
AD-A243 452II i~ll h! I!II I AVF Control Number: NIST9oNEC5252- 1.11
iDATE COMPLETED

BEFORE ON-SITE: 1991-07-25
AFTER ON-SITE: 1991-09-18
REVISIONS: 1991-10-16

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 910918S1.11217
NEC Corporation

NEC Ada Compiler System for EWS-UX/V
to V70/RX-UX832, Version 1.0

EWS4800/60 => MV4000

Prepared By:
Software Standards Validation Group

Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

91-16898

AVF Control Number: NIST90NEC525_21.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on 18 SEPTEMBER 1991.

Compiler Name and Version: NEC Ada Compiler System for EWS-UX/V
to V70/RX-UX832, Version 1.0

Host Computer System: EWS4800/60 running EWS-UX/V R8.1

Target Computer System: MV4000 running RX-UX832 V1.6

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
910918S1.11217 is awarded to NEC Corporation. This certificate
expires on 01 March 1993.

This report has been reviewed and is approved.

, ,7/J
A a alidation a .a ifty Ada Vhlidation Facility
Dr. David K. J ffe s n Mr. L. ArnoldJohnson
Chief, Information 'Systems Manager, Soft are Standards
Engineering Division (ISED) Validation Group

Computer Systems Laboratory (CLS)
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, MD 20899

Ada Validation Organization Ada Joint Program Office
Director, Computer & Software Dr. John Solomond
Engineering Division Director
Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

-I-
.* -J , .

, ' t I'.

a.

., q ,*

AVF Control Number: NIST90NEC525_21.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on 18 SEPTEMBER 1991.

Compiler Name and Version: NEC Ada Compiler System for EWS-UX/V

to V70/RX-UX832, Version 1.0

Host Computer System: EWS4800/60 running EWS-UX/V R8.1

Target Computer System: MV4000 running RX-UX832 Vl.6

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
910918S1.11217 is awarded to NEC Corporation. This certificate
expires on 01 March 1993.

This report has been reviewed and is approved.

Ada Validation/Facility Ada Validation Facility
Dr. David K. Jefferson Mr. L. Arndofd Johnson
Chief, Information Systems Manager, Software Standards
Engineering Division (ISED) Validation Group

Computer Systems Laboratory (CLS)
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, MD 20899

Ada ai 1- rganization Ada Joint Program Office
Dire tor o puter & Software 1 Dr. John Solomond
Engineering Division Director
Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

NIST90NEC525_2_l.11

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

Customer: NEC Corporation
Igarashi Building
11-5, 2-CHOUME. SHIBAURA
Minato-ku, Tokyo. 108 Japan

Certificate Awardee: NEC Corporation
Igarashi Building
11-5. 2-CHOUME, SHIBAURA
Minato-ku. Tokyo. 108 Japan

Ada Validation Facility: National Institute of Standards and
Technology

Computer Systems Laboratory (CSL)
Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: NEC Ada Compiler System for EWS-
UX/V to V70/RX-UX832, Version 1.0

Host Computer System: EWS4800/60 running EWS-UX/V R8.1

Target Computer System: MV4000 running RX-UX832 VJ.6

DecI aration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A ISO
8652-1987 in the implementation listed above.

-. . -- -- --- - .: c9 -c
Customer Signatufe and Certificate Date
Awardee Signature

Mr. Tadashi Koizumi
Seni or Manager
Environment Development Department
C&C Common Software Development Department
NEC Corporation

TABLE OF CONTENTS

CHAPTER 1 . 1-1

INTRODUCTION i-i
1.1 USE OF THIS VALIDATION SUMMARY REPORT I-i
1.2 REFERENCES 1-i
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 2-1
IMPLEMENTATION DEPENDENCIES 2-1

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 3-1
PROCESSING INFORMATION 3-1

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A A-i
MACRO PARAMETERS A-i

APPENDIX B B-1
COMPILATION SYSTEM OPTIONS B-i
LINKER OPTIONS B-2

APPENDIX C * * C-i
APPENDIX F OF THE Ada STANDARD C-i

CHAPTER 1

INTRODUCTION

\

This Validation Summary Report (3SR~describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used vithin it and thoroughly
reports the results o,..-Jtating this compiler using the Ada Compiler
Validation Capability rCV . An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.>

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist betveen implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
a4 van in tn e

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized nests, the ACVC, as inputs to an Ada compiler and
evaluating the results.\The purpose of validating is to ensure conformity
of the compiler to the A~a Standard by testing that the compiler properly
implements legal languag constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent b is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and du execution.

1-2.

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro90) against the Ada Standard (Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1.2 REFERENCES

[Ada83] Reference Manual for the Ada ProQramming LanQuaQe,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

1-1

(Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECKFILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

1-2

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of the
Capability test suite, the support programs, the ACVC
(ACVC) Capability user's guide and the template for

the validation summary (ACVC) report.

Ada An Ada compiler with its host computer system and
Implementation its target computer system.

Ada Joint The part of the certification body which provides
Program policy and guidance for the Ada certification Office
(AJPO) system.

Ada The part of the certification body which carries
Validation out the procedures required to establish the
Facility (AVF) compliance of an Ada implementation.

Ada The part of the certification body that provides
Validation technical guidance for operations of the Ada
Organization certification system.
(AVO)

Compliance of The ability of the implementation to pass an ACVC
an Ada version.
Implementation

Computer A functional unit, consisting of one or more
System computers and associated software, that uses

common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including

1-3

arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process or service of
all requirements specified.

Customer An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

Declaration of A formal statement from a customer assuring that
Conformance conformity is realized or attainable on the Ada

implementation for which validation status is
realized.

Host Computer A computer system where Ada source programs are
System transformed into executable form.

Inapplicable A test that contains one or more test objectives
test found to be irrelevant for the given Ada

implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual,
published as ANSI/MIL-STD-1815A-1983 and ISO
8652-1987. Citations from the LRM take the form
"<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs
System and that provides services such as resource

allocation, scheduling, input/output control,
and data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada
Computer programs are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated
Implementation successfully either by AVF testing or by

registration [Pro90].

1-4

Validation The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for this implementation.

Withdrawn A test found to be incorrect and not used in
test conformity testing. A test may be incorrect

because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 95 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 91-08-02.

E28005C B28006C C32203A C34006D C35508I C35508J
C35508M C35508N C355/2A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D B33026B C83026A C83041A
B85001L C86001F C94021A C97116A C98002B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BDlB02B BDlB06A ADiB08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasor.- inaicated;
references to Ada Commentaries are included as apprcpriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)

2-1

C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 TESTS) use a line length in the input file which
exceeds 126 characters.

The following 20 tests check for the predefined type LONGINTEGER;
for this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONG INTEGER, or SHORTINTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONGFLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAXMANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINEOVERFLOWS is TRUE.

C4AO13B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as

2-2

allowed by AI-00408 and AI-00506 such that the compilation of the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

CD1009C uses a representation clause specifying a non-default size
for a floating-point type.

CD2A84A, CD2A84E, CD2A84I..J (2 TESTS), AND CD2A840 use
representation clauses specifying non-default sizes for access
types.

The tests listed in the following table check that USE ERROR is
raised if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE2102E CREATE OUTFILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT 10
CE2102J CREATE OUT FILE DIRECT IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIALIO
CE2102P OPEN OUTFILE SEQUENTIAL_IO
CE2102Q RESET OUTFILE SEQUENTIAL_IO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN FILE DIRECT IO
CE2102V OPEN OUT FILE DIRECT IO
CE2102W RESET OUT FILE DIRECT IO
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE TEXTIO
CE3102I CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT IO
CE3102K OPEN OUTFILE TEXTIO

The tests listed in the following table check the given file
operations for the given combination of mode and access method;
this implementation does not support these operations.

Test File Operation Mode File Access Method

CE2105A CREATE INFILE SEQUENTIAL_10
CE2105B CREATE IN FILE DIRECT 10
CE3109A CREATE INFILE TEXTI

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

2-3

EE2401D checks whether read, write, set index, index, size, and
end of file are supported for direct files for an unconstrained
array type. USE ERROR was raised for direct create. The maximum
element size supported for DIRECTIO is 32K bits.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot
restrict file capacity.

CE3111B and CE3115A associate multiple internal text files with the
same external file and attempt to read from one file what was
written to the other, which is assumed to be immediately available;
this implementation buffers output. (See section 2.3.)

CE3304A checks that SET LINE LENGTH and SETPAGELENGTH raise
USE ERROR if they specify an inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this implementation, the value
of COUNT'LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 78 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A B26001A B26002A B26005A B28003A B29001A B3330IB
B35101A B37106A B37301B B37302A B38003A B38003B E38
B38009B B55AO1A B61001C B61001F B610O1H B61001I B6100M
B61001R B61001W B67001H B83A07A B83A07B B83AO7C 3EDJC
B83EOlD B83EOlE B85001D B85008D B91001A B91002A B1I00MB
B91002C B91002D B91002E B91002F B91002G B91002H E10=I
B91002J B91002K B91002L B95030A B95061A B95061F E5063G
B95077A B97103E B97104G BA1001A BA1101B BC1109A BI109C
BC1109D BC1202A BC1202F BC1202G BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT);" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENTINT at lines 14 and 13,
respectively, will raise PROGRAMERROR.

2-4

C85006C was graded passed by Processing Modification as directed by
the AVO. This test contains a task that is too large to be
processed with the default task stack size of 2048. Therefore, a
task stack size of 3300 was specified with the linker option "-D
3300.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

AD8011A, BD8001A, BD8003A, BD8004A, & BD8004B were graded passed by
Test Modification as directed by the AVO. These tests are
applicable to implementations that support package MACHINE CODE:
the Class A test checks that a machine-code procdure can be
compiled and called; the Class B tests check that compilation units
are illegal if various conditions for the use of code statements
are violated. This implementation requires that the
implementation-defined pragma ABSTRACT ACODE INSERTIONS(TRUE) be
inserted into the declarative part of each procedure that contains
code statements; without this pragma, the compiler rejects the
units at their context clause for package MACHINE CODE (which is
the behavior expected for an inapplicable grade). This
implementation requires the pragma as an enabling device for the
particular "A-code" machine instructions, in anticipation of the
intended future provision of a second type of machine-code
instructions.

CE3111B and CE3115A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests assume that output
from one internal file is unbuffered and may be immediately read by
another file that shares the same external file. This
implementation raises ENDERROR on the attempts to read at lines 87
and 101, respectively.

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The testing environment consisted of a host computer, a target
computer and two auxiliary computers. The host computer and the
Sun-3/260 auxiliary computer are connected by Ethernet. The target
computer and the EWS4800/220 auxiliary computer are connected via
3.5 inch floppy disks and by a RS232C line. The configurations of
these computers are described by the following:

Host Computer System: EWS4800/60 running EWS-UX/V R8.1
Auxiliary Computer System: Sun-3/260 running SunOS, Version

4.0.1
Target Computer System: MV4000 running RX-UX832 V1.6
Auxiliary Computer System: EWS4800/220 running EWS-UX/V

(Rel4.0), Release 2.1
Communication link: Ethernet, RS232C, 3.5 inch floppy

disks

For technical and sales information about this Ada implementation,
contact:

Dr. Toshio Miyachi
Environment System Department

C & C Common Software Development Laboratory
NEC Corporation

Shibaura 2-11-5, Minato-ku, Tokyo, 108 Japan
VOICE TELEPHONE: 81-3-5476-1107
FAX TELEPHONE: 81-3-5476-1113

Testing of this Ada implementation was conducted at the customer's

site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various

3-1

categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system -- if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests 3791

b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 284
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 284 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
customized test suite was loaded onto an auxiliary computer, the
Sun-3/260, via a magnetic tape device. The customized test suite
was then transferred from the auxiliary computer to the host
computer, the EWS4800/60, using UNIX rsh and dd commands of the
host computer via Ethernet.

The tests were compiled and linked on the host computer system.
The executable images, generated on the host system, were
transferred from the host system to the auxiliary computer system,
EWS4800/220 via Ethernet. The executable images were then
transferred from the EWS4800/220 to the target system via 3.5 inch
floppy disks. The executable images were executed on the target
system. The execution results were transferred from the target
system back to the EWS4800/220 via RS232C communication line. The
execution results were then transferred from the EWS4800/220 to the
Sun-3/260 by Ethernet where they were then captured on magnetic
tape. Commands were transferred from the EWS4800/220 to the target
system via RS232C communication line.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
compiler options invoked both explicitly and implicity for
validation testing during this test were:

-a (for A, C , D and E tests not listed below, and L

3-2

tests)

-L -a (for B, tests, support files and the following
D and E tests:

D29002K D64005EOM D64005EA D64005EB D64005EC
D64005ED D64005EE D64005EF D64005FOM D64005FA
D64005FB D64005FC D64005FD D64005FE D64005FF
D64005FG D64005FH D64005FI D64005FJ E28002A
E28002D E28005D E28002B E43211B E43212B
E52103Y EB4011A EB4012A EB4014A ED1D04A
ED2A26A ED2A56A ED4021A ED4022B ED4022C
ED7002B ED9002A)

The linker options invoked explicitly for validation testing were:

-D 3300 -a (for C85006C)

-a (for all other tests)

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archired.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
SMAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

SMAXINLEN <126> -- Value of V

$BIGID1 (1..V-1 => 'A', V => '1')

$BIGID2 (1..V-1 => 'A', V => '2')

$BIGID3 (l..V/2 => 'A') & '3' & (l..V-I-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' & (l..V-I-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRINGI '"' & (I..V/2 => 'A') & I"'

$BIGSTRING2 '"' & (l..V-l-V/2 => 'A') & '' & '"'

$BLANKS (l..V-20 => '

$MAXLENINTBASEDLITERAL
"2:" & (l..V-5 => '0') & "11:"

$MAXLENREALBASEDLITERAL
"16:" & (1..V-7 => '0') & "F.E:"

$MAXSTRINGLITERAL '"' & (1..V-2 => 'A') & '"'

A-1

The following table contains the values for the remaining macro
parameters.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2147483647

$DEFAULTMEMSIZE 2_097_152

$DEFAULTSTORUNIT 8

$DEFAULT_SYSNAME V70_RXUX

$DELTADOC 2#1.0#E-31

SENTRYADDRESS 16#40#

SENTRYADDRESS1 16#80#

SENTRYADDRESS2 16#100#

$FIELDLAST 35

$FILETERMINATOR I I

$FIXEDNAME NOSUCHFIXEDTYPE

$FLOATNAME NOSUCHTYPE

$FORMSTRING ""

$FORMSTRING2 "CANNOTRESTRICTFILECAPACITY"

$GREATERTHANDURATION 75_000.0

$GREATERTHANDURATIONBASELAST 131_073.0

$GREATERTHANFLOATBASELAST 1.80141E+38

SGREATERTHANFLOATSAFELARGE 1.0E308

$GREATER THANSHORTFLOATSAFELARGE 1.0E308

SHIGHPRIORITY 255

A-2

$ILLEGAL -EXTERNALFILENAME1 /NODIRECTORY/FILENAME

$ILLEGALEXTERNALFILENAME2
"NAMES -OF-MORE-THAN- 14 -CHARACTERS" &
"NAMES -OF-MORE-THAN- 14 -CHARACTERS" &
"NAMES-OF-MORE-THAN- 14 -CHARACTERS" &
"NAMES-OF-MORE-THAN-14 -CHARACTERS" &
"NAMES-OF-MORE-THAN-14 -CHARACTERS" &
"NAMES-OF-MORE-THAN-14-CHARACTERS" &
"NAMES -OF-MORE-THAN- 14 -CHARACTERS" &
"NAMES-OF-MORE-THAN-14-CHARACTERS"I &
"NAMES-OF-MORE-THAN-14 -CHARACTERS"

$ INAPPROPRIATELINELENGTH -1

$ INAPPROPRIATEPAGELENGTH -1

$INCLUDEPRAGMAl PRAGMA INCLUDE ("IA28006D1.TST"l)

SINCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006E1. TST"l)

SINTEGERFIRST -2147483648

$INTEGERLAST 2147483647

$INTEGERLASTPLUS_1 2_147_483_648

$INTERFACELANGUAGE AS, C

SLESSTHANDURATION -75_000.0

$LESSTHANDURATIONBASEFIRST -131_073.0

$LINETERMINATOR character'val(10)

$LOWPRIORITY 0

$MACHINE CODE STATEMENT

AINS-TR'(AA__EXITSUBPRGRM,0,0,0,AAINSTRINTG'FIRST,O);

$MACHINECODETYPE AAINSTR

$MANTISSADOC 31

$MAXDIGITS 15

SMAXINT 2147483647

SMAXINTPLUS_1 2_147_483_648

$MININT -2147483648

A-3

$NAME NO SUCH-TYPE AVAILABLE

$NAMELIST V70_RXUX

$NAMESPECIFICATIONi /X2120A

$NAMESPECIFICATION2 /X2120B

$NAMESPECIFICATION3 /X3119A

SNEGBASEDINT 160000000oE#

$NEWMEMSIZE 2_097_152

$NEW STOR-UNIT 8

$NEWSYSNAME V70_RXUX

$PAGETERMINATOR ASCII.FF

$RECORDDEFINITION RECORD
instr -no : aa instr-intg;
argO : aa -instr -intg;
argi : aa instr-intg;
arg2 : aa-instr-intg;
arg3 : aa-instr-intg;
arg4 : aa-instr-intg;
END RECORD;

$RECORDNAME aa-instr

$TASKSIZE 32

$TASK STORAGE SIZE 2048

$TICK 0.001

$VARIABLEADDRESS system.address(16#dOOO_0000#-16#10000_O0000#)

$VARIABLEADDRESS1 system.address(l6#dOOO_0004#-16#10000_0000#)

$VARIABLEADDRESS2 system.address(16#dOOOOOO8#-16#10000_O0000#)

$YOURPRAGMA PHYSICALADDRESS

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-1

NEC Ada Compilation System

for EWS-UX/V to V70/RX-UX832

Compiler Options

1991

NEC Corporation

Contents

1 Options and Commands of The PLU
1.1 The Invocation Command......................... 1
1.2 PLU Commands.............................2
1.3 Unit Masks.................................. 3
1.4 Symbol Masks.................................3
1.5 Command Summary............................ 4

1.5.1 CREATE............................... 4
1.5.2 DELETE............................... 5
1.5.3 DEPENDENCIES......................... 6
1.5.4 DIRECTORY...........................7
1.5.5 EXIT 8
1.5.6 HELP. 9
1.5.7 LIBRARY 9
1.5.8 LIST 9
1.5.9 LOCK 11
1.5.10 LOGGING. 12
1.5.11 QUIT....................12
1.5.12 SCOPE. 12
1.5.13 SHOW 13
1.5.14 TYPE................................ 13
1.5.15 UNIT............................. 14
1.5.16 UNLOCK.............................. 14
1.5.17 VERSION.............................. 15

2 Options for The Ada Compiler 15
2.1 The Invocation Command........................ 16

2.1.1 The List File. 18
2.1.2 The Diagiiostic File 18
2.1.3 The Configuration File 18

2.2 The Source Text 20
2.3 Compiler Output 21

2.3.1 Format of the List File 22
2.3.2 Source Listing 22
2.3.3 Compilation Summary 2
2.3.4 Diagnostic Messages 23

2.4 The Program Library 24
2.4.1 Correct Compilations. 2-1
2.4.2 Incorrect Compilations 26

3 Commands of The Ada Linker 27
3.1 The Invocation Command. 27

4 Options for' The Ada~ System generator 30

I OPTIONS AND COMMANDS OF THE PLU

1 Options and Commands of The PLU

The Program Library Utility (PLU) of NEC Ada Compilation System for
EWS-UX/V to V70/RX-UX832 is an interactive program that enables the
user to manipulate libraries and their contents. Commands are provided for
creating and deleting both root-libraries and sublibraries. Library contents
such as directory information, and declarative information about exported
symbols within compilation units can be displayed. Compilation units can
be locked to prevent unwanted recompilation or deletion.

1.1 The Invocation Command

The PLU is invoked by entering the following commands to the shell:

1 apluv70 {<option>} [<unit-specifier>]

1. Options
The following options are permitted:

-a < file-spec>
If this option is given, the PLU will attempt, to open the subli-
brary given by <file-spec>. If the qualifier is not present, the
default is the sublibrary designated by the environment varial)le
"ADA-LIBRARY". If the variable does not exist, the file ADA-LIBRARY
is used.

-s LOCALIGLOBAL
This option specifies the default library scope. The "LOCAL" scope
allows operating only on currently open sublibrary. The "GLOBAL"
scope allows operating on all sublibraries in the program library.
The default scope is "LOCAL". Note that the default scope can
be over-ridden on any individual commands through the use if
explicit "SCOPE" option.

-c <string>
If present, this option causes the PLU to be invoked in a non-interactive
mode, where the single command included in the <string> will
be executed, after which the PLU will be exit. This option is
convenient within shell scripts and background processes.

1 OPTIONS AND COMMANDS OF THE PLU

2. Parameters
The PLU takes a single, optional parameter, that specifies the default
compilation unit to be operated on. The <unit-specifier> can be
any fully qualified (i.e. Ada syntax) compilation-unit name.

To obtain information about a specific unit (e.g. the names and struc-
ture of the types exported by the unit) the PLU should be invoked with
the name as a parameter. The PLU commands will then by default op-
erate on that unit. This parameter is most useful in conjunction with
the "LIST" command and its use will be described more fully in the
section describing that command.

1.2 PLU Commands

Once invoked (unless the "--c" option is given), the PLU issues the prompt:

PLU>

after which the user can enter any PLU commands, terminated by a carriage
return. The following PLU commands are currently available:

CREATE - Creates a sublibrary, or root library.

DELETE - Deletes the specified units or the current, sublibrary.

DEPENDENCIES - Shows the dependencies of the specified comipilation units.

DIRECTORY - Displays information about specified compilation unit..

EXIT - Exits the PLU session.

HELP - Displays help information for the specified command.

LIBRARY - Shows/changes the current program library.

LIST - Displays symbolic information within specified units.

LOCK - Locks the specified compilation units.

LOGGING - Permits logging of a PLU session to a file.

QUIT - Same as EXIT.

i OPTIONS AND COMMANDS OF THE PLU 3

SCOPE - Shows/changes the current default library scope.

SHOW - Same as DIRECTORY.

TYPE - Types source texts for the specified units.

UNIT - Shows/changes the current default unit-name.

UNLOCK - Unlocks the specified compilation units.

VERSION - Shows the version of the library.

All commands, options and other keywords may be abbreviated to the
shortest unique prefix required to identify them. In the following, this iden-
tification will be written in capital letters. All input to the PLU is case
sensitive.

1.3 Unit Masks
Whenever a <unit-mask> is required (e.g. in the SHOW command), the
name specified may include the wildcard characters "%" and "*" (represent-
ing any single character, or any (possibly empty) arbitrary string, respec-
tively). These names may also be qualified by unit-name prefixes, separated
by the "." character, as with the normal Ada subunit naming con'entions.
The first component of a <:unit-mask> may be an integer, representing a
unit-number. For example, the following are valid <unit-mask>'s:

23 -- The unit with unit number 23
23.JUNK -- All subunits of unit 23's JUNK subunit
UNIT_/M7 -- All units whose names are 8 characters long,

the first 5 being "UNIT)'
-- All units

Each of the following sections describe the PLU commands in detail.

1.4 Symbol Masks

When using the list command, you may specify a symbol mask. Such a mask
specifies entities in the usual Ada manner. A package named P is referred
to as P, and any identifiers in it are referenced by the familiar dot notation.

1 OPTIONS AND COMMANDS OF THE PLU 4

For instance "TEXTIO" denotes the package TEXTJO, and "TEXT_1O.*"
denotes all identifiers defined in TEXTIO.

1.5 Command Summary

This section details the syntax and semantics of each PLU command.

1.5.1 CREATE

1. Command syntax:

Create <sublibrary-name> [<parent-library-name>]

Creates a new sublibrary (or root library) in the file system.

2. Options

(a) -SIze = <number-of -blocks>
Specifies the number of blocks initially allocated for the sublibrary
in 512 byte blocks. The size given here is only an initial size. The
sublibrary will grow as required. If the size option is not given,
100 blocks are allocated by default.

(b) -ROot
Root specefies that the library created will be a copy of the system
root sublibrary.

3. Parameters
If two parameters are given, the second parameter must be the name
of an existing sublibrary, which will be used as the parent. The first
parameter is the name of the created (offspring) sublibrary.

If only one parameter is given, the action taken depends on the presence
of the "-ROOT" and "-NEW.ROOT" options.

If neither of these (mutually exclusive) options are given, tile created
sublibrary will be the offspring of the currently open sublibrary. If
one of the "ROOT" options is given, the sublibrary is created as a root,
sublibrary. In any case, the parameters given must be valid filenames.

1 OPTIONS AND COMMANDS OF THE PLU 5

4. Example

PLU> Create my-library.alb father.alb

This command will create an empty sublibrary, that will have the sub-
library father.alb as its parent.

1.5.2 DELETE

1. Command syntax:

DELete [<unit-mask>]

The specified library units are deleted from the current sublibrary (un-
less they are locked - see the "LOCK" command). Note that "-SCOPE"
option or default scope is not appropriate for this command - it, oper-
ates only on the current sublibrary (see the "LIBRARY" command).

2. Options

(a) -CONFirm
If this option is given, the PLU will prompt the user for confirmia-
tion before deleting each unit.

(b) -BOdy

If this option is given, only the applicable body units will be
deleted.

(c) -SPecification
Both the specification and body units will be deleted.

(d) -LIbrary

This option indicates that the entire current sublibrary will be
deleted (including all its units). The <unit-mask> parameter is
not allowed in this option.

1 OPTIONS AND COMMANDS OF THE PLU 6

3. Parameters

The <unit -mask> is a qualified, Ada-format unit-name, potentially
including wild-card characters (see note at end of section 1.3). If omit-

ted, the default unit-mask will be used (see the "UNIT" command).

1.5.3 DEPENDENCIES

1. Command syntax:

DEPendecies [<unit-mask>]

Shows the dependencies recorded for the designated units.

2. Options

(a) -SPecification

(b) -BOdy
If neither of these options are specified, they are both active by
default. If only one is specified, the other is inactive by default.
The options specify the amount of information displayed:

" if "-SPECIFICATION" is given, dciendencies recorde(l for the
designated declaration units are displayed;

" if "-BODY" is given, dependencies recorded for the designated
body units are displayed.

(c) -SCope = LOCAL I GLOBAL
This option determines the allowed libraries used by PLU in search-
ing for the units specified by <unit-mask>. "LOCAL" allows
searching in the current sublibrary, and "GLOBAL" allows search-
ing in the entire current library. If -SCope is omitted, the current
default scope will be used (see the "SCOPE" command).

3. Parameters
The <unit -mask> is a qualified, Ada-format unit-name, (see section
1.3) If omitted, the default unit-mask will be used (see the "UNIT"
command).

I OPTIONS AND COMMANDS OF THE PLU 7

1.5.4 DIRECTORY

1. Command syntax:

DIrectory [<unit-mask>]

Displays information about the contents of a sublibrary (i.e. its units).

2. Synonyms:
SHow

3. Options

(a) -SCope = LOCAL I GLOBAL
This option determines the allowed libraries used by the PLU
in searching for the units specified by <unit-mask>. "LOCAL"
allows searching in the current sublibrary, and "GLOBAL" allows
searching in the entire current library. If the "-SCOPE" uption is
omitted, the current default scope will be used (see the "SCOPE"
command).

(b) -SUbunits
If this option is given, the information displayed (recursively) in-
cludes any subunits that the designated units may have.

(c) -DEPendencies

Specifies that the information displayed shall include the (lepeln-

decies recorded for the selected units.

(d) -Unit-id
If this option is given, the unit-id of each selected unit is dis-
played.

(e) -ATtributes
Specifies that information pertaining to the attributes of' the se-
lected units is to be included.

(f) -BRief
Gives a brief list of the specified unit. Only one line per units is
given.

I OPTIONS AND COMMANDS OF THE PLU

(g) -SInce = <time>
Only the units that are compiled after the given time are dis-
played.
The time format is that of the UNIX time specification, e.g. May
3 12:30:21 1991.
Data may be omitted from the right, so Jul 3 and Jul 3 12:30
are examples of valid time specifications. For the user's conve-
nience, the pseudo time "TODAY" is valid, with the obvious seman-
tics.

(h) -CONTainer
Specifies that the information displayed shall include the names
of the containers assigned to the selected units.

(i) -ALl
If this option is given, all available information on the selected
units is displayed (equivalent to giving all the above options except
BRIEF).

4. Parameters

The <unit-mask> is a qualified, Ada-format unit-name, as de-
scribed in section 1.3. If omitted, the default unit-mask will be used
(see the "UNIT" command).

Both the specification and corresponding body of selected units will be
displayed during a DIRECTORY listing.

1.5.5 EXIT

1. Command syntax:

EXIT

Closes the current library and the log file (if any), and terminates the
session.

2. Synonyms:
Quit

I OPTIONS AND COMMANDS OF THE PLU 9

1.5.6 HELP

1. Command syntax:

HELP [<command>]

Provides explanation of the PLU commands. If <command> is not
specified, a brief summary of all available PLU commands will be dis-
played. Otherwise, the command syntax and applicable options for the
specified command is shown.

1.5.7 LIBRARY

1. Command syntax:

LIBrary [<library-name>]

Selects a new default sublibrary, or displays the filenames of the subli-
braries making up the current library.

2. Parameters

The <library-name> is a valid filename of the sublibraries making
up the current library are displayed.

1.5.8 LIST

1. Command syntax:

LISt [<symbol-mask>]

This very powerful command displays the contents of the symbol-table
for specified units. Using wildcards and appropriate options, the user
can determine such information as the name of the unit where a par-
ticular declaration occurs, or a subroutine parameter profile.

2. Options

OPTIONS AND COAIMANDS OF THE PLU 10

(a) -SCope = LOCAL I GLOBAL
This option determines where the PLU searches for symbols spec-
ified by tt <symbol-mask>. LOCAL restricts the search to the
current sublibrary, GLOBAL searches the entire current library. If
the "-SCOPE" option is omitted, the current default scope will be
used (see the SCOPE command).
It is advisable to restrict the search space for the LIST command
by using as few wildcards as possible, and by using local scope in
order to minimize the the amount of output produced.

(b) -Entitykind = (CONSTANT I VARIABLE I TYPE I
ENUMERATION-LITERAL I EXCEPTION I PROCEDURE I
FUNCTION I SUBPROGRAM I PACKAGE I
GENERIC I VALUE I PREDEFINED-OPERATOR I ALL)
Entity-kind can be used to limit the display to only those sym-
bols matching the 'entity-kind' given. This is useful, both to
limit the amount, of information displayed, and to limit the search
time. This option can also be used to reduce ambiguity when
overloaded names are encountered. most of the entity-kinds cor-
respond to Ada style terminology, but a few convenient terms
have been added, such as VALUE (corresponding to CONSTANT,
VARIABLE, ENUMERATION-LITERAL or FUNCTION). The

special term PREDEFINED-OPERATOR displays the compiler
generated operators that are created for each user -declared nu-
meric type. Only explicitly declared operators are displayed by
default.

(c) -LINe
The source-file line-number of each symbol's declaration will be
displayed as a comment. Note that these line numbers are. in
some cases, approximate.

(d) -DEClaration

An Ada-like declaration of the symbol will be displayed. This al-
lows display of field names in record types, parameter profiles for
subroutine declaration, and other useful information. The dec-
laration is as much like a normal Ada declaration as j)ossible.
although certain kinds of information (such as the ordinal value
of enumeration literals) are displayed in non-Ada foru.

1 OPTIONS AND COMMANDS OF THE PLU 11

3. Parameters The tt <symbol-mask> is qualified, Adafnrmat sym-
bol.name. The Ada notation may be used, both to specify subunits
and local declarative items. If the <symbol-mask> begins with a ."
character, then it must be proceeded by the default unit-mask (see
the "UNIT" command). The following are examples of ways to specify

the PUT procedures in FLOAT-O:

"TEXT_ I. FLOAT*.PUT"

".PUT", if default unit is TEXT_IO.FLOAT_IO

1.5.9 LOCK

1. Command syntax:

LOCK [<unit-mask>]

Locks the specified units such that they cannot be deleted or recom-
piled without being unlocked first (see the "UNLOCK" command). By
default, this command locks the specification, the corresponding body

and its subunits.

2. Options

(a) -CONFirm

Prompts for confirmation before locking each unit.

(b) -BOdy
The applicable specification and body units will be locked, but
riot the subunits.

(c) -SPecification
Only the specification units will be locked.

3. Parameters
The < unit-mask> is a qualified, Ada-format unit-aime. poten-
tially including wild-card characters (see note at end of' section 1.3).

1 OPTIONS AND COMMANDS OF THE PLU 12

1.5.10 LOGGING

1. Command syntax:

LOGging [<log-file-name>]

Allows output to be directed to a log file. If the <logfile_name>
parameter is omitted, the current log file name will be displayed.

2. Options

(a) -OFf
Terminates logging, closing the current log-file. If this option is
given, no parameter may be specified.

1.5.11 QUIT

1. Command syntax:

Quit

Quit is synonym for EXIT and pressing <CTRL-D>. Quit closes the cur-
rent log file (if there is any), closes the current library, and terminates
the PLU session.

1.5.12 SCOPE

1. Command syntax:

SCope [LOCAL I GLOBAL]

Allows setting of a default library scope for the various PLU commands
such as the List command. If parameter is not given, the current default
scope is displayed. The initial default scope is taken from the command
invocation of the PLU.

2. Parameters
The parameter determines where the PLU looks for units specified by
<unit-mask>. LOCAL means searching in the current sublibrary,
and GLOBAL means searching in the current library.

1 OPTIONS AND COMMANDS OF THE PLU 13

1.5.13 SHOW

1. Command syntax:

SHow [<unit-mask>]

This i a synonym for DIrectory, q.v.

1.5.14 TYPE

1. Command syntax:

Type [<unit-mask>]

Allows listing of the source texts of the specified units. If the source-text
for a specified unit is not contained in the library, the following message
will be displayed:

-- No source code found for <unit-name>

By default, only the specifications of specified units are listed.

2. Options

(a) -LOg
Will cause the source-test listing to be directed to a file having
the name <unit-name>-s. ada if a specification is being listed,
of <unit-name,>_b. ada if a body is being listed. Files will be
written to the current default working directory.

(b) -Specification
Will cause the specifications of the designated units to he listed.

(c) -Body
Will cause the bodies of the designated units to be listed.

(d) -LIne
Causes line numbers to be placed in the left most coltunls of the
listing.

I OPTIONS AND COMMANDS OF THE PLU i4

(e) -SCope = LOCAL I GLOBAL
This option determines where the PLU looks for the units spec-
ified by <unit-mask>. "LJCAL" searches in the current subli-
brary, and "GLOBAL" searches in the entire current library. If the
"-SCOPE" option is omitted, the current default scope will be used
(see the "SCOPE" command).

3. Parameters
The <unit-mask> is a qualified, Ada-format unit-nane, as de-
scribed in section 1.3. If omitted, the default unit-nask will be used
(see the "UNIT" command).

1.5.15 UNIT

1. Command syntax:

UNIt [<unit-mask>]

Allows setting of a default unit -mask for t.hore PLU corn iands that
operate on units. If the parameter is omitted, the current default
unit-mask is displayed. The initial default unit-mask is taken from
the PLU invocation command line.

2. Parameters
The <unit-mask> is a qualified, Ada-format unit-name, as dc
scribed in Section 1.3.

1.5.16 UNLOCK

1. Command syntax:

UNLock [<unit-mask>]

Unlocks the specified units so that they can be delet -cl or recompiled.
By default, this command unlocks the specification, the corresponding
body and all the body's subunits.

2. Options

2 OPTIONS FOR THE ADA COMPILER 15

(a) -CONFirm
If this option is given, the PLU will prompt for confirmation before
unlocking each unit.

(b) -Body
If this option is given, only the body and subunits are unlocked.

(c) -SUbunit
Only the subunits are unlocked.

3. Parameters

The <unit-mask> is a qualified, Ada-format unit-name, as de-

scribed in Section 1.3. If omitted, the default unit-mask will be used

(see the "UNIT" command).

1.5.17 VERSION

1. Command syntax:

Version

Shows the version of the compiler which was used to compile the units
in the current library.

2 Options for The Ada Compiler

The Ada Compiler is invoked by specifying a call of the program Ada to the

shell. The invocation command is described in Section 2.1.

If any diagnostic messages are produced during the compilation, they are
output on the diagnostic file and on the standard output . The diagnostic

file and the diagnostic messages are described in Sections 2.1.3 and 2.3.

The user may request additional listings to be output on a list file by
specifying options in the compiler invocation. The list file and the listings

are described in Sections 2.1.2.
The compiler uses a program library during the compilation. The com-

pilation unit may refer to units from the program and will be showed in the

program library as a result of a successful compilation. The program library
is described in the attachment. Section 2.4 briefly describes how the Ada

compiler uses the library.

2 OPTIONS FOR THE ADA COMPILER 16

2.1 The Invocation Command

The invocation command has the following syntax:

SadavTO <source-file-name> {<source-file-name>}

1. Options

-L and -1
Causes the compiler to produce a formatted listing of the input

sources. The listing is written on the list file. S "tion 2.3.2 con-
tains a description of the source listing. The default is no list file,
in which case no source listing is produced, regardless of any LIST
pragmas in the program or any diagnostic messages produced.

-X
Causes the compiler to produce a cross-reference listing. If this

option is given and no severe or fatal errors are found during the
compilation, the cross-reference listing will be written on the list
file. The default excludes cross-reference.

-p
Progress- report.

-a <lib-spec>
Specifies the current sublibrary, and therefore the program library.
If this option is omitted the sublibrary designated by the environ-
ment variable AIA-LIBRARY is used. If the variable does not exist
the file ADA-LIBRARY is used. Section 2.4 describes how the :\da
compiler uses the library.

-c <file-name>
Specifies the configuration file to be used by the compiler in the
current compilation. If this option is omitted, the configuration
file(config) in the compiler directory is used.

-s and -S
Specifies that the source text is not to be saved in the program

library. This saves some space in the sublibrary. The default is
to save source text. In this way, the user is always certain what

2 OPTIONS FOR THE ADA COMPILER 17

version of the source text was compiled. The source text may be
displayed from the sublibrary with the PLU Type command.

-B
Build standard. Pseudo compilation of package standard. This
option is intended for maintenance purposes only.

-n
No check. Suppress all run-time checks. By default, all run-
time checks are generated.

-N <keyword> {, <keyword>}
Toggle check. Selective suppress of run-time checks. If a check is
suppressed, the option will enable the check. If a check is enabled,
the option will suppress the check. The following keywords are

allowed:

@ access

* index

discriminant

9 range

• length

* elaboration

storage

Keywords are case-insensitive and can be abbreviated such that
the abbreviation is unique.

-o
Optimize. Optimize the program with respect to execution time,
which, under normal circumstances, also is optimization with re-
spect to size of the executable.

-u <unit-number>
Specifies that the compilation unit being compiled is assigned t he
unit number<unit-lumber> in the current sublibrary (see the at-
tachment for explanation of unit numbers). This option will only
work for:

e compilations containing a single compilation unit which is nei-
ther a subunit nor contains subunit stubs,

2 OPTIONS FOR THE ADA COMPILER 18

. unit numbers which are unused and smaller than 32768.

2. Parameters
The < source-file-name> specifies the file containing the source
texts to be compiled. A source file is expected to have the string ". ada"
as the last four characters of its name. If the last part of the name does
not contain "." , the string ".ada" is appended to the name . More
than one file name must be specified.

2.1.1 The List File

The name of the list file is identical to the name of the source file except
that the final characters ".ada" are replaced by ". is". The list file will be
placed in the current directory.

2.1.2 The Diagnostic File

The name of diagnostic file is identical to the name of the source file except
that the final characters ". ada" are replaced by ".err". The diagnostic file
will be placed in the invoker's current directory.

The diagnostic file is a file containing a list of diagnostic messages, each
followed by a line showing the number of the line in the source that caused the
message to be generated, and then by a blank line. The file is not separated
into pages and there are no headings.

2.1.3 The Configuration File

Certain functional characteristics of the compiler may be modified by the
user. These characteristics are passed to the compiler by means of a config-
uration file, which is a text file. The contents of the configuration file must
be an Ada positional aggregate, written on one line, of the type CONFIGU-
RATION-RECORD, which is described below. The configuration file is not
accepted by the compiler in the following cases:

* The syntax does conform with the syntax for positional Ada aggregates.

* A value is outside the ranges specified below.

* A value is not specified as a literal.

2 OPTIONS FOR THE ADA COMPILER 19

* LINESPERPAGE is, not greater then TOP-MARGIN + BOTTOM-MARGIN.

* The aggregate occupies more than one line.

If the compiler is unable to accept the configuration file, an error message
is written on the standard out put and the compilation is terminated.

Type OUTFORMATTING is

record
LINESPERPAGE INTEGER range 30..100;
-- cf. Section 2.3.1
TOP-MARGIN : INTEGER range 4..90;
-- cf. Section 2.3.1
BOTTOMMARGIN : INTEGER range 0..90;
-- cf. Section 2.3.1
OUTLINELENGTH : INTEGER range 80..132;
-- cf. Section 2.3.1
SUPPRESSERRORNO : BOOLEAN;
-- cf. Section 2.3.4
end record;

Type INPUT-FORMATS is
(ASCII);
-- cf. Section 2.2

Type INFORMATTING is
record
INPUT-FORMAT INPUT-FORMATS;
-- cf. Section 2.2
INPUTLINELENGTH : INTEGER range 70..250;
-- cf. Section 2.2
end record;

Type CONFIGURATION-RECORD is
record
IN-FORMAT INFORMATTING;
OUT-FORMAT OUTFORMATTING;
ERROR-LIMIT INTEGER;

2 OPTIONS FOR THE ADA COMPILER 20

-- cf. Section 2.3.4
end record;

The configuration file has the following content:

((ASCII, 126), (48, 5, 3, 100, FALSE), 200)

The name of this configuration file is passed to the compiler through the argu-
ment supplied with the -c option.

The output formatting parameters have the following meaning:

LINESPERPAGE:
specifies the maximum number of lines written on each page (including
top and bottom margin).

TOP-MARGIN:
specifies the number of lines on top of each page used for a standard
heading and blank lines. The heading is placed in the middle lines of
the top margin.

BOTTOM-MARGIN:
specifies the minimum number of lines left blank in the bottom of the
page. The number of lines available for the listing of the program is
LINESPERPAGE -- TOP-MARGIN - BOTTOM-MARGIN.

OUTLINELENGTH:
specifies the maximum number of characters written on each line. Lines
longer than OUTLINELENGTH are separated into two lines.

SUPPRESSERRORNO:
specifies the format of error messages.

2.2 The Source Text

The user submits one file containing a source text in each compilation. Tlhe
source text may consist of one or more compilation units.

The format of the source text specified in the configuration file (cf. Sec-
tion 2.1.3) must be the ISO-FORMAT ASCII. This format requires that the

2 OPTIONS FOR THE ADA COMPILER 21

source text is a sequence of ISO characters (ISO standard 646), where each
line is terminated by either one of the following termination sequences (CR
means carriage return, VT means vertical tabulation, LF means line feed, and
FF means form feed):

" A sequence of one or more CRs, where the sequence is neither immedi-
ately preceded nor immediately followed by any of the characters VT,
LF, or FF.

" Any of the characters VT, LF, or FF, immediately preceded and followed
by a sequence of zero or more CRs.

In general, ISO control characters are not permitted in the source text with
the following exceptions:

" The horizontal tabulation (HT) character may Le used as a separator
between lexical units.

" LF, VT, FF, and CR may be used to terminate lines, as described above.

The maximum number of characters in an input line is determined by the
contents of the configuration file, cf. Section 2.1.3. The control characters
CR, VT, LF, and FF are not considered a part of the line. Lines containing
more than the maximum number of characters are truncated, and an error
message is issued.

2. Compiler Output

The compiler may produce output in the list file, the diagnostic file and the
standard output. It furthermore updates the program library if the compila-
tion is successful. The present section describes the text output inI the three
files mentioned above. The updating of the program library is described in
section 2.4.
The compiler may produce the following text output:

1. A listing of the source text with embedded diagnostic messages is writ-
ten on the list file if the -L option is present.

2. A compilation summary is written in the list file if the -L optioi is
present..

2 OPTIONS FOR THE ADA COMPILER 22

3. A cross--reference listing is written on the list file if the -x option is
present and severe or fatal errors have beer detected during the com-
pilation.

4. If there are any diagnostic messages, a diagnostic file containing the
diagnostic messages is written.

5. Diagnostic messages other than warnings are written on the standard
output.

2.3.1 Format of the List File

The list file may include one or more of the following parts: a source listing,
a cross-reference listing and a compilation summary.

The parts of the list file are separated by page ejects. The contents of
each part are described in sections 2.3.2. - 2.3.3.

The format of the output on the list file is controlled by the configuration
file (cf. Section 2.1.3) and may therefore be controlled by the user.

2.3.2 Source Listing

A source listing an unmodified copy of (pars of) the source text. The listing
is divided into pages and each line is supplied with a line number.

The number of lines output in the source listing is governed by tihe oc-
currence of LIST pragmas and the number of objectionable lines.

9 Parts of the listing can be suppressed by the use of LIST p)ragnias. and
page breaks may be introduced by PAGE pragmas.

* A line containing a construct that caused a diagnostic message is printed
even if it occurs at a point where the listing has been suppressed by a
LIST pragma.

2.3.3 Compilation Summary

At the end of a compilation, the compiler produces a summary tiat is an
output on the list file if the -L option is present.

The summary contains information about:

2 OPTIONS FOR THE ADA COMPILER 23

1. The type and name of the compilation unit, and whether it has been
compiled successfully or not.

2. The number of diagnostic messages produced for each class of severity,
cf Section 2.3.4.

3. Which options were present.

4. The full name of the source file.

5. The full name of the program library.

6. The number of source text lines.

7. The size of the text segment, the data segment, and the BSS segment.

8. Elapsed time and CPU time.

9. A "Compilation terminated" message if the compilation unit was the
last in the compilation or "Compilation of next unit initiated" other-
wise.

2.3.4 Diagnostic Messages

The Ada compiler issues diagnostic messages on the diagnostic file (cf. Sec-
tion 2.1.2). Diagnostics other than warnings also appear on the standard
output. If a source text listing is required, the diagnostics are also found
embedded in the list file (cf. Section 2.1.1).

In a source listing , a diagnostic message is placed immiediately after the
source line causing the message. Messages not related to any particular line
are placed at the top of the listing. Every diagnostic message in the diagnostic
file is followed by a line stating the line number of the objectional line. The
lines are ordered by increasing source line numbers. Messages not related
to any particular line are assigned to line 0. On the standard output the
messages appear in the order in which they are generated by the compiler.

The diagnostic messages are classified according to their severity and the
compiler action taken:

2 OPTIONS FOR THE ADA COMPILER 24

Warning: Reports a questionable construct or an error that does not, influ-
ence the meaning of the program. Warnings do not hinder the genera-
tion of object code.
Example: A warning will be issued for constructs for which the compiler
detects that they will raise CONSTRAINT-ERROR at run time.

Error: Reports an illegal construct in the source program. Compilation
continues, but no object code will be generated.
Example: most syntax errors; most static semantic errors.

Severe error: Reports an error which causes the compilation to be termi-
nated immediately. No object code is generated. Example: A severe
error message will be issued if a library unit mentioned by a \WITH
clause is not present in the current program library.

Fatal error: Reports an error in the compiler system itself. The compila-
tion is terminated immediately and no object code is produced. The
user may be able to circumvent a fatal error by correcting the program
or by replacing program constructs with alternatives. Please inform
NEC about the occurrence of fatal errors.

The detection of more errors than allowed by the number specified by the
ERROR-LIMIT parameter of the configuration file (cf. Section 2.1.3) is
considered a severe error.

2.4 The Program Library

This section briefly describes how the Ada compiler changes the program
library. For a general general description of the program library refer to the
attachment.

The compiler is allowed to read from all sublibraries constituting the
current program library, but only the current sublibrary may be changed.

2.4.1 Correct Compilations

In this section, it is assumed that the compilation units are correctly com-
piled, i.e. that no errors are detected by the compiler.

2 OPTIONS FOR THE ADA COMPILER 25

Compilation of a Library Unit Which Is a Declaration

If a declaration unit of the same name as the one currently being com-
piled exists in the current sublibrary, it is deleted together with its
body unit and the body's possible subunits. A new declaration unit, is
inserted in the sublibrary.

Compilation of a Library Unit Which Is a Subprogram Body

A subprogram body in a compilation unit is treated as a secondary
unit if the current sublibrary contains:

* a valid subprogram declaration of the same name, or

* a valid generic subprogram declaration of the same name.

In all other cases, it will be treated as a library unit, i.e.:

* when there is no library unit of that name,

* when there is an invalid declaration unit of that name,

0 when there is a package declaration, generic package declaration
or an instantiated package or subprogram of that name.

Compilation of a Library Unit Which Is an Instantiation

A declaration unit with the name of the compilation unit in the cur-
rent sublibrary is deleted (if it exits) with its body unit and possible
subunits. A new declaration unit is inserted.

Compilation of a Secondary Unit Which Is a Library Unit Body

The existing body is deleted from the sublibrary together with its pos-
sible subunits. A new body unit is inserted.

Compilation of a Secondary Unit Which Is a Subunit

If the subunit exists in the sublibrary, it is deleted with its possible
subunits. A new subunit is inserted.

2 OPTIONS FOR THE ADA COMPILER 26

2.4.2 Incorrect Compilations

If the compiler detects an error in a compilation, the program library will
remain unchanged.

Note that if a file consists of several compilation units and an error is
detected in any of these compilation units, the program library will not be
updated for any of the compilation units.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

B-'

3 COMMANDS OF THE ADA LINKER 27

3 Commands of The Ada Linker

Before a compiled Ada program can be executed, it must be linked by the
Ada Linker.

The Ada Linker performs two different jobs:

* It links an Ada program. The linker will check the consistency of the
program (cf. section 2.3) and decide an elaboration order for the units
constituting the program. Any errors found will be reported on the
standard output and optionally on a log file. If no errors are found, an
executable image file will be produced.

* It examines the consequences of recompilations. The linker will check
the consistency of the specified program units (cf. section 2.3) as if the
specified recompilations were actually performed, and determine an

elaboration order for the program. Any errors found will be reported
on the standard output and optionally on a log file, together with a list
of needed recompilations.

It is possible to check the consequences of no recompilations. in which case
the linker will check the consistency of the specified program units as they
appear in the current program library.

3.1 The Invocation Command

The linker is invoked by submitting the following command to the command
language interpreter:

alv70 {<options>} <unit-name>

<unit-name>
If a linking is requested, <unit.name> must specify a main program
which is a library unit of the current program library, but not neces-
sarily of current sublibrary. The library unit must be a parameterless
procedure. Wildcard characters are not permitted.

3 COMMANDS OF THE ADA LINKER 28

If examination of the consequences of recompilations is requested, < unit name>
specifies a set of program library units whose consistency after the hy-
pothet.cal recompilations will be checked. <unit-name> may contain
wildcard characters which will be interpreted according to the rules of
the UNIX in the current sublibrary with names that match specified
<unit-name>. All types of library unit may be designated.

1. Options

-1 <file-name>
Causes the linker to produce a log file named <file-nae>. The
log file is written to the invoker's current directory.

-L

Causes the linker to produce a log file named "link.log". The
log file is written to the invoker's current directory.

-a <lib-spec>
Specifies the current sublibrary and thereby also the current pro-
gram library. If this option is omitted then is sublibrary des-
ignated by the environment variable ADA-LIBRARY is used. If the
environmental variable is not denied, the file ADA-LIBRARY is used.

-C
causes the linker to check the the consistency of the program(s)
specified by <unit.name>. If this option is omitted then the
specified program will be linked.

-s <unit-set> and -b <unit-set>
Define those library units after whose hypothetical recompilations
the consistency will be checked. The meaning of <.unit-set> is:
<unit-set> ::= <unit-name> {, <unitname?-.}
For those unit names that appear with the -s option, the specifi-
cations of the corresponding library units are included in the list
of hypothetical recompilations.

For those unit names that appear with the -b option, the bod-
ies of the corresponding library units are included in the list of
hypothetical recompilations.

A <unit-name> may appear in the <unit-set> of both options
if required.

3 COMMANDS OF THE ADA LINKER 29

-T <test-code>
Causes the linker to send test output to the log file. The <test-code>
is an integer in the range 0..9. This option is only allowed if the
-1 or -L option is present.

-o <filename>
Include the file denoted by <filename> in the link. Useful for
including entities written in assembly language or C.

-p "string"
Options. The string will be inserted immediately after the "ld"
command when the native linker is invoked. Useful for supplying

options for the linker.

-D <stack>
Default stack-size. specifies the amount of stack allocated for

task of a task type for which a length clause is not specified.

2. Examples

$ alv70 -a mylib myprog

The linker will generate an executable image in the current directory

from the program from the library mylib.

$ alv70 -L -c -s example -b utility myprog

This will examine the consequences of the recompilations of the ex-
ample specification and the utility body. The linker will give a list of

necessary compilations to keep myprog consistent. The program library
is given by the environment. variable ADA-LIBRARY.

$ alv70 -c -s a+b -b c prog-x

Here the linker will examine the consistency of the program "prog-x"
in case of a recompilations of the specifications of the library unit "a"
and all library units with names starting with "b", and a recompilation

of the bodies of the all library units with names starting "c".

$ alv70 -o ObjectFile.o myprogram

4 OPTIONS FOR THE ADA SYSTEM GENERATOR 30

The linker will include the code in Obj ectFile. o in the linkage of the
program "myprogram". This program presumably features a program
interface to some routines appearing in the ObjectFile.

4 Options for The Ada System generator

asgv70 is a system that generates a load module of RX-UX832 from a SG
definition file, object module files generated by alv70.

4.1 The Invocation Command

The Invocation command has the following syntax.

asgv7O {<option>} <SG-definition-file-name>

1. Options
The following options are permitted:

-a <library-spec>
Specifies default Ada libraries.This option is used for a program
for which ada-lib is not specified in SG definition file. This optiojn
specifies the value of ada-lib in SG definition.

-conv
Convert endians of the load module form big(host cpu) to lit-
tle(target cpu).

-h and -H
Displays messages for options.

-int <interrupt-mask>[, <interrupt -mask> ...]
Specifies interrupt-masks permitted by the task that is activated
first. Notation of a interrupt-mask is a numeric literal notation of
Ada (eg. 16#ffO#).

-i <file-name>
This option is used for a program for which objmodule is NOT
specified in SG definition file. This option specifies the value of
obj-module in SG definition file.

4 OPTIONS FOR THE ADA SYSTEM GENERATOR 31

-m <program-name>
This option is used for a program for which main.program is NOT
specified in SG definition file. This option specifies the value of
main-program in SG definition file.

-o <file-name>
Specifies the name of load module generated by asgv70. If the
name is omitted, the load module name is vsld.out.

-p
Specifies that temporary files generated by asgv70 are not re-
moved, but are moved to the directory specified by -ts option.

-R [<file-name>]
Specifies that application load modules and the kernel load module
are generated in different files. Specified file name is a kernel load
module name. If a file-name is omitted, a kernel load module
name is kernlm.

-RA
Specifies that only application load modules are generated.

-RK [<filename>]
Specifies that only a kernel load module are generated. Specified
file name is a kernel load module name. If a file-naine is omitted,
the kernel load module name is kernlm.

-t <directory._name>
Specifies a directory for temporary files generated by asgv70 and
vsld commands. If a directory-name is omitted, temporary files
for asgv70 are generated in the current directory, and temporary
files for vsld are generated in /tmp directory.

-tl [<filename>]
Specifies the name of a task library file generated by vsld comi-
mand. If the file-name is not specified, the task library file name
is a name of SG definition file following ".1". Without this option,
a task library file generated by vsld command is removed.

-ts <directory-name>
Specifies the name of a directory for temporary files generated by
asgv70.

4 OPTIONS FOR THE ADA SYSTEM GENERATOR 32

-tv <directory-name>
Specifies the name of a directory for temporary files generated by
vsld commands of RX-UX832 that is called in asgv70.

-V
Displays the RX-UX832 commands called by asgv70.

-V
Displays the version of asgv70. No load module is generated

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORTINTEGER is range -32768..32_767;

type INTEGER is range -2_147_483_648..2_147_483_647;

type FLOAT is digits 6
range -16#0.FFFFFF#E32..16#0.FFFFFF#E32;

type LONG FLOAT is digits 15
range-16#0.FFFF FFFF FFFF F8#E256..16#0.FFFF FFFF FFFF F8#E256;

type DURATION is delta 2#I.0#E-14 range -131_072.O..131_071.0;

end STANDARD;

C-1

NEC Ada Compilation System
for EWS-UX/V to V70/RX-UX832

Appendix F

1991

NEC Corporation

Contents

1 Introduction

2 Implementation-Dependent Pragmas 1
2.1 Language Defined Pragmas 1
2.2 Implementation Defined Pragmas 6

3 Implementation-dependent Attributes 8

4 Package SYSTEM 8

5 Representation Clauses 9
5.1 Pragma PACK 9
5.2 Length Clauses 10
5.3 Enumeration Representation Clauses 12
5.4 Record Representation Clauses 12

6 Implementation- Dependent Names 13

7 Address Clauses 13
7.1 Objects 14

8 Unchecked Conversion 14

9 Input-Output Packages 15
9.1 External Files 15
9.2 File Management 16
9.3 Buffering 21
9.4 Package IOEXCEPTIONS 21
9.5 Sequential Input-Output 21
9.6 Direct Input-Output 23
9.7 Specification of the Package TextIO 25
9.8 Low Level Input-Output 32
9.9 Package TERMINAL 32

APPENDIX F

1 Introduction

This appendix describes the implementation-dependent characteristics of the
NEC Ada Compilation System for EWS-UX/V to V70/RX-UX832 as re-
quired in the Appendix F frame of the Ada Reference Manual(ARM, ANSI/MIL-
STD 1815A).

2 Implementation-Dependent Pragmas

This section lists the language defined pragmas, any restrictions on their
use, and their effect compared to ARM explanation. This section also lists
implementation-dependent pragmas.

2.1 Language Defined Pragmas

CONTROLLED
This pragma has no effect. No automatic reclaiming of storage is per-
formed.

ELABORATE
As in ARM.

INLINE
Pragma INLINE causes inline expansion except in the following cases:

1. The whole body of the subprogram for which inline expansion is
wanted has not been seen. This ensures that recursive procedures
cannot be inline expanded.

2. The subprogram call appears in an expression on which confor-
mance check may be applied, i.e. in a subprogram specification,
in a discriminant part, or in a formal part of an entry declaration
or accept statement.
See the following example:

I Package inline-test is
2
3 function one return integer;

APPENDIX F 2

4 pragma inline (one);
5
6 end inlinetest;
7
8 package body inline-test is

9

10 function one return integer is

11 begin
12 return 1;

13 end one;
14

15 procedure def.parms (parm : integer one) is

*** 46W-0: Warning : Inline expansion of ONE is not achieved

here
16 begin

17 null;
18 end defparms;
19

20 end inline-test;

21

3. The subprogram is an instantiation of the predefined generic sub-
programs UNCHECKED_.CONVERSION or UNCHECKED_-DEALLOCATION.

4. The subprogram is declared in a generic unit. The body of that
generic unit is compiled as a secondary unit in the same compila-

tion as a unit containing a call to (an instance of) the subprogram.
See the following example:

1 -- A compilation with there units:

2 generic

3 package g is
4 procedure P;

5 pragma inline(p);
6 end g;
7

8 package body g is
9 procedure p is

10 begin

APPENDIX F 3

11 null;
12 end p;
13 end g;
14
15 with g;
16 procedure example is

17 package n is new g;
18 begin
19 n.p;

*** 43W-0: Warning Inline expansion Qf P is not achieved here

20 end example;

5. The subprogram is declared by a renaming declaration.

6. The subprogram is passed as a generic actual parameter.

A warning is given if inline expansion is not achieved.

INTERFACE
Pragma INTERFACE is supported with C and V70 assembly language
(AS) as target languages.

The following restrictions exist:

" The name of an interfaced subprogram must not have more that
30 characters. If name is over 30 characters, it is truncated.

* Case is significant in C, but not ion Ada. This conflict is resolved
by matching the Ada name of an interfaced subprograni with a
lower-case version of the name in C and prefix with a "_'.

" User-declared name starting with the string "_ada".

The following rules exist for the matching of Ada types with C types:

* the following non-composite Ada type map directly onto an equiv-
alent C type.

APPENDIX F 4

Ada C
SHORT-INTEGER short

INTEGER int, long
enumeration int
CHARACTER int

BOOLEAN int
FLOAT float

LONG-FLOAT double

When occurring as parameters of mode IN, objects of these type
are assumed passed by value; when used as parameters of mode
IN OUTor OUT they are assumed to be passed by address. Ada
functions returning such types do so by value.

" Objects of record types are passed by address, regardless of size,
for all parameter modes and for function return values. Only
constrained record types can be interfaced.

* For objects of array types, the address of a data area alone is
passed, regardless of dimensions, bounds or mode. Unconstrained
array types may not be used as parameters of mode IN OUT or
OUT, or as function return values.

* Ada unpacked arrays of type CHARACTER interface with C type
(int *) . Ada objects of type STRING interface with C type (char
*). It should be remembered that type STRING is packed (see
ARM, Appendix C/17).

" Fixed types have no natural counterpart in C and cannot be in-
terfaced.

LIST
As in ARM.

MEMORY-SIZE
Not supported, cf. Pragma SYSTEM-NAME.

OPTIMIZE
This pragma has no effect.

PACK
This pragma has the following form:

APPENDIX F 5

Pragma PACK (typesimplename)

It is legal to specify this pragma for array and record types. It has
no effect on record objects. The array components must be of a dis-
crete type, i.e. integer, short-integer, and enumeration types (including
boolean and character).

The pragma has the effect that object of the given type are packed
into the nearest 2**n bits large enough to accomodate the object. For
example, an object with a size of 3 bits is packed into 4 bits.

PAGE
As in ARM.

PRIORITY
As in ARM.

SHARED
Not allowed for variables of type LONG-FLOAT or subtypes or derived
types thereof.

STORA GEUNIT
Has no effect.

SUPPRESS
The implementation only supports the following form of the pragma:

Pragma SUPPRESS (identifier);

where identifier is one of the identifiers defined in ARM. Section 8.7,
i.e. it is not possible t3 restrict the omission of a certain check to a
specified name.

S YS TEM-VA ME
Not supported. The only meaningful SYSTEM-NAME is EWSUVXR4 when
using the EWSUXVR4 version of the Ada Compiler.

APPENDIX F 6

2.2 Implementation Defined Pragmas

IN TERFA CESPEL LING

This pragma allows the user to call interfaced subprograms that have
names that cannot be given to Ada subprograms because of Ada's lex-
ical rules. Pragma interface-spelling supplies a mapping between the
name of an Ada subprogram (that is mentioned in a pragma interface)
and the name under which the subprogram is known in the burround-
ings.

Example

function Allocate (seize: integer) return byte-ptr; pragma interface

-- Supply the name of the c allocate function
pragma interface-spelling (Alloc, "alloc");

If no pragma interface-spelling is given for an interfaced subprogram,
the result will be as if a pragma interface-spelling had been given with
a string containing the Ada spelling of the subprogram in lower case:

pragma interface (C, Some-function);

-- Implicit pragma interface-spelling
(some-function, "some-function");

pragma interface (AS, Some-function)

-- Implicit pragma interface-spelling
(some-function, "SOME-FUNCTION")

ABSTRA CTA CODE-INSERTIONS
This pragma enables code statements in abstract acode.

CONCURRNC Y
This pragma can appeare in the declarative part of a task and a library
subprogram. It has one integer argument which limits concurrency
of the task type in the system (not in a program). A concurrency is

APPENDIX F 7

associated with the main program if this pragma appears in its outer
most declarative part. This pragma has no effect if it occures in a
subprogram other than the main program.

INTERRUPT.-MASK
This pragma can appear in the declarative part of a task and a library
subprogram. It has no arguments. If it appears, no interrupts are ac-
cepted while the task is executing. A interrupt mask is associated with
the main program if this pragma appears in its outer most declarative
part. This pragma has no effect if it occures in a subprogram other
than the main program.

TIME-SLICE
This pragma can appear in the declarative part of a task and a library
subprogram. It has one integer argument which specifies time slice
value of the task type in miliseconds. A time slice is associated with
the main program if this pragma appears in its outer most declarative
part. This pragma has no effect if it occures in a subprogram other
than the main program.

DA TA-PRESER VE
This pragma has no argument. If it appears in the outer most declar-
ative part of main program, a level C restart of the operating system
does not initialize statically allocated data. This pragma has no effect
if it occures in a subprogram other than the main program.

PHYSICA LA DDRESS
This pragma has one arguemnt, variable name which is also a specified
address clause in the same declarative part. If this pragma is specified,
the address of the address clause denotes a physical address rather
than a virtual address. In this case physical memory is mapped to
virtual space and the variable is accessed via the mapping. Because an
address attribute of a variable denotes a virtual address of the variable,
the attribute does not confirm the address of the address clause.

ROM
This pragma has one arguemnt, a variable name, which is also a spec-
ified address clause in the same declarative part. This pragma inplies

APPENDIX F 8

a pragma physical-address. If this pragma is specified, its physical
memory is treated as a ROM device.

RAM
This pragma has one arguemnt, a variable name, which is also a spec-
ified address clause in the same declarative part. This pragma implies
a pragma physical-address. If this pragma is specified, its physical
memory is treated as a RAM device and 0 cleared at the boot time.

IOSPA CE
This pragma has one arguemnt, a variable name, which is also a spec-
ified address clause in the same declarative part. This pragma implies
a pragma physical-address. If this pragma is specified, its physical ad-
dress is treated as an I/O address. The variable is mapped to the 1I/0
space of V70 rather than memory space.

INTERFACE-LOCAL
This pramga has one argument, a subprogram name which is also spec-
ified in pragma interface. If this pragma is specified, the object file of
external subprogram is assumed to be linked to each task. Statically
allocated data in the object file has different addresses for each tasks.

3 Implementation-dependent Attributes

No implementation-dependent attributes are defined.

4 Package SYSTEM

package SYSTEM is

type ADDRESS is new INTEGER;

subtype PRIORITY is INTEGER range 0 .. 255;
type NAME is (V70-RXUX);

SYSTEM-NAME: constant NAME V70_RXUX;
STORAGE-UNIT: constant 8;

APPENDIX F 9

MEMORY-SIZE: constant := 2048 * 1024;
MININT: constant -2._147_ 483._648;

MAXINT: constant := 2147_483_647;
MAX-DIGITS: constant 15;

MAX-MANTISSA: constant 31;

FINE-DELTA: constant := 2#1.0#E-31;
TICK: constant := 0.001;

type interface-language is (C,AS);

Compiler system dependent types:

subtype INTEGER-16 is SHORT-INTEGER;
subtype NATURAL-16 is INTEGER-16 range O..INTEGER_16'LAST;

subtype POSITIVE-16 is INTEGER-16 range 1..INTEGER_16'LAST;

subtype INTEGER-32 is INTEGER;
subtype NATURAL-32 is INTEGER-32 range O..INTEGER_32'LAST;

subtype POSITIVE-32 is INTEGER-32 range I..INTEGER_32'LAST;

5 Representation Clauses

The representation clauses that are accepted are described below. Note that
representation specification can be given on derived types too.

5.1 Pragma PACK

Pragma PACK applied on an array type will pack each array element into
the smallest number of bits possible, assuming that the component type is a
discrete type other than LONG-INTEGER or a fixed point type. Packing of
arrays having other kinds of component types have no effect.

When the smallest number of bits needed to hold any value of a type is
calculated, the range of the types is extended to include zero.

APPENDIX F 10

Pragma PACK applied on a record type will attempt to pack the com-
ponents not already covered by a representation clause(perhaps none). This
packing will begin with the small scalar components and larger components
will follow in the order specified in the record. The packing begins at the
first storage unit after the components with representation clauses.

The component types in question are the ones defined above for array
types.

5.2 Length Clauses

Four kinds of length clauses are accepted.

1. Size specifications:

The size attribute for a type T is accepted in the following cases:

(a) If T is a discrete type, then the specified size must be greater than
or equal to the number of bits needed to represent a value of the
type, and less than or equal to 32. Note that when the number of
bits needed to hold any value of the type is calculated, the range
is extended to include 0 if necessary, i.e. the range 3..4 ca nnot be
represented in 1 bit, but needs 3 bits.

(b) If T is a fixed point type, then the specified size must be greater
than or equal to the smallest number of bits needed to hold any
value of the fixed point type, and less than 32 bits. Note that the
Ada Reference Manual permits a representation, where the lower
bound and the upper bound is not representable in the type. Thus
the type

type FIX is delta 1.0 range -1.0 .. 7.0;

is representable in 3 bits. As for discrete types, the number of bits
needed for a fixed point type is calculated using the range of the
fixed point type possibly extended to include 0.0.

(c) If T is a floating point type, an access type or task type the spec-
ified size must be equal to the number of bits used to represent
values of the type (floating points: 32 or 64, access types : 32 bits
and task types: 32 bits).

APPENDIX F 11

(d) If T is a record type, the specified size must be greater than or
equal to the minimal number of bits used to represent values of
the type per default.

(e) If T is an array type, the size of the array must be static, i.e.
known at compile time and the specified size must be equal to the
minimal number of bits used to represent values of the type per
default.

Furthermore, the size attribute has effect only if the type is part of a
composite type.

type BYTE is range 0..255;

for BYTE'size use 8;
SIXTEEN : BYTE; -- one word allocated
EIGHT : array(l..4) of BYTE; -- one byte per element

2. Collection size specifications:

Using the STORAGE-SIZE attribute on an access type will set an tip-
per limit on the total size of objects allocated in the collection allocated
for the access type. If further allocation is attempted, the exception
STORAGE-ERROR is raised. The specified storage size must be less
than or equal to INTEGER'LAST.

3. Task storage size:

When the STORAGE-SIZE attribute is given on a task type, the task
stack area will be of the specified size. There is no upper limit, on the
given size.

4. Small specifications:

Any value of the SMALL attribute less than the specified delta for the
fixed point type can be given.

APPENDIX F 12

5.3 Enumeration Representation Clauses

Enumeration representation clauses may specify representations in the range
of INTEGER'FIRST+1..INTEGER'LAST-1. An enumeration representa-
tion clause may be combined with a length clause. If an enumeration rep-
resentation clause has been given for a type, the representational values are
considered when the number of the bits needed to hold any value of the type
is evaluated. Thus the type

type ENUM is (A, B, C);
for ENUM use (1, 3, 5);

needs 3 bits not 2 bits to represent any value of the type ENUM.

5.4 Record Representation Clauses

When component clauses are applied to a record type the following restric-
tions and interpretations are imposed:

" All values of the component type must be representable within the
specified number of bits in the component clause.

* If the component type is either a discrete type, a fixed point type, an
array type with a discrete type or a fixed point type as element type,
then the component is packed into the specified number of bits (see
however the restriction in the paragraph above), and the component
may start at any bit boundary.

" If the component type is not one of the types specified in the paragraph
above, it must start at a storage unit boundary, a storage unit being 8
bits, and the default size calculated by the compiler must be given as
the bit width, i.e. the component must be specified as

component at N range O..16*M-1

where N specifies the relative storage unit number (0, 1) from the
beginning of the record, and M the required number of storage units (1,
2, ...).

* The maximum bit width for components of scalar types is 32.

APPENDIX F 13

" A record occupies an integral number of storage units.

" A record may take up a maximum of 32Kbits.

" If the component type is an array type with discrete type or a fixed
point type as element type, the given bit width must be divisible by
the length of the array, i.e. each array element will occupy the same
number of bits.

If the record type contains components which are not covered by a com-
ponent clause, they are allocated consecutively after the component with
the value. Allocation of a record component without a component clause is
always aligned on a storage unit boundary. Holes created because of compo-
nent clauses are not otherwise utilized by the compiler.

1. Alignment Clause

Alignment clause for records are implemented with the following char-
acteristics:

" If the declaration of the record type is done at the outermost level
in a library, any alignment is accepted.

* If the record declaration is done at a given static level (higher
than the outermost library level, i.e. the permanent), only word
alignments are accepted.

6 Implementation-Dependent Names

None defined by the conipiler.

7 Address Clauses

This section describes the implementation of address clause and what types
of entities may have their address specified by the user.

APPENDIX F 14

7.1 Objects

Address clauses are supported for scalar and composite objects whose size
can be determined at compile time. The address value must be static. The
given address is the virtual address.

8 Unchecked Conversion

Unchecked conversion is only allowed for types where objects of the same
"size". The size of an object is interpreted as follows :

* for arrays, it is the number of storage units occupied be the array
elements.

* for records it is the size of the fixed part of the record, i.e. excluding
any dynamic storage allocated outside the record.

" for the other non-structured type, the object size is as described in
Chapter 9.

For scalar types having a size specification, special rules apply. Conver-
sion involving such a type is allowed if the given size matched either the
specified size or the object size.

Example

type ACC is access INTEGER;
function TOINT is new UNCHECKEDCONVERSION(ACC, INTEGER);

-- OK

function TOACC is new
UNCHECKEDCONVERSION(SHORTINTEGER, ACC, I);

-- NOT OK

type UNSIGNED is range 0..65535;

for UNISGNED'SIZE use 16;

function TOINT is new UNCHECKEDCONVERSION(UNSIGNED, INTEGER);
-- OK

APPENDIX F 15

function TOSHORT is new
UNCHECKEDCONVERSION(UNSIGNED, SHORTINTEGR);

-- OK

End ofexample

9 Input-Output Packages

The implementation supports all requirements of the Ada language and the
POSIX standard described in document P1003.5 Draft4.0/WG15-N45. It is
an effective interface to the UNIX file system, and in the case of text I/O it
is also an effective interface to the UNIX standard input, standard output
and standard error streams.

This section describes the functional aspects of the interface to the UNIX
file system, including the methods of using the interface to take advantage
of the file facilities provided.

The Ada input-output concept as defined in Chapter 14 of the ARM
does not constitute a complete functional specification of the input-output
packages. Some aspects of I/O system are not discussed at all, while others
are intentionally left open for implementation. This section describes those
sections not covered in the ARM. Please notice that the POSIX standard
puts restrictions on some of the aspects not described in Chapter 14 of the
ARM.

The UNIX operating system considers all files to be sequences of char-
acters. Files can either be accessed sequentially or randomly. Files are not
structured into records, but an access routine can treat a file as a sequence
of records if it arranges the record level input-output.

Note that for sequential or text files (Ada files not UNIX external files)
RESET on a file in mode OUT-FILE will empty the file. Also, a sequential
oi text file opened as an OUT-FILE will be emptied.

9.1 External Files

An external file is either a UNIX disk file, a UNIX FIFO (named pipe), a
UNIX pipe, or any device defined in the UNIX directory. The use of devices

APPENDIX F 16

such as a tape or communication line may require special access permissions
or have restrictions. If an inappropriate operation is attempted on a device,
then USE-ERROR exception is raised.

External files created within the UNIX file system shall exist after the
termination of the program that created it, and will be accessible from other
Ada programs. However, pipes and temporary files will not exist after pro-
gram termination.

Creation of a file with the same name as an existing external file will
cause the existing file to be overwritten.

Creation of files with mode IN-FILE will cause USE-ERROR to be raised.
The name parameter to the input-output routines must be a valid UNIX

file name. If the name parameter is empty, then a temporary file is created
in the /usr/tmp directory. Temporary files are automatically deleted when
they are closed.

9.2 File Management

This section provides useful information for performing file management func-
tions within an Ada program.

1. Restrictions on Sequential and Direct Input-Output

The only restrictions are that placed on the element size, i.e. the num-
ber of bytes occupied by the ELEMENT-TYPE : the maximum size
allowed is 2147483647 bits; and if the size of the type is variable , the
maximum size must be determinable at the point of instantiation from
the value of the SIZE attribute for the element type.

2. The NAME Parameter

The NAME Parameter must be a valid UNIX pathname (unless it is
the empty string). If any directory in the pathname is inaccessible,
USE-ERROR or NAME-ERROR is raised.

The UNIX names "stdin", "stdout", and "stderr", can be used with
TEXTO.OPEN. No physical opening of the external file is performed
and the Ada file will be associated with the already open external file.
These names have no significance for other I/O packages.

APPENDIX F 17

Temporary files(NAME = null string) are created using tmpname(3)
and will be deleted when CLOSED. Abnormal program termination
may leave temporary files in existence. The name function will return
the full name of temporary file when it exists.

3. The Form Parameter

The Form Parameter, as described below, is applicable to DIRECT_10,
SEQUENTIALJO and TEXT-1O operations. The value of the Form
Parameter for Ada I/O shall be a character sting. The value of the
character string shall be a series of fields separated by commas. Each
field shall consist of optional separators, followed by a field name iden-
tifier, followed by optional separators, followed by "=>", followed by
optional separators, followed by a field value, followed by optional sep-
arators. The allowed values for the field names and the corresponding
field values are described below. All field names and field values are
case-insensitive.

The following BNF describes the syntax of the FORM parameter:

form [field {, field}*]
fields rights I append Iblocking I

terminal-input I fifo I
posixfile-descriptor

rights : OWNER I GROUP I WORLD =>
access = READ I WRITE I EXECUTE I NONE
access-underscor : -_READ I -WRITE -_EXECUTE I -NONE
append "'= APPEND => YES i NO
blocking = BLOCKING => TASKS I PROGRAM
terminal-input TERMINAL-INPUT => LINES I CHARACTERS
fifo "'= FIFO => YES I NO
posix-file-descriptor ::= POSIXFILEDESCRIPTOR => 2

The Form Parameter is used to control the following

(a) File ownership:
Access rights to a file is controlled by the following field names

APPENDIX F 18

"OWNER", "GROUP" and "WORLD". The field values are
"READ", "WRITE", "EXECUTE" and "NONE" or any com-
bination of the previously listed values separated by underscores.
The access rights field names are applicable to TEXTIO, DI-
RECTIO and SEQUENTIALJO. The default value is OWNER
=> READ-WRITE, GROUP => READ-WRITE and WORLD
=> READ-WRITE. The actual actual access rights on a created
file will be the default value subtracted the value of the environ-
ment variable umask.

Example
To make a file readable and writable by the owner only, the form
Parameter should look something like this:

"Owner =>read-write, World=> none, Group=>none"

If one or more of the field names are missing the default value is
used. The permission field is evaluated in left-to-right order. An
ambiguity may arise with a Form Parameter of the following:

"Owner=>Read_ ExecuteNone _Write _Read"

In this instance, using the left-to-right evaluation order, the "None"
field will essentially reset the permissions to none and this example
would have the access rights WRITE and READ.

(b) Appending to a file:
Appending to a file is achieved by using field name "APPEND"
and one of the two field values "YES" or "NO". The default
value is "NO". "Append" is allowed with both TEXT-O and
SEQUENTIAL_[O. The effect of appending to a file that all out-
put to that file is written to the end of the named external file.
This field may only be used with the "OPEN" operation, using
the field name "APPEND" in connection with a "CREATE" op-
eration shall raise USE-ERROR. Furthermore, a USE-ERROR is
raised if the specified file is a terminal device or another device.

Example
To append to a file, one would write:

APPENDIX F 19

"Append => Yes"

(c) Blocking vs. non-blocking I/O:
The blocking field name is "Blocking" and the field value, are
"TASKS" and "PROGRAM". The default value is "PROGRAM".
"Blocking= >Tasks" causes the calling task, but no others, to vait
for the completion of an I/O operation. "Blocking=>program"
causes all tasks within the program to wait for the completion
of the I/O operation. The blocking mechanism is applicable to
TEXTIO, DIRECT-O and SEQUENTIALIO. UNIX does not
allow the support of "BLOCKING= >TASKS" currently.

(d) How characters are read from the keyboard:
The field name is "TERMINAL-INPUT" and field value is ei-
ther "LINES" or "CHARACTERS". The effect of the field value
"Terminalinput => Characters" is that characters are read in a

noncanonical fashion with Minimum-count=1, meaning one char-
acter at a time=0.0 corresponding so that the read operation is
not satisfied until Minimum-Count characters are received. If
field value "LINES" is used, the characters are read one line at

a time in canonical mode. The default value is Lines. "TERMI-
NALJNPUT" has effect if the specified file is not already open or

if the file is not open on a terminal. It is permitted for the same
terminal device to be opened for input i. ooth modes as separate

Ada file objects. In this case, no user input characters shall be
read from the input device without an exj-:Icit input operation on
one of the file objects. The "TERMINALINi-'UT" mechanisn is

only applicable to TEXTJO.

(e) Creation of FIFO files:
The field name is "FIFO" and the field value is either "YES" or
"NO". "FIFO => YES" means that the file shall be a named
FIFO file. The default value is "NO". For use with TEXTIO,
the "FIFO" field is only allowed with the CREATE operation.
If used in connection with an OPEN operation, USE-ERROR i
raised.

For SEQUENTIALJO, the FIFO mechanism is applicable for
both the CREATE and OPEN operation.

APPENDIX F 20

In connection with SEQUENTIALJO, an additional field name
"ONDELAY" is used. The field values allowed for "ONDELAY"
are "YES" and "NO". Default is "NO". The "ONDELAY" field
name is provided to allow waiting or immediate return. If, for
example, the following form parameter is given:

"FIFO=>Yes, 0NDELAY=>Yes"

then waiting is performed until completion of the operation. The
"ONdelay" field name only has meaning in connection with the
FIFO facility and otherwise ignored.

(f) Access to open POSIX files:
The field name is "POSIXFileDescriptor". The field value is
the character string "2" which denotes the stderr file. Any other
field value will result in USE-ERROR being raised. The NAME
parameter provides the value which will be returned by subsequent
usage of the NAME function. The operation does not change the
state of the file. During the period that the Ada file is open, the
result of any file operations on the file descriptor are undefined.
Note that this is a method to make stderr accessible from an Ada
program.

4. File Access

The following guidelines should be observed when performing file [/O
operations:

" At a given instant, any number of files in an Ada program cali be
associated with corresponding external files.

" When sharing file. between programs, it is the responsibility of
the programmer to determine the effects of sharing files.

* The RESET and OPEN operations to files with mode OVTFILE
will empty the contents of the file in SEQUENTIALAO and TEXTAO.

" Files can be interchanged between SEQUENTIALIO and Dl-
RECTJO without any special operations if the files are of the
same object type.

APPENDIX F 21

9.3 Buffering

The Ada I/O system provides buffering in addition to the buffering provided
by UNIX. The Ada TEXT-1O packages will flush all output to the operating
system under the following circumstances:

1. The device is a terminal device and an end of line, end of page, or end
of file has occurred.

2. The device is a terminal device and the same Ada program makes an
Ada TEXT-1O input request or another file object representing the
same device.

9.4 Package IOEXCEPTIONS

The specification of package IO-EXCEPTIONS:

Package IOEXCEPTIONS is

-- The order of the following declarations must NOT be changed:

STATUS-ERROR : exception;
MODE-ERROR : exception;
NAME-ERROR : exception;

USEERROR : exception;
DEVICE-ERROR : exception;
ENDERROR : exception;
DATA-ERROR : exception;

LAYOUT-ERROR •xception;

end IOEXCEPTIONS;

9.5 Sequential Input-Output

The implementation omits type checking for DATA-ERROR, in case the
element type is of an unconstrained type, ARM 14.2.2(4), i.e.:

APPENDIX F 22

... f : FILETYPE

type et is 1..100;
type eat is array(et range <>) of integer;
X eat(1..2);
Y eat(1..4);

-- write X, Y:
write(f, X); write(f, Y); reset(f, INFILE);

-- read X into Y and Y into X:

read(f, Y); read(f, X);

This will give undefined values in the last 2 elements of Y, and not
DATA-ERROR.

1. Specification of the Package Sequential 10

with BASICIOTYPES;
with IOEXCEPTIONS;

generic
type ELEMENT-TYPE is private;

package SEQUENTIALIO is
type FILE-TYPE is limited private;
type FILE-MODE is (INFILE, OUTFILE);

-- File management
procedure CREATE(FILE in out FILE-TYPE;

MODE in FILE-MODE OUTFILE;

NAME in STRING := .

FORM in STRING :...);

procedure OPEN (FILE in out FILE-TYPE;
MODE in FILE-MODE;
NAME in STRING;

FORM in STRING

procedure CLOSE (FILE in out FILETYPE);

APPENDIX F 23

procedure DELETE(FILE in out FILETYPE);
procedure RESET (FILE in out FILE-TYPE;

MODE in FILEMODE);
procedure RESET (FILE in out FILETYPE);
function MODE (FILE in FILE-TYPE) return FILE-MODE;

function NAME (FILE in FILE-TYPE) return STRING;

function FORM (FILE in FILE-TYPE) return STRING;
function ISOPEN(FILE in FILETYPE) return BOOLEAN;

-- input and output operations

procedure READ (FILE : in FILE-TYPE;

ITEM : out ELEMENTTYPE);
procedure WRITE (FILE : in FILE-TYPE;

ITEM : in ELEMENTTYPE);
function ENDOFFILE(FILE : in FILETYPE) return BOOLEAN;

-- exceptions

STATUSERROR : exception renames IOEXCEPTIONS.STATUSERROR;
MODE-ERROR : exception renames IOEXCEPTIONS.MODEERROR;
NAME-ERROR : exception renames IOEXCEPTIONS.NAMEERROR;
USE-ERROR : exception renames IOEXCEPTIONS.USEERROR;

DEVICEERROR : exception renames IOEXCEPTIONS.DEVICEERROR;
END-ERROR : exception renames IOEXCEPTIONS.ENDERROR;
DATA-ERROR : exception renames IOEXCEPTIONS.DATAERROR;

private
type FILE-TYPE is new BASICIOTYPES.FILETYPE;

end SEQUENTIAL_IO;

9.6 Direct Input-Output

The implementation omits type checking for DATAERROR. in case the
element type is of an unconstrained type.

1. Specification of the P,ckage Direct 10

APPENDIX F 24

with BASICIOTYPES;
with IOEXCEPTIONS;

generic
type ELEMENT-TYPE is private;

package DIRECT.IO is

type FILE-TYPE is limited private;
type FILE-MODE is (IN-FILE, INOUTFILE, OUTFILE);
type COUNT is range O..INTEGER'LAST;
subtype POSITIVE-COUNT is COUNT range 1..COUNT'LAST;

-- File management
procedure CREATE(FILE in out FILE-TYPE;

MODE in FILE-MODE INOUTFILE;
NAME in STRING I
FORM in STRING lots)

procedure OPEN (FILE in out FILETYPE;
MODE in FILEMODE;

NAME in STRING;

FORM in STRING :..);
procedure CLOSE (FILE in out FILETYPE);

procedure DELETE(FILE in out FILETYPE);
procedure RESET (FILE in out FILE-TYPE;

MODE in FILEMODE);
procedure RESET (FILE in out FILETYPE);

function MODE (FILE in FILE-TYPE) return FILE-MODE;
function NAME (FILE in FILE-TYPE) return STRING;
function FORM (FILE in FILE-TYPE) return STRING;
function ISOPEN(FILE in FILETYPE) return BOOLEAN;

-- input and output operations
pr-cedure READ (FILE in FILETYPE;

ITEM out ELEMENT-TYPE;
FROM in POSITIVECOUNT);

procedure READ (FILE in FILE_TYPE;
ITEM out ELEMENT-TYPE);

procedure WRITE (FILE in FILE-TYPE;

APPENDIX F 25

ITEM in ELEMENT-TYPE;
TO in POSITIVECOUNT);

procedure WRITE (FILE in FILE-TYPE;
ITEM in ELEMENTTYPE);

procedure SETINDEX(FILE : in FILE-TYPE;
TO in POSITIVECOUNT);

function INDEX(FILE in FILETYPE) return POSITIVE-COUNT;
function SIZE (FILE in FILE-TYPE) return COUNT;
function ENDOFFILE(FILE : in FILETYPE) return BOOLEAN;

-- exceptions

STATUS-ERROR exception renames IOEXCPTIONS.STATUSERROR;
MODE-ERROR : exception renames IOEXCPTIONS.MODEERROR;
NAME-ERROR : exception renames IOEXCPTIONS.NAMEERROR;
USE-ERROR exception renames IOEXCPTIONS.USEERROR;
DEVICE-ERROR exception renames IOEXCPTIONS.DEVICE_ERROR;
END-ERROR exception renames IOEXCPTIONS.ENDERROR;

DATA-ERROR exception renames IOEXCPTIONS.DATAERROR;

private
type FILE-TYPE is new BASICIOTYPES.FILETYPE;

end DIRECTIO;

9.7 Specification of the Package TextIO

with BASICIOTYPES;
with IOEXCEPTIONS;

package TEXTIO is
type FILE-TYPE is limited private;
type FILE-MODE is (INFILE, OUTFILE);
type COUNT is range 0 .. INTEGER'LAST;
subtype POSITIVECOUNT is COUNT range 1 .. COUNT'LAST;
UNBOUNDED: constant COUNT:= 0; -- line and page length
-- max. size of an integer ouLput field 2# #

subtype FIELD is INTEGER range 0 .. 35;

APPENDIX F 26

subtype NUMBER-BASE is INTEGER range 2 .. 16;

type TYPE-SET is (LOWERCASE, UPPERCASE);

-- File Management

procedure CREATE (FILE in out FILE-TYPE;

MODE in FILE-MODE OUTFILE;

NAME in STRING :...;

FORM in STRING loll);

procedure OPEN (FILE in out FILE-TYPE;

MODE in FILE-MODE;

NAME in STRING;

FORM in STRING loll)

procedure CLOSE (FILE in out FILETYPE);

procedure DELETE (FILE in out FILE-TYPE);

procedure RESET (FILE in out FILE-TYPE;

MODE in FILE-MODE);

procedure RESET (FILE in out FILE-TYPE);

function MODE (FILE in FILE-TYPE) return FILE-MODE;

function NAME (FILE in FILE-TYPE) return STRING;

function FORM (FILE in FILE-TYPE) return STRING;

function IS-OPEN(FILE in FILE-TYPE) return BOOLEAN;

-- Control of default input and output files

procedure SET-INPUT (FILE in FILETYPE);

procedure SET-OUTPUT (FILE in FILETYPE);
function STANDARD-INPUT return FILE-TYPE;
function STANDARD-OUTPUT return FILE-TYPE;

function CURRENT-INPUT return FILE-TYPE;

function CURRENT-OUTPUT return FILETYPE;

-- specification of line and page lengths

procedure SETLINELENGTH (FILE in FILE-TYPE;
TO in COUNT);

procedure SETLINELENGTH (TO in COUNT);

procedure SETPAGELENGTH (FILE in FILE-TYPE;
TO in COUNT);

procedure SETPAGELENGTH (TO in COUNT);

APPENDIX F 27

function LINE-LENGTH (FILE : in FILE-TYPE) return COUNT;

function LINE-LENGTH return COUNT;

function PAGE-LENGTH (FILE : in FILE-TYPE) return COUNT;

function PAGE-LENGTH return COUNT;

-- Column, Line, and Page Control

procedure NEW-LINE (FILE in FILETYPE;
SPACING in POSITIVE-COUNT 1);

procedure NEW-LINE (SPACING in POSITIVE-COUNT 1);
procedure SKIP-LINE (FILE in FILETYPE;

SPACING in POSITIVE-COUNT 1);

procedure SKIP-LINE (SPACING in POSITIVE-COUNT 1);
function ENDOFLINE (FILE in FILE_TYPE) return BOOLEAN;
function ENDOFLINE return BOOLEAN;
procedure NEW-PAGE (FILE in FILETYPE);

procedure NEW-PAGE
procedure SKIP-PAGE (FILE in FILETYPE);
procedure SKIP-PAGE

function END_0FPAGE (FILE in FILE_TYPE) return BOOLEAN;

function END_0FPAGE return BOOLEAN;
function ENDOFFILE (FILE in FILETYPE) return BOOLEAN;
function ENDOFFILE return BOOLEAN;

procedure SETCOL (FILE in FILETYPE;
TO in POSITIVECOUNT);

procedure SETCOL (TO in POSITIVECOUNT);

procedure SET-LINE (FILE in FILE-TYPE;
TO in POSITIVECOUNT);

procedure SET-LINE (TO in POSITIVECOUNT);
function COL (FILE in FILE-TYPE)

return POSITIVE-COUNT;
function COL return POSITIVE-COUNT;
function LINE (FILE : in FILE-TYPE)

return POSITIVE-COUNT;
function LINE return POSITIVE-COUNT;

function PAGE (FILE : in FILE-TYPE)

return POSITIVE-COUNT;
function PAGE return POSITIVE-COUNT;

APPENDIX F 28

-- Character Input-output
procedure GET (FILE in FILE_TYPE;

ITEM out CHARACTER);
procedure GET (ITEM out CHARACTER);
procedure PUT (FILE in FILETYPE;

ITEM in CHARACTER);
procedure PUT (ITEM in CHARACTER);
-- String Input-Output

procedure GET (FILE in FILE-TYPE;
ITEM out STRING);

procedure GET (ITEM out STRING);
procedure PUT (FILE in FILE-TYPE;

ITEM in STRING);
procedure PUT (ITEM in STRING);
procedure GET-LINE (FILE : in FILETYPE;

ITEM : out STRING;
LAST : out NATURAL);

procedure GET-LINE (ITEM : out STRING;
LAST : out NATURAL);

procedure PUT-LINE (FILE : in FILE-TYPE;
ITEM : in STRING);

procedure PUTLINE (ITEM : in STRING);

-- Generic Package for Input-Output of Integer Types
generic

type NUM is range <>;
package INTEGERIO is

DEFAULT-WIDTH FIELD NUM'WIDTH;
DEFAULT-BASE NUMBER-BASE 10;
procedure GET (FILE in FILE-TYPE;

ITEM out NUM;
WIDTH in FIELD 0);

procedure GET (ITEM out NUM;
WIDTH in FIELD 0);

procedure PUT (FILE in FILETYPE;

APPENDIX F 29

ITEM in NUM;
WIDTH in FIELD := DEFAULTWIDTH;

BASE in NUMBER-BASE := DEFAULTBASE);

procedure PUT (ITEM in NUM;

WIDTH in FIELD := DEFAULT_WIDTH;

BASE in NUMBER-BASE := DEFAULTBASE);

procedure GET (FROM in STRING;

ITEM out NUM;

LAST out POSITIVE);

procedure PUT (TO out STRING;

ITEM in NUM;

BASE in NUMBER-BASE := DEFAULTBASE);

end INTEGERIO;

-- Generic Packages for Input-Output of Real Types

generic
type NUM is digits <>;

package FLOATIO is
DEFAULT-FORE FIELD 2;
LSFAULTAFT FIELD NUM'digits - 1;
DEFAULTEXP FIELD 3;
procedure GET (FILE in FILE-TYPE;

ITEM out NUM;
WIDTH in FIELD 0);

procedure GET (ITEM out NUM;
WIDTH in FIELD 0);

procedure PUT (FILE in FILE-TYPE;
ITEM in NUM;
FORE in FIELD DEFAULT-FORE;
AFT in FIELD DEFAULT-AFT;
EXP in FIELD DEFAULTEXP);

procedure PUT (ITEM in NUM;
FORE in FIELD DEFAULTFORE;
AFT in FIELD DEFAULTAFT;
EXP in FIELD DEFAULTEXP);

procedure GET (FROM in STRING;
ITEM out NUM;

APPENDIX F 30

LAST out POSITIVE);

procedure PUT (TO out STRING;
ITEM in NUM;

AFT in FIELD DEFAULT-AFT;

EXP in FIELD DEFAULTEXP);

end FLOATIO;

generic
type NUM is delta <>;

package FIXEDIO is

DEFAULT-FORE : FIELD NUM'FORE;

DEFAULT-AFT : FIELD NUM'AFT;

DEFAULTEXP : FIELD 0;
procedure GET (FILE in FILE-TYPE;

ITEM out NUM;

WIDTH in FIELD 0);

procedure GET (ITEM out NUM;

WIDTH in FIELD 0);

procedure PUT (FILE in FILE-TYPE;

ITEM in NUM;

FORE in FIELD DEFAULT-FORE;

AFT in FIELD DEFAULTAFT;

EXP in FIELD DEFAULTEXP);

procedure PUT (ITEM in NUM;

FORE in FIELD DEFAULTFORE;

AFT in FIELD DEFAULTAFT;

EXP in FIELD DEFAULTEXP);

procedure GET (FROM in STRING;

ITEM out NUM;

LAST out POSITIVE);

procedure PUT (TO out STRING;
ITEM in NUM;

AFT in FIELD DEFAULT-AFT;
EXP in FIELD DEFAULTEXP);

end FIXED.IO;

-- Generic Package for Input-Output of Enumeration Types

APPENDIX F 31

generic
type ENUM is (<>);

package ENUMERATIONIO is
DEFAULT-WIDTH FIELD 0;
DEFAULT-SETTING TYPE-SET UPPER-CASE;

procedure GET (FILE in FILE_TYPE;
ITEM out ENUM);

procedure GET (ITEM out ENUM);
procedure PUT (FILE in FILE-TYPE;

ITEM in ENUM;
WIDTH : in FIELD DEFAULT_WIDTH;
SET : in TYPE-SET DEFAULTSETTING);

procedure PUT (ITEM : in ENUM;
WIDTH : in FIELD DEFAULT_WIDTH;
SET : in TYPE-SET DEFAULTSETTING);

procedure GET (FROM in STRING;
ITEM out ENUM;
LAST out POSITIVE);

procedure PUT (TO out STRING;
ITEM in ENUM;
SET in TYPE-SET := DEFAULTSETTING);

end ENUMERATIONIO;

-- Exceptions
STATUS-ERROR exception renames IOEXCEPTIONS.STATUSERROR;
MODE-ERROR exception renames IOEXCEPTIONS.MODEERROR;
NAME-ERROR exception renames IOEXCEPTIONS.NAMEERROR;
USE-ERROR exception renames IOEXCEPTIONS.USEERROR;
DEVICE-ERROR exception renames IOEXCEPTIONS.DEVICEERROR;
END-ERROR exception renames I0_EXCEPTIONS.ENDERROR;
DATA-ERROR exception renames IOEXCEPTIONSDATAERROR;
LAYOUT-ERROR exception renames IOEXCEPTIONSLAYOUT_ERROR;

private
type FILEBLOCKTYPE is new BASICIOTYPES.FILETYPE;

type FILEOBJECTTYPE is record
IS-OPEN BOOLEAN := FALSE;
FILE-BLOCK FILEBLOCKTYPE;

APPENDIX F 32

end record;
type FILE-TYPE is access FILEOBJECTTYPE;

end TEXTIO;

9.8 Low Level Input-Output

The package LOWLEVELJO is empty.

9.9 Package TERMINAL

The specification of package TERMINAL:

with COMMONDEFS;

use COMMONDEFS;
Package TERMINAL is
procedure SETCURSOR(ROW, COL in INTEGER);
procedure INCHARACTER(CH : out CHARACTER);
procedure IN-INTEGER (I : out INTEGER);
procedure IN-LINE (T : out TERMINALLINE);
procedure OUTCHARACTER(CH : in CHARACTER);
procedure OUT-INTEGER (I : in INTEGER);
procedure OUT-INTEGER-F(I, W : in INTEGER);
procedure OUT-LINE (L : in STRING);
procedure OUT-STRING (S : in STRING);
procedure OUT_NL;
procedure OUTFF;

procedure FLUSH;
procedure OPENLOGFILE(FILENAME in STRING);
procedure CLOSE.LOGFILE;
end TERMINAL;

