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CHAPTER 1

Introduction

Spectrum Estimation and Digital Filtering have continued to be two of the most important research areas

among the signal processing community over the last three decades. As part of the work under this proposal,

several research problems of current interest have been addressed and solved satisfactorily. This final report

contains the details of all the results of the research that have been accomplished over the entire period. Much

of the results contained in this report have either been presented/published or are under review/preparation for

future publication. The papers/publications ensuing from this research are listed at the end of this introductory

Chapter. Copies of the papers and publications will be included with the Invention Report.

The research conducted under this proposal can be categorized primarily into two broad themes, viz.,

(i) Digital Filtering: The following problems have been addressed:

(a) Efficient synthesis of 2-D Digital Filters using l-D modules

(b) Optimal design of I-D and 2-D Digital Filters from Impulse Response

(c) Optimal Identification of Discrete-time Multivariable Systems from Impulse Response Matrix

(ii) Spectrum Estimation:

(a) Development of efficient algorithms for estimation of the frequencies/arrival-angles of narrowband and
wideband sources

(b) Development of an Order-recursive algorithm for AR-Bispectrum Estimation

(c) Application of newly emerging non-linear prediction methods for speech analysis and synthesis

(d) Utilization of Linear Prediction parameters for training Time Delay Neural Networks for speech recog-

nition

The report is organized as follows: In Chapter 2, the work on Digital Filtering is reported whereas in Chapter

3, the Spectral Estimation area is covered in detail. Individual Chapters are divided into several Sections by topics.

In the following paragraphs the main results obtained in these Sections are outlined very briefly.

CHAPTER 2. DIGITAL FILTERS : REALIZATION AND SYNTHESIS

Section - 2.1 : Exact Realization of 2-D IIR Filters Using 1-D Modules

A method for exact realization of 2-dimensional digital fIR filters using separable 1-dimensional modules is

presented [1]. The proposed design utilizes a theorem on separability of multivariable polynomials for writing

a 2-D polynomial as sum-of-product of I-D polynomials of successively diminishing orders. When compared to
existing methods based on singular value decomposition (SVD) and Jordan form decomposition (JD), the pro-

posed approach has reduced hardware complexity for filter implementation. It is also shown that the method has

the same complexity as the lower-upper (LU) matrix decomposition based method. But unlike the decomposi-

tion based methods, the filter coefficients are found directly from the impulse response matrices by simple and

numerically reliable mathematical operations.

It has also been shown that utilizing the inherent modularity in the way the 2-D polynomials has been

rewritten, the complete 2-D transfer function can be built with a number of first and second order l-D filter

blocks. Hence, recent advances in VLSI methodologies can be utilized to facilitate mass production of 2-D filters.
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Section - 2.2 : Optimal Identification of 1-D Discrete-Time Systems from Impulse Response Data

An optimal algorithm for estimation of the parameters of rational transfer functions from prescribed impulse
response data is presented [2]. One of the major contributions of this part of the work is that, for the first time,
an error minimization criterion has been theoretically derived which is uniformly applicable to rational models
with arbitrary numbers of poles and zeros. This is a very important result because existing methods either modify
the true non-linear error criterion in the theoretical derivation or require the transfer function model to have
exactly one less number of zeros than poles. In the proposed algorithm, the transfer function coefficients are
estimated by minimizing the 12-norm of the exact model fitting error. It is shown that the complete basis space
orthogonal to the model fitting error can be constructed with the coefficients of the denominator polynomial
only. The multidimensional non-linear error criterion is decoupled into a purely linear and a purely nonlinear
subproblem. Global optimality properties of the decoupled estimators are established. The inherent mathematical
structure in the non-linear subproblem is exploited in formulating an efficient iterative computational algorithm
for its minimization. The proposed algorithm provides a powerful and comprehensive, theoretical as well as
computational framework for modeling general pole-zero (ARMA) and all-pole (AR) systems from prescribed
impulse response data. It is shown that the algorithm can be utilized for identifying all-zero (MA) systems also.

Before the general optimal algorithm mentioned above was discovered, we had developed some suboptimal
designs for proper transfer functions with equal number of poles and zeros. This work is reported in [3] which
will be included with the Invention report but these suboptimal results are not described in Section 2.2.

Section - 2.3: Design of 2-D Recursive Digital Filters From Spatial Domain Data - Strictly Proper
Case

A class of least-squares algorithms for design of two-dimensional digital filters from space domain data is
presented (4, 151. The proposed algorithms iteratively estimate the filter coefficients by minimizing the true
squared error between the given and the estimated space domain responses. The algorithms are essentially
generalization of an existing l-D design algorithm given by Evans and Fischl (EFM) which is known to be
optimal when the number of zeros in the transfer function is one less than the number of poles. Though some
work extending EFM had earlier been reported, the full potential of EFM was never made use of because the true
reparameterized error criterion was not derived and also the second phase of EFM was never evoked. Also, unlike
the earlier methods, the error criterion is simultaneously optimized w.r.t. the coefficients in both dimensions.
Design algorithms are given for filters with separable and irreducible numerator/denominator polynomials and

also for mixed structures.

Section - 2.4: Identification Of Discrete Time Multivariable Systems from Impulse Response Data

The problem of identification of transfer function matrices of discrete time multivariable systems is addressed
[5]. The proposed technique obtains an optimal approximation from the given (possibly noisy) measured impulse
response data. It is assumed that the measured impulse response data corresponds to a system with a strictly
proper transfer function matrix with common denominators and different numerator polynomials. Based on
the proposed theoretical basis, an efficient computational algorithm is developed and illustrated by means of
several examples. In [161, we propose another algorithm that obtains a common numerator as well as a common
denominator polynomial for all the elements of a transfer function matrix. This design essentially produces a
common controller with different gains for several plants.

Realization of 2-D State-Space Filters With Fewer Multipliers

This work was published (6] during the proposal period though the major part of the work was completed



before the inception of this research. Hence only a brief summary is being included only in the Introduction
and the paper will also be included with the Invention report. In this paper, it has been shown that under
certain controllability and observability conditions on the 1-D block diagonal subsystems, a reduction in the
number of multipliers for hardware realization can be achieved. Compared to a related existing method which
requires 2nm + 3(n + m) + 1 multipliers, the proposed transformation reduces the multiplier requirement by
(n + m), where n and m denote the respective dimensions of individual 1-D blocks. This saving in cost may be
substantial if the filter order is high. A systematic procedure for obtaining the coefficients of the minimal number
of multipliers is also given in the paper along with a detailed numerical example which illustrate the accuracy of
the proposed method.

CHAPTER 3. SPECTRUM ESTIMATION AND RELATED TOPICS

Section - 3.1 : A Cyclic Algorithm for Maximum Likelihood Frequency Estimation

A simple cyclic algorithm for estimation of multiple frequencies of narrow-band sources from noisy data is
given [7). The algorithm iteratively and recursively updates each unknown frequency by minimizing the model
fitting error. For Gaussianly distributed noise, the algorithm produces maximum likelihood estimates, otherwise
least-squares estimates are found. At each step of the algorithm, the optimization problem is w.r.t. a single
frequency only and hence, simple hardware/software (e.g., usage of FFT for the computation of periodogram)
will be sufficient for implementation of the proposed cyclic algorithm.

Periodogram is one of the most commonly used spectrum estimation techniques. But it is well known that
periodogram can not resolve closely spaced frequencies or angles of arrivals. The main goal of this research was
to develop an algorithm that will rely on periodogram but at the same time provide high-resolution estimates
by maximizing the maximum-likelihood criterion. The proposed cyclic approach achieves these goals because it
requires optimization with respect to only one frequency at every estimation cycle. The method is iterative and
recursive and relies on the knowledge of approximate prior estimates of the frequencies (or regions of interest)
which may be easily obtained from the periodogram peaks. The estimates obtained using the algorithm are
unbiased and follow the Cramer-Rao lower bound up to 0dB SNR.

Section - 3.2 : A Parameter Adaptive Simulated Annealing Algorithm Applied to Frequency
Estimation

In this part of the research, a faster simulated annealing algorithm is proposed [8] and applied to the
frequency estimation problem. The proposed annealing scheme is based on a cooling schedule which is parameter
adaptive. In the existing annealing schemes, the temperature parameter is predetermined for every iteration step
and is independent of the unknown parameter values. In the proposed scheme, the cooling temperature is made
proportional to the deviation of each individual parameter at the earlier iteration step. The other key difference
is that the proposed scheme never accepts a higher energy level and remains at the present lower energy position.
Instead, the Boltzmann Distribution is used to accept a larger cooling temperature which is same as performing
parameter search with a broader search space. This algorithm was applied to the non-linear maximum-likelihood
error criterion that arise in frequency estimation and simulations confirm that the proposed scheme converges tn
the minimum energy level in much fewer iteration steps when compared to an existing fast annealing algorithm
due to Szu.

Section - 3.3 : One Step Estimation of Angles-of-Arrival of Wideband Sources

A high resolution algorithm for estimating the angles of arrivals of multiple wideband sources is studied for



this part of the work [9]. The algorithm is effective for a dense and equally spaced array structure where a bilinear

transformation is utilized in the frequency domain for combining the signal subspaces at different frequencies for
coherent processing. When compared with existing coherent approaches, the algorithm is non-iterative in the
sense that all the arrival angles can be estimated in only one step of the algorithm. Existing algorithms can only
estimate the angles of a cluster of sources in a particular direction. The proposed algorithm, unlike the existing
ones, does not need the knowledge of the initial estimates of the arrival angles. The work reported here is a
variation of some earlier work by the author. Instead of using generalized eigendecomposition or matrix-pencil

method, here we pre- or post-multiply the signal-subspace matrix with the noise matrix. This enables us to use
regular eigendecomposition routine to estimate the source angles. It is also shown that it may be numerically
m6re stable if the coherent combination is not focused in the center frequency the numerical value of which could

be very large. The new focusing matrix given here allows to focus independent of the center frequency.

The original intention was to utilize structured matrix approximation approach to this problem. This task
has been accomplished but the eigendecomposition based method given here performed considerably better.

Section - 3.4 : An Order-Recursive approach for Parametric Bispectrum Estimation

Order recursive computation of AR parameters from cumulants is given [10]. The Cumulant matrix arising
in AR-Bispectrum estimation may not be either Toeplitz or symmetric. In such cases, it is shown that using a
block matrix inversion formula due to Frobenius and Schur, the inverse of the p-dimensional cumulant matrix
can be updated from the (p - 1)-dimensional inverse with 0(p 2) operations. 'When compared to commonly used
standard batch-mode computation, the proposed algorithm reduces the computational requirement for order-
recursive calculation of the AR-parameters. When the cumulant matrix is non-symmetric Toeplitz also, further
reduction in computation is obtained using an algorithm due to Trench.

Section - 3.5: Phoneme and Vowel Recognition Using Time-Delay Neural Network

In this part of research, Time-Delay Neural Network (TDNN) architecture has been used for speaker indepen-
dent recognition of Phonemes and Vowels of isolated words [11, 12]. One of the limiting factors of many existing
speech recognition algorithms is the requirement of precise temporal alignment. Segmentation and dynamic time-
warping are usually performed to solve this alignment problem. Dynamic time-warping at each speech segment is
computation intensive. Also, segmentation may be erroneous in itself and, when in error, will cause recognition
failure due to a mismatch. Furthermore, it is advantageous of recognition algorithm to look at multiple time
frames at one time in order to make use of the inter-frame relationships and differences in the input features.
TDNN has the ability to represent relationships between events in time and at the same time it allows for invari-
ance of these events under translation in time. With this translation invariance, a Time Delay Neural network
does not require precise temporal alignment, therefore the network is able to simply scan the input features for
clues. This is a necessary requirement for efficient continuous speech recognition addressed in this work.

Our goal was to improve the performance of TDNN by increasing the amount of data supplied to the network.
This was achieved by including the LPC coefficients along with the FFT bin energies. We have also trained the
network with utterances having variable durations. We feel that it is an important aspect due to the extreme
variability in speaking rate of different speakers at different situations. Also, restricting the utterance length to

150ms (as it seems to have been proposed by Waibel et a) in order to make a decision about a vowel may limit
the network's performance because depending on speaking style and the spoken word the selected 150ms may
not contain all the key information to recognize the vowel. We have trained the network with multiple English
speakers and have obtained 100% recognition rate.
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Section - 3.6: Speech Analysis and Synthesis with Non-Linear Prediction

One of the common assumptions in speech has been that speech production and perception are essentially

linear processes and hence one can accurately model speech data using 'linear prediction' based methods. Phys-

iological evidence indicate that some nonlinear operation does occur in speech production and perception. It

is also known that linear models perform poorly for certain types of speech. Based on these observations, for

this final part of research we consider the applicability of certain parametric nonlinear models for the purpose

of analysis/prediction/synthesis/coding of speech signals [13, 14]. To the best of our knowledge, these models

have not yet been exploited for speech modeling. Several algorithms for simultaneous estimation of the non-

linear as well as the linear prediction parameters of speech signals have been studied and more work is under

way. These studies indicate that the nonlinear models retain substantially more information when compared to

linear-only models. Experiments on telephone quality speech data clearly and consistently indicate that there is

a significant reduction in the prediction error when the bilinear prediction components are included along with

the LPC part. The results in this work may have significant effect on the performance accuracy of any speech

recognition/synthesis/coding system that currently relies on linear prediction only.
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CHAPTER 2

DIGITAL FILTERS: REALIZATION AND SYNTHESIS

SECTION 2.1 : SEPARABLE AND EXACT REALIZATION OF 2-D IR FILTERS

SUMMARY

A method for exact realization of 2-dimensional digital IIR filters using separable 1-dimensional modules is
presented. The proposed design utilizes a theorem on separability of multivariable polynomials for writing a 2-D
polynomial as sum-of-product of 1-D polynomials of successively diminishing orders. The proposed realization
has lower complexity compared to most existing methods.

I. INTRODUCTION

Exact realization of 2-D IIR filters using separable 1-D filter is one of the most elusive problems in digital signal
processing. In development of stability tests and for stabilization of 1-D digital filters, factorization plays an
important role. However, it is well recognized that no fundamental theorem of algebra on factorization exists
for polynomials in two independent variables. This lack of a corresponding theorem has been aptly phrased as
"a fundamental curse" of 2-D filtering. In the last two decades considerable research effort has been devoted to
the development of algorithms for 2-D polynomial factorization. In [1], Treitel and Shanks proposed a scheme
for approzimate implementation of 2-D planar (2-D FIR) filters with m x n coefficients in terms of k number of
separable blocks each requiring (m + n) coefficients. In [2],[3] a separability theorem of multivariable polynomial
is presented and using the separability result for the 2-D case, Suresh and Shenoi [4] presented an ezact realiza-
tion of 2-D planar filters by separable 1-D filters. In [5], Venetsanopoulos and Mertzios used a general matrix
decomposition theorem for exact decomposition of a general 2-D real rational transfer function. It was shown
that in the decomposed form, each rational function depends on only one of the two independent variables. Nikias
et al [6] showed that LU decomposition can be used for exact implementation of 2-D rational transfer functions.
Moreover, from the hardware point of view, the LU decomposition is considerably more efficient compared to the
realizations based on Singular Value Decomposition (SVD) and Jordan form Decomposition (JD) [7]. For more
references on 2-D filter implementation, see [5] and [6].

In this work, we utilize the separability theorem of [2],[3] to develop exact realizations of 2-D digital filters with
rational transfer function using separable and parallel blocks of 1-D filters of successively reducing orders. For the
planar case, the proposed approach is essentially similar to the one given in [4], except that our implementation
requires reduced number of delay elements. The proposed approach for the planar case is then extended for
implementation of rational transfer functions (2-D IIR filters) by incorporating feedback and cascading. For the
full rank planar coefficient matrix case, the given approach has reduced hardware requirement than SVD and JD
approaches and same complexity as LU decomposition approach.

In the proposed scheme, the filter coefficients are found by simple operations of matrix addition, subtraction
and multiplication. For rank deficient coefficient matrices also, the proposed scheme has reduced hardware
complexity than the SVD and JD approaches. Similar to the matrix decomposition based methods [5],[6], the
proposed approach also possesses high degree of modularity and modern VLSI technology can be utilized for
efficient hardware realization. The results presented in the sequel are a more formal and detailed presentation of
(8].

This Section is arranged as follows. In Subsection II, the problem is formulated and the planar full rank case
is first treated by considering the numerator of the 2-D rational transfer function. In Subsection III, the separable



- 10-

IIR design is considered. The rank deficient case is briefly outlined in Subsection IV. Finally, in Subsection V, an

examples is given to illustrate the proposed technique.

U1. SEPARABLE REALIZATION OF 2-D FIR FILTER

A 2-D rational transfer function has the following general form,

~ zz, , Z2=) =0 1 2j ' (2.1)
H( I z2 - (zI, Z2) 6 =0 "- _=;I P(ij)z1,z2#

Let us consider the numerator polynomial q(zl, z2) first. Its impulse response can be represented by the following

n x mi matrix q(n, -1,ml-1) q(ni-1,mi- 2) ... q(n, -1,0)

_ I . I(2.2)q(1,,ml - 1) q(1,,mi- 2) .. q(1,o0)(.2

I q(O,.mi - 1) q(O,mi - 2) ... q(o, o)

such that the polynomial q(zl, z 2) can be written as

q(zi,z2) A z Qz2, (2.3)

where zj and Z2 are defined as,
zl [zj ' 1) - ( 'n- 2) ... zT' 1]T  and Z2 [ [z;(m- 1) Z 2 (- 2 - 2) ... Z2 , (2.4)

and [.]T denotes the transpose operation. We first consider the case of Q being a full rank matrix.

In general, the coefficient matrix Q is not separable, i.e, one cannot, in general, factor q(zl, z2) in terms of

1-D z-domain polynomials. But following the separability testing criterion [2],[3], the matrix Q can be expressed

as the sum of a separable matrix Q0 and an error matrix E 0 which again, in general, is not separable, i.e., [4]

q(ij) = qo(ij) + eo(ij) (2.5)

where,

qo(n, - 1,j) = q(n, - 1,j), 0 <j < ml - 1 (2.6a)

qo(i, ml -1) = q(i,mx -1), 0< i <n 1 -1 (2.6b)

qo(i,j) = q(i,mi - 1)q(ni- 1,j),
l < j <_ml-1, l<i <nl -1. (2.6c)

The indices of the matrix Q0 match those of Q as in (2.2). Note that according to the separability criterion [2],[3]

any (n1 x mi) 2-D planar filter G is separable if

g(i, 0)g(0, j) = g(i, j) 0 < i < n1 - 1, 0 <j _< mi - 1. (2.7)

Since the elements qo(i,j)'s follow (2.7), the 2-D filter having impulse response matrix Qo is separable by con-

struction, Let the separable form of the transfer function be expressed as

ni-1 mi-i

qo(zl,z2) = qo(ij)z1'z - c (z)r( 2 ), (2.8)
i=o j=O
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where,
nt-I m 1-1

c4(z0 ) t 0 c(i)zj' and ro(z2) eo (j)z'. (2.9)
i=O j=0

The coefficients cn(i) for i = 0,... ,n - 1 and r"(j) for j = 0,...,ml - 1 are constructed as,

-(n -1) = 1, and ce(i) = q(i, mi -1), for i= 0,... ,n -2 (2.10a)

and
rn(m -1) = 1, and rn(i) = q(i, n -1), for j=0,...,m -2, (2.10b)

where the superscript n indicates that the decomposition is for the &nominator polynomial. Note that q(n, -
1, ml - 1) is assumed to be non-zero without any loss of generality. If it happens to be zero then the first column
(row) of Q may be interchanged with any column (row) with non-zero leading coefficient and at the same time
interchanging the corresponding powers of Z2 (z1 ) in the vector z2 (zl) • Further, the matrix Q can be normalized
such that the (1,1) element is equal to 1. In (2.10) above, we have assumed that the necessary column (row)
permutation and/or normalization has already been performed.

The error matrix E0 E RnIxm, formed with the elements of eo(i,j) in (2.5) has the following form,

0O 0 ... 0 1
0O eo(ni - 2, m, - 2) ... eo(nl - 2,0)

Ea A (2.11)
0 e0(0, M, - 2) ... e0(0, 0)

Now, let us call the nj - 1 x n, - 1 non-zero submatrix at the lower right hand corner of EO as t0 and let
IFO(z1 , z2 ) be the system function corresponding to it. Then,

n-2m-2

Io(zl,z2) = E E Zj Z' (ij). (2.12)
i=O j:0

Hence, combining (2.8) and (2.12), the numerator can now be written as

q(zl,z2) = 41 (zi)rn(z2 ) + EO(zi,Z 2). (2.13)

Now starting from the matrix Eo which, in general, is non-separable, we can proceed similarly as we did for the
matrix Q and form another summation of a separable and a possibly non-separable filter, i.e., similar to (2.8)
and (2.13), we can express EO(zl, z 2) as,

io(zlz 2 ) = qI(zl,Z 2 ) + jI(zl,z 2 ) = cnl(zl)r (Z 2 ) + il(ZI,Z 2 ), (2.14)

where, en'(zi) and rj(z2) are defined similarly as in (2.9) and (2.10) except that their orders are reduced by one.
Continuing that process, eventually we will get,

m1 -I m1 -I

q(zI,z 2 ) = E q,(z 1 ,z 2) = 4L c(zI)i(z2 ). (2.15)
i=O i=O

This is the separable form we were seeking for the numerator polynomial. Note that we have assumed nj >_ m, (=
rank of Q), without any loss of generality. Also note that cn(zi) and ri(z2 ) are 1-D filters with orders nj - 1-:
and ml - 1 - i, respectively, i.e., the filter orders are successively reducing with increasing values of i. The
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separable form of q(z2,z2) in equation (2.15) implies that the planar 2-D filter q(z1, z2) can be implemented with
parallel blocks of separable 1-D filters. The modularity of this decomposition, for the purpose of implementation
is obvious. Note also that in SVD and JD approaches [5], each parallel block would usually have two cascaded
1-D filters of orders nj - 1 and ml - 1, respectively, whereas in the proposed approach, the orders of the 1-D
filters in successive parallel branches diminish, thereby reducing the complexity and hardware requirement in the
filter implementation. Specifically, SVD and JD approaches would require ml(m + nl) coefficients whereas the
present approach would require ml(n1 + 1) coefficients which is the same as that of the requirement for the LU
decomposition case. Hence the hardware requirement for LU decomposition approach [6] is exactly same as in
the present case.

It may be pointed out here that the above derivation is essentially similar to the one given in [4], except that
they considered only the planar case and started with a permuted form of the Q matrix. Specifically, in [4], the
planar matrix is written as

r q(1,0) q(0,1) ... q(0,mi 1- 1) ]A { (1,0 q01) qm,-1)I(2.16)

q(ni- 1,0) q(ni -1,1) ... q(n, - 1,m, -

such that the polynomial q(zI, z2 ) may be expressed as

&Iz, z 2) A z 1 45i 2 , (2.17)

where i and i2 are defined as,

il A j1 z"I Zj2 ... z_ n.-')IT and i2 A [I Z-1 2-2 ... Z-(mi-1)) T .  (2.18)

Eventually, the separable form equivalent to (2.15) was found to be,

mi-1 m 1 -1

q(zi, Z2) = 4i(Zi,Z2)zj_'z' = , Z1i2 (1 iZ) (2.19)=0=
i-=0 i----

For the realization in (2.15), the highest powers of delays are accounted for in the first recursion and subsequent
recursion have lower powers of delay. However, the realization (2.19) retains the highest powers of delay till the
last recursion. Therefore, the realization in (2.19) would require 2m, extra delays when compared to the one in
(2.15). This is evident from the zj7iz' term in (2.19).

The separable form of the numerator polynomial is now complete and the extension to the denominator
realization is given next.

IMI. SEPARABLE IMPLEMENTATION OF 2-D IR FILTER

Let us first write the denominator polynomial as

P(z1,z2) = K + f(zI,z 2 ) (3.1)

where the polynomial f(z' , z 2) has no constant term. Next the all-pole part of H(zl, z2) in (2.1) is rewritten as,

- 1 -21 - (3.2)Hp~1,,2) = p(zI,z2) K + f(zI,,z 2 ) 1 + kf(z,,z2)
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which is a feedback network with " in the forward branch and f(zI, Z2) polynomial in the feedback branch as
shown in Fig. 1. Our contention here is that f(zi, Z2) which, in general, is not separable, can again be expressed
as a sum of separable polynomials following the same steps used in obtaining (2.15) i.e.,

m2-1

f(Z1,Z2) = , Ci(Zl)r'(Z2), (3.3)
i=O

where d indicates that the decomposition is for the denominator polynomial. Next, the contributions from the
numerator and the denominator can be cascaded as shown in Fig. 2 for an exact realization of the 2-D rational
transfer function in terms of only separable 1-D modules. For realizable decomposition, it should be ensured that
there must not be any delay-free loops in the feedback path. This, in turn, can be ensured b) belecting c?(zI)

and rd(z2) such that for any value of i, both cd(zi) and rid(z2) do not have a constant term. This is discussed
later in Subsection V.

IV. THE RANK DEFICIENT CASE

If the coefficient matrix Q is not full rank, then SVD and JD approaches would require k(mi + nj) coefficients for
the implementation, where k is the rank of Q. Whereas the LU decomposition would require k(n, + m, - k + 1)
coefficients. However the proposed direct approach would still require m, (n, + 1) coefficients unless at some stage
Ei is a zero matrix. Hence, the direct implementation of the proposed method may not always be economical when
compared to SVD or JD approaches and it will almost always have more hardware requirement when compared
to the LU approach. Hence, it is recommended that elementary row and column operations be performed on the

Q matrix so that its first k principal minors are non-zero (6]. If Q can be reduced to LU decomposable form
after the row/column operations, then we can still apply the proposed algorithm. Note that in this case Ek-i so
obtained will be a zero matrix. Therefore, the number of coefficients will again be k(n + m, - k + 1) i.e., it will
have lower hardware requirement than SVD and JD approaches and the same hardware complexity as the LU
approach. It should be pointed out that the main advantage of the proposed algorithm over the LU approach is
that it produces the filter of same complexity as the LU decomposition without resorting to LU decomposition

of Q.

V. AN EXAMPLE

In this Subsection, we will illustrate the proposed scheme by means of a numerical example. The transfer function
used for this example has been taken form [9]. H(z) =- with

q(zl, Z2) = 3zi 2z 2 + 7z 1 Z 2 + 2z22 + 7z7 2z;' + 9z71 z2 1 + 3zj1 + 3z1 2 + 3zj' + 1

f(Zl, Z2) = 3zi 1 + 1j2 + 4z2 I + 6Z 1z; 1 + 2zi zl + 3Z 2 + 3z, 1z2 2 + zI 2z2 2 .

Following the steps outlined in the previous Subsection, we can write

&~I, z 2 ) = Ji7 Z2 A Z zQZ2
13 1

Q=Qo+Eo

1i 7/3 1 [ 0 01
=3[7/3 49/9 7/3 + L4 -22/3 -41

2/3 14/9 2/3 '0 -5/3 -1
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Defnin Eo [-5/3 -4J we can write the numerator polynomial as

q(zI, z2 ) = (z'12 + 7/3zj' + 2/3) (3zU2 + 7z2 +3) + io(z " , z3)

where 40(zl, z2) = -(22/3zIzj' I + 4z-" + 5/3z-' + 1. Following the same steps on fE,, it can be shown that

q(z:, z2) = (Z12 + 7/3zj' + 2/3) (3z2 2 + 7z 1 + 3) - (ziI + 5/22) (22/3z2 + 4) - 1/11

Next, we perform a similar reduction on the denominator. The polynomial f(zi, z2) can be written in the matrix
vector form as

f(Zl,Z2) = [3 6 3 2 zTFz2-. (4.1)
34

Note that due to realizability constraints [6],[10], we cannot have any delay-free loops in the feedback path.
Accordingly, we must make some minor modifications to the method used for realization of the numerator poly-
nomial. In particular, it is necessary to permute the rows (columns) of the matrix F such that the resulting
realization obtained by applying the proposed method does not contain any delay-free loop. It should be pointed
out that such realizations always exist provided that the element p(O, 0) in (2.1) is non-zero [6].

Applying the necessary permutation (interchanging the first and the third columns of the matrix F), we can
rewrite (4.1) as

f(Zl,Z2) = [42 zj I  1] 3 6 3 Z1 (4.2)104 3 , J

Next, using the proposed technique, we can obtain a realizable form for f(zI, z2) given by
f(zI, Z2) = (3z-1 +Z- i2) (1 +-,1) 2 + (4z, +4 W2).

Note that for this example several other realizable forms do exist. However, the above form requires the least
number of delay elements.

Next, we compare the hardware requirement for the proposed realization with several existing ones.

Table 4.1: Comparison of Hardware Requirements (delay elements)

Method Numerator Denominator Total
LU [6] 8 6 14
SVD [5] 18 8 26
JD 5 18 6 26
SS [4] 14 ' *
Proposed 8 6 14

• Note that the method in [4] is applicable to FIR filters only.

VI. DISCUSSION

The modularity in q(zl, Z2) can be observed in (2.15) which can be built with separate 1-D modules c (zj)'s and
r?(z2)'s only. The same will be true for the feedback path to implement f(z, z2 ). The individual modules c! (zl)'s
and r (z2 )'s can again be factored into first and second (to have real coefficients only) order polynomials because
they are functions of single independent variables only. This implies that the complete 2-D transfer function can



- 15-

be built with a number of first and second order 1-D blocks. Recent advances in VLSI methodologies can be
utilized for building such 2-D filters.
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SECTION 2.2 OPTIMAL IDENTIFICATION OF DISCRETE-TIME SYSTEMS FROM IMPULSE

RESPONSE DATA

SUMMARY

An optimal algorithm for estimation of the parameters of rational transfer functions from prescribed impulse

response data is presented. A major contribution of this work is that, for the first time, an error minimization

criterion has been theoretically derived which is uniformly applicable to rational models with arbitrary numbers

of poles and zeros. Existing methods either modify the true non-linear error criterion in the theoretical derivation

or require the transfer function model to have exactly one less number of zeros than poles. In the proposed

algorithm, the transfer function coefficients are estimated by minimizing the t 2-norm of the exact model fitting

error. It is shown that the complete basis space orthogonal to the model fitting error can be constructed with

the coefficients of the denominator polynomial only. The multidimensional non-linear error criterion is decoupled

into a purely linear and a purely nonlinear subproblem. Global optimality properties of the decoupled estimators

are established. The inherent mathematical structure in the non-linear subproblem is exploited in formulating

an efficient iterative computational algorithm for its minimization. The proposed algorithm provides a powerful

and comprehensive, theoretical as well as computational framework for modeling general pole-zero and all-pole

systems from prescribed impulse response data. It is shown that the algorithm can be utilized for identifying

all-zero systems also. The effectiveness of the algorithm is demonstrated with several *simulation examples.

1. INTRODUCTION

Identification of unknown discrete-time linear systems is a fundamental problem in signal processing. Over

the last several decades this problem has remained among the most active and important research areas [1-

7, 10, 13-17, 24-34, 37, 55]. Depending on the application, design specifications or the information available

about the unknown system, linear system modeling can be broadly categorized into two classes, namely, non-

parametric and parametric. Historically, non-parametric modeling had gained early popularity due mainly to

relatively simpler mathematical and computational complexity. Classical non-parametric models include impulse

response sequence, Fourier-domain representation or frequency response, Power Spectral Density or Periodogram,

autocorrelation sequence, Characteristic Function and others [8-12, 57, 58]. The major drawback of classical non-

parametric models is that, more often than not, these representations are theoretically infinite in extent. Hence,
though sound and simple in theory, these models may encounter serious data-handling problems in practice.

Furthermore, in various non-parametric representations, the utilization of finite amount of data may cause limited

resolution, spurious estimates, overshoot/oscillation (e.g., Gibb's Phenomenon), broadening of main-lobe width

and other well-known problems associated with data truncation [7, 9, 11, 12, 57, 59].

Parametric models overcome the infinite dimensionality problem of non-parametric models by representing
the system in terms of only a finite number of parameters or coefficients. Pole-zero models or transfer functions,

linear differential and difference equations, Wiener/Kalman filters, exponential models, Markov models, finite

automata, state-space representations etc. are some of the well known parametric system models. The primary

advantage of these models is their ability to describe a possibly infinite dimensional system accurately and

completely in terms of a parsimonious representation that is dependent only on a small number of parameters.

Some of the problems encountered in parametric modeling include the proper choice of the type of the model that

can appropriately describe the underlying system, accurate determination of model order as well as the estimation

of the parameters defining the model. Over the last few decades these problems have been addressed in a large

body of work [1-17, 24-50, 52, 53, 55, 57-59].

Among the parametric models mentioned above, the pole-zero or rational transfer function model is one of

I..a n m n -
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the most effective and practical representations in digital signal processing literature. Over the years, research
on parameter identification of rational transfer functions has evolved in four major directions. The first among
the following four approaches deals with the modeling of random processes whereas the later three address
deterministic problems. Firstly, in statistical and modern spectrum analysis literature, unknown systems or rather
their Power Spectral Densities (PSD) are modeled using AR, MA and ARMA model identification methods [8,
9, 10, 11, 52]. The system parameters in these cases are estimated from the observed output data record only.
Since the input to such systems can not be observed, white noise is assumed to be the input for modeling
convenience. Secondly, in Control Systems, the input and output signals of a plant are usually measurable.
Hence, the system parameters are estimated from the known input/output record [1-3, 13-17, 32, 55]. Thirdly,
in Digital Filter design, the filter specifications may be given in the frequency domain in terms of the magnitude
and phase responses in the pass/stop bands. Given such clear-cut specifications, standard methods are available
[7, 12, 59] for designing IIR filters with classical structures such as Butterworth, Chebyshev, Elliptic and others.
For arbitrary or non-classical frequency domain specifications, least-squares matching leads to general non-linear
optimization algorithms [25, 26, 31, 33]. Fourthly, and again within the deterministic design context, in some
applications the least-squares fit of a desired time-domain impulse response may be required or non-classical filter
specifications with arbitrarily shaped pass/stopband response may be desired of an HiR filter or the unknown
system may be known to contain unequal numbers of poles and zeros. In such cases, it is more advantageous
and appropriate to fit the impulse response data directly to a rational transfer function model by estimating the
unknown parameters of the model.

The modeling problem addressed in this Section belongs to the fourth category mentioned above. Specifically,
given a desired impulse response the goal here is to estimate the coefficients of the numerator and denominator
polynomials of the unknown rational transfer function by minimizing the model fitting error in the least-squares
sense. It is well-known that this is a multidimensional nonlinear optimization problem [1-7, 10, 24-31, 34-37,
41-43, 55]. There have been a substantial amount of work on this particular problem starting, most probably,
with the work of Kalman [1] where a linearized and approximate 'equation error' was minimized. In [3], Steiglitz
and McBride (SM) proposed a linearized 'fitting error' minimization criterion whereas Shanks in [2] and Burrus
and Parks in [30] proposed a couple of two-step procedures where the denominator polynomial was first estimated
by minimizing an 'equation error' and then that denominator was utilized to obtain the numerator by minimizing
a linearized 'fitting error'. These methods can not be expected to produce optimal estimates because the exact
model fitting error norm is not minimized. For the special case of strictly proper transfer function models, i.e.,
when the order of the numerator polynomial is exactly one less than the denominator polynomial order, an
optimal solution that minimizes the exact fitting error criterion has been introduced by Evans and Fischl (EF) [5,
6]. Some of these approaches will be mathematically explained briefly in Subsection II so that their relationships
with the proposed algorithm may be better appreciated.

Among other important works on this subject, a quasi-linearization method similar to SM was given in [24]
and a modification of SM method was given in [63]. A least-squares Taylor approach was proposed in [27] and
an algorithm relying on general non-linear optimization methods such as Gauss-Newton method was given in
(62]. In [28] a two-step modified least-squares criterion was optimized using Pade synthesis technique and the
standard Newton-Raphson method. In (29], the first two terms of the Taylor series expansion of the non-linear
criterion was minimized and in [36] gradient based algorithms have been studied. The list of work cited here is
not exhaustive, only some of the more important research are mentioned. Other related references may be found
in the publications cited. A thorough treatment on 'filter design by modeling' based on a unified framework is
presented in the book by Jackson [7, see also 10].

Most of the approaches cited above may be considered sub-optimal in the sense that theoretically they do not
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minimize the exact model fitting error. In this work the £2-norm of the exact fitting error between the desired and
the estimated impulse responses is minimized. The optimization is performed with respect to the denominator
and the numerator coefficients. The proposed algorithm is closely related to the optimal technique proposed
by Evans and Fischl [5-7]. It is well-known that the optimal EF method is applicable only for strictly proper
rational transfer functions. In certain applications, such as exponential modeling, the strictly proper model is
indeed the appropriate choice and a complex and constrained version of the EF method has been very effective
[44-50, 60]. But the EF method has found limited applications in rational transfer function modeling problems
because, in general, the highest degree of the numerator polynomial need not necessarily be exactly one less than
the highest denominator degree [3, 4, 25]. The optimal method proposed here has no such restrictions and may be
considered a generalization of the EF method. Furthermore, in contrast to the methods presented in [1-4, 24, 30]
no linearization or modification of error criterion is introduced in the theoretical derivation of the least-squares
model fitting criterion.

One of the critical steps in the theoretical derivation of the optimal criterion has been to identify the complete
basis space orthogonal to the model fitting error. It will be shown later that even for general pole-zero (ARMA)
models with arbitrary numerator and denominator orders, the orthogonal basis space can be completely defined
in terms of the denominator coefficients only. The fitting error is then shown to be related to an equation error
that turns out to be somewhat different than the one that appears in the EF method. But the form of the
equation error is mathematically more appropriate for the general case considered here. The final error criterion
possesses similar mathematical structure as in EF method but in the present generalized version, the dimensions
of both the 'prefilter' matrix and the 'data' matrix vary according to the numerator and denominator orders.
The inherent matrix prefiltering structure of the error criterion directly leads to formulating an efficient iterative
computational algorithm for minimization.

The all-pole (AR) filter design problem can be considered a special case of fitting general pole-zero (ARMA)
transfer functions models. Hence, given a desired impulse response, the proposed. algorithm is also shown to
produce the optimum least-squares estimates of the parameters of an all-pole (AR) model. Furthermore, for
all-zero (MA) models, the well known Durbin's method basically relies on two AR model identification steps. By
utilizing the proposed optimum AR-algorithm in one or both steps of Durbin's method, a modified Durbin-type
algorithm is also presented for estimation of MA model parameters. The attractive feature of this work is that the
proposed algor"'_,n provides a unified and general framework for optimal identification of discrete-time systems
from impulse response data encompassing a broad class of IIR and FIR structures.

This Section is arranged as follows: in Subsection II, the problem is defined and some related works are briefly
outlined. In Subsection III the problem is formulated for the pole-zero (ARMA) case and the error optimization
criterion is derived in detail. In Subsection IV, the criterion is appropriately modified to solve the all-pole (AR)
case. In Subsection V, the all-zero (MA) case is addressed and in Subsection VI, several simulation examples are
given. Finally, in Subsection VII, some discussion on the proposed algorithm is given and the Section is then
concluded with some directions on possible future research.

IU. PROBLEM STATEMENT AND RELATED METHODS

The rational transfer function model of a general recursive IIR digital filter can be represented in the z-domain
as,

H(z) = ao+alz-1+a,-Iz-(-
1)+'"-+a z - q  N(z)

1 + blz - 1 + .. . + bp_z-(P-1) + bpzP D--- ) (1)

where the coefficient of zo term in denominator has been assumed to be unity without any loss of generality.
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Equivalently, the transfer function H(z) can be also written in terms of its impulse response as,

H(z) = h(O) + h(1)z- 1 + -. + h(N - 2 )z - (N- 2) + h(N - 1)z - (N- ) + (2)

Stacking the first N 'significant' samples of H(z), define,

h A [h(O) h(1) ... h(N-1)]T . (3)

Next, denote vector containing the N samples of the prescribed or desired impulse response data as,

hd A [hd(O) h1(1) ... hd(N - 1 )]T .  (4)

Paraphrasing from Steiglitz's paper [4], 'in the best of worlds', given a desired impulse response hd, 'the ideal
problem' of optimal estimation of the parameters ai and bi can be stated as :

minJleII2 A min [ h6(i) - N (L ) }  where, (5)

a,b -- ab -D(z) 
(

1, i=O (5a)6( = 0, i 00,

e A ha-h (5b)

a A [ao a ,  ... aqf]T  and (5c)

bA [1 b ... bp]T. (5d)

This problem is known to be nonlinear in b and standard nonlinear optimization algorithms have been suggested
[62, 23, 25-29, 36]. Several linearization approaches that exploit the inherent structure in this problem have also
evolved [1-6, 24]. In order to motivate the proposed approach, some of the important related results are briefly
outlined next.

Kalman's Method

In one of the earliest work on this subject, the solution of the following linear problem was suggested [1]:

N-i

min ' [D(z){ ha(i)} - N(z) {6(i)] ] (6)a,b

The advantage of this modified error criterion is that it can be easily minimized in the least-squares sense iv. r. t.
the unknown coefficients in a and b by solving a set of simultaneous linear equations. Apart from its simplicity,
this approach is not known to possess any optimality property.

Shanks' Method

This is a two-step approach where the denominator coefficients are first estimated by minimizing an equation
error at the tail end of the impulse response, i.e.,

N-i

min [D(z) {hd(i)112 . (7a)
I-'p
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The minimization of this optimization criterion is also known as the 'covariance method' of linear prediction [7-11,

52, 53]. Once an estimate b(z) of the denominator polynomial is found, the numerator coefficients are estimated

by minimizing the following modified fitting error norm :

N-1 ~ ) 
2

min E [h.1(i) - -. 17b
N-a N {6(i)} (7b)

Note that the estimation of a in (7b) is again a linear problem. Burrus and Parks [30] had presented another

method that is closely related to Shank's work. The denominator was found in exactly the same manner as in

(7a). To obtain the numerator, the first q error samples were forced to be zeros, i.e., the first q samples of hd(n)

were used as the best available estimates. The elements of a are then found from,

k

ak = Z&ih(i - k). (7c)
s=0

The noteworthy feature of both these two-step procedures is that an essentially non-linear problem is converted
into linear problems, but the methods are not known to produce optimal estimates.

Steiglitz-McBride's Iterative Prefiltering Method

In this method, an initial estimate D(z) of the denominator coefficients is first found by either Kalman's
method (6) or Shanks' first step (7a). Then the following modified fitting error criterion is optimized iteratively,

min {h(zf(i)} N(Z) {5(i)} (8)

a i= 0 b(z) d bj 1 1fl_ ,D z)

The estimate b(z) obtained at the i-th iteration step is used as prefilters for obtaining the estimates at the next
iteration step. Note that (8) closely approximates (5) and both are exactly same if D(z) = f)(z). But using (8),
the unknown parameters in a and b can be estimated by solving a set of simultaneous linear equations. Further
details on this method and its application in AR and ARMA model-based filter design may be found in [7].

It should be mentioned here that, very recently, McClellan and Lee [34] have shown that, instead of optimizing

the original SM criterion in (8), it is possible to split the optimization problem into a linear and a non-linear
problem. But more interestingly, for the strictly proper case (p = q + 1), they have also demonstrated that
if a is estimated in a particular manner, then the corresponding non-linear criterion for estimating b has exact
mathematical equivalence with the iterative algorithm of the optimal EF criterion (outlined next). This equivalence

proof appears to explain why the SM method, which was originally proposed as a logical extension to Kalman's
linearized approach, has been found to be effective in many applications over so many years. It should also

be noted here that another decoupled version of the SM method may be found in [7] where a is estimated by
minimizing the fitting error norm in (7b). It will be shown later that, for a given b, the criterion in (7b) produces
the optimal least-squares estimate of a.

Evans-Fischl's Exact Fitting Error Minimization Method

The criteria in (6)-(8) attempt to but do not exactly solve the ideal problem stated in (5). But, as shown in

the previous paragraph, the SM method does the best job of closely approximating the fitting error and it has
found wide applications in 1-D and 2-D filtering [4, 7, 10, 24, 39, 40, 55, 61, 63]. As mentioned above, for strictly
proper Hsp(z) with p = q + 1, an optimal approach that minimizes the exact fitting error has been presented
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in [5, 6]. In their approach, the orthogonality between the modeling error and the vector space spanned by the

denominator coefficients was used to show that the following criteria are exactly equivalent to (5):

min Ilesp(a, b) 112  min IIBsp(B pBsp)-'BTphI 2

a,b b

= min 11h TBsp(B pBsp)-'BT, hd1I2  (9a)

where, bp 0 ... 0
b,_1  b, ... 0

Bsp A 1 b ". 6b P Up N N -P ,  (9b)

0 1 . 6P-1

0 0 .. 1

where the subscript 'SP' denotes the strictly proper case considered by in [5]. Note that, in deriving (9a), no

linearization or approximation had been introduced at the outset. The criterion in (9a) is non-linear and an

iterative minimization scheme was also given in [5, 6]. The initial estimate of b is found by setting the 'prefilter'

matrix (BspBTp) - 1 = I(N-p). This again results in the so-called 'covariance method' of (7a). At convergence
of the EF iterations, the optimum b* and the corresponding minimized error e*p are obtained. Using the optimal
error, the 'cleaned up' or optimum impulse response is found from,

h* = hd - egp. (9c)

The first p - 1 terms of this optimum impulse response is used for calculating the optimum alp as,

k
a4 = E &h°(i -k), for, k = 0,1,...,(p- 1). (9d)

i=0

More details of the algorithm may be found in (5, 6]. Also, the EF case can be considered a special case of the

general algorithm presented here.

The EF method has been covered in detail in the books by Jackson [7] and Scharf [10]. It has also been
extended for separable-denominator 2-D filter design in a series of papers [41-43]. A modified complex version
of the EF method (with complex-conjugate symmetric constraints imposed on b) has also been developed for

maximum-likelihood estimation of multiple frequencies or angles-of-arrival from noisy observation data [44, 45,
47, 49, 60]. The complex version of the EF method has also been extended to 2-D for simultaneous frequency-
wavenumber estimation from array data [46-48, 50]. It is briefly shown next that, for frequency/wavenumber

estimation problems, the original EF method with q = p - 1 is exactly appropriate. A general exponential model
can be defined as,

P
z(n) A Eake" , for, n=0,1,2,...

where, Sk = Ok jW. In this model, there are p unknown sk's as well as p unknown ak's. The z-Transform of

z(n) is

X(Z) = E

k= 1 (Z Isn nuumhn mn) u m
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Clearly, after summation of the p terms in the right hand side, the numerator order will indeed be one less than
the denominator order.

Though the EF method is optimal for the p = q + 1 cases, its usefulness in rational transfer modeling has
been very limited because the number of zeros can not always be restricted only to one less than the number
of poles [see 4, for example]. It does not solve the exact fitting error optimization stated in (5) for the general
ARMA (q 0 p - 1) and the AR (q = 0) cases. The primary objective of the present work is to fill this void.

I. PROBLEM FORMULATION AND ALGORITHM DEVELOPMENT

In this Subsection, the problem is formulated for the ARMA case and the computational algorithm for the
fitting error minimization is derived. The development and the execution may seem similar to the EF method,
but it will be demonstrated that the proposed algorithm is uniformly applicable in a broad class of filter design

problems.

M1.1 : General ARMA Case

In this Subsection the general ARMA case with q 5 p - 1 is considered. Other ARMA cases with q 2! p
will be addressed later. From (1) and (2), equating the coefficients of equal powers of z, the transfer function
coefficients can be related to the impulse response samples in H(z) as

a]= [H, ] b (10)-0 H2

where, a and b have been defined in (5c) and 5(d), respectively, and[h(0) 0 ... 0 0 ... 01

hh + l) h( ) ... 0 0 ... 0
H, h'L ) aO . E JR(q+l)x(p+l), (10a)

h(q) h(q -1) ... h(0) 0 .. J0

h(q +1) h(q) .. h(0) 0 .. 0
h(q+2) h(q+ 1) ... h(1) h(0) -.. 0

H - h(p) h(p- 1) ...... ... h(1) h(O) E 1K (N-q-1)x O'+1) (lOb)

h(N - 1) h(N- 2) ...... ... ... h(N-p- 1)

If b and H1 are known exactly, a can be found simply by the following matrix-vector multiplication,

a = Hib. (lOc)

However, neither the exact h nor the matrices H1 and H2 are known in practice and only the desired impulse
response hd is available. The elements of H, and H 2 in (10) can be replaced by the corresponding elements in
the desired response hd to form the matrices HdI and Hd2, respectively. But with Hdl and Hd2 , the equality in
(10) will not hold and the lower (N - q - 1) equations of (10) can then be written as

hd(q+ 1) had(q) ... hd(0) 0 ... 0
hd(q + 2) had(q + 1) ..- hd(l) hd(O) .-. 0

Hhdb hd(P) hd(p*- 1) ... h(1) hd(O) d(b), (11)

la4N-1b " .. ... " L-
Lhd(N -1) hd( N - 2) ... ... ... ... hd( N - p - I
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where d(b) is an "equation error". It may be pointed out again that, for q = p - 1, the minimization of lId(b)112

produces the so-called "covariance method" of linear prediction [7-11, 52, 53]. It may also be recalled that the
covariance method was the choice in [2] and (30] for linearly estimating b, and also in the EF method [5, 61 for
obtaining the initial estimate of b. For the present general ARMA case with q _< p - 1, the form of the equation
error appearing in (11) is mathematically more appropriate even though it can not be called either "covariance
method" or "auto-correlation method". As briefly outlined next, the initial estimate of b will be computed in the

proposed algorithm, by minimizing IId(b)112 w.r.t. the denominator coefficients. Equation (11) can be rewritten

as,
hd(q) . " hd(O) 0 . 0 hd(q + 1)

hd(q + 1) ." hd(1) hd(O) ... 0 bi hd(q + 2): ".. : ". :l nb2"

hd(p 1) ... hd(1) h(O) = - hd(p) + d(b). (12)

h - 2) ... ... ... ... hd(N - p - I) hd(N - 1)

Now, letting,

hdq) ... hd(O) 0 hd(q+ 1)
hd(q + 1) ... hd(l) hd(G) 0 hd(q+ 2)

h(p-1) .. h(l) h(O) and g hd(p) (13)

hd(N - 2) ...... hd(N - p - 1) hd(N - I)

the minimization of tId(b)112 with respect to b = [b, b2 ... bn]T results in the following initial estimate of b,

b ( °) 
- [ (14)

where G# A (GTG)-lGT denotes the pseudo-inverse of G. Since this estimate is obtained by minimization of
an equation error only, it does not necessarily minimize the norm of the true model fitting error and that remains
the primary objective. Next, the equation error d(b) is related to the model fitting error e.

M.2 : Fitting Error Minimization

The lower partition of (10) is reproduced below

H 2 b = 0, (15a)

h(q+1) h(q) ... h(0) 0 ..- 0
h(q +2) h(q +1) h(1) h(0) *.01

or 0. (15b)

or, h(p) h(p- 1) ......... h(l) h(0) = 0. (15b)

h(N - 1) h(N - 2) ....... ... ... h(N - p- 1)
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These equations can also be expressed in a rearranged form as,

bq+l bq ... 1 0 0 ... 0 0'
bq+2 bq+l ... bl 1 0 0 0 h(O)

:- : : h()
=0. (16a)bp b_1 ....... bi 1 ... 0

:(N : h( )

0 ... b p _ ... ... ... bi 1.

or, by definition, BTh = 0, (16b)

where the (N - q - 1) x N matrix appearing in (16a) is defined as BT in (16b). This is a key equation. It clearly
demonstrates that the (N - q - 1) rows of BT (i.e., the columns of B) are orthogonal to the impulse response
vector h. This relationship will be useful in developing the optimization criterion for the general ARMA case.
Using the definition of B in (16) the equation error d(b) can also be written in a rearranged form as,

d(b) A Hd2b (17a)

bq+l bq ... 1 0 0 ... 0 0"
bq+2 bq+ - b1  1  0  ... 0  0  h d (O)

: : " . : .. " . ". :(:17b1

- bp bp-1 . . . . . . . . . . . b 1 .. . " (17b)
0 hd(N-1I)]

0 ... bp bp_ . . . . . . .. . . . b 1

A BThd. (17c)

From (5b), the desired impulse response can be written as,

hd = h+e. (18)

Plugging (18) into (17) and using the orthogonality result in (16),

d(b) = BT[h + e) (19a)

- Bh+4- BTe (19b)

= BTe. (19c)

This equation establishes a key relationship between the equation error and the fitting error. But in order to
facilitate the minimization of the fitting error norm in (5), an inverse relationship between e and d(b) is developed
next.

For a given b, let a* denote the optimum numerator coefficient vector and e(a, b) be the corresponding
minimized fitting error. Then according to the orthogonality principle [10 (page-325), 221, this fitting error
e(a*, b) must be orthogonal to the 'estimate' h(a, b) which corresponds to the optimum a& and the given b. For
a given b, if this orthogonality does not hold, the non-zero projection of the error e(a*, b) onto h would contain
further information about a. This implies that by changing ao appropriately, one could still minimize the length
of the error e(a*, b). This contradicts the original assumptions about a° and e(a° , b). Now the questions are how
to construct this e(a*, b) which will be orthogonal to the estimate of h and how that error may be ,elated to the
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unknown denominator coefficients in b. Fortunately, the answers to both these questions can be found in equation
(16) which clearly shows that all the (N - q - 1) linearly independent columns of B are indeed orthogonal to h
and, furthermore, B is constructed using denominator coefficients only. Since the number of unknowns in a is
q + 1, it can be concluded that, by construction, the (N - q- 1) column vectors of B constitute the complete basis
space of e(a*, b) that is orthogonal to h(aO, b). This argument implies that one can construct the orthogonal
e(ae, b) by a linear combination of all its basis vectors in the columns of B, namely,

e(a*,b) = Be, (20)

where, c A [cl C2 ... CN-.-l]T denotes a vector of constants which needs to be determined. In order to find
c, it may be observed that e(aO, b) must also satisfy (19). Hence, plugging the expression of e(a° , b) from (20)
into (19b),

d(b) = (BTB)c. (21)

But (BTB) is a square, invertible, banded Toeplitz matrix and hence, c has a unique solution:

c = (BTB)-ld(b), (22)

and using (17c),
c - (BTB)-BThd. (23)

Plugging this unique value of c back into the fitting error expression of (20),

e(aO,b) = B(BTB)-BThd (24a)

A PBhd, (24b)

where, PB denotes the projection matrix of B. The fitting error e(a*, b) in (24) is exactly same as the one in (Sb),
except that it corresponds to the optimum a*. Interestingly, the dependence on a has also been removed in the
process from the expression of the fitting error. The problem then is to estimate the optimum b* by minimizing
the 12-norm of e(a, b) w.r.t. b. For an optimum a*, the minimization problem of (5) is exactly equivalent to
the following series of expressions :

minle(a*,b)I12 = min IIB(BTB)-BThdII2 , (25a)
b b

---- JinIIP3hd 2 , (25b)
b

= minhTB(BTB)-BThd, (25c)
b

= minbTHT(BTB)-IHd2b, (25d)
= mindT(b)(BTB)-ld(b). (25e)

b

Equation (25e) demonstrates that the fitting error minimization is equivalent to a "weighted equation error
minimization" where (BTB)- 1 acts as the "matrix prefilter" or "weight matrix". At minimum, (25) produces
the optimum denominator vector b* and from this the minimized error can be found from,

e(a, b*) = PB-hd, (26)

where, BO is constructed from the optimum b. The optimum estimate of the impulse response is then,

h* = hd - e(a,b). (27)
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Using the optimum values of h° and b* in the top partition of (10), the optimum numerator can be found as
follows,

e = Hib ° . (28)
Equations (25) and (28) are the two key formulae for estimating the coefficients of the denominator and numerator
polynomials, respectively. Close similarity between the final optimization criterion in (25) and the one in (9) is
obvious. It must be emphasized though that (9) deals with an important but specific case of strictly proper transfer
function with q = p - 1. But here, the derivation of (25) was based on appropriate choice of the orthogonal basis
vectors in B for any q _ p - 1. Hence, using (25) a larger class of general pole-zero transfer function model fitting
problems are solvable.

Intuitively, it appears that the decoupled estimation of a and b, as found above, falls within a special class
of non-linear optimization problems which have been studied extensively by numerical analysts (18-21]. It has
been shown in (18] that in a non-linear error criterion, if some of the unknown variables are linearly related to
the error and the other variables are non-linearly related and if these variables appear in a separable form, as
happens to be the case here, then the two decoupled estimators in (25) and (28) should be the globally optimum
estimators for both sets of variables. The derivations leading to (25) is based on the orthogonality principle and
the simple solution of a in (28) is a direct consequence of (10c). But it is not exactly obvious if these results do
possess the global optimality properties. An alternate derivation for indirectly arriving at (25) and (28) is given
in Appendix A, where the desired optimality properties are clearly established. A computational algorithm for
minimization of the criterion in (25) is briefly outlined next.

M.3 : Computational Algorithm

The criterion in (25) is non-linear in b and hence it can not be minimized directly. But instead of using
standard non-linear optimization techniques the inherent mathematical structure of the criterion will be utilized
to develop an iterative computational algorithm. The final form of the error vector in (24) is rewritten as,

e = B(BTB)-BThd (29a)

A WBThd (29b)

= WHd2 b (29c)

= W [g : G] b (29d)

= Wg + WGb, (29e)

where,

W A B(BTB)- I. (29f)

If the matrix W is treated as independent of 6, an expression for b can be easily obtained by minimizing Dell 2

w.r.t. f3 as follows:

= - (WG)#Wg

- - (GTWTWG) - I GTWTWg. (30)

But since W does depend on the elements in b, (30) can only be computed iteratively. At the (i + 1)-th step
of iteration, WO) is formed using the estimate of b found in the i-th iteration step. This leads to the following
iterative algorithm for computing b4+ 1

b('1)= [. -.[X )d)G] .. [X i.) jg] (31)
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where,

X (') A GTWT(')W( i ) (31a)

G T(BT(')B(')) - .  (31b)

The iterations are continued until ibi+1 - biIJ2 < 6, where 6 is an arbitrarily small number. It must be noted
here that the iterations in (31) may not always converge to the absolute minimum of the error criterion in (5)
and hence the estimated b may not be the optimum one. This is because in (31) the variability of W w.r.t. b
had been ignored while minimizing Jhell 2. To achieve the optimum, the gradient of the complete expression of

hlell 2 must be set to zero. If desired, this can be done in a second phase of the algorithm which is outlined in
Appendix B. It may be noted here that the simulation studies indicate that the Phase-1 of iterations using (31)
does an excellent job of bringing the estimate very close to the optimum. It wiL be shown in Subsection VI that
the Phase-2, if invoked, only causes slight changes in the b vector and the minimized error norm. In simulations,
the convergence was found to be quite rapid in both the phases. Once the estimates of b converge, a is computed
by following the steps (26)-(28).

M.4 : ARMA Transfer Functions with q _> p

In this case, corresponding to the lower partition of (10), the equation error appearing in (11) has the
following form,

hd(q + 1) ha(q) ... hd(q - p)
hd(q+2) hd(q+1) ... hd(q - p+)

Hdb = . d(b). (32)H, b "- hd(p) hd(p - 1) ... hd(0): "-db.(2

LbpJ
hd(N -1) hd(N -2) ... hd(N -p-I)

Note that tae initial (q - p) elements of hd(n) do not play any role in this equation error. But again, when

q _ p, the minimization of the norm of this equation error is more appropriate than the use of either covariance
or autocorrelation methods or (11). Similarly, for this case the equations equivalent to (17)-(19) are,

d(b) A Hd2 b (33a)

0 .. 0 bp bP-1 b. 1  1 - - hd() (33b)

hd()0 . .. 0 . . . 0 b p b P - 1 . . b l L. h ( N - 1 ) .

A BThd (33c)

B Te. (33d)

Following similar arguments leading to (25), the optimization criterion can also be shown to be,

min Ile(a*, b)112 = min lB(BTB)-IBThdal 2  (34a)
av,b b

-in Ih B(BTB) - BThII 2  (34b)

=minb T H T(B T B)-Hd2 b. (34c)
b d

Observe that the matrix BT appearing in (33) contains (q - p) leading zero columns. This has the net effect of
zeroing out the first (q - p) elements of hd and e in equations (33c) and (33d), respectively. Hence, the criterion
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in (34) essentially minimizes the norm of a shorter error vector e' A [e(q - p) e(q - p + 1) ... e(N - I)]T.

The iterative algorithm described earlier in Subsection 111.3 can again be utilized for estimating b. But, if the
estimated b is used in (26), the leading (q - p) elements of the e vector will turn out to be zeros. Next, if (27) is

used for calculating h*, the first (q - p) elements of the estimated impulse response will have exactly same values
as in the desired response hd. Finally, while estimating a using (28), the leading (q - p) elements of hd must be

used without any error reduction.

The observations in the previous paragraph, if made casually, may lead one to conclude that the estimates

obtained in this manner may not be optimal because the leading (q - p) error samples are not minimized at all.
But in Appendix A it has been proved that (25)-(28) do indeed produce the optimal estimates for any values of

p and q, as long as (p + q + 1) < N. That some of the error samples can not be minimized is only due to the
mathematical nature inherent in the problem itself which enforces the leading (q - p) elements of hd and h to be
equal when q > p. This should not be viewed as a limitation of the proposed algorithm or the optimal criterion.

Furthermore, once the denominator is calculated using (34), one may consider minimizing the modified fitting
error criterion in (7b) in order to estimate a. But it has also been shown in Appendix A that for a given b, (7b)
and (26)-(28) produce identical estimates.

IV. AN ALL-POLE FILTER DESIGN ALGORITHM

The H(z) in this case has the following form,

Haz)= a a---o (37)
H(z) = bz - 1 + + bp-.z-(P-1 ) + bz-P = D(z)

where, q = 0. The optimization problem of (5) can be restated as,

minfeII2  mi N-i - 3 )].
-o,b -- Eo~ {h - ' 16(i)}(38)

It has been shown in Subsection III and in Appendix A that the equations (25)-(28) developed in Subsection III
is equally applicable for Vq _< p - 1. Accordingly, the optimal AR-algorithm for determining ao and b can be
treated as a special case of the iterative approach derived earlier for the general ARMA case. Hence only a brief
summary will be given by defining the appropriate matrices involved in this case. The denominator coefficient
vector b is estimated by optimizing,

min I{eAR(ao, b)112 = min JIBAR(BTRBAR) - 1BTRhdII 2  (39a)
ao'b bAA

Sr T ART T BAR)-1H AHRb (39b)=minbT Hd2 (BARA) Hd2 b

where,
.61 ... bp 0 ... 0

I ... bp-1 bp, ... 0

o o.

BAR A -.. 1 bI  " bp EJRNxN- (39c)

0 .. 0 1 " bp-

0 ... 0 0 ... 1
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and

hj(1) hd(O) 0 0 ... 0

ha(q+ 1) hd(q) ... hd(0) 0 .. 0

HAR A h(q+2) hd(q+ 1) ... hd(l) hd(0) ... 0d2 :: ". ' ' E 1R(N 1) x (P+ 1).  (39d)

hd(p) h(p - I) ... ... ... ... hd(0)

Lh(N - 1) h(N - 2) ... ... ... ... h(N - p - 1).

Minimization of I]eAR112 w.r.t, b is carried out iteratively and at the (i + 1)-th step of iteration, b is found from,

b( + ) - .... ........ .. . (40a)
-[X(A)GAR]- [XR*AI

where, wh rX () A GT (B T0 (i) )-I' (40b)
AR - AR JAR "AR!

hd(O) 0 ... 0 ... 0 hd(l)

hd(q) ... hd(O) 0 ... 0 hd(q + 1)
hdl(9 + 1) ... hd(l) h,1(0) .. 0 hd(q-t- 2)

GAR A and gAR A (40c)

hdp - 1) ........ ....... h(O) hj(p)

As in (14), the iterations are started using the initial estimate of b obtained from,

b(o) - -[.......] (41)

Once the iterations in (40a) converge, the optimal e and h are found similarly as in (26) and (27), respectively.

Since b0 = 1, the optimal numerator coefficient can be calculated from (28) as, ao = ho(O). Simulation runs
indicate that the iterations converge rapidly in this case also. Though the all-pole case is considered here as a
special case for the general pole-zero case, it should be emphasized that the all-pole design itself is an important
problem in many applications. To the best of the knowledge of the author, the optimal solution for the all-pole
case had remained unsolved.

V. AN ALL-ZERO FILTER DESIGN ALGORITHM

An all-zero transfer function is given by,

H(z) = ao + aiz - 1 + aq-lZ-(#-) + . . + a~z- A N(z). (42)
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The problem then is to estimate a for a given hd where N > q+ 1. The algorithms presented in Subsection III and
IV are suitable for ARMA and AR filter design cases, respectively, and can not utilized directly for estimating

MA filter coefficients. But the most effective algorithm known for MA modeling is the well-known Durbin's
algorithm [64] which relies on two steps of AR parameter estimation. Traditionally, the autocorrelaition method
of linear prediction is utilized [7-11] in both the steps of Durbin's method, because it produces minimum-phase
polynomials. But the estimates obtained from autocorrelation method may not be optimal. The algorithm given
in Subsection IV is optimal for determining AR filter coefficients from prescribed impulse response. Hence, it
can be reasonably hoped that the introduction of the proposed AR algorithm in one or both stages of Durbin's
algorithm may produce more accurate results. The proposed modification on Durbin's algorithm is briefly outlined

below.

Step 1 : Let be an AR-model of hd(n) with 'sufficiently' large order L such that, q << L < N, and

H(z) a 20 (43a)

The AR coefficients in, bL LA [1 bi ... bL ]T, can be estimated using the optimal algorithm given in Sub-
section IV.

Step 2 : If L is chosen large enough then the approximation in Step 1 will be very close. In that case,

bL(z) 
ao

a0  (436)--N(z)" 4b

Hence, using 1bL as 'data', the MA parameter vector a can again be estimated using the optimal algorithm
presented in Subsection IV.

It must be noted here that the usage of the autocorrelation method at both the steps ensures that the final N(z) is
minimum phase. Instead, if the proposed algorithm is used, the minimum phase property can not be guaranteed.
If minimum phase property is indeed desired of the final N(z), then autocorrelation method can be used (instead
of (41)) to obtain the initial estimates for starting the iterative AR-algorithm. If the estimates obtained from
the iterative algorithm becomes maximum phase at any iteration step of the AR-algorithm, the iterations can
be terminated at that stage. The estimate found at the preceding iteration may be considered to be the best

possible minimum phase estimate that the iterative AR-algorithm can produce. The drawback of this scheme is
that one needs to root a polynomial (with possibly large order in Step-l) at each stage of iteration. But in some
applications, this extra computational burden may turn out to be an acceptable trade-off in order to gain higher
accuracy in the resulting estimates.

VI. SIMULATION RESULTS

In this Subsection, the performance of the proposed algorithms are evaluated by means of several ARMA(p, q)
and AR(p) model identification examples with various p and q values. 6 = 10- 1 was used as the stopping criterion
in both phases of the algorithms for all the four examples below.

Simulation 1 : The desired impulse response has a Triangular form as shown by the solid lines in Fig.la and lb.
The algorithm described in Subsection III was used with p = 7 and q = 4. The resulting impulse response fit at
the end of each of the two phases are shown in circles in Fig. la and Fig. lb. The minimized error norm and
the closeness of the fit to the desired signal hd are listed in Table 1. The number of iterations for convergence
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are also listed. It can be seen that there is no significant difference between the 1st and the 2nd phase of the
proposed algorithm.

Simulation 2: An arbitrary impulse response was generated with p = 8 and q = 4. If the algorithm in Subsection
III is used directly to match the true response it will give perfect answers. Instead, some perturbations or 'noise'
was added to the true response to come up with the desired response hd. For 30dB 'noise', the true and the
desired responses are shown in Fig. 2a. The impulse response match of the algorithm at the end of Phase-i
and Phase-2 are shown if Fig. 2b and Fig. 2c, respectively. The minimized error norms and the closeness to
the true response ( AL ht) are listed in the first two columns of Table 2a, respectively. In the third column, the
closeness to hd is also given. It can be observed that the closeness figure to ht may decrease from Phase-I to
Phase-2 because the algorithm is not attempting to match that directly. In Figures 2d, 2e and 2f and Table 2b,
the corresponding results with 20dB perturbation are given.

Simulation 3 : In this case, the denominator and the numerator coefficients of Simulation 2 were switched to
obtain an impulse response with p = 4 and q = 8. For 30dB 'noise', the true and the desired responses are shown
in Fig. 3a. The algorithm in Subsection 111.4 was used. The impulse response fit at the end of Phase-I and
Phase-2 are shown if Fig. 3b and Fig. 3c, respectively. Other results are listed in Table 3.

Simulation 4 : With the Triangular desired impulse response of Simulation 1, the AR-algorithm presented in
Subsection IV was employed with p = 5. The resulting impulse response fit at the end of each of the two phases
are shown in Fig. 4a and Fig. 4b, respectively. The minimized error norm, the closeness of the fit to the desired
signal hd and the number of iterations for convergence are listed in Table 4.

It can be fairly concluded from these simulations that the Phase-i of the algorithm does an excellent job of
error minimization. Hence, the Phase-2 of the algorithm need not be invoked for most applications.

VII. DISCUSSION AND CONCLUDING REMARKS

In this Subsection, a classical rational model identification problem has been addressed and, for the most
parts, appears to have been solved. The major focus is to demonstrate that, given a desired impulse response
corresponding to an unknown transfer function with arbitrary number of poles and zeros, it is possible to obtain
the estimates of the parameters of the transfer function that are optimal in the least-squares sense. Unlike
many well-known existing results, no linearization or approximation has been done while deriving the theoretical
optimization criterion. The proposed technique is applicable in a comprehensive class of ARMA, AR and MA
model identification problems. It is shown that the multidimensional non-linear problem can be decoupled into
two smaller problems of which one is a linear problem and the other one is a non-linear problem. The inherent
mathematical structure of the non-linear part is utilized to formulate an efficient iterative computational algorithm
for estimating the denominator parameters. The numerator is then found by a simple matrix-vector multiplication.
Global optimality properties of the estimators have been verified by relating the multi-dimensional optimization
problem to certain well-known results in numerical analysis. In simulation studies also, the method has been
shown to be highly effective. Some important aspects related to the algorithm but are not covered above are
addressed next :

Model Order Selection

Model order selection of rational transfer function models from impulse response data remains an open
problem. This aspect of the problem has not been here. It appears that for this essentially deterministic problem,
Akaike Information Criterion (AIC) or Minimum Description Length Criterion (MDL) may not be applicable. In
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deriving the optimal criterion, the model orders p and q have been tacitly assumed to be known or the estimates
are assumed to be available. But in defense of this work, it may be noted that model order selection was not
addressed in any of the previous results on this problem. In simulation studies, it was observed that if the model
orders are increased, then, in some cases, the estimated response gets closer to the desired response. But over-
determination of model orders may lead to unstable and/or useless solutions because the matrices may tend to be
singular. Furthermore, increasing model orders also raises the computational load on the resulting filter. Hence,
there is a trade-off that has to be considered in deciding the proper choice of the model order.

Relationship with SM method and Convergence Analysis of the iterative algorithm :

As already noted in Subsection II, in a recent paper [34], McClellan and Lee have shown that for the strictly
proper case (p = q + 1), if the original SM method is decoupled into a linear and a non-linear estimation problem
in a certain manner, the resulting non-linear SM criterion has exact mathematical equivalence with the optimal EF
criterion which is only applicable for the strictly proper transfer functions. The SM method is also known to be
very effective for general ARMA and AR cases. But in this Subsection the optimal criteria for both ARMA and
AR models have been derived. Hence it would certainly be interesting to investigate whether the equivalence also
holds for the general cases. It appears that by using the new definitions of the matrices H 1 , H 2 and B, appearing
in (10), (16), (32), (33) and (39), McClellan-Lee's derivation can be appropriately modified for any other values of
p and q also. With these modifications, it can be easily shown that the original general SM method for arbitrary
p and q can also be decoupled as suggested in [34]. In the decoupled form, the non-linear criterion of the SM
method can also be shown (proof omitted for space limitation) to be mathematically equivalent to the iterative
algorithm given in (31) for minimizing the optimal criterion in (25). This equivalence proof may have another
important consequence for the proposed algorithm. There already exists a convergence analysis of the original
SM method in [551. One can reasonably hope that the convergence analysis will also apply to the decoupled form
of SM method given in 134). If that happens to be the case, as alluded to in [34], the convergence analysis in [55]
should also apply to the iterative computational algorithm presented here.

Computational Requirements

The major computational load of the algorithm is in performing the iterative refinement in (29) - (31), where,
at each iteration step, one needs to invert an (N - q - 1) x (N - q - 1) matrix (BTB). It may appear that
this inversion should require O[(N - q - I)'] operations. But (BTB) is a symmetric-banded-Toeplitz matrix and
many efficient algorithms are available for inverting such matrices [9-11, 45, 56, 67]. Specifically, in [56] it has
been shown that inversion of such banded Toeplitz matrices only requires O[(N - q - 1) log(N - q - 1)] + O[p]
operations. Furthermore, in the SM method, the calculation of the impulse response of the inverse filter and data
filtering are required at every step of iteration, whereas the proposed method uses the estimated b directly to
form the B matrix.

Future Work:

Many of the I-D algorithms discussed in the Introduction have been extended to 2-D for estimating 2-D filter
coefficients from spatial domain data [29, 35, 36, 39-43]. It appears that by identifying the appropriate orthogonal
subspaces, it should be possible to formulate an optimal 2-D filter design algorithm by extending the optimal 1-D
method proposed in this Section. It is also possible to extend this work for identification of Multidimensional
systems from multidimensional impulse response data [38]. Work on these topics are under progress [65, 66] and
the preliminary results look encouraging.
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APPENDIX A

An Alternative Derivation of the Error Criterion

In this Appendix, an alternate derivation is given for the error criterion in (25). This derivation reaffirms
that the optimal criterion for estimating b using (25) and the estimate of the numerator in (28) are indeed
exactly equivalent to the original criterion appearing in (5). The criterion in (5) needs to be optimized t.r.t. two
sets of parameters in a and b, where a is linearly related to the error whereas b has a non-linear relationship.
In this appendix, it is shown that utilizing filtering interpretation it is possible to split this multidimensional

optimization problem into a linear estimation problem for a and a non-linear optimization problem for b. The
filtering interpretation also makes it possible to relate this problem to certain non-linear optimization problems

studied by numerical analysts [18-21].

Let Hb(z) be the inverse filter corresponding to D(z), i.e.,

D(z)Hb(z) = 1. (A.1)

This is a convolution operation where the discrete sequence bk's in D(z) are finite whereas the hb(n)'s in Hb(z)
are infinite in extent. In matrix notation this convolution operation may be expressed as,

DHb = IN (A.2a)

where

1 0 ... 0 0 0 ... 0 0,
b, 1 -.. 0 0 0 ... 0 0

bq+i bq ... 1 0 0 ... 0 0

D A bq+2 bq+l b1  1 0 ... 0 0 EJRNxN and (A.2b)

bp b- 1  .. . .  .... ...  b, 1 ... 0

0 ... bp bp-. . . . ..... . . . b 1
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hb(O) 0 .-. 0 0 ... 0
hb(I) hb(O) -. 0 0 .. 0

Hb A hb(q) hb(q- 1) -.. hb(0) 0 ... 0 E RexN (A.2c)

hb(q + 1) hb(q) ... hb(l) hb(0) ... 0

hb(N - 1) hb(N - 2) ... ... ... hb(l) hb(O)

where, IN denotes an N x N identity matrix. Now, rewriting (1),

H(z) = N(z)
D(z'

A Hb(z)N(z). (A.3)

The right hand side in (A.3) again represents convolution of hb(n) with the numerator coefficient sequence a,.

In matrix-vector notation, the vector h containing the impulse response values in (A.3) can be represented as,

h A Ha (A.4)

where, H' contains the first q + 1 columns of Hb, i.e.,

h6 (0) 0 .. 0
hb(l) h6(O) ... 0

H' n hb(q - 1) hb(q - 2) ... 0 E JRNx(q+l) .  (A.4)
h6(q) hb(q- 1) ... ha(O)

hb(N- 1) ha(N-2) . hb(N-q-I)

With these definitions, the problem stated in (5) can be rephrased as,

min IleJ12 A minllhd - H'aJ12, (A.5)
a,b =a,bb

where, using (A.4) in (5b), the error vector is formed as,

e A hd - H'6a. (A.5a)

This equation clearly shows the linear relationship between the error e and a and also the non-linear relationship
betwee, c and b through the matrix H'. In this form, it is apparent that the present problem belongs to a larger
class of mixed optimization problems where the linear and nonlinear variables appear separately. This class of

problems have been studied extensively in numerical analysis literature (18-211. The main objective is to optimize
the two sets of variables independently. If H' (i.e. b) is exactly known, then the minimization of (A.5) will

produce the linear least-squares estimate of a as follows,

aA H'6#hd. (A.6)
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In practice, b will not be known and needs to be estimated. Plugging & back in (A.5), the optimization criterion
for b is given by,

minlihd - Ha l 2 - minllhd - HbH*hdI 2  (A.7a)
a,b b

= minjhi - PH'hd112  (A.7b)b

= minJl(IN PH,)h112 . (A.7c)b

For a larger class of problems, it has been proved in Theorem 2.1 of [181 that if b is estimated by minimizing the
criterion in (A.7) and if that estimate is utilized in computing a using (A.6), then the resulting estimates are the
unique and global minimizers of the criterion in (A.5).

The derivation of the optimization criterion in (A,6)-(A.7) is concise, though rigorous, but direct optimiza-
tion of (A.7) would require taking resort to standard non-linear optimization techniques. This is because the
parameters in b are related to the err': criterion in a complicated manner through PH,. Next, the criterion in
(A.7) is reparameterized so as to relate it directly to the coefficients in b. Appropriately partitioning the matrices

D and Hb as follows,

1 0 -.. 0 0 0 ... 0 0
b, 1 ... 0 0 0 ... 0 0

bq bq 1 0 0 -. 0 0

D A bq+l bq "" 1 0 0 .- 0 0 and (A.8a)
bq+2 bq+l b, 1 0 ... 0 0 B T

bp bp- 1  .... ....  ...  b- 1 0

0 - b, b ............. b.. 1
hb(O) 0 ... 0 0 ... 0
hb(1) hb(0) ... 0 0 ... 0

H hb(q) hb(q- 1) ".. h6(0) 0 . 0 A [H IH"], (A.Sb)
- hb(q + 1) hb(q) . hb(1) hb(O) ... 0 b

hb(N - 1) hb(N - 2) ....... ... hb(1) hb(0)

the equation (A.2) can be written as,

[BT
--- [HIH = (A.8c)

BT T

[ BBH I BTH' I(q+i) I O(q+)x(N-q-1) 1
or, --- I --- -------- (A.8d)

BTH I BTH, O(N-q-1)x(q+1) I 1(N-q-1)x(N-q-1)

It should be noted that in the partitioning example above, only the q < p - 1 case is shown, but the results are
equally applicable for any values of p and q. The bottom-left corner element shows that the N x (N - q - 1)
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matrix B and the N x (q + 1) matrix H are orthogonal, i.e., BTH' = O(N-q-1)x(q+1) and since by construction
both are full-rank matrices, it is also true that,

rank(B) + rank(H') = N. (A.9)

Hence, using a theorem on projection matrices [54],

PB + PH, = Ij. (A.10)

Using this result in (A.7c), the following reparameterized form of the optimization criterion is obtained,

min JJPnhdI 2 . (A.11)
b

Interestingly, this criterion is identical to the one in (25b) which was derived by relating the fitting error to
the equation error. It should be mentioned here that for the strictly proper case with p = q + 1, an analogous
derivation appears in [7]. Equation (A.11) clearly shows that if the criterion in (25) is optimized to estimate b
and (A.6) is used to estimate a, then these estimates are the optimal solutions for the problem stated in (5). But
it may be recalled that the optimal numerator coefficients were found in Subsection III using equation (28), i.e.,

e = Hib*, (A.12)

where, the superscript 0 denotes optimized values obtained from (25)-(27). Hence, all that is left is to show that,
once b is estimated from (25), the equations (28) and (A.6) produce identical estimates. This is proved next.

Similar to (17), the equation (A.12) can also be rewritten as,

a--= B ThW, (A.13a)

-B '0 (hd - eo), using (27), (A. 13b)

B- (hd - hd + H*IbHo hd), using (A.7a), (A.13c)

(BT OHo,)Hbo#hd, (A.13d)

= Ho°#hd, (A.13e)

where, the last equality uses the fact that, B H" = which appears in the upper-left partition of (A.8c).
This completes the proof of equivalence of both derivations. The derivation given in this Appendix reveals the
globally optimal properties of the estimates obtained Subsection III. It may be observed that (28) may be preferred
over (A.6) in computing a because the computation of hb and the pseudo-inverse solution can be avoided, whereas,
computation of h° may be a necessary step.

It should be emphasized here that the derivation in this Appendix did not make any assumption about the
relation between q and p. Hence, the optimal algorithms derived here and the equivalent results in Subsection III
are equally applicable for any AR and ARMA cases with arbitrary model orders p and q. The only restriction is
that the number of unknowns, (p + q + 1) be less than or equal to the number of observations, N. This can be
seen from (10), where the (q + 1) equations in the upper partition are utilized in estimating the (q + 1)-length
a-vector. In the bottom partition, there are (N - q - 1) equations to solve for the p unknowns in b. Uniqueness
of the estimated b requires (N - q - 1) > p. This appears to be a powerful result because it substantiates that
the applicability of proposed optimal algorithm encompasses a wide range of filter design problems.
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APPENDIX B

Computational Algorithm: Phase II

In this appendix the second phase of the iterative algorithm is described in detail. In this phase, the derivative

of the matrix W w. r. t. b is taken into consideration while minimizing the fitting error norm. The complete error
expression is rewritten below,

Ile(a ° , b)11' = eT(a*, b)e(a ° , b). (B.1)

By setting the derivative of this squared norm to zero, we obtain the updated b(+l) at the (i+ 1)-th iteration as,

i =
('+ ') = - [U()G]-E[U()]g (B.2)

where (suppressing the superscript (0),

U A LTW + GTWTW, (B.2a)

L A I-d(b) .. -(b) (B.2b)

aW aW (B.2c)

8W 8 B T -
aw L9-[B(B T B)-'] = '(B B)

Ob&, =b and19

[[BTB + BT[ ](BTB 1 and (B.2d)- L[ bk J O B TB-

8B has the same form as the B matrix defined in (16a) but filled with all zeros except at the locations where bk

appear. For example,
0 ... 1 0 ... 0"
0 ... 0 1 ... 0

0 * . . .aB 4 Rx-
-Op 0 0 . 1 EIRNXN -  (B.2e)

0 ... 0 0 . 0

S "". 0
0 ... 00...0.

Once b(i+) is found, b('+l) can be formed as,

b( +  = (B.3a)

= [...IIG..i[ . (B.3b)

This minimization phase continues until b'+1 b is reached and this optimum b" vector corresponds to a

minimum of the error surface of Ie(a', b)11 .
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Iteration Minimized Closeness Number of

Phases error norm with ht, in dB Iterations

Phase 1 0.5948 30.5173 6

Phase 2 0.5735 30.6740 3

Table. I: Results of Simulation 1. A triangular Impulse response is mod-
eled by an ARMA model with p = 7 and q 4. 6= 10- 3 was

used as the stopping criterion.

-- TRUE; 0-0 EST.

a

Le 3.5 S.0 F.s i.o 6 .5 6.0 nO.S n.4 n.s A.9 ai..: 3.ono. of a- -eo

Fig, Ua: Simulation I :- A triangular Impulse response is modeled by an

ARMA(7,4) model. 6 = 10 - 3 . Reslt Shows fit after Phase-1

convergence.
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-- TAME; 0-0 EST.

Fig lbSiuato I :AtragrImus repnei oee ya

ARMA(?,4) model. 6 = 10 - 3 .- Result shows fit after Phase-2
convergence.

Iteration Minimized Closeness Closeness Number of
Phases error norm with he, in dB with hd, in dB Iterations

Phase 1 0.010177 25.8552 22.6084 1

Phase 2 0.010079 25.30777 22.05049 2

Table 2a : Results of Simulation 2. 30dB perturbation was added to a true
ARMA(8,4) impulse response (he) to form the desired response
(hd). 6 = 10 - 3 was used as stopping criterion.
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Fig. 2a : Simulation 2 :- True and 30dB perturbed AMA(8,4) impulse
responses
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Fig. 2c: Simulation 2 :- ARMA(8,4) True and estimated impulse re-
sponses after Phase 2 convergence. SNR=30dB, 6 = 10- 3 .

Iteration Minimized Closeness Closeness Number of
Phases error norm with ht, in dB with hd, in dB Iterations

Phase 1 0.1052 16.91 12.00 1

Phase 2 0.1010 15.22 12.178 2

Table 2b : Results of Simulation 2. 20dB perturbation was added to a true

ARMA(8,4) impulse response (ht) to form the desired response

(hd). 6 = 10-3 was used as stopping criterion.



4 66

-TRUE, U-0 NOISY

0.* L. S LI 1.5 5.5 U.5 1.54 Mll we5 3114 0 .8 W4 .5

Fig. 2d: Simulation 2 True and 20dB perturbed ARMA(8,4) impulse
responses
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Fig. 2f: Simulation 2 :- ARMA(8,4) True and estimated impulse re-
sponses after Phase 2 convergence. SNR=20dB, 6 = 10- 3.

Iteration Minimized Closeness Closeness Number of
Phases error norm with ht, in dB with hd, in dB Iterations

Phase 1 0.008752 24.837 22.8754 5

Phase 2 0.008399 23.869 23.054 3

Table 3: Results of Simulation 3. 30dB perturbation was added to a true
ARMA(4,8) impulse response (ht) to form the desired response
(hd). 6 = 10- 3 was used as stopping criterion.
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Fig. 3a: Simulation 3 True and 30dB perturbed ARMA(4,8) impulse
responses
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Fig. 3b: Simulation 3 :- ARMA(4,8) True and estimated impulse re-
sponses after Phase I convergence. SNR=30dB, 6 = 10- 3 .
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Fig. 3c: Simulation 3 :-ARMA(4,8) True ad estimated impulse re-
sponses after Phase 2 cnvegenc. SNR=30dB, 6 = 10 - .

Iteration Minimized Closeness Number of
Phases error norm with ht, in dB Iterations

Phase 1 3.0368 23.43664

Phase 2 3.0348 23.43953

Table. 4 : Results of Simulation 4. A triangular Impulse response is mod-
eled by an AR model with p = 5. 6 = 10- 3 was used as the
stopping criterion.
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Fig. 4a: Simulation 4 :- A triangular Impulse response is modeled by
an AR(5) model. 6 = 10- . Result shows fit ater Phae-1

convergence.

-- TRUE; 0-0 EST.

/t o

l40 2.$ 0.I 2,3 Me. 823 IS.@ IO.$ 0.4 a-$a. * ll . S U'. 9
no. or owte

Fig. 4b : Simulation 4 :-A triangulr Impulse response is modeled by

an AP (5) model. j = 10 - 3 . Result shows fit after Phase-2

convergence.
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SECTION 2.3 : DESIGN OF 2-D RECURSIVE DIGITAL FILTERS IN THE S-.ziIAL .)OMAIN

SUMMARY

A class of least-squares algorithms for design of two-dimensional digital f0,4-o .rom space domain data is
presented. The proposed algorithms iteratively estimates the filter coefficients by minimizing the true squared
error between the given and the estimated space domain responses. The algorithms are essentially generaliza-

tion of the optimal 1-D design algorithm given by Evans and Fischl [7]. The error criterion is simultaneously
optimized w.r.t. the coefficients in both dimensions. Design algorithms are given for filters with separable and ir-

reducible numerator/denominator polynomials and also for mixed structures. The effectiveness of the algorithms

is illustrated with several simulation examples.

I. Introduction

Given the space domain unit sample response (2-D impulse response) data, an important design problem is
to obtain the optimal coefficients for the two-dimensional infinite impulse response (IIR) filters. This problem

has received considerable attention in the recent years e.g., see [1-4,10]. The relationship between the time do-

main impulse response data and corresponding 1-D recursive filter parameters are well established. Analogous
relationships can also be established between the space domain data and the corresponding 2-D recursive filter

parameters. Exploiting these similarities, many 2-D filter synthesis algorithms have been developed by mod-

ification and extension of existing algorithms for 1-D filter design. Specifically, Shanks ei al [1] extended the
work of Shanks [5]; Cadzow [2] and Shaw and Mersereau [3] utilized many of the general non-linear optimization

methods; and Shaw and Mersereau [31 also extended the work of Steiglitz and McBride [6]. But these methods are
suboptimal in the sense that they do not optimize the exact error criterion. In contrast to these approaches, the

iterative method (EFM) proposed by Evans and Fischl [7) is optimal and it does optimize the true error criterion.

Recently some work [10] has been done on the 2-D extension of EFM for spatial domain design, but we believe
that the full potential of EFM has not been utilized for 2-D recursive filter design. The main drawbacks of the

approach in [10] is that the complete error criterion was not optimized and the second phase of EFM was not

invoked. Also, the error criterion was not optimized w.r.t. the filter coefficients in two domains simultaneously.

The Evans-Fischl method is extremely effective in 1-D filter design. A modified complex version of the EFM

with certain symmetry constraints has recently been shown to be equally effective for maximum-likelihood 1-D

and 2-D frequency-wavenumber estimation [8,9]. In this work we develop a 2-D version of the EFM in order to

establish a general framework for optimal and sub-optimal design of 2-D recursive filters from the given space

domain data.

This Section is arranged as follows : In Subsection II, the least-squares problem is formulated. In Subsection
III, the case with separable numerator and separable denominator polynomials is considered in detail and the

error criterion is related to the case with irreducible numerator. In Subsection IV, the irreducible case is outlined

briefly. In Subsection V, simulation results are provided to illustrate the effectiveness of the proposed algorithm.

Finally, in Subsection VI some concluding remarks are given.

II. Formulation of the 2-D Least-Squares Synthesis Problem

In the general form, a 2-D rational function H(zl, z 2), with non-decomposable numerator and denominator

polynomials is described by:

Qzz -(ZI, Z2 ) i- '!o n2 0q(i,j) z-'z j

PZ1,,z2) = (1) j'' ~i )1-Z-
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Equivalently, H(zl, z 2 ) may also be written as,

H(zi, z 2) = zTHz 2  (2)

where, z, A [1 zi7 I...Z(l- 1)]T, Z2 A .1  Z 2.(k2-)]T and

h(O,0) h(0,1) ... h(0,k 2 - 1)
h(1, 0) h(1 , 1) h(1,k2- 1)

Lh(kl i_1,o) h(kl*--1,1) h(ki- *,k2- 1)-

In (3), H contains the k, x k2 significant impulse response values. By stacking the columns of H, the impulse

response may be represented in vector form as,
h, A [hT hT ..-h T] T  (4)

where, hi denotes the ih column of H. Next, let the given space-domain impulse response matrix be,[ z(0,0) z(0,1) ... x(, k2- 1)
X(1,0) z(1, 1) ... z(1, k2 - 1) (5)

LX(ki-1,O) z(ki-1,1) z(ki- 1,k 2 -1)]

and the corresponding vector be:

xo =A [,,x2 ... xT] T . (6)

In this work, we address the 2-D least-squares space-domain synthesis problem as stated below:

Given the space-domain 2-D impulse response matrix X, estimate q A [q(0, 0) q(0, 1) ... q(nl, n2 )]T and p

A [p(O, 0) p(O, 1) ... p(mI, m2)]T by optimizing the following t2-norm based error criterion,

min ell2 A jlx, - h,[12  with p(0,0) = 1. (7)
q,p

Next, we formulate and outline the optimization procedures for several special cases of interest.

III. Design With Separable Denominator and Separable/Irreducible Numerator

In this Subsection, we will first perform the derivation for the separable numerator case and then relate our

results to the irreducible numerator case. It may be noted that the optimal separable denominator polynomials
are same for both cases.

The 2-D rational transfer function with separable numerator and denominator polynomials can be written

as,

H(zi, Z2 ) = M- a(izj' 0 b(j '(Ei=:0c( )ZI F"=O d(j)z-j

Note that for strictly proper case, m, = nj + 1 and Mn2 = n2 + 1. The numerator and denominator coefficients

in equations (1) and (8) are related as follows:

q(ij) = a(i)b(j) for 0< i < nj, 0 < j _ n2 (9a)

p(i,j) = c(i)d(j) for 0<i<in, 0<j<m 2 (9b)
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The space-domain transfer function H(zi, z 2 ) can also be written in the separable form as,

k-I k2-1

H(zi,z 2 ) = zsHz2 = zTfgTs 2 - f(i)zjj g(j)z'(lO)

i0 j-=0

where, f A If(0) f(1).. f(k I - 1)]T,

ki-1 nl • -izTf = f(i)zj7 A I_0a(i)z7 (ha)
i=0 E-- ', 4. i---0Ck/

and
k2 - 1j

Z2 - M 0 b(j)z;2
z= g(j)zj A = (11b)

j=0 = 0 d(j)z-22

From (10), the 2-D space-domain impulse response values in (3) are related to the separable 1-D impulse response
values as,

h(ij) = f(i)g(j), for 0<i <k-1,0<jk 2 -1 (11c)

From (11a), the transfer function coefficients in a A [a(O) a(1) ... a(nl)]T and c A [c(O) c(1) .-- c(m)]T are
related to the impulse response values in f as [7]

[a] J j (12)

where,

A fO) 0 .. 0 0]

F1 A f(1) f(0)0 0 and (13a)

f(mI- 1) f(jl- 2) . f(O) 0[ f(m) f(m, - 1) ... f(o) 1
F 2 A f(mi + 1) f(m .) f(2) (I)

MI-1) f(k 1 - 2) f(kx - ml) f(k -m,-1)
(13b)

Note that the lower partition of (12) can also be written as,

0 = F2 c = CTf (14)

where, C is k, x (k, - mi) banded Toeplitz matrix defined as,

c(mI) 0 .. 0
c(mi - 1) c(mi) 0..

C A c(O) c(1) .. c(mI) (15)
- 0 c(0) .. c(mI - 1)

0 0 ... c(O)
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Proceeding in a similar manner from (11b), we get the relationships between b A [b(O) b(1) ... b(n2)]T, d A [d(0)
d(1) ... d(m 2 )]T and the impulse response values in g as

[b] = [Gj d. (16)

Again, the lower partition of (16) can be written as,

0 = G2 d = DTg, (17)

where, G 1 , G 2 and D are defined in a manner similar to F 1 , F 2 and C, respectively, with appropriate dimensions.
Now, for the 2-D transfer function H(zl, z2) as defined in equations (8)-(10), the coefficients are related to the
2-D impulse response values as follows:

0 Fi®G2 c0d

0 = F2 ® Gi
0 F2 0 G 2J

CT ® D T C
1TD I DT

CTOD CI 0 D
I CTDT If g] =|CT 0DT he (18)

CT  J DTC T 0 DT

where, ® denotes the Kronecker product. Following (9a), for the case of irreducible numerator design, the terms
a(i)b(j), for i = I,..., n and j = 1,. .. , in a( @b on the left hand side should be replaced by q(i, j). Also
in (18), C1 and C2 become k, x m, and k2 x M2 matrices, respectively, defined as,

c(0) c(I) .. c(m - 1)"
0 c(O) ... c(m, - 2)

C1 a 0 0 0 c(0) and (19a)
0 0 0 0

0 0 0 0
d(0) d(1) ... d(M2 - 1)

0 d(O) ... d(m 2 - 2)

Di A 0 0 0 d(0) (19b)
0 0 0 0

0 0 0 0

and using (4) and (llc),

h= f & g. (20)

Hence, the three bottom partitions of (18) can be expressed as

[ DT  
0.C D T|  h = 0 .(21)

CeT®( i
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Equation (21) essentially implies that the matrices C1 @D, C®DI and C®D are orthogonal to h. Moreover, by
construction, these matrices contain k1 k2 - m1 m 2 linearly independent vectors of length k1k2 . The remaining
miM 2 linearly independent vectors, that complete the entire k1k2 dimensional vector space, are in C1 ® D1 as
may be seen by rewriting the upper partition of equation (18) as follows,

[aobl = [Fi0Gll[c&dl (22a)

or, [a®b] = [CT DT ][f(g] (22b)

- CT®DT1] hc (22c)

Therefore, the search for the coefficient vectors c and d is equivalent to the search for k1 k2 - mnlm 2 linearly
independent vectors which are orthogonal to the impulse response vector h. In practice, we do not have hc and
if we replace h, by the given space domain impulse response values x, as defined in (6), the r.h.s. of (21) will not
be equal to zero and there will be some equation error which we define as e, i.e.,

CT®DT 1
IcT®TI x, = e. (23)
cT ® DT J

But from ( x), x - h, + e and hence,

CT®DT1
CT®DT [hc + e] . (24)
CT ® DT J

Substituting (21) in (24) we see that the fitting error e in (7) can be related to the equation error i as,

T® DT1
CT 0 DT e =e. (25)C T ®9 DT I

Following the EFM, the estimation of the numerator and denominator coefficients are now separated into two
parts. If the denominator coefficients are known then the numerator coefficients may be estimated from (22c) by
replacing h, by x. It may be noted here that a direct implementation of (22c) will give numerator coefficients
q(i, j)'s which are the coefficients of the optimum irreducible numerator polynomial. This polynomial, in general,
will not be separable. Hence, to obtain the separable form, we have to find (using SVD) the rank-1 approximation
of the matrix Q formed with the elements q(i, j). Except for the scale factor which is the largest singular value,
the first column and row singular vectors will contain the coefficients of the separable numerator polynomials, a
and b, respectively.

For determining the optimal separable denominator polynomials, we have to make use of certain orthogonality
conditions [8,9] in order to show that the minimization of JleJ!

2 is exactly equivalent to optimizing the following
criterion,

min (xT((Ik, 0 PD) " (PC 0 Ik2 ) - (PC 0 PD))Xc) (26)C'd

where, I, E IR,k, and Ik E IRk2xk2 are identity matrices and

PD A D(DTD)-DT and (27a)

PC A C(CTC)-ICT (27b)

are projection matrices.



For complex data and complex coefficients, an iterative algorithm for optimization of a criterion very similar
to the one in (26) but with certain symmetry constraints was developed in [8] and [9]. Using derivations similar
to the ones in [8] and [91 we can show that, similar to EFM, a quasi-linear relationship can be established between
the error and the polynomial coefficients in c and d which enables us to optimize the criterion iteratively without
resorting to any general optimization algorithms.

It may be pointed out here that in [10-12], only the first term in (26) was minimized separately with one
set of denominator coefficients. Hence, the estimates of the denominator coefficients are suboptimal because they
were not obtained by optimizing the true error criterion. Also, following [8,9] and unlike [10], the optimization
of (26) can be carried out w.r.t. both sets of parameters c and d simultaneously. Details are omitted and will be
published elsewhere. In the next Subsection, we generalize our result to the irreducible case.

IV. Optimal Design with irreducible Numerator and Denominator

Rewriting (1) as,
H(zl, z 2)P(zI, z 2) = Q(z1, z2) (28)

and equating the coefficients of like powers of ziz'j, V ij, we get the following relationship between the
coefficients and the space-domain impulse response,

[q] =[H,]P. (29)

This relationship is equivalent to the one derived in (18) for the separable case though it shoLld be emphasized
that the coefficients and the space-domain response are not separable in the present case. Specifically, the
numerator coefficients q(i,j)'s replace a(i)b(j)'s in the l.h.s. of (18) and h(ij)'s and p(ij)'s replace f(i)g(j)'s
and c(i)d(j)'s, respectively, in the r.h.s of (18). Furthermore, H1 replaces F1 9 G, in the uppermost partition of
(18) and H 2 replaces the rest of the three lower partitions of (18). Once again, the problem will be divided into
two optimization problems. First, the denominator coefficients will be found by optimizing,

min jjpTX (pTp)-1XCpjI2, (30)
P

where,
x, A [xT XT..X T  (31)

and each Xi is formed using the elements in the ih column of X as

X.(l,k) A xi(mIm2 +m +m 2 +l-k+1) for i = 1,2,...,k 2 . (32)

Once p is found the numerator coefficients are found from the upper partition of (30).

V. Simulation Results

In this Subsection, we present two numerical examples to illustrate the effectiveness of the proposed algorithms
for design of denominator separable filters.

Example 1: Quarter-Plane Gaussian Filter

Consider a "Gaussian filter" whose impulse response, defined over the first quadrant, is given by

H(i,j) = 0.256322 exp [-0.103203{(i- 4)2 + (j - 4)2}],
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where (i, j) E S1 and the support S1 is given by

S={(ij) 10 <i<N; 0 < M}. 

With N = M = 10 and using the technique proposed above, 2-D linear shift-invariant causal (ml, ml)-th order

filter with the transfer function

H(zi, Z2 ) = Q(z1 , z2)
C(zz)D(Z2 )

where Q(zI, z 2) E 70 F"%0 q(i,)z jz2 , C(zj) = 1 + c(1)zl +-- +c(ml)zl m l and D(z2 ) = 1 + d(1)z2 +

+ + d(mi )z2'I, is designed to approximate the impulse response of the Gaussian filter. Note that the results

presented below are for "strictly proper" filter, i.e. nj = m, - 1. We have compared the results obtained from

our algorithm with those obtained using Hinamoto and Maekawa [12] for different order realizations.

Table 5.1: Example 1: Comparison of error norms

Order Method in [12] Proposed Method
2 7.0083E-01 6.5181E-01
3 3.6349E-01 2.1721E-01
4 1.7867E-01 2.5051E-02
5 1.0192E-01 4.5056E-04

Example 2: Ideal Circular Low-Pass Filter

The impulse response was generated as

H(i,j) r 2r -r/ 2
2r/t + j2

where J1 (') denotes the Bessel function of the first kind with order one with r - 3.0. The support region is again

i,j = 1, . . ., 11. For this example, we designed a "strictly proper" as well as "proper" filter for various orders.

Note that although the proper design is sub-optimal, it gives better results than the optimal strictly proper design.
This may be due to the fact that we are able to match greater number of impulse response samples exactly. A
comparison of the error norm is given in Table 5.2.

Table 5.2: Example 2: Error norms

Order Strictly Proper Proper
2 8.7947E-02 6.6811E-02
3 1.1528E-01 6.3363E-02
4 6.6971E-02 4.2060E-02
5 9.5587E-02 3.7600F,-02
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SECTION 2.4 : IDENTIFICATION OF DISCRETE TIME MULTIVARIABLE SYSTEMS FROM
IMPULSE RESPONSE DATA

SUMMARY

In this Section we consider the problem of identification of transfer function matrices of discrete time mul-
tivariable systems. The proposed technique obtains an optimal approximation from the given (possibly noisy)
measured impulse response dat. It is assumed that the measured impulse response data corresponds to a system
with a strictly proper transfer function matrix. Based on the proposed theoretical basis, an efficient computational

algorithm is developed and illustrated by means of several examples.

1. INTRODUCTION

Mathematical models of linear systems can be broadly classified as non parametric and parametric models.
Non-parametric models include impulse responses, covariance functions, spectral density descriptions etc. These
models tend to be infinite dimensional in nature. Parameterization leads to finite dimensional models. Some
examples of parametric models are differential equations, difference equations, transfer functions, state space
descriptions etc. In parametric modeling, having assigned a model structure to the system, the problem is to find

best set of parameters to represent the system.

The problem of model identification of single-input, single-output (SISO) continuous as well as discrete-time
systems is very well studied [I]-[10]. However, despite the importance of the problem of identification of multi-

input, multi-output (MIMO) systems, relatively small proportion of the existing literature addresses it. This is

due, in parts, to the

1) non-uniqueness in the parameterization of multivariable systems,

2) difficulty in determining a cost function that reflects appropriately the importance of various input output
pairs and

3) limited success in extending the well established results from SISO system theory to multivariable systems.

In recent years, several authors have investigated the problem of parameterization (for the purpose of identi-
fication) and identification of MIMO systems. Choice of parameterization was discussed by Glover and Willems
[11], Denham [12] and Gevers and Wertz [13], where it was shown that knowing the order of the system, a minimal
set of parameters that uniquely define the system can be identified. The problem of MIMO system identification
has been addressed by several researchers using several approaches: Among others, Moonen and Vandewalle [14]
developed a quotient SVD framework for identifying state space models from the input-output error covariance
matrix. Helmicki, Jacobson and Nett [15] and Gu and Khargonekar [16] have developed robustly convergent in
H' framework. Makila [17] uses Laguerre series for identification in H' framework and Rao [18) uses Walsh
functions for identification of multivariable systems. In the wide-sense stationary random process framework,
Friedlander presents a modified Yule-Walker method for estimating the multi-channel ARMA parameters in [23].
It should be emphasized that the above references are only some of the most recent ones appearing in literature
and those which address the multivariable identification problem. For the SISO systems, references [1]-[10] provide
an excellent exposition for the solution of the identification problem and also contain extensive bibliography.

In this work, we study the problem of determining a parametric model (a discrete time transfer function
matrix) from the given impulse response data. We will assume that the system that we wish to identify is
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represented by a (p x m) rational function matrix:

aii(z) a12(z) ... am(z)
1 a l(z) a22(z) ... a 2 (Z) A(z)

G(z) b(z) b(z- (1.1)

[apl(z) a,2(z) ap*(z)

where deg(b(z)) = n and A(z) is a (px m) polynomial matrix such that deg(a,,(z)) = n-1, i(j) = 1, 2, ... , p(m).
Further, it is assumed that the first N terms of the measured (possibly noisy) unit pulse response data of the
system

N-I

H(z) = y H(i)z-' (1.2)
i=0

are available where Hi represents the matrix of impulse responses at the i-th time instant.

It is well known that even for a single input, single output system, when the unknown system contains
both poles and zeros, the problem of identification of numerator and denominator polynomial coefficients is a
highly non-linear optimization problem. Two of the techniques that have been used frequently in parameters
identification of scalar plants in signal processing literature are those proposed by Steiglitz and McBride [19] and
Evans and Ficshl in [20]. Evans-Fischl's approach minimizes the difference (in the least square sense) between
the measured and the desired impulse response data, while Steiglitz and McBride approach uses linearized error
criteria. In this respect, provided the degree of the numerator polynomial (m) is one less than the degree of the
denominator polynomial (n), Evans-Fischl approach can be considered to be "optimal".

The primary purpose of this work is to generalize Evans-Fischl method (EFM), to the case when the number
of inputs and output is greater than one. We propose a generalized error norm measure by giving equal weight
to impulse response corresponding to each input/output pair. Based on this error norm, a single denominator
polynomial with a pre-specified degree is computed. Knowing the coefficients of the denominator polynomial, the
numerator polynomials are evaluated by solution of linear algebraic equations.

The layout of this Section is as follows: Since Evans-Ficshl technique is not very well known in the control
systems literature, in Subsection 2, we briefly review this approach. In Subsection 3, the error criteria for
multivariable system is defined and the error minimization technique is extended to multi-input multi-output
systems. In Subsection 4, the identification results from extensive simulations on various order and varying
degree of noise contamination are presented.

2. SCALAR SYSTEMS

Assume that the given single input, single output plant is described by a strictly proper stable z-domain transfer
function:

ao + aiz - 1 + ... + a,_jz-(n-')
H(z) = 1 + b 1z

- 1 +.. + b_z-(n -) +bz- n ' (2.1)

where the coefficient of z ° term in denominator has been assumed to be unity without any loss of generality.
Using long division, the above transfer function can be rewritten as the infinite series

H(z) = ho + hz - 1 + ... + h,z-" + h,+z - ( + ) +... (2.2)

Define vectors f, h E IR ' , where,

f = [o fj ... fNl]T

h = [ho hi -'' hN-]T, (2.3)
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denote the N samples of the measured and the actual impulse response data, respectively. Then, the identification
of parameters ai and bi can be stated as the following least squares minimization problem:

rN-i 1/2
minliell A min _e2I (2.4)
a,b =a,b E J 24

where,

e A - h (2.5a)

a ao a a, ... an-1]T (2.5b)
b A [1 bi ... bn])T .  (2.5c)

The transfer function coefficients are related to the impulse response samples in H(z) as

= .. ]b (2.6)

where, a, b have been defined in (2.5) and

. ho 0 0 01

HA hi ho 0: E ]p-(n)x(n + l ) ,  (2.7a)

h,-. h 2  ... h0  ].

h+ hn, h
H2 A hn.+ . .. hi E Jil (N - n ) x (n+ l .  (2.7b)

LhN-1 hN-2 hN-n-1

If b and H, are known, then a can be found by solving the system of linear algebraic equations a = H1 b.
However, in the present case, the exact h and therefore, the matrices H, and H 2 are not known. Therefore, we
replace the elements of H1 and H 2 by the corresponding matrices F1 and F 2 formed from the measured impulse
response data f. To obtain the initial estimate for b, consider the lower half of (2.6) given by H 2 b 0. Replacing
H2 by F 2 and expanding the relation, we get[ A~f-1 ... f, Jo 1

An+1 fn . f2 A b , = d(b), (2.8)

LfN-1 fiN- fN-3 .iN bn-

where d(b) is the equation error. The above equation can be rewritten as

f- - Ii AI f-~ 2 .IA

.+ b + d(b). (2.9)

IfN-2 fN-3 ... fN-n-. J- b, -fN-I
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Now, let

G A f-i fh and g - (2.10)

[L;2 IN-s ... IN-.-i LIN-

the initial estimate for b can be obtained by minimizing Ild(b)Il with respect to b = [bl b2 ... b,,]T and can be

computed as

b ( > =, (2.11)

where Gt denotes the pseudo-inverse of G. In general, the first approximation is fairly crude one because it only
minimizes an equation error and does not minimize the actual fitting error norm of (2.4). Unlike the equation
error, the fitting error will be shown to be non-linearly related to b and hence it has to be refined iteratively to
obtain a better denominator polynomial to match the impulse response.

Note that in (2.8), if the exact impulse response h had been known, the equality will be satisfied. However,

due to measurement noise, there will be some residual error d(b) as shown in (2.8). This equation error is now
rewritten as:

d(b) A F2 b 1 n-1 ... 1
1b ".1 .. 1..

A BTf. (2.12)

Now, f can be represented in terms of e and h as f = h + e and (2.12) can be expressed as

d(b) = BT[h+e]

= BTe because H 2 b = BTh = 0. (2.13)

Rewriting the error to be minimized in terms of equation error and using the "projection theorem" [21], we get

(some more explanation of the rationale behind this approach is given later for the multi-channel case),

e = B(BTB)-BTf

A WBTf

= WF 2b

= W[g G]b

= Wg + WGb (2.14)

where b - [b, b2 .- bn]T. From, (2.15), it is clear that WGb = -Wg + e and a new expression for b can be
obtained by minimizing hell as:

= -(WG)tWg

= (GTWTWG) - GTWTWg. (2.15)
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In summary, the estimate for b is iteratively refined using the following relation:

-() [.. ..... (2.16)

where,

V A [GTWTW] (2.17a)

W A [B(BTB) - 1] and (2.17b)

bn 0 ... 0

b.. 1  b• ... 0

B A 1 b, ... b E ]RN- n - l x N - 1 .  (2.17c)
0 1 ... 0

0 0 -.. 1

It should be mentioned here that, at each iteration, the new improved estimates of b are used in forming the

matrix W. Since the above iterations minimize the exact fitting error of (2.4), at convergence, the optimal

estimate of b is found. The iterations are performed in two phases. The scalar case being only a special case,

these two phases are explained with more details in Subsection 3.

When the estimates of b converge, a can be computed directly as a = IHIb, where il has the same form as

H1 , except the elements hi are replaced by fi - ej, i = 1,.. . , N, and ei are the elements of the error vector e =

[eo el "-- eN- 1 T - WBTf. Here WBT are formed using the optimized values of b.

3. MULTIvARIABLE SYSTEMS

In this Subsection the EFM algorithm is generalized for the Multi-Input/Multi-Output (MIMO) case.

Assume that the given plant is described by the rational transfer function matrix G(z) in (1.1). Denoting

each (i, j)-th element of this matrix as Hij, G(z) may also be written as,

rHii(z) H1 2(z) .-. Him(z)1

G(z)= H21(z) H (z) ... H 2 .(Z) = A(z) (3.1)
b(z)

where each Hij(z) is given by,

= 1 +aj(0) + aij(1)z - +.. + a,,(n - 1) -  (- .2

H,1(z) + bij(1)z- 1 + .. . + bij(n - 1)z-("-') + bij(n)z- (3.2)

Now, similar to (2.2), Hij(z) can also be written as,

Hij(z) =hij() + hjj(1)z-l +-+ hii(n)z-+ (3.3)

Let fj, hii E IRN, where,

fj= [fj(0) fij(1) ... fj(N- 1)] T

hij= (hj(0) h,,(1) ... hj(N- 1)]T, (3.4)
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denote the N samples of the measured and the desired impulse response data, respectively, corresponding to the
ij-th polynomial element of the G(z) matrix. It should be mentioned here that the number of measured samples,
N, has been assumed to be equal for each case without any loss of generality and that the algorithm can be

modified easily if the number of measurements are unequal. The only restriction is that for each case, there must

be at least 2n measurements, n denoting the order. Next, defining the error vector for the ij-th case as,

ej A fj - h, , (3.5)

the whole error matrix may be written as,
[ell e12  ... elm

EA e2 e22 . e2(3.6a)

Lepl ep2  ... epm

S[e e2 "'. e(3.6b)

Then, the least-squares minimization problem can be stated as

min IIEIIF A min j(k)2  (3.7)
{a.,},b - {a ,Eb

where 11 • hF denotes the Frobenius norm (or the matrix 12 norm) and

aj = s,j(O) aj(1) ... au(n- 1)]T (3.8a)

b = 11 b(1) ... b(n) T . (3.8b)

For ease of formulation, a large vector of errors is created from E next. Define,

el
ei A Vec [El e , (3.9a)

where Vec[.] is the operation of stacking the columns of a matrix to form a large vector. Note that e is a pmN x 1

vector which can be related to the measured and the desired impulse responses as,

el = fl - h, (3.9b)

where

f2 i hl

f,, hPl

fA and hi A . (3.9c)

fl. him
f2. h2m

.fp, hpmJ
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With this definition, the least-squares minimization criterion of (3.7) can be restated as

[p=N "11/2

min "e1112 A mI [r e2(i)1 (3.10)
{aj,b = {a, },bL -- J

where 11. 112 denotes the vector e2 norm. Now, corresponding to each ij-th element in G(z) matrix, we can form

similar to (2.6),

where, aij, b have been defined in (3.8) and

[h,(1) hi(0) ..- 0

HhI,( . ]. ]R(n)x(n+l) (3.12a)Ih5 (n-1) h,1(n-2) ... hj(0) 0]

hij(n) hii(n-1) -.- h12(0)
h1 3(n + 1) hij(n) ... h,,(1) ] (H?. A .. " ][R

( N - n ) x ( n + l ) .  (3.12b)

Lhii(N-1) hij(N- 2) .. hij(N n -l

Now, stacking the upper partitions of (3.11) for all ij we get,

all H1)
a 21  H(11

al A = b A H1)b. (3.13a)

aim H(1)1
a2m H (1)

2m

apm

Similarly, the lower partitions of (3.11) may also be stacked as,

"Ho >]BTh 1 1"o (2)/T
0 BTh 21

0 H(j)  BThp1

H . bA= " = ( 9pm ® BT)hl (3.13b)

o 2 B Thim
0H(2) BTh 2mLH 2m

• B.hpm



where, 9 denotts the matrix Kronecker product, B is defined in (2.17c) and IP,, denotes an pm x pm identity
matrix. If the elements in H~i) and b are known, a, can be found uniquely from (3.13a). Replacing the Hij's
with the corresponding Fij's, an equation error is formed,

-(2 ) -
1(2)

F21

d,(b) n F(2 )b A 1b. (3.14)

F (2)
(2)I

F2m

2) J

Following the steps analogous to (2.8)-(2.11), one can again find an initial estimate of b as follows,

b -O) = , (3.15)

where, g, contains the first column of F 2) and G1 contains the rest of the columns. But in order to find the
optimum estimate of b we still have to optimize the criterion in (3.10). To proceed in that direction the equation
error in (3.14) is rewritten in a more useful form as,

' BTf 1 1 ]

di(b) = E BTf 21

BTfp, J

= (Ip. ®BT)fi. (3.16)

Replacing fl by e + hi and using (3.13b) we get,

di(b) = (Im 9 BT)el (3.17)

But in order to facilitate the minimization of the fitting error norm of (3.10), we have to find an inverse relationship
between el and di(b). According to orthogonality principle, the error el for a given b and corresponding to the
optimum al must be orthogonal to the desired response vector ht. Otherwise there would remain some information
contained in the non-zero projection of el onto ht. The complete orthogonal basis space of this error can be found
from equation (3.13b) which clearly demonstrates that the pm(N - n) columns of (Ipm 0 B) are orthogonal to hi.
Hence the error e (a) corresponding to optimal at may be formed as a linear combination of all its orthogonal
basis vectors as follows,

A,(-7) A (4m 0 B)c (3.18)

where c, a vector of unknown constants, needs to be determined. By plugging in (3.18) in (3.17) we obtain

di(b) = (4pm 9 BT)(Ipm 9 B)c (3.19a)

= (Ipm & BTB)c. (3.19b)
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Hence,

C = ('pm ® (BTB)- 1 )d(b)

= (Ipm ® (BTB)-lBT)fI [using (3.16)]. (3.20)

Plugging this back in (3.18) and following the similar steps as in (2.14),

el(a') (- ( 9p, ® B(BTB)-BT)f, (3.2ia)

= (I& ® B(BTB)-)(pm @ BT)f, (3.21b)

_ W(Ipm BT)fl (3.21c)

= WIF(2)b; [using (3.14)] (3.21d)

A W1 Lg G,]b (3.21e)

= Wigi + WGIb. (3.21f)

For an optimum a, this is the fitting error that we need to minimize, i.e., the criterion in (3.10) is exactly
equivalent to,

mi Ine1(a*)I2. (3.22)b

At minimumthis will produce e(aj , b*). Note that in the expression of el(a*), the matrixW does have dependence
on b and b contains the elements with respect to which the criterion needs to be minimized. Following EFM, the
minimization of (3.22) is performed in two steps of iterations. In the first phase of iterations, the matrix W is
constructed from the estimate of b found at the previous iteration. The new update of b is then obtained from,

(+) - - ( G)tW')g

- -(GTWT(i)( ' ) G WT(i)W,(i)_ (3.23)

In summary, the estimate for b is iteratively refined using the following relation:

b(i+ l)  . ....... (V .g (3.24)

where,

V()LGTWT(i)W(i) (3.25a,)

GT(BT(i)B('))-1 (3.25b)

It should be mentioned here that, at any iteration step (i + 1), the new estimates of b(0) are used in forming the
matrix W ('). Note that the initial estimate b(0 ) comes from the equation error minimization step of (3.15).

The firit phase alone may not converge to the absolute optimum of b that minimizes e(a*) completely though
our experence with many examples does indicate that the first phase comes quite close to the optimum. In some
cases, especially when the deviations of the measured responses from the desired ones are relatively large, a second
phase of EFM needs to be invoked. In the second phase of iterations, the variation of W w.r.t. b is also t-oken
into account. The details of phase 2 for the scalar case may be found in [20]. The extension for the multi-channel
case is similar to the development of the extension for the first phase given above.



-68-

At convergence of the second phase, the optimum value b* is found. Plugging that in (3.21) the optimal

error vector e(aT , b*) is computed. The optimal impulse response I is then found from (3.9b) as,

&I = ft - e(a*,b'). (3.26)

Finally, the optimal at is computed from (3.13a) as

a,= ' I 1)b ,  (3.27)

where IV' ) has the same form as H except that the elements hj(k) are replaced by the corresponding h ,j(k).
We should mention here that the separable optimization of a and b, as given here, falls within a special class

of non-linear optimization problems which have been studied extensively by numerical analysts [221. It has been
shown in [22] that if some of the unknown variables are linearly related to the error and the other variables are
non-linearly related and if the variables do separate as the case studied here, the two step optimization do produce
the optimum for both sets of variables.

We should mention here that the separable optimization of a and b, as presented in this paper,

falls within a special class of non-linear optimization problems which have been studied exteisively

by numerical analysts [22]. It was shown by Golub and Pereyera in 122] that if some of the unknown

variables are linearly related to the error and the other variables are non-linearly related and if the

variables do separate as the case studied here, then the two level optimization of the kind described

in the preceding sections produces the optimum values for both sets of variables.

4. SIMULATION RESULTS

A (2 x 2) transfer function matrix was used for simulations. TABLE 4.1 contains the coefficients

of the denominator polynomial b(z) and TABLES 4.2(a) and (b) contain the coefficients of the

numerator polynomials.

TABLE 4.1: Coefficients of denominator of G(z)

Coeff Denominotor
Z6  1.000000000000000t + 00

-2.239200000000000e + 00
4  1.682120780000000e + 00
-'3 -4.675245365940000e - 01

5.995215508524930c - 02
-3.069148211131338e- 02

x0  7.9216602990056SU - 03

TABLE 4.2(A): Coefficients of numerators of H(:)

Coeff il(z) a12( Z)
T 2.310000000000000c - 02 4.120000000000000e - 01

-3.829980000000000e - 02 -6.465516000000000e - 01
2.825354370300000c - 02 3.900814928800000e - 01

A -1.163969877511980c - 02 -1.124197444290240e - 01
X1 2.305936357609712e - 03 1.534472131069005e - 02
Z° -1.599293795106799e - 04 -7.808982566335611e - 04
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TABLE 4.2(B): Coefficients of numerators of H(z)

Coeff a21(Z) 022(Z)
zo -2.1200000000000001 - 01 2.318000000000000e - 01
z6 2.986020000000000e - 01 -2.805161954172887e - 01

-1.568783612400000e - 01 1.031386276967342e - 01
-2 5.140274245157200e - 02 -3.466242652862272e - 03
z1 -8.602449814804975e - 03 -4.646062737792217e - 03

z°  4.959796217794915e - 04 6.208784880946757e - 04

The original system is of 6-th order and has 2 inputs and 2 outputs. Using the algorithm

developed in SECTION 4, we generated transfer function matrices, such that each element of the

estimated transfei function matrix had orders 5, 4 and 3. A comparison of the impulse responses of

the lower order approximation with the actual one is expressed as SNR in second column of TABLE

4.3. Further, in FIGURES 1(a), 2(a), 3(a). 4(a) and 5(a) we have plotted the actual unit pulse

response, and absolute errors corresponding to approximation of order 6. 5, 4 and 3 respectively.
The low maagnitudes of the errors clearly indicate the effectiveness of the proposed technique.

The impulse response of the transfer function matrix was then corrupted by random noise such

that the SNR was 20.5 dB. The noisy impulse response was used for estimating the parameters of

the transfer function matrix. The SNR for the estimated system is tabulated in the third column

of TABLE 4.3 below. Note that in computing the various aij(z)'s the algorithm uses the measured

impulse response data. Therefore, it tries to match the noisy impulse response data. To make a fair

evaluation of the performance of the algorithm, the SNR for the noisy case is computed by using

the trailing elements of the estimated and the unit pulse response of the original transfer function

matrix. In FIGURES 1(b). 2(b), 3(b), 4(b) and 5(b), we have plotted the noisy pulse response data

and respectively the 6-th. 5-th. 4-tb and the 3-rd order approximations.
TABLE 4.3: Simulation Results

Order SNR (dB) SNR (dB)
Noiseless Noisy

6 96.6577 30.1450
5 78.5530 32.9529
4 45.9135 33.4319
3 31.5113 30.7571

Extensive simulations, with various SNR values show close approximation to noiseless impulse

response. The results obtained using the proposed method consistently show better performance

compared to the existing methods.
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S. CONCLUDING REMARKS

In this paper we addressed the problem of identification of discrete time transfer function matrices

from the noisy unit pulse response data. The proposed method is a generalization of an existing

technique that estimates the parameters of a discrete time scalar transfer function. The simulation

results presented here and extensive experience with the proposed scheme clearly indicate that it

can be reliably used for estimating the parameters of discrete time transfer function.
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APPENDIX

Computational Algorithm: Phase II

In this appendix the second phase of the iterative algorithm is described in detail. In this phase, the derivative

of the matrix W1 w.r.t. b is taken into account. The complete error expression is rewritten below,

jIe,(aT,b)Jj = eT(aT,1b)ej(aT,1b). (A.1)

By setting the derivative of this squared norm to zero, we obtain the updated b(+l) at the (i + 1)-th iteration as,

(i+) = - (U(I)G]-[U(')]gj (A.2)

where (suppressing the superscript (i)),

U, A LTW, + GWTW1, (A.2a)

L, A W d(b) I () (A.2b)
M I = -- (1) I " " d

=WA , ® .(A.2c)
ab(k) A - (&

A [B(B TB) 1 1-' aB(BTB
ab(k) = b(k) 8b(k) (T)

- W a-B B T 9 (BTB) - '  and (A.2d)
[ Ib(k Lab(k)

OB has the same form as the B matrix defined in (2.17) but filled with all zeros except at the locations where

b(k) appear. For example,

0 1 ... 0

49B
= 0 0 ... 1 (A.2e)

8b(n) - 00... 0

00 0
LO00 ... 0

Once i+) is found, b('+') can be found from,

0+)= (A.3a)

= .. (A.3b)

This minimization phase continues until b i + 1 " bi is reached and this optimum b" vector corresponds to a

minimum of the error surface of jje,(a , b)11 .
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CHAPTER 3

SPECTRUM ESTIMATION AND RELATED TOPICS

SECTION 3.1 : A NOVEL CYCLIC ALGORITHM FOR MAXIMUM LIKELIHOOD FREQUENCY

ESTIMATION

SUMMARY

An algorithm for estimation of frequencies of narrow-band sources from noisy observation data is presented in
this Section. For Gaussianly distributed noise, the algorithm produces maximum likelihood estimates, otherwise
least-squares estimates are obtained. The proposed algorithm is iterative and at each step of iteration, the
optimization is w.r.t. a single frequency only and hence, simple hardware/software (using FFT, e.g.) is sufficient
for implementation. The performance of the algorithm has been compared with the theoretical Cramer-Rao

bounds.

I. Introduction:

Estimation of frequencies from data composed of multiple narrowband signals in noise is one of the oldest as
well as a current research problem that is of great interest in several branches of science. In the recent years several
techniques that produce optimal estimates have been developed. Unfortunately, the optimal techniques are based
on computation intensive nonlinear optimization procedures. Hence the optimal techniques, though theoretically
sound, have seen limited practical usage. In fact, most of the well-known and established frequency estimation
algorithms are actually suboptimal. The suboptimal algorithms are popular because they can be implemented
relatively inexpensively and, except at low SNR, they perform equally effectively [Tufts and Kumaresan, 1982).
But if one is interested in real-time computation, especially at very high sampling rate needed for high frequency
applications, both the optimal as well as the suboptimal techniques would require rather expensive special-purpose
hardware/software. The motivation of the this work was to investigate the possibility of devising an algorithm
that would rely on off-the-shelf hardware/software for implementation but would still be optimal in the Maximum
Likelihood (ML) sense.

It is well known that if the observation data is composed of a single sinusoid in gaussianly distributed noise,
the peak of the periodogram corresponds to the maximum likelihood (ML) estimate of the unknown frequency
[Palmer, 1974; Rife and Boorstyn, 1974, 1976]. The hardware or software implementation of the periodogram
is based on the Fast Fourier Transform (FFT) [Cooley and Tukey, 1965] which is a highly efficient but simple
algorithm. Because of this simplicity, the periodogram indeed is the main workhorse for most practical applications
even when more than one sinusoids are present. In case of multiple sinusoids, the effectiveness and applicability
of periodogram is greatly diminished unless the unknown frequencies are well separated. The periodogram peaks
in such cases, in general, do not correspond to the ML estimates. In fact, if the separation between two adjacent
frequencies is less than the FFT bin width, a plot of the periodogram would only show one merged peak instead
of two distinct ones.

Overcoming the resolution limit of the periodogram has been a major focus of research over the past decade.
Periodogram is basically a brute-force method which does not make any explicit use of the exponential nature
underlying the multiple sinusoids data. In contrast to that, the modern high-resolution techniques exploit the
known information about the exponential character of the observed data and assume an appropriate model, either
implicitly or explicitly. The problem then is converted to a multidimensional search over the parameter space
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of the chosen model. In some cases [Parthasarathy and Tufts, 1985; Rife and Boorstyn, 1976], the unknown
frequencies may themselves constitute the parameter search space. But these direct methods are based on the
maximization of optimal criterion which require non-linear optimization.

One of the major objectives in developing suboptimal techniques has been to come up with linear solution for
this essentially non-linear problem. The origin of development in this direction may be found in the algorithm due
to Prony [1795]. Complex exponentials may be considered to be the roots of a Linear Predictor (LP) polynomial
and the estimation of the LP coefficients (or equivalently, the parameters of an Auto-Regressive [AR] model) is
a linear problem [Makhoul, 1975]. Realizing this unique property of complex exponentials, enormous research
effort has concentrated on this particular idea [see Jackson et al, 1978; Tufts and Kumaresan, 1982; Lang and
McClellan, 1980; Ulrych and Bishop, 1975; among others]. The roots of the estimated LP p-lynomial are the
estimates of frequencies. It should also be noted that the parallel development of the maximum entropy method
[Burg, 1967], which is based on a completely different theoretical viewpoint, essentially produces exactly same
results as AR modeling. These methods have been shown to be significantly more effective when the corrupting
influence of noise in the observed data or in the correlation matrix is reduced by the incorporation of Singular
Value Decomposition (SVD) or Eigen-Decomposition (ED) as the case may be [Tufts and Kumaresan, 1982; Kay
and Shaw [1988], Kung et. al. [1983] and others]. The ED of the correlation matrix and the SVD of the data
matrix composed of the multiple frequencies in noise data possess certain signal/noise-subspace orthogonality
properties which were also effectively exploited by many researchers for frequency estimation [Pisarenko, 1972;
Owsley, 1978; Schmidt, 1979; Bienvenue and Kopp, 1979; Reddi, 1979; Kumaresan and Tufts, 1983, Kung et. al.
[1983] and others]. More recently, a structured matrix approximation based method has been proposed which
essentially reparameterizes the maximum likelihood criterion to depend on LP-type coefficients [Kumaresan and
Shaw, 1985, 1988; Kumaresan, Scharf and Shaw, 1986; Shaw, 1987]. This reparameterization leads to an iterative
method where the problem is inherently made linear at every iteration step. As one would expect, this ML
algorithm gives accurate frequency estimates even at low SNR. References to various other methods of frequency
estimation may be found in the papers cited here.

The main goal of the present work is to integrate the positive aspects of both periodogram as well as the
model based estimation techniques. In this work, we propose an iterative algorithm which achieves this objective
by essentially splitting the multidimensional non-linear optimization problem of MLE into several one-dimensional
searches. The exact model of the multiple complex exponential data is invoked and the exact ML criterion is
optimized w.r.t, a single frequency at every step while keeping the others fixed at previously estimated values.
It may be emphasized here that the computational simplicity of the proposed approach comes from the fact that
every iteration requires optimization with respect to only one frequency. This can be easily performed by finding
the peak of the periodogram. The proposed method is iterative. It requires crude prior estimates or regions of
interest of the frequencies. The initial estimates may again be obtained from the periodogram peaks or any other
method. In fact, our simulations indicate the effectiveness of the algorithm does not diminish much, even if the
initial estimates are chosen in a completely random manner.

This Section is arranged as follows: The problem is formulated in Subsection II and the proposed algorithm
is described in Subsection III. Simulation results are given in Subsection IV and finally some concluding remarks
have been included in Subsection V.

II. Formulation of the Problem:

Let x(n), n = 0, 1,..., N - 1, be an observation data record of N consecutive samples of the multiple complex
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exponential signal model which is defined as,
P

.(n) ,Z ake(wjn+*.) n = 0, 1,...,N- 1 where, (11.1)
k=1

ak unknown real amplitude of the kth sinusoid,

Ok unknown phase of the kth sinusoid,
W :. unknown angular frequency of the k1h sinusoid and
p assumed number of sinusoids.

The observation samples are expressed as,

z(n) = i(n) + z(n), (11.2)

where, z(n) represents observation noise and/or modeling error. In vector form, the observed samples x(n), the

model samples i(n) and the noise samples z(n), for n = 0, 1,. . ., N - 1, are related as,

x A i + z where, (11.3)

x A [z(O) z(1) ... , z(N - 1)]' (II.4a)

* A [i(0) i(1) ... i (N - 1 )]t and (II.4b)

z A [z(O) z(1) .... z(N - 1)]', (II.4c)

where, "' denotes matrix or vector transpose. The multiple complex sinusoids model vector i is equivalently
described by the following matrix-vector decomposition,

x = Ta where, (11.5)

11 ... I A,
eJ', eJ'-" ... •A

T A( eiw,:PJ...)) and a A A2  (11.6)
(ejWI(N-1) ejd2(N-1) . eJwP(N-l) (p

where, Ak A akd), for k = 1,2,.. .,p, respectively, are the complex amplitudes. The problem under consid-
eration here is to choose or estimate the best model parameters A,, A 2,..., AP, and wI,w 2,...,wp such that the

modeling error norm,

lell2 A E(T,a) A llx - Tall2 (11.7)

is minimized.

Next, a brief derivation is given to show that the least-squares criterion in (11.7) is indeed the one required for

MLE when the noise samples z(n) are white and gaussianly distributed. More details may be found in [Rife and

Boorstyn, 19761. If the observed samples x in (11.4a) are composed of multiple sinusoids in Gaussianly distributed,
zero-mean and complex white noise, the probability density function (PDF) of x is given by,

P(x - ic) = Ndet(R ) e(_) (x~i) (11.8)

where k is defined in (11.4b) and R, is the N x N autocorrelation matrix of the noise. Since the noise is assumed

to be white,
R 2 o2 I ( .9)
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To obtain the MLE of the unknown parameters one needs to optimize the following criterion,

1 ... (Xi:)H(X..i)
max P(x - i) = max ;N1 2Ne- )  (11.10){A },{w&} {A&},{w&110

This criterion is exactly equivalent to

min (x- _*)H(x _ i). (11.11)
{Ak&,{jWh

Now, writing the model vector :x explicitly fror: (11.5) and defining the fitting error as,

e(Ta) A x - Ta, (11.12)

the criterion becomes

min E(T,a) A min eH(T,a)e(T,a). (11.13)
{A&),{fw& = {A)}, }{w

This criterion is exactly same as the least squares fitting criterion in (11.7). Note that the error e(T, a) in (11.13)
is linearly related to the parameters in a while it is nonlinearly related to the frequencies in T. Hence the
minimization of E(T, a) is a non-linear multidimensional optimization problem.

Considerable work have been reported on the direct optimization of the criterion in (II.11). Notable among
them are the work by Golub and Pereyra [1975], Parthasarathy and Tufts [1984] and Rife and Boorstyn [1976.
These approaches are mainly based on Newton-Raphson or Gauss-Newton type algorithms Performance of the
general non-linear multidimensional optimization algorithms depend primarily on the choice of initial estimates.
The proposed algorithm is dtscribed next.

III. The Maximlim-Likelihood Algorithm :

In order tc. motivate the proposed approach let us consider an ideal case first. To facilitate the splitting of
the multi-dimensional optimization criterion in (11.13) into several 1-D optimization problems, we rewrite the
Vandermonde matrix T in (11.6) in the following form,

T S [tl t2 ... tk...tp]t  where, (111.1)

tk A [1 h~2teJh ... eJ(N-1)wh] .  (111.2)

Next, a Vandermonde matrix Tk is formed with (p - 1) of the p frequencies and excluding the tk vector, i.e.,

Tk A [tl t2 ... tk-1 tk+1 ... tp]t. (111.3)

Similarly, define the corresionding amplitude vector as,

aL A [al a2 ... ak-1 ak+1 ... ap]t . (111.4)

Using the above notations, the model vector i of (11.5) is rewritten as,

:i = Ta = Tkak + tkAk. (111.5)

Plugging this in (11.12) we get,

e(T,a) = x - Tkak- tkAk. (111.6)
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If the frequency and the amplitude terms in Tk and ak are known exactly, the error can be rewritten as,

e(tk,Ak) = xk - tkAk, (111.7)

where, x1 is a modified data vector defined as,

x' A x - Tkak. (111.8)

Clearly, the minimization of the norm of the error in (111.7), i.e.,

min IIxk - tkAkIl (111.9)
wkAh

is a one-dimensional optimization problem. In fact, the maximum-likelihood estimate of the unknown frequency
wk in tk can be found from the peak location of periodogram plot of the modified 'data' vector x'. Furthermore,
the minimization in (111.9) can be carried out for each k = 1,2,.. .,p and the estimates of all the p unknown
frequencies can be found by performing p FFTs!

The approach outlined above seems perfect except that it presumes the ideal case of exact knowledge of the
frequencies which, in fact, we sought to evaluate in the first place. In practical situations, the p - 1 frequencies
in Tk and the corresponding amplitudes in ak which are needed to form the x' in (111.8) will not be known.
Instead, we propose to replace TA and ak by the corresponding estimates. Then the optimization can not be
accomplished with only one set of p FFTs as ant; -ipated. In that case, the optimization procedure would have
to be done iteratively. The iterative algorithm is outlined next.

Let us first assume that approximate initial estimates of (p - 1) of the frequencies and corresponding am-
plitudes are available (from periodogram or linear prediction or any other method) and that the kih of the p
frequencies is unknown or needs to be updated. Now, separating the known and unknown parts of T, we can
write the observation vector x in (11.3) as,

x A Tki, + tkAk + z

A Xik + tkAk + z (111.10)

where TI and Ak have the same forms as in (111.3) and (111.4) except that the exact values are replaced by the
corresponding estimated values and ik A TikI. Now defining xk A x - Xi,, (111.10) can be rewritten as,

xk A tkAk + Z. (111.11)

We now treat the vector xk as the 'data' vector and correspondingly rewrite the error criterion for the k-th
frequency in (111.9) as,

min IckI112 A min E(tk,Ak)tWk,Ak w ¢k,Ah

A min 11xk - tkAk 2. (111.12)
= wk,A&

Once again, the optimization problem in (111.12) is with respect to the parameters associated with a single
frequency only. Once the P h frequency is estimated, the corresponding amplitude may be obtained by the
following pseudo-inverse solution,

k= t xh. (111.13)
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The updated estimates of wk and Ak can then be included to form ik+l and Ak+1 similar to (111.3) and (III.4).
The same steps may then be followed for updating the k + I h frequency by optimization of the following criterion,

min IIxk+l - tk+lAk+l2. (111.14)
Wkh+ ,A&+i

In this manner at each updating step one of the frequency estimates is re-evaluated while keeping the other p - 1
frequencies fixed at previously estimated values. At every iteration level the updating starts with k = 1 and
goes up to k = p, exhausting all the frequency components. The iterations are continued till no further changes
are observed in the frequency estimates. Note that at every step of optimization of (111.12), the ML criterion in
(11.7) is minimmizd, albeit with respect to one frequency at a time. Hence, at convergence the ML estimates are
obtained.

The attractiveness of the proposed algorithm comes from its sheer simplicity in implementation. The algo-
rithm may also be used as an adaptive frequency tracker. In a radar or sonar environment, the spatial frequencies
which are related to the angular positions of far-field sources may change as the sources move [Kumaresan and

Shaw, 1987], the proposed algorithm will be able to adapt to such changing environment: In the next two
paragraphs we consider the important issues of model order selection and the choice of the initial estimates.

Model Order Selection : In the above discussion of the algorithm, we have assumed that the model order p is
exactly known. In practice, one may not have that knowledge and the model order needs to be estimated. Two
of the most commonly used order selection criteria are the Akaike Information Criterion (AIC) [Akaike, 1974]
and the Minimum Description Length (MDL) criterion [Rissanen, 1978, 1983]. Both these criterions are perfectly
suited for the proposed approach because both AIC and MDL criterions are computed using the logarithm of the
minimized error norm in (11.7) along with the number of parameters under optimization. MDL also requires the
observation data length N.

Choice of Initial Estimates of frequencies : Any estimation technique such as linear prediction or coarse pe-

riodogram peaks may be used to get the initial estimates. In our simulations we chose the periodogram peak
locations as the initial estimates of frequencies. If there is a single merged peak indicating the possibility of more
than one frequency in that region, one may choose the peak locations as the possible frequencies and the other/s
may be chosen within the peak lobe width according to the number of sinusoids present. But the algorithm
seemed to be highly robust in the sense that in our simulations the performance did not deteriorate even for
random choice of initial estimates.

IV : Simulation Results

The algorithm described above has been tested on simulated data. The following formula is used to generate

the data,

x(n) = aid" + a2 ei'2" + z(n) (IV.1)

n = 0, 1, ... ,24

where w,1 = 2rfl, 2 = 2wf 2 , f, and f2 being 0.23 and 0.26, respectively, a, = a2 = 1 and z(n) is a computer
generated white complex gaussianly distributed noise sequence with variance 2o.2. a,2 is the variance of the real
and the imaginary parts of z(n). SNR is defined as 10 loglo(I a, 12 /2o,2). One hundred sets of samples with
different noise epochs were used.

For the observation records described above the error criterion given in (11.3) was minimized by following

the algorithm described in Subsection III. The periodogram peak location with a 64-point FFT was used to find
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the coarse initial estimate to form T1 and from that iA. In the figure below, 10 log I calculated with the bias
and variance for 100 trials at different SNR values are plotted. Cramer-Rao bounds (CRB), which give the lower
bound on the variance of f, (or f2) for the corresponding SNR values, are also plotted. The results indicate that
the bias in the estimates is negligible and the Mean Squared Errors remain close to the CRB up to about 0dB
SNR. The iterative procedure always converged at every trial in 5 to 15 iterations. The present algorithm seems
to push the SNR threshold even lower than reported results. More studies and comparisons with other algorithms
need too done. In order to test the robustness and sensitivity of the algorithm to initial estimates, we also ran
simulations with initial frequency estimates chosen completely randomly from a uniform noise generator. It was
found that the algorithm performed almost as well as in the previous experiment. This robustness aspect of the
algorithm should be studied more in future.

V : Conclusion

A new algorithm for Maximum-Likelihood frequency estimation is presented. Unlike all known ML methods
for frequency estimation, the proposed algorithm does not require any multidimensional optimization. The
multidimensional problem is split into several 1-D optimization problems. For computation, the algorithm only
requires the FFT algorithm which is extensively used in signal processing. Our simulations indicate that the
algorithm pushed the threshold down to 0dB SNR. The iterative algorithm also showed remarkable robustness
to the choice of initial estimates. We intend to extend the algorithm to the more general case of frequency-
wavenumber estimation and also for Toeplitz matrix approximation.
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SECTION 3.2 A PARAMETER ADAPTIVE SIMULATED ANNEALING SCHEME FOR FREQUENCY
ESTIMATION

SUMMARY

A Simulated Annealing scheme based on parameter adaptive cooling schedule is proposed. In the existing
annealing schemes, the temperature parameter is predetermined for every iteration step and is independent of
the unknown parameter values. In the proposed scheme, the cooling temperature is made proportional to the
deviation of each individual parameter at the earlier iteration step. The other key difference in the proposed
scheme is that it never accepts a higher energy level and remains at the present lower energy position. Instead,
the Boltzmann Distribution is used to accept a larger cooling temperature i.e, a broader parameter search space.

The algorithm is then applied to the well known nonlinear optimization problem of frequency/angles of arrival
estimation of multiple sources. Simulation results indicate that the proposed scheme converges to the minimum
energy level in fewer iteration steps when compared to an existing fast annealing algorithm.

Introduction

Multi-dimensional and non-linear optimization problems occur in engineering, economics, geophysics, as well

as in almost all fields of science. A plethora of literature on standard optimization algorithms are available in the
literature but in this decade a new and powerful optimization algorithm called Simulated Annealing has emerged
and has found ever increasing attention in many applications. Although simulated annealing was originally
proposed by Metropolis in 1953, only recently it has found successful applications in constrained and unconstrained
optimization problems [Kirkpatrick et al, 1983; Gelfand and Mitter, 1985; El Gamal et. al, 1987, Sharman, 1988].
Also very recently, Szu 119861 has developed a fast annealing scheme which has improved convergence rates. It is
well known that the performance of almost all other existing nonlinear optimization techniques are highly sensitive
to the initial estimates and most algorithms cannot come out of a local optimum if it happens to reach one during

the iterative process. Simulated annealing is a form of stochastic optimization and two of its most important and
exciting features are that it can escape local stationary points of a cost function and that, 'theoretically', it is
guaranteed to reach the global optimum.

Although the presently available annealing algorithms are quite attractive it is generally felt that even the
fast annealing technique by Szu requires considerable computations. This is mainly due to the large number of

iteration steps involved. A further reduction in the convergence rate will have far reaching advantages in many
applications. The major goal of the proposed research is to explore a possible annealing scheme which, according
to preliminary studies, seems to provide faster convergence than existing techniques.

Simulated Annealing and the Globally Optimal Design

The idea of simulated annealing may be understood in the following manner. Assume that we have a box
containing an unknown 3-dimensional terrain with valleys and peaks at unknown locations and we are interested
in finding the deepest point in the terrain. A simple method would be to take a ball and drop it inside the
box containing the terrain because the ball will eventually roll down and reach the deepest point in the valley
in which it was dropped. Of course, if the ball is dropped in another location which may be another valley, it
would roil down to the deepest point of that particular valley. Unfortunately, none of these two deep points of
the individual valleys may be the deepest point of the whole terrain which is what we were seeking in the first

place. This is exactly how the conventional gradient based optimization algorithms work. The terrain surface
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may represent the multimodal surface of a cost criterion C(8) one is trying to minimize where, 8 is a vector
containing the underlying unknown parameters. To reach a minimum, one supplies an arbitrary initial estimate.
The conventional optimization algorithms, which are mainly gradient based, would take one to the closest local
minimum by going in the direction of decreasing gradient (i.e, decreasing cost) until zero gradient is reached. But
again, if the cost function has multiple local minima, one may not have reached the global minimum of C(8). The
whole thing really boils down to the choice of the initial estimate. A straight-forward solution for this problem
would be to compute the cost criterion at all possible values of the underlying parameters and choose the set
which corresponds to the lowest cost. Unfortunately, this simple solution will be prohibitively expensive even for
a small number of parameters with infinite possibilities for each. But consider the ball-in-the-terrain-box scenario
again and assume that the ball is resting at one of the local minimum. Now, if one can somehow agitate the
terrain box and do it vigorously enough such that there is a positive probability that the ball will be dislocated
from its resting position and will jump to a position with higher cost but in another valley of the terrain. Then one
can start the search process all over again. In this manner, with a large enough number of attempts, one would
ultimately reach the valley containing the global optimum. The problem then is to seek the global optimum and
remain there. This, indeed, is the fundamental premise of simulated annealing, i.e, it can escape a local minimum
of a multimodal cost criterion and can ultimately reach the global optimum.

From the description given above, it is obvious that one has to be very careful in how much one should
agitate the box when the ball is resting at one of the deeper points. If one shakes the box too much, the ball
may even jump from the globally deepest point and if one shakes the box too slow, the ball may remain trapped
forever inside a valley with a local optimum. Both of these would be undesirable and hence, one needs a proper
strategy. In true annealing, a heated solid is allowed to cool to its minimum energy state. The molecules use
random motion to search for new positions of lower energy. The likelihood of reaching the least energy state
depends on how fast the solid is cooled. To apply this analogy to the cost minimization problem, it is necessary
to meet the following four objectives JSzu, 1986), namely,

(i) A cost criterion, G(0) which we seek to optimize, where 0 A [01 92... Op]l is the vector containing the p
unknown parameters. ' denotes the matrix or vector transpose operation.

(ii) A rule for generating new candidate parameter estimates : The fast annealing scheme employs a Cauchy
generating density, which for N parameters in 0 may be expressed as,

de(0) = c(1)
[1812 + 2i!

where, the parameter c is the temperature parameter T(t) which is found directly from the cooling schedule

introduced next.

(iii) A gradual cooling schedule To(t) : It has been shown by [Szu, 1986) that the necessary and sufficient condition
for convergence of the fast annealing algorithm to the global optimum requires the cooling schedule to be no

faster than the following inverse time law :

T (t) 1 (2)

where, To $ 0 is a sufficiently high initial temperature.

(iv) A hill-climbing (cost-increasing) acceptance probability. This is given by the following Boltzmann distribu-

tion ,
1

p(accepting higher cost) A Pa (3)
- 1 + e--
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where, kB is the Boltzmann constant and

AC A CS(o) - ct. 1(). (4)

From these objectives, it is clear that the requirements (ii) - (iv) are of generic nature and do not change
for different problems, whereas for (i), the cost function will have to be decided specifically for each optimization
problem under consideration. Next, we briefly motivate a possible new annealing scheme which seems to provide
faster convergence than existing techniques.

Motivation for the Proposed Annealing Scheme

The main motivation of the development of the simulated annealing algorithms has been to achieve conver-
gence at the global optimum of a cost criterion which is nonlinearly related to the underlying unknown parameters.
The existing algorithms by Metropolis et al and Szu do achieve this goal but even the faster scheme, due to Szu,
may have very slow convergence for many applications. This diawback of FSA may be due to the rigid cooling
schedule (2) used by the annealing scheme. Experimentations with the FSA indicate that the convergence rate
depends on the choice of the inlu:- 4 "-'perature To. For example, if the parameter values in 0 at the optimum
point happen to be relatively small compared to To, the cooling may not have any major effect until the tem-
perature becomes low and comparable to the parameter values. We feel that it may be helpful to make the
cooling schedule depend adaptively to the parameter values. Also, the cooling schedule of FSA does not provide
any possibility for reheating which, we think, may be advantageous in the search for the optimum. Especially,
reheating may be useful when the temperature has become very low but the algorithm has not reached close to the
optimum point. We also feel that constant temperature search may also facilitate the annealing procedure. Our
preliminary experiments also indicate a potential problem with FSA in that, if the annealing iterations happen
to reach the globally optimum point at a relatively high temperature, there is a large probability that it may
leave the optimum point. This is due to the built in cost-increasing acceptance probability inherent in the FSA
scheme. This seems to be a necessary evil because it is the cost-increasing acceptance probability which really
provides FSA the mechanism to escape from local optimum points. But the problem is that the algorithm has no
way of knowing if it is escaping a local or the global optimum point. Theoretically, of course, the algorithm will
eventually come back to the globally optimum point but that may be after a very large number of iterations. We
feel, one way to avoid this may be to stay fixed at the point of the lowest available cost until another point with
lower cost is found. The mechanism to escape from a local optimum point can be incorporated in the algorithm
by constant and high temperature search and also by expanding the search space according to the acceptance
probability.

Keeping in mind the drawbacks of the existing simulated annealing schemes and the possible solutions
as outlined above, we propose here a new simulated annealing scheme so as to reduce the convergence rate.
The temperature parameter T(k) plays a pivotal role in our annealing scheme. At every iteration the Cauchy
parameter generating density in (1) uses T(k) as the parameter c to generate the random deviations in parameter
values. But c is the semi-interquartile of the Cauchy density function which means that there is a 50% percent
probability that the random deviations generated by the Cauchy density will fall within ±c. It seems logical to
expect that, instead of rigidly pre-specifying the cooling schedule, one may be able to hasten the search process
by adaptively selecting T(k) according to the parameter values. Also, the cost function is optimized w.r.t.
several parameters and at the point of lowest energy, these parameters may have values with different orders of
magnitude. In such cases, it may be advantageous to make the semi-interquartile (i.e, the temperature T'(k)) for
each parameter dependent on the change in individual parameters. With these observations in mind we propose
to study a possible faster adaptive simulated annealing scheme outlined in the next Subsection.
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A Faster Simulated Annealing Scheme Based on Adaptive Cooling Schedule

The major steps of the proposed annealing algorithm are summarized below :

1: Initialize the parameter set 0 with arbitrary values and compute the cost function C(O). Initialize the
temperatures, i.e, the semi-interquartile parameters 10' for each parameter 0' at sufficiently large values.
Initialize iteration no. k = 0.

2: Set k = k + 1. Stochastically generate a new set of parameters followitg the Cauchy state-transition
probability defined in (1) but with different semi-interquartile values. Initialize the parameter number i = 0.

3: Set i = i + 1. Compute the cost function Ci(0) using the new value of the parameter 0' and the values of
the other parameters set at the previous iteration step. Then calculate the difference in cost

AC A G (0) - C ( (5)

Note that if i = 1, the last term will be Ck_1 (0).

4(a) If ACi is negative, i.e, if the new cost is lower than the one in the previous iteration step, accept the new
parameter set and the new lower cost and set the temperature at 7,'(k) = A8' A 10'(k) - 0'(k - 1)J. !f
i = p go to step 2, else go to step 3.

4(b) : If AC i is positive, the cost is fixed at the previous (lower) value, i.e, C- 1(0) but accept a new temperature
(semi-interquartile) r., (k) = mAO' with a probability determined by the Boltzmann distribution given by
(3) using the temperature T,"(k) and the cost change in (5). m > 2 is a constant that expands the search
space. If i = p go to step 2 else, go to step 3. If all the AC''s remain same for a "long" time then STOP.

The new adaptive simulated algorithm as outlined above avoids many of the problems associated with
the existing simulated annealing schemes. For example, the temperature parameter is made depend~ent on the
difference in the parameter values and hence they are of the order of the parameters themselves. The minimum
energy level parameters are kept unchanged so that there will not be any possibility of escape from the optimum
minimum. Also an escape mechanism from local minimum is provided by expanding the search space according
to the Boltzmann's probability when the cost is higher than that in the previous step.

To demonstrate the effectiveness of the proposed algorithm, we applied it to the problem of locating the
optimum point of the cost function C(O) = 04 - 160 + 50 [Szu, 1986]. The results of the simulations were
quite encouraging and are discussed later. The results clearly indicate that the proposed algorithm converges
faster to the optimum point than the existing technique due to Szu. Next we apply the algorithm to one of the
well known optimization problems in signal processing, namely, frequency or angles of arrival estimation. Earlier,
Sharman [1988] used Szu's technique to the frequency estimation problem. Here we compare the results of the
two algorithms with a number of simulation studies. In the next Subsection the frequency estimation problem
and the appropriate cost criterion are formulated.

The Frequency Estimation Problem

Estimation of frequencies from data composed of multiple narrowband signals in noise is one of the oldest
problems studied in several branches of science. To define the problem, let z(n), n = 0, 1,.. ., N - 1, be a data
record of N consecutive samples. The multiple complex exponential signal model is defined as

i(n) E a n = 0,,...,N- 1 (6)
k=1

where
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ak unknown amplitude of the kth sinusoid,
bk : unknown phase of the kth sinusoid,
W, : unknown angular frequency of the kth sinusoid and
p : assumed number of sinusoids.

Note that for the angle of arrival estimation problem N denotes the number of sensors. The sensors are assumed
to be separated by half the wavelengths of the incident waves and hence wk = r sin 0k, where Ok denotes the

angle of the kth source relative to the array normal.

The observation samples are expressed as

z(n) = ir(.) + z(n) (7)

where, z(n) represents observation noise and/or modeling error. In vector form, the observed samples z(n), the
model samples i(n) and the modeling error samples z(n), for n = 0, 1,...,N - 1, are related as

x A x + z (8)

where,

x A [z(0) x(1) ... , -(N - (9a)

i A [(0) i(1) ... , i(N-1)]t  (9b)

z A [z(0) z(1) ... , z(N-1)]'. (9c)

The multiple complex sinusoids model vector i is equivalently described by the following matrix-vector decom-

position,

f= Ta (10)
where

/ 1 1 .. A,ejwl jW2 j PA2
T• . . and a A (11)

\ej-'dN-1) ej 2 (N-1) ejw,(N-1) (AP)
•JI ew .. A 2 (1

where, Ak A ake j ¢ , for k = 1,2,...,p, respectively, are the complex amplitudes. The problem under
consideration here is how to choose or estimate the best model pajameters A 1, A 2 ,. .. ,Ap, and W1,2,. .. ,WP

such that the following modeling error norm

Ilel12 A E(T,a) A Ijx - Tall2 (12)

is minimized.

One may use this error criterion as the energy function and minimize it with respect to the unknown am-
plitudes, phases and the frequencies. In most cases, one is mainly interested in the unknown frequencies (or the
angles of arrival). Also, the unknown vector a is linearly related .he error vector e and can b, . eliminated from
the error criterion. It can be shown [Shaw, 1987, Kumaresan et al, 1986] that the frequencies can be directly

obtained by minimizing the following alternate error criterion:

E(T) A 11(1 - PT)X2, (13)
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where, PT is the projection matrix and is defined as follows:

PT A T(THT)-TH (14)

where 'H' denotes complex conjugated matrix transpose operation. The optimization problem described by

equation (13) is a highly non-linear multi-dimensional optimization problem. Regarding the presently available

methods, the simpler of the existing algorithms are usually suboptimal and the optimal techniques, being depen-

dent on the initial conditions, are not guaranteed to attain the global optimum and are usually computationally

expensive. We strongly feel that simulated annealing offers an exciting alternative to solve this optimization

problem. Extensive simulation studies have been done with both the annealing schemes outlined above using the

following cost criterion :

C(O) A 11(1 - PT)XII (15)

where e A [W1 W2 ... wp]1- The simulation results are summarized in the next Subsection.

Simulation Results

The proposed simulated annealing algorithm has been evaluated by extensive simulations on a variety of data

sets and we report the results of the three experiments here. In the last two experiments the cost function of the

form given in (15) is minimized and gaussianly distributed white noise are used.

Experiment 1:

In this experiment we considered a simple example [Szu, 1986] to demonstrate how the proposed technique

outperforms the existing annealing methods. In this example the cost function C(z) = z' - 16X2 + 5z has one

local minima and a global minima. Several trials of annealing runs were made by both the methods and the

results are tabulated in Table I. In both the methods the iterations were continued till the global minima is

reached. In the proposed technique, once the global minima is reached it continues to stay there for ever whereas

in Sharman's [4] method it would remain in the global minimum only when the temperature becomes sufficiently

low.

Experiment 2:

This experiment involves estimating the frequencies of two narrowband signals in noise. The data record

consists of 25 consecutive samples generated from two sources of closely spaced frequencies of 0.5 and 0.52 Hertz.

The SNR's of both the sources were 10 dB's. The annealing technique is applied to a single set of data and the

results are compared with that of Sharman [4].

Figures la and lb show a typical annealing rut by the proposed method and that of Sharman's [4]. Both

the runs were started with identical initial conditions. The temperature was initialized to 1000. The graphs show

the trajectories of the source frequencies as the annealing proceeds. The values of the cost function after 3000

iterations were 2.305 in the proposed method and 2.445 in Sharman's [4] method.

Experiment 3:

In this experiment there are three point sources illuminating an array of 8 sensors at directions of 10, 25 and

35 degrees from the array normal. The signal strengths over the additive white noise were 10, 15 and 12 dB's.

This experiment was taken from Sharman[4]. The temperature was initialized to 1000. Figures 2a and 2b show

the 3000 annealing iterations by the proposed technique and Sharman's [4] method, respectively, with identical

initial conditions. In all our trials of annealing iteration the global minima was reached within few hundreds of

iteration in the proposed method whereas in Sharman's [4] method the estimates were varying erratically even

after few thousands of iterations.

The key difference between the proposed method and th- existing method is that the cost function
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monotonously decreases as the iteration proceeds whereas in Sharman's [4] method the cost function varies

erratically as long as the temperature is high.

Table I
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SECTION 3.3 : ONE-STEP ESTIMATION OF ANGLES OF ARRIVALS OF WIDEBAND SIGNALS

SUMMARY

A high resolution algorithm for estimating the angles of arrivals of multiple wideband sources is studied for
this part of the work. The algorithm is effective for a dense and equally spaced array structure where a bilinear
transformation is utilized in the frequency domain for combining the signal subspaces at different frequencies for
coherent processing. When compared with existing coherent approaches, the algorithm is non-iterative in the
sense that all the arrival angles can be estimated in only one step of the algorithm. Existing algorithms can
only estimate the angles of a cluster of sources in a particular direction. The proposed algorithm, unlike the
existing ones, does not need the knowledge of the initial estimates of the arrival angles. The work reported here
is a variation of some earlier work by the author [32]. Instead of using generalized eigendecomposition or matrix-
pencil method, here we pre- or post-multiply the signal-subspace matrix with the noise matrix. This enables us to
use regular eigendecomposition routine to estimate the source angles. It is also shown that it may be numerically
more stable if the coherent combination is not focused in the center frequency the numerical value of which could
be very large. The new focusing matrix given here allows to focus independent of the center frequency. The
performance of the algorithm is presented using simulated data.

I. Introduction : Estimation of locations and characteristics of radiating sources using data collected at the
output of an array of sensors is a frequently researched problem in signal processing [31]. This problem has many
ramifications and different kinds of categorization are possible depending on the assumptions and the knowledge
or otherwise of the source and noise characteristics, array geometry, etc. One broad categorization is based on the
radiating sources having narrowband or broadband spectra. A plethora of publications are available in literature

and in the next two paragraphs some of the approaches are briefly outlined.

Ia. Narrowband Sources : Estimation of frequencies of sinusoidal signals in noise and estimation of angles of
arrivals of planewaves with narrowband signals are related problems. Various existing techniques are primarily
based on Fourier methods [1,2], eigendecomposition and singular value decomposition based methods [3-10, among
others), and maximum likelihood based methods [11-13). Some of these techniques have also been extended to
the 2-D problem of simultaneous estimation of frequencies and wavenumbers [14-17).

1b. Broadband Sources: The broadband problem is radically different from the narrowband problem in many
respects. As for example, unlike the narrowband case, a delay in time cannot be as simply accounted for in the
phase of the exponentials in the time domain representation. This is because a broadband signal is composed of a
continuum of frequencies where each constituent frequency goes through a phase change different from any other.
Within any nonzero bandwidth of the signal there may be an infinity of frequencies all of which experience changes
in their respective phases. Hence the broadband signal cannot be modeled simply by a sum of a finite number of
exponentials as is the case for narrowband signals. For these same reasons the data matrix, correlation matrix
and the Hankel matrix formed with the time domain broadband data do not possess the nice properties which
the narrowband case enjoys even when absolutely no background noise is present. In fact, all these matrices, if
formed with noiseless time domain broadband data, will be of full rank, no matter how large the dimensions of
the matrices are.

It should be clear from the discussions in the last paragraph that it will be futile to attempt to solve the
angles of arrival problem for the broadband case by directly implementing the high resolution methods in [1-
13] on the time domain broadband data. Coker and Ferrara (1982] have provided a fairly thorough discussion
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on the problems of applying the high resolution methods developed for narrowband problems directly to the

broadband problem. Wax et al [1984] have formulated both the narrowband and the broadband problems and

have emphasized the inconvenience of processing broadband data in the time domain.

The problems depicted above change substantially in the spectral domain representation of wideband array

data [Wax et al 1984]. It will be shown in Subsection II that the spectral density matrix at a frequency bin within

the nonzero bandwidth of the wideband signal possesses many interesting properties which are quite similar to

the narrowband case. Namely, the rank of the spectral density matrix is exactly equal to the number of sources

when no noise is present. Also, the column and the row spaces of the spectral density matrices have familiar

Vandermonde type structures which can be compared to the structure of the correlation matrix for narrowband

case. Hence the structured matrix approximation approach [17) could be applied to the spectral density matrix

at a frequency bin to estimate the arrival angles. Techniques based on processing the spectral density matrix of

a single bin have been proposed in literature [Owsley and Swope, 1981]. This approach does not utilize all the

information available in the spectral density matrices at different frequency bins within the nonzero bandwidth

of the signal and is more suited in the case of multipath propagation of a narrowband source. Regarding the
spectral density matrices at different bins, although the true ranks of all the spectral density matrices are same

and equal to the number of distinct sources, the column/row spaces vary for different frequency bins. It is rather

expensive to process at separate bins separately and then combine the results to obtain the angle estimates.

In this part of our research, a spectral domain based method is presented which coherently combines all the

spe. :al density matrices and the angle estimates are obtained from the coherently combined spectral density

matrix. Compared to an existing coherent method [27, 28], the present approach is non-iterative in the sense that

all the incident angles are estimated at a single step. Also, unlike the existing coherent method, the initial estimates

of the arrival angles are not required while coherently combining the spectral density matrices. The method is

based on generalized eigen-decomposition and utilizes dense array approximation and a bilinear transformation

for coherently combining the spectral density matrices of all the frequency bins. Some preliminary work on the

coherent method described here was outlined in [32]. Here we show that by pre- or post-multiply the signal-

subspace matrix with the combined noise matrix we can essentially avoid the computation of the generalized

eigendecomposition or matrix-pencil. This enables us to use regular eigendecomposition routine to estimate the

source angles. It is also shown that it may be numerically more stable if the coherent combination is not focused

in the center frequency the numerical value of which could be very large. The new focusing matrix given here

allows to focus independent of the center frequency.

Some other techniques for localization and source spectra estimation of wideband sources have been reported

by several researchers in the last two decades. See the tutorial papers in the Special Issue on Time Delay Esti-

niation [Carter, 1981]. The conventional approach for the case of a single source is to use a form of generalized

correlator [Knapp and Carter, 1976] to estimate the Time-Difference-Of-Arrival (TDOA) of the signal at the

sensors. Maximum likelihood based methods [Bangs and Schultheiss, 1973; Hahn and Trette;, 1973; Wax and

Kailath, 1983] for single and multiple sources require the knowledge of source and noise spr .i ra and are computa-

tionally expensive. Parameter estimation based methods [Morf et al, 1979; Porat and Fredlander, 1983, Nehorai

et al, 1983; Su and Morf, 1983] assume Auto-Regressive Moving Average (ARMA) models for the received signals

and the estimated ARMA parameters are utilized for TDOA estimation. Computational complexity of these

methods is high and the performance of these approaches depend on the corre-tness of the assumed model for

the unknown wideband signals.

Extending existing ideas in the narrowband problem, Wax et al [19841 proposed an eigen-decomposition based

approach for wideband source localization. In their approach, the eig-nvectors of the estimated spectral density

matrix at each narrowband bin of the signal bandwidth were incoherently combined to estimate the TDOAs.



Recently, Wang and Kaveh [1984, 1985] presented a coherent signal subspace based approach which avoids the

rather expensive eigen-decomposition of spectral density matrices at each frequency bin. In their approach,
initial estimates of the angles of arrival are used to transform the signal eigenspaces at different frequency bins to

generate a single coherent signal subspace and then a generalized eigen-decomposition is used for obtaining more
accurate estimates. The algorithm iteratively estimates well separated angles by focusing at different angles at

each time.

In this work a simple bilinear transformation matrix and the approximation resulting from dense and equally

spaced array structure assumption are utilized to combine the individual narrowband spectral density matrices
for coherent processing. In a related problem, Henderson [1985] used a bilinear transformation and dense array

approximation for rank reduction of Hankel/Block-Hankel type data matrices. Henderson considered the angle
estimation problem of multiple sources when each source is emitting multiple narrowband spectra. His formulation
and approach is completely in the time domain and is based on Singular Value Decomposition of Prony type
Data/Hankel matrices. Application of his time domain method to the broadband data may encounter the problems
outlined in the introduction of this Section and also in [Coker and Ferrara, 1982]. Also, no proof was given to
ensure invertibility of the bilinear transformation used and the effect of the transformation to the noise subspace
is unclear since no assumption was made on the noise characteristic. It is also not obvious if the time domain

approach is applicable for correlated sources.

The coherent method described in this Section is based on spectral domain representation. The method is

non-iterative and does not require preprocessing for obtaining initial estimates of the angles of arrival and all
the angles are estimated from a single step of coherent subspace computation. The performance of the proposed

method is characterized by several simulation experiments.

This Section is arranged as follows. In Subsection II, the coherent problem is formulated and a new coherent
algorithm is given. In Subsection III some observations on our use of Structured matrix approximation approach
is given. Finally in Subsection IV, tehe results of our simulations are shown.

II. Problem Formulation: The observed signal is assumed to be composed of p plane waves with an overlapping
bandwidth of B Hz. They are sampled simultaneously at the output of a linear array of M (> p) equally spaced

sensors. The signal received at the ith sensor is expressed as

dD

ri(t) = D s(t- (i- 1)-sinv) + n(it) (1)
k=1

T T
-25t< -2 <i<M

where sk(.) is the signal radiated by the kth source, D is the separation between the sensors, c is the propagation
velocity of the signal wavefront, Vk is the angle that the kth wavefront makes with the line of array and ni(.) is

the additive noise at the ith sensor.

Representing both sides by respective Fourier coefficients,

d

Ri(wi) = E e-Iwl(i-)qsinv,.Sk(w1) + N.(w,) (2)
k=1

with w = I, = 1,...1, + ni , where wl, and w,+n! are the lowest and highest frequencies in B. In matrix

notation,

R(wg) = A(wj)S(wt) + N(wg) (3)
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where

R(wi) = [RI(w)... RM(wi)]' (4a)

N(wl) = [Ni(wt) ... NM(wt)]' (4b)

S(Wi) = [SI(W) ... sP )]A (4c)

and A(wl) is an M x p direction-frequency matrix

e-Jwirl, . e-JT

A(wl) = (e..•h: )(4d)
e-Jw(M-lrl .. . eJwlM1)

r

with ri = ksin vi being the TDOA of the ith source. The covariance matrix of the Fourier coefficient vector

R(wl) will approach the spectral density matrix if the observation time is large enough compared to the correlation

time of the processes [30]. With this assumption,

K(wl) = A(w1)P.(w1 )AH(W 1) + o.1p(wi) (5)

where, K(wl), P0(wi) and Pn(wl) are the spectral density matrices of the processes r(.), sk(-) and n(.), respec-

tively. A" (wl) stands for the transpose conjugate of A(wi). The noise process is assumed to be independent of

the sources and the noise spectral density matrix is assumed to be known except for a multiplicative constant

an. With the above model at hand, the problem is to estimate the ri's from the estimated covariance matrices

K(wl) of the received signal plus noise. Estimates of the angles of arrivals vi's can then be computed using the

relationship in (4e).

Ila. Previous Methods : The two major approaches which exploit the properties of the eigenspaces of K(w,)

to estimate the arrival angles (or TDOAs) are briefly described below.

In [26], eigendecompositions of k(wg)s are performed in all the frequency bins in B and globally orthogonal

direction vectors are obtained by computing and plotting any of the following two measures,

J1(V) = 1 (6)
nf+l,-"-T/-=ll ~

1 F1J2(v) = fifl pi H(y(W)I)(7)
r,,+, ( 19 -- )kp

where a (w,)'s are direction-frequency vectors defined as,

a(wl) _ [1 e-J sinv ... e- -in] and i'k(W)'s are the eigenvectors corresponding to the smaller

M - p eigenvalues of k(wi). Note that the distance measures in (6) and (7) require eigendecomposition of Ik(wi)

for all I = I, I + 1, ... , 11 + ni. This obviously is a computationally expensive procedure. Instead in [27]

and [28], a transformation matrix was employed to reduce this burden. Using initial estimates of the possible

angles of arrivals, transformation matrices Tp(wl) were formed such that direction-frequency matrices of all the

frequency bins are transformed to the center frequency w, in B, i.e,

To(w:)A(w 1 ) = A(w,), i = 11,i1 + 1,...,Ii + n! (8)
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Then using the transforming matrices Tj (wi), I = 11,11 + 1, ... ,1 + nf, all the spectral density estimates are
combined in the following manner,

It+n$r

GA Tf,(wI)k(wI)T#1 (wI)

= A(w,)G,AH(Wc) + or2Gn (9)

where

I+n, I+nr

G= P(wi), Gn = Ti(W,)Pn(w,)T#(w) (10)

Next, a coherent signal subspace theorem [28] for the matrix pencil (G, G.) is utilized to estimate the angles in
the direction/s of v by computing the maxima of the following measure,

1
J(v) = (11)

where 6p+1 (we), 6p+2 (WC),..., eM (wc) are the generalized eigenvectors of the matrix pencil (G, Gn) corresponding

to the smallest M - p eigenvalues. If the arrival angles are well separated, different transformation matrices
needs to be utilized to 'focus' to particular directions using initial estimates of the angles [27]. The coherent
transformation described here does not require any initial estimates of the arrival angles.

I1b. Proposed Method : The coherent signal subspace processing technique described above requires the
knowledge of the initial estimates of the angles of arrivals to form the transformation matrix T(,(wl). To avoid
this requirement, a different approach that utilizes a bilinear transformation and dense array approximation to
form the transformation matrices is presented here.

Synthesizing a Bilinear Transformation Matrix Let B be an M x M matrix constructed from
the coefficients of the M-1 th order z-polynomials pk(z) = (1 + z)M-k(l - z)k- 1 ,k = 1, 2,
M. The elements of the kth row of the matrix B are the coefficients of pk(z) taken in ascending order of z.
The coefficients of pk(z) can be found by convolving the coefficients of the polynomials (1 + z)M- k and (1 _z)k - 1.
For example, a 4 x 4 B matrix will have the form,

BM=4 - ( 1 1 (12)
1 -3 3-11

Proposition : The M x M matrix B, defined above, is nonsingular and hence, its rows are linearly independent.

Proof Let Z be a real M x M Vandermonde matrix of the form

1 1 ... (13zA 2.. u (13)
•z- zM.. oM
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where zi 0 zi $ -1 Vi, j. So Z is nonsingular and its non-zero determinant is given by det Z = JIM>>j > (zi -
zj). Since the kth row of B are the coefficients of M-1 th order z-polynomials pk(z) = (1 + z)Mk(l -

z)k"- , k = 1, 2, ... , M and Z has Vandermonde structure, it can be easily shown that,

(1+Zj)f4_1 ... (1+Zu)
u -m1

(l+zS)A-2(l-_X) . (1+zMi)M- 2
(1-zM)

BZ = •

1+31 1+32 " " l+ZM

=. ( M 1 1 .. . 1)

(14)

so that,
2( M

det [BZ] A1 +2(1-J+) "(1 + zi)(M-1)
M>s~j>1

= rI 2(z,- z,)
M>i>j>l

- detB detZ (15)

so det B = 2 = 2'4 "  0. Hence, B is nonsingular and its rows are linearly independent. 0

A similar bilinear transformation matrix was given in [29] though from the manner in which it was constructed,
it was rather difficult to appreciate its properties.

Now, since A(w,) in (4a) has a Vandermonde structure, following the same steps as in (15) it is easy to see
that,

1 ... ,1

B A(w) = ~--,l 1+e-",',

((1-+-e-'U1 )AE1 / (1+e--'I.1 ) (16)

jtan(=jL) ... itan(=, L)

= -. jE(w) (17)
(jtan(- L))"-1 . (jtan(=-L))"*-1

where, E(w,) denotes the diagonal matrix in (16). If the sensor to sensor separation D is small compared to all
wavelengths in B, then tan(v'"') = , Vi, j. Using this approximation and premultiplying BA(wi) by an M x M
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diagonal matrix D(-) whose (m,m)th term is given by ( )m we obtain,

1W1
r- ... rp-

D()B~w) - )' E(w1)

A A'E(wi) (18)

The matrix A' whose columns are the transformed direction-frequency vectors has no dependence on the fre-

quencies at all! It may be pointed out here that in [32], we had proposed using a center-frequency dependent
coherent transformation matrix, D( -') whose (m, m)th term was given by (2--)_1, where w, = 27rfc, and fc

is the midband frequency in B. Also note that A' has a Vandermonde structure and its columns are linearly
independent as long as r, 6 rj for i 6 j.

A Center-Frequency-Independent Transformation Matrix and Coherent Processing : The new transformation

matrix which we define as T'(wi) A D(-)B, does not depend on the arrival angles or the center frequency and

since B is nonsingular and D(-) is diagonal with nonzero diagonal elements, T'(wi) is also nonsingular. Using
these transformation matrices T'(wl), 1 = 11, 1 + 1 .... I1 + n1 , all the spectral density estimates can now be
combined in the following manner,

it+nf

G'A T'w)(wTHUJ
1=hs

SA'G'A H +  rn2 G' (19)
8 n

where
11 +nj

G = E(wt)P,(wt)EH(wg) (20)
I=lb

and

n= TtH(Wl)Pn(w,)TH(w,) (21)
1=l1

Next, the coherent signal subspace theorem for the matrix pencil (G', G') is utilized to estimate all the angles

of arrivals by computing the maxima of the following measure,
1

J'(v) = 1 (22)

where i +1,i+2,...,it are the generalized eigenvectors of the matrix pencil (G',G') correspond-
ing to the smallest M - p eigenvalues and a's are the new direction-frequency vectors defined as,
a' A [1 ksinv ... (ksinv)M-l'.

From (19) it is also obvious that since G' is known to be positive definite [28], pre-multiplying G' by G',
we get,

GpR^,-., - 'GA,-Hs orh 21I. (23)

Similarly, post-multiplying G' by G' and taking transpose conjugated, we get,

GpOSTAG'- A'GtA'I + urI. (24)
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It can be shown that both GpRE and GPOST possess exactly same set of eigenvectors and hence regular eigen-
decomposition routine on either of these matrices would yield similar maxima as in (22).
III. Discussion on Structured Approach : If we look at the matrix structures of G, G'pRE H or G HpOST H

in (19), (23) and (24), respectively, the signal part of each one of these matrices have a Vandermonde Matrb: A'
as a matrix factor appearing in the front. Such Vandermonde structures had been exploited successfully 'n [171
for estimation of frequencies and wavenumbers using structured matrix approximation approach. But there is a
key difference. The Vandermonde matrix appearing in [17] had complex exponentials as their elements. Hence
complex-conjugate-symmetry had to be imposed on the estimated polynomial coefficients so that the roots lie on
the unit circle. But in the present case the elements of A' are all real. The constraints to enforce the roots to
lie on the real axis are all non-linear in nature [33, 34]. Incorporation of these constraints in the optimization
criteria appearing in [17] would lead to the use of general non-linear optimization criteria such as Fletcher-Powell
or Gauss-Newton-Marquardt methods. Instead we had attempted to use the structured approach directly without
the conjugate symmetry constraints on the polynomial coefficients. The initial results were encouraging and at
high SNR the approach gave excellent results. But as the SNR was lowered, the roots, without any constraints,
started to become complex in order to minimize the unconstrained criteria. These results were not as good as
the results we obtained using eigendecomposition method as shown below.

IV. Simulation Results : The same simulation examples as presented in [27] and [28] were used to evaluate the
performance of the proposed method. In all the simulations, a linear array of M = 16 equally spaced sensors was
used. The spacing between two consecutive 0 sensors is D = -, where f, - = the midband frequency in
B and r is the ratio of the wavelength at the midband frequency fc and the inter-element spacing D. The source
signals are temporarily stationary bandpass white Gaussian processes with zerr, mean. The noise processes at
each sensor are stationary, statistically independent, identical white Gaussian bandpass processes with zero mean
and are independent of the source processes. The sources and the noise processes have the same bandwidth of
B = 100. The same sampling specifications and data segmentation as described in [27] and [28] were used. The
received signal plus noise processes were sampled at each sensor at 80Hz and then divided into 64 segments of
64 samples each and then each segment was transformed into frequency domain by unwindowed FFT to obtain
n] + 1 = 33 narrowband components. The covariance matrix estimate at the jth frequency was estimated as

1 N
K(wg) -- -Z X(W)X(w1), 1 = 11,1i+ 1,...,11 +nf (25)

n=1

where, the vector Xn(w,) is the Ith component of the Fourier transformed data for the nth segment. The signal
to noise ratio is defined as the ratio of the signal po ver of one source and the power of the the noise at the output
of a single sensor.

Figure 1 shows the results for the case of two uncorrelated sources at vi = 9.00 and v2 = 12.00 for SNR =
10 dB and r = 4. The Figure shows overlapped plots of 5 independent runs. The source angles are clearly well
resolved at this low SNR. In Figure 2 the results of the case of one signal being well separated from two closely
spaced sources is shown. Three independent sources with sinv = 0.15, sinv2 = 0.2 and sinv 3 = 0.4 were used
with SNR = 10dB and r = 3. The results of the five runs show that all the three angles are well estimated by one
step of the modified coherent signal subspace processing method described above, whereas in [27] at least three
iterations were required to ensure the angular positions of the three sources. Also the focusing transformation
matrix inherently required previous estimate of the arrival angles. The results for the case of two completely
correlated sources [.3] are shown in Fig. 3 for SNR = 10dB and r = 4. The results show that the angles were
resolved in all cases though there seems to be some variability in the estimate of the source at v2 = 12.00.
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SECTION 3.4 : ORDER RECURSIVE PARAMETRIC BISPECTRUM ESTIMATION

SUMMARY

Order recursive computation of AR parameters from cumulants is addressed. If the Cumulant matrix is
neither Toeplitz nor symmetric, it is shown that using a block matrix inversion formula due to Frobenius and Schur
[1], the inverse of the p-dimensional cumulant matrix can be updated from the (p - 1)-dimensional inverse with
0(p2 ) operations. When compared to batch mode computation, the proposed algorithm reduces the computational
requirement for order-recursive calculation of the AR-parameters. When the cumulant matrix is non-symmetric
Toeplitz also, further reduction in computation is obtained using an algorithm due to Trench [7].

I. INTRODUCTION

With the advent of faster and cheaper digital computers, the signal processing community is paying a timely
and much well deserved attention to spectrum estimation methods based on higher-order statistics [2-5]. Many
problems that are known to be intractable in the second-order domain of auto-correlation and Power Spectrum,
can be rather easily handled in the higher-order domains [see examples in 2-4], albeit with increased computational
load. The last decade has seen a renewed interest in developing algorithms based on higher-order statistics and
with the cost of computing coming down, these methods will be practicable in the near future.

Following the footsteps of success in Power Spectrum estimation, linear time-invariant model-based paramet-
ric approaches have been found to be very effective in the higher-order domains also [2-8]. Specifically, estimation
of the AR parameters from the third moments plays a key role in AR and ARMA approaches. Almost all the
presently available techniques assume the knowledge of the model order (p) and the AR parameters are computed
in batch mode by computing the inverse of a p x p third moment or cumulant matrix (which may or may not
be Toeplitz). In practice, of course, the exact model order will not be known and one has to determine it from
the available data. The order determination remains an open problem but any order selection approach [6, for
example] would most likely require the estimation of the AR parameters for each order starting from order 1.
Hence, at each order k = 1,2,... ,p, one would have to invert a k x k cumulant matrix. But the cumulant matrix
usually contains a good deal of structure in the sense that the matrix at lower model order remains embedded
in the matrix of higher model order. The main purpose of this work is to exploit the structure in the cumulant
matrices for order-recursive calculation of the inverse of the cumulant matrix for the kth order based on the inverse
calculated at (k - 1)h order. The AR parameters are also computed order recursively in the process.

Obviously, the motivation of this work comes from the well known Levinson recursion algorithm for computing
the AR parameters using second order statistics or autocorrelation estimates. It should be emphasized here though
that unlike the autocorrelation matrix arising in the normal equations, the cumulant matrix is not necessarily
Hermitian Toeplitz. Furthermore, the nice orthogonality properties on which the Levinson recursion is based on
do not exist here. Instead, a block matrix inversion lemma [1], which is applicable to any general invertible matrix,
is utilized here. This enables recursive computation of the AR parameters at increasing model orders without
having to invert the whole cumulant matrix from scratch for each model order. In some cases, the cumulant
matrix may also have Toeplitz structure and then the order-recursive computation of the inverse of the cumulant
matrix and the corresponding AR-parameter vector can be performed using an algorithm due to Trench [9,10].
If the underlying process is of high but unknown model order, the proposed schemes will result in considerable
computational savings.

This Section is arranged as follows: In Subsection II, the problem formulation is given. In Subsection II,
two order recursion algorithms are given. The first one is applicable for cumulant matrix with general structure
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whereas the second one is meant for Toeplitz cumulant matrix. Finally, some discussions regarding the algorithms
are given in Subsection IV.

II. PROBLEM FORMULATION

The third moment (or cumulant) sequence of a real discrete process z(n) is defined as,

c(l, m) A E{x(n)z(n + 1)z(n + m)}. (1)

E{.} denotes the expectation operation. We will assume the process z(n) to be zero mean and third-order
stationary. Now consider the case when z(n) is a kth order auto-regressive process, i.e., the present value of z(n)
is formed by the linear combination of the past k samples plus driving noise sample as described by the following
regression formula:

k

z(n) = - Z a(i)z(n - i) + w(n). (2)

The noise samples w(n) are assumed to be zero-mean, white and non-Gaussinaly distributed with E{w 2(n)} = 0,

denoting the variance and E{w3 (n)} = / denoting the third moment. In (2), causal AR model is assumed, though
the non-causal case can also be handled by the order-recursion algorithm considered here.

Multiplying both sides of (2) by z(n - l)z(n - m) and taking expectation we get,

k

c(-, -M) = j a(i)c(i - 1, i - m) + /36(i, in), for I, m > 0. (3)

These equations are known as the third-order recursion (TOR) equations [2]. There are many possibilities of
writing the above set of equations in the matrix equation form in order to solve for the AR parameters. In [2],
[3] and [5] two possibilities which include the 1 = m = 0 point (i.e., the origin or of I - m plane) were proposed.
In the first case, .they chose the I = in line to obtain the following matrix equation for AR model order k:

c(0,0) ... c(k, k) a1))

k(4a0(c(-1, -1) ... I~-,-) (a A 0(4a)

c-k, -k) .. C(o*, 0) \a U)/

C(k+l)f(k) A b(). (4b)

Note that the (k + 1) x (k + 1) cumulant matrix C(+1) is Toeplitz but, in general, not symmetric. The Toeplitz
structure is denoted by the subscript T in (4). In another representation considered in [2], [3] and [5], 1 and rn
values are chosen in the wedge region contiguous to the origin between the I = in line and the 1 = 0 line. Their

choice of i and m were as follows :

I = 0,...,L, andm n [0,...,l, for I < L (5a)
, 0,...,M, forl=L,

where L and M are chosen such that M < L, and

(L - 1)(L + 2)
k = I + M + 2 (5b)
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Note that the cumulant matrix formed in the second case is not Toeplitz. For example, if order k - 3, one would

have L = 2 and M = 0 and

c(-1,o) ... c(1, 2) c(2 ,3)c(- 1,- 1) ... c(l, 1) c(2,2)1 a2(3) 0 (6a)
c(-2, -1) ... c(0, 1) e(1, 2)1 .a(3), 0) i() ()

N A b(6b)

The subscript NT denotes the non-Toeplitz structure of this choice of cumulant matrix. Certainly, the above two

choices are not unique for determination of the AR-parameters because according to equation (3) one could select

any set for the bottom k equations as long as 1, m > 0 (the top equation for I = m = 0 is needed to determine

f6). In fact, one can form another set of equations with Toeplitz cumulant matrix utilizing the third moments

on any straight line, I = m + d, where d > 0 is a constant. Also for order k = 3, one could use the equation

with 1 = 2 and m = 0 to replace the fourth row equation in (6). With true cumulant values, any of these sets of

equations will give the correct AR parameters as solutions.

Now, let us look at the cumulant matrix for the p = 4 case corresponding to (5), then,(c(0,0) c(1,1) c(2,2) c(3,3) c(4,4))
c(-1,0) c(O,1) c(i,2) c(2,3) c(3,4)

c(-1,-1) c(O,0) c(i,1) c(2,2) c(3,3) (7)
c(-2,-) c(-1,o) c(O,1) c(, 2) c(2 , 3 )

c(-2,0) c(-i,i) c(O,2) c(i,3) c(2, 4)

Note that the cumulaut matrix C(4 of (6) reappears in (7) as the upper left corner partitioned block. The

situation will be the same if we used the Toeplitz structure of (4) or any other set of equations satisfying (3).

This property that the cumulant matrix at higher model order contains the matrix of lower order will be utilized

later in the recursion algorithm.

Whether the general non-Toeplitz structure of (6) or the Toeplitz structure of (4) is used, we can, in general,

write the set of k + I equations as,

i #(k)

1(0, 0) c(1, 1) . .. c(k, k) al (0
C(k) c(M/ a2 A . (8)

The elements of c(") and C(k) will be denoted generically as,

C(k) A [c1 C2 ... ckIT (9a)

and

('21 C22••• kc(k) A C2. C2. .. k (9b)

Ckl 24 ... Ckk)

The AR parameters
a(*) A [P) a() ... akM)T (10)

1 2 ra k ms m mm
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are found by solving the lower k equations of (8), i.e.,

a(k) - - C(k)-c(k). (Ila)

Then using the estimates of AR parameters,

(k) = c(O 0) + a a )c(i,i). (11b)

According to our discussion above Ck+l ) can be written as,

cI(h+1)

C2(t+l)

C(k+l) = C(k) • (12a)

Ck(k+1)
c(k+1)1 2 ... c(+1)(k+1)

Ax C.) C (12b)
c-1 I)T  c(k+l)(k+l)/

The inverse of this partitioned matrix can be expressed as [1],

"+(k)C(k)1 c(k+1) (k+)T (k)

C(k+1)-l 1 C2 -
(13a)

(k)T I

where the scalar A which is also known as the Schur complement is given by,

c(k+,)Tc(k)-'c(k+l)(3)
A C(k+l)(k+l) - C-1)I (13b)

and,

(k+ l ) A C(k)-c(k+l) (13)
c2  I (13c

(k + I)T A C(k+1)Tc(k)- 1 (13d)

This relationship of the inverses at successive model orders are utilized in the recursive algorithms given later.

Now we are ready for the recursive update algorithm for calculating the inverse of the cumulant matrix as well

as the AR parameters at (k + 1)th order based on the same at kth order. First we will give the most general

algorithm and later the Toeplitz case will be considered.
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III. THE: RECURSION ALGORITHMS

ALGORITHM 1 : ( General Case) We will use the notation of equation (9) in describing the algorithm.

cM = [cii
Co)-* = I

Cl1
a(') = - C(1) -Ic(I)

0 ) = c(0,0) + a(')c(l,l)

for k = 2,3,...,p do

C(k) - [C(k-I)T : Ck]
T

ck) = [Clk ....Ck-l)k]T

c() = [Ckl ...Ck(k-1)]T

(k) = Ck-j)-1c~k)

(k)T (k) T (k)
= Ck - C- C2

C (k) (k)T •. _C1))

-2~ ~ k]- + 1-

C(k) - l = - -

-C(k)T

a(k) = -C(k)-c(k)
k

#k)= C(,0) + Z )c(i, i).

ALGORITHM 2 ( Toeplitz Case) In this case we use the notation of eq. (4)

cm=) - 1,-1
C,)- = 1

c(o, o)
a(') =- C(')- Ic(l)

) c(O,0) - a()c(l, 1)

for k = 2,3,...,p do

c(k) = [C(k-1)T : c(--k,-k)]T

(~k) = [c(k- 1,k- 1)...c(l,I)]T

c=) - [c(-k + 1,-k+ 1)...c(-1,-1)]T
c(k) = C(k-l)-'C~k)

-2 1  
1

A(k) C(0, O) (k)
T (k)

--- 
1 _ C2

c(.=)T (kT - )-

_()c )_• _ (k)

[A(k)C(k-1)-' + -c2 2

C(k)- 2 =]

-C ( 
)T " 1

-2I
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a(k) = _ C(k)-C(k)

k

#(k) = C(0, 0) + ak)C(i, i).
i--I

Though it is not explicit in the algorithm development, it must be emphasized here that a Toeplitz matrix being
persymmetric (i.e., symmetric about the cross diagonal), its inverse is persymmetric also [2]. Hence computation
of the elements in either the upper left or the lower right triangle of the inverse matrix will suffice. This will
provide further computational savings for the Toeplitz case. For more details on this algorithm see [9-12].

IV. DISCUSSION

Both the recursion algorithms outlined here use the inverse of the cumulant matrix at the previous order to
update the matrix inverse of successive orders and produce the AR parameter estimates, a(k), for k = 1,2,... 'p.
If the true values of the third order moments are not available then these must be estimated from (possibly
noisy) data. We should point out that if the true model order is known exactly, there is no gain in using the
proposed recursion algorithms and the direct batch mode inverse will be sufficient. But if the true order is not
known then one may have to check at different and increasing model orders. In such cases, the proposed update
algorithm will reduce the cost of computation at higher model orders. As noted in [1, pp 188-191] for the general
case, if the k-dimensional inverse is to be computed based on the known (k - 1)-dimensional inverse, one would
save (k - 1)' computations. When compared to batch mode, which normally requires k3 operations, the update
would require k3 - (k - 1)3 = 3k 2 - 3k + 1 operations. The computational savings will be even more for
the Toeplitz case [9,10]. It may also be pointed out that TOR type equations also appear in anti-causal AR
models and in ARMA parameter estimation [3, eq (5.31c)] with third-order statistics and the proposed recursion
algorithms will be applicable in those cases also. Furthermore, the recursion algorithms are also applicable for
order-recursive estimation of the AR part of ARMA models from autocorrelation estimates [12].
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SECTION 3.5 : VOWEL AND PHONEME RECOGNITION WITH A TIME-DELAY NEURAL NETWORK

SUMMARY

A Time-Delay Neural Network architecture is used for speaker independent recognition of the long vowel

sounds a, e, i, o and u. The present work extends the work in [1-4] by training the network with the LPC coefficients

of speech along with FFT bin energies and by allowing longer and variable length utterances. Furthermore,

the training has been performed with multiple speakers using English rather than Japanese speech. With this

modifications, we have obtained 100% recognition of all vowels spoken by two speakers.

I. Introduction

Many attempts have been made to use neural networks for speech recognition. Most of these attempts have

only been successful in limited situations. Often one of the limiting factors has been the requirement of precise

temporal alignment. This is a necessary requirement for most recognition algorithms since recognition is achieved

by matching known features with observed features. Neural networks are not different in this respect. They have

been found to be very sensitive to spatial shifts. As a solution to this problem many speech recognizers have made

use of segmentation algorithms to pre-segment utterances in order to find the beginning and ending of a sound,

word or phrase precisely [7]. Once this is done the signal features go through nonlinear time warping algorithm

in order to normalize the duration of the utterance of interest, thus achieving temporal alignment. Segmentation,

however, is erroneous in itself and, when in error, causes recognition failure due to mismatch between the training

utterance and the testing utterance. From this it is apparent that a recognition system that is not dependent on

temporal alignment needs to be developed before speech recognition can be a reliable process.

One approach to eliminate the problem of temporal alignment as discussed above would be to classify the

features based on a single time frame of an utterance. Although this would solve the alignment problem the

classification performance will certainly be degraded since much of the information about the signal is found from

the manner in which the features vary from one time frame to the next. For this reason it seems that this idea

needs to be modified such that the recognition algorithm looks at multiple time frames at one time in order to

make use of the inter-frame variations of the input features. This can be achieved by having a large window that

encompasses a number of time frames. This large window is then passed over the incoming data looking for local

movements in the features, thereby eliminating the need for any temporal alignment as long as the time frames

are sufficiently small. The requirement for a small time frame is to ensure that the signal can be considered to

be stationary during that time. For speech it has been found [71 that time frames of 10ms are adequate to meet

this requirement.

The alignment problem and its solution as discussed above are quite well suited for a particular type of

neural network architecture known as the Time-Delay Neural Network (TDNN). A number of recent studies [1-

4,8,9] have demonstrated the ability of TDNN to handle the dynamic nature of speech for phoneme recognition.

As with most neural network architectures, complex constraint satisfaction is obtained via a massively parallel

configuration but in the case of TDNN the constraints can occur over a period of time as desired for speech

recognition. This gives the network the ability to represent relationships between events in time and at the same

time TDNN allows for invariance of these events under translation in time. With this translation invariance,

the network does not require precise temporal alignment, therefore the network is able to simply scan the input

features for clues. This is a necessary requirement for efficient continuous speech recognition.

The work presented here was motivated by the work reported by Waibel and his colleagues [1-4,8,9] on TDNN

t This work was partly supported by AFOSR Grant AFOSR-89-0291
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for phoneme recognition. Our goal was to improve the performance of TDNN by increasing the amount of data
supplied to the network. This was done by including the LPC coefficients along with the FFT bin energies. We
have also trained the network with utterances having variable durations. We feel that it is an important aspect
due to the extreme variability in speaking rate of different speakers at different situations. Also, restricting
the utterance length to 150ms to make a decision about a vowel may limit the network's performance because
depending on speaking style and the spoken word the 150ms portion may not contain all the key information
to recognize the vowel. We have also trained the network with more than one speaker and have obtained 100%
recognition rate.

The rest of this Section is organized as follows. A brief introduction to the TDNN architecture is given
in Subsection II. Subsection III gives a description of the data used for the simulation. In Subsection IV, the
experiment is discussed and some results are given along with some comparison to related work. Finally, in
Subsection V some conclusions and future direction of this work are given.

II. Network Architecture

The network architecture used in this work is similar to that used by Waibel and his colleagues [1-4,8,9] for
phoneme recognition of Japanese speech. The differences lie mainly in the number of inputs applied to the network
and the ability to accept longer and variable length utterances. A brief description of the network architecture
follows.

The TDNN is basically a modified version of the standard multi-layer feed-forward neural network [6]. The
difference between the two networks lies in the way the layers are interconnected and in the incorporation of the
time delays. The input to the network is divided into a sequence of 10ms time segments. As the time segments are
fed to the network, they pass through a series of two time delays as shown in Figure 1. This series of time delays
acts as a time window passing over the data which effectively gives the network 30ms of data at any one time,
as shown in Figure 2. This entire window is fully forward connected to a hidden layer of eight units. The hidden
units are then combined similarly in a five frame window, in the same fashion as in the input layer. This frame
is then fully forward connected to the output layer. This then gives a sequence of outputs which are averaged
together for a final classification for the entire utterance.

III. Data Description

The database used for this work was the TI 46-word speech database. The input to the network consists of
28 values. These values consist of 16 spectral coefficients, 12 auto-regressive (AR) coefficients and average power.
The spectral coefficients are found by taking the Fast Fourier Transform (FFT) of each 10ms time frame of data.
This data is then combined, as shown in Table 1, to form the coefficients. The computation of the AR coefficients
is a standard procedure in digital signal processing [7]. These coefficients are the linear prediction coefficients
that model the vocal tract as an all pole filter. It is well known that 10-12th order filter (10-12 LPC coefficients)
is sufficient to model the vocal tract. We have used 12 coefficients in our simulations. The complete set of
coefficients is normalized (excluding the average power) such that the average value for each set of coefficients is

zero and lies within the range of-1 and +1.

One key difference in our work when compared to the ones reported in [1-4] is the utilization of complete
utterances to make the recognition decisions. The referenced works restrict this length to 150ms in duration.
We feel that restricting the utterance length may limit the performance of the network. This is motivated by
examining the utterance length statistics for the data used in this experiment, as shown in Table 2. From the
table it is clear that there are considerable variations in lengths of different utterances. It may also be observed
that almost all utterances are much longer than the 150ms, as used in [1-4,8,9]. For this reason, we have trained
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and tested the TDNN with complete utterances of the vowels.

IV. Experiment and Results

In our experiments, we have tested the TDNN by training and testing it to recognize the long vowel sounds
a, e, i, o and u. The data consisted of 10 training and 16 testing utterances for each of the five vowels and for
each of the 2 female speakers. This gives a total of 100 training and 160 testing utterances.

The training algorithm used was a modified version of the back propagation algorithm. The modifications
were made in order to adapt the algorithm to the TDNN architecture [12]. One other modification was to skip
the learning cycle if the output error was less than 1% [2]. This was done in order to speed up the training time
with the anticipation that if the network has satisfactorily learned the particular training data then no further

training will be necessary. For each training cycle, the forward pass of the network computes a sequence of three
outputs. The error and weight adjustments are computed for each of the three outputs. These three sets of weight
adjustments are then averaged and the final weight adjustment is made using the averaged value. By training the
network in this way, it is taught based on 90ms of data rather than 70ms with very little increase in computation.

With the network architecture as described above, simulations were performed in an attempt to recognize
the set of vowel sounds. The simulation was written in FORTRAN and is running on a VAX 8550. With the data
described above we were able to train the network with 100% iecognition for two female speakers. This result
compares well with that of Waibel [3], in which he has reported a recognition rate of 98.6% for a single speaker.
Our experiments indicate that by including the LPC coefficients and by using the total utterance, the network
was able to correctly learn all the vowels for multiple speakers.

Two different approaches were tested to train this network with utterances of multiple speakers. First the
network was trained .ith only one speaker and 100% recognition was achieved within 75 iterations and 1:06:57.07
(denotes hr:min:sec) of CPU time. This network was then continued to be trained with the database extended
to two speakers. This resulted in 100% recognition for the two speakers in just 12 more iterations (0:27:02.33
CPU time). Hence, as a whole, a total of 1:33:59.40 CPU time was required to train 5 long vowel sounds spoken
by two speakers for 100% recognition rate. The second training method used a training set from both speakers
from the very beginning of the training cycle. This resulted in a training cycle of 255 iterations (9:40:01.50 CPU
time). Hence, the total training time in this later approach was more than 6 times greater than that of the first
method. Another interesting observation we made was that the second speaker never attained 100% recognition
from its database alone with the same order of number of training iterations as required for the first speaker.
This fact demonstrates two facts, 1) the database of the second speaker may not be totally representative of its
testing database and 2) the network does generalize on the data that it learns. This is evident from the fact that
when trained with the combined database for both speakers, the network was able to learn the vowels of both
speakers rather quickly though it was not learning the second speaker when it was being trained separately.

V. Conclusion

This work shows that the increased amount of information used in this work has the potential to increase

the recognition capabilities. At the present time we are training the network on an extended number of speakers.
Although it is making progress, the learning rate is slowed considerably with the larger data sets. But considering
its present performance, we anticipate that these results may be improved upon in the future. We have also

shown elsewhere [11] that the network used here can be further generalized to learn different phonemes in English
and that groups of previously trained networks can be combined to develop very large networks. Therefore we
conclude by stating that small networks, such as the one used here, may be trained on small databases with
limited recognition abilities and may later be combined to perform larger tasks.
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SECTION 3.6 : SPEECH ANALYSIS AND SYNTHESIS WITH NON-LINEAR PREDICTION

SUMMARY

One of the common assumptions in speech has been that speech production and perception are essentially
linear processes and hence one can accurately model speech data using 'linear prediction' based methods [1, 3].
Physiological evidence indicate that some nonlinear operation does occur in speech production and perception
[4,14,15). It is also known that linear models perform poorly for certain types of speech. Recently a non-parametric
nonlinear chaos model showed significant improvement over the usual linear models [11].

In this Section we consider the applicability of certain parametric nonlinear models for the purpose of analy-

sis/prediction/synthesis/coding of speech signals. To the best of our knowledge, these models have not yet been
exploited for speech modeling. Several algorithms for simultaneous estimation of the nonlinear as well as the
linear prediction parameters of speech signals are being considered. Preliminary studies indicate that the nonlin-
ear models retain substantially more information when compared to linear-only models. Preliminary experiments
on telephone quality speech data clearly and consistently indicate that there is a significant reduction in the
prediction error when the bilinear prediction components are included along with the LPC part. The results of
this work may have significant effect on the performance accuracy of any speech recognition/synthesis/coding
system that currently relies on linear prediction only.

Linear Prediction : In linear prediction, the speech sample at a time instant n is modeled as a linear

combination of past p speech samples as,

p
s(n) = - as(n - k) + e(n), (1)

k=1

where, the ak's are the Linear Prediction Coefficients (LPC), e(n) denotes the prediction error and the first term

is the predicted value i(n),
p1() - aks(n - k). (2)
k=1

The LP coefficients are found by minimizing the prediction error power .,=0 e2 (n) over the entire data length.
This results in a set of linear equations,

Ra = r (3)

where the matrix R and the vector r contain estimated correlations of speech data. The predictor coefficients are

then found simply by inverting the R matrix and forming,

a = R- 1 r. (4)

Motivation for Nonlinear Prediction : There are several practical and theoretical grounds behind
the assumption of linearity even though there is physiological evidence that nonlinearity does play a role in
speech production and perception [4,14,15] and modeling [11]. Linear assumption makes processing relatively

inexpensive because it only requires the solution of a set of linear equations in (3). Also, there indeed is a major
contribution from the linear components within the overall nonlinear structure. Hence, linear prediction provides
a practical solution with reasonably good performance. But processing speeds on digital computers have increased

dramatically in the two decades following the introduction of linear prediction to the speech community [1]. Over
the last decade significant advances have also been made in nonlinear parameter estimation methods. In fact,

there already exists a rich mathematical theory on nonlinear modeling as well as nonlinear system identification
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[2,5-10]. It appears that the potential offered by these techniques are yet to be exploited in analyzing and
processing speech data for recognition, coding or synthesis purposes.

It may be noted here that recently Townshend [11] presented a nonparametric and nonlinear prediction model

for speech. But in [11] speech was modeled as deterministic chaos signal. Here we model speech as stochastic
signal, the same assumption traditionally made in linear prediction.

General Non-linear Case : Volterra Series : In general, the nonlinear relationship between s(n) and
e(n) is given by a Volterra series of the form [12, 13],

0o 00 00 00 00 00

s(n)= = gLe(n-k) + E gie(n-l)e(n-m) + EEZg,%e(-i)e(n-j)e(n-k) + .... (5)
k=O 1=0 m=O i=0j=Ok=O

Note that there is no auto-regression of the output in this model and hence it may be considered a general
nonlinear Moving-Average (MA) model. Estimation of the infinite set of kernel parameters gk, g,m, gijk,.. . appears
computationally difficult because the kernels giji... can not be estimated independently. But there are certain
special cases when one can estimate these separately [6] and we intend to analyze if those special assumptions

are applicable to speech signals.

Bilinear Modeling with Finite Number of Parameters: Equation (5) is a general nonlinear MA-type
Volterra model. But following the trends in the linear case, it seems natural to expect that if we include output
regression as well, i.e., if we employ an AR or ARMA-type nonlinear model, we may obtain equivalent results
even with finite number of nonlinear parameters. In fact there exists one such model called 'Bilinear model' which

has appeared in control theory, nonlinear system theory and time-series analysis literature [2, 5-10]. The general
bilinear predictor is expressed as,

p q m k

s(n) = - ais(n - i) + E cie(n - j) + E E biis(n - i)e(n - j) + e(n). (6)
i=1 j=1 i=1j=1

Note that the first term in R.H.S. is the AR (or LPC) part, the second term is the MA part and the third term
is the bilinear (multiplicative ARMA) part and it is denoted as BL(p, q, m, k) model. The finite order bilinear

model is a parsimonious but powerful nonlinear model. In fact, it has been shown that the bilinear model with a
finite parameter set can approximate any 'well behaved' infinite Volterra model of (5) to an arbitrary degree of

accuracy [2].

The parameter estimation methods and the order selection methods for the BL(p, 0, m, k) case have been
studied by Subba Rao in [9,10]. The idea again is to estimate the linear as well as the nonlinear coefficients

simultaneously by minimizing the prediction error power E- e2 (n) over the entire data length. This leads to a

nonlinear optimization problem and Subba-Rao has proposed a repeated residue method and a Newton-Raphson
based method.

Apart from the nonlinear models (5) and (6), there are several other specialized nonlinear models such as
Diagonal Bilinear model, Subset Bilinear model and Threshold AR model [9, 10]. These models may or may not
be appropriate for speech signals. We are currently investigating these models.

Simulation Results : In order to compare the performance accuracy of the linear and bilinear prediction
methods preliminary tests have been carried out using the word 'STOP' from the Texas Instruments 46-Word
isolated speech database. The sampling rate is 12.5 kHz. About 200 msec of speech data (Hamming windowed
and 4KHz Lowpass filtered) was sectioned into 20 msec blocks with overlaps of 10 msec between adjacent data

blocks. This gave us 20 data blocks to perform the comparison experiments. Our first task was to select an
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'appropriate' linear predictor model order (p) which will be effective for all the data blocks. The optimum order

was decided according to the MDL (Minimum Description Length) criterion though AIC (Akaike Information

Criteria) was also considered. The 12th order AR model seemed to be an optimum choice for many of the blocks.

To compute the Bilinear modet BL(12, 0, m, k) parameters, the best values of m and k (with m, k < 5) were

determined for each block of data. The parameter estimates were found for each m and k first by the repeated
residue method and then using the Newton-Raphson technique [9, 10, 6]. The optimum m and k were determined

for each data block according to the minimum of AIC. The iterative methods converged within 5-20 iterations.
It was found consistently for each data block that the prediction errors for the bilinear case were around 3 dB
lower than the 12th order AR counterpart.

The speech data for a part of the word 'STOP' is shown in Fig. la. In Fig. lb the prediction errors with
the 12th order AR model are plotted. Fig. 1c depicts the errors in the case of the Bilinear model BL(12, 0, m, k)
with optimum m and k (both < 5). Comparison of the error variances for several blocks for the 12th order
AR and the Bilinear model is shown in Fig. Id. Equivalent results for another speech sound 'NO' is shown in
Figures 2a-2d. These figures clearly show that the bilinear model outperforms the linear prediction model in
all cases. Specifically, about 3dB improvement in prediction was observed in almost all cases. Similar results
were found at other AR model orders and for other speech signals also. Currently we are exploring the effect

of nonlinear modeling in speech synthesis and coding. Considering the improvement in prediction that we have
already observed, we hope to see equivalent superior performance in those cases also.
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