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SECTION I

INTRODUCTION

The techniques that are available to compute scattered fields from

arbitrary targets may be classified as a) analytical techniques and b) numerical

techniques. The analytical techniques are largely based on asymptotic theory

anL. are valid when the target size is sufficiently large compared to a

wavelength. These techniques are limited to relatively simple targets and are

limited to situations where the requisite diffraction coefficients are available.

The numerical techniques, based on extensive use of the digital computer,

have a wide applicability and the target configuration is arbitrary. These

techniques formulate the problem either as an integral equation or differential

equation subject to boundary conditions to be solved. We consider in this

report, the solution of integral equations.

The integral equations may be solved directly as is done in [] without

explicitly reducing it to a matrix equation. However, with this method, each

time the excitation is changed, the solution process must be started all over

again. Thus, when there are a large number of excitations to be considered, as

is often the case, presently available direct solutions are inefficient. A more

common approach is to take a projection of the integral equation into a finite

dimensional space reducing it to a matrix equation [2]. This matrix equation

may be solved by several conventional methods (3]. An advantage of this method

is the availability of the inverse operator. Once computed, this may be used

repeatedly on any number of excitations simply and effectively. This approach

is clearly among the best to solve problems with multiple excitations.



As the electrical size of the target becomes large, the order of the matrix

becomes large and obtaining the inverse operator becomes numerically in-

efficient. In addition, round-off error tends to vitiate the computations as

the order of the matrix becomes large. Iterative techniques have been used to

overcome this problem [7] - [11]. However, iterative methods whether based on

Lanczos iteration [12] or conjugate gradients [13] are limited to only one

excitation. If the excitation changes, the problem must be solved in its

entirety again.

In this report we set ourselves the task of devising an iterative scheme

that may be used with not just one excitation but an arbitrary number of

excitations. That is, in effect, we seek to compute an inverse operator

iteratively.

Let us consider a solution of the matrix equation,

Ax - F (1.1)

where A is an NxN matrix. Let A be self adjoint. The matrix A may be considered

to be a collection of N-Vectors, jth vector being simply the jth column of the

matrix. Equation (1.1) may be put in the form,

< Ail x > - Vi , j - 1,2 N (1.2)

A geometrical interpretation of equation (1.2) is to find the vector x such that

its projections along the columns of the matrix ( < Ai, x > ) equal the

components of the excitation. This problem is best solved by setting up an

orthogonal co-ordinate system. This is accomplished by starting from an

arbitrary initial vector x= and computing a sequence of linearly independent set

of vectors, x., AXo, A 2xo .... AN x0. Ihis set of vectors is called the Krylov

sequence of vectors and each member of this sequence is computed by operating
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on the preceding vector by the matrix A. That is, Krylov sequence may be

computed iteratively.

The Krylov sequence is not orthogonal. These vectors may be orthogonalized

by the Gram-schmidt procedure [3]. However, this procedure is numerically

inefficient. Lanczos [121, [61 had shown that it is only necessary to enforce

orthogonality of a vector from Krylov sequence to the two preceding orthogonal

vectors; orthogonality to the rest of the vectors is assured. Thus, a set of

A-orthogonal vectors are computed iteratively, satisfying the relation.

< qj, Aqj > - < Aqj, qj > - Ai 6j . (1.3)

It is shown in this report that the inverse operator may be thought of as

consisting of N-components. Each component matrix is shown to be related to one

of the A-orthogonal vectors. For instance, the jth orthongonal vector q, leads

to a matrix given by, Aj 1 qj q8 Thus, as each new A-orthogonal vector becomes

available, the inverse operator may be up-dated. This leads to an interative

computation of the inverse operator. However, these computations involve

computing the outerproduct qj qh. Such a computation is numerically expensive.

A technique is shown whereby solution to multiple excitations is obtained but

without explicitly computing the outer product.

The theory developed for the finite dimensional operator is then extended

to infinite dimensional space. This leads to the definition of the inv.erse

integral operator. This inverse operator is related to a set of orthogonal

functions in the same way the matrix inverse operator is related to the q-

vectors.

In section-2 we present the detailed development of the theory of the

inverse operator. Section-3 presents a numerical implementation of the theory

and a few examples. Section-4 contains a discussion of the results and some

suggestions for further research.
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SECTION 2

THEORY

Here we consider the solution of Integral Equations (IE). In the field

of electromagnetic scattering Fredholm's integral equations of both the first

and second kind arise. The electric field integral equation (EFIE) is an

integral equation of the first kind while the magnetic field integral equation

(MFIE) is of the second kind. The general form of these IE's is given below:

g - Kf (2.1)

f - g + Kf (2.2)

K is a linear integral operator. Equation (2.2) may be rearranged so that it

assumes the form of an integral equation of the first kind:

g = f - Kf

= (I-K) f

- K' f (2.3)

Where K' is a new operator given by

K' = I - K

Equation (2.3) is an integral equation of the first kind. The kernel of this

new IE involves a dirac delta function. Thus, without loss of generality, we

consider only operator equations of the first kind.

The integral equation may be thought of as a problem in infinite

dimensional space. By using an appropriate technique such as the method of

moments [2], it is possible to take a projection of the IE (eq. 2-1) fro:r

infinite dimensional to an N-dimensional space. This procedure reduces the TF
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to a finite dimensional matrix operator equation, of the form shown below.

Ax - F (2.4)

Where the operator A is an NxN matrix.

We will develop the theory in terms of the finite dimensional operator A

and eventually obtain the solution to the IE as the limit of the solution -o

equation (2.4) as N -- . The infinite dimensional space is considered to be

a limiting case of N-dimensional space.

Let X and Y be two vectors defined by

X - [ x1 , x2  . . . . . xn]'

and Y- [ Y1 , Y2  ..... Yn] °

The prime is a transpose operator. Then, the inner product of two vectors is

defined by,

< X,Y > -XH y

The superscript H indicates Hermitian operation and XH is obtained from X by

conjugating and transposing the elements of X.

N .
< X, Y > - XH Y - X. Xk yk (2.5)

k-i

*

where xk is the complex conjugate of xk. The outer product of two vectors, x and

y is an NxN matrix Z, given by

Z - X yH (2.6)

An operator is said to be self-adjoint if the following identity holds.

< AX, Y > - < X, AY > (2.7)
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Without loss of generality we assume the operators K and A to be self-adjoint.

The impedance matrix that is obtained in electromagnetic problems is not self

adjoint. However, the problem may be reformulated to yield an operator that is

self adjoint.

ZI = V (2.8)

Multiplying both sides of equation (2.7) by ZH , we obtain,

( ZH Z ) I = ZH V (2.9)

It may easily be seen that the operator ZH Z is self adjoint.

2.1 A-ORTHOGONAL VECTORS

We now determine a sequence of vectors, qj, q2 , q2 .... qn starting from an

arbitrary initial vector x0 . These vectors are A-orthogonal vectors. That is,

< Aqj, qj > - A i 6ij (2.10)

Since the operator A is self-adjoint,

< Aqj, qj > - < qj, Aqj, > - A i 6ij (2.11)

These vectors are obtained by A-orthogonalizing the Krylov sequence of vectors.

Starting from an initial arbitrary vector, x0 , the Krylov sequence is obtained

as x,, Ax0, A
2x . . . . . . . , AN

-' x0 . Note that each vector of this sequence is

obtained from the preceding veztor by operating on it once with the operator A.

The set of Krylov vectors are not A-orthogonal. These may be

orthogonalized by a special procedure such as the Gram-Schmidt procedure.

However, Gram-Schmidt procedure is numerically very expensive. Furthermore,

due to the special properties of the Krylov sequence of vectors, it may be shown
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that pth orthogonal vector, qP, may be obtained by ensuring that AP x0 is

orthogonal to only the two preceding vectors, qP-1 and qp_2! (Gram-Schmidt would

have required that APxo be orthogonal to all the preceding vectors.) This

clearly results in an efficient computational procedure. We now give the details

of construction of the q-vectors.

q, = xO

< Aqj, Aq1 >

q2 = Aq q- yq ; (2.12)
< qj, Aq1 >

qj+j - Aq - -y qj - 6i q-1  , i - 2,3 ..... N-1 (2.13)

< Aqj, Aqj >

< qj, Aqj >

< Aq i , Aqj-1 >
Si = ______

< qj-:, qj-1 >

The vectors so computed constitute a complete A-orthogonal set as proved in

[1]. Note that the computational process may be so arranged that each of

these vectors are computed iteratively, one per iteration. The A-

orthogonality of these vectors may be expressed, compactly, using matrix

notation as follows:

QT A Q - A (2.14)

Where QT is the transpose of the NxN matrix Q, Q is a matrix with the q-vectors

as its elements. That is,

Q " [ qj, q2 , q3  . . . . .  qn ] (2.15)
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A is a diagonal matrix, whose diagonal elements are given by

Ai - < qi , Aqi > (2.16)

2.2 INVERSE OPERATOR

We now obtain explicit expressions for the inverse of the operator in

terms of the q-vectors. The matrices Q and QH are partitioned as follows.

Q- [ Qp QI 1 (2.17)

Where Qp is an N x P matrix obtained from the first P A-orthogonal vectors.

That is,

Qp-[ q q2 ... qP] (2.18)

QP is an N x (N-P) matrix defined below.

Qg- [ qp+1 qp+2 ... qN ] (2.19)

Q.H and Q-P are matrices obtained from transposing and conjugating Qp and QF.

From these matrices, QH may be shown to be,

QH [ Qp] 
(2.20)

Now, taking the inverse of equation (2.14) gives

[ QB A Q ]-' - A-'

Q-1  A-1 [QH]-1 - A-' (2.21)

A-' - Q A-1 QH (2.22)

8



Note that since A is a diagonal matrix, A-' is simply another diagonal matrix,

whose diagonal elements are A i1 Thus, equation (2.22) shows the relationship

between the inverse operator and the A-orthogonal vectors. However, equation

(2.22) implies that the inverse operator may be computed only after all the q-

vectors are computed. In fact, the q-vectors are computed iterativ_y; :n

additional q-vector is available after each iteration. It can be shown that

the inverse operator itself may be obtained iteratively. The diagonal matrix

A-' may be partitioned as shown below.

- [p- 1 (2.22)
o AF_- 1

The AP I and Av-1 are diagonal matrices of orders PxP and P x P (P - N - P).

Then, from equation (2.22),

-[ Q Q I ['P_ 0 H (2.24)

n- QQH

- [ Q Q A + Q f A "1 QOH

BP + Bj (2.25)

'Where,

BP - [ Qp AP 1 QpH ] (2.26)

and B - [ Qp Ap"1 Q-5 ] (2.27)

Bp may be thought of as the best estimate of the inverse operator after P

9



iterations. Indeed, eacl, A-orthogonal vector q corresponds to a matrix

component of the inverse operator. By direct expansion of equation (2.26),

BP- (q A, -' q H + q 2 A2
-1 q 2H + .... + qp Ap- 1 qP H

P

E Aj- qj qjX (2.28)
j-1

Thus, the outerproduct (a matrix) formed from the jth vector qj is a component

of the inverse operator. It must be pointed out that computing an

outerproduct is numerically a very expensive operation. Indeed, solution to

the original operator problem for multiple inputs may be computed without

actually computing the outerproduct and hence the inverse operator!

2.3 SOLUTION WITHOUT EXPLICIT INVERSE OPERATOR

We now consider solution to the operator problem with M-excitations.

AXj - F j  j - 1,2, .... M (2.29)

Let P iterations of the procedure be carried out resulting in the computation

3
of P A-orthogonal vectors qj, q2 . . . . .. qp. Then the solution xP corresponding

to the jh excitation FJ is given by

a
xP BP FJ

p 1

- q q'] Fj

2-1 At

p 1
- . qt qH Fj
-1 A'

p I

- - < qt, Fj > qt (2.30)
-1 A'

10



p < qt, Fj >
- qt (2.31)

i-I < qt, Aqt >

From equation (2.31) it is evident that it is only necessary to compute the

inner products < qt, Fj > and not the outerproduct qt q H to obtain the

solution. This is clearly much more efficient than computing the inverse

operator directly. Even for purposes of storing the inverse, it is best to

store the collection of q-vectors, the Q-matrix, rather than A itself.

Equation (2.31) may also be written as,

p-l < qt, FJ > < qp, Fj >
X pj  E - qt + qP

1-1 < qt, Aqt > < qp, Aqp >

< qp, Fj >

- _ + qp
< qp, Aqp > (2.32)

Thus, after P iterations, as the pth vector becomes available, the solution

computed at the end of P-1 iterations is up-dated by the addition of the

factor < qp, FJ > qp / < qp, Aqp >. This is analogous to up-dating the inverse

operator by the addition of the matrix Ap- 1 qP qpH.

2.4 ITERATIVE SCHEME

With the theory in hand, we are now in a position to outline the

iterative scheme to be implemented on a digital computer. Let x. be an

arbitrarily chosen initial vector.

Step 1:

A, - < qj, Aq, >

11



1

tlJ - < q, F j > q , j - 1,2, ... M
Al

xiJ - t1i j - 1,2, ... M (2.33)

Step 2:

1

I - < Aq1 , Aq1 >
Al

q2 - Aq- 71 q ,

A2 - < q 2 , Aq 2 >

1t2J = - < q2, F J >  q2 1 , 2 ... m

A2

X?= xlj + t 2 J j = 1,2 ... M (2.34)

Step 3: For i = 2, 3 .......

1
i - < Aqj, Aqj >

Ai

- - < Aqj, Aqi-1 >
Ai- I

qi+l - Aqj - -i qi - 6i qi- 1

Ai+l = < qi+1 , Aqj+j >

i 1ti+i < qi+,, FJ >  qi+l j --1,2 ,. . M
Ai+l

J .3

Xi+i= XiJ + t i+ j - 1,2 ... M

E& - IlFj  - Ax+ 1  , j - 1,2 ... M (2.35)

12



Step 4:

Terminate if E' is sufficiently small or go back to Step-3.

This procedure computes one A-orthogonal vector for each iteration and uses

this vector to update this solution for all M excitations and not just one excitation.

Note that the inverse operator A-' is not computed explicitly. As observed earlier,

the matrix Q, which is a collection of the A-orthogonal vectors serves the same

purpose as A-' but numerically is much more efficient.

2.5 INVERSE INTEGRAL OPERATOR

The theory of the inverse operator has been developed in N-dimensional space.

We now let the number of dimensions, N, approach infinity so that the matrix operator

becomes integral operator. It is worth remembering that the matrix operator which

becomes integral operator was originally obtained as a projection of the integral

operator into finite dimensional space. That is,

as N- , A - K (2.36)

The vectors of finite dimensional space become functions in infinite dimensional

space. That is,

qj - i (2.37)

The inner product in infinite dimensional space of two functions f and g may be

defined as,
*

< f, g > - f f g dl (2.38)

As before, the operator K is self adjoint if,

< K f, g > - < f, Kg > (2.39)

We now consider the solution of the integral operator equation, for multiple

13



excitations:

K fj - gi j - 1,2 ... M (2.40)

As in the case of finite dimensional space, the functions j are computed such

that they satisfy the orthogonality condition.

< j , Kej > - Ai 6ij (2.41)

The difference is that, in N-dimensional space the number of q-vectors are finite

in number, equal to N but in infinite dimensional space, ej are infinite in number.

However, the inverse operator K-1 is related to the ej in a manner analogous to

the way A- ' is related to qj.

In N-dimensional space, the solution after P-iterations is given by equation

(2.31):

p < qt, F j >
xPJ - BP FJ - q

1-1 < qt, Aqt >

Generalizing this equation to infinite dimensional space.

P <et , g >

Y - K-' gj _ j - 1,2, ... M (2.42)
1-1 < t Ke >

Thus, obtaining an iterative solution to integral equation with multiple excitations

consists of the following steps.

Step 1:

Determine K-orthogonal functins j starting from an arbitrary initial

function f0 and Krylov sequence of functions.

Step 2:

These ej are computed iteratively, ie, one function during each

iteration. This function may be used to compute the update for the

14



solution as given by equation (2.42). The inverse operator may be

expressed as follows:

K-1 - E

1-l < C, Kt > (2.43)

The outerproduct of two functions t CtH results in a new operator. The operation

of this operator on a function f is defined by:

H - t < t, f >

- < , f > t (2.44)

The effect of this operation is to transform the function f into a scalar multiple

of C.

As may be seen from equation (2.43), this inverse operator depends only on

C's and the operator K and is independent of excitation. We now give an iterative

scheme for the solution of equation (2.40).

2.5.1 ITERATIVE SCHEME FOR INVERSE INTEGRAL OPERATOR

The computational scheme for the solution of the integral equation with

multiple right hand sides is given here.

Step 1. Choose an arbitrary initial function f.. Then,

- fo ; A, - < C1. KC, >

1
fil - - < fl, gi > C , j - 1,2 ... M (2.45)

Al

Step 2.
1

71 - < K~j, KC, >
A,

15



- Kj- vy

A2 - < 2, K1 2 >

1
f 2

j "xj + - < 2 ,gJ >  
2  j-1,2,... M (2.46)

A2

Step 3.
1

- - < K ,K >
Ai

1
6i = - < K> , K~1 1 >

Ai-1

Ai+j - < j+1, K~j+j >

i 1

fi+ - " fiJ + - < i+i, gJ > +j , j - 1,2 . .. M
Ai+1

& - 1gj Kfi+11 , j - 1,2 . .. M (2.47)

Step 4.

If EJ is not sufficiently small, go back to Step-3.

It may be noted that in order to obtain the solution to the multiple excitation

problem, it is only necessary to store at most three 's at any given time. However,

if the inverse operator were to be stored to be used at a later time on more

excitations, then all the 's computed need to be stored.

2.6 DEGENERACY

The iterative scheme described in Sections 2.3 and 2.5.1 may terminate

prematurely without the error becoming sufficiently low if the initial vector x,

16



or fo are deficient. The initial vector x0 must contain components along all the

eigenvectors of the operator A. Otherwise the Krylov sequence ceases to produce

new linearly independent vectors after a certain number of iterations. When this

happens, it is not possible to compute a new A-orthogonal vector leading to a premature

termination of the iterative scheme. Similar comments apply for the case of continuous

operator as well. In such cases of degeneracy, the iteration may be re-started

using the following procedure.

Let x.1 be the initial vector. Let P A-orthogonal vectors qj, q2 .. q. be

computed before degeneracy occurred. Then the iterative procedure may be continued

from another vector x0
2. However, x0

2 must be A-orthogonal to all the preceding

P vectors. This may be ensured in the following way. Define qp+1 such that,

p 1
qP+1 - x0

2 " E - < x 0
2 , Aqt > q1 (2.48)

1-1 At

q,+1 may be shown to be A-orthogonal to all the preceding q-vectors. That is,

< qp+1, Aq > - 0 , j - 1,2 ... P (2.49)

p 1
< qp+1 , Aqj >-< Aq > - . - < x 0

2, Aqt > < qt, Aq >
1-i At

j - 1,2, ... P.
P 1

- < X0 Aqj > - - < Xo, Aqj > Aj 6tj
1-1 At

1

- < X0
2, Aqj > - - < Xo2 , Aqj > Aj

Aj

- 0 (2.50)

With qp*1 defined this way, the iteration may be continued from Step-3 of Section

2.4. However, it must be noted that equation (2.48) implies that P A-orthogonal
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vectors are stored and are available. It is possible to devise a scheme whereby

it is not necessary to store the A-orthogonal vectors. Two vectors x0
I and x,2

are initially chosen and the iteration is started with x.1 as given in section

2.4. In addition, however, after each iteration, x0
2 is modified so that it is

A-orthogonal to q-vector that is computed. During _th iteration, then, X.2 is

replaced by,

I

x0
2 -, X0

2  
-- < x 0

2 , qt > qt (2.51)
At

This procedure ensures that x0
2 is always A-orthogonal to all the available q's.

Of course, similar procedure may be used for the continuous operator case as well.
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SECTION 3

NUMERICAL ANALYSIS

The numerical implementation of the theory described in Section-2 is discussed

here. We present here the numerical considerations that result in the most eflicient

code as well as the numerical difficulties that may arise and some prescriptions

to overcome these problems. Some numerical examples are presented.

3.1 NUMERICAL CONSIDERATIONS

a) A significant part of the computation consists in computing qi+1 from

Aqi by subtracting the projections of qi and qi-1. This may be accomplished by

computing -yi and 6i and computing,

qi+1 - Aqi - -yi qi - 6iqi-1  (3.1)

as described in Section 2.6.1, Step-3. Abetter way to accomplish this is to carry

out the recursive procedure described below [3], [4].

qi-1  - Aqi -7y qi (3.2)

Yi < Aqi, Aqi > / Ai (3.3)

qi+1 - qi+1  6i qi-1 (3.4)

61 - < qi 1+, Aqi- 1 > / Ai (3.5)

The projections yi qi and 61 qi-1 are removed one at a time. In a finite precision

arthmetric, this leads to a more stable computation.

b) The impedance matrix Z that comes up in electromagnetic problems is not

self adjoint. However, the problem may be reformulated to yield a new matrix

operator that is self adjoint. That is, 'the original matrix equation,
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Z I -V (3.6)

is pre-multiplied by the matrix to obtain,

( ZH Z ) I _ ZH V (3 7)

Equation (3.7) may be put in the form

Ax- F (3.8)

Where,

A-ZHZ (39)

.iultiplication of a matrix by another matrix is numerically a very expensive

operation. In fact, the numerical scheme may be arranged so that one never

needs to carry out the operation in equation (3.9). The entire iterative

scheme discussed in section 2 is based on a matrix operating on a vector,

AX. The operation (ZH Z) x may be carried out in two steps as follows.

Let,

Y- ( ZH Z ) x (3.10)

then, Y " Zx (3.11)

and Y ZH Y (3.12)

That is, the result required in equation (3.10) is obtained by implementing

equations (3.11) and (3.12). Both of these equations consist of matrix

operating on a vector, a numerically efficient operation.

c) In an infinite precision arithmetic, the q-vectors computed using the

procedure in section 2.5 will always be A-orthogonal. However, in a finite

precision arithmetic, as invariably is the case, the q-vectors slowly lose
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their orthogonality. Such a loss of orthogonality completely destroys the

validity of computations and thus must be monitored and must be prevented

from happening. In this investigation, we monitor the loss of global or-

thogonality by computing a constant "C" as defined below, after computing

C - < Aq1 , qP+1 > (3.14)

If C were to be more than a prescribed value, E, (say 0.05), q+ 1 is deemed

to have lost orthogonality and is rejected; The iteration is restarted from a new

vector x0
2 after ensuring that it is orthogonal to all the preceding P number

of q-vectors.

3.2 NUMERICAL ILLUSTRATIONS

The target is a square cylinder illuminated by a TE plane wave. The angle

of incidence is arbitrary. Each angle of incidence corresponds to a different

excitation. For purposes of illustration, we consider three angles of incidence

ranging from 90* to 2700 as shown in Figure-i. We consider three different sizes

with W=0.2A, 0.3A and 0.4A. Each of these cylinders is illuminated with Oi = 180',

2250, 2700.

A standard method of moments code [14] is used to generate the impedance

matrix Z and the excitatin vectors Vi, j - 1,2,3. The matrix equation is therefore,

Z I - Vi j - 1,2,3 (3.15)

This equation is solved using the procedure described in this report iteratively

and for all the excitations simultaneously. The currents obtained using this

procedure are checked by comparing them to currents obtained using Crout's method

(5].

Figures 2-5 show the results of 0.2A square cylinder. Figures 2-4 show
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that the currents obtained using the iterative scheme compare well with the currents

obtained using elimination procedure. Figure 5 shows the monotonic decrease of

the r-m-s error as iteration progresses. Similar results are shown in figures

6-9 for 0.3A case and in figures 10-13 for 0.4A case.

In each of these cases the iteration is started by choosing the initial vector

to be
F1

X0 - (3.16)

< AF', F' >

F' - ZH  (3 17)

The vector F1 is the right hand side of the transformed matrix equation corresponding

to Oi - 1800. Examination of figures 5, 9 and 13 show that error decreases

fastest f the Oi - 1800 case. The rate of convergence seems to depend on the

initial choice of the vector and the best choice seems to be the right hand side

of the matrix equation itself.
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Figure 1. Geometry of square cylinder.
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SECTION 4

DISCUSSION

In this report we have developed the theory of inverse matrix operator and

inverse integral operator. We have shown that it is possible to compute the

solution iteratively for multiple excitations rather than just a single

excitation.

While the theory is complete, several numerical problems exist. The basis

of the inverse operator is the construction of a proper orthogonal set of

vectors. In a finite precision machine, as the iteration progresses,

orthogonality is slowly lost. If the vectors were not A-orthogonal, the theory

developed is not applicable and the compu tions become meaningless. Hence,

efforts must be made to monitor the orthogonality and when the loss of

orthogonality is signaled, the iteration must be re-started.

Paige [15] had shown that loss of orthogonality is not simply because of

accumulation of round-off error. Rather it is because of the combined effects

of round-off error and convergence of a few eigenvectors. In fact, the losses

of orthogonality occurred only along the directions of converged vectors. We

recommend therefore the inclusion of selective orthogonalization rather than

complete re-orthogonalization which is numerically expensive. As the computation

continues, each loss of orthogonality becomes a signal that a new eigenvector

is available. This eigenvector is computed and is removed from all later q's

as otherwise an image of the eigenvector appears again and again.

Much further work needs to be done to develop the inverse operator theory.

It would be very interesting indeed to compute the inverse integral operator;

That is, implement the scheme discussed in section 2.6.1. lf this were to be

successful it completely eliminates the need to explicitly reduce the integral

equation to matrix equation.
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