
-. ~Reproduced From C
Best Available Copy

__Ada COCOMO and the Ada P Irocess Model.

Barry Boehm and Walker Royce, TRW '

~N_ 1. Introduction*'

The original version, of the Constructive Cast Model (GOCOMO) [Boehm,
1981] was calibrated to 56 software development projects, and val-dated on 7
subsequent projects. On these projects, the COCOMO devalopment effort
estimates were accurate 'within 20% of the project actu,-s, a.bout 70% of the
timre.

Subsequently, COCOMO has aone approxirna! 31, eis well on most
carefully collected sets of project data [Eoehn,. I ".5; .Io'r P, 1985; Goudy,
1987]. In some cases, CGCOMO hac exhibited a sv'sz turiv- bies, but has done
approximately as well once cecalibratted to the spercIflc en menit [Boehm,
1985; Miyazaki-Mori, 1985: Marouane-Mili, 19891. !1 shoulo b--- noted that there
are also some sets of project datafor which 0000MG has been considerably
less accurate [Kemerer,1987; Martin, 19881.

Recently, three software development approaches have motivated the
development of a revised version of COCO. I: the use of the Ada programming
language, the use of incremental develox inert, and the use of an Ada process
model capitalizing on the strengths of A.ý'- ý improve the efficiency of software

deveopmet. Tis papar presents tl.u portions of the revised Ada COCOMO
dealing with the effects of Ada anc o a process model.

The remainder of hIN,. s,4-.ziL1 of the Paper discusqes the objectives of
Ada 0000MO. Section 2 d~sc'9,es the Ada Prcvces'r Model an~d its overall
effects on softw~are deve:,;Ptont effc~rt a~nd schec'u~e. Section 3 presents the
structure and features cf Ada CCCOMO,.ana v~snusses the rationale behind the
changes made from. ttie ear'jer version) 7*YlO(called "standard
COCOMO* in the renarindgr olfthe ppr, r". 3k-cmon 4 summarizes the current
status of Ada COCOMIO, inrlud~ng t .a±Ant aead t urnl
available imolementations; asiJ Sectio, i jre;-eiits the resulting conclusions.

AdaCOCOMQ Obiv~fig.

g The primary objectives of the Ada COCOMO development activity were
* to:

.21 ' ~Determine the effect of Ada on software development costs and
schedule. Some early studies of Adaes impact on software cost indicated that

some of the cost driver factors might be different for Ada projects than for other
projects, and that the phase distribution of cost and schedi.le might also be

* 91-1377691 022O3(
-hog"2c Vc /5

different [Baskette, 1987]. We wished to determine whether *his was the case
and what, if any, changes needed to be made to COCOMO to accommodate
Ada effects.

Determine the effect of the Ada Process Model on software
development costs and schedules. The Ada Process Model exploits some key
Ada features (particularly, early compiler-checkable Ada package specifications
and commonality of design-language and programming-language constructs),
software risk management techniques [Boehm, 1989], and more general large-
scale software engineering principles -- to provide a more efficient and
controllable process model for software development. We wished to reflect the
effects of this Ada process model in Ada COCOMO.

Incorporate related -COCOMO imorovements. Since 1981, we have
found several effects, primarily due to new technology, Which have led to
extensions to the original COCOMO cost drivers. We wished to incorporate
these effects both into standard COCOMO and into Ada COCOMO.

2. The Ada Process Model

Farlar attempts to use software cost estimation insights to improve
software productivity focused on improving the settings of software cost driver
variables (via use of tools and modern programming practices, interactive
workstations, removing hardware constraints, etc) and on reducing the amount
of code one chooses to develop via reuse, fourth generation languages,
requirements scrubbing, etc.) [Boehm, 1987].

The Ada Process Model attempts to further improve software pro, luctivity
by reducing the exponent relating the size of the software product to the amount
of effort required to develop it. For the COCOMO embedded mode (
representing the type of challenging, real-time software projects primarily
addressed by Ada), this equation is:

MMnom = 2.8 (KDSi) 1.20

where MMnom represents the number of man-months required to develop an
average or nominal software product, and KDSI represents the thousands of
delivered source instructions in the product. A,

The resulting inefficiency or diseconomy of scale can be seen from the C',
fact that doubling a product's size will increase its nominal effort by a factor of ,"'.

(2)1.20 = 2.30. The major sources of this inet,"ciency are the effects of process ! ,
thrashing, turbulence, and interpersonal commurication overhead brought on
when large numbers of project personnel are working in parallel on tasks which
are closely intertwined, incompletely defined, continually changing, and not well "to,4.

prepared for downstream integration. ', ,•,,n. ,.,

Statement A per telecom

Doris Richard ESD-PAM R4
Hanscom AFB MA 01731-5000 "

Nww 12/2/91

Ada Process Model Strategy

The primary strategy elements the Ada Process Model uses to reduce
these inefficiencies or diseconomies of scale are to:

* Produce compilable, compiler-checked Ada package specifications (and
body outlines), expressed in a well-defined Ada Design Language
(ADL), for all top-level and critical lower-level Ada packages, by the
project's or increment's Preliminary Design Review (PDR).

Identify and eliminate all major risk items by PDR. This has the effect of
focusing the PDR (and other early reviews as well) on working
demonstrations of prototypes or kernel capabilities rather than on large
amounts of paper.

O Use a pflased incremental development approach, with the requirements
for each incremont, called a buid, stabilized by the build's PDR.

These three conditions minimize project diseconomies of scale by
eliminating the following primary sources of software project inefficiency and
turbulence:

1. Intergersonal Communications Overhead. An issue requiring the
coordination of N agents requires the exercise of N(N-1)/2
communication paths. The Ada Process Model minimizes this effect by
keeping the design team size N small until PDR, and by establishing Ada
package specifications for unit-level interfaces by PDR, thus minimizing
the number of issues the larger post-PDR development team will have to
coordinate.

2. LaeRe . Even with rigorous package specifications, a project will
lapse into turbulence if the resolution of a high-risk "architecture breaker"
problem requires redefinition of many of the package specifications.
Eliminating such risk items by PDR ensures that the project may proceed
efficiently with its initially-determined package specifications.

3. Unstable requirements. Even with rigorous package specifications and
no post-PDR risk items, a project will lapse into turbulence if there is a
continuing stream of requirements changes impacting the definition of
the package specificaiions. Simply raising the threshold of allowable
requirements changes can reduce this turbulence considearably.
Incremental development reduces the turbulence effects even further by
reducing the amount of software under development at any given time,
and by enabling the deferral of requirements changes to downstream
increments.

Ada Process Model Overview and Features

An overview of the Ada Process Model is shown as Figure 1. Additional
features of the Ada Process Model include the use of:

4. Small up-front system engineering and design teams, with expertise in
software architecture, Ada, and the applications domain, Such people
are a software project's scarcest resource. The Ada Proces.s Mlodel
optimizes their contribution, and by providing validated package
specifications to the larger number of later developers, allows these
positions to be staffed by more junior people.

5. A project risk management plan to determine the approachi for
,,,minating risk items by PDR, and a!=, to detarmine the sequence of

development increments. Early increments focus on deve ;pment of
"executing architecture skeletons" to ensure that critical system nuclei are
satisfactorily implemented early. They also focus on prototypes to
eliminate risks associated with user interface uncertaintie,; critical
algorithms, or incorporation of state-of-the-art computer s ,;,Lnco
capabilities. Middle increments flesh out the higher-priority, better-
understood product capabilities. Later increments provide additional
functions as their needs become better understood.

6. An expanded incremental development approach involving lower
increment levels within each build: build increments, which reflect the
planned order of development of eich build; and component increments,
which represent increments of trai-sition between Ada Design Language
(ADL) and Ada code for individual components.

7. Intermediate technical walkthroughs in the early requirements and
design phases. These focus the pre-Walkthrough effort on problem-
solving and architecture definition, and the post-walkthrough effort on
document production.

8. Individual detailed design walkthroughs for each component instead of
a massive Critical Design Review (CDR)> Instead, an efficient CDR is
held to cover the highlight issues of the walkthroughs.

9. Continuous integration via compiler checking of Ada package
specifications and continuous expansion of ADL statements into Ada
code, rather than beginning integration at the end of unit test.

10. Bottom-up requirements verification via unit standalone tests, build
integration tests, and engineering string tests, so that the demonstration
of requirements satisfaction has been mostly done by the end of system
test.

11. Well-commented Ada code and big-picture design information instead
of massive as-built Software Detailed Design Documents, which rapidly
get out of date and lose their maintenance value.

P'roject Kisk Management P'lan
Building =:,S utr p Critical ,,Non-Critical ~.Product Completeness

Blocks Threads Threads

Foundation
Prototypes

5 and
Refinements

Baseline~ SAS Verify Foundation Component DesignDR
Prototypes

Foundation Rein and
Enhancement Rfnmet

Formal !nformal Critical Verify Structural/Interface Design Di
Baseline I Ba~aeins Component c0 N

Enhanc-ments Refinements Prttye

FBrasln Borasln Component Verify Critical Threads Design Demo D
Baeln Bslie Prototypes SDI~s I

Cow ' onent Refinements T
Enhancements ___________

v.Formal Informal Component INTEGRCDR P,
Baseline Baseline I rttpsDemo. R

Test and and 0
Maintenance Component Refiemnt

Enhancements nentU
CVFormal Informal CmoetOther T

TetadBaseline Baseline Crootypoent Demo&

Maintenance Com- onent and
Enhancements Refinements v0

I.
Formal 0a Informal U

Baseline Baseline T

Test and I
Maintenance Ena0met

Formal
Baseline

Test and
Maintenance

Teest and
Maaintenance

Softvwas

Software Product, Baselines >roducts

Figure J- Incremental DeVelopment Under The Ads Process Model

Wali

12. A set of automated metrics tightly coupled to the project's Software
Development Plan and its build definitions. Conventions on ADL and its
expansion into Ada code enable metric tools to provide detailed visibility
into the usually-obscure code development process.

The resulting Ada Process Model can be and has been used
successfully as a tailored version of such Government standards as DoD-STD-
2167. This was done initially on a small TRW-intemal project, and is currently
underway on a large Air Force project: the Command Center Processing and
Display System-Replacement (CCPDSR) project. CCPDS-R is currently about
24 months into its 36-month development schedule. It has completed 3 of its 5
builds (about 300,000 of its planned 500,000 lines of Ada), and has met all of its
Ada Process Model milestones to date. More details on the Ada Process Model
and its application to CCPDS-R are given in [Royce, 1989]. Although the model
was developed for use on Ada projects and has some Ada-specific features,
many of its features ,can be applied to non-Ada projects as well.

Cost and Schedule Implications of the Ada Process Model

Because of the reduction in project communications overhead and
diseconomies of scale, the use of the Ada Process Model leads to an overall
reduction in project effort. The overall schedule for a single-shot development
is lengthened somewhat, but the use of incremental development means that
users receive their initial operating capability eamlier. The phase distribution c i
effort and schedule also changes. Use of the Ada Process Model involv,-s more
effort and schedule ior requirements analysis and design, and considerably
less for code, integration, and test.

Ada COCOMO models the effect of the Ada Process'Model in terms of a'
reduction in the-nominal effort equation exponent of '1.20. The new nominal
effort equation takes the form:

MMnom= 2.8 (KDSI) 1.-4+,.,

The parameter I measures the project's estimated degree of compliance -with
the Ada Process Model-in terms of four parameters-

• The percent o' ihe design that has been expressed as compiler-checked
Ada package specifications and body outlines by PDR.

• The percent of the risk items that have betn eliminated by PDR.

* The degree to which the requirements have been~stabilized by PDR.

* The team's previous experience in applying the Ada Process Model.

If a project is. fully complianIt with the Ada Process Model, then Y_ will be
0.00, and the diseconomy'of scale exponent will be 1.04. If a project exhibits
the current typical hasty-PDR symptoms, then I will be 0.16, and tha exponent
will be 1.20, the same as tor the current COCOMC embedded-mode model.
The 7" parameter is also used in Ada COCOMO in estimating the development
schedule and the phase distribution of effort and schedule.

3. Ada COCOMO Structure and Features

This Section provides the information necessary to use the essential
portions of Ada COCOMO or to implement them in a computer program.
Section 3.1 summarizes the differences between Ada COCOMO and standard
COCOMO. Section 3.2 provides a structural overview of the model's
computations. Section 3.3 provides the information necessary to determine the
project's Ada Process Model I parameter and to determine the project's
nominal effort estimate. Section 3.4 provides the rating scales and effort
m, dtipliers for the Ada COCOMO cost driver variables. Section 3.5 provides the
Ada COCOMO schedule estimation equation, the tables for determining the
phase distribution Of project effort and schedule, and an overview of the
incremental development model. Section 3.6 provides an example comparing
Ada COCOMO and standard COCOMO estimates on two sample projects.

3.1 Differences Between Ada COCOMO and Standard COCOMO

Ada COCOMO has three categories of differences from standard
COCOMO:

a. General improvements to COCOMO, which can be incorporated as
improvements to standard COCOMO as well. These comprise a wider
range of ratings and effects due to software tools and tumaround time;
the splitting of virtual machine volatility effects into host and target
machine effects; the elimination of added costs due to schedule
stretchout; the addition of cost drivers to cover effects of security-
classified projects and development for software reusability; and the
addition of a model for incremental development.

b. Ada-specific effects, including reduced multiplier penalties for higher
levels of required reliabilijy and product complexity; a wider range of
ratings and multipliers for programming language experience; and a set
of Ada-oriented instruction-counting rules, including the effects of
software reuse in Ada.

c. Effects of using the Ada Process Model, which can largely be adapted to
projects using other programi iing languages. Their use on non-Ada
projects would require some experimental tailoring of standard
COCOMO to accommodate the resulting cost and schedule effects.
These effects include the revised exponential scaling equations for

nominal develoOment effort, development schedule, and ,mc iral
maintenance effort; the extended range of modem programrilng
practices effects; the revised ranges of analyst capability and
programmer capabiiity effects; and the revised phase distributions of
effort and schedule.

The remainder of standard COCOMO remains the same as it was: the
overall functional form, most of the effort multipliers, the software adaptation
equations, the activity distribution tables, and the use of annual change traffic
for software maintenance estimation. Standard COCOMO also covers all three
COCOMO development modes; to date, there is only an Ada COCOMO
counterpart of the COCOMO Embedded mode.

3.2 Ada COCOMO Structural Overview

Figure 2 provides an overview of the Ada COCOMO steps Used to
estimate software development costs and schedules. The first step uses
estimates of the software size in thousands of delivered source instructions
(KDSI) and the Ada Process Model 7, factor to calculate the nominal man-month
estimate: the amount of effort the project would require if, it were perfectly
average in all respects. Step 2 involves determining the cost-sensitive ways in
which the project is different from average. The project is rated in terms of 18
cost driver attributes; the ratings are used to determine a set ot 18 effort
multipliers; these are multiplied together and applied to the nominal man-month
estimate to produce the project's estimated effort in man-months. At this point, a
cost per man-month figure may be applied to determine the project's cost in
dollars or other currencies.

Step 3 estimates the project's development schedule (from its software
requirements review to its, software acceptance test) as a function of its.
estimated man-months and its Y_ factor. Step 4. estimates the phase distributiQn
of effort and schedule from a set of tables of distribution percentages vs size. In
Step 5, the effects of incremental development can be estimated by repeatedly
applying Steps 1-4 to the overall project and to the individual increments, and
appropriately phasing the increments' estimated budgets and schedules.

3.3 The Ada Process Model 5' Factor

Figure 3 shows the rating scale used to determine a project's Ada
Process Model Z factor. Each of the four elements has a rat!=*g cale from 0.00
to 0.05; the ratings for each element are added together to define ., The first
element, Experience with the Ada Process Model, is easier to rate in advance of
the project than the others: one determines the degree of experience with the
model of the project's key personnel, and uses this to determine this element's
numerical contribution to.

U..U
CA I-

cc Uz
a) > 4U 4

wU >

co U. 0

0 r- LU) 9

LA 2 02
4 a 29-0 UJ

LU 20i >

0 U)I U

2 2
'U ZA

U. I -

22 a
u~l 'U>

r* co

;A C6;
£4A

= ~ U)CA
U)mU

ci- z
cz ;

N .)

cc 0a

Zj ~ 0 c cc

=)u L~a Zc

U"U

'Ul

1-0 0 w 4

tl2

I-.A

iU

LUU

+

Una~ = CAU0J

-i 4c - us

us X 0 - 'aU 110

0~4 0j~ -"c C
0- NO 0

0 0
LU tU

02 'a cc0.0i
xe EC LuI
h- 6

.7 ';***

For the other elements, Figures 4-6 pvide 3a , re deta d set ,f ratl'-g
scales which can be applied early in the project's ;;fe cycle. Let us 1o, Ck at an
eymrple project in terms of Figure 4, which prcvides several citeria for
estimating a project's likely level of desig.i thorci,-hness by PDR.

Suppose that the example project has a relatively sketchy risk
management pla;,, sc that the best that could be camrned in Row 1 of Figure 4 is
"some* comp.tibility with *t (an 0.03 rating). On the other hand, the pr%;ect ha;

25;" of its development schedule devoted to the preliminary oarign ` base (an
0.02 rating); 100% M"f the necessary architects available (an 0.01 rating); and
good front-end tool support: a solid Ada compiler, hut no related grapnic
architecture and design aids (an 0.02 rating). The level of uncertainty in key
architecture drivers could be rated as either "some" (0.02) or "considerable"
(0.03), but since the other items average out to 0.02i using an 0.02 rating for the
Design Thoroughness by PDR element would be-reasonable.

The project would use F!gures 5 and 6 in a similar fashion to determine
Y, ratings for these elements. Suppose that the Risk Elimination by PDR ratirg
from Figure 5 was 0.03, the Requirements Volatility rating from Figure 6 was
0.01, and the rating for Ada Process Model familiarity was 0.02. Adding these
ratings to the Design Thoroughness rating of 0.02 gives an overall Y, factor of
0.08. Therefore, the nominal effort equation exponent for this project would De
1.04 + 0.08 = 1.12; the resulting equation is:

MMnom '= 2.8 (KDSI) 1-12

The data at the bo~tom of Figure 3 show how significant an influence the
Sfactor has upon software costs. For a nominal 100,000 instruction product, a

= 0.08 project is estimated to require 487 man-months for development. A X
- 0.16 rating would increase this estimate to 703 MM, while a decrease to " =
0.00 would decrease theestimated effort to 336 MM.

While the overall effect of the ý" factor is significant, it does not introduce
instabilities in Ada COCOMO. A change of one rating level on one of the rating
scales in Figure 3 corresponds to a'change of about 5% in the estimated
development effort for a 100 KDSI product.

3.4 Ada COCOMO Cost Driver Variables'

The differences between the Ada COCOMO cost driver variables and
their COCOMO counterparts are:

• Two new variables have been added: Required Reusability (RUSE) and
Classified Security Application (,SECU).

* The Virtual Machine Volatility (VIRT) variable has been split into host
volatility (VMVH) and target volatility (VMVTI effects.

�1 - - -. S . - -

141 �' -�oI -� � I-i

'4-'

0 C _

__________ I.

I it)

A0

-� 2� a)
-� 0

-

- 7

9-4 I., -

* -

- v
- a--

RI 0 �- Q

a C"

U-7
-4

L �

4
-¼�� � V '

A
I I �

� I
0 _ -�

-� �i V�
�L-4-1 -�4j1�1� P

a * I *
- aw��*

C.

oZ

T07~- ;44e0

9,
2

3

I _

o
-� .2

A - I

-4 0 E
-�

z
S - - -

I-e

0 A _

0

o -1�
o I� -� -)-J

S -,
-. I L.�J

I.. -- ______ ___I
I

�< 4L�JB
'�

0 44Z -�

2:

1 JU V

vS � �.Q i�1 g.�<�-
C-iv'� -�

I; -� �j vi

S

- - ' - - - -

- Several variables have new effort multioliers and/or new rating levels.

- Complementary changes have been incorporated in the Ada COCOMO
maintenance estimation model.

Figure 7 shows the overall comparison between the COCOMO and Ada
COCOMO cost driver multiplier ranges~for the Intermediate level of COCOMO.
The corresponding numerical multipliers for Intermediate Ada COCOMO are
given in Table 1. The corresponding multipliers and rating --cales for Detailed
Ada COCOMO and the maintenance portion of Ada COCOMO are available in
[Boehm-Royce, 1987]; within the confines of this paper, we will focus on the
differences in Intermediate Ada COCOMO and their rationale.

New Cost Driver V r

The Required Reusability variable (RUSE) has been added to address
the effects of developing software for reuse in future situations. The rating
scales and their corresponding effort multipliers (E.M) are:

RUSE Rating E.M Rating Description

Nominal 1.0 No reuse
High 1.10 Reuse within single-mission products

Very High 1.30 Reuse across a single product line
Extra High 1.50 Reuse in any application'

The added effort for more general reusability levels reflects the need for
more generic design of the software, more elaborate documentation, and more
extensive testing to ensure confident reuse in all specified situations. The cost
of incorporating the reusable software into a product is handled in the same
way as in standard COCOMO, via estimation of the amount of adapted software
and the percentages of change required in its design, code, and integration to
incorporate it into the new product.

The Classified Security Application variable (SECU) has been adapted
from the discussion in Chapter 28 of [Boehm, 1981]. The rating scales and
effort multipliers are:

S=CU Ratine E.M Rating Descriotion

Nominal 1,0 Unclassified Project
High 1.10 .Classified (Secret or Top Secret) Project

Host-Tahret Effects

The increased use of the host-target mode of software development has
led to a split in the V.rtual Machine Volatility (VIRT) cost driver variable into two

COC

ldr

oilo

wZ I~p vb.. 0

Wg~ 0 'rgg v-fOP O10 r.N g% V goC"0
co q WNaI L 9 (' Nv -- V oog Lag a O N

x ~~~.vvUvp 0 ~

rxg~ -~P-% m-g o. 0

0L = NMe %c
ci 6; (6 6 *oo 6 6o

v- cc v-D v- p. v- - v-. v- CD p. tov v .p

In 0 N('000 goct'o0q 00

C2 ..r oo o vv-vvp

C. Rco't to eNNN m 0 N

CD P 0 Ch
C.3~ ~ ~ P~nmNNv ic

*~~c 0i c I~~WP i~
- ".~~ U~w~ 00

WL U)- _ _ __ _ _ _ _

e iI LI L4

variables: Virtual Machine Volatility - Host (VMVH) and Virtual Machine Volatility

- Target (VMVT). The rating scales and corresponding effort multipliers are:

Rating VMVH VMVT VMVH*VMV- VIRT

Low 0.92 0.93 0.86 0.87
Nominal 1.00 1.00 1.00 1.00

High 1.09 1.07 1.17 1.15
Very High. 1.17 1.16 1.36 1.30

Prod'y Range 1.27 1.25 1.58 1.49

The Productivity Range is defined as the ratio between the highest and
the lowest effort multipliers for any given cost driver variable. It is a measure of
the leverage that the variable has on software development costs. The
combined productivity range for VMVH and VMVT is slightly higher than the
corresponding productivity range for the COCOMO VIRT variable. This reflects
the deeper interaction between operating system services and Ada programs
(e.g., via tasking and exceptions) than with earlier programming languages.

New Effort Multipliers: Ada Effects

The Ada COCOMO variables Required Reliability (RELY), Product
Complexity (CPLX), Language Experience (LEXP), and Use of Modern
Programming Practices (MODP) have different multipliers in Ada COCOMO
than in standard COCOMO due to effects of the Ada programming language.

For the Nominal, High, and Very High rating levels of Recuired
Reliability, the effort multipliers are reduced in Ada COCOMO. Init is due
primarily to such Ada language features as strong typing, tasking, exceptions,
and packages, which prevent many classes of software errors from occurring,
limit the side effects of errors, and make some classes of errors easier to find.
The comparison with standard COCOMO is shown below:

RELY Ratina Ada COCOMO COCOMO E.M

Very Low 0.75 0.75
Low 0.88 0.88

Nominal 0.96 1.00
High 1.07 1.15

Very High 1.24 1.40

Prod'y Range 1.65 1.87

For Product Complexity, several of the rating levels have different effort
muhlipliers:

I I I I

CPLX Rating Ada COCOMO OCQOMO E.M

Very Low 0.73 0.70
Low 0.85 0.85

Nominal 0.97 1.00
High 1.08 1.15

Very High 1.22 1.30
Extra High 1.43 1.65

Prod'y Range 1.96 2.36

The Ada COCOMO effor! multiplier for Very Low complexity is slightly higher
than its COCOMO counterpart due to the extra work required in Ada for very
simple programs. The effort multipliers for the higher rating levels are lower
than their COCOMO counterparts since there are a number of Ada paradigms
(tasking, exceptions, record types, access types) which make previously
complex programming constructs more straightforward to implement.

The Programming Language Experience variable (LEXP) in Ada
COCOMO has an additional rating level and a significantly wider productivity
range than its standard COCOMO counterpart. The comparison is shown
below:

LEXP Ratina Ada COCOMO COCOMO E.M

Very Low 1.26 1.14
Low 1.14 1.07

Nominal 1.00 1.04
High 0.95 0.95

Very High 0.Z6

Prod'y Range 1.47. 1.20

The Very High rating corresponds to an Ada experience level of at least 6
years. The main reasons for the difference from standard COCOMO is that Ada
is a much richar and more complex language than most previous languages.
(An exception is PULI, which has had a similar widened productivity range for
LEXP in the Jensen model [Jensen-Lucas, 1985]). For many computer program
functions, there are several ways to implement them in Ada, each With
somewhat different side effects (e.g., branches, case statements, loops, tasking
statements, exceptions, procedure calls). An experienced Ada developer can
Capitalize on this richness to simplify many program functions, while an
inexperienced Ada developer is more likely to choosa an Ada implementation
with harmful side effects (performance problems, reliability problems,
modifiability problems, difficulties in handling nonstandard conditions, or just
plain errors).

The Ada COCOMO Use of Modem Programming Practices variable
(MODP) has a slightly different set of effort multipliers than standard COCOMO,

due to Ada's improved support of modem programming practices, particularly
modularity and information hiding [Parnas, 1979] and object-oriented
development [Booch, 1987]. The resulting comparison is as follows:

MODP Rating Ada COCOMO COCOMO E.M

Very Low 1.24 1.24
Low 1.10 1.10

Nominal 0.98 1.00
High 0.86 0.91

Very High 0.78 0.82

Prod'y Range 1.59 1.51

For maintenance, MODP is treated differently in Ada COCOMO, in that
MODP ratings are used to determine a large component of the 7- size-scaling
factor, rather than to determine effort multipliers as a function of size. Details
are provided in [Boehm-Royce, 1987].

New Effort Multipliers: Ada Process Model Effects

The Ada Process Model's emphasis on achieving a solid and stable
architecture for the software product's life-cycle reduces the damage that less-
capable programmers can do to the project. But it also places a heavy reliance
on the capability of the analysts to create such an architecture. Thus, Ada
COCOMO has a different set of effort multipliers for Analyst Capability (ACAP)
and Programmer Capability (PCAP) than standard COCOMO. The comparison
between full use of the Ada Process Model (1--0.00) and standard COCOMO or
non-use of the Ada Process Model is as follows:

Rating Full Ada P.M. (7,=0.00) Std. COCOMO (,-,=0.16)
ACAP POAP ACAP. PCAP

Very Low 1.57 1.30 1.46 1.42
Low 1.29 1.12 1.19 1.17

Nominal 1.00 1.00 1.00 1.00
High 0.80 0.89 0.86 0.86

Very High 0.61 0.80 0.71 0.70

Procry Range 2.57 1.62 4.16 2.06 2.03 4.14

Although the full use of the Ada Process Model correlates with a wider
productivity range for Analyst Capability and a narrower productivity range for
Programmer Capability, their combined productivity range is essentially the
same as for standard COCOMO (4.16 vs.4.14). .

For partial use of the Ada Process Model (Y, between 0.00 and 0.16), one
interpolates between the values of ACAP and PCAP for full u~se and non-use of

the Ada Pr'ocess Model. For example, a project at the half-way point (7=0.08)
with Very High capability analysts and programmers would use the following
effort multipliers:

ACAP: 0.61 + (0.08/0.16' (0.71 - 0.61) = 0.66.

PCAP: 0.80 + (0.08 / 0.16) (070 - 0.80) = 0.75.

New Effort Multipliers: General Effects

The Ada COCOMO variables Computer Turnaround Time (TURN), Use of
Software Tools (TOOL), and Required Development Schedule (SCED) differ
from their standard COCOMO counterparts due to general technology effects
which are independent of Ada. The TURN variable has an additional rating
level of Very Low, reflecting the more effective exploitation of interactive
software development as compared to the late 1970's, when standard
COCOMO was calibrated. The main changes are:

" Furnishing every software project person with an interactive terminal, as
compared to the late-1 970's average of. roughly 0.3 terminals per project
person.

" Interactive support of all project phases, as compared to primary support

of the code and unit test phase in the late 1970's.

The resulting comparison of TURN effort multipliers is as follows:

TURN Rating Ada COCOMO COCOMO E.M

Very Low 0.79
Low, 0'87 0.87

Nominal 1.00 1.00
High 1.07 1.07

Very High 1.15 1.15

Prod'y Range 1.46 1.32

The TOOL variable has two additional rating levels, Extra High and XX-
High, reflecting more fully populated and integrated tool sets than were
available in the late 1970's. The Extra High level reflects a partly integrated tool
set, using a Unix-level (pipes and hierarchical ASCII files)'-ftms of tool
interoperability. The XX-High level has not yet been fully achieved by a
software engineering environment. One way of visualizing its level of capability
is that it would provide for all software project life cycle functions the level of
incremental analysis and feedback capability that the current Rational
environment provides for incremental Ada syntax and semantic analysis.

The resulting comparison of TOOL effort multipliers is as follows:

TOOL Rating Ada COCOMO COCOMO E.M.

Very Low 1.24 1.24
Low 1.10 1.10

Nominal 1.00 1.00
High 0.91 0.91

Very High 0.83 0.83
Extra High 0.73
XX High 0.62

Prod'y Range 2.00 1.49

The SCED variable. has been changed to eliminate the effort penalty
associated with stretching a software project's schedule beyond the "natural"
schedule estimated by the Ada COCOMO schedule equation. This branch of
the effort-vs.-schedule tradeoff curve has been a point of difference between
software cost models. The SLIM [Putnam, 1978], Jensen [Jensen-Lucas, 1983],
and Softcost [Reifer, 1988] models incorporate a large, unending effort
decrease as schedule is stretched; the standard COCOMO and Price S
[Freiman-Park, 1979] -iodels have incorporated a slight effort increase as
schedule is stretched. The rationale in Ada COCOMO for keeping the High and
Very High schedule-stretch multipliers at 1.00 is that incremental development
has not been observed to incur a cost penalty, if the incremental strategy has
been well planned out in advance, although it will stretch the development
schedule.

Unchanged Cost Driver Variables

The remaining COCOMO cost driver variables were unchanged in Ada
COCOMO, reflecting the judgement that their effort multiplier effects were highly
indepe dent of the use of Ada. These were Data Base Size (DATA), Execution
Time Constraint (TIME), Main Storage Constraint (STOR), Applications
Experience (AEXP), and Virtual Machine Experience (VEXP). An overall
summc ry of the Ada COCOMO effort multipliers is given in Table 1.

Detailed COCOMO and Maintenance Effort Multipliers

In addition, Ada COCOMO has compatible phase-specific effort
multipl ers for implementing the Detailed version of COCOMO, and counterpart
changes in the maintenance effort multipliers for the Required Reliability (RELY)
variable. Details are provided in [Boehm-Royce, 1987].

3.50 her Ada COCOMO Changes

Schedule Estimation

The standard COCOMO embedded-mode schedule equation is:

TDEV = 2.5 (MM) 0.32,

where TDEV is the development time in months from the Software
Requirements Review to the'Software Acceptance Test, and MM is the
estimated development effort in man-months. The corresponding Ada
COCOMO schedule equation is:

TDEV = 3.0 (MM) 0.32+ 0.25.

where , is the Ada Process Model compiiance factor.

The revised coefficient and added I factor were determined from
calibration to the two Ada projects onginally used to calibrate Ada COCOMO.
The equation has also been a good fit to three subsequent Ada projects. The
equation indicates a longer development time for a given man-month level due
to longer early schedule investments in requirements' and design definition and
validation. 'These are compensated by the overall reduction in man-month I
from using the Ada Process Model, and by the use of incremental development,
which provides an initial usable increment earlier than a single-shot
development of the entire product can provide.

Phase Distribution of Effort and Schedule

The Ada Process Model requires more effort and schedule in the early
phases of software development, and saves considerably more effort and
schedule in the later phases. This is borne out by the comparison of phase
distributions in Table' 2 between full use of the Ada Process Model (YZ = 0.00)
and non-use of the Ada Process Model (the standard COCOMO Embedded
Mode, or I = 0.16).' A project which partially complies with the Ada Process
Model would therefore interpolate in Table 2 to find its phase distribution of
effort and schedule. Thus, for example, a 128-KDSI Embedded Mode project
with al_, of 0.08 would have phase distributions halfway between the table
entries for a 128-KDSI project: e.g., 20.5%'of its effort and 37.5% of its schedule
in the Product Design phase.

The use of the Ada Process Model has also changed the definition, of
'two of'the major milestones defining the phase endpoints. Table 3 shows the
revised definitions of the, Software Requirements Review and the Preliminary
(or Product) Design Review; the other milestones are largely the same as for
standard COCOMO.

Incremental Development

Lii
T, oQ

4(

900

~~c toIII I

C4
3 ~ ti 'o~ 1 'CA

9A 1li

i a

- CA

00 A
-~t4

t44
-CA

a)) k

C,,L
a) CE

V)c

.. 2
-0 c a) a) c C

.2 m
2 0o

Q) ,) Cm cc a

1... a)

0o 0o) C
c) Q q.0.

cc_ Co 9 a r-

c ca CL -E

.0~~o 00S.xo r
C) 0) 0) -0 c

Lm 0 0

.0

a)~C -oS- I C

CC
a)' cc

CA

o C3

a) a

a) Y)
>0 > 'a

o - Co C
.0 0 ca

a)a 2 >

CC .0 m
~J00 CL 0

0 _u E- w

0~c ca CLC 0~

CO~~~~C 0 CŽ0 ~.
.0 m CL E

X 0 0 0 0. ca
cn 0 0 0 M

.2.

2 2 2 - "
in 0 ID) 5_ U)CO: C

-. 0 -- .

cl~ -0 CC 0 *- a)o0

CU --: -00. 0.
cc 0 V - E.*

.- -0 C.
0.Cl) .0 CO C C

O.S 0I -0 > C U, U,6

oU CL 0) Co

o 0

ci0.0

0.

DAE "D....

FI E

"I"II I iiI :I

iide w i ll ..

T

