variable se-
lection algorithm. Cyclic frequency of the drill spindle is 588 [z.

Frequency Spectrum| F-Stat Off 2-CSPD
Value (11z) | Type Value Periodic Grid?
12936,1176 Scum 15 no
11466,588 Scum 10 yes
14700,2058 Scum 10 yes
2353,12354 Bisp 6 n/a
1765.8236 Bisp 6 n/a
4706,11766 Bisp | n/a
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Table 4.6

Actual Experiment Feature Extraction--6S2P/4 Case. Scum denotes the second-
order cumulant spectrum, Bisp denotes the bispectrum, and Spec denotes the power
spectrum. Feature vanables are listed in the order cntered by the SAS variable se-
lection algorithm. Cyclic frequency of the drill spindle is 588 Hz.

Frequency | Spectrum| I'-Stat Off 2-CSPD
Value (liz) | Type Value Penioaic Grid?
6468,1470 Scum 9.1 yes
9413,10589 Bisp 7.7 n/a
12870 Spec 3.6 yes

2574 Spec 4.3 yes
14494,2352 Scum 4.5 yes
6471,8824 Bisp 6.2 n/a
12642,1764 | Scum 3.2 yes
9702,1470 Scum 4.0 yes

Table 4.7

Actual Experiment Feature Extraction--Combined Load 3 Case. Scum denotes the
second-order cumulant spectrum, Bisp dcnotes the bispectrum, and Spec denotes
the power spectrum. Feature variables are listed in the order entered by the SAS
variable selection algorithm. Cyclic frequency of the drill spindle is 764 Iz.

Frequency Spectrum| F-Stat Off 2-CSPD
Value (11z) | Type Value Periodic Gnid?
8404,1910 Scum 36 yes
13370,12988 | Scum 11 yes
3056,9932 Bisp 6.0 n/a

14870 Spec 4.5 yes
6876,11460 Bisp 5.4 n/a
6112,12988 Bisp 4.4 n/a
1528,1528 Bisp 3.6 n/a

8455 Spec 44 yes
9550,1910 Scum 11 yes
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Table 4.8

Actual Experiment Feature Extraction--Combined Load 4 Case. Scum denotes the
second-order cumulant spectrum, Bisp denotes the bispectrum, and Spec denotes
the power spectrum. Feature variables are listed in the order entered by the SAS
variable selection algorithm. Cyclic frequency of the drill spindlc is 588 Hz.

Frequency Spectrum| F-Stat Off 2-CSPD
Value (Hz) | Type Value Pcriodic Gnid?
9702,2646 Scum 13.5 yes
4410,1176 Scum 8.5 yes
12642,1764 Scum 4.9 yes
7060,11178 Bisp 5.0 n/a
9702,294 Scum 4.2 yes
8236,11178 Bisp 5.0 n/a
14494,2352 Scum 5.3 yes

9354 Spec 4.4 yes
10589,13531 Bisp 5.3 n/a
7648,12354 Bisp 2.8 n/a

Table 4.9

Actual Experiment Fe~ture Extraction--Combined Stack NIP Case. Scum denotes
the second-order curaulant spectrum, Bisp denotes the bispectrum, and Spec de-
notes the power spectrum. ['eature variables are listed in the order entered by the
SAS variable selection algorithm. Cyclic frequency of the drill spindle is 588 [z and
764 117.

Frequency Spectrum| F-Stat Off 2-CSPD
Value (Hz) | Type Value Periodic G d?
9408,2058 Scum 7.2 yes
9413,17061 Bisp 5.9 n/a
588,6471 Bisp 3.6 n/a
7060,15296 Bisp 35 n/a
12348,1470 Scum 3.5 yes

13530 Spec 18 no




Table 4.10

Actual Experiment Feature Extraction--Combined Stack 6S2P Case. Scum denotes
the second-order cumulant spectrum, Bisp denotes the bispectrum, and Spec de-
notes the power spectrum. Feature variables are listed in the order entered by the

SAS variable selection algorithm. Cyclic frequency of the drill spindle is 588 Hz and
764 Hz.

Frequency Spectrum| F-Stat Off 2-CSPD
Value (Hz) | Type Value Periodic Grid?
8232,2058 Scum 36.0 yes
8820,1470 Scum 20.0 yes
2941,7648 Bisp 13.5 n/a
12642,2352 Scum 10.5 yes
1765,8236 Bisp 10.4 n/a
588,13531 Bisp 8.4 nja
8236,10589 Bisp 5.6 n/a

13160 3pec 5.3 yes
47006,16472 Bisp 5.0 n/a

12870 Spec 46 yes
12936,1176 Scum 4.4 no

13240 Spec 3.7 ves

The evidence of 11OS feature extraction of actual incipient wear data
clearly supports that HOS features are significant in the feature sets extracted to
define class differences. Additionally, the theoretical proposition of second-order
cumulant spectrum estimates off the periodic support grid as those which better
characterize incipient faults of cyclostationary proccsses is confirmed. Now, what
remains is an investigation of the impact of the extracted HOS features on classi-
fication performance, using various multivaniate classifiers under different process

conditions, to test the robustness of the new incipient fault detection approach.
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Chapter 5§

Evaluation of HOS Approach

5.1 Introduction

Performing discrimination and classification tasks on simulated and actual
time series data generated from processes that have cyclostationary characteristics
comprises the test and evaluation of the new IOS incipient fault detection ap-
proach. Factorial designs, data collected, and principles behind the experiments
are described and then the discrimination and classification results using different
feature extraction scts are given. Probability of false alarm and probability of
detection are the measures of effectiveness used to evaluate the r-lative merit of

the various approaches.

5.2 Simulated Wear Experiment

Modulation theory describes how a pure deterministic signal emitted by
a periodic force is transformed into a signal actually measured by a condition
monitoring system. Consider modulation as a mapping of the driving force signal
space to the measurement signal space. Some possible mapping factors are : (1)
internally and externally generated noise, (2) structural propagation, (3) change in
process state, and (4) change in process environment. The transformation of an

original driving force signal is cquivalent to a translation of spectra. A pure sine
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wave tone is a delta function or a single spike in spectral representation. A change
in process environment (i.e. cutting forces required to cut through various
strengths and types of material) will cause variation in frequency and amplitude,
but the spectral components which specify the cutting force process dynamics are
translated without any change to their relative energy distribution--the peak
magnitude is decreased but the sidebands correspondingly increase to compensate
the energy loss. However, a change in process state will cause variation or mod-
ulation of phase which will generate new frequencies with a different energy dis-
tribution of the signature signal spectral components. Parameters of the
simulation experiment emphasized changes in phase, rather than changes in am-
plitude, and its impact on classification/feature extraction performance for several
sets of process state and process environment parameters.

When the driving force of a physical system is periodical (eg., in rotating
machinery), the signature signal emitted by the process and rececived by sensors
may be represented by a harmonic process (Priestley, 1986). Consider a rotating
drill machine and the process of cutting holes in clectronic circuit cards which is
the actual wear experiment analyzed later in this chapter. Assume the signature
signal is a vibration time series sensed by accelerometers. The harmonic process

model (11PM) in this case is:

k
V) = ) Ay cos(2nnft + b) + (1) [45]
n=~0n
where V(1) is the voltage of the cosine wave carrier signal; A and ¢ arc the am-
plitude and phasc terms of the driving force mechanism (drill rotation) or carrier

signal; f. is the fundamental carrier frequency determined by the period of the
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driving force function and vibration characteristics of the machine system; and
n(t) is the corrupting noise generated by other vibratory sources and distortional
cffects. Noise is assumed Gaussian and independent to the emitted vibration sig-
nal and k is the number of interacting sinusoids. Thus, the observed periodic
voltage time series record is described by sums of sine and cosine waves whose
amplitudes and phases are chosen to give the best fit to the observational data.
The decomposition of the periodic time signal is found by obtaining the Fourier
series of the time series record.

If{$., n=0,1,2,...} areidentical and independent uniformly distributed
variables on ( — n, n), {V.(), 1 >0} is stationary no matter what frequency and
amplitudes are selected to represent the voltage time series. Furthermore, both
the autocorrelation and autocovariance functions of a 11PM consist of a sum of
cosine terms and therefore never die out in contrast to moving average (MA) and
autoregressive (AR) processes. Thus, finite dependence or finite memory where
joint random variables are highly correlated when the time instants are close to-
gether, and low correlation when the time instants are widely separated, is not
applicable to a HPM representation of stochastic processes. (see Appendix B for
stationarity of HPM and inapplicability of finite memory).

In this discussion, consider the cosine-wave carrier signal as referring to
[45]. Its amplitudes, A,, and phases, ¢., can be varied according to modulating
or infrrmation signals representing physical wear processes. The cosine-wave
carrier signal is amplitude and phase moduiated once the rotating drill begins to
wear due to its drilling holes in electronic panels. The inherent cnergy will fluc-
tuate, or be amplitude modulated, duc to the change in drill bit surface contact

pressure and force at each cutting revolution because of differences in hardness
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and thickness of panel materials. Additionally, as more holes are drilled over time,
the drill bit cutting edges will wear and cause phase modulation of the baseline or
reference (no wear) voltage signal. Consider the situation where Kk is just 1.

The cosine-wave carrier signal, [45], or the inherent energy of the rotating
drill spindle is amplitude modulated due to its periodic nature. A cosine wave with
fluctuating amplitude is also known as the phenomenon of beats. By superim-

posing two cosine waves with nearly equal frequencies, w + dw, the result is:

cos(w + dw)t + cos(w — dw)t = 2 cos wt cos dwt.

This oscillates at the average frequency, w = 2af,, but the amplitude changes
slowly according to the modulating function, 2 cos wt. So the amplitude modu-
lated version of [45] where the time icference is chosen so the carrier phase angle

is zero is:
Vam(D) = k[ 1 + mf(0)] cos(w,t) + n{t).

Multiplying f{t) = 2 cos dwt by cos(w.t) causes a spectrum shift up to a range of
(requencies surrounding the carrier frequency, f;, and the addition of the carrier
term provides a discrete spectral line at frequency f.. These range of frequencies
are sometimes called the lower and upper sidebands where each sideband contains
amplitude and phase information of the original sinusoidal signal. Amplitude
modulation is not the only method of modulating a cosine-wave carrier.

Consider a frequency modulated system in which the frequency of the
carrier is caused to vary in accordance with some type of information-carrying
signal. This could be variations in the bit cutting forces due to rake and flank

wear and minor <peed fluctuations of the drill spindle as it wears over time. The




frequency of the sine wave carrier is w, + kf{t) with f{r) representing the phase
modulating signal and k is a system constant. Expressing the more general fre-
quency modulated carrier in mathematical terms is difficult because one can define
the frequency of a sine wave only when the frequency is a constant. Strictly
speaking, there is only the sine or cosine of an angle. However, if the angle varies

linearly over time, one can interpret the frequency as the derivative of the angle:
S{1) = cos8(1) = cos(w.t+0,).

If 6(t) does not vary linearly, the instantaneous radian frequency w, is the deriva-

tive of the angle as a function of time:

fA) = cosB(), w; = Cj{—?

This now agrees with the usual use of frequency if 8 = w.t +6,.
Hence, the rotating drill spindle does not generate a signal that is a pure
harmonic tone, cos 2rfit = cos w.t, but rather is an amplitude and phase modu-

lation representation of [45]:
Vampm() = k[1 + mfin)] cos(w.t + ¢ + mg(1)) + n(1) [46]

where V,.,.(1)} is the amplitude and phase modulated cosine-wave carrier signal,
m, is the amplitude modulation index, f{r) is the amplitude modulating signal, ¢.
is the carrier signal phase, m, is the phase modulation index, and g(1) is the phase
modulating signal. Now, f{1) = cos w,t and g(¢) = cos w,¢ with f, and f, being the
frequency of the amplitude and phase modulating wave, respectively.

Consider both amplitude and phase modulations modeled by:
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N—1
Vampm(l) = Z A
k=0

Hence, a zero-mean random fluctuation vibration signal made up of a sum of N
complex sinusoids with each frequency being described by complex amplitude A
has zero complex mean when there is no modulation. Once wear progresses, these
complex amplitude signals contain both random amplitude and phase modu-
lations which result in broadening of their bandwidth or a correction to the pure
line spectrum, and A becomes a nonzero complex random variable. 1f mf{¢) and
m,g(f) are zero mean, stationary, and statistically independent, the power spectral
density of V,.,.(f) can be derived to show how the presence of random amplitude
and phase modulations produce bandwidth broadening (see Appendix C). The
primary interest for incipient fault detection is classilying changes in the phase
modulation index parameter of the signature signal that corresponds to the degree
of wear or developing failure in a rotating machine process. Details of the simu-
lation experiments are given next.

Two hundred and [ifty independent classification runs using three alter-
native feature extraction methods for fourtcen treatments, or incipient failure
cases, were performed. Three simulation parameters or factors are changed in a
most  deliberate  {ashion to  represent fourteen very  difficult
discrimination/classification problems. These parameters are amplitude and phase
modulation indice values, and standard deviation of an independent Gaussian
noise term. The fourteen treatments can be logically categorized as seven sce-
narios shown at Table 5.1 on page 115. Each scenario has two treatments with

a correspondingly increased value in phase modulation associated with a fixed
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level of amplitude modulation and independent Gaussian noise standard devi-
ation. Thus, each treatment entry of Table 5.1 on page 115 is a discrimination
and classification problem of two classes of two hundred and fifty stimulated time

serics.

Table 5.1

Seven Incipient Fault Detection Scenarios--Simulated Wear Data. Each scenario
has two discrimination/classification cases. Numbers in parentheses are the simu-
lation parameters: amplitude modulation index, phase modulation index, and
standard deviation of Gaussian noise.

Scenario| Classification

Number | Treatment

1A (.3,.7,.4) vs (.3,.71,.4)
IB (.3,.7,.4) vs (.3,.72,.4)
2A (.3..7,.8) vs (.3,.71,.8)
2B (.3,.7,.8) vs (.3,.72,.8)
JA (.3,.7,1.4) vs (.3,.71,1.4)
3B (.3,.7,1.4) vs (.3,.72,1.9)
an (.3..4,.4) vs (.3,.41,.4)
4B (.3..4,.4) vs (.3..42,.4)
SA (.3..4,.8) vs (.3,.41.8)
5B (.3,.4,.8) vs (.3,.42,.8)
oA (.3,.4,1.4) vs (.3,.41,1.4)
6B (.3,,4,1.4) vs (.3,42,1.4)
A (.5,.7,.4) vs (.5,.71,.9)
7B (.5,.7,.4) vs (.5,.72,.4)

Standard International Mathematical Statistical Library (IMSL) routines were
used to generate Gaussian noise and deterministic phase.  lLevels for amplitude
modulation were considered fixed as it represents more of a change in environ-

ment rather than a change in process state; however, amplitude modulation was
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changed for sensitivity and verification purposes. There were three phase modu-
lation levels, .7 was chosen as the base reference to represent a new process/object
condition, and .71 and .72 represented an increasingly worn condition. Note that
zero values for the modulation indices represent the pure cosine wave carrier fre-
quency. It is important to emphasize that parameter selection was not an arbi-
trary process, but rather required an iterative parameter verification process to
ensure the simulated spectral structure represented incipient fault problem situ-
ations. Sec Figure 5.1 on page 117 and Figure 5.2 on page 118 for examples of
the simulated raw time series for two discrimination/classification treatments of
one incipient fault scenario.

In summary, the simulation experiments generated time series data for
marginal analyses to determine if there is additional discrimination power and
classification performance using features provided by more involved spectrum es-
timation procedures such as the bispectrum and second-order cumulant spectrum.
Sensitivity analyses also are conducted to determine the impact of slight increases
in phase modulation and varying levels of noise on each of the feature extraction

method’s classification performance.
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Simulated Raw Accelerometer Time Series
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Figure 5.1: Simulation Scenario 7A Incipient Failure Representation. Squares
are used for the .5 .70 .4 parameter set and circles are used for the
.5 .71 .4 parameter set.
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5.2.1 Experimental Design

The experimental design is a randomized complete block. To eliminate
bias in the measurement of the two major response variables, probability of false
alarm and probability of detection, four strategies were employed. First, since
classification performance is directly related to the trained discriminant rule or
function, ten different training functions were calculated for each classification
treatment. Each of the training rules were constructed from a random sample of
thirty out of a two hundred and filty signal ensemble for each class. Second, a
jacknife error estimation process described in the Chapter 2 was followed for
computing classification results for a particular classification run. Third, as an
additional safety measure to properly and fairly compare feature extraction
methods, a paired comparison T-test analysis approach was followed to eliminate
any classification performance variability due to different capabilities of the ten
training discriminant rules. Lastly, in addition to training classification, rest clas-
sification was conducted to obtain estimates of actual classification performance.
Parameters of each generated time series were the following: 1178 time samples,
.020 seconds for total record length, 58 kilohertz sampling frequency, 760 hertz
carrier frequency, 380 hertz amplitude modulating frequency, and 190 hertz phase
modulating frequency. For each simulation treatment or incipient failure case,
threc spectral estimation and feature extraction methods were performed for sub-

sequent input to a lincar classifier.
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5.2.2 Results

As described in the background chapter concerning measuring difTerences
in multivariate populations, Wilks’ lambda and averaged square canonical corre-
lation statistics are used as discrimination effectiveness measures for the training
or discriminant rules constructed from thirty randein samples for each class drawn
from the 250 signal ensemble groups. However, since classification is the major
objective in many applications of discriminant analysis, alternative spectral feature
extraction approaches are best compared by examining two major classification
performance components which define the rate of correct classification: proba-
bility of detection and probability of false alarm. These ciassification performance
measures are reported as relative comparisons via paired t-tests for each
scenario/classification treatment. The classification treatments are specified as
blocks of simulation parameter triads (amplitude modulation index, phase modu-
lation index, and Gaussian noise standard deviation). These simulation parameter
blocks defined the time series class. Two types of classification performance are
reported: discriminant or training classification and rest classification. Classifica-
tion results revealed no significant statistical difference in classification perform-
ance between the alternative feature extraction methods for the four treatments
with a high (1.4) level of noise standard deviation. However, (or the ten other
treatments or five scenarios listed in Table 5.1 on page 115, some interesting re-

sults were obtained.
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5.2.2.1 Discrimination

The marginal discrimination benefit of combining second-order cumulant

spectra features to power spectra features is shown in Table 5.2.

Table 5.2

Marginal Discrimination Benefit of Combining Power Spectrum With Second
Cumulant Spectrum Features--Simulated Wear Data. Both effectiveness measures
represent relative discriminating power of a specific discriminating function com-
puted on a random selection of thirty time series of each simulated class. Power
spectra is denoted by ‘PS’ and second-order cumulant spectra is denoted by
‘SCUM".

Classification Wilks" Lambda Squared Cannnical Corr

Treatment PS PS & SCUM PS PS & SCUM
(.3,7,.4) vs (.3,.71,.4) 499 374 .500 604
(.3,.7,-4) vs (.3,.72,.4) .660 424 339 637
(.3,.7,.8) vs (.3,.71,.8) .553 499 446 .500
(.3,.7,.8) vs (.3,.72,.8) .506 262 493 737
(.3,.4,.4) vs (.3,41,4) .593 .309 406 690
(.3,4,.4) vs (.3,.42,.4) .640 355 .359 .644
14.3,.4,.8) vs (.3,41.8) 489 344 S10 655
(.3,.4,.8) vs (.3,.42,.8) .340 306 659 .693
(.5,.7,.4) vs (.5..71,.4) 486 272 513 727
(.5,.7,.4) vs (.5,.72,.4) 552 372 447 627

Both the Wilks” lambda statistical criterion (lower is better) and the averaged
square canonical correlation improved significantly when nonstationary feature
information is combined with power spectra feature information. Furthermore,
combining nonlinear or bhispectra feature information to the alrcadv constructed

HOS feature set provides additional increases in the discriminant effectivencess
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measures. Discrimination measures with this HOS feature composition compared

to only power spectra feature sets are shown in Table 5.3.

Table 5.3

Marginal Discrimination Benefit for Combining Bispectrum and Second-order
Cumulant Spectrum with Power Spectrum Features--Simulated Wear Data.
effectiveness measures represent relative discriminating power of a specific discrim-
inating function computed on a random selection of thirty time series of each sim-
ulated class. Power spectra is denoted by 'PS’, second-order cumulant spectra is
denoted by 'SCUM’, and bispectra is denoted by ‘B’

Both

Classification Wilks” Lamt .4 Squared Canonical Corr

Treatment PS PS,SCUM,B PS PS,SCUM,B
(.3,.7,.4) vs (.3,.71,.9) .499 .205 500 .834
(.3.7,.4) vs (.3,72,4) | .660 A72 339 867
(.3,.7,.8) vs (.3,.71,.8) 553 19§ .446 .804
(.3,.7,.8) vs (.3,.72,.8) .506 A31 493 .868
(.3,4,4) vs (.3,41,.4) | .593 128 406 871
(.3,.4,.4) vs (.3,42,.4) .640 172 359 .828
(.3,.4..8) vs (.3,41..8) .489 .198 510 .801
(.3,4,8) vs (.3,42,.8) | .340 122 659 878
(.5,.7,.4) vs (.5,.71,.4) 486 232 S13 167
(.5,.7,.4) vs (.5,.72,.9) 552 210 417 .789

Significantly, inspection of the ten discriminant functions constructed for

cach simulation treatment using stepwise discriminant procedures revealed the

most stati-tically significant and more plentiful variables were of the HOS variety.

Although not shown in either Table 5.2 on page 121 or Table 5.3, results showed

with regard to discriminating power, one typce of feature extraction vector by itselfl

(power spectra, bispectra, or second-order cumulant spectra) was not as powerful

as combination of feature types.

In summary, HOS estimation and [eaturc ex-

traction methnds provide a substantial improvement in these two discriminating
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effectiveness measures for the simulated incipient fault scenarios, and appears
worthwhile to pursue even though in some of the treatments Jiminishing marginal
benefits are apparent. In addition to measures of discrimination power, measures
of classifying power are helpful in the comparison of the feature extraction meth-

ods.

5.2.2.2 Classification

The marginal contribution results of combining second-order cumulant
spectra features to power spectra features, and also combining bispectra features
to second-order cumulant and power spectra features, with regards to training

classification are shown within Table 5.4.

Table 5.4

Training Classification Performance of HOS Features versus Power Spectrum
Features--Simulated Wear Data. Numbers represent relative performance differ-
cnce of ten discriminant rules over 30 classification runs. Alpha is the statistical
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significance level for rejecting equal performance means.
F'cature Extraction False Alarm Performance{ Detection Performance
Method Prob Alpha Prob Alpha
PS & SCUM vs PS -4.9 .0004 +4.8 0018
PS, SCUM,B vs PS -10.4 .000; +11.5 0001

Clearly, combining nonstationary feature information to stationary featurcs im-
proves both [(alse alarm probability and detection probability with extremely high
levels of statistical significance. Furthermore, the inclusion of nonlinear informa-
tion gives better training classification performance with an additional higher level

of statistical confidence.




Evidence is clear that combining HOS features with power spectrum fea-
tures improves training classification of the simulated scenario data. More im-
portant to the evaluation of the feature extraction methods is an estimate of the
actual or test classification error rate. This measures a feature extraction method’s
capability to classify future time series samples. Hence, Table 5.5 and Table 5.6
on page 125, respectively show the marginal contribution to test classification
performance by combining second-order cumulant spectra features with power
spectra features, and combining bispectra features to second-order and power

spectra features.

Table 5.5

Second-order Cumulant Spectra & Power Spectra vs Power Spectra Feature Ex-
traction Test Classification--Simulated Wear Data. Numbers represent relative
performance difference over 250 runs per classification problem. Alpha is the sta-
tistical significance level for rejecting equal performance means.

Classification False Alarm Performance{Detection Performance

Treatment Prob  Alpha Prob Alpha
(.3,.7,.4) vs (.2,.71,.4) 0.3 .85 +2.7 .0001
(:3,.7,.4) vs (.3,.72,.4) -4.5 .000t +4.6 0001
(.3,.7,.8) vs (.3,.71,.8) +2.7 .01 +2.7 .01
(.3,.7..3) vs (.3,.72,.8) +1.2 21 +3.5 .0006
(.3,.4,.4) vs (.3,.41,.4) -0.1 .90 +2.8 002
(.3,.4,.4) vs (.3,.42,.4) -3.1 .006 +4.5 01
(.3,.4,.8) vs (.3,41,.8) +3.6 01 +3.6 01
(.3,4,.8) vs (.3,42.8) +0.2 .97 +2.4 .003
(.5,.7,.4) vs (.5,.71,.4) +1.5 .16 +3.1 .0001
(.5,.7,.4) vs (.5,72,.4) +0.8 .45 +5.9 .02
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Table 5.6

Bispectra, Second-order Cumulant Spectra, & Power Spectra vs Power Spectra Fea-
ture Extraction Test Classification--Simulated Wear Data. Numbers represent rel-
ative performance difference over 250 runs per classification problem. Alpha is the
statistical significance level for rejecting equal performance means.

Classification False Alarm Performance]l Detection Performance

Treatment Prob  Alpha Prob Alpha
(.3,.7,.4) vs (.3,.71,.4) -1.0 .45 +3.4 .0001
(.3,.7,.4) vs (.3,.72,.9) -4.9 .0001 +6.8 0001
(.3,.7.8) vs (.3,.71,.8) -0.2 88 +0.3 81
(.3..7,.8) vs (.3,.72,.8) +1.2 .30 +3.9 .001
(.3,4,.4) vs (.3,41,4) -1.5 32 +1.8 .002
(.3,.4,.4) vs (3,.42,.4) -6.5 0001 +6.2 002
(:3,.4,.8) vs (.3,.41,.8) +3.0 .005 +3.0 .005
(.3,.4,8) vs (.3,.42,.8) +0.07 .01 +1.0 .0009
(.5,.7,.4) vs (.5,.71,.4) 0.4 73 +4.6 .0001
(.5,.7,.4) vs (.5,.72,.4) -0.5 .69 +7.0 004

When the feature information set includes both stationary (power spec-
trum) and nonstationary (second-order cumulant spectrum) components, better
test classification performance is obtained. Significantly, detection performance
is increased for all treatments. Additionally, within cach pair of treatments, or
scenario, a greater change in the phasc modulation index parameter is accompa-
nied with an increased false alarm and detection capability. Thus, HOS features
appear sensitive to greater changes in phase modulation which implies they have
an increasing ability to detect more severe wear condition states. Noise does im-
pact classification performance, but the HOS approach still maintains its superi-
ority over the power spectrum approach. Combining nonlinear (bispectrum)

featurc information further improves test classification performance. Thus, there
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is an increasing marginal benefit for conducting HOS estimation for subsequent

feature extraction.

5.3 Actual Wear Experiment Description

Electronic circuit card construction begins with sandwiched layers of very
thin copper and epoxy-glass composite material. Holes are drilled through these
layers to provide pathways for interconnections betwecn the copper conductor
layers and sites for solder attachment of electronic components. A typical elec-
tronic panel consists of 1000 to 5000 holes with diameters of .5 mm to 2.5 mm.
High-speed machines (20,000 to 200,000 RPM) can drill 1 to & holes per second
with cither single or multiple drill spindles. The drilling machine used by IBM in
their experimental study has a drilling capability of up to 75,000 RPM and is
shown in Figure 5.3 on page 127. Ramirez (1991) gives a complete description
of the mechanics of the machine structure.

Most circuit card manufacturing defects can be traced to problems in the
drilling process (Block, 1989). Problems caused partly by worn or damaged bits
include rough hole surfaces due to glass fiber tearing, smearing of epoxy from high
bit temperatures, and poor hole location and variation in hole diameter because
of drill wander. Thus, there are three major reasons for IBM and others in in-
dustry to investigate drill bit wear monitoring methods: (1) to improve the quality
of finished electronic panels by reducing incidence of poor quality holes; (2) to
reduce panel scrap costs by reducing incidence of badly damaged holes; and (3)
to reduce bit replacement costs by using as much of its useful life as possible.

Clearly, panel quality is a function of hole quality, which in turn, is a function ol
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Figure 5.3: Drilling Machine used for IBM Wear Experiment
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drill bit condition and engincers in this particular manufacturing application agree
that there is some point that hole quality degrades as drills wear, necessitating a
bit replacement strategy. Presently, drill bit replacement strategy is conservatively

based on the shortest observed useful life since there is no effective wear moni-

toring system implemented in the industrial environment. Actual wear varies with
lot-to-lot changes in the workpiece, drilling rate, condition of drilling machine, and
type of drill bit. Drill bits characteristically exhibit large variances in tool life.
IBM experiment instrumentation included X (lateral), Y (translational),
and 7 (vertical) accelerometers, a magnetic reluctance probe, and X and Y
capacitance probes (see Figure 5.4 on page 129). This study focused on the
accelerometer signal data. Two accelerometers (X and Y) were bonded to the
journal bearing block to measure lateral acceleration transmitted from the drill
spindle to the machine structure. The Z accelerometer was mounted to the thrust

hearing block which moved with the spindle.

5.3.1 Experimental Design

A factorial experimental design with three factors was employed: age of
bit, material stack type, and chip load. Chip load is the amount of axial distance
travelled by the drill bit tip in a single revolution or rotation. There were two
levels lor bit age (new or no holes drilled, and slightly used or 8000 holes drilled),
threc levels of stack type ( NIP, 6S2P, and short NIP), and two levels for chip load
(3 mil/revolution and 4 mil/revolution). A 1.09 mm diameter drill with a spindle

speed of 47,000 RPM and nominal chip load of .076 mil/revolution was used.
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5.3.2 Collected Data

Vibration time series for each of the three accelerometers were analyzed
for two types of drill bits, new and slightly used. Ten bits of each type were ran-
domly selected and optically verified for wear condition. Figure 5.5 contains
magnified pictures of a typical new and slightly used drill bit. New and slightly
used bit data were obtained for both chip loads and two of the three stack tvpes.
Shown at Figure 5.6 on page 132 and Figure 5.7 on page 133 are raw
accclerometer time series for a typical new and slightly used dril} bit for one of the
stack material/chip load cases. There were three replications, or runs, for all
eighty bits in thc experimental database which produced 720 time series records.
Preliminary estimation, feature extraction, and classification analyses consistently
showed the best sensor site for bit class discrimination was the vertical or Z
accelerometer. This conclusion was confirmed in a physical sense as the thrust
forces are additive rather than subtractive, and had better signal-noise character-
istics than either the X or Y accelerometers. Thus, results presented in this report
are only for the 7 accelerometer. For computational purposes, each 3 mil/rev (4
mil/rev) time series is divided into appropriate record lengths as given the respec-
tive 760 117 (587 11z) harmonic frequency of the drill spindle, an integer number
of signal periods was necessary to avoid the cffects of leakage when performing
spectral estimation proccdures. Power spectrum, cumulant spectrum, and
bispectrum estimates are computed over blocks within each time series record.
All spectral cstimates arc averaged over appropriate block lengths, and then in-

carporated into the ensemble averaging of all samples of its particular class.
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Figure 5.5: Magnified Photos of New and Slightly Used Drill Bit
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Figure 5.7: Raw Accelerometer Time Series--6S2P/4 Case (Slightly Used
Drill). One sample time series of an ensemble from the Z
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5.3.3 Results

Performance results are given as two separate but related categories, dis-
crimination and classification. Both performance categories are reported by indi-
vidual stack material and chip load case, combined chip load, combined stack
material, and corresponding averaged values. Performance resuits obtained for
combined data address the impact of drilling process parameter variation such as
stack type and cutting conditions on the feature extraction methodology. It is
desirable from a monitoring system implementation perspective that the feature
extraction and classification methodology should not be severely impacted by
process parameter variation. There are various statistical measures to compare
the discriminating power of the feature extraction methods. In this study, the ap-
proach is to first report Wilks’ lambda and squared canonical correlation measures
for the training or discriminant rules constructed from the number of existing
samples in the experimental database for the data partition types. However, since
classification is the major objective in many applications of discriminant analysis,
alternative spectrum feature extraction approaches are also compared by examin-
ing two major classification performance components which define the rate of

correct classification: probability of detection and probahility of false alarm.

5.3.3.1 Discrimination

Shown in Table 5.7 on page 136 is thc marginal benefit of combining

HOS feature sets with power spectrum features for discrimination effectiveness.

Both the Wilks’ lambda statistical criterion (smaller is better) and the averaged
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square canonical correlation measures had significant margin=! ,iprovement in
six of the eight partition database types. For the two cases of no overall marginal
improvement, NIP4 and NIP, differences are not significantly different from a full
HOS feature approach (spectrum, cumulant spectrum, and bispectrum) versus just
power spectrum featurcs. Recall from Chapter 4 that the most significant
second-order cumulant feature for the NIP4 case was on, rather than off, the
2-CSPD diagonal spectral support line. Significant marginal improvement for the
o-her six cases is obtained by combining cumulant spectrum (nonstationary) fea-
tures to power spectrum (stationary) features, and for combining bispectrum
(nonlinear) to stationary and nonstationary feature scts. Additionally, marginal
improvement is gained by combining nonlinear feature information for all data-
base partitions, and particularly for the two cases of no overall marginal im-
provement between HOS and power spectrum feature extraction discrimination

effectiveness, a large marginal improvement with nonlinear features was gained.

135




Table 5.7

Marginal Discrimination Benefit of HOS Features versus Only Power Spectrum
Features--Actual Wear Data. Both effectiveness measures represent relative dis-
criminating power of a specific discriminating function computed on thirty vi-
bration time series of each bit class, new and slightly used. Power spectrum is
denoted by 'PS’, second-order cumulant spectrum is denoted by 2C’°, and
bispectrum is denoted by ‘B’

Discrimination Wilks” Lambda Squared Canonical Corr

Case PS PS&2C PS2C&B| PS PS&2C PS,2C&B
NIP/3 429 561 295 570 438 .704
NIP/4 379 462 .430 620 537 .569
6S2P/3 510370 299 489 .629 700
6S2P/4 555 .530 392 444 470 607
Stack/Load Averagel .468 .480 354 530 518 .645
Chip Load 3 .609  .600 .530 390 399 469
Chip L.oad 4 736525 353 263 474 .646
Load Average 673 .562 441 327 437 .558
NIP Stack 399 656 456 600 343 .543
6S2P Stack 684 536 446 315 .463 .553
Stack Average 541596 451 458  .403 .548

Inspection of the HOS discriminant lunctions constructed [or each data-
basc partition type using stepwise discriminant proccdures revealed the more sta-
tistically significant and number of variables werc of the HHOS variety rather than
the power spectrum. Although not shown in Table 5.7, results did show (rom the
standpoint of discriminating power, one type of spectrum {cature extraction vector

by itself (power spectrum, bispectrum, or sccond-order cumulant spectrum) is not
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as powerful as the combination of feature types. In summary, HOS estimation
and feature extraction methods provide a substantial improvement in these two

discriminating cffectiveness measures for the drill bit wear cata and appears useful.

5.3.3.2 Classification

Combining HOS features to power spectrum features clearly improves
discrimination power. Equally important to an evaluation of the feature ex-
traction methods is an estimate of the expected actual classification error rate.
Results are given with tables identified by the applied multivariate classification
algorithm, two parametric approaches (linear and quadratic discriminant or LDF
and QDY) and one non-parametric approach (k-nearest neighbor). Results are
stated in the following manner: (1) within a classification algorithm, a direct
one-to-one comparison of the feature extraction methods for stack/load and also
for the combined process parameters (cutting condition and stack material) clas-
sification cases; and (2) a comparison of feature extraction method performance
across classification algorithms for all classification cases. Comparison of the
feature extraction methods in this fashion allows an evaluation of each approach
for its sensitivity to stochastic process conditions and also to the classification al-
gorithm.

The contribution of combiuing 110S featurcs to power spectrum featurcs
using a lincar classificr is shown in Table 5.8 on page 139. LDF classification
results demonstrate the marginal benefit of performing 11OS estimation and fea-
ture extraction for all classification cases. Averaged classification performance

mecasures (stack/load, load, and stack) reveal combining 1HHOS features with power




spectrum features obtains an increasing marginal benefit in terms of overall clas-
sification accuracy. False alarm rates may be higher in some cases, but the mar-
ginal increase in detection capability makes up for the difference in lost capability.
This performance result is significant as a higher detection capability is more de-
sirable than a lower false alarm rate in most industrial manufacturing situations.
For cach of the feature extraction approaches, better performance is obtained with
databases which are the most homogeneous. Also, they all have better classifica-
tion ability with the combined stack material database than the combined cutting
(load) database. Thus, there is less sensitivity to cutting (chip load) variation than
stack material variation which agrees with a major finding of Ramirez (1991) that
variations in circuit card construction can mask the effects of wear. Significantly
though with the more heterogeneous data {combined load and combined stack),
the performance of the HOS approaches is not degraded as much as the purely

power spectrum approach.
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Table 5.8

HOS Feature Extraction versus Solely Power Spectrum Feature Extraction Classi-

fication Using LDF Algorithm--Actual Wear Data.

Numbers represent percent of

thirty slightly used drill bits incorrectly classified as new, or false alarm rate, and
percent of thirty drill bits correctly classified as slightly used, or detection rate.
Power spectrum is denoted by ‘PS’, second-order cumulant spectrum is denoted by

2C’, and bispectrum is denoted by ‘B’.

Classification False Alarm Probability | Detection Probability
Case PS PS&2C PS,2C&B| PS PS&2C PS,2C&B
NIP/3 133 366 .200 .850  .966 .933
NIP/4 133250 233 933 1.00 .966
6S2P/3 150 (166 100 862 933 .896
652P/4 283 350 150 816 933 916
Stack/load Averagel .175 .283 170 865 958 927
Chip Load 3 150 316 .300 728  .850 .816
Chip Load 4 258 300 233 675  .866 .850
[.oad Average 204 308 .266 01 .858 .833
6S2P Stack 250 316 200 661 950 933
NIP Stack 183 333 250 933 1.00 .900
Stack Average 216 .324 225 797 975 917

Shown in Table 5.9 on page 140 is the marginal contribution of combin-

ing TTOS features to power spectrum features using a quadratic classifier. Similar

marginal benefit results with HOS information are obtained as with a linear

classifier, but the more difficult parametric classification, quadratic rather than a

lincar function, is not benclicial for the power spectrum feature extraction ap-

proach.
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Table 5.9

HOS Feature Extraction versus Solely Power Spectrum Feature Extraction Classi-
fication Using QDF Algorithm--Actual Wear Data. Numbers represent percent of
thirty slightly used drill bits incorrectly classified as new, or false alarm rate, and
percent of thirty drill bits correctly classified as slightly used, or detection rate.
Power spectrum is denoted by 'PS’, second-order cumulant spectrum is denoted by
2C’, and bispectrum is denoted by ‘B’

Classification False Alarm Probability | Detection Probability
Case PS PS&2C PS,2C&B| PS PS&2C PS,2C&B
NIP/3 183 .366 333 .833 1.00 1.00
NIP/4 183 166 200 .833 966 .966
6S2P/3 150 200 100 810 966 931
682P/4 .300  .300 250 J00 816 .883
Stack/Load Average] 200 .258 220 794 937 945
Chip Load 3 A75 0 .366 .266 137 916 950
Chip Load 4 258 266 116 675 833 .900
lL.oad Average 216 316 191 706 874 925
6S2P Stack 241 266 133 635 933 933
NIP Stack 108,400 333 933 1.00 1.00
Stack Average A75 0 .333 233 784 967 .967

Average stack/load classification is degraded with power spectrum features and
has no consequential impact on either averaged load or stack classification.
However, the impact on averaged total classification accuracy using 110S features
is: -1.5 percent for stack/load, + 8.3 percent for combined load, and + 2.1 percent
for combined stack. TFor the stack/load case, false alarm rate increased more than

the corresponding increase in detcction capability so there was a slight decrease
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in overall QDF classification performance for this database partition. FHowever,
the masking of wear effects due to variations in card construction is not as great
with HOS features and QDF classification. The major disadvantage of a power
spectrum approach is almost overcome. Significantly, detection capability was the
major component of the increase in the LDF classification accuracy of HOS fea-
tures using a QDF approach.

The marginal contribution of combining HOS features to power spectrum
features with a non-parametric classifier (k-nearest neighbor with k= 4) is shown
in Table 5.10 on page 142. Direct comparisons of these classification results
clearly show the increased overall classification power of the 1HOS feature ex-
traction approach. There are increases in both false alarm and detection capabil-
ity with HOS features. Additionally, increasingly marginal benefits are evident as
more spectral feature types are combined. Nearest neighbor classification makes
no difference or degrades previous parametric classification results with solely
power spectrum features due to increases in false alarm probabilities. However,
the amount of increased total classification accuracy due to the non-parametric
method ranges, in an absolute sense, from 3 to 8 percent, with combined HOS and
power spectrum f(eature sets. Additionally, combined chip load classification with
power spectrum and cumulant spectrum features is only slightly degraded with the
change in card material. There is no doubt non-parametric classification
(4-nearest neighbors) is the best classification approach with this incipient drill

wear database.
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HOS Feature Extraction versus Solely Power Spectrum Feature Extraction Classi-
fication Using 4-Nearest Neighbor Algorithm--Actual Wear Data.
sent percent of thirty slightly used drill bits incorrectly classified as new, or false
alarm rate, and percent of thirty drill bits correctly classified as slightly used, or
detection rate. Power spectrum is denoted by ‘PS’, second-order cumulant spec-

Table 5.10

trum is denoted by "2C’, and bispectrum is denoted by ‘B’

Numbers repre-

Classification False Alarm Probability Detection Probability
(Case PS PS&2C PS,2C&B| PS PS&2C PS.2C&B
NIP/3 150 266 133 850 936 983
NIP/4 100 .166 133 933 1.00 .966
6S2P/3 366 .300 133 844 100 1.00
6S2P/4 .183 216 .200 .850 933 966
Stack/Load Averagel .200 230 150 869 966 962
Chip Load 3 4u8 183 316 822 933 933
Chip Load 4 475 266 .200 J75 933 950
l.oad Average 291 224 258 798 933 941
6S2P Stack 516 183 166 745 966 983
NIP Stack 266233 .250 900 866 933
Stack Average 391 .208 208 822 916 958

Uscfulness of combining 110S feature scts with power spectrum feature

sets is clearly demonstrated with the results gathered from simulated and actual

wear experiments.

discrimination and classification power and is less sensitive to process and noise

conditions than solely a power spectrum approach. Conclusions of the study are

stated in the next chapter.

A HOS approach for incipient fault detection has increased

142




Chapter 6

Conclusions and Further Research

Inferences from the data analyses of the conducted experiments are stated
in general and specific form. This research focused on cyclostationary processes
represented by simulations of single-tone amplitude and phase modulated carrier
signals which primarily emphasized phase modulation changes and new and
slightly worn high-speed drills in the “manufacturing environment”. The evidence
clearly advocates for the adoption of a HOS feature fusion approach in a condi-
tion monitoring scheme for rotating systems. Whether the HOS approach can
create actual economic savings in an industrial setting is a question left for further
research.

Two important general conclusions are drawn from the results of this
study:

1. Incipient fault detection capability of multivariate classifiers significantly im-
prove with 1HOS feature information.

2. Better operations and maintenance decisions to discontinue/service rotating
systems are possible if the condition monitoring method incorporates the
HOS feature fusion approach.

Iive secondary rescarch questions supported these gencral conclusions:

(1) What is the impact of combining HOS features with power spectrum features

upon discrimination and classification of incipient fauits? (2) What is the impact

of a changing process environment upon classification? (3) What is the impact

of applied classifier algorithm upon classification? (4) What is the impact of a
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slight change in phase modulation upon discrimination and classification? (5)
What is the impact of increasing noise in the signal environment upon discrimi-
nation and classification? Results from the modulated signal simulations an-
swered all secondary research questions except for the third one while results from
the actual experiment answered the [irst three questions.
In the simulation experiments, when the feature information set included
HOS features better discrimination power was obtained (sece Table 5.2 on page
121 and Table 5.3 on page 122). Additionally, when the feature information set
included both power spectrum and second-order cumulant spectrum features,
better training and test classification performance was obtained than with just a
ower spectrum feature set (see Table 5.4 on page 123 and Table 5.5 on page
124).  Further improvement in training and test classification performance was
obtained when bispectrum features were combined with second-order cumulant
and power spectrum features (see Table 5.4 on page 123 and Table 5.6 on page
125). Thus, HOS estimation for subsequent feature extraction provided an in-
creasing marginal benefit for a linear classifier. HOS features were sensitive to
very slight changes in phasec modulation which implied the ability to detect incip-
ient faults and a greater potential capability to detect more severe wear condition
states of rotating machineryv. Finally, noise impacted classification performance
whether with or without 11OS information. [owever, with moderate or even high
levels of noise in the signal environment, 110S approaches were still better at de-
tecting different simulated signal classes with very high levels of statistical confi-
dence (sce Table 5.5 on page 124 and Table 5.6 on page 125).
In the actual experiment, when the feature information set included power

spectrum and sccond-order cumulant spectrum features, better discrimination
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power was obtained than a feature set based only on the power spectrum. Further
discriminatory power was obtained by combining bispectrum [features with
cumulant spectrum and power spectrum feature sets (see Table 5.7 on page 136).
This same marginal beneficial trend was demonstrated with classification results.
When power spectrum and second-order cumulant spectrum features were com-
bined, classification performance increased from that of a power spectrum feature
set. The classification performance further improved for all three applied
multivariate classifiers when bispectrum features were combined with cumulant
spectrum and power spectrum feature sets (see Table 5.8 on page 139, Table 5.9
on page 140, and Table 5.10 on page 142).

Actual wear classification results presented in the tables of Chapter 5 are
now condensed as total classification averages (see Table 6.1 on page 146). All
feature extraction methods were sensitive to changes in process paramcters.
IHowever, HOS feature extraction was less sensitive than solely power spectrum
feature extraction. Specifically, variations in card construction significantly
masked the effects of wear when power spectrum features were used for all clas-
sification approaches. Also, chip load variation masked the cffects of wear when
power spectrum features were used with two of the three classifiers. However,
variations in card construction and chip load only slightly masked the effects of
wear when power spectrum and cumulant spectrum features were used with the
4-ncarest neighbor classifier. Furthermore, variations in card construction and
chip load had nn wear masking effect when full IHOS feature sets were used with
a quadratic classifier. By selecting and combining HOS features which captured

the nonstationary and nonlinear characteristics of the cutting forces as the drill
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bit penetrates the circuit card layers, total classification capability was definitely

enhanced.

Table 6.1

Actual Incipient Wear Total Classification Averages. Combined load database
tested the impact of stack variation, combined stack tested the impact of load var-
iation, and load/stack was the most homogeneous database partition with no vari-
ation of drilling process parameters. 'PS’ represents power spectrum, 2C’
represents second-order cumulant spectrum, and ‘B’ represents bispectrum. ‘LDF’
and ‘QDF’ denotes linear and quadratic parametric classification, and ‘NN’ denotes
the nearest neighbor non-parametric classification.

Features and Combined DataBases | [lomogeneous DataBase
Classification Comb LLoad Comb Stack Load and Stack
PS & LDF 75.1 79.1 84.5

PS, 2C & LDF 77.9 82.6 83.8
PS, 2C, B & LDF 78.3 84.6 87.8
PS & QDF 74.5 80.5 79.7

PS, 2C & QDF 77.‘9 81.7 84.0
PS, 2C, B & QDF 86.7 86.7 86.3
PS & NN 75.4 71.6 83.5

PS, 2C & NN 85.4 85.4 86.8
PS, 2C, B & NN 84.1 87.5 90.6

Thus, results of all five secondary research questions revealed that a con-
dition monitoring approach based on power spectrum characteristics was more
sensitive to external noise and stochastic process parameter variation than that
which incorporated HOS information. These results provided statistical evidence

for the two general conclusions of the study and clearly demonstrated the benefits
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of HOS estimation and feature extraction as preprocessing steps for a multivariate

classifier.

6.1 Areas of Further Research

Further studies are possible in both the applications and methodology
areas. First, analysis of IBM extended drill wear data, already gathered and ob-
tained, is needed so more than two classes of drills can be examined. Hence,
testing the ability of classifiers with and without HOS features to detect different
levels of drill wear can be investigated. The particular HOS feature sets selected
from analyses of the incipient wear factorial experiment can be further examined
for their predictive ability of advancing drill wear. It is already known that the
fifth through the eighth harmonics of the Z acceleration power spectrum were
most sensitive to advanced drill wear (Ramirez,1991). These particular power
spectrum responses steadily increased as drill wear progressed, and rapidly in-
creased when drill wear-out was achieved. Quite significantly, the bispectrum
chloropleth difference plots of each case of the incipient wear data revealed these
same harmonic frequencies interacting with higher frequencies to be among the
most significantly different frequency interactions between classes! It is possible
that bispectrum analysis can be used as a predictive tool of advancing wear.
Second, a large database of pump and fan failure data obtained from TRACOR
(Austin) can be studied for applicability to other rotating machinery besides
high-speed drills. The TRACOR data is already analyzed by some of the vibration
analysis techniques mentioned in Chapter 2. Results from the 110S analytical

approach could be compared with the results of these other techniques. Third,




other classification algorithms such as neural networks could be applied to inves-
tigate whether trends identified in this research continue to hold. Obtaining the
right type of information required for proper further investigation of the HOS
approach is tedious, difficult, and expensive. The hard work of obtaining excel-
lent experimental data is done as both rotating machine failure databases are
available from the author. Some ideas of expanding on the methodological work
is given next.

First, third-order cumulant estimation and feature extraction can be per-
formed for the experiments described in this work. This is extremely important
to investigate as the contribution from this cumulant spectrum measure will
probably be more significant than the second-order cumulant. Second, more in-
volved and complicated simulation experiments such as testing with diflering lev-
els of the experimental parameters and also multiple-tone simulations are needed.
Third, more investigation with regard to the correspondence of the statistical
findings of this research to the actual physics of wear processes occurring in
high-speed drilling of composite circuit card materials is a good recearch project
for a mechanical systems graduate student. Finally, depiction of how the statis-
tically significant {eatures change and move through spectral principal domain
regions over multiple conditions of the machine is another area for methodological

reseaich.

6.2 Summary

This rescarch study was significant in many respects. This is the first

work to provide a rigorous study of the HHOS approach in detecting incipient
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faults. Morcover, this is the first work to address the nonstationary aspects of
random fauit mechanisms. Most incipient fault detection methods are usually
tested against one specific application or machine system. Due to the inherent
stochastic nature of the systems under study, a statistical and experimental design
framework is necessary to thoroughly investigate a particular monitoring ap-
proach. Deriving statistical conclusions which show consistency with both simu-
lated and actual time series signals gives validity for the new HOS monitoring
approach. Understanding the necessity to investigate and justify structural as-
sumptions such as linearity, Gaussianity, and stationarity of time series data is one
of the major lessons lcarned in this study. This research explains the procedures
for manipulating such time series data so that other rotating machinery situations
can be properly analyzed. Because the research approach provides the tools for
investigating and exploiting a wider potential range of time series characteristics
generated by random fault mechanisms of cyclostationary processes, improved

exccutive decisions in both the maintenance and operational environments of ro-

tating machinery are possible.
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Appenc:x A

Second-Order Cumulant Spectrum Estimation Program
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Appendix B

Harmonic Process Model Stationarity and Finite Memory




Harmonic Process Model (HPM) Stationarity and Finite Memory

When ¢, are independent uniformly distibruted random variables, V(t) is
always stationary irrespective of A, and w, values. There are two conditions for

stationarity:
EfV]=0forallt [B—1]
and
Cov(¥V,, V;) = Cov(t) = R, (1) [B-12]

where 7 is the time shift or lag parameter.
B-1 is easily shown first and consider B-2 for the n=1 case. The argu-
ment shown is easily extended to the general case. Because of the given informa-

tion the expected value of V (1) is:

V] = 2% f cos(w,t + ¢)do
= % [ sin(w,1) + qs]]" =0 forallt

Now for the second condition for stationarity.
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Con(V,, V) = E{V(} {V(t+ 1)} t=0,+1,+2, ..

= —‘2‘- n j cos(w,t + ¢)d % aneos {wft+ 1)+ ¢p)do

—00

2 o0
= —%f_wcos(w’ + @) cos(m(t + 1) + P)dep
2

a_
4n

f [ cos {Qwt + wt) + 20} + cos wr]dd

2

2 e oo
=42 4
=i f—w( cos wt)dp = an ¢ cos wr]_w

2

= —’Zﬂ {mcoswt — (—~ n) cos wt]
a2 a2
= (27 cos wt) = BN cos(wr).

For the general case :

a,
R(7) = 5 COs w,T
n=>0

Thus, the autocorrelation function p(r):

2
a, €OS T

s

R(7) n
R(0)

0
2

[2ed

Za,, oS €,(0)
=0

o

>,

=0

n

= Z‘ Cos m,T

n
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So, both the autocorrelation and autocovariance functions of a harmonic process
consist of a sum of cosine terms and thus never die out. This is in contrast to
MA and AR processes and so the finite dependence assumption, or finite memory,
1s not applicable for HHPM. Stationarity is applicable no matter what choice is

made of the amphtude and [requency terms.
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Appendix C

Power Spectrum Broadening




Cosine-Wave Carrier Signal Spectrum Broadening

Signals generated from rotating machinery not yet performing a particular
machining process produce a pure harmonic tone due to its periodic driving force
mechanism: cos 27f.t = cos w.r. However, once machining is performed, the gen-

erated signal is:
Vampm(t) = k(1 + m A1)] cos(w t + ¢, + myg(t)) + n(?)

Notation described in the report text is repeated in this appendix but is condensed
for ease of presentation. In the text, V...(?) is the amplitude and phase modu-
lated cosine-wave carrier signal, m, is the amplitude modulation index, f{1} is the
amplitude modulating signal, ¢. is the carrier signal phase, m, is the phase modu-
lation index, and g(r) is the phase modulating signal. Now,
A = cos w,t and g(t) = cos m,t with [, and /, are the frequency of the amplitude
and phase modulating wave, respectively. Briefer notation for this appendix is the

following:

Vampm(0) = k[1 + m(D)] cos(w .t + ¢(1) + 0)

wheo andom amphitude and phase modulations are represented by m(f) and ¢(¢)
respectively, and # is the random carrier phase variable that is independent of both
the random amplitude and phase modulation variables and has the same uniform
pdf. If m(f) and &(1) are zero mean, stationary, and statistically independent ran-
dom variables, the power spectral density of V,.,.(f) is now derived.

First, the autocovariance (Ry = [V(1)I{(¢') ]) is computed:

166




Ry=E[(1 +m)(1 +m)]E[cos(p+ ¢ +0) cos(p’ + ¢’ +8)] [C~1]

where m' = m(r'), ¢’ = ¢(t"), p = w.t, and p' = w.’. Also the shortencd notation
of CC=E[cos(p + ¢ + 6) cos(p’ + ¢’ + 6) ] will be utilized. The first ensemble

average of C-1is
E[(1 +m)(1 +m)] =1+ R, (1), [C—2]

where 1 =1t —t, R, = E[m(f)m(¢') ], and the ensemble averages of m and m’ van-
ish because m is a zero-mean random variable. The second ensemble average of
C-1 is more work to calculate. Derivation uses the trigonometric identity for cos

(a + b) and the fact that ¢ and 0 are statistically independent:

CC=E[cos(p + ¢)cos(p’ + ¢') JE[ cos’0 ]+ E[ sin(p + ¢) sin(p’ + ¢') ]
E[sin% ]
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— {[sin(p + @) cos(p” + ¢} ]+ [cos(p + ¢) sin(p’ + ¢ E[ S'\E\(Q_C%SJG ]

Elcos(p—p'+¢ —¢)]

= o|—

cos(p — p")E[ cos(¢ — ¢') ]~ —;‘ sin(p — p")E[ sin(¢p — ¢") 1.

Because | ¢ | is verv small in comparison with unity, Taylor series expansions of

sin(¢p — ¢') and cos(¢p — ¢’) are used to give:

.1 1 5
CCx—cos(p = p)| 1 =5 E[(6 - ¢")' 1+
21 [ 2 ] (¢ -4]
+ 73 sin(p — PEWd -V T+ ]

Ignoring terms of third-order and higher, and substitution for ¢ and p’ C-4 is then:




1
CC= > cos(w7) [1 — Ry(0) + Ry(7) 1. [C-5]
Finally, substitution of C-4 and C-2 into C-1 yields:

R (1)~ % L1+ Ru(m)IL1 — R,(0) + Ry(1)] cos w,z
[C-6]
~ % L1 — Ry(0) + Ry(7) + Ry(1)] cos oz,

where terms proportional to R.R, are ignored due to their higher order in the
smaller quantities m and ¢.
The power spectral density is obtained by using C-6 in the standard defi-

nition of the power spectrum as shown:

P(f) = f R(x)e =y,

The result is:
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Py =L a- a;)J 2T gy

—00

l - kg T
+-Z(l—a$)J REAr

1 = ~i2n(f—f. )
+ a j_me(t)e dt [c-1]

+-;—J Rm(r)e—lz"(/*}f‘)f dt
L[~ —2a(f=f.)e

+—4-f Ry(r)e ™2™/ =L gy
1 * —i2m 14

+7J' Ry(x)e 2™+ 4y

Using the definitions of Dirac delta functions and the power spectrum C-7 be-

comes:

P = 5 (1= BTS¢~ f) + 60 +£)] +

1 [C_ 8]
2 L2l =10+ P+ 1) + Pylf = f) + P+ )],

where a3 = R,(0). From (-8 it is scen how the discrete spectral lines are broad-

ened by both amplitude, /., and phase modulations, P,.
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