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Abstract
Diqt ro-al

A distributed security architecture is proposed for incorporation into group oriented dis! V~
tributed systems and, in particular, into the Isis distributed programming toolkit. The primary
goal of the architecture is to preserve the Isis abstractions in hostile environments. These ab-
stractions include process groups and causal and atomic group multicast. Moreover. a delegation

and access control scheme is proposed for use in group qriented systems. The focus of the paper
is the security architecture; particular security protocol) and cryptosystems are not emphasized. ,'

1 Introduction

Systems that address security issues in distributed environments have traditionally been constructed

upon the remote procedure call (RPC) paradigm of communication (e.g.. [BirS5.SNSS8.Sat89.
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TY91]). Many systems, however, utilize more general types of communication which have not

enjoyed the same amount of attention from the security community. One such alternative is group

oriented communication, based on the process group abstraction [BCG91]. Process groups have

been incorporated into many distributed systems [OSS80,CZ35.BJ87PBSS9.LLS90.KT91] and have

been shown to facilitate the implementation of complex distributed algorithms and fault tolerant

applications [CZ85,BJ87,LLS90]. The benefit in preserving the process group abstraction in hostile

environments could therefore be great. In particular, it would facilitate the construction of securely

fault tolerant applications, i.e., fault tolerant applications which remain correct even when under

malicious attack.

To illustrate, consider a stock brokerage that wishes to establish an online trading service at the

New York Stock Exchange (NYSE). Since the majority of the firm's trading at the NYSE will

be executed through this trading service, its availability and performance are crucial, and thus it

must be replicated. The firm's programmers therefore choose to implement the service as a fault

tolerant process group in their favorite group oriented programming environment. While the firm

cai protect its own sites at the exchange from corruption, the firm's programmers cannot trust that

other sites, or the network by which the sites communicate, will behave as expected. Nevertheless.

interaction with other sites is necessary for efficient trading, and thus the group is forced to execute

in a potentially hostile environment. In particular, intruders (e.g.. corrupt, competing traders)

may attempt to infiltrate the group, alter or forge group communication. or undermine the group

by tampering with the group abstractions on which the consistency and correctness of the service

relies. If the group oriented programming environment does not defend at least its own abstractions.

then the firm's programmers are faced with an unattractive choice: either they reimplement the

group oriented programming environment to include defenses against these forms of attack. or they

dismiss the process group approach and resort to other, possibly less favorable ones.

This paper presents a distributed security architecture to be integrated with group oriented systems

and, in particular, with the Isis toolkit [BJ87]. 1 Isis is a toolkit for distributed programming which

provides process group and reliable group multicast abstractions. With respect to Isis. the aims

of this work are threefold. The first is to weaken the execution model as.,umed by Li- o that

malicious behaviors are admitted, while still preserving the abstractions provided 1) Isis. This

change will enable programmers to rely upon the Isis abstractions even in hostile environments and

thus will facilitate the construction of fault tolerant services which remain correct even when under

malicious attack. The second is to enhance the Isis abstractions to be more suitable for use in a

'More specifically, this security architecture is tailored to a reimplementation of the Isis toolkit called Horns.

named after the son of Isis in Egyptian mythology. In this paper, we will use Horus terminology, which may be
unfamiliar to users of earlier versions of Isis.



hostile environment. The third is to accomplish the first two without unreasonably degrading the

performance of the toolkit.

The goal of this paper is to describe the major features of our security architecture. In particular.

we do not discuss specific cryptosystems or security protocols in detail. We instead focus on the

mechanisms we use to protect the abstractions which are fundamental in Isis and. we believe, in a

group oriented setting.

The rest of this paper is structured as follows. We begin in section 2 with a more detailed but

informal description of the abstractions provided by Isis. Then, in section 3 we discuss the system

model for which Isis is designed and the model we consider by weakening it to allow malicious

behaviors. At this point we will be in a position to clarify our goals and to enumerate what is

needed to achieve them. Section 4 addresses this and proposes an architecture to achieve these

requirements. Finally, section 5 describes a delegation and access control scheme for use in group

oriented systems. We end with a discussion of future directions of research.

2 The Isis Abstractions

The abstractions provided by Isis can be separated into two types. namely the process group and

virtual synchrony abstractions. A process group is simply a collection of processes with an associated

group address. Usually a process group is created for cooperation in a distributed task such as

replicating data, processing data in parallel, or providing fault tolerance. although Isis enforces

no restrictions on the purposes for which groups are formed. Groups may overlap arbitrarily, and

processes may create and join groups at any time. MorJover. a process may leave a group. either

by requesting to do so or by failing (i.e., crashing). A group G can thus be seen as progressing

through a sequence viewo(G), view 1(G),... of views, where

1. viewi(G) C P, where P is the set of all processes in the system.

2. viewo(G) = 0, and

3. viewi(G) and viewi+i(G) differ by the addition or subtraction of exactly one process.

Members of a group learn about the membership of the group through certain events. More pre-
cisely, execution of a process p E P is modeled as a sequence e', .... of events each corresponding

0, 1 ofeens..c.orepodn

to the execution of an indivisible action. One such possible event is the deliver.- of the i'th group
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view viewi(G) of a process group G, denoted by viewp(i, G). Views are delivered to processes in

sequential order, although p observes viewp(i + 1, G) if and only if p E view(G) u view1 +j (G); i.e..

a process observes only those subsequences of viewo(G), view1 (G).... which begin when it becomes

a member and end when it is removed. If p E views(G), then when viewp(i, G) is observed at p.

we say that p is in the i 'th group view of G until the event viewp( i + 1. G).

The primary means of communication in Isis is group multicast. A process in a group can multi-

cast to the group by specifying the group address as the destination.2 The abstraction of virtual

synchrony consists of certain delivery guarantees regarding group multicasts. First, all destination

processes of the message are in the same group view when the message is delivered, and the set of

destination processes is precisely the members of that view. Second. all operational destinations

eventually deliver the message, or, and only if the sender fails, none do. Third. when multiple des-

tinations receive the same messages, they observe consistent delivery orders. in one of the following

two senses.

The first and least restrictive delivery ordering of interest is the causal delivery ordering, based

upon the potential causality relation defined in [Lam78I. To define this ordering, we introduce two

more types of events which can be executed or observed by a process. If p is in some view of G,

then eP might be the event which multicasts a message m to G, denoted mcastp( m. G). or which

delivers to p a message m multicast to G, denoted deliver,( m. G). The potential causalii v relation

"is defined as the irrefiexive, transitive closure of the smallest relation "'-*" satisfying

1. P and
1. for all i and p, ef , e,+ and

2. for all m, p, q, and G, mcastp(m, G) ,. deliverq(z.G).

Isis' causal delivery ordering property guarantees that if mcastp(m. G) - mcastq(ni'. G'). then

at any common destination r, deliver,(m, G) ---- deliver( in'. G'). In words, if the multicast of

message m causally precedes the multicast of message m'. then ni is delivered before m' at any

common destination. The multicast protocol which implements this property is called CBCAST.

This delivery ordering can be extended to a total ordering in the following sense, which expresses

the second and more restrictive delivery ordering provided by Isis: two messages sent concurrently

(i.e., that are not related causally) to the same group are delivered to all members of the group in

the same order. In terms of "-", this property is specified by additionally requiring that if at some

2Actually, nonmembers can also multicast to a group in Isis. although in this paper we do not consider this case.
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p, deliverp(m, G) - deliverp(m', G), then at all other common destinations q. deliverq( fl. G) -

deliverq(m', G). 3 This property is implemented by the ABCAST protocol.

3 The System Model

The basic system model for which Isis is implemented is a very benign one. Informally. the system

consists of a set S of sites which execute the set P of processes. 4 Sites and processes may fail. but

only by crashing detectably, and if a site fails then so do the processes residing upon it. The sites.

and the processes they host, communicate via an asynchronous network: no bounds on message

transmission delays are assumed.

The system model we consider in this paper is obtained by weakening aspects of this model in

various ways, namely by allowing the network or sites to be corrupted by an intruder. In the

terminology of [VK83], a corrupt network may suffer certain passive attacks, namely the release

of message contents, and certain active attacks, namely message-stream modification. spurious

association initiation, and denial of message service, at the hands of an intruder. Release of message

contents occurs when an intruder simply observes intelligible messages passing over the network

without interfering with their flow. Message-stream modification includes transient attacks on the

authenticity, integrity and ordering of messages. Spurious association initiation includes attacks

in which an :ntruder replays a previously recorded association initiation sequence or attempts to

establish associations under a false identity. Lastly, denial of message service attacks are essentially

persistent message-stream modification attacks and often include discarding or delaying all messages

between two communicating endpoints. Note, however. fhat we do not consider one other type of

attack enumerated in [VKS3], namely traffic analysis. In a traffic analysis attack an intruder gathers

information about the contents of unintelligible messages from the frequency of transissions and

the lengths, sources and destinations of the messages. In this paper we make no effort to deal with

traffic analysis attacks.

In addition to network corruption, there exists a set C C S of corrupt sites. A corrupt site may

exhibit arbitrarily malicious behaviors, limited only by the aforementioned network assumptions
3Several other reasonable definitions are possible for a total delivery order, although current plans for Horns

include implementation of this one only. Another option which may be considered in the future is if at some p.

deliver,(m, G) - deliver,(m'. G'), then at all other common destinations q. deliver,(m. G) - deliverqm' G').

However, we will not concern ourselves with this in this paper.
4Unless otherwise stated, throughout this paper the term "process" refers to an application process. and the term

"site" refers to a workstation running an operating system and, once added. Isis.
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and the assumption that it is computationally infeasible for an intruder to break the cryptosystems

we employ. Intuitively, a corrupt site is one on which the operating system or Isis code or data has

been either accidentally or maliciously altered, disrupted or replaced.

In this work we make two assumptions about the operating system running at each site, if not

corrupt. First, we assume that it authenticates in a secure fashion the user identifiers of the

processes it executes.' Second, we assume that it provides protected, private address spaces for.

and private, authentic message passing between, both system and user processes local to the site.

This includes the protection of virtual address spaces stored on external media.6

4 Protecting the Isis Abstractions

Given this statement of the system model, we are now in a position to specify our goals more

precisely. Intuitively, given a process group, we would like to preserve the abstractions guaranteed

to the members of the group by Isis, as described in section 2. That is. we would like to guarantee

that a process in a group observes a correct sequence of events. This is clearly impossible. however.

if a site hosting a group member is corrupt, because that site can cause arbitrary events to be

observed in any order by any process it hosts! We thus restrict our efforts to process groups which

are hosted by sites not in C. That is, let sitesi(G) be the set of sites hosting the members of

viewi(G), and let an uncorrupt group G be one such that C n (Ui sitesi(G)) = 0. Then. our goal

is to modify Isis to guarantee that in any uncorrupt group G the Isis abstractions are observed by

processes in Ui viewi(G) with respect to group G. Accordingly. for the remainder of the paper.

when we speak about protecting a certain abstraction wih respect to a process group. we assume

that the group is uncorrupt. 7 In section 5 we justify this assumption by addressing the question of

how access to groups can be controlled.

We now consider what must be done to achieve this goal. Of course. in a single paper we could not

hope to detail every step which is required to achieve this in a toolkit as complex as Isis. Thus. we

5This is a rather strong requirement, but the mechanisms described in this paper facilitate its implementation. For

example, if smart-card technology is available, each user and site can be treated as an Isis group and the delegation

mechanisms of section 5 can be used to authenticate the user identifiers of processes executed from remote sites, in

a fashion similar to that of DSSA [GM90]. Even without such technology, the authentication mechanisms of section

4.1 provide a secure communication channel between any two sites which can he used to facilitate the athentication

of user identifiers.
'If the operating system pages over the network, this requires the it-.e of a pager which encrypts a- it pages.
7 We also assume that the Isis failure detector and namne serict are not corrupt atd reside oni illicorrul)t 'Ile!.

These services will be mentioned in sections 4.1 and 4.2. respectively.
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limit our discussion to what we see as the three major obstacles, which we outline below and later

discuss in detail.

First, due to the very fact that preservation of the abstractions requires communication, a necessary

step is to develop a subsystem which provides message authentication. In particular. this subsystem

should allow a site in a group (i.e., a site hosting a member of a group) to detect attempts by an

intruder to insert, alter or replay group messages or to impersonate another site in the group. If
we can achieve this, a site in the group can rely upon the legitimacy and authenticity of messages

apparently from other sites in the group. In section 4.1 we propose an authentication subsystem

which accomplishes these goals.

Once we have it, an authentication subsystem of this strength yields additional benefits. Since

altered messages are detected (and ignored), denial of message service becomes indistinguishable

from lengthy message delivery times. And, since Isis is constructed for an asynchronous environ-

ment, Isis will behave correctly under such attacks. That is. while a network intruder can prohibit

the liveness of Isis and cause sites to be mistakenly deemed faulty by denying message service, these

attacks will not result in the violation of any safety properties guaranteed by Isis to an uncorrupt

group. Similarly, attempts by an intruder to reorder messages on the network are fruitless, as Isis

assumes that the network can do this anyway.

The authentication subsystem therefore nullifies the active network attacks described in section 3.

as well as any attempts to impersonate sites in an uncorrupt group. Moreover, the authentication

subsystem severely limits other types of attacks an intruder can mount. For example, the majority

of the process group abstraction and the first two aspects of virtual synchrony listed in section 2 are

easily preserved, because their implementations require communication local to the group. which

by assumption contains only uncorrupt sites.

The second obstacle, and the remaining weakness in the process group abstraction, lies in the

protocol by which a process joins a group. In a request to join a group the process specifies

the group address, but unless the process' site can authenticate the group specified by the group

address, then the first group view the process observes, and hence all subsequent group views. may

be fallacious. A related issue which must be addressed is how a process can obtain an authentic

group address for a group it wishes to join. In section 4.2 we address these issues.

Third, the intruder can greatly complicate the definition and preservation of causality in our system

model. In addition to Isis, numerous other systems have implemented protocols which guarantee

causal delivery orderings among messages (e.g.. [PBS89,LLSg0]). and thus interest in preserving

causality in hostile environments is not solely among Isis users. Moreover. CBCAST (i.e.. causal



multicast) is central to virtual synchrony in Isis also because ABCAST, the protocol which imple-

ments the total ordering property, is implemented in terms of it [BSS90]. Section 4.3 is devoted to

the problems of understanding and preserving causality in our system model.

4.1 Authentication

We introduce authentication mechanisms at the lowest layer of the Isis toolkit, namely the Multicast

Transport Service (MUTS) (vR91. A copy of MUTS resides on each site, logically at the transport

layer of the ISO OSI Reference Model, and provides to the layers above it at-most-once. sequenced

communication to other sites. MUTS has the job of providing these abstractions while insulating

the higher layers from the particular transport protocol used. which may exploit hardware multicast

capability.

For our purposes, the MUTS layer is the obvious place at which to authenticate messages. Indeed.

it would be fruitless to authenticate messages only at higher layers of the Isis system, as then

they could not rely upon the abstractions provided by MUTS. And. other systems (e.g.. DASH

[AR87]) have identified additional advantages in authenticating between sites, as opposed to at

higher levels. 8

Before presenting our authentication mechanisms, we must briefly consider how MUTS works. The

primary structure recognized by MUTS is the group entity. The group entity corresponding to the

process group G is the collection of sites hosting members of the group. and accordingly it progresses

through the sequence siteso(G),sites(G),... of sets. A MUTS layer learns about changes to the

membership of a group entity from the layer above it. Iwhich communicates with other sites in

the group entity and with the Isis failure detector [BJ87,RB91J to make this determination. Each

MUTS layer thus has a current member list of each group entity it is in. 9 When MUTS receives a

message from a higher layer to be multicast to a group entity. it opens a connection to the members

of its current member list for the group entity, if one does not alreadv exist. A connection is

associated with exactly one group entity and is simply a logical end-to-end data path from the

originating site to the other sites in the originator's member list. If a site is removed from the

originator's member list, it is also removed from the connection. but if a site is added to the

"Moreover, by our assumptions of section 3 regarding the operating system and by the fact that all Isis commu-

nication flows through MUTS, authentication between MUTS layers also prevents any jinpersonation whatsoever of
Isis by a malicious user process residing on an uncorrupt site.

9Member lists should not be confused with group views delivered to the application process. The latter constitute

the process group abstraction and are synchronized with communication as described in section 2. The former.

however, consist of sites and are not coordinated with incoming communication or other events.
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originator's member list, the old connection is disassembled and a new connection is negotiated for

the new member list. To send a message on a connection, MUTS breaks the message into packets.

and hands these packets to the transport protocol for transmission. Each packet carries with it

the connection number and a sequence number for the connection. Connection numbers are unique

system-wide, and the sequence numbers for a connection form an increasing sequence. When the

sequence reaches its upper bound, the connection is disassembled and a new one is negotiated.

Packet acknowledgements are managed by MUTS with a sliding-window protocol which has been

adapted for use with multicast communication.

Techniques for authenticating messages (or in this case, packets) have existed in the literature

for many years. Traditionally, these methods have depended upon encryption, but methods based

upon pseudo-random functions are theoretically at least as attractive. Informally. a pseudo-random

function f has the property that if f is unknown, it is computationally infeasible to produce f( m)

for any m with a probability of success greater than random guessing. even after having seen several

other (', f(m')) pairs. Thus, given a family of pseudo-random functions {f } NEp. indexed by

keys from some key space K, two parties which share a secret key K can authenticate their messages

to each other by appending fK(m) to each message m [Riv9Oa]. Moreover. they can be sure of

the freshness of their messages if timestamps, nonce identifiers. or sequence numbers are included

therein.

In Isis, we will employ an efficient approximation of a pseudo-random hash function: two candidates

are fK(M) = g(K,M) and fK(M) = EK(g(M)), where g is a sufficiently strong one-way hash

function (e.g., [R.iv9ob]) and EA" is an encryption function (e.g.. [DES77]) with key K. Given such

an approximation, authentication methods based upon pseudo-random functions are generally more

efficient than those based upon encryption. However, enctyption is more useful for defending against

the release of message contents, and for some applications this is desirable. We will thus offer both

alternatives - when sending a message, an application process can request that it be encrypted

or that it be authenticated via a pseudo-random function. For the rest of this section. we discuss

only the latter option; methods using encryption are similar.

For MUTS we generalize the ideas presented above to take advantage of hardware muhicast capa-

bilities that may be exploited by the transport protocol. Instead of establishing a shared key for

every pair of MUTS layers, we establish a shared key per connection. called a connection key. The

connection key is a secret held by the sites involved in the connection and is used to authenticate

messages sent on the connection. When a connection is created. the site initiating the connection

generates a fresh connection key K and distributes it to the sites on its member list. Then. the

multicast "P, fK(P)" of packet P on the connection can be verified at all destinations (and a packet



encrypted under K can be deciphered only at sites involved in the connection). Moreover. provided

that the connection is fresh, each destination can verify that the packet is fresh. because P contains

the sequence number for the connection. Here we do not detail the protocol by which a connec-

tion is opened, although we remark that freshness of connections is guaranteed by incorporating

timestamps l' into the appropriate connection initiation messages.

In order to authenticate and distribute connection keys, we employ a group key. This is actually a

private key/public key pair, possession of the private component of which is evidence of membership

in the group entity. The group key for a group is created by the site hosting the first member of

the group, and as other processes join, the group key is given to their sites. Connection keys for a

group are thus communicated in the obvious way, encrypted with the public key of the group and

signed with the private key of the group.

It must be emphasized at this point that sites hold connection keys and private keys of groups: user

rrccesses do not. Thus, when a process leaves a group voluntarily, the site on which it resides can

destroy the group and connection keys which it held on behalf of the process. By doing so. if the

site is subsequently corrupted, the intruder will not be able to masquerade as a group member."'

Similarly, if a member process crashes, again the site will destroy the keys it held on the process*

behalf. If the entire site crashes, we rely upon the loss of volatile storage to eliminate all keys from

memory.

Of course, we must discuss how group keys are distributed. Like all other key distribution schemes.

in order to distribute a group key we require some form of an authentication service. i.e.. an a

priori trusted authority. We choose to employ a public key authentication service due to the

security advantages which can be achieved [Dif88]. Asociated with the authentication service

is a private key (known only to the service) and a corresponding public key. The public key is

given to the MUTS layer on each site. along with the site's own site key (a private key/public

key pair), when the site is booted.1 2 Once the site is booted. it requests from the authentication

service its certificate, which contains the identifier and public key of the site and the expiration

'°See appendix A.

"Formally our assumptions exclude the subsequent corruption of the site of a former group member. although in

practice this erasure of keys is prudent. Our assumptions also omit the case in which a site. due to corruption, does

not destroy the group or connection keys when its process leaves the group.
"The boot procedure appropriate for each site in a particular setting is depemdent on ma1y factors. .uch as the

physical security of the site. whether the site is diskless. and the role of the -ite in the -.stem. Thu-. a complete

discussion of this issue is outside the scope of this paper. However. the boot procedure used at each 'ire hould

prevent an intruder from booting the site with false operating system or Isis code or with a false authentication

service public key.

10



time of the public key, all signed by the private key of the authentication service. Each site's

certificate is subsequently stored at, and disseminated from. the site itself. This method of storing

certificates has the benefit of eliminating the need for a public key or certificate repository as is

used in many security architectures (e.g., Strongbox [TY9l]), and although we will not describe

our key distribution protocols here, it also does not in general increase the message complexity of

our protocols due to the particular patterns of communication seen in Isis. We emphasize that

no interaction with the authentication service is required to distribute the private key of a group.

Ideally the authentication service would interact with a site only when it needs to give the site

a fresh certificate, and indeed the authentication service could be taken offline until such a need

arises.

We can generalize this scheme by allowing mulciple authentication services, as originally proposed

in [BLNS86]. Intuitively, each authentication service would be responsible for generating certifi-

cates for some subset of the sites, and each site would be given, at boot time. the public key of the

authority it should trust. This generality has consequences. however, in the sense that authenti-

cation among sites which trust different authentication services becomes complex. One soluton is

to allow several authentication services to generate certificates for the same site. and another is to

employ "higher authorities," much like the cross-certifying authorities of SPX [TAO91]. to vouch for

the public keys of other authentication services. The details of this have not Yet been sufficiently

investigated, however, and so we will not discuss them further here. In the first implementation of

this system, we intend to use a single authentication service, and this generalization is regarded as

an enhancement for later development.

4.2 Joining Groups

As described earlier, the protocol by which a process joins a group is crucial to the process group

abstraction, because if this is not secure, an intruder may cause the process to observe fallacious

group views and thus to act incorrectly. In the current plans for Isis. the protocol for a process to

join a group runs as follows. First, the requesting process specifies the group address of the group

it wishes to join. This address contains the address of a group contact. which is a distinguisled site

in the group. The process' site sends the join request to the group contact. which then formally

admits the process to the group and gives the process' site its first group entity member list. 13

In order for the join protocol to be secure, the process" site must be able to authenticate the response

L3 Moreover. if the requesting site inc-uded its certiticate in the request. then the groii conitact coi al i ,et irit

the private key of the group encrypted under the site's public key.
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from the group contact. It would appear that this is done easily via the methods of section 4.1:

the group contact signs its response with its site key and appends its certificate. thus allowing the

receiving site to verify it. A difficulty arises, however, if the group address is outdated in the sense

that the group contact contained therein has since left the group. Even though in theory our model

prohibits the former group contact from being corrupted. in practice it would be prudent fciz the

requesting site to verify that the supposed group contact is genuinely in the 6roup before accepting

any group information from it. To facilitate this, we include the public key of the group in the

group address, and thus when the requesting process specifies the group address, its site can verify

that the supposed group contact is actually in the group.

Of course, the success of this scheme hinges on the ability of a process to obtain the authentic

address of a group it wishes to join; for the remainder of this section we address this issue. In Isis,

a process can obtain a group address in either of two ways: it can simply receive it from another

application process, or if the group is registered at the Isis name service, then the process can

request the group address from the name service by specifying the group name. The name service

is a fault tolerant Isis service which implements a hierarchical name space. like that of a file system

except with groups at the leaves instead of files. A group name is a path from the root to a leaf in

that hierarchical name space. A group member can register the group address under some iiame at

the name service anytime after the group is created. A group which has nor been registered with

the name service is an anonymous group, and the address of an anonymous group can be obtained

only from another application process (or by creating the group).

If a process receives an address from another application process. it can trust that address only

as much as it trusts the other process. This is not to say that this scheme is worthless for secure

operations. On the contrary, if the sending process is a Member of either a "'trustworth" process

group or a group which was delegated by such a group (see section 5). and proves it by having its

site exhibit knowledge of the private key of the appropriate group and by including the appropriate

credentials, then the address may be perfectly acceptable. But. to verify the claims of the sending

process, the receiving process must obtain the group addresses (i.e.. the public keys) of the delegat-

ing groups and the group f which the sending process claims to be a member. So. in many casps

verification of group addresses received from other processes eventually requires that the verifying

process be able to obtain legitimate group addresses from the name service.

Accordingly, we now consider how authentic group addresses can be obtained through the niame

service. The authentication mechanisms of section 4.1 can easily he adapted to allow a site to

authenticate the name service, say by having the name service sign group addresses with its pri-

vate key and having the authentication service produce a certificate for the tame ervice. So.
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authenticating information received from the name service is not a problem.

The major impediment to the success of this scheme is the inability of the name service to authen-

ticate information sent to it by a process attempting to register a group. Intuitively. this is because

the name service has no reason to believe one process over another regarding the correct address of

a group, as it keeps no record of group membership. We solve this problem by allowing processes

to impose access controls upon the directories of the hierarchical name space. thus providing the

name service some means by which to discriminate between valid and invalid information. When

a process creates a directory of the name space, it specifies access control policy for the directory

that restricts which processes, and in particular the sites from which these processes. can register

a group or create a directory in that directory; in section 5. we describe a method bv which this

access control policy can be specified and enforced. The name service will then allow only an

authorized process (residing on an authorized site) to register a group in the directory. Provided

that a directory allows registrations only from nonmalicious processes on uncorrupt sites. the name

service can verify the authenticity of a group address being registered in that directory simply by

authenticar,ag the registering process' site via the methods of section 4.1.

4.3 Causal Multicast

As previously described, the CBCAST protocol implements the causal delivery ordering l)roperty

of virtual synchrony. It is implemented above the MUTS layer described in section 4.1. and thus its

messages can be authenticated by the methods described there. Even having limited the intruder's

ability to alter and forge messages, though, there are still difficulties in determining what causality

means, and precisely what abstraction we should try $o protect. in our system model. In this

section we address these issues. but first we illustrate the role of CBCAST in the basic Isis model.

Consider first an instance of single group causality, illustrated in part (a) of figure 1. This shows

a single process group with four members P1. P2, P3 and P4. residing respectively oi "ites *-% -2.

53 and 34. Time increases down the vertical lines, and an arrow ending at the vertical line below

a process indicates tne delivery of the multicast represented by the arrow to the process. 4 In this

scenario, P4 multicasts ml to the group, and after s2 delivers it to P2. P2 multicasts in) to the

group. Causality requires that m2 be delivered to P, after il. as indicated by the delay of message

m2 until after ml in part (a) of figure 1.

4 In Isis, we distinguish between the receipt of a message at a site and the deItv'ry of a me.sage to the application

process.
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Figure 1: Causal Multicast

Pi P2 P3 P4 Pi P3 P4 Pi P3 P4

P2 P2

mI ml 1

2 .3

(a) Single group causality (b) Multiple group causality (c) Causality violated

The more complex flavor of causality is called multiple group causality. illustrated in part Nh of

figure 1. In this situation the four processes are organized into three overlapping process groups

G, = {PI,P3,P4}, G 2 = {P2.P3} and G3 = {PlP2}. Here P4 inulticasts message niu to -,,roilp G1.

After ml is delivered to P3, P3 multicasts M2 to G2, and upon delivery of Iii? to P2- P-2 imilticasts

M3 to G 3. Multiple group causality requires that M3 be delivered to p, after oi 1 . as indicated in

the figure.

In our system model, the definition and preservation of causality is more complex. First. compli-

cations arise from the fact that (processes on) corrupt sites can exhibit arbitrarv communication

behavior, and not simply the group multicasts by wlich causality is defined in Isis. In fact. this

holds for any site in a corrupt group, because the intruder can forge group comunnicatioln for

those sites. Second, even with a reasonable definition of causality that incorporates the behavior

of corrupt sites, it is not clear how we could (or if we should) respect causal obligation, oriinating

in corrupt groups, again because communication in corrupt groups. and thus the perceived order

in which events occurred in a corrupt group, may be fallacious. Third. while communication still

occurs only through message passing, the intruder is an observer of all messages and can respond

from a corrupt site based upon the information in them. For example. in part (b) of figure 1. the

intruder could observe ml on the network and, if 52 E C. could inmediatelv .send 1?. ba.ed upon

information in ml and without waiting for m2 ; now is there a causal relationship between in, and

M3 ? Of course, we can avoid this issue by encrypting all mnes.age,. but thi., i a cotlv ,tep to take
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before even defining the notion of causality in our system model.

For the sake of brevity, we address these issues elsewhere and in this paper provide the following

guarantee: if pl,... ,p,, are (not necessarily distinct) processes residing on uncorrupt sites and there

exists a causal chain

eIt -,+e2 (1)

such that

* e = mcastp1 (m, G),

In = mcastPn(m', G'),

" G and G' are uncorrupt, and

" if e' = mcastp,(rn, 6) and 6 is corrupt, then p, = P1+l (i.e.. the causal chain is well-defined).

then deliverq(m, G) --- deliverq(m', G') at all destinations q of m and in'. We argue that this

is a reasonable guarantee to provide for several reasons. First. single group causality, which is

necessary to provide the ABCAST property to a group, is the special case of this guarantee in which

Pj,...,P, are members of the same group G = G' and if pj $ Pj+i. then e = mcastp, ( rh. G) and

eP' + ' = deliverp+ (fn, G) for some message rh; i.e., single group causality is the case in which the

causal chain never leaves the group G. Second, if a group must rely upon multiple group causality.

this guarantee allows the group to protect itself by juditiously choosing the groups with which it

shares members, because uncorrupt sites will observe incorrect orderings between multicasts only

if the causal chain which links them traverses a corrupt group.15 Third. a stronger guarantee

would be useless to many applications, because an uncorrupt group may be contaminated at the

application level by messages with a corrupt group in their causal history. regardless of what ,ort

of causal guarantees are made regarding those messages.

To provide this guarantee, we first choose a secure protocol which provides single group causality

in an uncorrupt group. By the work of section 4.1, any protocol that maintains all causality

information for group communication local to the group will suffice: one such protocol is the vector

timestamp protocol for a single group described in [BSS90], which we do not discuss here. Second.

"Of course, here we are using the term "causal chain" informally, because one which traverse" a corrupt group

may not be well-defined.

15



we extend this protocol to account for causal chains which ex.it and reenter the group. As in

the single group case, any protocol which maintains the relevant causality information only in the

groups encountered on the chain is sufficient, because we are concerned with the case in which the

chain traverses only uncorrupt groups. However, for reasons which will he outlined below. we adopt

a more cautious strategy.

Intuitively, we enforce multiple group causality between m and m' by ensuring before the causal

chain (1) even leaves the group G that any causal obligations resulting from the multicast of m

will be satisfied. One protocol which does this is the conservative protorol of [BSSg0]. described as

follows. A multicast is stable if it has been received at all of its destination sites. and a group G is

active for a process p if p's site does not know of the stability of a multicast to G either sent by or

delivered to p. The conservative multicast rule states that a process p may multicast to group G if

and only if G is the only active group for p or p has no active groups. If p attempts to multicast

when this rule is not satisfied, the multicast is delayed. and during this delay no multicasts are

delivered to p. So, in part (b) of figure 1, 33 simply delays sending m 2 until it knows that m,

has been received by si. Then, the delivery algorithm at si., which specifies that two multicasts in

different groups are delivered in order of receipt, enforces the causal delivery property.

Because we are attempting to provide causal orderings defined by causal chains through only

uncorrupt groups, more efficient protocols than the conservative one could be used. We have

chosen the conservative protocol, though, due to its behavior in the face of corruption. Inforniallh.

even if a causal chain beginning in an uncorrupt group passes through a corrupt group. the corrupt

group cannot generate a message based upon the incoming information and effect its delivery to a

member of the first group prior to the delivery of the initial nmulticast of the chain. Returning to

part (b) of figure 1, what we mean is that even if 32 E CI it could not manage to get "13 delivered

to P, before m1 as in part (c) of the figure.

Thus, while in this paper we have not formally defined the notion of a causal chain which passes

through a corrupt group, in an informal sense the conservative protocol provides even a stronger

causality guarantee than we had promised. This type of guarantee may be important to applications

in which the timing of the release of information is important. For instance, if G, represents the

trading service of section 1 and m, contains instructions to buy a large quantity of a certain stock

for a client, then after discovering the intended purchase via m2 . the intruder may wish to deliver

a purchase order m3 for that same stock to Pl, before ml is delivered to pl. The conservative

protocol prevents this sort of attack.

We conclude this section with mention of an additional method by which groups can prorect the
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causal chains on which they rely. In Isis, a causality domain [BCG91 is a set of groups among

which causality is preserved. So far we have assumed that all groups are contained in the same

causality domain, but in reality Isis supports many such domains. We are currently considering

ways to protect access to causality domains as an additional fire wall against malicious intrusion.

However, this approach has not yet been sufficiently investigated, and we will not discuss it further

here.

5 Delegation and Access Control

The guarantees provided to a process group in section 4 are contingent upon the group being

uncorrupt. In light of this, it is obvious that in real systems. access to groups must be restricted.

This is also required if a programmer wishes to build a -'trusted" group: a group obviously cannot

be trusted if any process may join it simply by so requesting!

As in any situation requiring access control, we have available to us two basic approaches, namely

access control lists (ACLs) and capabilities. The advantages generally cited for ACLs include that

they more naturally solve traceability, confinement and revocation problems. Capabilities. on the

other hand, better support the principle of least privilege, allow for more efficient. decentralized

transfer of access rights, and in general can be verified more efficiently than ACL. can be checked.

Several authors have argued for hybrid schemes which exploit the advantages of both approaches

(e.g., [KH84.Gon89]).

While the advantages traditionally cited for each approach also apply in our setting. we argue

that the advantages of capabilities are less applicable t6 our needs. First. in the majority of Isis

applications, the membership of a typical process group is relatively static. That is. group joins are

infrequent in comparison to other group operations. such as multicast.. Thus. althouogh in general

capabilities can be verified more efficiently than ACLs can be checked. we expect that in many ca.,es

this would have no significant effect on overall system performance. Second. a major pitfall of classic

capability systems, namely that the ability to access an object implies the ability to grant access

to the object, seems particularly hazardous in our system model. By passing capabilities to sites

outside the group, the group places trust in those external sites to not propagate the capabilities in

unintended ways. This may at first appear to be a moot point, because by granting a capability to

a corrupt site, the group has also entrusted a corrupt site to enter a process in the group. However.

if the site is subsequently suspected of being corrupt and is placed on an exception list to prevent

any process on that site from joining the group, there is still no way to prevent the corrupt site
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from passing the capability to others. Indeed, once the capability has been passed to a corrupt

site, the ability to control access to the group based upon the capability is nullified, because the

capability may propagate unchecked.

For these reasons, classic capabilities are not the access control mechanism of choice in our system.

and instead we view ACLs, or possibly a hybrid scheme, as being more suitable. In the remainder of

this section, we describe an access control scheme based only upon ACLs which we plan to employ

in our system. This scheme is sufficiently powerful to be used as the sole means to control access to

groups, although it could also easily be adapted for use in a hybrid scheme such as that li [Gons9].

The straightforward criteria on which to restrict access to groups is the owner and site of the

process requesting access. That is, when a group is created, the creating process would specify

a set (i.e., ACL) of (owner, site) pairs which indicates the processes which would be allowed to

join the group. The problem with this approach is that it is not sufficiently expressive. Consider

an extension of the NYSE example of section 1 in which a client process authorizes the brokerage

service to purchase stocks with funds in the client's account at XYZ bank. After locating the stock.

the brokerage service must send a representative to a group established by XYZ bank to arrange

the fund transfer for the stock purchase. However, XYZ bank will admit the representative to this

group only if it has been legitimately authorized by a client of the XYZ bank. Thus. the simple

scheme of admitting the representative based upon its owner (say. an individual stock broker) and

hosting site is insufficient here for two reasons: this information neither convinces the bank group

that the process represents the brokerage nor conveys the authorization granted by the client.

This flavor of authorization is closely related to many concepts which have appeared in the literature

in recent years, including authentication forwarding [SN 88]. cascaded authentication [Sol88]. and

delegation [GM90]. Informally, each of these terms denotes the means by which one party authorizes

another to act on its behalf, as exemplified by the client delegating authority to the stock brokerage

in the previous example. The delegation problem in this example is how the brokerage representative

can convince the bank group to admit it, given that a client has legitiniatelv delegated authority

to the brokerage service.

The delegation problem in a group oriented system is different from that in other 'steis only

in the sense that groups, instead of processes. are delegating and being delegated. In practical

terms, this means that groups need to be authenticated. instead of processes or sites. Fortunately.

we already have in place the mechanisms to do this. namely group keys and the name service

introduced in sections 4.1 and 4.2.

The approach we take to delegation is best illustrated by an example. Suppose that group G,
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wishes to delegate authority to group G2 . To do so it sends to G2 the message

G1,T, G2,SI(TI, G2), (2)

where "Ti" is the time at which this delegation expires, -S1" denotes the signature function of

G, (i.e., signature with the private key of G1 ), and "G" and "G2 ' are the names of G, and G2.

respectively. 6 Intuitively, a member of G2 can present (2) to another party to prove that any

member of G2 can speak on behalf of G, until time T1. The other party verifies this claim with the

address of G,. (Recall that the address for a group now contains the group's public key.) Moreover.

a process in G2 can delegate further to group G3 by sending it

G1, Ti, G2, T2, G3 , S2(SI (T. G,2). T2 . G3 ). (3)

A recipient of this message should believe that a member of G 3 has authority until time miu{T,. T.}

to act on behalf of G1,1 7 provided that the message can be verified by the appropriate public keys.

Of course, G 3 could delegate yet further in a similar fashion, and in general. such delegation chains

could become arbitrarily long. This scheme has many of the same features as that in SolSS]. and

the reader is referred there for further discussion.

A problem with this delegation scheme is that the delegating group has no means by which to

restrict the authority it grants to the group it delegates. For instance. after delegation (2). object

monitors may allow members of G2 to access any resource that G could. including those that

G, did not intend. This is a problem common to man1 delegation schemes. and it can be dealt

with in several ways. In [So1SS], with each delegation is included a set of constraints which may

explicitly specify the subset of resources normally accessible to the delegating party to which the

delegated party should be granted access. It appears more difficult to develop a general access

control mechanism using constraints, though, because the form of the constraints may be too

application specific. Another approach, which is taken in [GM90] and which we adopt ler . is to

limit the access rights of the delegated party through the use of r-oles. Associated with taclh role

of a group is some subset of the access rights of the group. When a group delegates the authority

of a role, the authority transferred to the delegated group is only that of the role. and not of

the delegating group. So. in the NYSE example, the client group could delegate authority to the

"5 This form of delegation conceivably could admit the use of group addres.ses instead of names. althoiugh for the

purposes of access control we allow delegation by name only.
"t Of course. an application may interpret (2) and (3) differently than as, we have stated. For example. has.ed upon

(3) an object monitor may grant a member of G3 the access rights of G1. G . or some comination thereof
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brokerage service under a role which was used to establish the bank account and which would be

useless, say, for reading the client's mail. Although delegation via roles is less flexible and requires

more forethought than the use of constraints, in our case the use of roles is particularly attractive.

because a role corresponds to just another group name. That is. a group can create roles for itself

by registering other names for the group with the name service.

We can now extend this delegation mechanism into an access control scheme as follows. A process

specifies access control policy for a group by providing a set of delegation templates when it creates

the group, in addition to the (owner, site) pairs previously described. (Subsequently. a member

of the group can change the access control policy for the group by adding or removing delegation

templates or (owner, site) pairs, although doing so does not remove any members from the group.)

A delegation template is a list gQ. , where each 9i is a set of group names. A delegation

template specifies a set of delegation chains which are acceptable credentials for a process to join

the group. A delegation chain

Gi, Tl,.... G,.-l, T._I, G,.S ,1.•..(4)

is said to match the delegation template 91 ... ,, if in > n and for all j satisfying 1 < j _< I?.

Gi E 9m-,+j. That is, the chain in (4) matches the template i . . 9,, if the chain ends with a

sequence of delegations beginning with an element of 9 1. followed by an element of 92 . and so on.

and ending with an element of 9,,.

Given a set of delegation templates, access to a group is controlled a, follows. Suppose the group

contact receives message (4) embedded in a request froi4 some process 1) to join the group. Then.

p is allowed to join if and only if

1. the authenticity of message (4) can be verified with the appropriate public keys.

2. p's site can vouch that p is in G,,, (by illustrating knowledge, of the privatp key for G,,, ).

3. message (4) matches a delegation template for the group.

4. none of the delegations in message (4) have expired. and

5. the (owner. site) pair of p is listed in the set of (owner. site) pairs for the group.

In this way, the sets of delegation templates and (owner. site) pairs together constitute an ACL for

the group.
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Finally, we note that this access control mechanism can be extended to objects other than groups.

We have already seen one need for this, namely the directories of the hierarchical name space

implemented by the name service described in section 4.2. As in many file systems, a name service

directory has three natural types of access to it, namely search, read and write. So. as when creating

a group, a process can specify when creating a directory in the name service a set of delegation

templates and a set of (owner, site) pairs for each of these types of access.

6 Conclusion and Future Work

In this paper we have described a security architecture for use in the Isis toolkit. but structured in

such a way that most mechanisms should also be useful in other group oriented settings. The major

features of the security architecture include a group oriented authentication subsystem. a secure

method for joining groups. and protocols which protect certain causal (leliverv ordering guarantees.

In addition, we have proposed an access control scheme based upon delegation for use in group

oriented settings.

Future work on this system is heading in several directions. First. the system is currently being

implemented at Cornell University. This implementation should provide valuable insight into the

efficiency of our architecture and mechanisms. It is also forcing us to consider user interface issues

- while such constructs as delegation templates will certainly force the Isis interface to change. we

would like to ensure that currently existing Isis applications can benefit from the new mechanisms

with minimal changes. Second. in addition to the extensions proposed in the previous sections.

we are pursuing other improvements to the basic arc1tecture. For example. we are currently

investigating ways to incorporate information flow controls into Isis and to relate this work to

the TCSEC taxonomy [DoD83I, which is a set of criteria, covering issues such as access control.

information flow, and covert channels, for classifying systems according to the levels of security

assurance they provide. Third. we are also considering methods of exploiting the Isi, ab.tractions.

once secured, to enhance the overall security of applications.
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A Synchronized Clocks

In section 4.1, we described a site's certificate as containing 'the expiration rime of the Imblic key'

of the site. Presumably, a recipient of a certificate for some site should be able to deori'iine from

24



the expiration time whether the certificate is fresh. And. this concept of time has other applications

in our system: e.g., in section 4.1 we also use timestamps to ensure the freshness of colnections.

and in section 5, timestamps are used to expire delegations.

in this paper, the source of time available to each uncorrupt site is assumed to be a clock which

is synchronized with the clocks on all other uncorrupt sites to within e time units. where for our

purposes c is quite large relative to that required in most other applications using synchronized

docks; e.g., an e of a few seconds may suffice. While synchronized clocks are not necessary to de-

termine the freshness of communication, it was recognized early in the literature that synchronized

clocks can reduce communication in authentication protocols [DSS1I. Accordingly. many security

architectures, such as Kerberos [SNS88] and DSSA [GGKL89], have employed synchronized clocks

for precisely this purpose.

However, it is important that clocks be synchronized securely if they are to be used to protect

against attacks in a secure system. More precisely. the clock synchronization algorithms must be

tolerant of attacks similar to those which the system must tolerate, because if the clocks can be

successfully altered, the'. e.g., uncorrupt sites can become vulnerable to classic replay fDS81] and

suppress-replay attacks [Gon9l]. Since most operating systems do not provide such a secure source

of time. we are forced to implement our own synchronized clocks or to find a 1uitable alternative.

Fortunately, a clock synchronization algorithm based upon the wc --!: 'C.iS9j is currently being

implemented for use in a real-time extension of the Is' , toolkit. The algorithm employs a fault

tolerant master clock, around which a set of slave clocks (i.e., sites) synchronize periodicaly by

requesting the master's clock value, measuring the round-trip As 'i i , ime friom the master. and

approximating the master's value based upon the resppnse time and the value in the message.

While detailed discussion of the clock synchronization algorithm is outside the scope of this doc-

ument, we note only that the master clock will employ MUTS for communication and thus will

be amenable to authentication via the mechanisms described in section 4.1. Therefore. we expect

that securely synchronized clocks which satisfy our relatively modest requirement- can be achieved

easily, provided that the master clock itself is not corrupt.
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