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Abstract 

Toward the Robust Control of High Bandwidth High Precision 
Flexible Optical Systems 

by Kenneth W. Barker 

Chairperson of Supervisory Committee: Prof. Juris Vagners 

Dept, of Aeronautics and Astronautics 

\\ 
It is well known that control-structure-interaction (CSI) phenomena limit the stability 

and performance of controlled flexible structures. Most CSI research focuses on rigid 

body control of flexible structures with relatively low closed loop control bandwidths. 

This research examines the CSI phenomena associated with high bandwidth high 

precision control of a reaction actuator mounted to a flexible support structure. 

In particular, control-structure-interaction using a high gain porportional-integral- 

derivative (PID) controller is examined as it relates to certain design parameters. 

Rapid small angle line-of-sight repositioning and precision line-of-sight stabilization 

against a variety of disturbances are performed using both a single and multimode 

model. The single flexible mode model consists of a three-mass lightly damped trans¬ 

lating system, referred to as the modified benchmark model. The multimode model 

consists of a single-axis reaction steering mirror mounted to the tip of a flexible 

truss-like support structure. 

Control-structure-interaction analysis of the reaction actuator control problem is 

performed first on the single-mode model as a function of flexible mode location, then 

with the multimode model as a function of inertial and elastic coupling between the 

reaction steering mirror and the flexible support structure. The analysis describes 

the control-structure-interaction effects on both stability and performance of a high 

gain line-of-sight PID controller. 

This research introduces the idea of bicollocated control of a reaction actuator. It 

also shows that control of a reaction actuator in the classical ‘collocated’ sense may 

91-17938 91 12A3 187 
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lead to nonminimum phase zeros in the plant model and may result in an unstable 

closed loop system. The critical parameters affecting both stability and performance 

of high gain reaction actuator controllers on flexible systems are shown to be actuator 

natural frequency, actuator inertia, and uncoupled flexible support structure modal 

inertia, and coupled system modal reaction inertia. 
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Chapter 1 

INTRODUCTION 

1.1 Background 

Flexible optical systems are used in a variety of space and ground applications in¬ 

cluding communications, astronomy, and directed energy. Though specific missions 

vary significantly, these systems share some design commonality. Most fundamentally 

they consist of an arrangement of optical elements (reflectors, mirrors, sensors, etc) 

mounted in some fashion on a flexible support structure. 

The two primary tasks of flexible optical systems (FOS) are 1) to direct the line-of- 

sight (LOS) to an inertial point or along an inertial path and 2) to stabilize the LOS 

about an inertial point or about an inertial path against both internal and external 

disturbances. Often, both tasks will be performed simultaneously. An example of 

a FOS performing both tasks is a ground-based radar tracking an aircraft as wind 

buffets against the support structure. Other examples include an orbiting directed 

energy system rapidly undergoing small changes in LOS angle to pin-point individual 

targets within a cluster of targets or the Hubble Space Telescope (HST) quiescently 

focusing on a distant star while subjected to gravity gradients and other disturbance 

torques. 

For purposes of this research, these systems are categorized into those with slow 

or fast dynamics and those with high or low precision requirements. The terms ‘slow’ 

and ‘fast’ describe the LOS re-positioning or retargeting time requirements. ‘High’ 

or ‘low’ precision refers to the degree to which LOS vibration can be tolerated. In 

this context, the HST is a slow dynamics high precision FOS. Scientists can afford 

to wait minutes or hours for the system to settle down to meet high performance 

requirements. The directed energy system is a fast dynamics high precision FOS. 

LOS re-positioning of a few degrees within a few tenths of a second while requiring 

LOS stability orders of magnitude better than ever before demonstrated is typical of 

this severe performance environment. For example, the HST can precision point at 
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.1 degrees per second; roughly the rate of a minute hand on a watch. In comparison, 

the directed energy system precision points at 5 degrees per second; roughly as fast 

as a second hand and two orders of magnitude faster than the HST [33]. An equally 

demanding performance requirement, unique to the directed energy fast dynamics 

flexible optical system is the small angle rapid retargeting between individual targets 

in a multi-target field. The fast dynamics POS operation environment is inherently 

more severe due to short settling time requirements complicated by extremely small 

tolerances in LOS vibration and pointing error. 

This research focuses on the philosophy surrounding the design of an LOS con¬ 

troller for a fast dynamics high precision FOS undergoing rapid retargeting and pre¬ 

cision line-of-sight jitter stabilization. The FOS of interest consists of an optical 

actuator mounted at the tip of a flexible support structure. The optical actuator 

will be referred to as a fast steering mirror (FSM) throughout the remainder of this 

dissertation. The entire assembly can undergo rigid body rotation about the sup¬ 

port structure hub using a rigid body torque actuator. Structural vibration can be 

suppressed by controlling structural actuators. The LOS controller uses available ac¬ 

tuators and some pre-determined control policy to perform the tasks outlined in the 

opening paragraphs. 

To date, no fast dynamics flexible optical system has been either built or designed 

to perform small angle rapid retargeting. Only the larger angle slewing maneuver 

with LOS stabilization has been addressed utilizing decentralized LOS controllers 

[33, 34, 42]. The LOS controller is designed to stabilize the FSM using LOS mea¬ 

surements taken from sensors mounted elsewhere on the flexible structure. LOS 

commands are augmented with tracking data for target following. Generally, SISO 

loops are designed for each of the two tip-tilt axes to control angular motion and one 

for the piston axis to control focus. The control loops are designed as though the FSM 

were mounted to a rigid body. Active structural vibration suppression, using some 

type of reaction mass actuator, is either localized or non-existent. Passive damping 

on the flexible support structure has been considered [33, 42]. Rigid body slew, it is 

envisioned, will be accomplished with torque commands shaped so as not to excite 

the structure’s elastic modes in any significant manner. This design philosophy relies 

on the stiffness of the support structure, negligible FSM reaction into that support 

structure, and of course our ability to re-position the flexible support structure quickly 
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and quietly. In other words, interaction between the flexible structure and the LOS 

controller is at least initially neglected. While the technologies required to build a 

controller of this type may exist, one is yet to be built that demonstrates the neces¬ 

sary performance. In light of the severe performance requirements it seems relevant to 

design the flexible optical system to minimize the control-structure-interaction phe¬ 

nomena resulting from support structure flexibility. To accomplish this, we must first 

understand how control-structure-interaction affects both stability and performance 

of the flexible optical system. 

1.2 Problem Statement 

The research goal is to identify critical control-structure-interaction parameters af¬ 

fecting high bandwidth high precision flexible optical system line-of-sight controller 

design and to determine the closed-loop effects of inertial and elastic coupling be¬ 

tween the optical actuator (single axis fast steering mirror) and the flexible support 

structure. 

1.3 The Present Work and its Relation to the Literature 

Modeling, control, and design of flexible structures have been studied extensively over 

the past two decades. Advances have been made in the areas of modeling and model 

reduction, passive and active control, decentralized and hierachical control, integrated 

structural and control design, and sensor and actuator location and selection [41]. 

Recent trends in this area include research in system identification and experimental 

controller hardware validation. 

Flexible optical systems comprise a unique subset of the overall class of large flex¬ 

ible structures. Though often not physically large when compared to space station or 

large deployable solar arrays, their models can consist of a comparably large number 

of degrees of freedom. This being so, all theoretical, computational, and practical 

methodologies of modeling, control, and design are relevant. Current research ex¬ 

ploring LOS control of flexible optical systems can be broadly divided into two areas 

1) segmented mirror control, and 2) actuator/structure interaction. Research in both 

areas reveals the importance of proper consideration of control-structure interaction 
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when designing LOS controllers that have any hope of successful implementation in 

hardware. 

Segmented mirror control has received much attention recently because several 

flexible optical systems require large (7-10 meter) diameter primary mirrors con¬ 

structed from an array of smaller mirror segments. Primary mirror shape control 

becomes an exercise in controlling these smaller mirror segments. Due to the rela¬ 

tively low closed-loop bandwidth (< 20Hz) of the mirror segment controllers, these 

will be referred to as slow dynamics systems. NASA’s Large Deployable Reflector 

and the University of California Berkley’s Keck Ten Meter Telescope (TMT) are two 

such systems. Both have high precision requirements that demand the integration 

of both structural dynamics and active control design. Aubrun, Lorell, Havas, and 

Henninger [2] reported the dynamic analysis of the control system used to align the 36 

hexagonal segments of the Keck TMT primary mirror. The interaction between the 

segment alignment control system and the telescope was shown to adversely impact 

the telescope’s optical performance. Recent work by Aubrun, Carrier, and Ramakr- 

ishnan [3, 9, 40] explored shape control for the array of primary mirror segments 

on two different, yet similar, slow dynamics flexible optical systems. Aubrun and 

Lorell [3] demonstrated the control-structure interaction phenomena using the Lock¬ 

heed Palo Alto Research Laboratory Advanced Structures/Controls Integrated Ex¬ 

periment (ASCIE) Testbed. They showed that, with a classical controller, achievable 

segment controller bandwidth decreases as the number of segments being controlled is 

increased. This tradeoff was attributed to controller interaction with the first critical 

vibration mode. Using worst case analysis and synthesis methods, Carrier [9] de¬ 

signed a 12-input/12-output segment controller for the ASCIE testbed and showed 

an increase (in simulation) in the achievable controller bandwidth from 4 to 12 times. 

Using a model of the Advanced Space Structures Technology Research Experiments 

(ASTREX) facility, a testbed with a segmented mirror system similar to ASCIE, 

Ramakrishnan, Byun, Skelton, and Cossey [40] applied the Output Variance Control 

(OVC) approach to design a LOS controller. The OVC approach minimizes input 

energy subject to inequality constraints on the output variances. OVC is basically a 

nonlinear mathematical programming problem with inequality contstraints. 

The segmented mirror control work described above is primarily relevant to slow 

dynamics flexible optical systems. Other work more pertinent to the type of fast dy- 
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namics flexible optical system described in this research has been reported in recent 

literature. This work involves exploring the interaction between the dynamics of ac¬ 

tuators, flexible beams, and the control laws uniting the two. Barbiéri and Ozgiiner 

[5] developed the linear equations of motion for the unconstrained (pin-free) and 

constrained (inertia-free) mode expansions for a uniform flexible slewing beam. In 

this work, theoretical frequencies were verified with an experimental counterbalanced 

aluminum beam. E. Garcia and Inman [17] added the dynamics of a hub torquer, 

an armature controlled DC electric motor, and developed the equations of motion 

describing actuator-structure interaction for a slewing flexible structure. They also 

introduced the idea of selecting a ‘best’ ratio between the servo inertia and beam 

inertia to improve the controllability of the system’s flexible modes. Working at 

the opposite end of the beam, Zimmerman and Inman [59] analyzed the actuator- 

structure interaction for a proof-mass actuator mounted to the tip of a cantilevered 

beam. They predicted the presence of potential instabilities and performance degra¬ 

dation if proper consideration is not given to interactions between the control law, 

the structure, and the actuator. In doing this, they dispelled the previously accepted 

view that simple rate-feedback is necessarily a stable control law. With added damp¬ 

ing to the fundamental structural mode as a design criterion, it was shown that the 

break frequency of the actuator should be designed below the first natural frequency 

of the structure for best performance. In similar research, J. Garcia [18] investigated 

the stability of an actuated mirror mounted to the tip of a flexible beam. His control 

objective was not vibration suppression, as with the research discussed above, but 

instead to position the face of the mirror in inertial space. J. Garcia concluded that 

if the actuated mass is small compared to the mass of the structure, the flexibility of 

the structure can be ignored when controlling the mirror with proportional feedback 

including a first order roll-off filter. He referred to this as ‘reckless’ control. Because 

J. Garcia assumed the actuated mirror mass small, he was able to neglect its affect 

on the natural frequencies and mode shapes of the combined system. As a result, the 

transfer function between mirror inertial position and mirror actuation force did not 

reflect any change in combined system dynamics as a function of mirror mass. Shaw 

and Vu [47] investigated the dynamics of the same system analyzed by J. Garcia, but 

with non-negligible actuated mass. Their equations of motion reflect the coupling be¬ 

tween the actuator and structure under closed-loop control as a function of actuated 
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mass. 

Recall that current, fast dynamics FOS LOS controller designs can be referred to as 

decentralized and structurally uncoupled. They are decentralized in that LOS control 

is provided only to the FSM with only one source of information. This information 

is based upon LOS measurements from sensors mounted somewhere on the structure 

and isolated somewhat from the structure. These controller designs are structurally 

uncoupled in that during the controller design the mirror support structure is con¬ 

sidered rigid. Our research suggests a different philosophy for the design for such a 

LOS controller. 

Though generally related to the segmented mirror control research, our work is 

more specifically related to the actuator/structure/control interaction research ap¬ 

plied to simple beams and actuated masses. The research is this area is similar to 

ours primarily in the types of systems considered: simple beams with hub torquers 

and tip actuated masses. The primary differences are in three areas 

1) we are interested in controlling the system LOS within extremely small tol¬ 

erances by controlling the inertial angle of a reaction fast steering mirror. In this 

regard, our research is most similar to that of J. Garcia. 

2) we recognize the dynamic coupling between actuated mass (inertia) and the 

flexible support structure and have included these dynamics in our equations of mo¬ 

tion. Recall, J. Garcia assumed negligibly small actuated mass. Though Shaw and 

Vu included actuated mass, their control objective was strictly vibration suppression. 

3) we are interested in identifying the parameters required to minimize the inter¬ 

action between the LOS controller and the flexible structure rather than designing a 

LOS controller to compensate for existing interaction. 

1A Organization of this Dissertation 

The development of a planar 65 degree of freedom flexible optical system is presented 

in chapter two. The finite element model as well as the dynamics of the optical and 

structural actuators are discussed. Dynamic characterizations are presented. 

In chapter three, a method for classifying the structural flexibility types for the 

single-mode reaction actuator model is developed. The modified benchmark problem, 

a lightly damped translating three-mass model, is developed and cast in the context 
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of the high bandwidth high precision flexible optical system. The modified bench¬ 

mark problem is a dyr 'mic simplification of the planar flexible optical system. Here 

the fundamental coni ¿»^-structure-interaction phenomena complicating the flexible 

optical system LOS controller design are explored. 

In chapter four, the multi-mode flexible optical system LOS control problem is ad¬ 

dressed. The impact of the control-structure-interaction phenomena on performance 

and robustness are discussed in terms of key system parameters describing mirror 

dynamics, support structure flexibility, and the degree of inertial coupling between 

the mirror and the flexible support structure. 

In chapter five, the conclusions and recommendations for future work are pre¬ 

sented. 

1.5 Novel Contributions of this Work 

This work presents the following new contributions and results in line-of-sight control 

of high bandwidth high precision flexible optical systems. 

1) We have developed a 65 degree-of-freedom model of a planar flexible optical 

system incorporating both rigid body and elastic modes, reaction mass actuators, 

and a reactionless fast steering mirror for use in examining relevant control-structure- 

interaction phenomena and robust control techniques for the high bandwidth high 

precision line-of-sight control problem. 

2) We have extended the work of J.T. Spanos [49] to the reaction actuator control 

problem. Specifically, we have developed a method of classifying structural flexibility 

for the single-mode reaction actuator control model. 

3) We have introduced the concept of bicollocated reaction actuator control and 

have established guarantees for the existance of minimum phase structural modes. 

4) We have formulated the modified benchmark problem, a simple physically re¬ 

alizable single-mode representation of the reaction actuator control problem. 

5) We have defined key structural parameters and demonstrated their role in deter¬ 

mining both the type and degree of control-structure-interaction phenomena affecting 

the stability and performance of line-of-sight controllers for the flexible optical system. 

It would be easy to try to limit the results of this research to the specific flexible 

optical system configuration developed in chapter two and analyzed in chapter four. 
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Such a temptation should be avoided. The results of chapters three and four are dear- 

interaction between a reaction actuator and its flexible support structure can cause 

system instabilities and/or prohibitively limit performance. The common practice 

of designing a controller based upon the rigid support assumption and then adding 

the necessary ‘structural filters’ to handle troublesome lightly damped flexible modes 

will result in excessively high order controllers when many flexible modes reside inside 

the control loop crossover frequency. Though residues are small for these high order 

modes, we must keep in mind that line-of-sight pointing jitter tolerances may be 

smaller than these residues. In fact, our research shows significant LOS jitter from 

flexible modes even beyond loop crossover. While these can be treated with high order 

roll-off filters or by frequency shaping in the retargeting commands, we must still deal 

with the large number of modes inside loop crossover. Passive damping techniques will 

likely fall short in the amount of damping gained. Active damping techniques imply 

additional hardware, weight, and complexity. In light of these tradeoffs, it seems 

right that the physical mechanisms supporting adverse control-structure-interaction 

should be treated prior to controller design. If the flexible support structure and 

fast steering mirror are designed to minimize these adverse interactions with the LOS 

controller, payoffs will be realized in terms of controller simplicity and total system 

performance. 



Chapter 2 

THE FLEXIBLE OPTICAL SYSTEM MODEL 

2.1 Overview 

Too often we simply receive a system model along with the system performance 

requirements and charge off to design our controller. We’re elated when simulations 

meet performance goals but befuddled when the real system doesn’t. We then expend 

significant effort identifying our system with the hope of ‘tuning’ our model. We 

believe an equally significant effort should go toward the initial development and 

validation of a that model. When we understand the assumptions going into our 

model, only then will we have confidence in its prediction accuracy and then we will 

understand our system dynamics well enough to troubleshoot our controller failures. 

This chapter is devoted to the development, validation, and dynamic characteri¬ 

zation of the flexible optical system (FOS) model used in this research. The system 

can be correctly identified as high bandwidth and high precision only after the ap¬ 

propriate line-of-sight (LOS) controller is implemented (see chapter 4). The basic 

FOS is comprised of a fast steering mirror mounted to the tip of a flexible support 

structure. The flexible structure is pinned at the hub for rigid body rotation in the 

horizontal plane. The mirror is constrained to rotate in the same plane. Figure 2.1 

shows the FOS with two reaction-mass actuators mounted to the tip and mid-point 

of the flexible structure. 

Figure 2.1: Planar Flexible Optical System 
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In section 2.2 we describe the development and validation of the finite element 

model for the planar flexible support structure. The model reduction procedure 

is described in section 2.3. In section 2.4, models for the reaction-mass actuators 

and reactionless fast steering mirror are developed and added to the flexible support 

structure model. In section 2.5 we describe the time and frequency domain dynamics 

of various FOS configurations. 

2.2 The Flexible Support Structure 

Flexible optical systems intended for use in space are constructed with light, flexible 

truss assemblies supporting the optical components. A typical cassegranian telescope 

consists of a primary mirror separated by some nominal distance from a secondary 

mirror. This separation is maintained by a flexible support structure, such as a tripod. 

The operational telescope can direct its LOS freely about two axes of rotation. In 

this research, the flexible support structure is modeled as a single planar truss; a 

simplification of the two-axis tripod. A finite element model (FEM) is first built 

describing an existing constrained-free hardware set-up. Experimental and theoretical 

model validation is performed on the constrained-free FEM. The boundary conditions 

are then modified and a pinned-free FEM is built, more suitable to this research. The 

undamped FEMs can be represented in the form of a matrix equation as 

[Af]q+[/i]q = f (2.1) 

where q is the vector of generalized coordinates and f is the vector of force and torque 

inputs corresponding to each coordinate. [M] and [K] are the consistent mass and 

stiffness matrices, respectively. 

2.2.1 The 63-DOF Constrained-Free Finite Element Model 

The planar truss modeled in this research is similar to that constructed by Hallauer 

and Lamberson at the U.S. Air Force Academy, in Colorado Springs, CO. [22]. A sim¬ 

ilar hardware experiment has been constructed at the University of Washington in the 

Department of Aeronautics and Astronautics Controls Laboratory. Since the finite 

element model and state-space model are derived from this hardware configuration, 

this section will begin with some details on its construction. 
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Figure 2.2 illustrates the 20-bay, 7.07 meter long planar truss. The diagonal and 

I*- 7.07 m -► 

Figure 2.2: The Planar Truss 

side dimensions of each square bay are 0.500 meters and 0.354 meters, respectively. 

Longitudinal positions along the truss, from the constrained end, are denoted by 

station numbers 0-20. The 240 lb. truss lies flat in the horizontal plane and is 

supported by 3/4 inch steel balls, rolling with very little friction. The longitudinal, 

diagonal, and chordwise members are constructed from aluminum and connected with 

threaded steel joints. Attached to the 21 chordwise truss members are rigid steel 

bars designed to lower the structure’s natural frequencies and to prevent out-of-plane 

motion by ensuring positive contact between the structure and the steel balls [22]. 

The aluminum truss members and the steel joints are modular components of the 

Meroform Construction System M12, manufactured by the Mero Corporation. The 

truss members are tubular with cross-sectional dimensions of 22mm O.D. by 1mm 

thick. The ends of the truss members are fitted with steel bolt assemblies providing 

a rigid connection with the threaded steel joints. The joints are Mero standard M12 

steel nodes. 

Longitudinal stiffnesses of the truss members, including the effects of the terminal 

bolt assemblies were measured [22]. As indicated in figure 2.2, the root of the truss is 

not fixed, but constrained by a table, essentially another flexible structure. The table 

is constructed of steel and is bolted to the concrete floor. To approximate the effect 

of the table and floor in the mathematical model, the first two transverse vibration 

modes of the table alone were measured. Using the two measured natural frequencies, 

the known table geometry, and the calculated mass and rotational inertia of the table, 

the stiffness values for the transverse and longitudinal table springs were inferred. 

The finite element model for the planar truss was developed using Matrix Al¬ 

gebra Package/Structural MODES (MAPMODES), a special purpose FORTRAN 

program written by Professor W.L. Hallauer of Virginia Polytechnic Institute [21]. 
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MAPMODES performs standard matrix algebra operations, calculates stiffness and 

mass matrices for plane truss, frame, and grid structures consisting of straight one¬ 

dimensional structural elements, solves for static structural displacements by the 

matrix stiffness method, and solves the structural dynami* s eigenvalue problem for 

natural frequencies, mode shapes, and generalized masses. 

Each longeron and diagonal of the truss is modeled as a single planar truss element 

having no bending freedom using standard element stiffness and consistent mass 

matrices [37], Each batten is modeled as a rigid bar (rectangular parallelepiped), 

and the masses of the concentrated steel joints, servo accelerometers, and reaction- 

mass actuator parasitic components are added appropriately to the inertias of the 

batten elements. Each steel joint is idealized to be rigid. The truss and the rigid bars 

are connected at the intersections of their axes. The support table is modeled as a 

spring restrained rigid mass connected to the batten at station 0. The resulting finite 

element model has 63 degrees-of-freedom (DOFs), three at each of the 21 battens: 

longitudinal translation æ, lateral translation y, and rotation 0, all about the batten 

center-of-gravity. Figure 2.3 illustrates the relevant degrees-of-freedom of the planar 

truss. The relationship between degrees-of-freedom DOF, generalized coordinates q, 

inputs f, and physical truss stations for the undamped constrained-free truss finite- 

element model is provided in table 2.1. 

The finite element model of the constrained-free planar truss is validated both ex¬ 

perimentally via actual hardware measurements and analytically via Euler-Bernoulli 

beam theory. Results from these validations are presented in the following sections 

and summarized in table 2.2 and figure 2.4. 

2.2.2 63-DOF Model Validation via Hardware 

The finite element model natural frequencies and mode shapes were computed and 

compared to experimental data gathered from the U.S. Air Force Academy’s planar 

truss. Computing the natural frequencies and mode shapes from the finite element 

model (i.e. solving the free vibration generalized eigenvalue problem) is discussed 

in section 2.3. The natural frequencies were obtained experimentally from a single 

accelerometer located at the truss tip, while the mode shapes were measured using 

a single portable non-contact displacement sensor at each truss station. The specific 
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Figure 2.3: The Planar Truss and Its Degrees-of-Freedom 
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Table 2.1: Degrees-of-Freedom vs. Generalized Coordinates on the Planar Truss 

[M]q + [/^]q = f (equation 2.1) 

Station q DOF f 5*a¿ton q DOF f 
(tip) 20 X20 1 /*20 (mid) 10 £io 31 /£10 

2/20 2 /2/20 yio 32 /2/10 
020 3 *20 010 33 *10 

19 *19 4 /*19 9 £9 34 /*9 
yi9 5 /2/19 2/9 35 /2/9 
019 6 *19 09 36 *9 

18 *18 7 /*18 8 £8 37 /*8 
yis 8 /2/18 2/8 38 /ys 
018 9 *18 08 39 <8 

17 X\7 10 /*17 7 £7 40 /*7 
Î/17 H /2/17 2/7 41 /y7 
017 12 *17 07 42 *7 

16 *16 13 /*16 6 £6 43 /*6 
yi6 14 /2/16 ye 44 /ye 
016 15 *16 06 45 *6 

(3/4) 15 £15 16 /*15 (1/4) 5 £5 46 /*5 
2/15 17 /2/15 2/s 47 /ys 
015 18 <15 CE>

 
cn

 

O
O

 

*5 
14 £14 19 /*14 4 £4 49 /*4 

2/14 20 /2/14 2/4 50 /y4 
014 21 *14 04 51 <4 

13 £13 22 /*33 3 £3 52 /*3 
2/13 23 /2/13 2/3 53 /ys 
013 24 *13 03 54 *3 

12 £12 25 /*12 2 £2 55 /*2 
yi2 26 /2/12 2/2 56 /ys 
012 27 *12 02 57 *2 

h £ll 28 /*n 1 £1 58 /*1 

2/11 29 fyn 2/1 59 /yi O
 

C
O

 

1—4 f-4 *11 0i 60 <1 
(hub) 0 £0 61 /*0 

i/o 62 /yo 
0o 63 *0 
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Figure 2.4: Normalized Bending Mode Shapes Comparison: Constrained-Free Finite 

Element Model (solid) &¿ Experimental (dashed), Fixed-Free Analytical (dotted) 
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Table 2.2: Modal Frequencies Comparison: Constrained-Free Model Validation 

Natural Frequencies (Hz) 

Constrained-Free Fixed-Free 

Mode 

1 

2 

3 

4 

5 

Hardware FEM#1 

1.60 1.61 

10.00 9.50 

24.70 24.71 

30.00 29.32 

43.00 43.43 

FEM#2 Beam Theory 

1.65 1.53 

9.71 9.62 

25.34 26.92 

30.47 30.93 

44.85 52.76 

sensor used was the Electro-Mike Displacement Transducer, Model PA12D03, a prod¬ 

uct of the Electro Corporation. The sensor functions by projecting a 200 kHz field in 

front of the sensor. When a conductive, metal object (target) enters this field, eddy 

currents are induced in the target. These eddy currents are detected by the sensor 

and its oscillator, which generates a command signal. This command signal can be 

used to activate a wide variety of outputs-relays, time delays, solid-state switches, 

or pulse outputs that can be used to activate control systems or microprocessors. In 

our case, we simply recorded the output signal (command signal). 

As seen in table 2.2, the natural frequencies for the first five modes compare quite 

closely between the finite element model (FEM#1) and the hardware. Modes 1-3 and 

5 are bending modes. Mode 4 is a longitudinal or ‘pogo’ mode. FEM#1 considers 

the table flexibility, which is realized in hardware. FEM#2 considers the table as 

truly rigid; a model most comparable to beam theory comparisons. 

The first four bending mode shapes are constructed from discrete displacement 

measurements using the Electro-Mike Displacement Transducer. These shapes are 

compared with shapes computed from FEM#1 in figure 2.4. This figure also shows 

mode shapes predicted from simple Euler-Bernoulli beam theory, which will be dis¬ 

cussed in the following section. The ‘pogo’ mode shape was not measured. The 

bending mode shapes shown in figure 2.4 were normalized to a maximum displace¬ 

ment of one. The vertical scale represents the normalized modal displacement along 

the length of the truss. 
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Figure 2.5: The Simple Fixed-Free Euler-Bernoulli Beam 

In some cases measured modal amplitude data were smoothed between data points 

as physical obstructions interfered with these measurements. Measurement non- 

linearities were also encountered contributing to the less than ideal matching between 

measured and computed mode shapes. These non-linearities are most noticeable in 

the data collected on the first mode shape. The first mode undergoes the largest 

amplitude displacements, some of which were outside the sensor’s one half inch linear 

range. Given the known shortcomings of the Electro-Mike, the measured mode shapes 

are considered quite accurate. However, because the Electro-Mike measurements were 

recorded without simultaneous recordings of the forcing function, phase information is 

considered unreliable. The differences in amplitude between measured and computed 

data is probably due to the ‘rigid’ joint assumption in the finite element model. Joint 

compliance would explain the higher measured amplitudes at modal anti-nodes. No 

attempt was made to validate modal frequencies or mode shapes for bending modes 

beyond the first four. 

2.2.3 63-DOF Model Validation via Beam Theory 

It is at least a matter of curiosity to determine how well simple Euler-Bernoulli beam 

theory predicts the first five modes of the hardware baselined finite element model. 

To this end, the Euler-Bernoulli lateral and longitudinal free vibration equations of 

motion are formulated and tailored to the planar truss. In this analysis, the plane 

truss assumes the form of the homogeneous, uniform, fixed-free slender beam shown 

in figure 2.5. 
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Lateral Vibration 

Neglecting shear deformation and rotary inertia, the lateral free vibration partial 

differential equation of motion is 

d_ 

dx 
EI(x) 

d2y(x,t) 

% 
, .d2y(x,t) 

+ rn(x)—y^-J = 0 (2.2) 

where EI(x) is the bending stiffness and m(x) is the mass per unit length, both 

constant for the uniform beam. Assuming the solution to equation 2.2 to be separable 

in both time and space, y(x, t) = Y(x)q(t), one obtains ordinary differential equations 

describing the mode shapes (equation 2.3), and natural frequencies (equation 2.4), 

= 0 (2.3) 

+«!,(() = 0 (2.4) 

where, 
4 u2m(x) 

P EI{x) 

and where q(t) is the vector of modal coordinates and w is the vector or natural fre¬ 

quencies. The four boundary conditions describing the fixed-free beam configuration 

for equation 2.3 are 

A 
dx 

-EI(x) 

EI(x) 

Y(0) 
rfy(o) 

dx 
<PY(L) 

dx2 
&Y{L) 

dx2 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

where æ = 0 and x = L are the beam fixed and free ends, respectively. The problem 

of determining w2 for which equation 2.3 has a non-trivial solution satisfying the ho¬ 

mogeneous boundary conditions (equations 2.6-2.9) is called the eigenvalue problem 

[29]. 
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The general solution to equation 2.3 is of the form 

Y(x) = ci sin fix + C2 cos fix + C3 sinh fix + c4 cosh fix (2.10) 

After applying boundary conditions, the frequency and mode shape equations become 

cos/?nT cosh/3nL = -1 (2.11) 

Yn(x) = i4n[(sin finL - sinh finL)(sm finx — sinh finx) 

+(cos finL + cosh finL)(cos finx - cosh finx)] 

n = l,2,...,oo (2.12) 

where Y^x) is the vector of non-normalized mode shapes, An is an arbitrary constant. 

It can be shown that the mode shapes yn(a;) are orthogonal and constitute a complete 

set of orthogonal eigenfunctions. The orthogonality condition, combined with the 

normalization statement, is given by 

rL 
/ m(x)Yr{x)Ys{x)dx = 6rs r,s = 0,1,2,...,00 (2-13) 

Jo 

The frequency equation 2.11 is trancendental and must be solved numerically. 

The planar truss is 278 inches long and has a mass of 7.42 slugs, giving m(x) = 

2.227 x 10"*3 (/6/ — s2)/in2. The problem of predicting frequencies and mode shapes 

becomes one of determining the equivalent bending stiffness EI(x). A beam stiffness 

of 1 x 108 Ibf — in2 was used in computing the natural frequencies and mode shapes 

provided in table 2.2 and figure 2.4. 

To provide a more valid comparison between beam theory and FEM results, the 

original FEM (FEM#1) was modified to represent a fixed-free rather than constrained- 

free boundary condition. This fixed-free FEM is referred to as FEM#2. The same 

values for EI(x) and m(x) are used between the two finite element models. 

The frequency data in table 2.2 generated from FEM#2 and beam theory compares 

reasonably well through the first four modes. The larger discrepancy in the fifth 

mode natural frequency is primarily due to neglecting rotary inertia in the equations 

of motion for the simple beam. The weighty rigid bars attached to the truss at each 
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of the 21 battens contribute significant rotary inertia at each successive truss station. 

Like the addition of mass to an otherwise uniform beam, rotary inertia tends to 

decrease lateral vibration natural frequencies. The mode shapes shown in figure 2.4 

reflect similar conclusions regarding the absence of rotary inertia effects from beam 

theory. 

Longitudinal Vibration 

Using the same assumptions and notation of the previous section, the longitudinal 

free vibration partial differential equation of motion is 

d_ 

dx 
EA(x) 

du(x, t) 

dx 
. xd2u(X)t) _ 

' = 0 (2.14) 

where EA(x) is the longitudinal stiffness, constant for the uniform beam. For the 

fixed-free beam, the eigenvalue problem reduces to the ordinary differential equation 

<PU{x) 
dx2 

+ ß U(x) = 0 

where, 
2 = u2m(x) 

P EA(x) 

The appropriate boundary conditions are 

-EA{x) 

m 
dU(L) 

dx 

The solution to equation 2.15 is 

U(æ) = Ci sin ßx + c2 cos ßx 

Application of the boundary conditions (equations 2.17 and 2.18) gives 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

cos ßnL = 0 (2.20) 

ßn = (2n - 1) 
IT 

2L 
(2.21) 

which gives the eigenvalues 
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Equation 2.21 can be written in terms of the natural frequencies ujn such that 

= ßn “W = (2» - 1)X 
m(x) 

EA(x) 

m(x)Li 

When normalized against m(x) such that 

f m(x)Ur(x)Us(x)dx = 6t 
Jo 

r,s = 0,1,2,. 

the corresponding orthonormal mode shapes can be written as 

(2.22) 

(2.23) 

rr / N / 2 . /r% .KX 

Un^ = V ííõõl5m(2" “1 * 2l 
(2.24) 

The longitudinal vibration equations for frequency and mode shapes can be used 

to validate the planar truss finite element model for only the fourth mode listed in 

table 2.2. Higher modes in the finite element models exhibit increasing coupling 

between lateral and longitudinal modes. Validating the fourth mode, which is almost 

exclusively longitudinal or ‘pogo5 translates into the simple exercise of selecting a 

longitudinal stiffness EA(x) such that from equation 2.22, matches the natural 

frequency for the fourth mode associated with FEM#2 in table 2.2. An equivalent 

longitudinal stiffness EA(x) of 2.5 X 106 Ibf was selected, however, no real validation 

takes place as only one natural frequency was matched. 

2.2.4 The 61-DOF Pinned-Free Finite Element Model 

In this research, we seek to examine the benefits of structural vibration suppression 

for the large angle rigid body slew. The FOS model must therefore include the 

appropriate dynamics for rigid body rotation about the hub. The 63 DOF finite 

element model developed in section 2.2.2 is modified to account for the rigid body 

rotational mode by fixing both x0 and y0 while leaving 6q free. This reduces the 

model from 63 to 61 DOF. The 6TDOF pinned-free finite element model is referred 

to as FEM#3. 

The lateral vibration pinned-free beam natural frequencies and modes shapes are, 

of course, different than those of the fixed-free beam. The change in both natural 

frequencies and mode shapes is validated with Euler-Bernoulli beam theory. Results 
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Table 2.3: Modal Frequencies Comparison: Pinned-Free Model Validation 

Natural Frequencies (Hz) 

Mode 

1 

2 

3 

4 

5 

6 

FEM#3 Beam Theory 

0.00 0.00 

7.20 6.73 

21.93 21.80 

30.79 30.79 

41.92 45.49 

64.80 77.79 

from this validation are presented in the following section and summarized in table 2.3 

and figure 2.6. Hardware validation was not performed since a pinned-free truss was 

not available. 

2.2.5 61-DOF Model Validation via Beam Theory 

The lateral and longitudinal free vibration equations of motion formulated in sec¬ 

tion 2.2.3 are tailored to the pinned-free truss configuration. Here, the plane truss 

assumes the form of the homogeneous, uniform, pinned-free slender beam shown in 

figure 2.7. Bending stiffness EI(x) and longitudinal stiffness EA(x) from the valida¬ 

tions carried out on the fixed-free FEM are used in this analysis. 

Lateral and Longitudinal Vibration 

The general formulation for pinned-free lateral and longitudinal vibration problem 

is identical to that for the fixed-free problem, with the exception of the boundary 

conditions. For the lateral vibration problem, equations 2.2 - 2.5 apply, with the new 

boundary conditions given by 

-EI(x) 

Y{0) 

<gr(o) 
dx2 

—EI(x) 
cPY(L) 

dx2 

0 

0 

0 

(2.25) 

(2.26) 

(2.27) 
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Figure 2.6: Normalized Bending Mode Shapes Comparison: Pinned-Free Finite Ele¬ 

ment Model (solid) vs. Analytical (dashed) 
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Y(x,t) 

U(x,t) 

Figure 2.7: The Simple Pinned-Free Euler-Bernoulli Beam 

#Y{L) d_ 

dx 
EI(x) 

dx2 
= 0 (2.28) 

The general solution to equation 2.3 is still given by equation 2.10. The new frequency 

and mode shape equations become 

sin ßnL cosh ßnL = cos ßnL sinh ßnL (2.29) 

y^(a:) = i4„[sinh ßnL sin ßnx + sin ßnL sinh ßnx] (2.30) 

Comparisons between beam theory and the finite element model of the pinned-free 

configuration lead to similar conclusions as with the fixed-free case. Lateral vibration 

natural frequencies (modes 2, 3, 5, 6) are predicted lower from beam theory due to 

neglecting rotary inertia. The longitudinal vibration natural frequency (mode 4) is 

exactly the same as the fixed-free case since the boundary conditions are identical. 

These validation results confirm the finite element modeling performed on the flexible 

support structure used as part of the overall flexible optical system in this research. 

2.3 Model Reduction 

The 61-DOF model (order 2n = 122) is unnecessarily and impractically large for 

design and analysis of LOS and/or vibration suppression controllers. We will reduce 

the model to order 2nr < 2n using a procedure which exactly preserves the dynamic 

response of the full model in nr selected DOF and nr selected modes. This procedure 

requires solving the generalized free vibration eigenvalue problem 

[M]q + [K)q = 0 (2.31) 
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and obtaining the eigenvalue matrix A where 

\ = diag(u%,Lúl,...,ulr) 

and the mass normalized eigenvector matrix (modal matrix) $ where 

= I 

The model reduction procedure, referred to as ‘modal truncation’, extracts from the 

modal matrix $ the nr xnT reduced modal matrix ¢, whose rows correspond to the nr 

selected DOFs and whose columns correspond to the nr selected modes. It is necessary 

to choose DOFs and modes such that <f) is nonsingular. Similarly, one extracts from A 

the reduced nr xnr diagonal eigenvalue matrix A, whose diagonal elements correspond 

to the nr selected modes. Then the reduced set of system equations becomes 

[Mr]4 + [Kr]qv = fr (2.32) 

where fr is the reduced vector of inputs corresponding to q^. The reduced mass and 

stiffness matrices are given by 

Mr = <trT<t>-1 (2.33) 

Kr = (jrT\(frl (2.34) 

Viscous damping can be introduced into equation 2.32 by selecting viscous damping 

coefficients (s for each mode in the reduced order model. These coefficients can be 

determined experimentally or by engineering judgment. The modal damping matrix 

is of the form 

[20] = diag(20;a), s = 1,2,..., rcr 

The reduced viscous damping matrix is 

[Cr] = <f>-T[2(u}<f,-1 (2.35) 

The reduced order damped system of equations can now be described as 

[Mr]qr + (Cr]qr + [/C]qr = fr (2.36) 
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It is important to note that this method of estimating a reduced viscous damping 

matrix assumes that the damping does not couple the undamped vibration modes. 

Once the model has been reduced, the various actuators can be added to the 

mathematical model. Section 2.4 describes the actuators of interest and the procedure 

to include them into the model. 

2.4 The Structural and Optical Actuators 

This section describes the development of both structural vibration suppression actu¬ 

ators and the reactionless fast steering mirror. Both types of actuators are integrated 

into various configurations of the flexible optical system model. 

2.4-1 The Reaction-Mass Actuator 

Active damping in any flexible structure requires some sort of force or displacement 

(stress or strain) control. The most typical force actuator is the reaction-mass actu¬ 

ator (RMA) and is illustrated in figure 2.8. The RMA relies on an electromagnetic 

interaction force /, between the proof mass raa, and the system mass ras, to ‘resist’ 

undesired system motion. The RMA in figure 2.8 can be realized in hardware with a 

permanent magnet and coil. The stiffness k and damping c (approximated as a vis¬ 

cous damping constant) are a consequence of the flexible suspension system within 

the actuator that connects the coil with the permanent magnet. The force / is the 

electromagnetic interaction force between the coil and the reaction mass. With 

Figure 2.8: The Reaction-Mass Actuator 
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current through the coil proportional to input voltage e, the transfer function for the 

‘stand alone’ RMA is 
Fa(s) _ Gs2 

E(s) s2 + 2CaWas + 
(2.37) 

where G is an electromagnetic gain constant (Ibf/volt), E(s) is the Laplace transform 

of the input voltage, Fs(s) is the Laplace transform of the total force output and 

Ca 

ma 
ca 

2mau)a 

= RMA natural frequency (rad/sec) 

= RMA damping coefficient 

In this context, ‘stand alone’ implies that the RMA is attached to a rigid support 

structure or ma + raP oo. Using a Lagrangian approach with inertial coordinates, 

the equations of motion for the RMA in figure 2.8 are 

ma + mp 0 

0 ma . 

Cs 4“ ca ca 

—ca ca 

which gives symmetric mass, damping, and stiffness matrices with off-diagonal cou- 

pling in damping and stiffness. If equation 2.38 is subjected to a coordinate transfor¬ 

mation T so that the second generalized coordinate is relative to the first 

x„ 
+ 

X, 

Xa 
+ 

k, + ka —k. 

-k. ka 

1 

-1 
/ (2.38) 

xT xt 

where, 

0 

1 

such that X ■= T 1X, the mass matrix remains symmetric while the damping and 

stiffness matrices are both symmetric and diagonal1. Performing this coordinate 

1 For very large systems a symmetric mass matrix is advantageous in solving the eigenvalue prob¬ 

lem [30]. 
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transformation on equation 2.38, the equations of motion become 

m, + mp + ma ma Xs 

£(13 

cs 0 

0 ca £as 

K 

o 
Xs 

£(13 

(2.39) 

While the three system matrices for both equations 2.38 and 2.39 are symmetric, 

the damping and stiffness matrices of equation 2.39 are considerably easier to form, 

especially for systems with large numbers of actuators. The inertially coupled mass 

matrix [m] of equation 2.39 can be easily constructed by performing the coordinate 

transformation on the diagonal mass matrix [m] of equation 2.38 as in 

[m] = T-T[m]T-1 

This procedure was used to augment the flexible structure’s system matrices with 

the RMA’s mass, damping, and stiffness parameters. These parameters are selected 

to meet specific vibration suppression requirements. Active research continues to 

enhance our understanding of RMA dynamics and its usefulness in both passive and 

active vibration suppression [14, 47, 52]. Figure 2.9 illustrates a tip-mounted RMA 

with relevant force and motion quantities. 

The motion variable used for RMA active damping is the relative velocity ÿ22 ~2/2o- 

The force quantity /22-20 is the RMA interaction force. A more general relationship 

for n RMAs operating as active dampers along the flexible structure is given by 

(2.40) 

The vector of relative coordinates qy = qi - q¡ where qj denote the RMA DOFs and 

qj the flexible structure DOFs corresponding to each RMA attachment point. The 

force or torque interaction between qj and qj is denoted by fj_j. For the configuration 

shown in figure 2.9 with the single tip-mounted RMA, rc = 1, gt= 2/22? and <lj = 2/20- 
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Figure 2.9: RMA Mounted to the Flexible Structure Tip 

Damping constants ci,..., cn make up the n x n constant diagonal matrix A, which 

can be included in [CV] in equation 2.36. 

Miller and Crawley [32] used similar relative velocities and interaction forces, re¬ 

spectively, as system outputs, y, and system inputs u, in output feedback control of 

the form u = —Ay. If A is positive definite, and if there are no time delays or other 

hardware dynamic characteristics not already described by the mathematical model, 

then this form of output feedback can only increase system stability [32, 22]. There 

are many schemes available to select ‘optimal’ values for these velocity feedback con¬ 

stants. In this research, we are less interested in the specific ‘optimal’ algorithm used 

to select these values but more interested in the benefits of including them as design 

parameters in the control of high bandwidth flexible optical systems. 

2.4'8 The Reactionless Fast Steering Mirror 

A fast steering mirror is required in the design of an optical pointing and stabilization 

system in order to perform quick retargeting maneuvers and/or precision pointing in 

the midst of broadband disturbances. A steering mirror is simply a mirror (or other 

reflective surface) attached to a rigid mounting structure, called the substrate. A 

two-axis mirror can be articulated about two perpendicular axes, providing ‘tip-tilt’ 

motion. For this research, we consider only a single axis mirror as our LOS motion 
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is confined to a plane. A steering mirror can be properly considered ‘fast’ only if it 

can be operated in a ‘fast’ or high bandwidth loop. Mirror substrate flexibility and 

sensor and actuator dynamics can both limit the operable closed-loop bandwidth. 

Fast steering mirrors operating in 300-500 Hz pointing or stabilization loops have 

been demonstrated [15]. 

A reactionless steering mirror is designed to reduce the amount of reaction torque 

generated during operation. This is done by including a ‘reaction-mass’ to the back 

of the steering mirror that operates in a nearly ‘equal-but-opposite5 fashion to the 

mirror. Figure 2.10 illustrates a typical reactionless steering mirror design mounted 

to the tip of the flexible support structure modeled in section 2.2. The quantities 0m, 

¿m» and trm are rotation angles and driving torques of the mirror and reaction 

mass, respectively. 

Figure 2.10: The Reactionless Fast Steering Mirror 

State-of-the-art reactionless mirrors have demonstrated less than ten percent mis¬ 

match in perfect torque cancellation [36]. When the fast steering mirror is to be 

mounted on a space-borne flexible support structure, it would seem that the reac¬ 

tionless feature would be ideal. The CSI challenge would then be limited to the 

large angle slewing problem, since small angle retargeting or high bandwidth stabi- 
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lization would be accomplished with no (ideally) reactive disturbance to the flexible 

support structure. While this appears to be the design method of choice by the 

practicing community, one must recognize the weight penalties that go along with 

the reactionless mirror design (i.e. a reactionless mirror can weigh twice as much as 

a non-reactionless mirror). This is particularly significant when the steering mirror 

comprises a large percentage of the total system weight or is mounted to the tip of a 

lightweight lightly damped flexible structure. 

There are some fundamental similarities between the RMA and the non-reactionless 

fast steering mirror. The dynamics of both can be represented as lightly damped 

second order spring-mass(inertia)-damper systems and both will ‘react’ against the 

structure to which they are mounted. However, while the RMA is intended to react 

against the structure, the fast steering mirror is not. Its objective is simply to po¬ 

sition the LOS of its reflected ray. The transfer function describing this operation 

is 
i 

Jm_ 

tm(s) S2 +2(mUmS+Vm 

where Jm is the mirror inertia, tm is the applied mirror torque, is the inherent 

mirror system damping coefficient, and um is the mirror natural frequency. The 

same transfer function for the reactionless mirror includes two lightly damped closely 

spaced poles. The small separation in these natural frequencies is due to mismatches 

in inertia and spring constants. 

To model the dynamic coupling between the reactionless steering mirror and its 

flexible support structure we need a relationship in the form of equation 2.36 that 

includes the mass (inertia), stiffness, and damping parameters characteristic of the 

reactionless mirror. This equation is derived in a manner similar to the RMA aug¬ 

mentation. First, the diagonal mass matrix is extracted from the kinetic energy 

equation for the ‘stand alone’ reactionless mirror system. The ‘all-inertial’ coordi¬ 

nate basis of this diagonal mass matrix is then transformed to one with relative 

mirror and reaction-mass angles. The damping and stiffness matrices are formed by 

simply adding diagonal elements to the pre-existing damping and stiffness matrices. 

For example, if we assume a zero-mass zero-inertia mirror mounting bracket (i.e. 

no parasitic mass or inertia) and a concentric pivot point for both the mirror and 

the reaction-mass, the kinetic energy of the mirror system in terms of all inertial 
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coordinates is 

— 2[(mTn + Jr ÿm) + Jm^m "t“ *^rm^rmj 

= 2& 
ÿm K 0 rm I 

«i 

(m m T^rm 
0 

0 

0 

(m 

0 

m “t" mrm 

0 

0 

0 

0 

4 

0 

0 

0 

0 

4¿ 

M 

a:, 

2/m 

'rm 

94 

(2.42) 

(2.43) 

= (2.44) 

where the mass matrix M is 4 x 4 diagonal and referenced to all inertial coordinates. 

To include the elements of M with the elements of a larger system mass matrix, 

like [Mr\ of equation 2.36, with mirror and reaction-mass angles in terms of relative 

coordinates, a transformation must take place. This transformation not only converts 

mirror and reaction-mass angles from inertial to relative coordinates but also retains 

r generalized coordinates qr 

£ 

[ xm 2/m ^m ^rm ] * [ * * * #20 2/20 ^20 0m2O 0rm2O ] 

?4T îr+2 

such that 

<Zr+2 — T~lq^ 

where the 4 x (r + 2) transformation matrix T is 

(2.45) 

T = 

0--.0 1 0 0 0 0 

0-.-0 0 1 0 0 0 

0-.-0 0 0 1 1 0 

o ... o o o i e i 

(2.46) 

and 0m2o = 0m ~ 020 and 0rm2o = 0rm — 020- Since the mirror and reaction-mass are 

both assumed to pivot concentrically about the tip batten center-of-gravity, xm and 

y™ are exactly x2o and y2Q of table 2.1. Substituting equation 2.45 into equation 2.44, 

we get 

fC pï+2 TtMT qr+2 (2.47) 
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where [Mr+2] is the system mass matrix that inertially couples the flexible structure 

(and any previously added RM A dynamics included in [Mr]) with the reactionless 

mirror. 

To construct the system damping and stiffness matrices, one must only append 

the 2x2 diagonal reactionless mirror damping and stiffness matrices to [CV] and [Kr] 

of equation 2.36. The augmented system damping and stiffness matrices are of the 

form 

[Cr+l] - 

[a] 

Cm 0 

0 Crm 

(2.48) 

[tfr+2] = km 0 

0 krm 

(2.49) 

where cm, crm, fcm, and krm are the damping and stiffness constants associated with 

mirror and reaction-mass motion relative to to the flexible structure attachment point. 

The net reaction or ‘torque leakage’ Tl into the reactionless mirror support struc¬ 

ture is the difference of the total torques acting on the mirror and reaction-mass 

or 

TL = JmL - JrmOrm (2.50) 

Torque leakage is modeled as small mismatches in inertias Jm and Jrm and applied 

torques tm and trm. 

2.5 Dynamic Characterization of the Flexible Optical System 

This section describes the dynamics of various configurations of the flexible optical 

system model. Each model allows us to examination a unique aspect of the CSI 

problem from the effects of torque leakage to the addition of vibration suppression 

control. We begin with the 61-DOF model of the flexible support structure developed 

in chapter 2 and reduce it to retain 7 descriptive system degrees-of-freedom. We add 

the 1-DOF fast steering mirror model to the 7-DOF structure model to obtain a 
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reasonably low order (8-DOF) flexible optical system model useful for LOS controller 

design. To study the effects of active vibration suppression, single DOF reaction-mass 

actuators are added to the 8-DOF model creating 9-DOF and 10-DOF system models. 

The largest model consists of the 2-DOF reactionless mirror system mounted to the tip 

of the 61-DOF flexible support structure with two 1-DOF reaction-mass actuators, 

one at the tip and one at the mid-span. This ‘full-up’ 65-DOF configuration is 

illustrated in figure 2.1. These configurations are listed in table 2.4. It is important to 

note that any large flexible structure model can be reduced order with a corresponding 

reduction in modal fidelity. One must be careful not to remove those modes that will 

prove to be most troublesome to the particular controller. One hundred percent 

Table 2.4: Flexible Optical System Configurations 

Model 

# 

Flexible 

Structure 

DOFs 

RMA Mirror 

Total 

System 

DOFs 

1 7-DOF none none 7-DOF 

2 7-DOF none 

0
 

0
 

t—
H
 

, 

II 
£

 8-DOF 

3 7-DOF tip/mid tl = 100% 9-DOF 

4 7-DOF tip + mid Tl = 100% 10-DOF 

5 61-DOF tip + mid Tl = 100% 64-DOF 

torque leakage {Tl = 100%) implies a non-reactionless mirror. Models 2-5 can be 

augmented to include the reactionless mirror feature, adding one DOF. 

The seven DOFs selected in the reduced flexible support structure model are 

{2/20 y is y io y 5 ^20 O20 Oo} 

which represent all three DOFs at the truss tip, lateral DOFs along the truss quarter 

points, plus the rotational DOF at the truss hub (see table 2.1). The tip and mid- 

span RMA relative DOFs are 2/2220 and 2/2110, respectively (2/2220 = 3/22 — 2/20, etc) with 

1/22 and 2/21 representing the inertial RMA DOFs. The reactionless mirror DOFs are 

0m2o and 0rm2o, respectively. 
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Dynamic characterizations of the FOS models are performed in the 2nr-order state- 

space. The state models are in the form 

X{t) = AX(t) + BU{t) (2.51) 

Y{t) = CX(t) (2.52) 

where 

u = [fr] 

and where qr and qr are generalized coordinates and their velocities. The state 

vector X is order 2nr x 1 and the input/disturbance vector U is order nr x 1. The 

transformation from the nT system of equations (equation 2.36) to the 2nr state-space 

representation is 

A = 

B = 

-M;'Cr -M;lKr 

1 0 

AT"1 ' 

0 

(2.53) 

(2.54) 

The C matrix of equation 2.52 is constructed 

motion variable (degree-of-freedom) of interest. 

by simply selecting as output the 

Actuators Figures 2.11 and 2.12 are frequency response plots for a representative 

reaction-mass actuator and fast steering mirror for the transfer functions given in 

equations 2.37 and 2.41. Frequencies, /, are presented in Hertz which is related to 

frequencies, w, by / = u/2pi. 

61-DOF Flexible Support Structure Dynamics Figures 2.13-2.15 are fre¬ 

quency response plots for the 61-DOF flexible support structure described in sec¬ 

tion 2.2.4. Figures 2.13 and 2.14 show O0(ju)/t0(ju}) and 02o(/w)/<2o0w) which 

are examples of collocated systems (i.e. the sensor and actuator are collocated). 

Figure 2.15 shows 02o{ju)lto(jw), a non-collocated system. Figures 2.16-2.18 are 

pole-zero maps for the two collocated and one non-collocated transfer functions. The 
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pole-zero interlacing expected in collocated transfer functions of flexible systems is re¬ 

vealed in figures 2.16 and 2.18 [28]. Figure 2.18, the non-collocated transfer function, 

shows the non-minimum phase zeros which so often lead to ’tail-wags-dog’ controller 

instability. 

Of particular interest to the control designer are the transfer function zeros. Pole- 

zero separation dictates the amount of time a mode dwells at -180 degrees of phase 

and therefore must be considered when selecting closed-loop feedback gains. For 

certain types of structural flexibility, the smaller the pole-zero separation the faster 

phase loss from the pole is recovered, thereby limiting the potential instabilities2. 

Figures 2.19 and 2.20 illustrate the magnitude of pole-zero separation on a mode by 

mode basis for two collocated transfer functions expanded in 60 elastic modes. Pole- 

zero separation of the for kth minimum phase elastic mode is described by parameter 

ßk where 

ßk = ffk fc = 1,2, ...,60 (2.55) 

Pole-zero cancellation is implied by /¾ = 1. 

Model#l Figures 2.21-2.23 are frequency response plots for the same transfer 

functions as in figures 2.13-2.15, but for the reduced 7-DOF Model#l. Pole-zero 

maps for the reduced 7-DOF model, similar to those shown in figures 2.16 and 2.17 

show changes in the zero locations, but are most noticeable in figure 2.24-the non- 

collocated case. Zeros movement for the two collocated transfer functions is best 

shown by comparing ßk for the applicable six elastic modes. As seen in figures 2.25 

and 2.26, the reduced order model under-estimates the pole-zero separation for the 

first few critical elastic modes. Figure 2.27 shows the lateral behavior of the flexible 

structure as it undergoes rigid body slew. The motion is induced by the shaped- 

torque command shown in figure 2.28. The four curves represent lateral motion at 

the truss tip, three-quarter point, mid-point, and one-quarter point (y2o Vis Vio 2/s)* 

The relative lack of oscillatory motion at yis is due to the coincidence of that DOF 

with the first bending mode’s anti-node. A sensor placed at yi5 in a feedback loop 

2 Structural flexibility can be categorized into three basic types, each with unique implications to 

the design of feedback controllers [49]. These categories and control implications will be discussed 

in chapter 3 in the context of single mode expansions. 



37 

designed to control the first bending mode would sense little or no motion due to that 

mode. This is commonly referred to as modal unobservability. 

Model^2 The steering mirror is added to the tip of the 7-DOF flexible structure 

model. The mirror can be described either as reactionless or non-reactionless (chang¬ 

ing the degrees-of-freedom by one). The natural frequency of the mirror can also 

be varied, representing either of the two actuators described in section 2.4.2. For 

this research, the mirror mass is fixed at seventy percent of the total system mass 

which is two and one-third times the mass of the flexible support structure. Mirror 

inertia is varied between two tenths percent and fifty percent of support structure 

inertia. Figures 2.29 and 2.30 are frequency response plots for ^o(i^)/ío(i^) where 

the steering mirror natural frequency is 20 Hz (electromagnetic actuator) and 10 kHz 

(piezo-electric actuator), respectively. Figures 2.31 and 2.32 are frequency response 

plots for the mirror transfer function 0m(ja>)/¿m(ja;). Figure 2.31 highlights the rever¬ 

sal in flexible mode pole-zero orientation as a function of actuator natural frequency. 

In figure 2.32 pole-zero separation is shown to be a function of the ratio between 

mirror and support structure inertia. Both effects shown in these two figures have 

significant implicactions in designing a line-of-sight controller. 

Model#3 A single reaction-mass actuator is added, first to the tip, then to the mid¬ 

span of the flexible optical system model#2. Figure 2.33 shows the frequency response 

of the mirror transfer function for the system with a tip-mounted 

RMA and mirror natural frequency of 20 Hz. Figures 2.34 and 2.35 characterize 

the FOS for tip vs mid-span mounted RMA’s. The transfer functions shown are 

ÿ2iio(iw)//2iio(jw) and ^2220(^)/72220(^), where f2no and /2220 are the reaction 

forces acting between the RMA mass and the structure. The RMA mass in figure 2.35 

is ten times that in figure 2.34. The mid-span RMA (left most plots) interacts much 

more with the system flexible modes whereas the tip RMA (right most plots) appears 

to be insensitive to any flexible mode. This ‘insensitivity’ is due to the large mirror 

mass 1ccated at the structure’s tip, reducing the magnitude of the modal contribution 

at the tip. Another way of looking at this is to recognize that adding mass to the tip 

of a beam-like structure tends to fix the free end of the beam or cause it to behave 

more like an anti-node. Structural vibration tends to become ‘uncontrollable’ by way 
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of a tip-mounted RM A, an important fact to recognize if FOS structural vibration 

control is to be attempted. 

Model#4 and Model#5 Model#4 include/ 7-DOF reduced order flexible struc¬ 

ture model, a non-reactionless steering mirro:, plus both tip and mid-span mounted 

RMAs. Figure 2.36 shows the inertial non-reactionless mirror response to a step in¬ 

put in mirror torque. The model is then augmented with a mirror reaction-mass and 

driven at 110% of the mirror torque. This torque mismatch is in addition to the ten 

percent mismatch in mirror reaction-mass inertia. Figure 2.37 shows the mirror and 

the mirror reaction-mass response to a step input in mirror torque. Model#5 con¬ 

sists of the 61-DOF flexible support structure plus the same actuator elements found 

in model#4. Dynamic characterizations reveal only the presence of much higher fre¬ 

quency modes and will not be shown here. Model#5 will be used as the ‘truth’ model 

for LOS controllers designed using reduced order models. 

In this chapter we have described the details of developing and validating models 

of the various elements of a flexible optical system. While the overall system model is 

specific in configuration, it is general in concept. If one looks at large space structures 

in general, one will find similar elements: flexible structures, actuation devices and 

disturbance sources. System uniqueness is found primarily in the mission and mission 

dictates controller bandwidth. The models developed in this chapter reveal various 

aspects of the control-structure-interc^ction problem facing the line-of-sight controller 

designer. 
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Figure 2.11: Reaction-Mass Actuator Frequency Response F,{jw)j 
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Figure 2.12: Fast Steering Mirror Frequency Response 
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Pole-Zero Map for O0(s)/t0(s): 60 Elastic Mode Expansion, 61-DOF 
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Figure 2.18: Pole-Zero Map for 02o(s)/to{s): 60 Elastic Mode Expansion, 61-DOF 

Model 
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DOF Model 
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Figure 2.21: 7-DOF Flexible Support Structure Frequency Response 0o(ju;)/¿o(jw), 

Model#! 



Ph
as

e 
(d

eg
re

es
) 

M
ag

 (d
B

) 

50 

/ 

Frequency (Hz) 

Figure 2.22: 7-DOF Flexible Support Structure Frequency Response 

Mo del# 1 



P
h
as

e 
(d

eg
re

es
) 

M
ag

 (
d

B
) 

51 

1500 

1000 

500- 

0 
io-1 

! 
: 

i 

nrr 

: i i 
1 i 1 

. 1..U 

TI- 
: : 
i : 

u 
: 1 

—! ! ! ! 
: i : : 
: i i : 
: : : : 
mi 

,* 

! 
: 
i 

.... 

: : : : : 
i : i : i 
i i i : : 
: i : : : 

Mi:! 
• :. 

. 

. 

^ ! ! rr 
i : i ; 
i : i i 
: i : : 

i 
i 
i 

i 1 i 
i i : 

i! 

I! 
: : : T 

mí 
: : 
i - i i i i 

i: 
ü_ — 

: : : : 
—L_i Li. 

10° IO" 

Frequency (Hz) 

Figure 2.23: 7-DOF Flexible Support Structure Frequency Response 02o{jw)/to{ju>), 

Mo del# 1 



52 

1000 

800 

600 

400 

200 

0 

-200 

-400 

-600 

-800 

-1000 

T- -j- 

X 

i 

— — 

* 

i 

0 o 

i 

0 
L 

L ° 
o 

: 
1 

: 

0 

: 
o 

Í 

X 

i _ 

X 

X 
-i_ i _ 

-600 -400 -200 0 200 400 600 

Figure 2.24: Pole-Zero Map for O^s)/tn(s): 6 Elastic Mode Expansion, Modelai 



be
ta

(k
) 

53 

4.5 

4 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 
0 10 20 30 40 50 60 

Elastic Mode, k 

+ 

— — — 

0 

+ 
+ 

0 

t 

+ o 
0 

-.O..+. + +.+.. 

_ 

• + 
.+...++.+.++++^ 

+ + 

_ 

• ..fi •+• kf •.+. ^.. 

_ 

-.+.++1 +.+.^.+ +^ 

Figure 2.25: Pole-Zero Separation for 0o(s)/io(s): 6 Elastic Mode Expansion (o), 60 

Elastic Mode Expansion (-f ), Modelai 



54 

§ 
I 

— — 

+ 

« O 
• 

-.?•+■+•+•+■- 
0 

« 

. 

_ 

....+.+ .+....+.+.+ .+ .44 + +.+.^. + ^ + +. + .. 

-i_ 

..+.+++.+.++++^ 

i 

•+"++ + +■+•+•+•4— 

O 10 20 30 40 

Elastic Mode, k 

50 60 

Figure 2.26: Pole-Zero Separation for 02o(s)/¿2o(s): 6 Elastic Mode Expansion (o), 

60 Elastic Mode Expansion (+), Modelai 



55 

Figure 2.27: 7-DOF Flexible Support Structure Slew Response, Modelai 
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Figure 2.28: Shaped-Torque Command Applied to Flexible Support Structure, All 

Models 
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Figure 2.29: Frequency Response 0o(jw)/*o(j^), Mirror ion = 20(27t) rad/sec, 

Model#2 
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Figure 2.30: Frequency Response 0o(Íw)/<oÜw), Mirror w„ = 10,000(2^) rad/sec, 

Model#2 
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Figure 2.31: Frequency Response 8m(ju})/tm(jw), Mirror un = 20(27r) rad/sec & 
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Figure 2.32: Frequency Response 6m(ju>)/tm(ju), Mirror wn = 20(27r) rad/sec, Mirror 

Inertia as Percentage of Truss Inertia, Model#2 
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Figure 2.33: Frequency Response Mirror un = 20(27t) rad/sec, Tip- 

Mounted RM A, Model#3 
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mrma, Model#3 

Frequency (Hz) 

Frequency Responses 

)//2220 (jw) (right plots), RM A mass = 



P
h

as
e 

(d
eg

re
es

) 
M

ag
 (

d
B

) 

63 

Frequency (Hz) Frequency (Hz) 
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10 X mrma, Model#3 
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Figure 2.36: Non-Reactionless Mirror Response to Mirror Torque Step Input, 

Model#4 
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Figure 2.37: Mirror and Mirror Reaction-Mass Response to Mirror Torque Step Input, 

Model#4 



Chapter 3 

THE MODIFIED BENCHMARK PROBLEM: 
CONTROL-STRUCTURE INTERACTION EXPLORED 

3.1 Overview 

Control-Structure Interaction (CSI) phenomena present a technical challenge to the 

structures and controls community. Any time lightly damped flexible structures are 

actively controlled, the interaction between the controller and the structure being 

controlled can cause instabilities or critical loss of performance. Understanding the 

source of CSI phenomena and designing controllers to minimize the impacts are the 

subjects of extensive current research [3, 18, 39, 48, 49, 59]. The purpose of this 

chapter is to explore the CSI problem as it pertains to the flexible optical system. 

3.2 Structural Flexibility Characterization 

Fast pointing and large disturbance rejection are accomplished with high loop gain 

in the line-of-sight controller. High loop gain is limited by structural flexibility and 5 

sensor/actuator dynamics. Different types of structural flexibility impact closed- 

loop performance differently. Useful terminology characterizing structural flexibility, 

provided by Spanos [49], will be used in this research. Spanos focuses on the rigid 

body control of flexible structures. We extend that work to the control of a reaction 

actuator mounted to a flexible structure. 

Finite element models of real flexible systems tend to be of large order. Trans¬ 

fer functions describing the dynamics between a single sensor/actuator pair include 

an equally large number of expansion terms, hiding the individual mode pole-zero 

relationships. It is these modal pole-zero relationships that characterize structural 

flexibility. The impact of varying structural flexibility given relatively fixed pole-zero 

separations on closed-loop control is best seen using single-mode models. Single¬ 

mode models of multi-mode systems are often used for initial compensator design 
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and closed-loop stability and performance assessments. In this section we will discuss 

structural flexibility in the context of a single-mode model. 

Rigid-Body Control 

In the last three decades much has been done to treat the problem of controlling 

the rigid-body of a flexible structure. Gevarter [19, 20], in his treatise on basic 

relations on the control of flexible structures, may have been the first to use the 

terms ‘collocation’1 and ‘non-collocation’ to describe the coincidence of sensors and 

actuators. His work is cited by many as the source of stability guarantees for the 

collocated control problem using proportional plus derivative (PD) control. J.T. 

Spanos[49], also treating the rigid-body control of flexible structures, contiibuted 

insight to the problem by offering convenient structural flexibility classifications. In 

his work, Spanos begins with the basic rigid-body control transfer function describing 

the dynamics between a collocated or non-collocated sensor and actuator. We begin 

this section with that same formulation. 

The single-input single-output (SISO) transfer function between a non-reaction 

actuator2 at DOF i and a sensor at DOF j is 

9j(3) _ Óik^jk /o i \ 

fi{s) fr[s2 + 2(uks + u>l 

where qj and /t- are nodal displacements (angles) and forces (torques), respectively, 

and the pair represents the nr natural frequencies and corresponding mode 

shapes (normalized to unit mass), Ç is the modal damping coefficient. For a system 

with R rigid body modes the effective rigid body inertia J can be obtained in terms 

of the mode shapes as follows 

J = 
1 

ÿtkÿjk 
(3.2) 

1 When a translation or rotational sensor occupies physically the same motion degree-of-freedom 

as, respectively, a force or torque actuator. The term is used in the classical sense to describe the 

placement of sensors and non-reaction actuators. 

2 Non-reaction actuators apply external forces (torques) while reaction actuators apply internal 

forces (torques) to the controlled structure. Momentum wheels and cold-gas jets are typically 

used as non-reaction actuators while reaction-mass actuators and steering mirrors are reaction 

actuators. 
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Equation 3.1 represents an exact residues model of the SISO plant and is dynamically 

equivalent to equation 2.36 for the element of (¾. and the i1*1 element of fr. 

An appropriate single (flexible) mode model for the ‘rigid-body’ control problem 

would be 
ffji’5) _ _J_fak^jk /ß ß\ 

f¡{s) s*+ 2Çuks+u>l 

Simplifying equation 3.3 gives 

qj(s) _ 1 akS2+ + 

fi(s) J s2(s2 + 2(u>kS + wl) 
(3.4) 

where k can be any of the lR + V or greater flexible modes. If the kth mode is 

minimum phase it can be shown that 

ak = (3.5) 

where ak is the modal participation factor and flk is the zero frequency of the single¬ 

mode plant. Note that ßk of equation 2.55, which is used in section 2.5 to describe 

pole-zero separation in multi-mode systems, is the square root of ak defined above. 

It is also important to note that fi* is not necessarily equal to the corresponding ktl1 

exact zero frequency of the multi-mode model. Only if the exact zero irequency is 

known and used in equation 3.5 will equation 3.4 accurately represent the system 

over the frequency range of interest. If we assume constant damping throughout all 

flexible modes, structural flexibility is uniquely identified by the pair {a*, uj/J. In 

addition, structural flexibility can be uniquely characterized by ak. Assuming zero 

damping, the single-mode model s-plane pole-zerp patterns shown in figure 3.1 are 

possible. 

In view of figure 3.1, the following definitions are provided [49]. 

1) An appendage mode is one whose zero lies on the imaginary axis of the s-plane 

and is smaller than its pole, or simply a* > 1- 

2) An in-the-loop minimum phase mode is one whose zero lies on the imaginary 

axis of the s-plane and is larger than its pole, or simply 0 < ak<l. 

3) An in-the-loop nonmimimum phase mode is one whose zero lies in the right 

half of the s-plane, or otk < 0. 
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Two conclusions can be made with regard to the rigid-body control problem, 1) col¬ 

located control results in appendage modes, though appendage modes may also occur 

in some non-collocated systems, and 2) Non-collocated control results in both types 

of in-the-loop modes [49]. 

With these definitions, we can characterize the structural flexibilities observed in 

the system frequency response plots shown in section 2.5. For example, reviewing 

the two collocated system frequency response plots in figures 2.13 and 2.14 with 

their accompanying pole-zero maps in figures 2.16 and 2.17, one can clearly see that 

the structural flexibility is comprised exclusively of appendage modes. Recalling 

that = ßl, figures 2.19 and 2.20 reveal the same information more clearly for 

high frequency modes. The non-collocated system shown in figures 2.15 and 2.18 

is comprised of primarily in-the-loop nonminimum phase modes at low frequency. 

Higher frequency structural flexibility consists of a mixture of all three types. 

We will extend these conclusions to the case of controlling an attached reaction 

actuator and show that both minimum and nonminimum phase modes can occur 

even in collocated systems. Of course, the term ‘collocated’ is really only suitable 

in describing the control of a non-reaction actuator. In the next section, we will 

introduce and define a new term ‘bicollocation5 which is more suitable to the control 

of a reaction actuator. 

Reaction Actuator Control 

A reaction actuator is attached to its support structure by some sort of potential 

energy device, such as a spring; whereas the non-reaction actuator has no such spring¬ 

like restraint. Consequently, the non-reaction actuator has but one relevant degree- 

of-freedom, that being the DOF at which the actuator applies its force or torque to 

the flexible structure. The reaction actuator, on the other hand, has three relevant 

degrees-of-freedom, the DOF at which the spring is attached to the flexible structure, 

the DOF at which the reaction actuator ‘acts’ onto the structure, and the DOF 

at which the reaction actuator ‘reacts’ against the structure. In addition to these 

degrees-of-freedom, both the non-reaction actuator and the reaction actuator control 

problems must consider sensor location. Therefore, the non-reaction actuator control 

problem has only two relevant degrees-of-freedom, whereby the terms ‘collocation’ 
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and ‘non-collocation’ get their meaning. The reaction actuator control problem then 

has four relevant degrees-of-freedom. Figure 3.2 illustrates these relevant degrees-of- 

freedom for the reaction actuator control problem. 

At this point we introduce the term ‘bicollocation’. The illustration in figure 3.2 

describes the four relevant degrees-of-freedom for the reaction actuator control prob¬ 

lem. The spring attachment point is the reference DOF V and is specified within 

the mass and stiffness matrices and therefore fixed within the structure of the modal 

matrix, ¢. The sensor DOF ‘j’ is shown in figure 3.2 as variable from si to s5, for 

this simple lumped mass system. The action and reaction DOFs are, respectively, 

and lh\ Anytime j = i we are collocated in the classical sense. However, with 

the reaction actuator control problem, there are two additional important degrees- 

of-freedom. Only when both j = i and r = /¾ are we bicollocated. One can readily 

see that we can pose a non-bicollocated reaction actuator control problem and still 

be collocated in the classical sense. One must be very careful not to assume the 

stability guarantees with regard to collocated control when dealing with the case of 

non-bicollocation with classical collocation. In fact it will be shown later that such a 

collocated but non-bicollocated problem can yield nonminimum phase zeros in the re¬ 

action actuator transfer function. It will also be shown that bicollocation guarantees 

minimum phase zeros in the same transfer function. 

The SISO transfer function between an actuator acting at DOF i and reacting 

against DOF h and a sensor at DOF j is 

ÿjkfiik ~ ^jk^hk 

fih(s) ¿Í s* + 2Cuks+ul 
(3.6) 

where qj and /,^ = /,- — //, are nodal displacements (angles) and reactive (internal) 

forces (torques), respectively and the pair represents the nr natural fre¬ 

quencies and corresponding mode shapes (normalized to unit mass), £ is the modal 

damping coefficient. Note that equation 3.6 can be used to describe both bicollocated 

and non-bicollocated reaction actuator transfer functions. The effective rigid body 

inertia J for a system with R rigid body modes is now defined by 

J = 
- <¡>hk) 

(3.7) 
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However, because rigid body mode shapes are constant 

<l>ik — 4>kk & = 1,...,12 (3.8) 

and no rigid body motion results from the control of reaction (internal) forces. So, 

&(5) 
nr 

= E <l>jk$ik - 
(3.9) 

Equation 3.9 represents an exact residues model of the SISO plant and is dynamically 

equivalent to equation 2.36 assuming that the elements of vectors qr and fr correspond 

to appropriate reaction actuator DOFs and forces. 

Like the rigid body control transfer function of equation 3.3, we desire a reaction 

actuator control transfer function expanded to include one flexible body mode of the 

form 
Qji3) _ (ßja^ia ~ $ja$ha , ^jk^hk /«, . q-* 

fih(s) s2 + 2(auas + s2 + 2Cuks + Lúl 

Simplifying equation 3.10 we get 

Qji3) = (ya + V>k)s2 + 2((fia(uk + <Pk(aua)s + {(paul + VkUp 

fih(s) (s2 + 2(au>as + ul)(s2 + 2(uks + ujI) 
(3.11) 

where 

= <f>ja<ßia fija^hai tyk ^ ^jk^ik ~ fijk^hk 

This single-mode expansion of the reaction actuator transfer function shows one set 

of complex conjugate poles associated with the actuator with a complex conjugate 

pole-zero pair associated with the flexible body mode. The single-mode model flexible 

mode zero frequency is defined as 

iî? = (vW + 
(fa + <Pk) 

(3.12) 

The modal participation factor ak from equation 3.5 can be computed and the 

same criteria characterizing structural flexibility applied. Again, it is important to 

note that fi* is not necessarily equal to the corresponding kth exact zero frequency of 

the multi-mode model. If the exact zero frequency and damping are known they can 

be substituted directly. 



72 

To form either of the single-mode expansion transfer functions, we can use the 

standard modal controllability and observability matrices to determine which modes 

dominate actuator dynamics. If one mode clearly dominates actuator dynamics, a 

single-mode approximation of the multi-mode system can be formed by setting a to 

the dominant actuator mode and k to any of the remaining nr — R — l flexible body 

modes3. 

Assuming zero damping on both actuator and structural modes, six variations of 

the three basic flexibility types for the single mode reaction actuator transfer function 

are possible. Figure 3.3 illustrates these six pole-zero patterns. Unlike the rigid body 

transfer function where classical collocated control always results in appendage modes, 

classical collocated control on a reaction actuator transfer function can result in any 

of the six pole-zero configurations shown in figure 3.3-even in-the-loop nonminimum 

phase modes (for the non-bicollocated case). 

Some generalizations regarding bicollocation vs non-bicollocation and the resulting 

flexible mode type can be made. Equation 3.12 can be rewritten 

0? = 
Va 

Va +V*. 
Uk + 1- Va 

Va + Vfc. 
(3.13) 

The six flexibility types shown in figure 3.3 can be grouped in pairs (Cases I-III) 

according to the parameter <p<,/(<pa + <-Pk)- We can guarantee strictly minimum phase 

flexible modes (either appendage or in-the-loop minimum phase) if 

0< Va 
< 1 

Va + Va 

which ensures an in-the-loop minimum phase mode where 

(3.14) 

ul<nl<u>l (3.15) 

or an appendage mode where 

“I <nl<u¡ (3.16) 

3 In modally dense systems with strong inertial and/or elastic coupling, actuator dynamics may 

not be clearly dominated by any single mode. In such a case, single-mode expansions within 

a specified frequency range can be derived. Any clear distinction between actuator modes and 

structural modes may be lost. 
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Note that equation 3.14 holds only if c^a and <pk have the same sign. If this is the case, 

we can conclude that the resulting single-mode model flexibility type is guaranteed 

to be minimum phase. Whether this minimum phase flexible mode is appendage 

or in-the-loop depends on the ratio u^/u;*. Unfortunately, we cannot generalize the 

minimum phase guarantees in terms of classical collocation. If, however, we have 

bi-collocated control, v/e can guarantee the presence of only minimum phase modes, 

either appendage or in-the-loop. This guarantee will be developed further in chapter 

4. To illustrate this method, consider the following example. 

Given {wjt, <£*},& = 1,..., nr for our full DOF model including a reaction actuator 

whose dynamics can be correctly described by {o;a, <^a}. The actuator ‘acts’ onto DOF 

i and ‘reacts’ against DOF h. The reference DOF is specified internal to the modal 

matrix and located at DOF r. We would like to design a controller for this reaction 

actuator using a sensor at DOF j. Without actually building any transfer functions 

in the form of equation 3.10, we can discern the character of the included flexible 

mode k by evaluating (pa and tpk- If we also know £a and £* we can fully evaluate 

the numerator of equation 3.11 thereby determining precisely the flexible mode type. 

Moreover, we can say that if tpa and have the same sign, the structural flexibility 

will be an in-the-loop minimum phase mode if u)a > w* and an appendage mode if 

uja < Ljjt. These two cases are shown in figure 2.31 for reaction actuator (steering 

mirror) natural frequencies of 20 Hz and 10 kHz. This figure highlights the potential 

problems associated with controlling mirrors with high natural frequencies attached 

to flexible structures. In order to evaluate the control implications of these structural 

flexibility types, a simple single-mode example will be formulated. 
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Figure 3.1: Rigid Body Control Structural Flexibility Characterizations: Pole-Zero 

Patterns, Appendage Mode (left), In-the-Loop Minimum Phase Mode (center), In- 

the-Loop Nonminimum Phase Mode (right) 

s5 s4 S3 s2 SI 

sensor DOF = j 

action DOF = 1 

reference DOF s r 

reaction DOF = h 

B1C0LLQCATED NQfchBl COLLOCATED 

J = 1 
r = h 

a) J*1 
r/ h 

collocated In 
classical sense 

b) JH 
r s h 

c) j f 1 
r f h 

Figure 3.2: Reaction Actuator Relevant Degrees-of-Freedom: Bicollocation vs. Non¬ 

bicollocation 



75 

X öa 

o o* 
X ®k 

Û<at < 

Case I 

<P 0<- 
_ <Pa+9i 

<1 
O o* 

X ». 

a* > 

A Oi 

>C »3 

X 

Q<a* < 

Case II 

9. 

<Pa +(Pt 
<0 

X 
X ©a 

0 & 

O-1- 
a* >1 »k<0 

)C a. 

» 

Ò ûk 

o— 
ttk > i íx^ < o 

Case 

<p; 

¢3 +<Pk 
>0 

Ok 

X (o* 

X 

Q<ak <] 

Figure 3.3: Reaction Actuator Single-Mode Model Structural Flexibility Characteri¬ 

zations: Pole-Zero Patterns 



76 

3.3 The Modified Benchmark Problem 

The two-mass, spring-damper model, shown in figure 3.4, has been lending insight into 

the various aspects of the structural control problem for years. The model is so well 

known, it often referred to as the benchmark problem model. In recent months, the 

benchmark problem has been the subject for robust control research in the aerospace 

community [54, 7, 10, 27, 12, 43]. The model is attractive because its dynamics are 

relatively simple and yet representative of the dynamics in many of today’s aerospace 

vehicles. 

With simple modifications, the benchmark problem can be made to represent the 

fundamental dynamics of the flexible optical system developed in chapter 2. The 

flexible optical system model consists of 62 DOFs and 62 modes. Of the 62 modes, 

one represents rigid body motion about the hub, one represents the fast steering 

mirror motion, and the remaining 60 are flexible support structure elastic modes. 

The benchmark problem is modified by adding a spring-mass-damper (SMD) system, 

representing the fast steering mirror. Figure 3.5 illustrates the modified benchmark 

problem model; the SMD is emphasized with cross-hatching. The modified bench¬ 

mark problem model dynamics include one rigid body mode, one lightly damped 

structure dominated flexible mode, and one mode dominated by the SMD. The con¬ 

trol objective is twofold: first, reject force, displacement, and measurement noise 

disturbances; second, position xa in inertial space in a prescribed amount of time 

using fc. With this simplified model, CSI phenomena relevant to the flexible optical 

system can be studied. 

3.3.1 Performance Specifications and Disturbance Models 

The modified benchmark problem performance requirements and disturbance models 

are relevant to the high bandwidth, high precision flexible optical system. Perfor¬ 

mance is specified in two categories-jitter4 stabilization and retargeting. The per¬ 

formance scenario we are modeling requires moving the optical line-of-sight círet 

displacement units (du) and settling to less than ctot RMS jitter with an allowable 

offset error of ±^Stot within írms seconds. The LOS must dwell at the new posi- 

4 The term ‘jitter’ is used to describe vibration in each axis of the line-of-sight. 



Figure 3.4: The Two-Mass Spring-Damper Model 

Figure 3.5: The Modified Benchmark Problem 
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tion inside the offset error and within the allowable RMS jitter for tdwell seconds. 

A total of ten retargeting cycles are required. The jitter tolerance is based upon a 

root-mean-square average of the three jitter (noise & disturbance) sources shown in 

figure 3.10. The total allowable jitter is a measure of the LOS stability (lack of vibra¬ 

tion) required to perform its mission. Table 3.1 summarizes these requirements. The 

Table 3.1: Modified Benchmark Problem Performance Requirements 

Command Response Specifications 

step command, yc 

settling time to RMS window, Írms 

dwell time in RMS window, tdwell 

RMS window offset error, y{tRMs) — Vc 

goal 

tolerance 

1.00 du 

0.05 seconds 

0.05 seconds 

0.00 du 

±400//du 

Error (Jitter) Budget 

Input Disturbance Output Error 

force, fd 

displacement, Xd 

measurement noise, m 

S/d < 60/idu RMS 

eXd < 60/idu RMS 

em < 60//du RMS 

total RMS Jitter Etot < 100/idu RMS 

RMS window and offset error are defined in figure 3.6. The input and resulting out¬ 

put power spectral density (PSD) for each disturbance listed in table 3.1 is provided 

in figures 3.7, 3.8, and 3.9, respectively. Input and output RMS are also provided. 

The force disturbance represents a mirror cooling disturbance acting directly on the 

mirror inertia. The displacement disturbance could be any atmospheric turbulence 

encountered between the mirror and the LOS sensor. Measurement noise represents 

spurious high frequency signals passing through the optical sensor. 
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Figure 3.6: RMS Window and Offset Error 
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Figure 3.7: Disturbance PSD: Input Force-Output Displacement 
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Figure 3.8: Disturbance PSD: Input Displacement-Output Displacement 
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Figure 3.9: Measurement Noise PSD: Input Displacement-Output Displacement 
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3.3.2 The Plant and Controller Dynamics 

A block diagram describing the plant and controller structure is shown in figure 3.10. 

The disturbance models are incorporated directly into the state space model of G(s) 

and are driven by unity variance gaussian white noise. 

nf nx nm 

Figure 3.10: The Controlled Modified Benchmark Problem Block Diagram 

The Plant 

The plant consists of two independent sub-plants: the SMD and the flexible support 

structure. In practice, it is realistic to expect that each would be designed and built 

independently for later integration as a total system. The same philosophy is taken 

here, with interesting consequences reported. Similar to the fast steering mirror, the 

SMD is modeled as a lightly damped mass with a spring restoring force. For simplicity, 

the mass is normalized to one. The spring and damper constants are selected to 

reflect the SMD natural frequency. The SMD natural frequency can vary to reflect 

the two most common types of fast steering mirror actuators: electro-magnetic or 

piezo-electric. Electro-magnetic actuators deliver force while piezo-electric actuators 

deliver displacement. Fast steering mirrors driven by electro-magnetic actuators are 

characterized by low natural frequencies (10-20 Hz) while those driven by piezo¬ 

electric actuators can have natural frequencies approaching 10-20 kHz. However, 



84 

structural resonances within the mirror itself may preclude taking full advantage of 

the high bandwidths provided by the piezo-electric actuator. 

The transfer function for the uncoupled SMD, given in equation 3.17 below, is 

derived assuming a rigid mount. A rigid mount can be simulated by letting 7np = oo 

where mp is the ‘parasitic’ mass associated with the SMD sub-plant shown in fig¬ 

ure 3.5. 
Xa(s) 

^(5) s2 + 2(aujas + w2 
(3.17) 

where, 

The flexible support structure sub-plant, or the benchmark problem model in this 

case, is described by the following transfer function relations. 

AVs) = + 
F(s) Ms2[s2 + 2(pups + u2] 

^2(-3) _ ~i^s2 + 2Cpups + ^p] 

Fc(s) Ms2[s2 + 2(pups + u)2] 

where, 

(3.18) 

(3.19) 

2Lojp = 
M 

,m1m2 
c2¡ c^p = 

M 

771} 77^2. 
¿2, M = (m! + m2) 

In terms of flexibility types, the non-collocated transfer function in equation 3.18 is 

somewhat unique in that a2 = zero5. The general case of a* = 0 actually describes 

a degenerate in-the-loop minimum phase mode and can only occur when the single¬ 

mode expansion fully describes the system. This can happen in a lumped two-mass 

system like the benchmark problem, or a continuous system discretized into two 

degrees-of-freedom. If this is the case and if damping between the two DOFs is 

zero a negative real axis zero will result. For the collocated transfer function in 

equation 3.19, a2 = (M/7n2) > 0 which describes an appendage mode. 

5 The subscript ‘2’ indicates that = 2 or that we are looking at the 2nd system mode. In this 

case, the first system mode is rigid-body. 
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When the SMD is connected to the flexible support structure, shown in figure 3.5, 

the SMD and support structure equations become coupled. The coupled plant can 

be described by the following fourth and sixth order transfer function relations. In 

deriving these equations of motion, = 0, for simplicity. 

Xfl(¿) _ mi772252 + c2(mi + 1712)3 + £2(7721 + m2) 

Fc(s) a4S4 + CL3S3 + 02-52 + fli-s + û0 
(3.20) 

where, 

X2{s) _ -ma(mis2 + c2s + k2) 
Fc(s) a4s4 + 03<s3 + a2s2 + axs + aQ 

Xjjs) __-ma(c2s + £2)_ 
Fc(s) a4s4 + a353 + a2s2 + ais + a0 

Xg(s) __ C2CgS2 + (C2£q + Cgk2)s + £2£a 
F(s) s2[a4s4 + a3s3 + a2s2 + a-[S + a0] 

cl4 — mim2ma 

(3.21) 

(3.22) 

(3.23) 

as - c2ma(mi + m2) + cami(m2 + ma) 

Ö2 = c2ca(mi + m2 + ma) + £2ma(mi + m2) + £ami(m2 + ma) 

ai = (¾^ + c2£a)(rcn + m2 + ma) 

do = k2ka(mi + m2 + ma) 

The flexible mode in each of the transfer functions of equations 3.20-3.23 are all 

minimum phase. The specific type of structural flexibility depends upon the param¬ 

eters (fia and (pk which are functions of the mass, damping, and stiffness factors. The 

denominator roots of equations 3.20-3.23 reveal an interesting trend in the movement 

of the SMD and flexible mode frequencies. When the flexible support structure and 

SMD natural frequencies are fixed and the actuated mass ma increases with respect 

to the flexible support structure masses mi and m2, significant inertial coupling be¬ 

tween the two sub-plants occurs and the two sub-plant mode frequencies and damping 

coefficients diverge. Figure 3.11 shows this divergence as a function of mass ratio fi 

where 
m0 

P =-;- mi + m2 
(3.24) 
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mu=ma/(ml+m2) 

Figure 3.11: Tip Mass Effect on Modal Frequency and Damping 
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The divergence of system mode frequencies can pose some interesting stability 

and/or performance problems, especially since controllers for fast steering mirrors are 

generally designed under a ‘rigid’ rather than ‘flexible’ support structure assumption. 

For example, consider an actuated mass comprising 70% of the total system mass. 

This equates to a mass ratio ¡i of 2.33, which increases the frequency of the SMD 

dominated mode by a factor of nearly 2.3. Controllers tuned to the rigidly supported 

SMD using notch filters, for example, may destabilize the coupled system or deliver 

degraded performance. 

Note that the numerator zeros of equations 3.20-3.23 are not functions of ma. 

Consequently, as ma increases and the system poles diverge, the system zeros remain 

fixed. It is this pole-zero ‘spreading’ that adversely contributes to CSI instabilities in 

certain structural modes. This issue will be further examined in section 3.4. 

The Controller 

Due to the zero steady-state offset error goal and the relatively slow and lightly 

damped nature of the SMD, a PID controller is selected. The SMD natural fre¬ 

quency (u;a) and damping coefficient ((a), described by equation 3.17, were set to 

10 Hz and .01 respectively with actuated mass raa = 1. Using a simple pole place¬ 

ment technique the controller parameters were selected to achieve the performance 

requirements outlined in table 3.1. The controller transfer function is 

K{s) = K 
kdS2 + fcpS + h 

s 
(3.25) 

where, 

K = 1300, kd = 1, kp = 600, k( = 50000 

Controller parameters were selected under the assumption that the SMD is mounted 

to a rigid rather than flexible body. Design under this ‘rigid’ support structure 

assumption is quite common in practice [36, 34, 49, 15]. 
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3.4 Closed-Loop Analysis: The Rigid Controller on the Flexible Structure 

Actual performance for the PID controlled SMD under ‘rigid’ support is provided in 

table 3.2. SMD characterization and performance plots are provided in figures 3.13- 

3.16. The sensitivity and complimentary sensitivity functions graphically depict how 

disturbances pass through the closed loop system. The output disturbance PSDs 

and RMS values shown in figures 3.7, 3.8, and 3.9 are direct consequences of the 

accompanied input disturbance PSDs convolved with the appropriate sensitivity or 

complimentary sensitivity function. For simplicity, the input disturbance RMS levels 

were determined to force the resulting SMD output RMS levels to meet performance 

requirements. Figure 3.14 shows the locus of closed loop roots as forward loop gain, 

K, is varied from 0 to 1300. Figure 3.16 shows the output response Xout(t) for the 

commanded ten engagement square wave Xc(/)6. Enlargements of the first and ninth 

engagements show Xoui{t) entering the offset error tolerance band of ±400^du with 

less than 100/idu jitter. 

To examine the CSI phenomena, the SMD is mounted to the flexible support struc¬ 

ture in the manner shown in figure 3.12. Four case studies are presented describing 

CSI effects ranging from critical performance degradation to system instability. In 

each case the total system mass is held constant (rai +ra2+raa = 1.44) with ma = 1.0 

rendering a mass ratio p = 2.33. Damping coefficients (p and (a were set to .1% and 

1% of critical, respectively. The SMD natural frequency wa is constant at 10(2pz) 

rad/sec (10 Hz) with ka = 3947.84. In cases 1-4 ¿2 is varied to represent ‘soft’ versus 

‘stiff’ flexible support structures. The resulting support structure natural frequency 

wp, defined by equations 3.18 and 3.19 are 1 Hz, 10 Hz, 100 Hz, and 500 Hz, for cases 

1-4 respectively. These four case studies allow us to examine the CSI effects due 

to structural resonances less than, equal to, and greater than the actuator natural 

frequency, and both less than and greater than the SMD control loop crossover fre¬ 

quency. Simulated jitter stabilization performance for the four contoiled benchmark 

model case studies is summarized in table 3.4. 

Flexibility types can be estimated from the pair assuming zero damping. 

In these four case studies, tpa and tpk are of the same sign thereby defining the resulting 

structural flexibility as either an appendage or in-the-loop minimum phase mode. 

6 See figure 3.10. 
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Table 3.2: Spring-Mass-Damper (SMD) Under Rigid Support: Simulated Perfor¬ 

mance 

Command Response Performance 

step command, yc 

settling time to RMS window, írms 

dwell time in RMS window, tdwell 

RMS window offset error, y(tRMs) ~ Vc 

1.00 du 

0.042 seconds 

0.058 seconds 

0.00 du 

Error (jitter) 

Input Disturbance Output Error 

force, fd 

displacement, 

measurement noise, m 

efd ^ 60/zdu RMS 

£xd < 60//du RMS 

em < 60/zdu RMS 

total RMS Jitter £tot ^ 100//du RMS 

Interchanging mode £a’ with ‘k5, which can occur when wa and wv are closely spaced, 

simply changes the flexibility type from appendage to in-the-loop minimum phase or 

vice versa without affecting the estimate of fundamental pole-zero structure. Table 3.3 

summarizes the structural flexibility parameters and the resulting flexibility types for 

each case. 

Case 1: (wa = 10(27r) rad/sec and wp = l(27r) rad/sec) 

In this case the SMD is mounted to a less massive, ‘soft’ flexible support structure. 

The forward loop frequency response is shown in figure 3.19. As predicted in the 

coupled system equation 3.20 the system zeros are equal to the poles of the flexible 

support structure (benchmark problem sub-plant) defined in equation 3.19. The pole- 

zero separation is a function of the mass ratio fi. A larger mass ratio equates to wider 

pole-zero separation. The root locus plots in figures 3.20 and 3.21 show that the 

flexible mode is potentially unstable but in this case gain stabilized. Often times, 

the course granularity on a Bode plot hides pertinent stability information in the 

vicinity of the OdB line. For this reason a Bode plot is generated (figure 3.22) with 
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xd 

Figure 3.12: The Modified Benchmark Problem Controller Architecture 

Table 3.3: Case Study Structural Flexibility Summary 

Case a* Type 

i .9993 .5897 In-the-Loop Minimum Phase 

2 .9167 .5455 In-the-Loop Minimum Phase 

3 .9760 1.0235 Appendage Mode 

4 .9990 1.0009 Appendage Mode 

finer granularity around the frequency of potential instability. A Nyquist plot in the 

same frequency range (figure 3.23) verifies system stability. A comparison between 

the SMD and modified benchmark closed loop frequency response plots is provided in 

figure 3.24. Command response performance loss is revealed in the curves provided 

in figure 3.25. Table 3.4 shows the source of jitter stabilization performance loss to 

be 6fd. Figure 3.26 compares the three appropriate disturbance rejection transfer 

functions (sensitivity functions) for the SMD and the Case 1 modified benchmark 

problem. The top left curves verify that the low frequency support structure flexible 

mode amplifies low bandwidth force disturbance /^. Output jitter due to displacement 
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disturbance Xd and measurement noise m are not significantly different from the SMD. 

Case 2: (wa = 10(27t) rad/sec and wp = 10(27t) rad/sec) 

The support structure here is less massive but of comparable stiffness. The coinci¬ 

dence of the two natural frequencies at 10 Hz creates coupling that prevents clear dis¬ 

tinction between the SMD and flexible structure modes. Consequently, the resulting 

flexibility type can be described as either in-the-loop minimum phase or appendage. 

The forward loop frequency response is shown in figure 3.27. The magnitude plot 

suggests a gain stabilized flexible mode, however, root locus plots (figures 3.28 and 

3.29) show that in fact the structural flexibility is unstable, albeit slow. As with case 

1, finer granularity about the zero frequency is required, this time revealing a clear 

drop in magnitude below OdB (figure 3.30) and an unstable excursion through the 

unit circle (figure 3.31). A comparison between the SMD and modified benchmark 

closed loop frequency response plots is provided in figure 3.32. Command response 

performance loss is revealed in the curves provided in figure 3.33. Jitter stabilization 

results were not obtained because the closed loop system is unstable. 

Case 3: (wa = 10(27t) rad/sec and wv = 100(27t) rad/sec) 

The SMD is mounted to a less massive but more stiff support structure. The two sub¬ 

plant natural frequencies are separated enough to allow a clear distinction between 

SMD and structural flexibility modes, yet still below the SMD control loop crossover 

frequency of approximately 230 Hz. The forward loop frequency response is shown 

in figure 3.34. The structural flexibility type is clearly an appendage mode and, 

under the existing control law, not a potential cause of CSI instability. It should 

be noted, however, that unmodeled sensor dynamics or filters designed to attenuate 

noise or prevent aliasing in digital implementation can introduce sufficient phase lag 

at an appendage mode causing instability to occur. A root locus plot magnified 

around the 100 Hz flexible mode (figure 3.35) verifies a stable flexible mode that 

induces significant output vibration. The closed loop frequency response plot in 

figure 3.36 shows the structural resonance at a point of near maximum amplification 

on the command response magnitude plot. Figure 3.37 highlights the critical CSI 

induced performance loss. The resulting oscillation is clearly outside the allowable 
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±400/zdu offset error band and nearly two orders of magnitude greater than the 

required RMS jitter stability. As with Case 1, support structure flexibility amplifies 

force disturbance f¿ outside the jitter budget. 

Cast 4-’ (wa = 10(27t) rad/sec and wp = 500(27r) rad/sec) 

In this case the support structure natural frequency is beyond the SMD control loop 

crossover frequency. The forward loop frequency response, shown in figure 3.38, 

barely reveals the presence of the structural flexibility. In most applications, a flexible 

mode with this high a frequency would not pose significant problems, however with 

our severe performance requirements, structural resonances beyond loop crossover 

can (and do) cause significant output vibration. The command response shown in 

figure 3.40 reveals an interesting source of vibration attenuation between the first and 

ninth engagements. Figures 3.41- 3.43 show the sequence of ten engagements and lend 

some insight into the source of this vibration attenuation. The vibration amplitude 

is minimum in the seventh engagement and begins to grow again through the tenth 

suggesting modulation (or beating) between high frequencies in the command signal 

and the 500 Hz structural flexibility. When the command signal becomes aperiodic 

(more likely in a real retargeting scenario) modulation is not necessarily reinforced 

with each engagement and attenuation over many engagements is not likely to occur. 

Table 3.4: Modified Benchmark Problem: Jitter Stabilization Performance 

Model 

RMS Residual Jitter (¡idu) 

£/d £T0T 

SMD 60.005 59.984 60.001 103.92 

Case 1 7956.6 58.732 59.828 7957.1 

Case 2 Unstable System 

Case 3 79.245 60.409 59.674 116.15 

Case 4 61.005 59.368 59.924 104.41 
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Frequency (Hz) 

Frequency (Hz) 

Figure 3.13: Forward Loop Frequency Response: Rigidly Supported Spring-Mass- 

Damper (SMD) 
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K=1300, kd=l, kp=600, ki=5.0000e+04 

Figure 3.14: Loci of Closed Loop Roots: Rigidly Supported Spring-Mass-Damper 

(SMD) 
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Time (seconds) 

Figure 3.15: Output Step Response: Rigidly Supported Spring-Mass-Damper (SMD) 
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Figure 3.16: Command Response: Rigidly Supported Spring-Mass-Damper (SMD); 

Ten Engagement Sequence (top), First Engagement (bottom left), Ninth Engagement 

(bottom right) 
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Frequency (Hz) 
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Figure 3.17: Disturbance Rejection Frequency Responses: Rigidly Supported Spring- 

Mass-Damper (SMD); Output Sensitivity Function (top), Input Sensitivity Function 

(bottom) 
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To(jw)= Xout(jw)/M(jw) 

Figure 3.18: Noise Rejection Frequency Response (Complimentary Output Sensitivity 

Function): Rigidly Supported Spring-Mass-Damper (SMD) 
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Figure 3.19: Forward Loop Frequency Response: Case 1 
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Figure 3.20: Loci of Closed Loop Roots: Case 1 
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Figure 3.21: Loci of Closed Loop Roots (Magnified at Structural Flexibility): Case 1 
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Figure 3.22: Forward Loop Frequency Response (Magnified at Potential Instability): 

Case 1 
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Figure 3.23: Nyquist Plot in Region of Potential Instability: Case 1 
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Figure 3.24: Closed Loop Frequency Response Plots, SMD versus Modified Bench 

mark: Case 1 
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Figure 3.25: Command Response Curves: Case 1 
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Hz 

Figure 3.26: Disturbance Rejection Frequency Responses:Modified Benchmark 

Model, Case 1 (solid) vs. SMD (dashed); Input Sensitivity Function (top left), Out¬ 

put Sensitivity Function (top right), Output Complimentary Sensitivity Function 

(bottom right) 
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Figure 3.27: Forward Loop Frequency Response: Case 2 
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Figure 3.28: Loci of Closed Loop Roots: Case 2 
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CSI Instability, K=1300, kd=l, kp=600, ki=5.0000e+04 

Figure 3.29: Loci of Closed Loop Roots (Magnified at Structural Flexibility): Case 2 
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Figure 3.30: Forward Loop Frequency Response (Magnified at Potential Instability): 

Case 2 



Figure 3.31: Nyquist Plot in Region of Potential Instability: Case 2 
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Figure 3.32: Closed Loop Frequency Response Plots, SMD versus Modified Bench¬ 

mark: Case 2 
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Figure 3.33: Command Response Curves: Case 2 
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Figure 3.34: Forward Loop Frequency Response: Case 3 
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K=1300, kd=l, kp=600, ki=5.0000e+04 

Figure 3.35: Loci of Closed Loop Roots (Magnified at Structural Flexibility): Case 3 



M
ag

 (
d

B
) 

M
ag

 (
d

B
) 

116 

Hz 

Hz 

Figure 3.36: Closed Loop Frequency Response Plots, SMD versus Modified Bench 

mark: Case 3 
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Figure 3.37: Command Response Curves: Case 3 
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Figure 3.38: Forward Loop Frequency Response: Case 4 
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K=1300, kd=l, kp=600, ki=5.0000e+04 

Figure 3.39: Loci of Closed Loop Roots (Magnified at Structural Flexibility): Case 4 
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Figure 3.40: Command Response Curves: Case 4 
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Figure 3.41: Command Response Curves: Case 4, First Through Fourth Engagements 

(clockwise from top left) 
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Figure 3.42: Command Response Curves: Case 4, Fifth Through Eighth Engagements 

(clockwise from top left) 



123 

Figure 3.43: Command Response Curves: Case 4, Ninth (left) and Tenth (right) 

Engagements 



124 

3.5 Summary of Findings 

We have introduced the concept of bicollocation with regard to the control of reaction 

actuators attached to flexible support structures. We describe the differences between 

bicollocation, non-bicollation, classical collocation, and classical non-collocation. 

We have developed a method of classifying structural flexibility for the single-mode 

reaction actuator model. This method is particularly useful for sparse modal systems 

with wide separation between the natural frequency of the reaction actuator and the 

support structure flexible modes. We have verified that both appendage and in-the- 

loop minimum phase modes can occur with bicollocated reaction actuator control 

that is collocated in the classical sense, unlike the rigid-body control problem where 

collocated control guarantees only appendage modes. 

We have formulated a simple example demonstrating the control-structure-interaction 

phenomena for the reaction actuator control problem resembling the fast steering mir¬ 

ror control problem for the flexible optical system. This modified benchmark problem 

evaluates the control-structure-interaction phenomena with respect to support struc¬ 

ture flexibility. Controller performance requirements were specified resembling the 

high bandwidth, high precision flexible optical system line-of-sight control problem. 

Command response and disturbance rejection requirements simulate small angle rapid 

retargeting and line-of-sight jitter stabilization. 

Significant findings from the modified benchmark problem analysis include: 

1) The presence and degree of the control-structure-interaction phenomena is a 

function of the inertial coupling between the reaction actuator and the flexible support 

structure. 

2) ‘Rigidly supported5 bicollocated reaction actuator controller designs applied 

to flexible structures will cause significant control-structure-interaction phenomena 

including severe performance degradation and possible closed loop instability. 

3) Support structure in-the-loop minimum phase modes with frequencies below 

the reaction actuator natural frequency are gain stabilized modes. Very light modal 

damping and/or high loop gain may destabilize these modes. 

4) Support structure appendage modes with frequencies between the reaction ac¬ 

tuator natural frequency and the control loop crossover frequency are phase stabilized 

modes. Unmodeled sensor dynamics, noise attenuation filters, or anti-aliasing filters 
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may destabilize these modes. 

5) Support structure appendage modes with frequencies greater than the control 

loop crossover frequency are both gain and phase stabilized modes and can severly 

degrade closed-loop performance. 

6) Support structure flexibility adversely effects the ability of the reaction actuator 

control loop to reject force disturbances. 

Single-mode analysis using the modified benchmark problem model has given sig¬ 

nificant insight into the type and severity of control-structure-interaction phenomena 

present in reaction actuator control loops mounted on flexible support structure. In 

the next chapter we analyze the multi-mode problem in the context of line-of-sight 

control on flexible optical systems. 



Chapter 4 

HIGH BANDWIDTH HIGH PRECISION CONTROL OF 
A MULTIMODE FLEXIBLE OPTICAL SYSTEM 

4.1 Overview 

In chapter 3 we discussed the control-structure-interaction phenomena associated 

with high bandwidth high precision control of a reaction actuator mounted to a single¬ 

mode flexible structure. We discovered CSI phenomena ranging from instabilities 

to performance degradation depending upon support structure flexibility. In this 

chapter we will extend the single-mode analyses to the multimode flexible optical 

system model developed in chapter 2. The controller performance for the modified 

benchmark problem specified in chapter 3 will be the same for the flexible optical 

system. In this chapter the reaction actuator will be referred to as the reaction 

steering mirror or simply the mirror. 

4.2 Control-Structure-Interaction Terminology and Parameters Applicable to the 

Multimode Flexible Optical System 

The type of control-structure interaction and the degree to which stability and per¬ 

formance are affected are functions of the inertial and elastic coupling between the 

steering mirror and the flexible support structure and the location of the steering 

mirror natural frequency with respect to the flexible support structure natural fre¬ 

quencies. If we assume the relative location of natural frequencies of both the steering 

mirror and the flexible support structure is predetermined we can show directly the 

relationship between inertial and elastic coupling and control-structure-interaction. 

For comparison purposes the inertial and elastic coupling between the steering mirror 

and the support structure is varied by holding the steering mirror natural frequency 

constant while varying the mirror inertia. Consequently as mirror inertia increases, 

so does mirror stiffness. The steering mirror inertia is varied from small to large 
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values with respect to the local support structure inertia at the mirror attachment or 

reference point Jrej. As mirror inertia and stiffness increase with respect to support 

structure inertia and stiffness, inertial and elastic coupling increase. Increasing mir¬ 

ror inertia and stiffness while holding it’s natural frequency constant simulates the 

case where all physical and dynamical characteristics of the mirror are fixed and the 

support structure inertia and stiffness are uniformly decreased. We can then assertain 

the CSI impact due to making the support structure lighter and less stiff. 

Before proceeding, we will define five parameters: mirror inertia, reference inertia, 

modal inertia, modal reaction inertia and effective modal reaction inertia. In these 

definitions, the modal matrix (f) is normalized to the system mass matrix M such that 

<f>TM$ = I (4.1) 

giving 

<t>TK<l> = diag(cu^) (4.2) 

where K is the system stiffness matrix and Wk is the vector of natural frequencies. 

The pair represent the coupled system with both steering mirror and flexible 

support structure dynamics. The pair {<£*,£>*} represent only the flexible support 

structure dynamics. 

Mirror inertia Jm is simply the inertia of the steering mirror and can be deter¬ 

mined from the mass normalized modal matrix <j) as follows 

Jrn ~ (4.3) 

k=l 

where the inertial mirror angle 6m is the ith system degree-of-freedom. If 0m is not a 

system degree-of-freedom explicitly, but instead the relative mirror angle 0mref is the 

ith system degree-of-freedom such that 0mre/ = 6m-6ref with 0re/ being the angle at 

the support structure attachment point and the hth system degree-of-freedom, then 

the mirror inertia is determined by 

j 1 
— n 

k=l 

(4.4) 
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The support structure attachment point is the point on the support structure 

where the steering mirror is mounted. The reference inertia Jrej is an approxima¬ 

tion of the inertia at a specific location on the flexible structure and can be viewed as 

a local resistance to inertial (total) mirror torque. Jrej can also be determined from 

the mass normalized modal matrix as follows 

Jref — n (4.5) 

S tlk 
k=l 

where the support structure attachment point angle 0rc/ is degree-of-freedom ft. For a 

uniform structure, Jref is constant at each common degree-of-freedom (i.e. rotational 

degrees-of-freedom will share the same value of local inertia and translational degrees- 

of-freedom will share the same value of local mass). Both mirror inertia and reference 

inertia are physical quantities and can be physically related to hardware 1. 

Modal reaction inertia J*, on the other hand, is a ‘perceived’ inertia and is not 

in general related to a physical inertia. The modal reaction inertia is a function of 

mirror dynamics as well as both sensor and actuator locations. Since we are dealing 

with reaction actuators, it is also a function of the ‘action’ and ‘reaction’ locations. If 

we have a sensor at degree-of-freedom j and an actuator acting on degree-of-freedom 

i and reacting against degree-of-freedom A, the modal reaction inertia is defined as 

Jk = 
1 

<l>jk{<l>ik - <l>hk) 
(4.6) 

Large J* suggests that either the kth mode is unobservable and the sensor at or near 

a kth mode node or undisturbable and mirror does not have enough inertia to disturb 

the kth mode. Of course, both of these possibilities could occur simultaneously. Note 

that Jk = oo for rigid-body modes which means that the system exhibits infinite 

resistance to rigid body motion. The system cannot be moved as a rigid body using 

reaction actuators. Modes that are dominant in off-axis degrees-of-freedom are also 

characterized by large Jk. Conversely, if Jk is small, the kth mode is more disturbable 

1 It is common for a reaction actuator to react against the structure at the same point (degree- 

of-freedom) as it is referenced to the structure. If such an arrangement is not possible (i.e. the 

reference and reaction degrees-of-freedom differ), the reference inertia will no longer have any 

physical relationship to the system. 
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by total mirror inertial torque. If a mode is disturbable by the mirror then increasing 

mirror inertia equates to increasing the pole-zero separation in that mode. As we 

concluded in chapter 3, increased pole-zero separation is the mechanism by which 

CSI performance degradation and instabilities occur. 

Effective modal reaction inertia J/. is defined by normalizing the modal reac¬ 

tion inertia with the mirror inertia 

*=^ <4-7> 

where 

¿/* = 1.000 (4.8) 
k=l 

Effective modal reaction inertia is a normalized measure of the mirror’s effectiveness in 

disturbing a particular mode2. Effective modal reaction inertia is useful in comparing 

modal disturbability of systems with different steering mirror characteristics. It will 

also be shown that effective modal reaction inertia is a reasonable prediction of closed- 

loop inertial mirror angle spectral density for systems with small mirror inertia. 

Modal inertia J* is a measure of the flexible structure’s resistance to external 

torques. Modal inertia is similar to modal reaction inertia applied to the uncoupled 

system. Instead of being a measure of modal participation from reaction actuation, 

modal inertia is a measure of modal participation from non-reaction actuation. Con¬ 

sequently, rigid-body inertia can be determined from the mass normalized modal 

matrix associated with the flexible support structure dynamics ¢. If we have a sen¬ 

sor at degree-of-freedom j and an non-reaction actuator at degree-of-freedom ¿, the 

modal inertia is defined as 

jk = ^-L- 
<l>jk<t>ik 

Modal inertia can also be thought of as a measure of modal susceptibility to pole-zero 

separation ultimately brought about by increases in reaction actuator inertia. It will 

be shown that modal inertia is also useful in identifying salient features of the coupled 

system dynamics. 

2 Effective modal reaction inertia may be more properly termed effective reaction mirror inertia 

since we are dividing mirror inertia by modal reaction inertia. Both definitions are valid in 

communicating modal disturbability. 
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4.3 Multimode Flexible Optical System Dynamics 

In this section, the transfer function from mirror torque input to inertial mirror angle 

for the mirror attached to a flexible support structure will be developed. Damping will 

be assumed zero for simplicity. We will develop transfer functions from two different 

approaches in an attempt to highlight the usefulness of the parameters defined in the 

previous section. 

Using equation 3.6 with the n + 1 degree-of-freedom coupled system represented 

by the pair {(ßk^k} we have 

0m(s) _ "f1 1 
Tm(s) 

(4.10) 

where Tm(s) is better described as and the modal reaction inertia Jk is defined 
as 

fomkifomk ~ <f>e20k) 

Equation 4.10 is an exact residues transfer function of the steering mirror sup¬ 

ported by and coupled to a flexible structure. By examining the transfer function in 

this form we can see directly how each of the rc + 1 modes participate in the inertial 

mirror response to a reaction torque input. Note that as mirror inertia increases, 

pole-zero separation occurs in only the disturbable modes. We can use the effective 

modal reaction inertia Jk to predict the degree to which disturbable mode pole-zero 

separation will occur. will also be shown to be a reasonable measure of the resulting 

line-of-sight jitter spectral density for systems with small mirror inertias. 

Figures 4.1-4.8 show the relationship between Jk and /¾ for the 62 degree-of- 

freedom flexible optical system where /¾ is defined by equation 2.55. The mirror mass 

was held constant as mirror inertia increased, consequently the system zeros remain 

fixed. When pole-zero separation occurs, the pole either increases or decreases away 

from the fixed zero depending on the type of structural flexibility (i.e. in-the-loop 

or appendage). Structural flexibility type also depends on the location of the mirror 

natural frequency. In each successive figure the mirror natural frequency in fixed 

at 20 Hz while mirror inertia is increased from 0.002% of total support structure 

inertia JtTUSS (about 45% Jrej) to 20% of JtrUSa (about 4500 times Jre/). In these 

figures, the first mode is the rigid-body mode with zero effective modal reaction 
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inertia. The fifth mode is the mirror mode, at least in the figures representing small 

inertial and elastic coupling. When the mirror inertia is small with respect to support 

structure inertia, or more precisely, the local reference inertia Jre/, effective modal 

reaction inertia is nearly unity. This means that the mirror is effective in disturbing 

(controlling) only that particular mode. As mirror inertia increases, the magnitude 

of Jk increases in other disturbable modes. As J* increases its magnitude at any 

individual mode decreases such that equation 4.8 holds. Note that because mirror 

natural frequency is held constant increasing mirror inertia results in increasing mirror 

stiffness which eventually dominates coupled system stiffness and Jn+i eventually goes 

to unity. In the limit, as mirror inertia and stiffness go to infinity, the entire system 

goes to a pinned-fixed configuration. This appears to have the effect of reducing Jk 

and therefore the system disturbability for the first n system modes. However, this 

apparent reduction in for A; = 1... n is merely a consequence of our normalization 

procedure and does not reflect a decrease in system disturbability. In fact, system 

instability can occur long before *7n+1 reaches unity. 

To summarize, we have found that modal inertia Jk is a good measure of the 

uncoupled flexible support structure’s susceptibility to modal disturbability. We can, 

therefore, use modal inertia as a design variable when trying to design a flexible 

structure that will support some type of reaction actuator operating in a closed loop. 

Different materials or structural configurations will invariably affect the magnitude 

of the modal inertias and therefore modal disturbability. 

Modal reaction inertia Jk was shown to be a measure of pole-zero separation 

within the coupled system. As mirror inertia and stiffness increased, so did modal 

reaction inertia with respect to the fixed flexible support structure. As modal inertia 

increased, pole-zero separation increased at disturbable modes. Of course, pole-zero 

separation is the mechanism by which control-structure-interaction adversely effects 

ones controller. Modal reaction inertia, therefore, can also be used as a design variable 

within a combined controls-structures design methodology. Unlike modal inertia, 

which is a function only of the support structure dynamics, modal reaction inertia 

accounts for flexible support structure dynamics, reaction actuator dynamics, and 

the coupling between the two. 

Modal reaction inertia can also be used as a first cut measure of closed-loop be¬ 

havior of uncompensated high frequency flexible modes. If a high frequency flexible 
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mode is uncompensated, we can assume that its open and closed loop pole-zero sep¬ 

arations are approximately equal. Knowing the open loop pole-zero separation via 

the modal reaction inertia, we can simply apply knowledge regarding the location of 

the particular flexible mode with respect to the compensated loop (i.e. take account 

of loop shaping, roll-offs, etc.) and predict the resulting closed loop contribution due 

to that mode. 
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Thus increasing mirror inertia increases modal disturbability and pole-zero sepa¬ 

ration in an increasing number of modes. The figures also show that for modes below 

the mirror natural frequency (20 Hz), the poles decrease in frequency while for modes 

above the mirror natural frequency, the poles increase in frequency. By examining 

the mirror transfer function in the form of equation 4.10, we gain an understanding 

of system behavior in terms of its effective modal reaction inertia. 

By deriving the same mirror transfer function from another approach, we will see 

clearly why the system zeros remained fixed even as both inertial and elastic coupling 

between the mirror and structure increase. The equation of motion for the steering 

mirror coupled with the flexible support structure is 

— tm{t) ~ km[0m(t) — 9ref[t)] (4.12) 

where km is the mirror spring constant, is the applied mirror torque, and 6ref(t) 

is the angle at the structure attachment point. In the Laplace domain equation 4.12 

can be written 

0m(s)[Jm32 + km] = Tm(s) + kmeref{s) (4.13) 

Using equation 3.1, the n degree-of-freedom uncoupled flexible structure can be de¬ 

scribed as 

©re/(^) = 
fithetarcfk&thetarcack 

2reac(*s) (4.14) 
*=1 s¿ + ^k 

If we assume the mirror is referenced to the structure at the same point at which it 

reacts against the structure (i.e. bicollocated control, ref=reac or r=h), then 

©re/(5) = 
$thetarefk 

hi s2+“l 
Tref(s) (4.15) 

where the modal inertia J* is defined as 

Jk = 
1 

(4.16) 
^thetdrefk 

The mirror and flexible structure are coupled by requiring the total mirror inertia to 

react into the reference degree-of-freedom 

Tref{s) = -JmS2Qm{s) (4.17) 
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Substituting equations 4.17 and 4.14 into equation 4.13 we get 

6m(s) 1 

Tm(s) 
4- km 4" kmJm 

k=iMs2 + ^k). 

(4.18) 

Rewriting equation 4.18 we can obtain 

®m(s) 
Tm(s) 

1 n 
Lfc=i J 

n m*2+¿¡D 
.k=l 

+ s2km ¿ 

P=1 
n 4- ¿jfc) 

Lfc=i J p^k 

(4.19) 

Equation 4.19 is the transfer function between mirror torque and inertial mirror angle 

for a bicollocated reaction mirror. The transfer function describes a bicollocated 

reaction actuator because the torque acts onto the mirror inertia while the sensor 

senses the inertial mirror angle (j=i) and the torque reacts against the reference 

degree-of-freedom (ref=react or r=h). There are several interesting features of this 

bicollocated mirror transfer function. First, notice that the system zeros are the poles 

of the uncoupled flexible support structure transfer function of equation 4.15 and 

independent of mirror stiffness or inertia. Assuming our uncoupled flexible structure 

is asymptotically stable, herein lies the guarantee for strictly minimum phase transfer 

function zeros for the bicollocated case. We also notice that as modal inertia «7/. 

goes to zero for every mode the mirror transfer function simplifies to its ‘rigidly 

supported’ form. Figure 4.9 describes the susceptibility of each of the 61 uncoupled 

flexible support structure modes to pole-zero separation. In this figure, the reciprocal 

of the modal inertia l/J* is plotted for each system mode. Modes associated with low 

values of the reciprocal have high modal inertia and are not likely to be disturbed. 

Equation 4.19 can be further reduced to 

Qm(f) 
Tm(s) 

n 

n+1 

n(52+wi) 
*=1 

(4.20) 

which reveals the simple form of the transfer function where the coupled system zeros 

are the uncoupled system poles. 
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Using the same type formulation, we can derive the transfer function for the non- 

b¡collocated reaction mirror. To do so, we first recognize that equation 4.17 describes 

the total opposing torque from the reaction mirror into the flexible structure. To allow 

for non-bicollocation, we must rewrite equation 4.14 to account for the fact that the 

reaction torque enters the structure at other than the reference degree-of-freedom. 

©re/í5) — E 
fc=i 

etdrcfk^thetarcfk 
Tref(s) + 

fithetdrcfk^thetareack 

k=l 

Treac{s) (4.21) 

where, for the undamped case, Treac(,s) = — jrm($) and Trej = km(Qm(s) - 0m(s)). 

Substituting these expressions into equation 4.21 yields 

Qrnjf) 

Tm(s) 

¿ S n Jrrk{s2 + ûl) + k, 
U=1 k-l \JThk/ J J 

[^2 + ojI] Il jrrk{s2 + W2) 
k-\ 

+ s2km Y, 
P=1 

Ukrk{s2 + Û>l) 
k=l 

(4.22) 

p^k 

where 

Jrrk — 
<f>rk<í>rk 

1 

E Ylrrk = E 
P=1 u=i 

n«52+^) 
lpj:k 

E Flr/ifc - ¿ 
P=1 

Il jrhk(s2 + ¿>1) 
k=l 

(4.23) 

(4.24) 

(4.25) 

(4.26) 
p¿k 

The non-bicollocated transfer function shown in equation 4.22 does not offer the 

same minimum phase zero guarantees as with the bicollocated transfer function of 

equation 4.21. When inertial and elastic coupling between the reaction mirror and the 

flexible support structure becomes significant, equation, 4.22 will give nonminimum 

phase zeros. A sufficient condition for the presence of nonminimum phase zeros for a 

single-mode expansion of the first flexible mode is given as follows. 

w2 < km 
2_ 

.Jr hi rrl 
(4.27) 
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It is difficult to establish sufficient conditions for the presence of nonminimum phase 

zeros using equation 4.22 for any arbitrary mode k as the validity of such results 

depends upon the proper summation of modal inertias in the numerator. It is im¬ 

portant to remember, however, that the single-mode expansion developed in chapter 

3 (equation 3.11) is valid for both the bicollocated and non-bicollocated oases and 

can therefore with the appropriate assumptions can be used to predict the presence 

of nonminimum phase zeros in the non-bicollocated transfer function. 

4.4 L¡ne-of-Sight Control Using the Fast Steering Mirror 

The strategy for examining the impact of CSI on stability and performance is similar 

to that of the modified benchmark problem of chapter 3. The key difference lies in 

the tradeoff parameters. The modified benchmark problem stability and performance 

studies were performed with a fixed mass ratio and varying single-mode flexibilities. 

Thus we were able to ascertain CSI effects as a function of flexible mode location. For 

the multimode flexible optical system, flexible modes already span a large frequency 

spectrum. CSI effects are therefore studied as a function of varying mass (inertia) 

ratio. To accomplish this, we will first design the steering mirror controller based 

upon the rigid support structure assumption. Because the performance requirements 

are similar as with the modified benchmark problem, the same proportional-integral- 

derivative control law will be assumed3. Loop gain is selected to obtain an open-loop 

crossover frequency of 230 Hz (wc = 230 Hz) achieving the desired closed-loop band¬ 

width of 300 Hz (ujb = 300 Hz). The mirror and controller are then coupled to 

a reduced 7 degree-of-freedom flexible support structure model with the first seven 

elastic modes retained. Closed-loop stability and performance are evaluated as- mir“ 

ror inertia and stiffness increase in proportion with respect to those of the support 

structure. 

Before proceeding with the closed-loop analysis we will examine the general form of 

the closed-loop undamped inertial mirror angle command response transfer function 

0m(-s)/0Tnc(s). The closed-loop block diagram is shown in figure 4.10. The plant 

is described by equation 4.20 and the controller by K(s) = KNc(s)/Dc(s). Plant 

3 An aft-to-fore body disturbance source is considered for the multimode flexible optical system 

that was not considered for the modified benchmark problem. 
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disturbances /¿, //j, m, and 6¿ represent mirror cooling flow torque, aft-to-fore body 

disturbance torque, line-of-sight sensor measurement noise, and optical line-of-sight 

angular disturbance, respectively. The closed-loop transfer function is of the form 

gUf) = G{s)K{s) 
®mc{s) 1 + G{s)K{s) 

Substituting equation 4.20 into equation 4.28 we obtain 

(4.28) 

®m(f) 
£ivc(s)n(i2+wfc) 

fc=i 
n-fl JS n 

Dc(S) Il (52 + Wa) + T~-^c(*s) JJ (52 + ¿>1) 
k=l k=l 

(4.29) 

which is equivalent to 

Qm(f) 
0mc(5) 

^c(5) + ¾ 
A=1 

n+l*fnc 

II (s2+ùl) 
k=l 

(4.30) 

where nc is the order of the controller and are the closed-loop system poles. For a 

flexible system with small mirror inertia, flexible modes are nearly pole-zero cancelled. 

This means that the residues for each flexible mode are very small and nearly equal to 

their open-loop values. Thus, for small mirror inertias we can use the effective modal 

reaction inertia as a reasonable measure of closed-loop inertial mirror jitter. We 

will see the relationship between effective modal reaction inertia and inertial mirror 

command response in the following section. 

Figures 4.11-4.14 are forward loop frequency response plots with mirror inertia 

varying from 0.02% to 20% of support structure inertia Jtrjl354. The pole-zero sep¬ 

arations seen in these figures are verified in figures 4.2, 4.3, 4.4, and 4.8. Root loci 

plots for these four configurations are provided in figures 4.15-4.16. The loci reveal 

unstably interacting flexible modes for the two higher mirror inertia configurations. 

It is important to note that the controller is collocacted in the classical sense and 

4 Notice the ambiguities in the phase plots as pole-zero separation decreases. It appears that even 

todays sophisticated software cannot determine the correct phase change for very lightly damped 

modally dense systems. 
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unstably interacts with these flexible modes. Figure 4.17 shows mirror response to a 

five engagement retargeting scenario. A controller operating on a mirror with inertia 

as small as 2% support structure inertia is shown to induce system instability. Fur¬ 

ther evaluation of LOS jitter as a function of small reacting mirror inertia will follow. 

Jitter stabilization results are summarized in table 4.1. To keep the total line-of-sight 

jitter requirement ctot at 100 /¿du RMS with four disturbance sources, the jitter 

budget for any one disturbance source is limited to 50 /¿du RMS. Residual output 

Table 4.1: Flexible Optical System: Jitter Stabilization Performance 

Jm% 

RMS Residual Jitter (fidu) 

e0d ¿TOT 

fa 0.00 50.000 50.000 50.000 50.000 100.00 

0.02 50.114 49.998 49.942 4483.5 4484.3 

0.20 0.0621 49.999 49.926 4632.7 4633.2 

2.00 Unstable System 

20.0 Unstable System 

jitter due to sensor measurement noise m is relatively unaffected by mirror to flexible 

structure inertia and stiffness coupling. This is to be expected with optical sensing 

devices with high pass noise characteristics as modeled in this research. Line-of-sight 

disturbance effects behave similarly though due to the very low pass disturbance 

model. Output jitter from the two force (torque) disturbances is affected oppositely. 

As mirror inertia and stiffness increase, the relative support structure inertia and 

stiffness decrease acting as an isolator (absorber) for the torque disturbance /^. On 

the other hand, output jitter due to aft-to-fore body disturbance fh is more sensitive 

to the increased low frequency pole-zero separation caused by the increased inertial 

and elastic coupling. This result suggests that systems with larger mirror inertias 

create a more challenging aft-to-fore body isolator design problem. 



148 

Figure 4.10: Mirror Command Response Block Diagram 
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Figure 4.11: Forward Loop Frequency Response, Jm =0.02% Jtruaa 
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Figure 4.12: Forward Loop Frequency Response, Jm =0.2% «/*russ 
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Figure 4.13: Forward Loop Frequency Response, Jm =2.0% Jirus3 
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4.5 Reactionless Steering Mirror Control 

Residual line-of-sight jitter is a function of inertial and elastic coupling between the 

mirror and its flexible support structure. In fact, enlarging the top left plot from 

Figure 4.17 shows that even with = 0.02% Jtrus9 LOS vibration stability is not 

achieved. The obvious question is just how small must the mirror inertia be with re¬ 

spect to its support structure before LOS jitter is within performance requirements? 

As mentioned earlier, the key parameter is not mirror inertia as a percentage of to¬ 

tal support structure inertia but rather as a percentage of its local reference inertia. 

For example, if we construct the support structure such that the mirror attachment 

point has significant inertia compared to the mirror itself, we would see an increase in 

modal inertia and corresponding increases in effective modal reaction inertias result¬ 

ing in less modal disturbability. However, unless we uniformly increase the structure’s 

inertia, we will pay severe penalties in the large angle slew task (assuming the mir¬ 

ror attachment point is not coincident with the slewing center-of-mass). Of course 

uniform increases in structure inertia mean more total system mass with its own set 

of problems. Mirror mass and mirror attachment point location are also critical de¬ 

sign parameters. It seems that the ideal design scenario is a uniformly light support 

structure constructed with maximum stiffness. Mirror inertia is designed small with 

respect to support structure inertia. One way of reducing the ‘effective’ mirror inertia 

is to design it reactionless. Reactionless mirrors have been built demonstrating less 

than ten percent torque leakage, making them ninety percent reactionless. If our 

analysis shows that mirror inertia of one percent results in tolerable LOS vibration 

from command response, then a ninety percent reactionless mirror with Jm = 10% 

Jtruas should suffice5. With the reactionless mirror in mind, we examine the case 

where = 0.002% Jtrusa- Figure 4.18 shows the response to a step command for 

the 0.002% case. The enlargement on the bottom half of the figure shows that indeed 

the residual LOS jitter from the command step lies within performance requirements. 

However, when we use the same LOS controller with the full 62-DOF model, we see 

residual LOS vibration outside jitter bounds. This result highlights the need to verify 

5 This is only a crude approximation of allowable mirror inertia. To be more accurate, separate 

account must be taken of mirror versus reaction-mass component mismatches including inertia, 

spring restoring force constants, and most importantly actuator force constants[36]. 
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Jm = .02% of Jtruss Jm = .2% of Jtruss 

Figure 4.15: Loci of Closed Loop Roots, Jm =0.02% JtTU,s (left), Jm =0.2% Jiruss 

(right) 
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controller performance simulations on as high an order ‘truth’ model as is feasible. 

Figures 4.19 and 4.20 are the forward loop frequency response and the step response 

for the LOS controller operating on the 62-DOF system. An examination of the fre¬ 

quency content of the step response again shows high participation from modes just 

under 400 Hz. Since these frequencies are beyond our closed-loop bandwidth, com¬ 

mand response jitter requirements can be met simply with an appropriately ordered 

roll-off filter. Note however that this amounts to high frequency gain stabilization 

and does not necessarily benefit disturbance rejection. Residual jitter with frequency 

content inside the loop bandwith is absent in this example strictly as a consequence 

of the relatively large modal reaction inertias associated with modes with those fre¬ 

quencies. This is a result of our particular flexible structure and is not guaranteed. 

If we re-examine the case where Jm = 0.02% Jtruss using the full order system, we 

will see the relationship between the effective modal reaction inertia and output spec¬ 

tral density. Figures 4.21 and 4.22 are the resulting forward loop frequency response 

and the step response plots. In figure 4.23 we show a crude power spectral density 

of the output LOS response. The data is only a rough estimate of the actual power 

spectral density as we used a limited record length with no averaging. The inverse ef¬ 

fective modal reaction inertia is plotted in figure 4.24. A comparison of overall shape 

and regions of significant energy between figures 4.23 and 4.24 reveals the usefullness 

of the open-loop effective modal reaction inertia in predicting (conservatively) the re¬ 

sulting output power spectrum. For systems with large mirror inertia, this technique 

tends towards less reasonable comparisons because the pole-zero separations shown 

in equation 4.30 become too far removed from their open-loop values. We see the 

beginnings of this in figures 4.25 and 4.26 for the case where Jm = 2.0% Jtruss- The 

increased inertial and elastic coupling results in increased modal coupling and energy 

being spread into a wider spectrum of disturbable modes. 
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Figure 4.18: 6m Response to Step in 0mc, 8-DOF Model, Jm =0.002% Jtruas 
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Figure 4.19: Forward Loop Frequency Response, Jm =0.002% Jtrusa 
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Figure 4.20: 0m Response to Step in 0mc, 62-DOF Model, Jm =0.002% JtTUSa 
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Figure 4.21: Forward Loop Frequency Response, Jm =0.02% J<russ 
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Figure 4.22: 6m Response to Step in 0mc, 62-DOF Model, Jm =0.02% Jtruss 
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Pxx - X Power Spectral Density 

Figure 4.23: 0m Step Response Power Spectral Density, Jm =0.02% Jtruss 



164 

Inverse Effective Modal Reaction Inertia 

Figure 4.24: Inverse Effective Modal Reaction Inertia 1/J*, Jm =0.02% JtTUSS 
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Figure 4.25: Qm Step Response Power Spectral Density, Jm =2.0% Jtrtiaa 
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Inverse Effective Modal Reaction Inertia 

Figure 4.26: Inverse Effective Modal Reaction Inertia 1/J¿, Jm =2.0% J(rusa 
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4.6 Summary of Findings 

In this chapter, we have extended the control-structure-interaction analyses from the 

single-mode to the multimode flexible support structure. We have shown that very 

small degrees of inertial and elastic coupling between the flexible support structure 

and the reaction actuator, which for many applications would be considered negligible, 

induces performance limiting control-structure-interaction. We have shown modal 

inertia Jk to be a measure of the uncoupled flexible structure’s susceptibility to modal 

disturbability. We have introduced three new system parameters, reference inertia 

Jre/, modal reaction inertia and effective modal reaction inertia Jk as useful both 

in identifying and quantifying the extent to which these interaction occur in any given 

structure. Perhaps most importantly, we have verified that as with the single-mode 

models in chapter three, control-structure-interaction can lead to critical performance 

degradation and/or system instabilities even with bicollocated control, collocated in 

the classical sense. 



Chapter 5 

CONCLUSIONS 

5.1 Summary 

This research is to the best of our knowledge the first attempt to describe, in both a 

qualitative and quantitative manner, the degree to which control-structure-interaction 

phenomena effect stability and performance of high bandwidth high precision flexible 

optical systems. We have developed a multimode planar model representative of a 

simple flexible optical system. We used this model to simulate certain aspects of the 

flexible optical system mission, namely the small angle rapid line-of-sight reposition¬ 

ing and line-of-sight stabilization against a variety of disturbances. 

In this thesis, we have examined the effect of control-structure-interaction on both 

of these mission aspects using the single flexible mode modified benchmark model and 

the multimode planar model. We used the single-mode model to examine control- 

structure-interaction effects as a function of the location of the flexible mode with 

respect to steering mirror natural frequency. We used the multimode model to exam¬ 

ine control-structure-interaction effects as a function of inertial and elastic coupling 

between the steering mirror and the flexible support structure. 

The single most significant result of this research is the introduction and definition 

of bicollocated reaction actuator control and its resulting minimum phase guarantees. 

Another significant finding is that, contrary to the commonly accepted view, collo¬ 

cated control (collocated in the classical sense) can induce closed-loop instabilities 

if the reaction actuator is non-bicollocated. The common view that collocated con¬ 

trol always results in a stable closed-loop system was formulated with respect to the 

problem of controlling the rigid-body in the presence of appendage flexibilities using 

a proportional-derivative (PD) control law. In this context the assertion is correct- 

collocated control results in a stable system so long as unmodeled loop dynamics are 

not present. However, when controlling a reaction actuator, bicollocation or non¬ 

bicollocation must be considered. A classical collocated reaction actuator controller 
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can be non-bicollocated and as such, can have nonminimum phase zeros in the plant 

transfer function. No proportional plus derivative control law is absolutely robust 

against nonminimum phase zeros. We also showed that a bicollocated reaction actu¬ 

ator proportional-integral-derivative (PID) controller can unstably interact with any 

flexible mode residing at a frequency below the natural frequency of the reaction actu¬ 

ator depending upon the degree of inertial and elastic coupling between the actuator 

and its flexible support structure. This research also reveals the difficulty in meeting 

very high precision, line-of-sight jitter requirements when the steering mirror is free 

to react against its flexible support structure. Reactionless steering mirrors may not 

be ‘reactionless’ enough to totally alleviate these control-structure interactions. 

Line-of-sight jitter stabilization is also affected by control-structure-interaction. 

We have shown that the presence of low frequency structural modes in a high band¬ 

width control loop increase the amount of line-of-sight jitter from both mirror cooling 

and aft-to-fore body torque disturbances. We have also shown that high inertial and 

elastic coupling between the steering mirror and the flexible support, structure de¬ 

creases line-of-sight jitter from mirror cooling but increases that due to aft-to-fore 

body disturbances. This is primarily a function of the pole-zero spreading induced 

by the high inertial and elastic coupling. 

To better understand the control-structure-interaction phenomena as it relates to 

the flexible optical system, we have extended the work of J.T. Spanos[49] to the 

case of controlling a reaction actuator on a multimode system. We have developed 

a method of classifying the type of structural flexibility for the reaction actuator 

system thereby allowing us to examine, on a single-mode basis, the control-structure- 

interaction effects due to any of these flexibility types. 

We have shown the conventional modal inertia to be a measure of a flexible struc¬ 

ture’s susceptibility to modal disturbability and consequently to pole-zero separa¬ 

tion. We have defined two new mulitmode system parameters, modal reaction inertia 

and effective modal reaction inertia, and used them to predict control-structure- 

interaction effects on the control of a reaction actuator coupled to a flexible support 

structure. In this thesis these parameters were used to analyze system performance. 

These same parameters can be used as design variables in the structures-control op¬ 

timization problem. 
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5.2 Directions for Future Work 

We see two possible directions for future work: 1) development of the theory and 

application of bicollocated and non-bicollocated reaction actuator control and, 2) 

multidisciplinary structures-optics-controls design optimization. 

Reaction Actuator Control 

In this research, we introduced the concept of bicollocated and non-bicollocated re¬ 

action actuator control. We developed the guarantee for minimum phase zeros with 

bicollocated control and provided a sufficient condition for the existence of nonmin¬ 

imum phase zeros in the first flexible mode in a single-mode expansion. But more 

can be done. For example, one might pursue minimum phase zero guarantees in 

terms of bounds on modal inertia or modal reaction inertia for the non-bicollocated 

control of the reaction actuator. It would also be interesting to investigate the useful¬ 

ness of a physically implementable nonminimum phase fiiter-which is exactly what a 

non-bicollocated reaction actuator provides. We understand the usefulness of second 

order nonminimum phase filters in the control of flexible structure modes [53]. Per¬ 

haps some utility can be found for such a filter implemented in hardware rather than 

electronically or digitally. 

Multidiscipinary Optimization 

As a result of this research, obvious questions arise concerning the ability of high 

bandwidth high precision systems to perform their missions with only post-regard 

for inherent control-structure-interactions in the line-of-sight controller design. The 

normal procedure in designing a line-of-sight controller is to initially exclude most or 

all the flexible modes. Compensation for troublesome modes is designed in an ad-hoc 

fashion using trial and error with engineering judgement. Multivariable controllers 

are designed using reduced order models with, at best, bounded uncertainties in 

high frequency modes. Both of these methods will result in exceedingly high order 

controllers for the type of systems studied in this research-a system with greater 

than ten or twenty structural modes inside the closed-loop bandwidth extending to 

frequencies higher than theory allows us to accurately predict with a model. We have 
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pointing requirements that are not only very demanding but require large potentially 

massive pointing mirrors, gimbals, etc. Should CSI phenomena critically impinge 

upon the performance of these type systems, the response will likely be in efforts 

spent in noise cancellation, image motion compensation, or possibly active structural 

vibration suppression. These techniques have proven successful in the past, albeit 

for systems with much less stringent performance requirements. This research leads 

us to the conclusion that such high bandwidth high precision line-of-sight controllers 

are best designed concurrently optimizing the structure and controller to minimize 

interaction between the two. 

The structural parameters defined in chapter 4-modal inertia, modal reaction 

inertia, mirror inertia, and reference inertia, can be integral elements or even design 

variables in such an optimization scheme. For example, we know that CSI effects on 

the control of the reaction actuator can be reduced if reference inertia is increased. 

However, arbitrary increase in reference inertia will undoubtedly interfere with other 

performance criteria such as large angle rigid body slew. A uniform increase in modal 

inertia will tend to make the flexible support structure more undisturbable but may 

also prohibitively increase total system mass. The list of tradeoffs is endless, however, 

the structural parameters defined in this research can provide at least intermediate if 

not primary criteria for the successful design of high bandwidth high precision flexible 

optical systems. 

A multidisciplinary optimization problem formulation can include any level of com¬ 

plexity. For example, we can see at least four disciplines involved: structure, struc¬ 

tural dynamics, optics, and controls. The optimization problem might be formulated 

as constrained or unconstrained using both static and dynamic objective functions. 

The design descriptors can be either pre-assigned or variable and might span all four 

disciplines. Some examples of design descriptors pertinent to the multidisciplinary 

optimization of the flexible optical system are: 

Structures and Structural Dynamics 

1) Configuration or shape of the flexible support structure 

2) Mass, stiffness (element material, size, and shape) 

3) Natural frequencies, damping 

4) Modal inertia, modal reaction inertia, reference inertia 
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Reaction Actuators 

1) Number of actuators 

2) Location on the flexible support structure 

3) Mass, stiffness, natural frequency, damping (reaction actuator dynamics) 

4) Optical sensitivity (optical actuators only) 

Controls 

1) Architecture 

2) Connectivity 

3) Order 

4) Gains 

5) Transfer function coefficients 

6) Controller model parameters 

A low level optimization scheme might involve only a small subset of the descrip¬ 

tors on this list. For example, the overall design configuration may be pre-assigned. 

The flexible support structure configuration and shape as well as the number of re¬ 

action actuators and their locations might be fixed. We may allow support structure 

element size and shape as well as reaction actuator dynamics to be design variables. 

Whatever the specific problem formulation, we can envision advantages in overall sys¬ 

tem performance if the flexible optical system is designed as a total system instead 

of in sequence as a series of individual sub-systems. 

For whatever the reason, complex systems in the field or close to being placed in 

the field are designed and implemented primarily sequentially. Perhaps the expense 

and expediency of the development, testing, and deployment makes these systems 

less likely candidates for such a multidisciplinary optimization procedure. Only when 

system performance cannot be met with the design techniques currently in use, will 

it such a procedure likely find its place in the design of real systems. The high 

bandwidth high precision flexible optical system may be such a system. 
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