AT MINT A
on

..
.8

&
|

]

od for poraig ool

. T
PR S

1 R3

Teggtuteon UVelnited -

F

N
i

i

|

- —— e s n

Reproduced From ’ o
Best Available Copy

Ada COCOMO and the Ada Proce:s Model .
| | i)
Bzarry Boehm and Walker Royce, TRW *m e

o #4 :

R
s

' ‘ ’

1981] was calibrated to 56 software development projects, and valdated on 7
subsequent projects. On these projects, the COCOMO devzlopment effort

- estimates were accurate within 20% of the project actua’s, about 70% of the
time. '

Subsequently, COCOMO has aone approxma’al as well on most
“carefully collected sets of project data [Eoehm, 1925; Jor»n, 1985; Goudy,
1987). In some cases, CC.COMG hac exhibited a sveturnan= bias, but has done
approximately as well once recalibrated to the spec,ific env.. . ment [Boehm,
1985; Miyazaki-Mori, 1385; Marouane-Mili, 1983]. ' should bs noted that there
are also some sets of project data tor which COCOMO has been consnderably
less accurate [Kemerer,1987; Martin, 1988].

Recently, three software davelopment approaches have motivated the
development of a revised version of COCONO: the use of the Ada programming
language, the use of incremental develo'.inert, and the use of an Ada process
model capitalizing on the strengths of A in o improve the efficiency of software

* development. This paper presents th.. pomons of the revised Ada COCOMO
dealing with the effects of Ada anc - +s * /2 process model.

The remaincer of thi, s2- .1 of the paper discusses the objectives of
Ada COCOMO. sectior: 2 dasc “hes the Ada Process Model and its overall
effects on software deve:cpmaent effcrt and schocule. Section 3 presents the
structure and features ct £#da CCCOMO, ang ¢isnusses the rationale behind the
changes made froT. the eariier version 27 7:7)7. 0110 (called "standard
COCOMO" in the ramrainder i the panr. n Scoiion 4 summarizes the current
status of Ada COCOIMO, inrluding it5 « al t-aticn to date and its currently
available impiementations; and Sectio 1 ' presents the resulting conclusions.

.) ! . . ,) /P

Ada.Q.Q.QQMQ_waMs

The primary ob;ect:ves of the Ada COCOMO development actnvnty were -
to: :

| f 4 r '
sgh_e_dule.s Some early studies of Ada's impact on software cost indicated that

some of the cost driver factors might be different for Ada projects than for other
projects, and that the nhase dnstnbution of cost and schedule m:ght also be

91-13776 e
’HIMHTI .u"luli"w’i?

0000%7/ 0/5

The onginél version of the Constructive Cost Model (COCOMO) [Boehm,

1. Intreduction B ¥ f

91 10 22 073 (/‘

different [Baskette, 1987]. We wished to determine whether *his was the case
and what, if ary, changes neoded to be made to COCOMO to accornmodate
Ada effects.

armine the effect of the Ada Process Mode! on software
ggvglopmgnt costs and schedules. The Ada Process Model exploits some key
Ada features (particularly, early compiler-checkable Ada package specifications
and commonality of design-language and programming-language constructs),
software risk managemaent techniques [Boehm, 1989}, and more general large-
scale software engineering principles -- to provide a more efficient and
controllable process model for software development. We wished to reflect the
eifects of this Ada process model in Ada COCOMO.

~ « Incorporate related COCOMOQ improvements. Since 1981, we have
found several effects, primarily due to new technology, which have led to
extensions to the original COCOMO cost drivers. We wished to incorporate
these effects both into standard COCOMO and into Ada COCOMO. -

2. The Ada P; rocess Model

Farfiar attempts to use software cost estimation insights to improve
software productivity focused on improving the settings of software cost driver
variables (via use of tools and modern programming practices, interactive
workstations, removing hardware constraints, etc) and on reducing the amount
of code one chooses to develop via reuse, fourth generation Ianguages
requirements scrubbing, etc.) [Boehm 1987].

The Ada Process Model attempts to further i lmprove software pro ductivity
by reducing the exponent relating the size of the software product to the amount
of effort required to develop it. For the COCOMO embedded mode (
representing the type of challenging, real-time software projects primarily
addressed by Ada), this equat:on is:

MMnom 2.8 (KDS!) 1.20

“where MMnom represents the number of man- months required to develop an
average or nominal software product, and KDSI represents the thousands of

delivered source instructions in the product. L Acugngit

L NTT e

The resulting mefﬁcxency or diseconomy of scale can be séen from the = "¢ , “
fact that doubling a product's size will increase its nominal effort by a factor of ,‘“' gy
(2)1-20 = 2.30. The major sources of this inefiiciency are the effects of process ™ s, “eagy,
thrashing, turbulence, and interpersonal commurication overhead brought on -~ --..
when large numbers of project personnel are working in parallel on tasks which
are closely intertwined, incompletely defined, continually changmg, and not well “!ou o

[T

prepared for downstream mtegratlon o | Lt tip, ’;; "
y ' ' V ' Dl' ‘A." ¢ l'yn
Statement A per telecom o o ﬂ
" Doris Richard ESD-PAM - \

Hanscom AFB MA O1731- -5000 :
‘ - NWW 12/2/91 A rde \

}‘/

Ada Process Model Strateqy

The primary strategy elements the Ada Process Model uses to reduce
these inefficiencies or diseconomies of scale are to: :

* Produce compilatle, compﬂer—checked Ada package specifications (and
body outiines), expressed in a well-defined Ada Design Language
(ADL), for all top-level and critical lower-level Ada packages, by the
project's or increment's Preliminary Design Review (PDR).

» Identify and eliminate all major risk items by PDR. This has the effect of
focusing the PDR (and other early reviews as well) on working
demonstrations of prototypes or kernel capabilities rather than on iarge
amounts of paper.

« Use a pl.ased incremental development approach, with the requirements
for each increment, called a build, stabilized by the build's PDR.

These three conditions minimize project disecononiies of scale by
eliminating the following primary sources of software project inefficiency and
. turbulence:

mmunications Qverhead. An issue requiring the
coordination of N agents requires the exercise of N(N-1)/2
communication paths. The Ada Process Model minimizes this effect by
keeping the design team size N small until PDR, and by establishing Ada
. package specifications for unit-level interfaces by PDR, thus minimizing
- the number of issues the larger post-PDR development team will have to
coordinate.

2. Lam_ﬁe_wg,rx. Even with rigorous package specifications, a project will
lapse into turbulence if the resolution of a high-risk "architecture breaker”
problem requires redefinition of many of the package specifications.

Eliminating such risk items by PDR ensures that the project may proceed-

efficiently with its initially-determined package specifications.

3. u_sjam_g_qmme_ms_ Even with ngorous package specnflcatlons and
no post-PDR risk items, a project will lapse into turbulence if there is a
continuing stream of requirements changes impacting the definition of
the package specifications. Simply raising the threshold of allowable
requirements changes can reduce this turbulence considerably.
Incremental development reduces the turbulence effects even further by
reducing the amount of software under development at any given time,
and by enabling the deferral of requirements changes to downstream
increments.

’ ! . . .

An overview of the Ada Process Model is shown as Figure 1. Additional
features of the Ada Process Model include the use of:

4. Small up-front system engineering and design teams, with expertise in
software architecture, Ada, and the applications domain. Such people
are a software project's scarcest resource. The Ada Process Model

~ optimizes their contribution, and by providing validated package

. specifications to the 'arger number of later developers, allows these
positions to be staffed by more junior people.

5. A project risk management plan to determine the approach for
sliminating risk items by PDR, and alsc o Zatarmine the sequence of
development increments. Early increments focus on deve spment of
"executing architecture skeletons” to ensure that critical system nuclei are -
satisfactorily implemented early. They also focus on prototypes to
eliminate risks associated with user interface uncertainties, critical -
algorithms, or incorporation of state-of-the-art computer scicnce
capabilities. Middle increments flesh out the higher-priority, better-
understood product capabilities. Later increments provide additional
functions as their needs become better understood. '

6. An expanded incremental development approach irivolving lower
increment levels within each build: build increments, which reflect the
planned order of development of each build; and component increments,
which represent increments of traisition between Ada Design Language
(ADL) and Ada code for individual components.

7. Intermediate technical walkthroughs in the early requirements and
design phases. These focus the pre-walkthrough effort on problem-
solving and architecture defi nition, and the post-walkthrough effort on
document production.:

8. Individual detailed design walkthroughs for each component matead of
a massive Critical Design Review (CDR)> Instead, an efficient CDR is
held to cover the highlight issues of the walkthroughs

9. Contmuul..e integration via compiler checkmg of Ada package
specifications and continuous expansion of ADL statements into Ada -
code, rather than beginning mtegranon at the end of unit test.

10. Bottom-up requirements verification via unit standalonetests, build
integrarion tests, and engineering string tests, so that the demonstration
of requirements satisfaction has been mostly done by the end of system
test.

11. Well-commented Ada code and big-picture design informetion instead
of massive as-built Software Detailed Design Documsnts, which rapidly
get out of date and lose their maintenance vaiue.

Blocks

Project Kisk Maragement Plan
Building = Structure = Critical

Thresds

=P Product Completeness

'

Foundation
Prototypes
and
Refinements
Ianfor;:a.l SAS Verify Foundation Component Design >SDR
aschine Prototypes |~ iIDemo
| . and
Foundation | po g oments
Enhancements|
Formel Informal Critical — - SSR
Bascline Baueline Component Verify Structursl/Interface Design >Demo
: Prototypes SRSs
SAS and
ts| Refin ¢
Formal sformal — - PDR
B:.ul.'me l;.::r;ng Verify Critical Thresds Design >ng°
SDDs
Critical .
Com ronent
Enh t3|
-
\
Formal INTEGRATE >CDR
L Demo
Test and .
Maintenance
Other
Component Demos
Prototypes
Test and
Maintenance ! : and i
. . , Refinements
Informal
¢ . Baseline
Test and
Maintenance)
. Enbancements|
Formal
Baseline
. Test and
Maintenance
N . Soft ware
Software Product Baselines reducts
N asclines

&=

HACUONY HHP~UBZRWHZ~

¢ 20=1cdrO<y

_Figure &: Incremental Development Under The Ada Process Model _

12. A set of automated metrics tightly coupled to the project’s Software
Development Plan and its build definitions. Conventions on ADL and its -
expansion into Ada code enable metric tools to provide detailed visibility
into the usually-obscure code development process.

The resulting Ada Process Model can be and has been used
successfully as a tailored version of such Guovernment standards as DoD-STD-
2167. This was done initially on a small TRW-internal project, and is currenitly
underway on a large Air Force project: the Command Center Processing and
Display System-Replacement (CCPDS-R) project. CCPDS-R is currently about
24 months into its 36-month development schedule. It has completed 3 of its 5
builds (about 300,000 of its planned 500,000 lines of Ada), and has met all of its
Ada Process Model milestones to date. More details on the Ada Process Model
and its application to CCPDS-R are given in [Royce, 1983]. Although the model
was develpped for use on Ada projects and has some Ada-specific features,
many of its features.can be applied to non-Ada prolects as well.

n hedule Implications of th r

Because of the reduction in project communications overhead and
diseconomies of scale, the use of the Ada Process Model leads to an overall
reduction in project effort. The overall schedule for a single-shot development
is lengthened somewhat, but the use of incremental development means that
users receive their initial operating capability eailier. The phase distribution ¢
effort and scheduie also changes. Use of the Ada Process Model involves more
effort and schedule ior requirements analysis and desxgn and considerably
less for code, integration,. and test. .

Ada COCOMO models the effect of the Ada Process:Model interms ofa’

reduction in the nominal effort equation exponent of 1.20. The new nominal
effort equation takes the form:

MMnom = 2.8 (KDSH) 1.04+Z

The parameter X measures the prcject's estimated degree of comphance ‘with
the Ada Process Modelin terms of four parameters -

* The percent o* ihe design that has been expressed as compiler-checked
Ada package specifications and body outlines by PDR.

» The percent of the risk items that have been eliminated by PDR.
- The degree to whuch the requnrements have been stabxhzed by PDR.

* The team's prevaous expenence in applymg the Ada Process Model.

If a project is. fully compiiant thh the Ada Process Model, thien ¥ will be
0.00, and the diseconomy of scale exponent will be 1.04. If a project exhibits
the current typical hasty-PDR symptoms, then ¥ will be 0.16, and th2 exponent
will be 1.20, the same as tor the current COCOMC embedded-mode model.
The X parameter is also used in Ada COCOMO in exztimating the development
schedule and the phase distribution of effort and schedule.

3. Ada COCOMO Structure and Features

This Section provudes the mformatlon necessary to use the essential
portions of Ada COCOMO or to implement them in a computer program.
Section 3.1 summarizes the differences between Ada COCOMO and standard
COCOMO. Section 3.2 provides a structural overview of the model's
computations. Section 3.3 provides the information necessary to determine the .
project's Ada Process Model X parameter and to determine the project's
nominal effort estimate. Section 3.4 provides the rating scales and effort
mriltipliers for the Ada COCOMO cost driver variables. Section 3.5 provides the
Ada COCOMO schedule estimation equation, the tables for determining the
phase distribution of project effort and schedule, and an overviev/ of the
incremental development model. Section 3.6 pravides an example comparing
Ada COCOMO and standard COCOMO estimates on two sample projects.

3.1 mewmmg

Ada COCOMO has three categories of dlfferences from standard
COCOMO:

a. General improvements to COCOMO, Which can be incorporateﬁ as

improvements to standard COCOMO as well. These comprise a wider
range of ratings and effects due to software tools and tumaround time;
the splitting of virtual machine volatility effects into host and target
machine effects; the elimination of added costs due to schedule
stretchout; the addition of cost drivers to cover effects of security-
classified projects and development for software reusability; and the
addmon of a model for mcremental development. ‘

b. Ada-specific effects, including reduced multiplier penaltues for h:gher
- levels of required reliabiiity anc product complexity; a wider range of

* ratings and multipliers for programming language experience; and a set
of Ada-oriented instruction-counting rules, mcludmg the effects of
software reuse m Ada.

c. Effects of using the Ada Process Model, which can largely be adapted to

projects using other programiiing languages. Their use on non-Ada
projects would require some experimental tailoring of standard
COCOMO to accommodate the resulting cost and schedule effects.
These effects include the revised exponential scaling equations for

nominal development effort, dévelopment schedu’e and n-n.wal
maintenance eifort; the extended range of modemn programming
practices effects; the revised ranges of analyst capability and
programmer capabiiity effects; and the revised phasa distiibutions of
effort and schedule.

The remainder of standard COCOMO remains the same as it was: the
overall functional form, most of the effort multipliers, the software adzaptation
equations, the activity distribution tables, and the use of annual change traffic -

for software maintenance estimation. Standard COCOMO also covers all three -

COCOMO develcpment modes; to date, there is only an Ada COCOMO
counterpart of the COCOMO Embedded mode.

3.2 Ada COCOMO Structural Qverview

Figure 2 provides an overview of the Ada COCOMO steps used to
estimate software development costs and schedules. The first step uses
estimates of the software size in thousands of delivered source instructions -
(KDSI) and the Ada Process Model 3, factor to calculate the nominal man-month
estimate: the amount of effort the project would require if it were perfectly
average in all respects. Step 2 involves determining the cost-sensitive ways in
which the project is different {rom average. The project is rated in terms of 18
cost driver attributes; the ratings are used to determine a set of 18 effort .
multipliers; these are multiplied together and apphed to the nominal man-montn
estimate to produce the project's estimated effort in man-months. At this point, a
cost per man-month figure may be applied to determme the pro;ects cost in
dollars or other currencies.

Step 3 estimates the project’s de_veiopme:nt schedule (from its software.
requirements review to its software acceptance test) as a function of its

estimated man-months and its ¥ factor. Step 4 estimates the phase distribution .
of effort and schedule from a set of tables of distribution percentages vs size. In.-

Step 5, the effects of incremental development can be estimated by repeatedly

. applying Steps 1-4 to the overall project and to the individual increments, and

appropriately phasmg the mcrements estimated budgets and schedules

| sswmzﬁm

Figure 3 shows the ratmg scale ueed to detennme a project's Ada
Process Model ¥ factor. Each of the four elements has a rating zcale from 0.00
to 0.05; the ratings for each element are added together to def’ ne 2. The first
element, Experience with the Ada Process Model, is easier to rate in advance of
the project than the others: one determines the degree of expenence with the

_model of the project's key personnel, and uses this to determme this element's

numencal contribution to. Z.

' ¥ 4

ti

INIWIYONI HOV3 wo4 39 ‘ww ﬁ

‘SNOILY13H SNOIATHd
DNISN *INIWIUINI

HOV3 404 sarvwiesa A0y

ONISVYHd ‘S3zIs
¢ INIWIUONI

3SvHd HOV3 Ho4 A0y iy

$378V1 NOILNGIYLSIQ 3SYHI

- wWw

sHiNow n ATy

. A3a
120 + zeoWHW € 1

l4— 1 §S320Ud *PY

. NN

Ly
fwa o - WONWW - Wiy
8L

'y snsuaA savavi onve wous w3

¢—— 4 SONILYY
. Y3AINQ 150D

S_OZS_

: -y - WON
17 + por 1SON 8°Z W

4——— T $53004d *pv
¢——— 1SaN NI 3218

MAIINHINO ._<==_.u==._.m cs_cucu epy

‘2 \w...?n..w .

.

1zz'e z98'y yaL'e 196°C ZOE'T. a6L°L ISON 009
9v8 £0L 989 L8Y sop oEe 1Sa% 008
0z'o 910 zZvo 800 $0'0 000 ma -
: : s WONpww voidAL o
| , . : 300W Q30038W3 OWOD09 :8.0°0 TIY .
GIDNVYHD SINNVHI SIDNVYHI SIDNVYHI SIONYHI . i mym -
30UV 11vyIa0W 31VYIQOW 1YDILIFONON WIILIHONON SIONVHD INIWdOTIAZa ONING | - PRy
ANV IN3IND3IYY 1YNOISYI50 iNIND3IY4 vws - oN ALNLVIOA SINIWIHINDIY a e .
(%02) (%0%) " 1%00) %82 (%0€) (%00t} . 4 ,
nun IWO0S N3140 ATIVHINID Al1SOW ATINS - uad Ag aaLvNINI Susry | ¢ N&u :
o L b
, - (831808 *a3UdW0D £934 o
1%02) (%0v) (%00) (%a¢) (%086)- (%001} \ 3DVHIVd :z sty | -
LN IWos N3140 ATIVHINID ATLSOW ANIN4 $ NOISIa
" I2110VHd HLIM [SIDILOVHA HLIM |S3D110VUd H1IM|S3D110VHd Hitm [123roud IvoiLo [193roud IvoiLed :
A UVINWY ALIYVITINYA ALIMVINIWY S ALIMVINIWYA -NOISSIW © “NOISSIW 1< 13COW SS3I30Hd
ON EYTINY) Inos TYHINID NO N4SS330N8 | NO N1SS30INS =P HAIM IONIIHIIXI
500 v0'0 coc zoo 100 000 M saHDIIM
TR usax (s 2 - s_ozs_s_ o
MIT +v0°L
4

LS

NGILYNDI DNITYIS 0W030D EpY
M ‘Nu,ﬁﬂa.u

For the other elements, Figures 4-6 provide amore detai’ad sst cf rating
scales which can be applied early in the pro; ects ife cyc'e Let us icck at an
ex2mple project in ierms of Figure 4, which prcvides several criteria for
estimating a project's likely level of desiga thorenahness by PDR.

Suppose that the example project has a relatively sket chy risk
management plar. sc that the best that could be claimed in Row 1 of Figure 4 is
"some” comp._tibmty ‘with it (an 0.03 rating). On the other hand, the pm,vct ha.
257 of its development schedule devoted to the preiiminary a2sign , sase (an
0.02 rating); 100% of the necessary architects available (an 0.01 rating); and
good front-end tool support: a solid Ada compiler, but no related grapmc
architecture and design aids (an 0.02 rating). The level of uncertainty in key -
~architecture drivers could be rated as either "some” (0. 02) or "considerable”

(0.03), but since the other items average out to 0.02; using an 0.02 rating forthe . '

' Desugn Thoroughness by PDR element would be reasonable.

' The project would use Figures 5 and 6 in a similar fashion to de‘emine
Y ratings for these elements. Suppose that the Risk Elimination by PDR ratirg
from Figure 5 was 0.03, the Requirements Volatility rating from Figure 6 was
0.01, and the rating for Ada Process Model familiarity was 0.02. Adding these
ratings to the Design Thoroughness rating of 0.02 gives an overall 3. factor of
0.08. Therefore, the nominal effort equation exponent for this project would oe
1.04 + 0.08 = 1.12; the resulting equation is:

MMnom = 2.8 (KDSI) 112,

The data at the bo*trm of Figure 3 show how significant an influence the
2 factor has upon software costs. For a nominal 100,000 instruction product, a -
Y = 0.08 project is estimated to require 487 man-morths for development. A %
= 0.16 rating would increase this estimate to 703 MM, while a decrease toX =
0.00 would decrease the estimated effort to 336 MM..

While the overall effect of the T, factor is significant, it does not introduce
-instabilities in Ada COCCMO. A change of one ratmg level on one of the rating

scales in Figure 3 corresponds to a change of about 5% in the esumated
development effort for a 100 KDSI product :

3.4 Ada COCOMO Cost Qrivgr Varigbles:

~ The differences between the Ada COCOMO cost dnver vanablas and
their COCOMO counterparts are:

» Two new variables have been added: Requwed Reusability (RUSE) and
Classn” ed Security Application (SECU).

. The Virtual Machine Volatnlnty (VIRT) variable has been spht mto host
volatlhty (Vlv‘VH) and target volatility (VMVT; effects.

- 9&5...3 Thoyymt "0
:) rrecn ey P«vdﬂ%\qﬁfl.. Jatn-
. IRCALIR:
EAYRS 15 mwmu_umm ,..ww,mﬁu dweg LRI \FN N R R A i
| - > | by Aprren e yore
) - - : . o
. , A J G0 yerrds—aalemmamd ey Loy I.......J:
BV | THT s | R pciw M3 | e ddoyarep say yeddes Yoot s
- . : deeland o 2geyrere sy
00 ur Ob DD % Q0 RIS .w.Tu..arI.vu, LA* doi,,...#.nwu\r_ .wo ch\usﬁ& -
S o) X =7 3 op [Py doseq Ay @ ymjory |
- _ : . RO, *dlaf._.o/;v.woﬂ . i +).d.w.9&. -
| h hysoyy | & olg gvasssbuvoy) s e)
Tevney I N Rl \[rrr—ves) 3o W ™3 Fajqyedwn yag _:_:G..ﬁ. STNUYSD) 1w
| , . ‘ : R (el LN AU R T *l.tfvlbnd A.V._idnﬁ/A.UW. -
S50 »o’ <0’ <0’ 1o Y- Cows UJ*W..‘.—;Oékﬁ.[-\,V .
\dﬂa. NJ. aWUer/DLD/_Ll Cfuﬁlva... ,. LD.TUquw N O.(._O\UO\U A’ﬂ../A v

ek

?S@i\a\.\g

|

\.EJ&L\ €280
%&é{%
§ é:xwww §9\

ﬁ?ﬁz&m

A

7

) J |~

, .\%\IO\ Q) - @ ﬁg“/v g\(fb“. Qx\vﬂ‘\v—-o& vinm -
i< @/ KB Bt el \ j??ﬁwq%v%.
= Ny 1 VU O ﬁ.LCD - . J/Z.l.‘w.* Jl]f— _.-...-.7a0/...vb |
™ TN Pwoy LS S ™y) D) T +.521m oL -

o o . A .’nudwh«:_ Vz.e_adf.e m*ulfl_ﬁ.c .

.N wl. -OJ O@w OOJ Olﬁ.d .V.Hdz.wod Q.f.‘ UY\F:JJQ»Q wQ ¢§L.Jw L

S ol L) 372 Y, oy |7 Ve hramnanay @y pgonsp

| . . .V.,J..dlldw */13/1?/&7.0«» wQ .1)\..005& -

, Ny .T.U(.W—..J.Cci 3 K*.Z

VCCZ W;TJ EEN \Jﬁ..vu.a.{wm.v \/.WJL r.ﬁu .AFxJL(..Ov % (] .,?35....* ?Cﬂ.ﬂﬁ”?i

. : d).CL\!*/: wvo. .(.Lv\l.& HNYS -

: o NJ . o , do&r ~ g 2.7,04:?. sea} S2UZYS >

v | R | oewes [P | Loy f?u Seysaamse’ seap oa yeay e e
. . . - . ’ A-.lwa*‘d‘. (d~& .w:)vviddlgz JM.N -

So! +HO* Mn.u NO‘ ,. _.0._. (SIS A ﬂd(#.ld > v.#wW,bﬂ&\OGL.u.‘\U

~Qad 43 r.o.+.«C.cc;w OP- TR L e B =z Oiouoo Ra

‘s vl

: 1 . ol ‘
. . . N.,vcld wC Se2nos D PRI
>uoQy sy Bogg rj.uuvcvnu NI;MQX w/,:,a..\w Lo I nr_a..._q.vd..f./*.ﬁwb /llmrw -
U Syvermsnbal BE)quys o -
Svey BT | WSS | TEESD) | VY | g prowmdopmrop yopeawasg g2 a5
.) .) s vsk.v..dm.v& NJ:..T.QJ .
220N ».47 AN U..fdwdaquz «%GUPU ﬁCOIwW *,c.wzwuxw (.« .%Lb..u«n_fﬂdet_u.ddédvﬂgro .
‘ B Sds Aia o 1oqlo
R - -/ v o yatha
Lo W_ uJ 2Ny \Mﬂij ’
swaspg | TP | IS TS e Rﬁ, fuorssiw CIvrue spvaweomlar
mw RIS B A | | : N.q‘J o) N.*cj..wkug 3= 128, -
) . " a JOAT*CO\J n-L.)\i.U INoso s:..L Joewm
Dy \NVI*..,— ..VCLQV Naj)u.wwc%w \.I.w..\?b | A: n._ .qJQJC.., UaAA. rf/nvév..mﬁ—ud.u (Cl.w»f -
' . e X . : d....rw....\v.f,upog
sSo°* ho' mo.., 20 | lo _ ﬂé.r».é.w

L TeIon Spreweimbey § dajmmy 2 OWODoD POy

o b

» Several variables have new effort multipliers and/or new rating levels.

- Complementary changes have been incorporated in the Ada COCOMO
maintenance estimation model.

Figure 7 shows the overall comparison between the COCCMO and Ada
~OCOMO cost driver multiplier ranges for the Intermediate level of COCOMO.
The corresponding numerical multipliers for Intermediate Ada COCOMO are
given in Table 1. The corresponding multipliers and rating scales for Detailed
Ada COCOMO and the mairtenance portion of Ada COCOMO are available in
[Boehm-Royce, 1987]; within the confines of this paper, we will focus on the
differences in Intermediate Ada COCOMO and their rationale.

‘New Cost Driver V riables

The Required Reusability variable (RUSE) has been added to address
the eifects of developing software for reuse in future situations. The rating
‘ scales and their corresponding effort multipliers (E.M) are:

SE Ratin in ipti
Nominal 1.0 No reuse
High 1.10 . Reuse within smgle-mrssuon products
Very High 1.30 Reuse across a single product line
Extra High 1.50 Reuse in any application’

The added effort for more general reusability levels reflects the need for , i
more generic design of the software, more elaborate documentation, and more L
extensive testing to ensure confident reuse in all specified situations. The cost
of incorporating the reusable scftware into a product is handled in the same
way as in standard COCOMO, via estimation of the amount of adapted software
and the perceniages of change required in its design, code, and integration to
incorporate it into the new product. ,

The Classx:f ed Security. Application variable (SECU) has been adapted
from the discussion in Chapter 28 of [Boehm 1981]. The rating scales and
eﬁort multipliers are: .

Nominal 1.0 Unclassified Project -
High 1.10 .Classified (Secret or Top Secret) Project

The increased use of the host-target mode of software development has
led to a split in the Virtual Machine Volatility (VIRT) cost driver variable into two

v9

oLt oLt ot : no3s
| A o1 (1 § (18 § 80°1 3 4 § o a3ios
. 002 <9°0 L0 £€8°0 - —@.O (1 ' oLt »T’L 1001 .
69°L 8L'0 98’0 860 oLt 'N..—. o &,005 :
i 98°0 96°0 v0°L 1 4%] -92°'1L . dxX1
vE’L) 060 0t Q—..F e dX3A
L9’ ¢80 160 ot [B SR 6Tt) i dX3iy
z9°L 08'0 68°0 (1 § ZLl't {. ocL dV¥dd i
L9°2 19°0 080 ot 62t L9t , dviv
av'L qL-°l L0°1L 0ot 148°0 6L0 . NYNL
qZ'L OF..P 10°L ot €6°0 . JAWA
Le' et 60°'L (1 § 260 . | _HANA
s’ 29°L (XA ¢ 90t ot ‘4018
29°'L 89'L ot’'L it o't . w:—.—.
09'L 091 o't oLt oL asny
96°L GQ..F r A Al 80°L £6°0 98°0 T eL0 X140)
| A 8 1] 58 8 8o’L oL 60 . . Viva)
G9°L yZ'iL Lo'L 86°0 88°'0 - D\...O a >.-w¢
¢ JOUNVYY HOMH HOIH - HOIH HOIH ‘WON MO MO SHILILINKY
: XX YHAIX3I AHIA AL3A , 140443
y . . A3Q : e -
v |
twar . 1ISAX) 8°Z - WIN 140443
W3lg)) Jmz + pory WY
ARNN X v |
Adars

00309 BPY 201 40 AUVWINS
| °1 2192

. -

variables: Virtual Machine Volatility - Host (VMVH]) and Virtual Machine Volatility
- Target (VMVT). The rating scales and corresponding effort multipliers are: -

Rating VMVH VMVT ___VMVH'VMV,_ VIRT

Low 092 0.93 0.8 0.87
Nominal 1.00 1.00 1.00 1.00
Hign 1.09 1.07 117 . 1.15
Very High. . 1.17 1.16 1.36 1.30
Prod'y Range 1.27 1.25 158 1.49

The Productivity Range is defined as the ratio between the highest and
the lowest effort multipliers for any given cost driver variable. It is a measure of
the leverage that the variable has on software development costs. The
combined productivity range for VMVH and VMVT is slightly higher than the
corresponding productivity range for the COCOMO VIRT variable.' This reflects
the deeper interaction between operating system services and Ada programs

~ (e.g., via tasking and exceptions) than with earlier programming languages.

w Eff MlhrA £

The Ada COCOMO variables Requured Reliability (RELY) Product
Complexity (CPLX), Language Experience (LEXP), and Use of Madern
Programming Practices (MODP) have different multipliers in Ada COCOMO

than in standard COCOMO due to effects of the Ada programming language.

For the Nominal, High, and Very High rating levels of Required
Reliability, the effort muitipliers are reduced in Ada COCOMO. 1nisis due
primarily to such Ada language features as strung typing, tasking, exceptions,
and packages, which prevent many classes of software errors from occumng,
limit the side effects of errors, and make some classes of errors easier to find.
The comparison with standard COCOMO is shown below:

‘Very Low ' 0.75 . 0.75
Low 0.88 ' 0.88
- Nominal 096 1.00
High 1.07 . . 1.15
Very High 1.24 - 1.40
Prod’'y Range 1.65 o 1.87

‘For Product Complexity, several of the rating levels have different etfort
mutiipliers: .

CPLX Rafing __ Ada COCOM® _ COCOMO EM

Very Low =~ 0.73 0.70
Low , 0.85 0.85
Nominal : 097 - - 1.00
High 1.08 1.15
Very High 1.22 ’ 1.30
Extra High 1.43 1.65
Prod'y Range 1.96 2.36

The Ada COCOMO effort multiplier. for Very Low complexity is slightly higher
than its COCOMO counterpart due to the extra work required in Ada for very
simple programs. The effort multipliers for the higher rating levels are lower
than their COCOMO counterparts since there are a number of Ada paradigms
(tasking, exceptions, record types, access types) which make previously
complex programming constructs more straightforward to implement.

- The Programming Language Experience variable (LEXP) in Ada
COCOMO has an additional rating level and a significantly wider productivity
range than its standard COCOMO counterpart. The companson is shown
below:

LEXP Ratin A MOEM

Very Low 1.26 1.14
Low 1.14 1.07 .
Nominal 1.00 . 1.04
High 0.95 ' 0.95
Very High 0.36
. Prod'y Range 147 . 1.20

The Very High rating corrasponds to an Ada expenence |evel of at Ieast 6
years. The main reasons for the difference from standard COCOMO is that Ada
is @ much richar and more complex language than most previous languages.
(An exception is P/, which has had a similar widened productivity range for
LEXP in the Jensen model [Jensen-Lucas, 1985]). For many computer program -
functions, there are several ways to implement them in Ada, each with ‘
somewhat different side effects (e.g., oranches, case statements, loops, tasking
statements, exceptions, procedure calls). An experienced Ada developer can
capitalize on this richness to'simplify many program funictions, while an '
inexperienced Ada developer is more likely to choosa an Ada implementation
with harmful side effects (perfor-'nance problems, reliability problems,
modifiability problems, difficulties in handling nonstandard conditions, or jUSt
plam errors). >

The Ada COCOMO Use of Modern Programming Practices variable
(MODP) has a slightly different set of effort muttipliers than standard COCQMO, _

due to .Adé's improved support of modern programming practices, particularly
" modularity and information hiding [Parnas, 1979] and object-oriented
development [Booch, 1987]. The resulting comparison'is as follows:

'MODP Rating __Ad: MO COCOMO EM
Véry Low 1.24 1.24
Low 1.10 1.10
. Nominal ‘ 0.98 1.00
“High 0.86 0.91
Very High . 078 0.82
. Prod'y Range - 1.59 1.51

.~ For maintenance, MODP is treated differently in Ada COCOMO, in that

~MODP ratings are used to determine a large component of the ¥ size-scaling

factor, rather than to determine effort multipliers as a function of size. Details
are provided in [Boehm-Royce, 1987].

w Effort Multipliers: Ada Process Model

- The Ada Process Model's emphasis on achieving a solid and stabie
architecture for the software product's life-cycle reduces the damage that less-
capable programmers can do to the project. But it also places a heavy reliance
on the capability of the analysts to create such an architecture. Thus, Ada -
COCOMO has a different set of effort multipliers for Analyst Capability (ACAP)
and Programmer Capability (PCAP) than standard COCOMO. The comparison
between full use of the Ada Process Model (X=0.00) and standard COCOMO or
non-use of the Ada Process Model is as follows:

Rating Full Ada P.M. (£=0.00) Std. COCOMO (£=0.16)
SR ACAP__PCAP ACAP. _PCAP
Verylow 157 - 1.30 146 1.42
" Low 1.29 1.12 o 119 147
Nominal. + 1.00 1.00 ' ©1.00 1.00
- High © - 0.80. .0.89. 0.86 0.86
Very High 0.61 0.80 0.71.° " 0.70

Prod'y Range 2.57 1.62 4.16 206 203 4.14

Although the full use of the Ada Process Model correlates with a wider |
- productivity range for Analyst Capability and a narrower productivity range for '

Programmer Capability, their combined productivity range is essen’aally the
same as for standard COCOMO (4. 16 vs.4.14). _ _

For partial use of the Ada Process Model (T between 0.00 and 0.18), one
interpolates between the values of ACAP and PCAP for full yse and non-use of

the Ada Process Model. For example, a project at the half-way point (X=0.08)
with Very High capability analysts and progra'nmers would use the following
effort multipliers:

ACAP: 0.61+(0.08/0.16} (0.71 - 0.61) = 0.€6.
PCAP: 0.80 + (0.08/0.16) (0.70 - 0.80) = 0.75.

New Effort Multipliers: General Effect

The Ada COCOMO variables Computer Turnaround Time (TURN), Use of
Software Tools (TOOL), and Required Development Schedule (SCED) differ
from their standard COCOMO counterparts due to general technology effects
which are independent of Ada. The TURN variable has an additional rating
level of Very Low, reflecting the more effective exploitation of interactive
software development as compared to the late 1970's, when standard
COCOMO was calibrated. The main changes are:

« Furnishing every software project person with an interactive terminal, as
compared to the late-1970's average of roughly 0.3 terminals per project
person.

* Interactive support of all pro;ect phases as compared to pnmary support
of the code and unit test phase in the late 1970's.

The resulting comparison of TURN effort multipliers is as follows:

BN Rating__A OMO MOE,
Very Low 0.79 }

Low' 0.87 - 0.87
Nominal 1.00 , 1.00
High 1.07 1.07
Very High 1.15 1.15
Prod’y Range - 1.46 . 1.32

, The TOOL variable has two additional rating levels, Extra High and XX+
High, reflectmg more fully populated and integrated tool sets than were
available in the late 1970's. The Extra High level reflects a partly integrated tool
set, using a Unix-level (pipes and hierarchical ASCI! filesytevel of tool
mteroperabrhty The XX-High level has not yet been fully achieved by a
software engineering environment. One way of visualizing its level of capabmty
is that it would provide for all software project life cycle functions the level of
incremental analysis and feedback capability that the current Rational
environment provudes for rncremental Ada syntax and semantlc analysrs

The resultmg companson of TOOL effort mumphers is as follows:

in ' M

M 1"

Very Low 1.24 - 1.24

Low 1.10 - 1.10

Nominal 1.0C 1.00

High 0.91 0.91

Very High 0.83 0.83
Extra High 0.73
XX High . 0.62

Prod'y Range 2.00 C 1.49

The SCED variable has been changed to eliminate the effort penalty

- associated with stretching a software project's schedule beyond the "natural”
schedule estimated by the Ada COCOMO schedule equation. This branch of
the effort-vs.-schedule tradeoff curve has been a point of difference between
software cost models. The SLIM [Putnam, 1978], Jensen [Jensen-Lucas, 1983],
and Softcost [Reifer, 1988] models incorporate a large, unending effort
decrease zs schedule is stretched; the standard COCOMO and Price S
[Freiman-Park, 1972] miodels have mcorporated a slight effort increase as .
schedule is stretched. The rationale in Ada COCOMO for keeping the High and
Very High schedule-stretch multipliers at 1.00 is that incremental development
has not been observed to incur a cost penalty, if the incremental strategy has
beﬁn well planned out in advance, although it will stretch the development
schedule.

nchan Driver Variabl

- The remaining COCOMO cost driver variables were unchanged in Ada
COCOMO, reflecting the judgement that their effort multiplier effects were highly
independent of the use of Ada. These were Data Base Size (DATA), Execution
Time Constraint (TIME), Main Storage Constraint (STOR), Applications
Experience (AEXP), and Virtual Machine Experience (VEXP). An overall
summary of the Ada COCOMO effort multipliers is given in Table 1.

. The standard ICOCOMO embedded-mode schedule equation is:
Tpev = 2.5 (MM) 032,

where Tpgy is the development time in months from the Software

Requirements Review to the' Software Acceptance Test, and MM is the
estimated development effort in man- -months. The corresponding Ada
COCOMO schedule equation is:

Tpey = 3.0 (Mm) 0.32+0.2%

where I is the Ada Process Model compiiance factor.

The revised coefficient and added 3, factor were determined from
calibration to the twa Ada projects onginally used to calibrate Ada COCOMD.
‘The equation has also been a good fit to three subsequent Ada projects. The
equation indicates a longer development time for a given man-month level due
to longer early schedule investments in requirements and design definition and
validation. "These are compensated by the overall reduction in man-months
from using the Ada Process Model, and by the use of incremental development,
which provides an initial usable increment eariier than a single- shof
development of the entire product can provide.

h istribution of Effo hedul

The Ada Process Model requires more effort and schedule in the early
phases of software development, and saves cons:derably more effort and
schedule in the later phases. This is borne out by the comparison of phase
distributions in Table 2 between full use of the Ada Process Model (T = 0.00)
and non-use of the Ada Process Model (the standard COCOMO Embedded
Mode, or 3 = 0.16). A project which partially complies with the Ada Process
Model would therefore interpolate in Table 2 to find its phase distribution of -
effort and schedule. Thus, for example, a 128-KDSI Embedded Mode project
with a %, of 0.08 would have phase distributions halfway between the table
entries for a 128-KDSI project: e.g., 20.5% of its effort and 37 5% of its schedule
in the Product Design phase o

The use of the Ada Process Model has also changed the definition of-

‘two of the major milestones defining the phase eridpoints. Table 3 shows the

revised definitions of the Software’ Requirements Review and the Preliminary

(or Product) Design Review; the other milestones are largely the same as for
-standard COCOMO.

Incremental Development

.um..uﬂx)wr& ot ot ¥ | %J{W

og-g2" | g2-I2 Sz-L1 | kz-L z1 -5 s ?Mcé#érlzuu
2 ~9¢ 9% ~%h Sh~bh | hh-3b 1p—15 | o bereveaiGeasy
§g -1h 9%~bs hE—Lg 28-5¢ os-t¢ | . Veaaq ooy
Sh-hb - | 9€~°h TE-9¢ . 182-% V.N..n.d, I m.fcvl....wcruiw.v.u R iR P] .
SN A IS
he -8T 1§ ~TT 8T ~he Sz-72. vz Aim, e wnyg ~sbepiy
-1z 72-2 -8 o 14 7§ -32 R N i o .
e -82 Sz-bz 22-°% Lz-)E 32-2§ Ciswg rel1waq
3h=bh IS-15 | hs-$S | Ls-sS °9-LS | QR NTICNESH S
8 -%2 R) —-¢T 8)—¢2 | - Bl ~-%7T 8 -2 : , 4ru,wvg ey
R =L g~ 8-2) 3-T) 2~ (=4 ‘n*e..td.:u;ﬁ& vvo swwid
TWAES | o3 | ans ,“Wu.ﬂi 1 Tson © bt ” N | .
\1.17 baon RaddAl d .‘.-.U.’ZH 1\ i} Gw...msf..luwg t\www.
| =22 XS . -

| N'OZTZ =o' = N

S N 2 Sya>2f) oy mwo O\ oN =T nwvy A..>\.&.

PEYRS PYe 123) T Fo Ve uSIQ BITYY 2 .QfOUO\U\. >y

‘TPl

MHL . , , A 88/11/01 ¢ Swusurauyey OWO0200 epy

(sueyd 1se} pajiejap Buspnoxa) ueld uonepiea pue uonesyiien fe1enQ «
sueld esueinsse Ayenb pue EmEmmmcmE uonemnBiyuod pajele(g »
. | suejd [0u0) Jonposy
coaoam pue mcoam_mao uoljejieisut ‘uoKrIeAU0D .ace.g o} suoisiacid Aoy « |
 ueld 8j9h9 o)y e1v7alj0g
ueld Em:.mma:ms_ ¥siH Buipnjou ‘uejy E¢Ea2m>3 alemyog uSo_anoA
saAlNe uoflonpas ysu _ENH ONeOHIUAPY S| jane] WaYSAS 10 slinsay
;moaxm ys! o} jeuosuodosd yrejep jo jere « .
~>\ 3 m. @%.&) mEmEE_:oE weysAs o} Aypqeadesy .
_ painuepi mmcmco ucm ymosB jo suonoeng . .
sjuswaiinbay b__azc pue-‘eouewioped * _mcoaocan_ o
Siuawesinbay 1959 _a:v_zvs :
Kreuonoip Blep 1ana woelsAg »

suoniuyap 109[qo ‘uonejussesder esoimeyaq ¢ SMOJ} Smn vcm 1041u03 135 D-181ut pue 195 |aAsy-doy

suopjuleq 1980 pue ainoaljydry Em.@.m.

SUOISaIN maiaaYy sjuswasnbay asemyog
| g 2qUL

MHi o , .. 88/LL0L S SiuawauleY OWOI0D EpY

S, HQd 191®] Je pajepdn pue ‘Yad pjng sLojleajidde is1y e pejsjdwos way siyy, #mam
yBnosyujjep ubisaq Aseujujaig e pamajaal pue uBmEE_ou way| S|y ju sidedse jeajuyoey :Mad

foeo peoabhn < oy prboros
.Jwe.us,i o= 4.13\,3\ @#N.\ﬁ\a\v

JTNM” 5250 Y <&

M
I
!

u..uqm wn SHED WG & neid 1sa) eoueydadsoe ‘ueid 1sa) pue :o:Em&E liesano Areujuyjong
- . - s N%S Piing suopesyidde sjy) Joj jenuew ,s1asn yeap ‘ueid 1sa) pue :,o:EmmE.. LSLITTTTET | / ..
/ - ' :

yomprniny Y X0 siuawainbai o) Ayjiqeades ‘Ayiqises) ‘Aouaisisuod ‘ssauale|dwod 1o} peyisA -

_ 1«\"5%(30 _.liom_:oom ‘abe10)5 6 E_.c<m.omo 0} pajedojje sjabpnq e8ainoses Buissesosd ejeq -
o9 bpusgi - ok, ALY m_wz ybnouyy pauyep ainjoruis ejep |eaibol pue roisAyd -
pauljino salpoq paljliaa pue pa,2;dwod soads 0S80 18A8] Jamoj [ONUD pue DGO jeAs) doj -

pret

: : pling uopieajdde siy) 10} uojieayyoads ubysap Ateujwiiasd pagjjion .
g\ PETD b i Wm Aouﬂ\uﬂ.?.\?xua 3 anéomtm sYc _mme..mESo_EE?m:z:umxm. . .
o PaAjosal pue payjiuapy swal) ysy lofew fly .

sjeuofies yim spjing 01 5,989 jo bujddeus jjesang .
‘[3A3] 989 0} paujjap ainjosljyole aIemyos jjesang . e
. | LHOd Mad -

auolsa|IN malnay uBiseq Ateurwiolq

: . ‘95 2Iq2)

