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Abstract

An investigation into the scattering of light by randomly rough diffusers is presented.

Emphasis is placed on the phenomenon of enhanced backscattering, i.e. when the

brightness of the incoherently scattered light peaks sharply in the direction of the

illuminating source. Both experimental and theoretical aspects of the problem are

addressed, comparing real measurements with numerical calculations.

The experimental equipment employed for this study is able to take light measure-

ments close to the backscatter direction enabling the backscatter peak, if present, to

be observed. Measurements taken from a Lambertian reflectance standard (BaS0 4)

exhibit strong backscatter enhancement.

A method of fabricating Gaussian, randomly rough diffusers is described. Their

surface proifles are characterized using a Talystep profilometer and an analysis is pre-

sented of finite-tip-size effects on the measured statistical parameters. A replication

method is described which faithfully reproduces the random profile of a fabricated

diffuser.

A rigorous, one-dimensional analysis based on the Helmholtz-Kirchhoff integral

equation is presented. Numerical calculations are critically compared with scattered

light measurements from identical, metallic and dielectric diffusers, examining the

influence of the medium on the diffusers' scattering properties. The effect of changing

the radiation wavelength is also investigated. -'-

A one-dimensional, analytic solution is presented and is shown to have some va-

lidity for dielectric diffusers where single scattering is the dominant mechanism. A

simple geometrical ray-tracing model produces surprisingly accurate results, r.en

when surface structures are of the order of a wavelength.

The Mueller matrices relating the incident and scattered Stokes vecto-, ae mea-

sured for one-dimensional diffusers. Analysis of these measurements lkads to an in-

terpretation of the scattering events at the diffuser's surface. Observations are pre-

sented confirming recently predicted scattering structures for oblique incidence on

one-dimensional diffusers. These structures are clearly related to enhanced backscat-

tering but occur away from the backscatter direction, undei more general conditions.
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Chapter 1

Light Scattering by Rough Surfaces

1.1 Introduction

All surfaces are rough to one degree or another. If a collimated light beam were to

strike even the most highly polished mirror, the illuminated spot would be observable

in almost any direction in front of the mirror, not only in the direction of the specular,

or mirror-like, reflection. The power contained in the coherent (specular) component

would be almost 100 per cent of the incident beam power. A small fraction of the

energy would be dissipated through inevitable absorption and Joule losses in the ma-

terial of the mirror. The remainder of the power forms the incoherent (non-specular)

or diffuse component and is described as being scattered by the surface. It should be

emphasized that light can be incoherently scattered into the specular direction.

As the illuminated surface deviates more and more from a flat interface in a

continuous but random manner, the power contained in the incoherent component

increases at the expense of the coherent component. When the surface undulations

reach a certain degree of roughness the coherent component can not be distinguished

and the light is entirely incoherently scattered. Precisely if and when this occurs will

depend on the wavelength of the illuminating radiation and the surface roughness.

The diffusers investigated in this dissertation have roughnesses just beyond this point

where a phenomenon known as enhanced backscattering can occur.

Describing the light as being scattered gives the impression that the incident radi-

ation undergoes some form of randzm interaction before propagating away from the

diffusing surface. One model of the interaction processes simplistically represents the

scattering mechanisms by pencil rays reflected or refracted at local tangent planes

along the surface. A more realistic treatment involves calculating the surface current

17
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induced by the incident radiation via Maxwell's equations. This surface current in

turn generates fields which radiate away from the interface in a manner determined

by the surface profile and the boundary conditions across it. Both of these models

are used to investigate light scattering by randomly rough diffusers in this disserta-

tion. For certain cases the results from these two models were found to agree with

each other almost exactly and to compare favourably with controlled experimental

data. Such investigations can aid our understanding not only in how electromagnetic

radiation interacts with materials, but also in how these interactions can be modelled.

1.1.1 Thesis Synopsis

The remainder of this chapter contains a brief literature review introducing key and

interesting papers in the field of light scattering by randomly rough diffusers.

The physical quantities which are represented by the measurements and calcula-

tions appearing throughout this dissertation are defined in chapter two. This chapter

also contains a detailed description of the experimental equipment and definitions of

the polarization notations which were adopted. Calibration of the scattering equip-

ment using a reflection standard introduces the first measurement of the enhanced

backscatter effect.

Chapter three deals with the fabrication of randomly rough surfaces having mi-

crometer features, in particular one-dimensionaly rough diffusers. Details are given

of how these random surfaces can be faithfully reproduced into silicone elastomer to

produce identical dielectric diffusers. This procedure has made it possible to compare

the scattering properties of identical metal-coated (gold) and transparent dielectric

diffusers. An important aspect of the work reported in this dissertation is the chara-

terization of the rough surfaces using a Talystep profilometer. The measurement of

the statistical roughness parameters and a simple analysis of the errors which can be

introduced by the finite tip-size are discussed in this chapter.

Starting from the Helmholtz-Kirchhoff theorem, rigorous integral equations are

derived in chapter four and their numerical solutions are compared with experimental

data. Scattered light measurements are presented for identical metallic and dielectric

diffusers illuminated by monochromatic radiation over the wavelength range 0.63-

10.60 pm. The differences between the two diffuser types emphasize the effects that
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the medium has on the diffuser's scattering properties. Interesting observations are

drawn from the database of experimental results supporting possible mechanisms for

the enhanced backscatter phenomenon.

In chapter five an analytical solution is presented which adopts a transmission line

approach to the scattering problem. In order to reduce the complexity of the analysis

certain assumptions are made on the degree of surface roughness and on the order

of scattering which is considered. Comparisons are made between the derivation of

this theory and another much reported analytical solution which does not include the

limiting assumptions.

Possibly the most interesting and informative of all the experimental and numer-

ical results are those presented in chapter six. The third and most simple of all the

numerical simulations considered is the tracing of geometrical rays. Taking into ac-

count only the fundamental laws of reflection and refraction, surprisingly good results

are achieved which enable a number of explanations to be proposed about the scat-

tering mechanisms. It is shown in chapter two how the Muller matrix relating the

incident and scattered Stokes vectors is simplified for a one-dimensional diffuser. The

Stokes parameter measurements presented in chapter six collectively reveal an insight

into the way light interacts with random metallic and dielectric media. Consequently,

conclusions are drawn concerning the origin of the enhanced backscatter effect.

An alternative form of scattering system to those investigated in other chapters of

this dissertation is that of a thin dielectric diffuser mounted on a reflecting substrate.

The light scattering properties of this particular system are quite different to those

of the other diffuser types and observed backscatter peaks are strongly enhanced.

The effects of varying the mean separation of the random profile and the reflecting

substrate are also investigated.

An interesting effect is demonstrated in chapter six which exists away from the

backscatter direction, that of antibackscatter enhancement. This effect occurs when

a one-dimensional diffuser is tilted backwards slightly so that the light is obliquely

incident on the surface. The scattered structures previously observed as backscatter

enhancement are reproduced in a related direction in the cone of scattered light

but not in the backscatter direction. Under certain conditions these antibackscatter

structures are not reproduced unless the light is actually backward scattered. This

r :effect has only recently been recognized and has received little attention, but it is

itI _ __ __ _ __ _ _
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clearly related to the phenomenon of enhanced backscatter.

A summary of the main conclusions which have been drawn from the analysis

presented in this dissertation is given in chapter seven.

1.1.2 Literature review

The problem which has been addressed in this dissertation, and has confronted both

experimental and theoretical workers alike over the past years, is a very simple one to

pose: "If I shine light of a certain wavelength onto a known surface in this direction,

what will I see at any point where I choose to view it from?". The answer to this

question is much more difficult to provide; indeed no single solution has yet been

found, only fragments of the unified theory have been proffered.

Apart from the fundamental interest of why light interacts with matter in the

way that it does, a practical application for rigorous light scattering is in the deter-

mination of surface roughness using a non-contact, and hence non-destructive, light

probe [82]. Hapke and van Horn [40] investigated the scattering properties of a num-

ber of complex surfaces in an attempt to reproduce the optical properties exhibited

by the moon's surface; the moon's brightness peaks sharply at full moon. Their

prime objective was to find a scattering structure which exhibited a high reflectance

in the backscatter direction, and they found that finely pulverized dielectric parti-

cles showed this effect. Hapke 139 subsequently proposed some interesting models

for multiple scattering from a distribution of particles. Light rays can retrace their

paths back towards the source without being 'blocked', whereas multiply scattered

rays in neighbouring angles would be blocked which would lead to more light in the

backscatter direction, producing a peak. In similar studies by Oetking [641 using a

high resolution scatterometer (: 1*), all of the structures he investigated exhibited

backscatter enhancement. It is interesting to note that Egan and Hilgeman [33] sug-

gested the opposition effect they observed may have been due to multiple scattering,

in analogy to the glory effect.

More recently, controlled volume scattering experiments [45, 83] have better de-

fined the situations which give rise to backscatter enhancement (particle size and

concentration) and the structure of the backscatter peak itself has been studied.

Some of the mechanisms suggested in earlier work have been developed in recent the-
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oretical studies using sophisticated analytical methods to incorporate many-particle

interactions [30, 78]. Van Albada and Lagendijk [46, 79] observed similarities be-

tween the volume backscattering effect and Anderson localization of electrons in a

random potential, describing it as weak localization of light. Coming down one scale

in dimensionality, Celli [221 and McGurn [53, 54] predicted localization of resonantly

induced surface polaritons (evanescent waves) in light scattering from randomly rough

surfaces. These localization effects were shown to be directly related to the presence

of a sharply defined peak in the backscatter direction.

There has been renewed interest in light scattering from randomly rough diffusers

in recent years with the advent of new theories and numerical methods to account

for multiple scattering mechanisms [15, 29, 50, 60]. There was particular stimulus

for investigations into surface light scattering following the experiments of Menidez

and O'Donnell [55, 63]. They observed interesting polarization structures about the

backscatter peak produced by a two-dimensional, randomly rough, metallic diffuser.

They concluded that enhanced backscattering was primarily based on a multiple scat-

tering mechanism owing to the cooperative effect between forward and time-reversed

light paths in the backscatter direction. Their interpretations of the observed phe-

nomena invoked much discussion and debate concerning the origins of the enhanced

backscatter peak [10].

With a moderate computing budget and the presently available computing power

there have been a number of reports presenting numerical solutions to rigorous in-

tegral equations [49, 68, 73]. Although these solutions have been able to investigate

the conditions under which enhanced backscattering occurs, they have been limited

to one-dimensionally rough diffusers, or random gratings. Enhanced backscattering

from one-dimensional diffusers has recently been confirmed experimentally [44] in-

cluding investigations by the author and other workers into the relative scattering

properties of identical metallic and dielectric (transparent) diffusers [48, 701. An im-

portant result is the absence of a peak in the backscattered light from a dielectric

diffuser, whereas that from an equivalent metallic diffuser is strong Although new

theories have attracted keen attention, renewed interest in some early, well-established

models have yielded very encouraging results. In particular the inclusion of a 'double-

bounce' or multiple scatter term to the Krchhoff approximation [18, 19, 771 exhibits a

very clear backscatter peak in the 'double-bounce' contribution, and the calculations

r
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overall agree well with more rigorous formulations.

Not surprisingly, enhanced backscattering has been found to occur in scattering

systems other than metallic diffusers, such as thin-film, dielectric diffusers in front of

reflecting planes [42, 47]. A number of possible mechanisms have been proposed for

this particularly pronounced form of backscattering based on multiple scattering ar-

guments. Enhanced scattering of a different sort has been reported by Depine [27, 28]

whereby light is obliquely incident on a one-dimensional diffuser. The enhanced scat-

tering structures are of the same form as in previous reports, but can be produced

away from the backscatter direction. The results from this work suggest that en-

hanced backscattering from random gratings is a special case of this more generalized

situation of oblique incidence. Observations of this effect are reported in chapter six.

Some of the most recent experimental reports have measured all of the independent

elements of the simplified Mueller matrix for one-dimensional, metallic and dielectric

diffusers [20]. The complete description of the diffuser's scattering properties is af-

forded by the use of Stokes' parameters and their analysis can reveal information

about even the most subtle of scattering mechanisms. New theroetical models are

being produced which go some way towards removing limiting assumptions present

in other theories. Brown [16, 17] presents a refined application of the method of

smoothing, which incorporates a normalization procedure to remove the limitations

of small surface heights and slopes previously encountered with this method. Maystre

et al [52] have recently introduced a new theory to account for the two-dimensional

scattering problem, and preliminary calculations and comments certainly appear to

be quite promising.

The latest experimental and theoretical reports indicate the potential for very

exciting developments in the field of rough surface scattering in the next few years.



Chapter 2

Preparation for Experimental
Investigation

2.1 Introduction

In this chapter I will describe the optical equipment that was used to obtain the

experimental data presented in this dissertation, including some comments on the

difficulties involved in setting it up. Two alternative geometries of the experimental

arrangement were employed depending on the scattering properties of the diffuser

being studied. Each arrangement is given the general name 'scatterometer', or may

be referred to informally as the 'scattering rig', and will be discussed in detail.

I will start by introducing the topic of light scattering from a radiometric point

of view, i.e. discuss it in terms such as radiant power and directional reflectance.

This will lead to a physical interpretation of what the data from the scattering rig

represents. In order to check the response of the scatterometer it was characterized

using a special scattering medium, and from these measurements the phenomenon of

enhanced backscatter will be introduced.

To describe the state of the light and the direction in which it travels, definitions

will be given for the polarization notation, and the angles of incidence and scatter

which will be used throughout this dissertation. Equivalent notations used to describe

polarization in other electromagnetic studies will be given to aid the reader in deciding

precisely which case of data are being presented.

23
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2.2 Radiometry of scattering

Much of the work considered in this section is described only as far as its application

here requires. For a more detailed discussion the reader is referred to papers by

Nicodemus [57, 58].

When light is incident on the surface S of a medium, whether the medium be

opaque or transparent, each surface element AA will reflect a certain proportion of

the light throughout the hemisphere above it. Similarly, for the case of a transparent

or partially absorbing medium, each element will transmit a certain proportion of the

light throughout its lower hemisphere. Introducing a quantity L(O, 0) known as the

radiance [57], one can specify directional variations in reflectance, or transmittance, of

a surface element AA. This quantity remains constant along a given direction (0, ')

within a lossless, isotropic, and homogeneous medium. Formally, the radiance de-

scribes the radiant flux (or power) P, per unit solid angle S1, passing through unit

projected area Acos(0), i.e.
'92p

L(0, 0) = iAcos(0) Of [Wm-2sr-']

where df? = sin(0) dO do is the angular content of an elemental area of surface in

spherical co-ordinates; see Figure 2.1. For a narrow beam collimated within 6Q, the

radiant power incident on AA from the direction (0i, 0,) is

P = L,(Oj, i)AAcos(,) 6fl, [W

Similarly, the power reflected into the scatter solid angle bfQ, in the direction (A, 4'.)

from AA is

P, = L.(6,, O,)AAcos(0,)6 ff [W]

The radiant reflectance p is defined to be the ratio of reflected radiant power to

incident radiant power [57]

P, L, cos(O,) 6fl.
Pi= = Li cos(0,) bfli

The scattering property of the surface element is then described by a quantity called

the Bidirectional Reflectance Distribution Function (BRDF) f,. The BRDF for ele-

ment AA is defined by [57, equation (5)]

= L, cos() 6fl,[
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(source) z

(delector

x

Figure 2.1: Local scattering geometry of surface element AA illuminated by a narrow,
collimated beam. Normal to AA coincides with z axis. Source and detector subtend solid
angles 6 i and Alld at AA, respectively. For transmission, 8, -+ ir - P,.

The laser provides an excellent light source for investigating the scattering prop-

erties of surface interfaces; it produces an intense, collimated, coherent beam of light

with a known wavelength A. The intensity at each point in the hemisphere above

(or below) the interface is determined by the addition of individual phase vectors

scattered from each illuminated surface element. This produces a so-called speckle

pattern (a random field of constructive and destructive interference) overlying the

average intensity distribution. Experimentally, a field lens was placed in front of the

detector aperture, imaging the rough surface onto the detector element, to spatially

integrate over the speckles entering the lens. This has the effect of averaging out

the spatial intensity fluctuations, reducing the speckle noise. Integrating over many

speckles enables the detector to measure the mean radiant power transmitted by the

lens. Consider the illuminated surface S in Figure 2.1 to be an ensemble of indepen-

dent, statistically identical, surface elements AA. All such elements reflect a certain

radiant power in the direction of the detector which is then integrated by the field

lens over the solid angle of detection. The response of a linear detector Rd can then

C
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be written as

= AJ (f)cos(.)PW(.,.)dfn. (2.1)

simply describing the power falling on the detector element where A is a constant of

proportionality, W is a weight function accounting for vignetting of Afld, and (f,)

represents a BRDF averaged over the ensemble of surface elements in the direction

2.2.1 The differential scattering cross-section

If 10 is the irradiance [Wm - ] of light incident on S and Jdfl represents the radi-

ant power [WI] scattered into a solid angle do, we can then define the differential

scattering cross-section (DSCS) as

da = J(O., .) [m2sr-,]
dSf1, I0

Substituting for 10 = PS/AA and averaging over an ensemble of surface elements AA

( do,. / , -0t(, 0;O.,0) (2.2)

which will be represented by the symbol E (pronounced "csi"). The detector response

may be expressed in terms of the mean radiant intensity (J), as

Rd = Al()(*q.dlR,=.4 J) W(8.,.0.) dil.

Thus, by comparison with equation (2.1) one obtains the relation

-(, i; a., .) =_ (f(O,, Oi; 0., )) cos(O.) (2.3)

and this quantity will be used to describe the scattering properties of the diffusers

studied in this dissertation. This treatment of radiometric terms is not confined

to the case of reflection, similar expressions may be derived for transmission with

appropriate changes in notation; see caption of Figure 2.1.

Generally, a certain fraction of the incident power is lost through absorption in

the diffusing medium and does not propagate to the far-field. This is due to either

finite conductivity of metal coatings, or small losses in dielectric media. In order to

investigate what physical mechanisms play a r6le in the phenomenon of enhanced

backscatter, emphasis was placed on the relative distributions of the DSCS curves
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and not on their absolute values. Primarily, then, the diffusers investigated were

considered to be either perfect condictors or lossless dielectrics. For the case of a

perfect conductor, the DSCS curves were normalized to unity according to the relation

h'df . = 1 (2.4)

ox, equivalently,

j(J)dfn. = P

where

I jd.f j 1 sin(O.) AO for two-dimensional diffusers (2.4a)
J/TdO for one-dimensional diffusers (2.4b)

This assumes that the total radiant power is equal to the total incident power. Nor-

malization for the two-dimensional diffusers also assumes rotational symmetry of the

DSCS curve about the z axis.

For the case of a lossless dielectric, however, it was not experimentally possible

to measure both the reflected DSCS - and the transmitted DSCS S^9. It was also

not practicable to measure the undeviated incident beam; comparison with F" would

require a great deal of attenuation, possibly introducing errors in proportion to the

quantity being calculated. Instead, the dielectric experimental data are presented in

terms of an un-normalized relative scattering cross-section, although all graphs for a

particular sample are shown with the same incident power.

2.3 The optical equipment

The equipment comprises of a continuously working (CW) laser source, lenses, polar-

ization-sensitive optics, beam-steering mirrors, and a selection of linear detectors.

Two laser sources were employed to provide linearly polarized radiation ranging

from visible through to far infra-red wavelengths. These were a 20 mW He-Ne laser

(Jodon HN20G) with interchangeable mirror sets and a 4 W CO2 laser (Edinburgh

Instruments WL-4). The He-Ne laser provides wavelengths at A = 0.633, 1.152, and

3.392 pm and the CO2 laser provides a single wavelength at 10.6 pr. Three types

I _ _ _ __ _ _ _ _ _
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of detector were used according to the wavelength and power of the illuminating

radiation:

Hamamatsu photomultiplier tube
@0.633 pmo; 20 mW (PTR4.(PMT) R647.

@1.15jpm; 5 MW Cincinatti Electronics Indium
Antimonide (InSb). The detector

e m element was cooled (liquid N2)
9pm; 3 mW to reduce thermal noise.

.10.6 pm; 4 W Plessey PLT222 pyroelectric detector.

The lenses used for the visible wavelength could also be used at 1.152 pm (optical

glass transmits out to - 2.5 pm, typically). For 3.39 pm transparent CaF2 lenses

were used and for 10.6 pm the lenses used were made from CdS. One of the main

problems of working with an infra-red radiation source is knowing precisely in what

direction the radiation is travelling. A small alignment He-Ne (visible 0.633 pm) is

very useful in overcoming this problem and for that reason it is important that the

lens materials also transmit visible wavelengths. To align the visible and infra-red

beams one can use two small apertures separated by a distance of approximately 1 m.

Fluorescent cards may be used to locate the raw infra-red beam which shows up as a

dark spot. Once the infra-red beam is passing through both apertures the alignment

beam can also be directed through them by introducing two tilting mirrors. Apart

from slight differences in focal lengths and beam divergence, the alignment beam

should give a fair indication of where the infra-red radiation will go.

A problem arises when intending to carry out experiments at the 3.39 pm wave-

length; for only a few mW of power there are presently no fluorescent cards that

fluoresce around 3 pm. The only way to even check that the laser is actually 'lasing'

at this wavelength is to switch on the detector and point it at a diffusing target. In

this way it is possible to align the beam with an external visible He-Ne laser using

the two-aperture method. If a sufficiently small aperture can be placed somewhere

along the beam path then the visible discharge given off by the laser cavity can also

be used as an alignment aid. These two methods are only rough guides indicating the

path of the infra-red beam; precise positioning of focal points and alignment through

lens apertures can only be achieved while the detector is looking at a diffusing target,

'down-stream' of all the optics.

Suitable half-wave plates, or retarders, were used to orientate the linear polariza-

'II
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tions of the respective wavelengths. Dichroic acetate sheets were employed as linear

polarization analysers for the wavelengths 0.633 and 1.15 pm while wire-grid polar-

izers were used for 3.39 and 10.6 pm. An integrating lens was placed between the

detector and the analyser to reduce the speckle noise. A 5 mm diameter 3 x objective

was used for the wavelengths 0.633 and 1.15 pm, providing an angular resolution of

detection of approximately 0.5". For the wavelengths 3.39 and 10.6 pm a 10 mm

diameter CdS lens was used, providing a resolution of approximately 1.

If one considers a coherent beam of light with wavelength A scattered from a

diffusing surface, each speckle is approximately the same size as the Airy disc that

would be formed in the absence of the diffuser. In the detection plane this corresponds

to a diameter s which may be written as

1.2 Az

where z is the distance from the diffuser to the detection plane, and w is the diam-

eter of the illuminated area at the diffuser. For an illuminated area of 10-15 mm

diameter this meant that at 0.633 pm wavelength approximately 10' speckles were

being averaged, while at 3.39 pm approximately 10' speckles were averaged over. The

fractional statistical noise introduced by the intensity fluctuations of the speckles is

proportional to N-1, where N is the number of speckles entering the lens. As the

wavelength is increased one would expect the speckle noise to become more apparent;

this effect was observed in the experiments carried out over the range of wavelengths

available, the noisiest case being for the wavelength 10.6 pm.

2.4 The scatterometer

The scatterometer consists of a combination of basic optical components and com-

puter controlled stepper motors, arranged in a fashion convenient for changing the

wavelength of the illuminating radiation. The wavelength presents something of a
'yard-stick' to the problem of electromagnetic scattering from rough surfaces; it is

the unit of length by which the surface structures are measured. The scattering

properties of a given diffuser are very much affected by the wavelength. For short

wavelengths the surface asperities might appear quite coarse and large in texture, en-

couraging multiple interactions and high orders of scattering. For longer wavelengths

I(.
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the surface will appear proportionately finer and smoother, whereupon one would

expect more rrrror-like reflection.

Two alternative arrangements for the scatterometer were employed, depending on

what the scattering properties of the sample dictated. These are discussed below.

2.4.1 Diverging beam geometry

This arrangment was used when the sample did not exhibit a coherently (or specu-

larly) reflected component; this was generally the case for the wavelengths 0.633,1.15,

and 3.39 pm with the diffusers investigated in this dissertation. The geometry allowed

measurements to be made very close to the backscatter direction. The diverging beam

geometry is illustrated in Figure 2.2.

For all of the wavelengths employed the laser beam was 'chopped' at a known

reference frequency (typically 83 Hz, or 830 Hz for weaker signals) and the signal from

the detector was fed into a phase lock-in amplifier (Stanford Research SR530). This

heterodyning method of signal processing was essential in separating the infra-red

signal from the background radiation within the laboratory. It was also used for the

visible wavelength, but more for convenience than of necessity. When taking intensity

measurements from a highly reflecting surface (e.g. one that has been gold-coated)

a thin, variable, neutral density (ND) filter was used to attenuate the beam power.

For surfaces whose reflectance is dependent on the angle of incidence (e.g. dielectric

surfaces) fixed ND filters were used to stop the beam down by known amounts, when

necessary.

After being approximately collimated, the linear polarization of the radiation was

orientated with a half-wave retarder. The beam was then focused, via a periscope

arrangement of mirrors, onto a pointed or sliver mirror and directed towards the

diffuser under investigation. Consequently, the beam was diverging slightly as it

propagated towards the sample, typically illuminating a spot of 10-20 mm diameter

with a divergence of - 10. The reason for using a sliver mirror stems from the desire to

observe the scattered intensity in the backward direction, along the line of incidence.

This method of observing the backscattered light caused minimal obstruction of the

detector, losing only , 1.5. An alternative method would have been to use a good

quality beam-splitter to direct the light onto the surface. However, it would be
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..900 (scattering angle)

Key to Optical Components

cw laser varfiler 40mro piano-convex halfwave
variler 4 lens retarder

iris sliver nmror randomly rough linear polarizer detectordiffuser

Figure 2.2: Illustration of the diverging beam geometry. This arr-tngement was used for
diffusers exhibiting backscatter enhancement.
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difficult to know precisely how much attenuation was introduced by the beam-splitter

and would require calibrating for each wavelength and polarization.

The detector was mounted on an arm approximately 65 cm away from the sample

holder. The detector arm and sample mount could be rotated by computer-controlled

stepper motors about an axis passing through the centre of the sample, each motor

having a minimum angular step of two minutes of arc. For a typical measurement,

then, the sample would be rotated to a certain position to set the angle of incidence.

This position would remain fixed during the measurement and the detector arm would

be rotated over a range of scatter angles, pausing at prescribed intervals. At each

interval a number of readings were taken from the detector which were then averaged

to reduce random errors. This produces a set of average intensity readings as a

function of scatter angle, measured in the plane of incidence only. It was also possible

to measure the average intensity in transmission for transparent samples.

If the sample exhibited a specularly reflected component, the peak would not be

confined to a single scatter angle when measured with the diverging beam geometry.

This indicates that the detector is not actually in the far-field. However, this geometry

is used for samples which strongly scatter the incident light over a wide range of angles.

One would therefore expect the slight divergence of the incident beam to have little

influence on the directional scattering properties of the sample. This was, in fact,

found to be the case when measurements taken with this geometry were compared

with those taken using the converging beam geometry.

2.4.2 Converging beam geometry

This arrangement was used when the asperities of the diffusing surface were small

compared to the incident wavelength, resulting in a strong coherent reflection; this

was generally the case when carrying out experiments with the wavelength 10.6 Pm.

The converging beam geometry is illustrated in Figure 2.3

The main difference between this arrangement and the diverging beam geometry

is the position at which the illuminating radiation is brought to a focus. To ensure

that the detector was in the far-field, the undeviated beam was focused at the plane

of the integrating lens. This meant that the coherent component from a diffusing

surface would be detectable at only one scatter angle; that of the specular direction.

I
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diffuser lierparzr dtco

Figure 2.3: Illustration of the converging beam geometry. This arrangement was used for
diffusers exhibiting a strong coherent (specular) reflection.
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The disadvantage with this geometry is the angular obstruction of the detector due to

the width of the final mirror, which was approximately 8" in the backscatter direction.

The computer-controlled data acquisition, simplicity of the optics, and stability of

the laser source meant a high reproducibility of measurements. Apart from linearity of

the d, xtor the only real sources of error were systematic; namely analogue-to-digital

(A/D) conversion of the detector signal, background interference and noise (affecting

the signal), and amplification of the signal. Comparing two scatter envelopes taken

from the same diffuser, over the same scatter angles, they are virtually identical.

Hence none of the graphs shown in this dissertation will have any error bars on them;

the choice of plotting symbol will reflect the accuracy of the intensity measurements,

but as 'a rule of thumb' the total errors were within three per cent of the measured

value.

2.5 Polarization notation

An arbitrary monochromatic wave can be described by the superposition of two or-

thogonal electric vectors. Defining a plane of reference we can choose two such basis

vectors. The reference plane is chosen to contain the propagation direction of the in-

cident field Z and the mean surface normal il, and constitutes the plane of incidence.

The basis vector FO is defined to be perpendicular to this plane and F0 is defined to

lie in it, perpendicular to ki. The sense chosen is such that is x i4 is parallel to the

propagation direction; see Figure 2.4.

Describing the light field as a plane wave with propagation constant k and circular

frequency w, the transverse electric vector can be written as

19- Re [to e(~A)

where

E0 = Eg, + E.g.. (2.5)

This expression generally describes an elliptically polarized field; the particular po-

larization state depends on the relative values of the complex amplitudes E, and E..

These amplitudes are themselves expressed in terms of positive amplitudes as, a, and

phases 6, 6,:

Ep ap e - i ,
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S ('rE)

(incidentafield) d

Figure 2.4: Light scattering from a one-dimensional diffuser - notation used to describe
polarization states of the incident and scattered light f is.Vectors 2' and F'o contain the
linear polarizations p and s, respectively; 4' and L' represent 9'. and 9'p rotated through
450; efq and e'L represent right and left-hand circular polarizations, respectively, looking
towards the source. Note that the angle of scatter 9, is measured in the opposite sense to
the angle of incidence 0;; backscatter therefore occurs at 9. = -i

If ao -- 0 the incident field is described as being p polarized; similarly, if ap = 0 the

incident field is described as being .s polarized. Other notations used in similar studies

have the following equivalent descriptions:

transverse magnetic (TM),
V polarization,$ p polarization

or, S polarizationJ

and transverse electric (TE),
H polarization, polarization.

or, P polarization p
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2.5.1 Stokes' parameters

The general polarization state of a monochromatic, electromagnetic wave can be

fully described in terms of its four Stokes parameters. Each parameter describes an

irradiance based on the combination of a particular pair of polarization states: either

p and s linearly polarized; +45* and -450 linearly polarized; or right-hand and left-

hand circularly polarized. The directions of these polarization cases are illustrated

in Figure 2.4 by the vectors g4 and F., Z'+ and F-, and FR and FL, respectively.

After passing through suitable polarizers, the respective irradiances measured by the

detector are represented by the symbols I, and I,, I+ and I-, and IR and IL. Van de

Hulst [81, chapter 5] uses the symbols I, Q, U, V to denote Stokes' parameters. The

algebraic derivation of these parameters is omitted, but is quite straightforward - the

reader is referred to the very readable text of Bohren and Huffman [14, pages 46-50].

Ignoring a factor k, the parameters can be defined as follows:

I = .- r 1, - (E.E' + EPE,)
Q = I.-1, (E.E -pE °)
U = I- L => (E.E ,*+EE.)
V = IR - IL = i(E.E," - E,E.')

where the conjugate complex value is represented by an asterisk and the angular

brackets represent the average over an ensemble of rough surfaces. The values are all

real numbers satisfying the relation

P > Q2 + u2 + v2 (2.6)

If the equality is true the light is said to be fully polarized. The inequality holds for

natural or unpolarized light (where Q = U = V = 0) and, more generally, for partially

polarized light as obtained from a quasi-monochromatic source.

The above descriptions are by no means definitive; various linear combinations of

the Stokes parameters can also be used as suitable Stokes parameters. One alternative

set (1,, Io, U, V) replaces the parameters I and Q with I, and I,, where

I, = EpEp*

I. = E.Eo'

The relationship between the parameters in this new set can be obtained easily from
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equation (2.6) and the same arguments qualify the inequality. t

41,1. > U2 + V2

The Mueller matrix

The merit of Stokes' parameters becomes apparent when one considers them as a four

element column vector, or Stokes vector. The polarization state of the scattered light

field (I,, I., U, V) can then be written in terms of the incident field (Jo, I'o, Uo, VO)

and a scattering matrix MA:

(I, I., U, V)= IVI (I"0, 1,0, U0, V) (2.7)

Here M is a 4 x 4 array matrix describing the scattering properties of the diffuser,

called a Mueller matrix. Each element in the array is a real function of the directions

of incidence and scattering. A complementary relationship exists between the complex

amplitudes of the incident and scattered light fields:

(Ep, E,) = X (Eo0,Eo0 ) (2.8)

Here A is a 2 x 2 array of complex numbers. What is more, the elements of the

scattering matrix M are quadratic expressions of the elements in the amplitude ma-

trix A.

Experimentally, the characterization of a general scattering matrix involves a

lengthy procedure of measurements and is by no means a simple task. Careful selec-

tion of the incident Stokes vector and the detector's analysing polarizer can yield a

specific element from the Mueller matrix. However, slight imperfections in the po-

larization optics, ellipticity of the incident field, or misalignment of a component's

principal axis can mean that the element is not being measured at the exclusion

of others in the matrix. A detailed discussion of this procedure is given by Bickel

and Bailey [13], describing useful combinations of optical components necessary for

analysing particular polarizations.

In most applications, considerations of symmetry can reduce the number of inde-

pendent terms in the scattering Mueller matrix [81, pages 46-58]. Cases of particular

interest occur when the scattering object has a structure which is very elongated

tMore specifically, in this set natural light occurs when 1p = r. and U = V = 0.
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in one dimension: e.g. a volume which contains parallel, cylindrical scatterers or a

surface which has a grating-like or corrugated structure. Such a surface would be de-

scribed as being approximately one.dimensional since its height profile is dependent

on only one spatial variable, hsh(z). If the incident beam is such that the plane of

incidence is orthogonal to the surface corrugations, then the scattered light will also

be confined to this plane. Moreover, if the incident field is either entirely p or a po-

larized, the scattered field will retain this state of polarization; i.e. no depolarization

will occur. The general expression for the light field amplitude in equation (2.5) is

then the sum of two independent oscillating modes and, consequently, the amplitude

scattering matrix A is diagonal: from equation (2.8) this can be written as

E. = 0 a22  E.o

This greatly simplifies the associated Mueller matrix for a one-dimensional surface,

reducing it to only four independent terms. From equation (2.7) the scattered Stokes

vector S can be written as

S = So (2.9)

where So is the incident Stokes vector and M;1 is the Mueller matrix of the diffuser.

For the parameter set (Ip, I,, U, V) this can be written as

("' m11 0 0 01. 0 M2 0 0 I.o

UJ 0 m3 mU UO

1 0 0 -M34 m33 VO

Theoretically, one can calculate the terms in this Mueller matrix from the second

order moments of the amplitude matrix elements all and a22 [81, page 44]. However,

it is experimentally possible to extract each element by combining specific incident

and detected polarizations.

Measurement of the matrix elements

Four incident Stokes vectors S0 are considered below. which introduce the Mueller

matrix elements into the scattered vectors S from equation 2.9.
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SO SP 0

0 0

i.e. the scattered light retains the p polarized state of the incident field. With

reference to Figure 2.4, measurement of this scattered field with a linear polar-

izer parallel to Fp will yield the element mli from the Mueller matrix.

So = So ( 0 S = ( 2 2

0 0

the scattered field this time retains the s polarized state. Aligning a linear

polarizer parallel to F, will yield the element M 2 2 .

s1 = S+=1 m22
2 2m 33
0 ( -2m4

all four matrix elements are present for this case with M3 3 and m34 appearing

in the U and V components of the Stokes vector.

1 1 = 1 M22
S 0 = S R = I ' I 2S= I

2 2m33

which is a similar result to the So = S+ case; the only differences are the

positions of the m33 and m4 elements, with a sign change in the V component.

The direct measurement of the first two elements m, and M22 can be achieved in

a relatively straightforward manner, aligning the incident and detected polarizations

along , and ,, respectively. The two remaining elements m 33 and .n4 can be

measured with either So = S+ or So = SR. The circularly polarized state SR can be

difficult to achieve experimentally, without any ellipticity, i.e. 1, = I., and so the S+

state was used. The V component in the scattered Stokes vector can be measured by

_____ i

I.t
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using a quarter-wave retarder in combination with a linear polarizer, which is placed

in front of the detector. Orientating the retarder's principal axis along E+ and the

linear polarizer along 9,, the right-hand circular irradiance IR can be measured. The

left-hand case IL is measured by rotating the retarder through 90*. In the majority

of cases, experimental data presented in this dissertation will concentrate on the two

scattering cross-sections p and s only. The measurement of the complete parameter

set (I, I., U, V) will be limited to certain cases.

With reference to Figure 2.4 it is useful to define the incident and scattering

angles 9, and 0,, respectively. Both angles are measured in the plane of incidence

with respect to the mean surface normal 6, i.e. the normal one would describe from a

flat surface with no roughness. The angles are, by convention, measured in opposite

senses. This means that for an angle of incidence 8i = 100 the specular, or mirror-like,

reflection would occur at 0, = 100. Conversely, for 6i = -10* the backscatter or anti-

specular reflection would occur at 9, = 100. In fact, this will be the case for all graphs

presented in this dissertation; the backscatter direction will be to the right-hand-side

of the graphs, corresponding to 0. > 0.

In the graphs representing the measured DSCS curves, the incident and detected

polarizations a and b respectively, will be denoted by --.b. Thus for s incident and p

detected polarizations the corresponding symbol will be Eo. In general, to describe

cases where the detected polarization is either parallel or orthogonal to the incident

polarization, the respective terms co- and cross-polarized will be used. Such measure-

ments will be represented by the symbols -, (e.g. E or E.) and E ... (e.g. E, or

-,,). Where the data analysis calls for an incoherent sum of co- and cross-polarized

measurements, the resulting DSCS curve will be denoted by 'o,, where

=tot = =co + -Cros

2.6 Scatterometer response

In order to characterize the response of a particular system, one requires a set of

stimuli from which standard measurements will result. Ordinarily the task of set-

ting the standards, which encompass all possible demands that may be made of the

system, is the subject of much debate. For the scatterometer, setting the standard

measurements is a somewhat simple matter to resolve.
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If one considers a perfect mirror, from which no light is randomly scattered, then

the measurement from this stimulus would resemble a Dirac delta-function 6(0,, 0,)

in the far-field; i.e. all of the light incident on the mirror is reflected in the specular

direction and is observable at only one position in the far-field. In this case the ideal

scatterometer response would be of the form

{ ~ 6(9, - ,o)6(, - .± 7)~sin(O,)

Here, the BRDF f, is non-zero for one direction of reflection only - the specular

direction. However, if f, is constant for all directions, assuming negligible absorption,

from equation (2.3) the measurement would be of the form

--(o,, = cos(0,) (2.10)

and would be independent of the angle of incidence. The latter stimulus is known

as a Lambertian diffuser, i.e. one whose reflected radiance is constant irrespective of

direction. Since it is associated with all angles of incidence and detection, the Lam-

bertian diffuser provides a more comprehensive test stimulus than does the perfect

mirror. The problem arises when one tries to find a suitably diffusing sample with

the required constant BRDF.

There are several possible methods for preparing a Lambertian-like diffuser. They

mainly entail coating a flat substrate with a layer of extremely small particles which

induce multiple light scattering within the volume of the layer. One method is to

deposit magnesium oxide (MgO) on a silver -,:bstrate, given off by a burning ribbon

of magnesium [84, pages 20-21]. A surface layer 0.5 mm thick will reflect about 97 per

cent of the incident light when fresh, although this value will drop significantly after

a few days. Another method is to use fine barium sulphate (BaSO 4) powder, supplied

by Eastman Kodak as a white reflectance standard (38]. A 'solid' block is formed by

compressing the powder into a special plastic holder which has a cylindrical recess,

51 mm diameter and 9 mm deep. With care a smooth, flat surface can be achieved

from which light scattering measurements may be taken. The experimenter should

ensure that the surface does not have a glazed or polished appearance, otherwise

unwanted specular reflections will occur. This may be checked by looking at how

ordinary daylight is reflected at glancing angles. The reflectance values of compressed

BaSO4 over the visible wavelengths are shown in Table 2.1. The BaSO 4 powder is
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Wavelength Reflectance
/ nm
250 0.957
300 0.969
350 0.981
400 0.994
500 0.993
700 0.994

Table 2.1: Reflectance values of compressed BaS0 4 for visible wavelengths.

prescribed for use over the wavelength range 0.2 - 2.5 pm, so measurements from this

form of Lambertian diffuser were taken at the wavelengths 0.633 and 1.15 pm. Graphs

representing the DSCS curves measured for normal incidence for the wavelengths

A = 0.633 and 1.15 pm are shown in Figure 2.5. For each incident polarization, the

co- and cross-polarized measurements have been summed incoherently and the total

normalized according to equation (2.4a). The three curves are compared to the ideal,

normalized response of a Lambertian diffuser, i.e. equation (2.10).

The measured response of the scatterometer shows close agreement with the ideal

cosine for both polarizations, at each wavelength. However, the light scattering prop-

erties of the compressed BaSO 4 exhibit the prescence of a sharply defined peak di-

rected back towards the illuminating source. Graphs representing the DSCS curves

measured for the incidence angles 0i = -30 ° and -60 ° are shown in Figure 2.6 for
-ie wavelength 0.633 pm. One can see from these measurements that this peak is

indeed directed back along the line of incidence. (The data points where the detector

passed behind the sliver mirror have been removed.) Such a peak in the mean radiant

intensity, restricted to a narrow cone of angles around the backscatter direction, will

from now on be referred to as an enhanced backscatter peak As the incidence angle

is increased, the measurements from the compressed BaSO 4 show closer agreement

to the ideal cosine. This illustrates how the scattering properties of a true Lam-

bertian diffuser are independent of the angle of incidence; a point emphasised by

equation (2.10). For completeness, the corresponding DSCS measurements for the

wavelength 1.15 pm are shown in Figure 2.7. Generally, all measurements show a

cosine response with particularly good agreement for large scattering angles. This

phenomenon has been observed from BaSO 4 paint, amongst other materials, by Egan

'I
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Figure 2.5: Scatter envelopes from a flat BaSO4 surface for V incidence; A) and B)
A = 0.633 pim, p and a incident polarizations respectively; C) and D) A = 1.15 um, p and
a incident polarizations respectively. E. denoted by 'W; '-c. denoted by '+', and Et.
denoted by Wo. Lambertian cosine represented by wild crrve; backscatter is denoted by a
vertical dashed line.
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and Hilgeman [32, 33], measuring the opposition effect (enhanced backscattering).

An approximate Lambertian diffuser was not available to measure the response of

the scatterometer at the two remaining wavelengths A = 3.39 and 10.6 pm. However,

the diverging beam geometry employed for the wavelength A = 3.39 pm is also used

for A = 0.633 and 1.15 pm which has been shown to give a good cosine response. The

scatterometer response of the 10.6 pm geometry (converging beam) was measured

using the wavelength A = 0.633 pm using the CdS infra-red lenses and, although not

presented, was found to give similar results.

The consequence of measuring a Lambertian standard is more easily understood by

considering its effect on equation (2.1). (f,) is held constant by definition and so any

deviation in detector response from cos(e,) is due to the weight function W(0,, 0.),

assuming P is constant. This means that the solid angle of detection Anfd is itself

dependent on the direction in which the light is scattered. Since the compressed

BaSO 4 is only an approximate Lambertian diffuser (e.g. the presence of a backscatter

peak) and the measurements' agreement to the ideal cosine is good, we shall assume

that Afld is independent of scatter direction for each of the wavelengths. Ignoring

any normalization, then, scatter envelopes presented in this dissertation will be as

seen by the detector, no 'shaping' of the curves will be done.

One final point which should be made concerning the DSCS -(0,, 0; 0., 0.) is that

its measurement is limited to the plane in which the detector arm rotates - the plane

of incidence. This means that the arguments of -,,,; 0.,,0.) reduce to -(0,; 0).

As discussed in § 2.5.1, only one measurement of the scattered light is required for

each of the incident linear polarizations p and s. For the case of a two-dimensional

diffuser the light may be scattered throughout an entire hemisphere (upper and lower)

and this complicates its complete experimental measurement. Since present studies

are concentrating on the simplified, but little understood, case of one-dimensional

scattering, two-dimensional diffusers will not be considered in this dissertation.
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Figure 2.6: Scatter envelopes from a flat BaSO4 surface for A = 0.633 Amn; A) and B) -30*
incidence, p and s incident polarizations respectively; C) and D) -60* incidence, p and
a incident polarizations respectively. 4,C denoted by Vo; .. denoted by Y, and Ft
denoted by Vo. Larnbertian cosine is represented by a solid curve; backscatter is represented
by a vertical dashed line.
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Chapter 3

Fabrication of High Sloped Diffusers

3.1 Introduction

The problem of experimental light scattering from rough diffusers is only partially

specified if one knows the illuminating wavelength and scatterometer response. For

complete specification of the problem one also requires a detailed knowledge of certain

properties of the diffuser. These include the bulk material's complex permittivity E

and the rough, surface height profile h = h(x, y).

Theoretical studies of light scattering from rough surfaces generally assume the

surface profile to be governed by a particular random process, solving either numer-

ically for a generated a set of statistically identical profiles [62], or analytically for a

particular distribution [10]. For both cases certain statistical parameters of the rough

profile are required, depending on the particular process involved. Until recently,

experimental light scattering studies have been limited to assuming the statistical

nature of the surfaces examined, usually Gaussian; e.g. see Reference [12].

For critical comparisons between experiment and theory it is necessary to know, as

precisely as possible, the parameters governing the surface height fluctuations. It was

for this reason that a method was developed for fabricating randomly rough diffusers

of known statistics which could be reliably characterized [37]. Following the investi-

gations of M~ndez and O'Donnell (55, 63], attention was placed on the fabrication of

diffusers whose surface asperities were of the order of optical wavelengths, with slopes

approaching unity. In this regime the phenomenon of enhanced backscatter is known

to occur for highly reflecting diffusers.

4
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3.2 Random variables

In describing the surface profile as being randomly rough we mean that the surface

height at an arbitrary point cannot be predicted in advance. All that is known about

the height is that it has a probability of being a certain value h. It is convenient to

introduce two quantities - the random variable H(h), and the probability distribution

function FH(h). The random variable H consists of all possible outcomes h, including

a measure of their respective probabilities. The distribution function F(h) describes

H in terms of the probability of it being less than or equal to h; formally, F is

defined by the relationship

FH(h) = Prob {H < h}

where Prob {...} means the probability of the event {... } occurring. FR is a mono-

tonically increasing function of h, where -oc < h < o, with the limits

Fu(-oc) = 0 FH(+oo) = 1 (3.1)

The probability that the surface height lies in the range h < H < h + bh is

Prob {H < h + 6h) - Prob {H < h} = Fq(h + 6h) - FH(h)

We can define a quantity called the probability density function (pdf) pH (h) such that

pH(h) = -l:.n FH(h + 6h) - Fs(h) = d FH(h) (3.2)
6h-0 6h dh

Thus, one can recognize the importance of the density function:

Prob {h < H < h + dh} = p(h)dh

From equations (3.2) and (3.1) it follows that

] pq(h) dh= FH(oo) - F(-o) 1

Due to the nature of FH, the density function also has the property that

pH(h) > 0
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3.2.1 Gaussian random processes

The concept of a random variable can be extended to the random process, whereby

the unpredictable event is a function (e.g. of space and/or time) rather than a set of

numbers. In most situations where random pheiomena are encountered, the overall

process is governed by many additive, independent events. Such a process can be de-

scribed by employing Gaussian statistics, by virtue of the central limit theorem 135,
page 31]. The case of Gaussian statistics is often favoured by theorists because of its

general application and mathematical elegance. In support of this theme I shall con-

centrate on the fabrication of randomly rough diffusers whose statistics are governed

by Gaussian random processes.

The pdf of the Gaussian random variable H(h) is

1 { (h -(h))'

p o(h) 2 exp f 2

The parameters (h) and ah are defined as follows:

the first moment (mean value, expectation value)

(h) h H(h) dh

the second central moment (variance)

S= J (h - (h)) 2 pH(h) dh

Also of importance is the seco-id moment (mean-square value)

and is related to the mean and variance by the general expression

ah = (h) - (h)2  (3.3)

Therefore, for a zero-mean, random process the root-mean-square value (rms) is sim-

ply the standard deviation erG. Combining n random variables, one can construct an

n-th order pdf describing the probability that (UL,U2, U3,.... ,U1) take on the val-

ues (u1,U2,u3 .... Iun). In practice only up to second order is required for complete

description of a zero-mean, Gaussiar -andom process.

I-
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The autocorrelation function

The rms height orh gives a measure of the dispersion of point heights on the random

surface about the mean plane, i.e. the vertical roughness of the surface profile. A

measure of the horizontal scaling can be achieved by considering the autocorrelation

function of H(h)

rH(hI, h2 ) =IIh_ hh 2 pH(h1,h2)dhldh 2  (3.4)

where pH(hl, h2) is the second order pdf of H(h) and

h, = h(x2 ,yj) h2 = h(X2 ,y 2 )

The ajtocorrelation function, then, is the first moment of the second order pdf (hih2)

and, assuming (h) = 0, this function is equal to the autocovariance of H(h)

CH(hi, h 2 ) = ((h, - (h2))(h 2 - (h 2 ))) = (hjh 2) - (hi) (h 2 ) (3.5)

= rH(hj, h 2 )

The second order pdf of the random variable H(h) is

pH(hl,h 2) 1 exp (--h 2  2e-ih] (3.6)
2r 2 F vr\,-e 2a2(l e2) (36

The quantity p is called the correlation coefficient and is defined as

CH(hI, h2)

- (hlh 2) (3.7)
7

The correlation coefficient, in this case, is a measure of the similarity between the

height fluctuations at a point (xl,yl) and those at a second point (X2,y 2). If the

rough surface is isotropic and the random process governing the height fluctuations

is stationary t , then the coefficient is dependent on only the relative displacement I of

the two points, where
12 = (- 2 - xI)

2 + (Y2 - y,)2

It follows from equations (3.7) and (3.3) that

e(l = 0) = 1
t ln other words, the n-th order pdf of the random variable is independent of any fixed origin

either temporal, spatial, or otherwise.



Section 3.3 51

Another important property of the correlation coefficient is that it tends to zero as

III --# o. The reason for this is that the heights at two widely separated points

on a randomly rough surface are uncorrelated. The explicit form of the correlation

coefficient is not uniquely determined by the above conditions - the choice of this

function merely reflects how rapidly L decays with increasing 1. Choosing a Gaussian

correlation function

Cy (1) = a,', exp 7-42 (3.8)

and

e(l) = exp -2)

The horizontal scaling of the surface profile is then described in terms of the transverse

correlation length r; it is the distance over which the correlation function is reduced

by a factor 1/e from its value at the origin.

3.3 Fabrication of diffusers

Several methods exist for producing either a random-phase screen or a randomly

undulating surface profile. Both cases can introduce random phase fluctuations in

the transmitted radiation, which spatially modulates the irradiance of the light in

the far-field. Photographic techniques are generally limited by the granularity of the

emulsions, which can affect the diffusing properties of the phase screen. Ground glass

has been a popular choice of diffuser for experimenters investigating light scatter-

ing phenomena [12, 36]. Although the mean size of the surface asperities can be

influenced during the grinding process, the surface structure is very jagged and not

smoothly undulating. Such a structure is very difficult to describe and would present

unnecessary complications to theoretical treatments of the problem.

A method of producing a smoothly varying surface profile of known statistics has

been described by Gray [37]. He exposed photoresist-coated substrates to the spatially

random light distribution of a laser speckle pattern. Mtndez and O'Donnell [55, 631

used a similar method to produce gold-coated, Gaussian random surfaces from which

the backscattered light was strongly enhanced. This method was adapted in this

present work for producing deep, random surface profiles with Gaussian height pdf

and autocorrelation functions. Details of the coating and etching procedures are
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discussed in the next sections.

3.3.1 Spin-coating procedure

The aim of this procedure is to coat a glass substrate with a photoresist film of

11 pm thickness that is flat, uniform, and free from dust particles. One of the best

methods to achieve at least a flat, uniform film is to spin-coat the substrate. In order

for the film to have a sufficient thickness, the type of resist and spin speed have to

be carefully selected. If the resist is not viscous enough, or the spin speed too high,

then the film thickness may be less than 1 pm.

The substrates used were relatively fiat (- 5 fringes at 546 nm) 50 x50 x3 mm glass

plates. The extra thickness improves handling of the substrates and greatly reduces

the possibility of breakage. The initial stage is to clean the substrates as thoroughly

as possible, in a relatively dust-free environment. Although several procedures exist

for preparing clean substrates, the following routine was found to be reliable.

STEP 1. Wash in hot water and detergent.

STEP 2. Thoroughly wipe with acetone.

STEP 3. "Zero-G" wipe with acetone.

STEP 4. Wipe with isopropanol, to remove smears left by the acetone.

STEP 5. "Zero-G" wipe with isopropanol.

With the exception of step one, all wipes are done with lens cleaning tissues. The

"zero-G" wipes involve dragging a single tissue across the substrate surface while the

solvent soaks into the tissue and evaporates; see Figure 3.1. If sufficient is applied, the

whole surface is wetted with solvent which should all evaporate before reaching the

end of the tissue. This reduces the possibility of the solvent leaving smeary deposits

on the substrate. Between steps, the occasional blast of compressed air can help to

remove loose dust particles.

The photoresist used was Shipley S1400-37 which is a high resolution, thick film

resist and has a good linear response curve of surface height against exposure time.

With the substrate suitably attached to the centre of the turntable, the following
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Figure 3.1: The "zero-G" wipe: a lens cleaning tissue is dragged across the substrate in the
direction indicated; the solvent spreads across its surface and evaporates before reaching
the end of the tissue.

procedure gave a uniform, flat resist film of 10-12 pjm thickness. This procedure

should be carried out in a filtered, dust-free environment.

STEP 1. Syringe - 3 ml of photoresist onto centre of stationary substrate.

STEP 2. Spin substrate at 300 r.p.m. for four minutes.

STEP 3. Syringe another 3 ml of photoresist onto stationary substrate.

STEP 4. Spin substrate for a further four minutes.

The resist was applied from a 5 ml glass syringe fitted with a 2 prn filter. Care

was taken not to let air bubbles interrupt the flow of resist; they are difficult to

remove from the film completely. It was necessary to empty the syringe when not in

use because the viscous resist has a tendency to 'stick' if left for any length of time.

The plunger and cylinder were separated and placed in a shallow bath of acetone.

When needed again a full charge of resist, slightly diluted with acetone, was loaded

and discharged from the syringe to remove any residual acetone.

4 Once coated, the plates were allowed to dry at room temperature for 24 hours.

This period allows minor striations in the layer to even out and enough solvent to

evaporate for the resist to become 'touch-dry'. The plates were then baked at a



q|

Section 3.3.2 54

temperature of 90 *C for 30 minutes. The resulting layer, although fully dried, is

extremely susceptible to being scratched, even by lens tissues; any subsequent dust
contamination should be gently blown off with compressed air.

3.3.2 First-order speckle statistics

In order to understand the reasons for employing laser speckle patterns to generate

the diffusers, other than the fact that they are random, it is useful to briefly discuss

first-order speckle statistics, i.e., the statistical properties at a single point in the

observation plane; see Figure 3.2. It is assumed that the speckle pattern is perfectly

polarized and monochromatic.

incident
coherent scattering

light surface

Yx(4' .(x'y')

observation
plane

Figure 3.2: Generation of a speckle pattern using a diffusing screen.

The complex amplitude at a point (z', y') in the observation plane can be con-

sidered to consist of a large number of elementary phasors from each point (C', ?I')

on the scattering surface. If the individual phases are uniformly distributed over the

range (-w -- i-), i.e. the diffusing surface is rough compared to a wavelength, then

the real and imaginary components of the amplitudes obey Gaussian statistics (the

central limit theorem). Their joint probability density is then of the form given in

*1
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equation (3.6) with L y 0, since the real and imaginary components are uncorrelated.

The intensity, then, of a speckle pattern obeys negative ezponential statistics and its

C pdf is

C p1(l) = exp

where (I) is the mean intensity. The standard deviation ar of a polarized speckle

( pattern is

O 'i= (V)

If the incident beam at the scattering surface in Figure 3.2 has a Gaussian cross-

section, the correlation coefficient [equation (3.7)] of the speckle pattern is

where wc(,) is the 1/e radius of the intensity profile at the scattering surface in the

direction t(77); z is the distance between the scattering surface and the observation

plane; and A is the wavelength. If the beam is circularly symmetric, then Wf=W, = W

and the correlation length of the speckle pattern is

AZ

in any direction in the observation plane. However, if the beam is shaped such that

its cross-section is much greater along the f-axis than the rn-axis, then w( > w, and

the correlation lengths in the observation plane become

_ AZ AZ

therefore r, < r,. In other words, the speckle pattern is elongated along the y-axis.

If the incident beam at the scattering surface is a straight line, such as would be

produced at the focal plane of a cylindrical lens, then the resulting speckle pattern

will be approximately one-dimensional. (Unless stated otherwise, it is assumed that

the speckle correlation lengths r. = r and r, - oo.)

If N uncorrelated speckle patterns with equal mean intensities are superimposed,

C €the resulting intensity pdf is [26, page 23]

=I I)! (I N )
) (IN- 1)! ()N expS l
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The variance of the intensity in this case is
=(1)2 3.o

(3.10)

Figure 3.3 shows the intensity pdf functions for the cases N f 1,3,8, and 20; the

dashed line represents the Gaussian pdf whose variance is calculated from equa-

tion (3.10) for N = 8. As the number of uncorrelated speckle patterns increases, the

2.0-

20
1.5/

1.0

0.5-

0.0-

0.0 0.5 1.0 1.5 2.0 2.5

Intensity, !

Figure 3.3: Intensity pdf functions resulting from the incoherent addition of N = 1,2,3,8,
and 20 speckle patterns with equal mean intensities. The dashed line represents the Gaus-
sian pdf for o corresponding to N = 8 in equation (3.10).

pdf assumes a more Gaussian-like distribution becoming progressively narrower; this

demonstrates how the variance is inversely proportional to N. There will be, there-

fore, a 'trade-off' between the contrast of the total distribution and its Gaussianity.

If the contrast is too low, although it may be accurately Gaussian, the structures of

the resulting diffuser will be shallow compared to a wavelength.

3.3.3 Etching procedure

Accepting inevitable non-linearity of the photoresist, eight was chosen as the number

of independent speckle patterns to be superimposed onto a single coated substrate.

ii
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This would be expected to produce an approximately Gaussian diffuser with nomi-

* nally deep structures.

In order to comply to the limitations of present theoretical light scattering stud-

ies 149, 62], it was necessary to produce a diffuser which was rough in only one dimen-

sion, i.e. having a random corrugation. As discussed in § 3.3.2 this can be achieved

by incorporating a cylindrical lens in the illumination geometry which generates the

speckle pattern. The exposure geometry used to produce a one-dimensional diffuser

is illustrated in Figure 3.4. The coherent light source was an Argon-ion laser operat-

ing at the blue wavelength 457.9 nrm. The sensitivity of the resist increases towards

ultra-violet wavelengths, but green and longer wavelengths have almost no effect.

spatial filte 200 nun 200 nun gund-glass oatO xeist-oaed
15. objetinvoe pherical lens cylindrical lens diffuser suburate
15 pn pinhole

Figure 3.4: Exposure geometry for producing a one-dimensional diffuser. The speckle
pattern is elongated vertically, as illustrated on the substrate. The light source is an Argon-
ion laser (457.9 nm).

The laser light was passed through a spatial filter to produce a relatively 'clean'

Gaussian beam profile. A spherical lens approximately collimated the beam towards
C
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a large aperture (80 x 95 mm) cylindrical lens. The ground-face of a glass diffuser

was placed at the focal plane of the cylindrical lens, facing the coated substrate. This

ensured that the plane face of the diffuser did not interfere with the generated speckle

pattern.

For a given distance from the diffuser to the substrate, the speckle correlation

length r is determined by the length of the Gaussian line focus. Moving the substrate

towards the diffuser linearly reduces 7, but also reduces the area over which the

speckle pattern can be considered to have a uniform mean intensity. The intensity of

the speckle pattern must at least appear to the eye to be uniform over the photoresist

film. This is much easier to accomplish when producing a two-dimensional pattern

without the cylindrical lens since the majority of the diffuser is illuminated, not just

a narrow line.

The rear (uncoated) face of the substrate was sprayed with matt black paint to

reduce the effects of internal reflections. With the substrate in the desired position,

the photoresist was exposed to eight independent speckle patterns for equal exposure

times. For one-dimensional patterns this simply meant moving the diffuser vertically

by .- 1 cm to illuminate a new part of it. Care was taken to ensure that the diffuser

remained in the focal plane of the cylindrical lens. For two-dimensional patterns the

whole diffuser was replaced for another.
When the exposures were completed, the photoresist was developed in a linear

developer (Shipley AZ-303), at a 1 : 5 dilution by volume with water, at room tem-

perature for 30 s. The developed plate was then washed in running water for approx-

imately three minutes and finally dried using compressed air. The fabricated diffuser

was then examined for signs of over-exposure or development, where the resist has

been removed down to the substrate. If not, it is then a question of characterizing

the surface profile, calculating its statistical parameters.

3.4 Surface characterization

Many techniques are available for the measurement of surface roughness [76, chap-

ters 2,31 and each one has factors limiting its scope of application. The techniques

include using light as a non-contact probe; monitoring electrical properties such as

capacitance or field emission current; and mechanical contact employing some kind of

I1
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stylus. Methods involving scattered light, of one form or another, cannot be expected

to work where multiple scattering can occur, i.e., from surfaces rough compared to

the wavelength. For the diffusers studied in this work, the latter method of mechani-

cal profiling was used, employing the Rank Taylor-Hobson Talystep instrument fitted

with a sharp, diamond stylus.

3.4.1 Stylus profiling

The principal behind stylus instruments is quite straightforward. A certain load is

applied to the stylus, e.g. from a hairspring, to prevent it 'bouncing' and losing contact

with the surface. As it is dragged across the surface its vertical displacements are

converted into electrical oscillations via a transducer. This electrical signal can then

be amplified, filtered, and analysed to obtain any desired roughness parameter. The

horizontal resolution of the instrument depends on the stylus dimensions; the vertical

resolution is limited by the thermal noise of the amplifying electronics and mechanical

stability of the environment.

The Talystep was fitted with a pyramidal-shaped, diamond stylus having the

dimensions 1.8 x 0.5 jm across the flat end, and a 700 included angle between its

sides. This shape of stylus is particularly well suited to profiling one-dimensional

structures; the direction of stylus travel being along the smaller dimension (0.5 Pm).

The load applied to the stylus at the middle of its displacement range was 6 mg; this

meant that, during a typical measurement, the load would vary from - 2 mg for deep

structures (valleys) up to - 10 mg for high structures (peaks).

Using a facility available on the Talystep to relocate the stylus at the beginning

of a previous measurement, it was possible to examine the effects of repeated mea-

surements along a portion of the surface. In Figure 3.5 are shown three successive

surface profiles of the same location on a one-dimensional surface. The traces were

measured with the vertical and horizontal magnification factors x5000 and x2000,

respectively. The stylus was kept in contact with the surface during relocation so,

although trace A is the first measurement, traces B and C actually correspond to

the third and fifth passes of the stylus, respectively. There are no features in trace

A which are not reproduced in traces B or C. The only differences occur at some of

the highest peaks, where the stylus load is greatest, which become slightly rounded;

' C
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Figure 3.5: Talystep profiles of a one-dimensionally rough, photoresist surface. Traces A, B,
and C correspond to the first, third, and fifth measurements across the random corrugations,
respectively. The stylus does not have any appreciable effect, even on the smallest surface
structures. Trace D represents a measurement along the corrugations which, ideally, are
flat.

these effects are so small that they can be considered to be negligable. The lower
graph, trace D, is a profile taken along the surface corrugations instead of across

them. This shows how well the surface approximates a one-dimensional structure;

ideally the profile would be a straight line. One can imagine how a light ray incident

on trace A, at some arbitrary angle, will be reflected in a random direction. However,

the same ray incident on trace D is likely to be reflected within a small angle about

its specular (mirror-like) direction. Hence the light scattered from such a structure

(reflection and transmission) will be approximately confined to a planet.

The experimental work presented in the chapters to follow is based mainly around

two one-dimensional diffusers: diffusers #39 and #46. The details of alternative (e.g.

two-dimensional) diffusers which have been investisated will be discussed where they

are introduced. Surface profiles were characterized by measuring six traces at different

tFor grating-like structure, if the plane of incidence is not normal to the plane containing the
grating, the scattered light will actually describe a conical surface - conic diffraction.

- - --- ---- ii 4u ro4 4
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locations across the surface. Each trace consisted of 9000 point height measurements

with a horizontal interval of 0.2 pm. The stylus was always traversed at the slowest

available speed of 2.5 pm s- . After removing the d.c. offset (fitting a zero-mean

line), each profile was analysed to obtain its rms height a%, from equation (3.3),

and its 1/e correlation length r, from equation (3.5). Examples of the probability

density and autocorrelation functions measured for diffusers #39 and #46 are shown

in Figure 3.6. It can be seen that these measured functions are very closely Gaussian.

The statistical parameters for each diffuser, expressed as mean values of six individual

measurements, are shown in Table 3.1. The skewness and kurtosis are the third and

Diffuser j height l/e correlation length skewness kurtosisDifuse A/M r/ pm Sk K

#39 1.18 ± 0.02 2.97 ± 0.05 -0.12 ± 0.01 2.84 ± 0.06
#46 1.22 ±0.01 3.18 ±0.07 -0.11 ±0.02 2.84 ±0.07

Table 3.1: Statistical parameters of two one-dimensional diffusers.

fourth central moments of the height pdf, respectively. They assume the values zero

and three for true Gaussian distributions.

3.4.2 Effects of a finite-sized tip

A trace recorded by the Talystep instrument will not be identical to the surface profile

of the sample. From the very nature of the profiling method, there will always be

some effects due to the finite dimensions of the stylus. The type of effects which one

can expect when tracing a smoothly varying surface are illustrated in Figure 3.7. The

figure shows the effective profile recorded by a sharp stylus tip, and is the locus of the

tip's centre which is spherical in section. If the surface curvatures are less than that

of the tip, the stylus will closely record the surface profile. However if they become

comparable, the finite size of the tip will tend to broaden peaks and sharpen valleys.

To assess the effects of a finite tip-size on the recorded trace, it is useful to consider

the average power distribution over spatial frequency, or power spectrum S(Y), of the

true profile. A special relationship, known as the Weiner-Khinchin theorem (35, page

74], holds between the power spectrum and the autocorrelation function - they form

C
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Diffuser #39 Diffuser #46
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Figure 3.6: Examples of measured probability density and autocorrejation functions for
diffu ;ers #39 and #46. The Gaussian distributions for the same measured values Of ah and
Tr are represented by solid lines (height pdf) and dashed lines (autocorrelation), respectively.
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stylus tp recorded profile

low curvatures high curvatures

Figure 3.7: Effects of a finite-sized tip on the recorded profile. The peaks can become
exaggerated while the valleys may be reduced to sharp points, depending on the surface
curvatures.

a Fourier transform pair:

SM = frl) e-i2--'dl (3.11)S~(X
r~)= s()e2v i 3.12)

From equation (3.11), the power spectrum for a random variable with Gaussian au-

tocovariance [equation (3.8)] is

St(v) = \/io 2r exp (- [rrv]) (3.13)

The rms curvature y of a one-dimensional profile h = h(x) is defined to be

2 ((,2))

but can equally be written as the fourth moment of the power spectrum

If f SH(v) (27,)4 dv

Introducing a quantity called the rms radius of curvature = 1/-, the stylus tip

can be considered sharp relative to the surface structures if its radius R satisfies the

relation

R < K (3.14)

t" For a Gaussian surface,

The values of K, measured for diffusers #39 and #46, are shown in Table 3.2. Thesei'
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Diffuser rms radius of curvature

#39 2.17 ± 0.06
#46 2.38 ± 0.08

Table 3.2: Measured rms radii of curvature.

values are significantly larger than the nominal tip radius of R 0.25 pm used for

recording the surface profiles and hence satisfy condition (3.14).

The true analytical description of the tip is probably somewhere between a flat

chisel shape and a cylindrical rod. A mathematical compromise may be to use a

description such as (x/A) + (y/B)m = 1 with suitable choices of the parameters A,

B, and m. However, considering the non-linearity of the stylus-surface interaction

such a calculation would be extremely complicated and possibly unnecessary in this

case. To investigate the likely magnitudes of the finite-tip-size effects we will employ

the reasonably well behaved model of a circular tip of radius R < KC.

Although in the sharp tip limit the stylus smoothly follows the surface, it experi-

ences an offset which is dependent on the surface slope; see Figure 3.8. The measured

surface height h.,,,.(x) is related to the actual surface height h(x) by the relation [23]

h. ... (x) = h(x) + R 2  - I2 + + R2" (1 _ h2 +.- (3.15)

where h = dh/dx. Equation (3.15) expresses the measured profile in terms of the

true profile and the tip radius R. From equations (3.5) and (3.8) the autocorrelation

function of the measured Gaussian profile may then be expressed as [23]

C () = '2e-x 2 1- 2 R (1 - 3P2) (1 - 2X')] +

+a 2e 2 7 ( R 2 ( 2 2) 2 + (3.16)

+0e-2 ,X" R I 4 2 ' +8

where X = I/r and p = v/2or is the rms slope. Expanding equation (3.16) in terms

of X 2 and comparing it to the expanded form of equation (3.8) we have the relations

_- , ea- a -334)]

rm eas = 71 [1l5"2R2 (!)+...
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h,,Jx) h(x)I I '
x x +V

Figure 3.8: The stylus tip experiences an offset due to its finite size. The actual point of
contact is at x' = x + r

For diffusers #39 and #46 the magnitudes of these correction terms are listed in

Table 3.3. Comparing them with the statistical errors in Table 3.1 it is evident that

the effects of the finite tip-size are practically negligable. Since (QYR)2 < I we do not

need to consider a more realistic model.

% increase % decrease
Diffuser in a inr

#39 0.03 0.24
#46 0.01 0.18

Table 3.3: Estimates of tip-size effects on measured surface parameters.

3.5 Replication of diffusers

In any investigation, varying certain parameters independently can aid the analysis

of a system's mechanisms. For the case of light scattering from random surfaces, the

parameters involved are the wavelength of the radiation A; the angle of incidence 6,;

the statistical parameters of the surface profile ea, and r; and the permittivity of the

medium e. Experimentally, the wavelength can be easily varied through the use of

1;
'C
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suitable lasers, but not generally at the exclusion of the permittivity. The surface

profile parameters can be altered during fabrication of the diffuser: ah is governed

by the total exposure time, and 'r by the speckle pattern's correlation statistics at

the substrate. It is unlikely, however, that changing the surface statistics will provide

much more information than will changing the wavelength. Varying the permittivity

is potentially more gainful, as it is related to the material's reflectivity. In order to

ensure that e could be varied without affecting at, and r, a method of replicating a

random surface profile was developed.

The replication method described in this section employs a silicone elastomer (Dow

Corning Sylgard 182) and an epoxy resin (Araldite MY778 and hardener HY956).

Diffuser #39 was initially over-coated with gold (by vacuum deposition) and charac-

terized using the Talystep profiling instrument. A set of scattered light measurements

was taken from the diffuser, over a range of incident angles, using the equipment de-

scribed in Chapter 2 at the wavelength 633 nm. A positive replica of diffuser #39

was then produced using the procedure described below.

STEP 1. Thoroughly mix - 30 ml of elastomer and curing agent in the

ratio 10:1 by weight, and de-gas under partial vacuum.

STEP 2. Place diffuser rough-side-up in a shallow receptacle and gently

pour in the elastomer, ensuring that no air bubbles get trapped.

STEP 3. Cure the elastomer at a temperature of 80 °C for eight hours.

STEP 4. Release the elastomer from the receptacle and gently peel out

the diffuser, to reveal a flexible mould.

STEP 5. Thoroughly mix - 20 ml of resin and hardener in the ratio 6:1

by weight, and de-gas.

STEP 6. Pour the resin into the mould, again ensuring that no air gets

trapped.

STEP 7. Allow the resin to cure at room temperature for 24 hours.

STEP 8. Gently peel the replica diffuser from the mould.



Section 3.5.1 67

Although the procedure is straightforward, there are some practical points that

are worth mentioning.

i) When weighing out the elastomer or resin, only put in .- 5 g at a time

followed by the curing agent or hardener, building up a 'sandwich' to

the required volume. This enables the components to be mixed more

thoroughly.

ii) During de-gassing the liquid should be placed in a glass container with

a large base area and moderately tall sides to allow for expansion. The

elastomer is less viscous than the resin and will yield all trapped air. The

resin may retain a few small bubbles which will not be visible by the eye

at atmospheric pressure unless the experimenter has been over-ambitious,

in which case the resin has already cured! Do not wait much longer

than 30 minutes; the vacuum will continue to pull off any volatiles in the

mixture. Although it will cure more rapidly if baked, the resin tends to

discolour and shrink, and any trapped air may expand when heated.

iii) For the receptacle mentioned in step two, I attached a 10 mm deep alu-

minium ring (inside diameter 75 mm) to a flat sheet of perspex with three

self-tapping screws. The screw heads were counter-sunk to allow the per-

spex base to lie flat without tilting. This construction has the advantage

that the aluminium ring can be removed from the perspex base allowing

easy access to the cured elastomer.

3.5.1 Verification of procedure

To check whether the resin replica is a faithful reproduction of the original, the

replica was over-coated with gold and a set of measurements, corresponding to that

for diffuser #39, was taken for comparison; the results are shown in Figure 3.9.

The measured DSCS curves of the original and replica overly almost exactly. The

slight discrepancies can be attributed to misalignment of the plane of scatter with

respect to the plane of incidence, i.e. the corrugations of the surface(s) were not

exactly vertical during the measurement. For normal incidence (Figure 3.9: graphs

A and B) a strong enhanced backscatter peak is observed with subsidiary maxima.
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Figure 3.9: Scatter envelopes from gold-coated original #39 (o) and replica (+) diffusers,
for wavelength A = 633 nm; A) and B) 0 incidence, p and a incident polarizations, respec-
tively; C) and D) -40* incidence, p and s incident polarizations, respectively. Dashed line
denotes backscatter direction.
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The corresponding measurements for -40 incidence (graphs C and D) do not show

enhancement, although the majority of the light is scattered in a backward direction.

Whatever the fine-scale limitations of the elastomer and resin, the resolution of these

materials seems sufficient to reproduce the scattering processes present on the original

diffuser; from the wavelength involved, one could estimate a resolution of < 1 jm.

It is possible, using the technique described above, to cast a number of replicas

from the same mould and then coat them with, e.g., different metals. Although there

may be measureable differences in absorptions and scattered light distributions, it is

likely that the changes would only be subtle over the wavelengths available for study.

What would be more interesting would be to compare the scattering properties of a

metal-coated diffuser (e.g. gold) with a transparent, dielectric replica, i.e. one that has

very little absorption. The silicone elastomer material, used to form the mould in the

replication procedure, has these required properties. The resin, although reasonably

transparent, does not handle as well as the elastomer; its viscosity makes it difficult to

ensure a homogeneous mix and to de-gas fully. The elastomer also has the advantage

of being directly in contact with the original diffuser

3.5.2 Dielectric diffuser assembly

The procedure for producing an elastomer replica is similar to steps one to four already

described in this section, but with two modifications. The first is that, instead of

being a complete mould, the elastomer only needs to have the same dimensions as

the original. The second, more important, modification comes in step three during

the curing process. To investigate the light scattering properties of a transparent,

rough surface, the spurious reflection caused by the rear face of the sample has to be

suppressed. For the case of a one-dimensional diffuser, this reflection can be directed

away from the plane in which the detector moves by including an angle between the

front and back faces of the diffuser. An angle of - 5* can be included during the

curing process by propping up one end of the original diffuser with a blank, glass

substrate. This produces a wedge-shaped, dielectric replica which can be assembled

as shown in Figure 3.10 when taking light scattering measurements. The neutral

density filter acts as a beam dump and is optically coupled to the diffuser with an oil

C of refractive index 1.47 (compared with the dielectric's estimated index of 1.43). The

1:
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index-matchingOil absorbing filter
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~-5°

diffusing
surface

Figure 3.10: Assembly of a wedge-shaped dielectric diffuser and ND 4.0 absorbing filter.

same technique was applied to two-dimensional, dielectric diffusers but the spurious

reflection could not be totally removed from the detector's field of view.
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Chapter 4

Rigorous Scattering Theory and
Comparison with Experimental Results

4.1 Introduction

Our theoretical treatment of light scattering by randomly rough diffusers will begin

with a discussion of the way electromagnetic waves interact with materials. Of par-

ticular importance are the conditions that the waves must satisfy at the boundary

between two media, where there is a discontinuous change in electrical properties, i.e.

the permittivity c and permeability p.

Owing to the limitations of computational speed and data storage, the problem

will be simplified by considering a scattering surface with height fluctuations in only

one dimension (hence a one-dimensional surface) and can be considered to be a

random grating. This simplification can be imposed without detracting from the

scattering mechanisms occuring at the surface. The solutions for the scattered wave

amplitudes will be shown to depend on the amplitudes and normal derivatives of

the waves at the diffuser's surface, by a single integral equation. By imposing the

extinction theorem boundary condition [65], solutions for these surface fields can be

obtained by inverting two matrix equations. This use of the extinction theorem has

been implemented in a number of similar investigations [51, 61, 62, 73]. The theorem

constitutes what is, in effect, an exact approach to the problem and does not place

any conditions on either the rms height at, or the correlation length r.

An experimental data set of scattered-light measurements, representing the mean
U' differential scattering cross-section (DSCS) E, will be presented for identical gold-

coated and dielectric diffusers (#46). For each of the wavelengths available (0.63,

jC 71[. I
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1.15, 3.39, and 10.6 or), measurements will concentrate on the two principal linear

polarization states p and a for selected ar!es of incidence. By comparing experimen-

tal measurements with numerically calculated results, the validity of the scattering

model can be assessed. If agreement is favourable, the model may then be employed

to investigate how certain parameters, not easily varied experimentally (e.g. the per-

mittivity e), affect the spatial modulation of the scattered light field. Conclusions

drawn from such results may lead to an understanding of the scattering mechanisms

involved, particularly those behind the phenomenon of enhanced backscattering.

4.2 Electromagnetic fields in materials

The phenomenon of light propagation through vacuum or dielectric medium is a direct

consequence of the relationship that exists between time-varying electric and magnetic

fields - an oscillating magnetic field induces an electric field (Faraday's Law), and

vice versa. The equations describing this mutual interaction are collectively known

as Mazwell's equations, and govern the behaviour of a time-varying electromagnetic

field:

VxE = -0
Ot

VxH = 8D

V-D = p

V.B = 0

V J 80a__
at

The symbols are all generally functions of position r = (z, y, z) and time t (e.g.,

E(r, t)) and represent the following quantities:

E - electric field strength [V/m]
H - magnetic field strength [A/m]
D - electric displacement [C/m 2]
B - magnetic flux density [Teala]
J - volume current density [A/m 2]
p - volume charge density [C/M 3 ]

In a linear material the electric vectors E and D are related by the equation

D = cE (4.1)

- mmon~ n w man nuwnmnnmm nm umn llmnml m lnmInl
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where c is the permittivity. A similar relationship couples the magnetic vectors H

and B

B = pH (4.2)

where j is the permeability. Both e and p are, in general, complex quantities which

are constant if the medium is isotropic and homogeneous. If the material is also

conducting, a conduction current J is induced by the applied electric field

J =aE

where a is the conductivity.

Assuming steady-state, monochromatic waves, the physical electric field E'(r, t)

is represented by the notation

V(rt) = We [E(r)e"']

where u; is the angular radian frequency. Assuming a time dependence e - t through-

out, the electric field is then described by the complex phasor E = E(r). The time

derivatives 81/ot can simply be replaced by -iw and, implementing equations (4.1)

and (4.2), we can write Maxwell's equations in the form

VxE = iwpH (4.3b)

VxH = -iweE+J (4.3c)

V.E = 0 (4.3d)

V.H = 0 (4.3e)

for a source-free region (p = 0) of the medium. Eliminating H between equa-

tions (4.3b) and (4.3c), using the vector identity V x V x E = V V • E - V2 E

and equation (4.3d), we obtain the equation

V2E + iwp(a - iwe)E = 0 (4.4)

or

V2E + kE = 0

which is commonly referred to as the Helmholtz equation, where k2 = Wecp + iwpo.

In vacuum, the quantity k is equal to the free-space wavenumber k0 = w vr'o' .

(f
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In a dielectric medium (a = 0) with negligible losses (!arn [C) ; 0) the wavenum-

ber k = w Vej2 o t and the velocity of propagation v = c/n, where c is the speed of

light in vacuum and n = -7 is the refractive index of the medium. In a medium

with finite conductivity a, the term -iwe E in equation (4.4) is the displacement

current density while vE is the conduction current density. For all metals the ratio

wel/o - 10 8 w and consequently for all frequencies up to, and including, the visi-

ble spectrum the displacement current is negligible in comparison to the conduction

current. Equation (4.4) can then be written as

V 2E + iwpvE = 0

which describes the electric field in a metal in terms of a diffusion equation. Elini-

nating the electric field E from equation (4.3c), in a manner similar to that described

above, the magnetic field H can also be shown to satisfy equation (4.4). The elec-

tromagnetic fields can therefore be thought of as diffusing into the metal's surface,

undergoing attenuation and phase retardation. The fields can be shown to decay

exponentially with depth below the metal's surface, enabling the skin-depth 6 to be

defined as the depth at which the fields are attenuated by a factor i/e:

(4.5)

4.2.1 Boundary conditions

The solutions to Maxwell's equations for the fields inside unbounded, homogeneous

media are relatively simple to obtain. Of more practical importance are the solu-

tions for the fields in the presence of conducting or dielectric material bodies. The

boundary of a body determines the point at which there is a discontinuous change

in the electrical parameters e and p. At the surface S of a body the time-varying,

electromagnetic fields are subject to the following conditions:

nx (E+(r.) - E-(r.)) =0 (4.6a)

n x (H+(r.) - H-(r.)) = 0 (4.6b)

t ln anything other than a ferromagnetic material, IA is negligibly different from the permeability of
free-space p0; e.g., for bismuth, which is the strongest diamagnetic material known, 11 = 0.99983 Pc.
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where r. is a point on S and n is the outward, unit normal to the surface. The

superscripts + and - denote evaluation at the surface when approached from above

and below the interface, respectively. The boundary conditions (4.6a) and (4.6b)

express the continuity of the tangential components of the E and H fields, and are

sufficient requirements for energy flow to be conserved across the boundary separating

media with different electrical properties. Continuity of the tangential components

of E and H across a boundary also ensures continuity of the normal components of

the fields B and D respectively [66, page 320]

n* (B+(r.) - B-(r)) = 0 (4.7a)

n* -(D+(r.) - D-(r)) = 0 (4.7b)

The conditions (4.6a) and (4.7a) are valid at the boundary separating any two me-

dia. This is a direct consequence of equation (4.3b). However, examination of equa-

tion (4.3c) suggests that, in the presence of a current flowing at the boundary, a dis-

continuity will occur in the corresponding conditions for the H and D fields. However,

the contribution from a volume current density will be zero since we are considering

the fields which are infinitesimally close to both sides of the boundary, and so only

a true surface current J, will not vanish. The modified boundary conditions are [66,

pages 239,891

n x (H+(r.) - H-(r.)) = J. (4.8a)

n.(D+(r.) - D-(r.)) = p. (4.8b)

where J, is the surface current density [A/m] and p, is the surface charge den-

sity [C/M 2]. Thus the tangential component of H is discontinuous across a con-

duction current sheet, and also the normal component of D is discontinuous across

a surface charge sheet. Furthermore, there is a continuity relationship between the

surface charge and current densities:

V.J - ON

Increasing the conductivity a of a metal reduces the depth to which an electromag-

netic field can penetrate the conductor's surface, as can be seen from equation (4.5)

- this is the skin effect. The induced current flows in a narrower and narrower skin
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layer until, at the limit of infinite conductivity (i.e. a perfect conductor), the current

only occupies the conductor's surface, the electromagnetic feld inside it being zero.

From equation (4.8a), since the internal fields are zero, the surface current density

J. = n x H +  (4.9)

and from equation (4.7a) the normal component of the magnetic field is zero. Thus,

H + is tangential to the surface, perpendicular to J., and of magnitude J.. Similarly,

from equation (4.6a), the tangential component of the electric field is zero

n x E+= 0

and so D+ must be normal to the surface and of magnitude p..

4.3 Electromagnetic scattering: rigorous theory

4.3.1 Transverse electric field (TE)

Consider an electric line source J. = Ji generating an electric field E = Ei above

a semi-infinite, dielectric medium as illustrated in Figure 4.1. Eliminating the mag-

J. y E fi(0, 0, E)
H =(H.,Hy,0)
n =(nny,0)

n

EO i

C= KV0 y =- h( x *

Figure 4.1: Electric line source above a semi-infinite dielectric medium. The corrugated
profile h = h(z) separates vacuum from dielectric.

netic field from equations (4.3b) and (4.3c) we obtain the inhomogeneous Helmholtz

equation

V 2E + koE -iwpoJ
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for the scalar electric field above the surface (y > h). The equivalent homogeneous

equation for the field inside the source-free dielectric (y < h) is

V 2E + k'E = 0

where k? = Pkl, K = e/eo being the relative permittivity.

The solutions for the TE fields above and below the dielectric interface must satisfy

boundary conditions (4.6a) and (4.6b). From condition (4.6a) we have that

n x (E + - E-) = (n,i - .zj) (E + - E-) = 0

Hence the transverie electric field is continuous across the boundary, i.e.

E+ =E -

From equation (4.3b), condition (4.6b) can be written as

nx Vx - -VxE =0IA-

Using the vector identity a x (V x b) = V(a. b) - (a. V)b - (b . V)a - b x (V x a),

and noting that n • E = 0. E -V - 0 and V x (n/p) is parallel to E, we can show

that the normal derivative n . V of the transverse electric field satisfies the continuity

equation 10E+  10E-

p+ On p- On

4.3.2 Transverse magnetic field (TM)

For Lhis case the field is generated by a magnetic line source J.. = J.i (analogous to

the electric line source J, for TE waves) producing a magnetic field H = Hi above

a dielectric medium; se- Figure 4.2. Considering the symmetry between the electric

and magnetic fields described in Maxwell's equations, we can construct the relations

V x H = -iwEE (4.10a)

VxE = iwpH-Jm (4.10b)

by analogy with equations (4.3b) and (4.3c) respectively. Eliminating the electric

field we obtain the equations

V 2H + kH = -iwo J,.

-A4



Section 4.3.3 78

E =:(E.,rO)
n =(n,nyO)

co i

Figure 4.2: Magnetic line source above a semi-infinite, dielectric medium. The corrugated
profile h = h(z) separates vacuum from dielectric.

for the field above the surface (y > h), and

V 2H + k'H = 0

below the surface (y < h).

As for the case of TE waves, the solutions for the TM fields must satisfy bound-

ary conditions (4.6a) and (4.6b). Condition (4.6b) expresses the continuity of the

transverse magnetic field across the boundary:

n x (H' - H-) =(n, i - nj) (H+ - H - ) = 0

and hence
H+ =H-

Condition (4.6a) can be written in the form

n x V x H + - 'V H-) =0

Following similar arguments as for the TE case, the normal derivative of the transverse

magnetic field can be shown to satisfy the continuity equation

1 H +  10H-

+On - n

4.3.3 The scattering equations

Considering the symmetry of the equations governing the TE and TM fields in sec-

tions 4.3.1 and 4.3.2, the fields above and below the dielectric interface for both
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polarizations are found by solving the following scalar Helmholtz equations:

V 2 (r,) + k02O(r>) = -j(r>) (y > h) (4.11a)

V2 0(r<) + k24(r<) = 0 (y < h) (4.11b)

where j(r) describes the respective line source terms. The field solutions can be

obtained by invoking Green's second theorem in and around the dielectric medium.

This approach is discussed in Appendix A and results in the solutions being expressed

in terms of Helmholtz-Kirchhoff integral equations.

The field scattered into vacuum by the rough dielectric surface is given by equa-

tion (A.9):

0,,(r>) = jl [O(r.)VG(ro, r>) -G(r.,r>)VO(r.)]- ds (4.12)

where r> denotes a point in vacuum and r, is a point on the surface. Since the problem

has been reduced to considering only scattering in one dimension, the surface integral

in equation (A.9) becomes a line integral in equation (4.12). Thus the line segment

vector ds = nds is taken along the contour C+ which is infinitesimally close to the

vacuum side of the true contour C, defined by the dielectric interface h = h(x) and a

semi-circle of infinite radius enclosing the dielectric medium. The function G(r, r') is

the cylindrical-wave Green's function and has the form

G(r,r') = 4H0() (kfr - r') (4.13)
4

where H(')(kr) is the zero-th order Hankel function of the first kind. Note that the

wavenumber k = ko in vacuum, but k = v/Wk0 in the dielectric medium. The scattered

field will satisfy a radiation condition at infinity and so the contribution from the line

integral over the semi-circle of i,. 'ite radius vanishes, leaving only the integral along

the interface. Therefore the surface scattered field becomes

qSe~>)~ dx, [0+(r.)OG~ > ~rr OS) 1+ 2

where 8/an = n - V denotes the derivative along the surface normal. The normal

derivative of the Green's function

OG(r,r') k H') (kIr - r'-) n (4.14)
On 4r

it
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where H(')(kr) is the first order Hankel function of the first kind and t is a unit vector

in the direction r' - r. By making the following substitutions

A4*(r.) = ¢*(r.) 1 + d.

+~r. ( dh 2

where the symbols + and - indicate evaluation on the vacuum and dielectric sides of

the interface respectively, the reflected field scattered into the vacuum may be written

as

0,,(r>) = dx. [A+(r.) 8n~> G+(r., r>)B3+(r.] (4.15)

The corresponding expression for the field scattered by the surface into the dielectric

half-space, or the transmitted field, is given by equation (A.11):

Ot (j dx [-(r.) OG-r,_ G-( r. r<6() (4.16)

In order to evaluate these scattered fields above and below the surface, the values of

the field and its normal derivative at the interface must be combined with those of

the Green's function. Since the Green's function is known, the problem is reduced to

finding the values 40 and O/On at the interface of a known surface profile h = h(z).

The line source is assumed to be in the far-field of the rough, dielectric surface

and so the incident field can be expressed as a plane wave incident at an angle 9j,

such that

Oj,(r) = 0exp(ik" .r) (4.17)

where ki = ko(sin 0i i- cos ij), is the propagation direction of the incident field.

From equation (A.10) we have the mathematical form of the eztinction theorem [65]:

0 = Oi(r<) + jd--. [4+(r.) W+(r.,r<) _G+(r., r<)B+(r.)I (4.18)

This equation expresses the extinction of the incident field inside the dielectric by the

fields induced at the surface which, in the vacuum, give rise to the reflected field. This

relation can be interpreted as an expression of the boundary condition that must be

satisfied by the fields on the vacuum side of the dielectric interface. The analogous

condition for the surface fields on the dielectric side is given by equation (A.12):

0 = dz,. [A-r.) O r.,r>) G-(r.,r>)B-(r.)] (4.19)it
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Using the tangential continuity conditions described in § 4.2.1 it is possible to obtain

solutions to 0 and L0/o& above and below the interface from the coupled integral

equations (4.18) and (4.19). A method of numerically calculating these solutions for

a known profile h = h(z) is outlined in the next section.

4.4 Numerical implementation

The extinction theorem has been used as a boundary condition in an attempt to con-

struct multiple scattering models based on perturbative series approximations [51,

59, 72, 74]. Due to the nature of these methods, such calculations are restricted to

shallow, rough surfaces. However, it is possible to calculate the field and its normal

derivative at the surface from the extinction theorem without having to resort to per-

turbation methods, thereby placing no restrictions on the surface roughness. Such a

solution is very important for modelling multiple scattering interactions on randomly

rough surfaces and predicting new observations. The only drawback with this method

is the lack of information revealed concerning the actual mechanisms involved; the

contributions from single and multiple scattering cannot be separated and the shad-

owing mechanisms may not be determined. Up until this point no assumptions have

been made concerning either the behaviour of the field at the surface, or the degree

of surface roughness. However, the mathematical rigour of the solution has to be

sacrificed for workability of the computer formulation.

To implement a numerical simulation, a randomly undulating function has to be

generated to represent the surface profile of the diffuser. The diffusers described in

Chapter 3 are fabricated in such a way that the surface height is approximately a

Gaussian random process with a Gaussian correlation function. There are a number

of methods available for numerically generating random profiles of known statistics;

e.g. see reference 134). The statistical parameters which govern the above Gaussian

random surface are the rms height ah and the l/e correlation length T.

4.4.1 Random surface generation

Briefly, the method used for generating the random profiles was as follows. The

surface profile h(x) can be expressed as the convolution of a zero-mean, Gaussian,

uncorrelated noise function g(z) with a correlation function c(x). If the functions
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H(u), G(u), and C(u) represent the Fourier transforms of h(z), g(z), and c(x) re-

spectively, in Fourier space we can then write

H(u) = G(u) C(u)

From Parseval's theorem, the average value (IG(u)12) can be shown to be equal to

(Qy(u)j2) = u2 for an uncorrelated process. Expressing the autocorrelation function

[equation (3.4)] of the surface profile in Fourier space we find, by comparison with

equation (3.11), that

IH(u)12 = SH(u) = /_- rexp (-[Xru]2)

where SH(u) is the power spectrum of the surface profile [equation (3.12)]. Hence we

can show that

C(U) = 1' 77exp ([ 2~1
The surface profile is then simply obtained by taking the inverse Fourier transform of

the product G(u)C(u). This method is quick and straightforward to use. A complex

inverse-transform algorithm can be used to generate two independent profiles at the

same time, if two uncorrelated noise functions G,(u) and G,(u) are generated initially.

4.4.2 Surface field calculation

Describing the random profile as a set of discrete points introduces the first approxi-

mation to this theoretical treatment of the problem. The effect of this approximation

can be reduced by increasing the density of points used to describe the surface. Since

the surface fields rapidly fall to zero outside the illuminated region. we -. l only con-

sider a finite surface length L which includes this region. Typically, the sampling

interval is ,- A/10 and the iength L of the surface is long enolugh to include - 10

asperities [73, page 370]. Figure 4.3 illustrates a short length L of the random sur-

face profile h = h(x) described by N + 1 points such that L = NA, where A is the

horizontal point separation. Having made this approximation, we can express the

Helmholtz-Kirchhoff integrals in a form which is suitable for numerical evaluation.

The continuous integral over the surface can be replaced by a summation of discrete

integrals over each line segment, i.e.
dz, ft dzo N-I I(,+l1 )A .[...] ~~= ,, a ..
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y =h(x)

N-
N-2N-

2 -

j=O x =jA x=(j+ )Lt x L NA

Figure 4.3: The random profile h = h(z) is described by a set of discrete points at
r = (xi,, ) with a fixed horizontal separation A. The coordinates of the j-th line segment

are specified at its mid-point. Oj is the angle that the j-ta line segment subtends to the
horizontal, tani~i = (dh/dx)i.

From the expression of the extinction theorem in equation (4.18) we have the

condition inside the dielectric medium that

- j J.+W)~dri [A+8G+(r.j,r,)

j=' On

where r,3 = (x,Iz) and

At= 0'(r~i)sec #j B.= * (1 sec8j (4.20)
j On

At the limit as the observation point approaches the dielectric side of the interface

r,--+ r,,, the condition at the boundary becomes

IxA+ j GB

where 0,,., = 0S,,(r,,) and Gt G*(r.,, r.,). If the interval A is sufficiently small

that .Aj and Bj+ can be considered constant over each line segment, we can write

N-1 W&1) +0 #(j+1)& 1z G
Oij -E Aj fU+)&dz ! B+Ix.±

j0O L ja On .i

Introducing the quantities

u.,jf +1% dx. O~iL Vi, IA dx, G:: (4.21)
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we can construct the following matrix equation

-0.. = U+A + - V+B +  (4.22)

From equation (4.19), we have a second condition that must be satisfied by the fields

at the boundary of the medium

0 = E ,Idx. [A; -L;

Assuming, again, that Aj" and B;" remain constant over the interval A, we can write

N-i

and can therefore construct a second matrix equation

0 = U-A- - V-5- (4.23)

The matrices 0,., A*, and S' are N element column vectors, each element being

evaluated at a corresponding point on the surface. The matrices UE* and V*are

N x N arrays which account for point-wise interactions across the surface (e.g. multiple

scattering and shadowing).

From § 4.3.1, the transverse electric field was found to satisfy the boundary con-

ditions
E+ =E- E +  OE-

(assuming p+ = p-) across the dielectric interface. Hence for the case of TE or s

polarized incident radiation

A+E = AiE *: ATE BT+E = Zi * 5
TS

Therefore, from the simultaneous matrix equations (4.22) and (4.23) we can obtain

the solutions for the surface field and its normal derivative above and below each line

segment describing the dielectric interface for TE waves:

ATE = [v+ pv1 - - - (4.24)
BT [EJ' = A,,,
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From § 4.3.2 the transverse magnetic field was shown to satisfy the following

conditions at the dielectric boundary:

H + = H- I OH+ 1 8H-

Therefore, the field quantities A and B for TM or p polarized incident radiation must

satisfy the conditions
1

45M = 4jM =0 ATM +M = BTM

across the dielectric interface. Therefore, from matrix equations (4.22) and (4.23) we

can construct the solutions for the surface field and its normal derivative on both

sides of the interface for TM waves:

ATE = K [j7V+. [V--]-- V U +  oi

-I [V ' -U-ATM (4.25)

BT+M = IC~Brm = #CBT4M

4.4.3 Scattered field calculation

Perfect dielectric diffuser

The field scattered in reflection by the rough dielectric surface, described by equa-

tion (4.15), can be written as

N-IJ~~ 8 G+(r~j, r>)1E= + [A+ + G+(r'j r>)B,+ (4.26)

The case we are interested in calculating is that of the field in the far-zone of the

diffuser, i.e., 0 , ,0(r>). The Green's functions are given by Hankel functions of

the first kind [equations (4.13) and (4.14)]. The asymptotic values of the Hankel

functions are [1]

lim H(')(kr) ; t -' F2 
t *

V
lim H, (kr) ft ;, -

C The far-zone argument of the Hankel functions in equation (4.26) is or, = 41r> -r.jI

and can be evaluated from Figure 4.4. At the asymptotic limit

1''
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yy , h(X)

Figure 4.4: The planar field distribution in the far-zone is a function only of the scatter
angle 0..

urm r = r> - hj cos0, - x, sin 0,

Sr> -rj i>

and the unit vector in the direction of the scattered wave

lir t =>
r>-?X

For a sufficiently small interval A, the field quantities A and B are assumed to be

constant over each line segment, and so
i( °-z A N-1

lim 0,.(r) - 2 [iAkon- i + 8,+] exp (-ikoro . i) (4.27)... ex 7'kr 4I j=

Following a similar set of arguments, from equation (4.16) the transmitted field in

the far-zone is found to be

lim r= ' - A N-k 1  B
l ( r , n + ,' exp(-i ,-r.j i- (4.28)

The remarkably similar field expressions in equations (4.27) and (4.28) represent the

far-zone fields in reflection and transmission, respectively, scattered by the randomly

rough surface of a semi-infinite, homogeneous, dielectric medium.

Perfectly conducting diffusers

If the scattering medium is perfectly conducting, these expressions are somewhat

simplified. From § 4.2.1, the electromagnetic field inside the medium will be zero
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indicating that A-=1"=O, and hence the transmitted field 4,(r) = 0. For the case

of TE waves, the tangential electric field is continuous across the boundary, and so

.APT= 4j E=O. Therefore the TE reflected field expression is reduced to finding only

the normal derivative of the surface field, given by

-T [V+F _''i
requiring the inversion of only one matrix. The corresponding boundary conditions

for TM waves can be obtained from equation (4.9). Although the internal magnetic

field is zero, the external, tangential field has the non-zero magnitude J,. In a region

on the perfect conductor's surface illuminated with a uniform TM wave, the induced

surface current J, will also be uniform, and so

VxJo = Vx (n xH +) =0

Therefore, since V. H + = 0, we have the condition

OH +

---+ B ,= 0

at the surface. Hence the TM reflected field expression requires only the surface field

given by the matrix equation

A;M = [ OJ'

The perfect conductor equations are very much simpler, and subsequently faster, to

calculate than the corresponding real metal equations. This being so we will assume

that the gold coating on the diffusers is at least a very good conductor if not perfect.

The matrix elements

Describing the surface profile by a set of short linear segments with mean coordinates

roj = (x, hi), the complex, plane-wave amplitude incident on each segment is given

by [equation 4.17]

4O,, = oexp (iko [xj sin Oi - hi cos e.])

and hence the incident field matrix
4..-

Gm={|lj
£
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The elements of the matrices U* and V*[equation (4.21)] can be evaluated by nu-

merical integration of equations (4.13) and (4.14). However, to first order in A, the

off-diagonal elements were calculated from the approximate values

SU C- iA k1 Hf') (k* Ir., - r.I) n , i

(4.29)

i HO~') (k* fr., - r.i1)

where k+ = k0 and k- = nk0. Calculation of the diagonal elements U and V1'

involves integration of the Hankel functions H')(kr) and U(o)(kr) over each line

segment in the limit ar r tends to zero. Both Hankel functions have singularities for

zero arguments, but that of H()(kr) is integrable. Integration of H( 1)(kr) is achieved

by incorporating the geometric factor sec Oj which, for convenience of notation, is

present in the surface field matrix A This procedure was developed by Andreasen [3]

involving the principal value of the integral and leads to the expressions

Vj = cos 0 cos oj

2k0  Uj = 2nko

with the elements .Aj as defined in equation (4.20). For the case of the medium having

a complex refractive index (an absorbing dielectric or finite conductor) calculation of

U- and V-involves Hankel functions of complex arguments. Although not considered

in this present work, numerical studies of the backscattering properties of randomly

rough metals have been carried out by other investigators [49, 56, 68].

4.4.4 The differential scattering cross-section

To compare the results of a numerical calculation with those of a corresponding

experimental measurement, the scattered amplitudes (4.27) and (4.28) have to be

related to some measurable light flux density. From equation (2.2) we have the

definition of the mean differential scattering cross-section (DSCS) which, for one-

dimensional diffusers, is given by

--(,;0.)= (J(0,; 0.)) [s _,]

where (J) is the mean radiant intensity [W sr - '] averaged over an ensemble of rough

surfaces and P1,, is the power incident on each surface. For a given angle of incidence
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we can write

'( , Pi. (4.30)

where i is a unit vector in the direction of the scattered light field. The time averaged

Poynting vector represents the flow of power (in magnitude and direction) per unit

area (perpendicular to the direction) and is given by [66, page 313]

(S) = 'We [E x H*] (4.31)

where the asterisk [*] denotes the complex-conjugate value. In the present case of an

infinite cylindrical geometry we need only consider the Poynting vector to have the

dimension [W m- ]. Hence the time-averaged power flowing into the angular segment

0, -- 0, + dO, can be expressed in terms of the mean radiant intensity

(S) . i rdO. = (J(i)) dO, [W] (4.32)

TE (s) polarization

Making the substitution H* = (i/wp)V x E* in equation (4.31), allows us to write

the time-averaged Poynting vector in the form

(S) = -Z m [E°VE] (4.33)
2uwp

The incident field is assumed to be a plane wave of the form

Ei.(r) = EOexp (iki . r) k

where ki = k0 i is the incident wavevector in the direction ii = sin Oi i - cos Oi..

Substituting Em. into equation (4.33), the power incident on a diffuser of length L is
IiS)TELI - ko IEo12 L Iiij

where L = Lj is the mean surface normal, and hence

pTE - koL cos Oi 1E01
2  (4.34)

2wpo

The scattered far-zone field above the diffuser [equation (4.27)] is of the form

eiko
r

lira E..(r) =F,,(i)--- k

|.
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where Ce(i) is a function of direction only. From equation (4.33) we can show that

iM (s)E= ko

and hence, from equations (4.30), (4.32), and (4.34) the scattering cross-section can

be expressed as

_ "C ( ) = (I4 ,(iE0 1 2 L

where

41R~) = _ 4 E iAT's, konj .fr + BP Iexp (-ikor,,- .i)
¥ o"e j=0

The scattered far-zone field in transmission [equation (4.28)] is of the form

l i m E t , ( r ) = 
k,( i ) - --o

where t . index of refraction n = n' + in" is generally a complex value with n' > 1

and n" > 0. For anything other than a pure dielectric medium n" > 0 and the

transmitted field will undergo absorption being attenuated by a factor exp(-n"kir),

and so the far-zone field will be zero. Following the same steps as for the reflected

field, the far-zone transmitted scattering cross-section can be shown to equal

=9 n

jEol Lcos(0,)

where n = n', and

2QT A F [iAiE, nkonj .i + BjE exp (-inkor,,- i)n-koe ,_=

TM (p) polarization

Making the substitution E = (i/we)V x H in equation (4.31), we can write the

time-averaged Poynting vector as

(S)TM .I~ M[! H'vH] (-5

where the relative permittivity K - n2 . The incident plane-wave for this case takes

the form

H,.(r) = Hoexp(iki . r) k



Section 4.4.5 91

Substituting Hj. into equation (4.35), the incident power on a diffuser of length L

can be shown to equal
pTM = k0LcosO,

Following arguments similar to those for TE polarization, we can express the TM

polarized, reflected scattering cross-section as

= IHol2Lcos 1  (4.36)

where

7fe(r') = -e'A [,A+ konj . i + B+M,] exp (-ikor0j. i)

Assuming again a perfect, semi-infinite, dielectric naterial the transmitted far-zone

scattering cross-section can be shown to equal

(jH. 12)rp"PMr = n 1H012 L cos i

Where
2 N-I?it = Ze' A [i ,M nkon j • - + BTM] exp (-inkor., -i)

.,=0

4.4.5 Comments

As mentioned in § 4.4.2, the surface length L was chosen to include approximately

ten asperities of the generated profile, typically L - 20A with a sampling interval

A/10. For surface roughness in the resonance region (1/e correlation length,

r = A) this degree of sampling appears to define sufficiently the surface fielGs for the

calculations to be considered reliable [61, 73]. Reducing the sampling interval had

negligible effects on the calculated DSCS curves for individual surface realiza:ions.

However, maintaining a sufficient sampling interval for surfaces with very fine-scale

structures (T ;S A/10) would result in a surface length of only a few wavelengths

being considered. The influence of edge effects (diffraction by finite aperture) would

then be strong, affecting the angular distribution of the scattered light. The Monte-

Carlo method of calculating the scattered fields would not be reliable in this region;

being computationally intensive, it is not a realistic option to simply increase the

;t
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number of points. For a surface described by - 200 points, calculation of the DSCS

for each realization on a Sun 4/260 workstation with floating-point accelerator, using

fully optimized code, takes - 30 minutes: - 200 such realizations are required to

adequately reduce the 'speckle' noise, i.e. approximately four days computing time.

The major rate-determining step of the DSCS calculation is computing the in-

verse matrices in equations (4.24) and (4.25). From equation (4.29) it is clear that

the inverse matrices are dependent only on the surface profile and not on the angle

of incidence. Hence much computing time is saved if a number of incident angles

are simultaneously considered for each realization. Another short-cut is to consider

the surface profile h(-z) to be a second surface realization with the same Gaussian

statistics as h(x) and for which the inverse matrices have already been calculated.

Hence from N generated random surfaces, the effect of averaging over 2N realiza-

tions can be achieved, but in half the time. A subsidiary effect of this 'trick' is to

produce a rather aesthetically pleasing, symmetrical scattering cross-section for an

incident angle of zero degrees!

A condition which must be satisfied by the calculated scattering cross-section in

reflection -' and transmission E , for perfect conductors and lossless dielectrics, is

that of unitarity:

e(e d + _ + .)dO. =

Although this is a necessary condition it is not sufficient to guarantee accuracy, but

does at least give an indication of whether the calculations are reasonable. For real

metals or absorbing dielectrics, where there is energy dissipation, the unitarity con-

dition must at least hold for the identical surfaces formed in lossless materials. Each

of the calculated cross-sections presented in the following sections is accompanied by

its unitarity value U. This value is the mean of the unitarities calculated for each

surface realization. The largest standard deviation of these unitarity values was 2.5%

out of all the cases considered, but was typically < 1%.

One final point that should be mentioned before comparing numerical simulation

with experimental measurement, is that the enhanced backscatter effect is present

in the incoherent component of the scattered field. The differential scattering cross-
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sections given in § 4.4.4 describe the total scattered fields 0(0.); i.e., coherent plus

incoherent. The coherent, or specularly reflected, component is associated with the

mean of the scattered field j(4(q.))j2 and hence the incoherent component is given by

its variance (_(e.)I2) - 0(0.))12. The two components can therefore be separated

numerically; a more detailed discussion of the mean scattered power is given in § 5.4.

4.5 Experimental results

The data presented in this section were collected during experimental measurements

of the light scattered by randomly rough diffusers. The procedure of collecting the

data is described in Chapter 2 which includes a description of the apparatus used

for these investigations. The diffusers were specially fabricated to have a highly one-

dimensional (grating-like) structure, to comply as closely as possible to the conditions

of the numerical simulations. A method was developed in Chapter 3 of faithfully

reproducing a diffuser's profile into transparent, dielectric materials. This process has

made it possible to say, with confidence, that any differences between two measured

scattering cross-sections are due entirely to the differences between the materials'

reflectivities.

The following sections contain a catalogue of comparisons between experimental

measurement and theoretical prediction based on two types of diffuser:

I) scattered light measurements from a gold-coated diffuser compared

with numerical calculations based on a perfect conductor with the

same roughness parameters;

2) scattered light measurements from a transparent, dielectric diffuser

compared with numerical calculations based on a perfect dielectric

with the same roughness parameters.

To reduce the monotony of these comparisons, points raised by the results will be

discussed throughout the following sections. The diffusers employed for these com-

parisons are the same as those used in previous investigations [69, 70] and have been

characterized as being Gaussian diffusers (Gaussian height density and correlation

functions) with the following statistical parameters [refer to table 3.11:
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Diffuser height 1/e correlation length
Difu r PM T/pm

#39 1.18 * 0.02 2.97 ± 0.05
#46 1.22 + 0.01 3.18 ± 0.07

Table 4.1: Statistical parameters of the one-dimensional diffusers used during the experi-
mental measurements.

The diffusers are highly one-dimensional, as was verified by measuring the cross-

polarized scattering cross-sections in the following experiments. Although the amount

of depolarized light was visibly non-zero (at least for the visible wavelength), the

light flux was always below the sensitivity of the detector that was necessary to

measure the co-polarized cross-section. All cross-polarized measurements resulted

in zero irradiance readings and, hence, are not presented in the Figures. Being only

approximately one-dimensional, the diffusers scatter light over a small range of angles

above and below the plane of scatter (- 160 in total). As a consequence not all of

the scattered light is detected; however, the undetected light does not carry any more

information than that local to the scatter plane.

4.5.1 Metallic scattering

Wavelength \ = 0.633 pm

We first consider the case of light scattered from a gold-coated diffuser (#46) for

a TM, or p, polarized incident beam whose wavelength A = 0.633 pm. For this

wavelength the surface parameters scale to the values r/,\ = 5.02 and k/,1A = 1.93.

Shown in Figure 4.5 are the experimental measurements and corresponding numer-

ical calculations, based on the extinction theorem for a perfect conductor, of the

scattering cross-sections for the incidence angles Oi = 0° , -20*, -400. The calculated

cross-sections have been averaged over N = 2 x 200 realizations and the experimental

data normalized assuming 100% reflectivity of the gold coating [equation (2.3)]. The

vertical dashed line in each graph indicates the backscatter direction. For incidence

angles 8i = 0* and -20* the experimental data exhibit a sharply defined peak of

finite width centred about the backscatter direction, enhanced over the incoherently

scattered light at neighbouring angles. The reader may be reassured that this is in-

deed enhanced backscattering by the absence of data points precisely at backscatter.
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This is due to the blind-spot of the experimental set-up where the detector effec-

tively passes behind the source. The backscatter enhancement appears particularly

strong for normal incidence (9, = 0*) and gradually reduces in size as the incidence

angle is increased. For normal incidence, subsidiary maxima are prominent about the

backscatter direction and, although a well-defined peak is still observable for -20*

incidence, only the contiguous minima can be distinguished. For -400 incidence the

backscatter peak can be barely discerned above the neighbouring incoherently scat-

tered light, but the majority of the light is scattered in the backscatter quadrant

(00 < 9. < 900).

The agreement of the perfect conductor calculations for normal incidence is quite

good, even down to the presence of the subsidiary maxima. The theoretical and

experimental data curves agree well for 10.1 : 60*, but for larger scatter angles the

calculated results do not predict as large a cross-section as is observed experimentally;

that is, except at grazing angles 0. = +90* where the experimental data fall to zero,

as one would expect from oblique shadowing, whereas the calculated cross-section is

finite. For -20* incidence the measured and calculated results show some marked

differences, particularly for scattering beyond the backscatter direction 0. > 200.

The calculated cross-section does rise slightly around backscatter, but the presence

of an actual peak is obscured by the 'speckle' noise; increasing the number of sur-

face realizations N would probably enable a peak to be resolved. The comparison

for -40 ° incidence is somewhat disappointing with the numerical results bearing lit-

tle resemblance to the experimental data. The amount of light scattered into the

backscatter quadrant (0° < 0. < 90*) is greatly underestimated, with too much light

being foward-scattered.

The comparisons between experiment and theory for a TE, or a, polarized beam

over the same incidence angles show similar characteristics as in the TM case; see

Figure 4.6. The agreement for normal incidence is very good, particularly the defi-

nition of the backscatter peak and the subsidiary maxima. The agreement is not so

good for -200 incidence particularly beyond the backscatter direction (0 > 20*). For

-40 incidence the agreement is poor with much less light being backward scattered

than is observed experimentally.

It is interesting to note that, between the two polarizations, the calculated results

show very little difference whereas, in the experimental results, the as measurements
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tend to be slightly broader than the corresponding pp measurements, although they

do maintain basically the same features; the pp measurements tend to show slightly

more backward scattering than the corresponding as measurements. The differences

between the experimentally determined cross-sections for the two polarizations is

possibly due to the finite conductivity of the gold coating; each polarization being

subject to different reflectivities and absorptions.

Wavelength A = 1.15 pm

We next consider the case of light scattering from the same diffuser (#46) but this

time for a p polarized incident beam whose wavelength A = 1.15 pm. The statistical

parameters are now scaled to the values r/A = 2.76 and ah/A = 1.06. A strong

backscatter peak is observed experimentally at normal incidence; see Figure 4.7a.

The minima and maxima on both sides of the peak are not as well defined as they

are for the shorter wavelength A = 0.633 pm in Figure 4.5a. Comparing the peaks

for the two wavelengths at normal incidence, the width taken between the minima

appears to have doubled from A = 0.633 pm to A = 1.15 pm. Generally, for the

longer wavelength, more energy is backscattered forming broader, enhanced peaks

particularly in the csse of -20* incidence but, conversely, more light is scattered

beyond the backscatter direction for the shorter wavelength.

The fit between experiment and theory is good for normal incidence, particu-

larly the width of the backscatter peak, although the subsidiary maxima are not

well defined. At -20* incidence the agreement of the overall incoherent distribution

is reasonable, although the theory fails to predict a backscatter peak for the num-

ber of realizations considered, whereas strong backscatter enhancement is observed

experimentally. The agreement for -40 ° is not so good with too much light being

forward-scattered in the simulation and, again, there is no backsatter peak.

The same comments can generally be made about the comparisons between ex-

periment and theory for the scattering of an a polarized light beam; see Figure 4.8.

The calculations do not predict such marked minima about the backscatter peak for

normal incidence in Figure 4.8a, but otherwise the agreement is good. For -20 ° inci-

dence the curves generally agree quite well, but slightly more light is observed to be

backward scattered than is predicted theoretically. Comparing the calculated results
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Figure 4.8: Comparisons between experimentally measured [o] and theoretically pre-

dicted [-] scattering cross-sections. Measurements: gold-coated diffuser #46; calculations:
perfect conductor. r/A = 2.76 and ophIA = 1.06; N = 2 x 200 realizations; surface length
L = 40A; sampling interval A ft A/10; wavelength A =1.15 um. A) 9, = r
B) 9, -20*, C) Oi = -40*.
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in Figures 4.7b and 4.8b, there is more evidence of a backscatter peak being predicted

for an s polarized incident beam, although neither compare to the experimental peaks.

A similar comment can be made for -40* incidence, in that the theory predicts more

light to be scattered in the forward direction than is observed experimentally. It is

interesting to note that whilst the experimental data show marked differences with

the increase in wavelength, the simulations show virtually none.

Wavelength A = 3.39 pm

The next case we consider is the scattering of a p polarized incident beam whose

wavelength A = 3.39 pm. The diffuser remains unchanged (gold-coated #46) and the

same incidence angles are considered; see Figure 4.9. The roughness parameters are

proportionately scaled to the values r/A = 0.937 and ca/A = 0.361. The most strik-

ing feature of the experimental measurement for normal incidence is the very broad

enhanced backscatter peak and the pronounced minima and maxima adjacent to the

peak. This is in contrast to the poorly defined structure observed for the same polar-

ization at the wavelength A = 1.15 pm in Figure 4.7a. For -20* incidence a strong

backscatter peak is still present and, apart from a slight skewness, the structure

observed for normal incidence merely appears to have followed the backscatter direc-

tion. At -40o incidence the minima and maxima beyond backscattering (0, > 400)

have blended into the diffusely scattered light, but the backscatter peak itself is still

evident. However, for the shorter wavelengths (A = 0.633 pm and 1.15 pm) the

backscatter peak has all but vanished for -40* incidence.

The numerically calculated cross-section for normal incidence agrees well with

the measured cross-section in Figure 4.9a; the minima are not so well defined and

the backscatter peak is not as strong, although its width compares very well. In

Figure 4.9b the two curves are comparable from forward grazing 0. = -90* up to

backscatter, but the calculations then fall short of the measurements towards back-

ward grazing 61. = 90 ° . There is no real backscatter peak predicted, although a

strong peak is observed experimentally. For -40* incidence there is too much empha-

sis on forward scattered light in the calculated cross-section, whereas the measured

cross-section actually peaks at backscatter.

The comparisons between experiment and theory for the case of an . polarized

Ic
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incident beam are shown in Figure 4.10. For normal incidence the backscatter peak

is strong and very wide with no particular subsidiary structure to it. This is in stark

contrast to the corresponding measurement for the wavelength A = 1.15 Am wiere

the minima are particularly well defined. The backscatter peak remains the dominant

feature of the scattered light up to -40 incidence as it does for the p polarized case in

Figure 4.9. The calculated cross-section for normal incidence is in general agreement

with the measured cross-section, although the experimental backscatter peak has

better definition. For higher angles of incidence the calculated results predict too

much forward scattering and nothing like the degree of backscatter enhancement that

the experiments show.

Wavelength A = 10.6 pm

The final case we consider for the gold-coated diffuser is the scattering of a far infra-

red wavelength A = 10.6 pm. At this long wavelength the surface parameters are

scaled to the values r/A = 0.300 and ah/A = 0.115. The scattering cross-sections in

Figures 4.11 and 4.12 are the incoherent components only; the coherent components,

although of interest in long wavelength and perturbative studies, will be ignored here.

For all of the incidence angles considered in Figure 4.11 it is interesting to note that,

despite there being a very strong coherent reflection, the diffuse pp radiation is most

strongly scattered in the backscatter direction although no peak is actually observed.

The calculated cross-sections in Figure 4.11 agree well with the experimentally mea-

sured cross-sections.

Figure 4.12 shows the incoherent scattering cross-sections for an s polarized in-

cident beam. For normal incidence the measured incoherent cross-section exhibits

an almost Gaussian-like distribution, but again the dominant feature of the total

cross-section is the coherent component. For -20* incidence the diffusely scattered

radiation becomes skewed towards forward scattering directions. Increasing the in-

cidence angle to -400 has little effect on the overall distribution, but does increase

the energy in the coherent component. The calculated incoherent cross-sections in

Figure 4.12 show favourable agreement with the experimental measurements for all

of the incidence angles considered.

Apart from the case we have just considered, the best overall comparisons between



Section 4.5.1 104

0.8- A) U= 1.012

80.6-

SOA

10.2-

0.0-

-80 -60 -40 -20 0 210 40 60 80

0.8 JB) U 111.014

*~0.6-

S0.4

@0 0

480 -60 -40 -20 0 20 4 0 8

0.0

480 -60 -40 -20 0 20 40 60 80
Scattering angle, e, / degrees

Figure 4.10: Comparisons between experimentally measured [o] and theoretically pre-
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experimental observation and theoretical prediction occur for the wavelength A =

1.15 pm, when the statistical roughness is characterized by the parameters r/A = 2.76

and oh/a = 1.06.

4.5.2 Discussion

At each illuminated point of a diffusing surface there will be a surface current induced

by the incident field. Each element of the surface will act as a tiny source radiating

fields towards other surface elements and also into the propagating reflection and

transmission fields. In this model a surface element may preferentially radiate fields

away from the surface, suggesting a 'single' event, but its surface current generating

the fields may contain contributions from other elements - a 'multiple' event. The

degree to which the surface elements mutually contribute to their currents will depend

strongly on the local slopes and curvatures of the profile compared to the wavelength.

Clearly large slopes and curvatures will support more 'multiple' interactions whereas

low sloped, slowly - ting surfaces would tend to favour 'single' scattering. The

meanings of single aiiu multiple scattering become somewhat ambiguous when the

surface structures become smaller than a wavelength.

In analogy with the studies of light scattering from volume suspensions of mi-

crospheres [2, 43, 45, 80], one possible mechanism for backscatter enhancement from

surfaces is the co-operative effect between forward and time-reversed light paths - a

multiple scattering effect. Considering the fields radiated by each surface element to

be decomposed into plane-wave components, we can concentrate on one such compo-

nent from a particular element which strikes another element; that surface element

may then, in turn, radiate a plane-wave component in the backscatter direction. Such

a sequence may be described as being a two-fold event, but can generally consist of

m individual interactions. In Figure 4.13 are shown two m = 3-fold events which in-

volve the same scattering elements, but whose sequences are reversed with respect to

each other. When 9 = 0, the out-going wave vector is in opposition to the in-coming

wave vector, and is by definition the backscatter direction. The two wave components

will then have the same amplitude and phase, and interfere constructively to give an

enhanced intensity. Away from backscatter there will be a non-zero phase difference

introduced between the two waves and their phases will soon become uncorrelated re-

Ii
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9 9

Figure 4.13: Introduction of a phase difference, away from backscatter, between forward
and time-reversed light paths for an m = 3-fold scattering event.

sulting in the waves adding incoherently, i.e. no interference term. It is clear then that

in the vicinity of the backscatter direction, the peak will be enhanced approximately

by a factor of two over the incoherent intensity of m > 2-fold events.

Near normal incidence, the phase difference AO introduced between forward and

time-reversed light paths, at an angle 0 away from backscatter, can be obtained from

Figure 4.13 and is proportional to

27rAcx -DO

where D is the distance separating the first and last scattering elements. Taken over

all possible scattering paths we obtain the averaged relation

c (D) 0 (4.37)

for a particular angular deviation 0 from backscatter. We would therefore expect

maxima in the light field to occur when (AO) = 27"n, where n = 0, ±1, ±2,... and

the corresponding minima to occur when (AO) = 2x(n + 1/2). The visibility of

these interference effects (fringes) will greatly depend on the standard deviation of

the phase difference ea which, in turn, will depend on the standard deviation of the

distance parameter aD. From simple statistical arguments we can write

D
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From equation (4.37) the first subsidiary maximum (n - 1) occurs at an angle

away from backscatter and, hence, we can show that

0&0 oc -G (4.38)

When scattering from a volume, the mean distance parameter (D) can potentially be

quite large (tens of wavelengths), but presumably so can its standard deviation GD

since no subsidiary maxima are observed in volume scattering experiments - o,

is then too large and the interference effects are washed out for n > 1. For light

scattering from a random, metallic surface the longer distances D will generally be

limited by the mean separation between major peaks across the surface profile. Hence

aD will not be so large for scattering from a surface as it can be from a volume, and

so o,%, will also be smaller. This simple analysis may explain why, in some cases,

subsidiary maxima can be observed in experimental light scattering from surfaces

but not from volumes.

From equation (4.37) the first subsidiary minimum occurs when n = 0 and allows

us to find a relation for the angular width of the backscatter peak between the minima:

A06 Oc (DA (4.39)

Considering the experimental results presented in Figures 4.5 - 4.10 we are able to

obtain the set of data in Table 4.2, relating to the backscatter peak widths for 00 and

-20* incidence. For an m = 2-fold event, the mean distance (D) represents the elastic

mean-free-path of the light interaction at the surface. The mean distance between

two consecutive peaks on a Gaussian surface is of the order of 2r [56, Appendix A],

and hence we can intuitively say that

Aeb, oc -
T

Figure 4.14 represents the pp data from Table 4.2 together with some extra data

points measured from other diffusers available in our laboratory. The relationships

IC
Ic
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PODn  Wavelength Backscatter peak width
Ao/ I /m ;= 0 O = - 20 *

pp 0.633 10.00 9.00 ±0.10
or 1.15 210 170 ±1.00

TM 3.39 360 350 *2.00
as 0.633 9.40 8.50 0.10
or 1.15 160 16" ±1.0

TE 3.39 450 350 ±2.0r

Table 4.2: Angular widths (in degrees) of the experimental enhanced backscatter peaks.

50-

~30-

120

0 10 20 30 40 50 60 70 80
X. / dc (devpees)

Figure 4.14: Variation of experimentally measured backscatter peak widths as a function of
A/r. In each case a p polarized light beam is reflected from a gold-coated diffuser. Incidence
angles 0, = 0* [o] and 9, = -20* [0].

between the backscatter peak widths and the ratio A/r are approximately linear in,

what is termed, the 'geometric optics' limit as A -4 0.

The peak widths are consistently smaller for -200 incidence than for normal in-

cidence. A case for why this is so may be based around the following arguments.

Physically the only change that occurs as the direction of the incident beam is varied,

is the degree of shadowing - shadows are cast across the surface by the incident

beam, but there is also the shadowing of observation, i.e., an illuminated point may

not be visible. This would suggest that if one half of a valley is in shadow, then

any multiple interactions across the width of the valley will have to end up back on

the illuminated half in order to be backscattered, requiring at least an m = 3-fold

interaction. As the degree of shadowing is increased, the contributions from short-
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range, low-order interactions will be reduced resulting in (D) increasing. Hence from

equation (4.39) the width of the backscatter peak will decrease with increasing angle

of incidence. The shadowing argument may also be used to explain the reduction

in height of the backscatter peak as the incidence angle is increased; the effect of

shadowing will generally reduce the possible number of light paths that will support

retroreflection, and hence reduce the backscattered energy.

Another interesting observation from the experimental results is in the relative

strengths of the subsidiary maxima about the backscatter peak, between the two

polarizations p and a. For A = 0.633 pm the subsidiary structure appears slightly

stronger for a incident polarization than it does for p polarization. Again for A =

1.15 pm the difference is more evident with the pp data exhibiting shallow structures

as opposed to the very deep minima present for the as data. However, the trend is

reversed for A = 3.39 pm with the pp data exibiting well defined minima and maxima,

whereas the as measurement has no structures at all. The visibility of the interference

effects believed to give rise to this structure is governed by era in equation (4.38),

but an explanation of the factors determining which polarization structure dominates

has yet to be found.

4.5.3 Dielectric scattering (reflection)

The diffuser used in this experimental investigation is a dielectric replica of diffuser

#46 which was gold-coated for the previous study. The replication technique is

described in § 3.5 and is shown to faithfully reproduce the surface profile. Analyzing

transmission and reflection values of a flat, dielectric sample relative to a distilled

water standard, the refractive and absorptive indices were obtained for the relevant

wavelengths [21, Chapter 2].

Wavelength A = 0.633 pm

The first case of light scattering from a dielectric diffuser that we consider is of a

p polarized light beam whose wavelength A = 0.633 pm. At this wavelength the

surface roughness parameters have the values r/A = 5.02 and l,/A = 1.93, and the

refractive index n = 1.411. Figure 4.15 shows the comparisons between experimental

measurement and numerical simulation based on a perfect dielectric for the incidence

'C
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Wavelength Refractive Absorptive
A / pm index, n -0.1% index

0.63 1.411 6.0 ± 3.0 x 10 -

1.15 1.399 3.5 ± 1.2 x 10- 1
3.40' 1.412 4.0 ± 2.2 X 10- 2

10.60 1 1.510 9.1 ± 2.2 X 10-2

'The absorptive indices for these wavelengths were calculated using Kramer's-Kronig anal-
ysis [31, appendix B].

Table 4.3: Refractive and absorptive indices of the dielectric medium at the investigation
wavelengths.

angles 0° , -20 ° , and -40*. The backscatter direction in each graph is denoted by a

vertical dashed line and can also be recognized by the blind-spot in the experimental

data. It should be mentioned that at the time of measurement the experimental

data were not normalized in an absolute sense, although the beam power incident

on the diffuser was unchanged for each measurement. For comparison purposes, the

experimental data have been normalized such that the total reflected power for p and s

polarizations at normal incidence is equal to that predicted by the theoretical results.

Although the comparisons will be qualitative in nature, the calculations have been

shown to agree reasonably well at normal incidence for metallic scattering, and there

is no reason to believe that this should not also be the case for dielectric scattering.

The scattered-light distribution observed for normal incidence (6, = 0° ) has an al-

most Lambertian-like appearance [refer to § 2.6]. Comparing this measurement to the

one for the gold-coated diffuser in Figure 4.5a, the distribution is qualitatively similar

except for the total absence of any backscatter structure. As the incidence angle is

increased, the dielectric measurements maintain a similar distribution being slightly

skewed towards backscatter. The only feature which emerges is a null reflectance at

0. - 65 ° for -40' incidence, which is a consequence of the Brewster phenomenon for

p polarized light. The fact that this effect is present at all suggests that the scattering

mechanisms at the surface are predominantly single interactions.

Comparison with the numerical calculations for normal incidence shows favourable

agreement, although the theory appears to predict some structure at backscatter.

Reasonable agreement is found for -200 incidence with slightly too much light around

the backscatter direction. The comparison for -40' incidence is very good with the

only slight discrepancy occuring towards the forward grazing angle 9. = -90 ° where
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Figure 4.15: Comparisons between experimentally measured [o] and theoretically pre-
dicted [-] scattering cross-sections. Measurements: dielectric diffuser #46; calculations:
perfect dielectric. r/A = 5.02 and arh/A = 1.93; N = 2 x 200 realizations; surface length
L = 40A; sampling interval A ft A/10; refractive index n - 1.411; wavelength A = 0.633 Jm.
--- (#,,e): A) 9, = 00, B) 9, = -20 ° , C) 9, = -40.
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the calculation does not fall to zero. It is thought that this is an artifact of the

simulation only accounting for a finite length of surface.

The corresponding measurements for an a polarized incident beam are shown in

Figure 4.16. The measured cross-section for normal incidence exhibits considerably

more structure than the pp measurement in Figure 4.15a. A greater amount of light is

reflected at large scatter angles and there is the presence of a small backscatter peak.

Both of these observed features may be explained by considering Fresnel's coefficients

of light reflection from a flat, dielectric medium. Since the pp measurement for normal

incidence does not exhibit the Brewster phenomenon, we may assume that we are on

the portion of the Fresnel reflectivity curves between zero degrees and the Brewster

angle. Along this portion, the reflectivity of a p polarized wave is falling to zero

with increasing angle whereas that of an s polarized wave is increasing, and hence

more s polarized light is scattered at larger angles. Since s polarized waves have

higher reflectivities than p waves, we would expect any multiple scattering related

phenomena to at least be present in the ss measurement. The presence of a small

backscatter peak in Figure 4.16a and its absence from Figure 4.15a would therefore

suggest a multiple scattering mechanism for this phenomenon.

The comparisons between experiment and theory are quite favourable for all of

the incidence angles considered. The main differences occur at grazing scatter angles

(0, = ±90° ) and the peak reflectance of the forward scattered light. An interesting

point to note is that, in both experiment and theory, the two polarizations for each

incidence angle have the same scattering cross-section at backscatter.

To investigate the effects of multiple scattering from a dielectric diffuser, it is a sim-

ple matter to increase the surface reflectivity in the numerical calculations through

the refrative index n. Figure 4.17 shows some calculated scattering cross-sections

in reflection for diffuser #46 at normal incidence. The lower pair of curves repre-

sent p and s scattering for n = 1.411, while the upper curves are the corresponding

cross-sections for n = V/-iW. The increase in reflectivity of the dielectric medium is

apparent, and a sharp backscatter peak with subsidiary maxima is observed in the

Ss calculation. It would appear that there is still an insufficient multiple scattering

contribution for backscatter enhancement of p polarized waves to occur. Calculations

have shown that p polarized enhancement can be induced for nominal values of refrac-

tive index if the surface is strongly diffusing (T/A _- 3 and / 1 2) [56, Chapter 6].
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Figure 4.17: Numerically calculated scattering cross-sections for p [-] and., [- - -] incident
polarizations in reflection. r-/A = 5.02 and ah/A = 1.93; N = 2 x 200 realizations; surface
length L = 40A; sampling interval A - A/10; the refractive index has been artificially
increased from n = 1.411 to n = vI/- ; wavelength A = 0.633 um. -e(00,).

Wavelength A = 1.15 pm

The next case we consider is the scattering of a p polarized light beam of wavelength

A = 1.15 pm from a dielectric diffuser of refractive index n = 1.399. The surface

roughness parameters are now scaled to the values -/A = 2.76 and ah/A = 1.06.

The experimental data presented in Figures 4.18 and 4.19 have been normalized in

the same way as for the wavelength A = 0.633 pm to facilitate a comparison with

the theoretical calculations. The measured pp scattering cross-sections in Figure 4.18

show broadly the same features as for the shorter wavelength in Figure 4.15. The

main difference occurs for -40* incidence where the cross-section peaks more sharply

near the backscatter direction. The numerical calculations agree quite favourably

with the experimental data except, again, around backscatter for -40* incidence.

The experimental and theoretical scattering cross-sections for an s polarized in-

cident beam are shown in Figure 4.19. The more smoothed appearance of the mea-

surements compared to those in Figure 4.16 are as expected for at, increase in the

illuminating wavelength. Away from normal incidence, observations show that more

light is scattered in the backscatter direction and towards grazing (0. = 900) with the

increase in wavelength. For normal incidence the calculated cross-section is generally
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too flat and featureless compared to the experimental cross-section; for -20 ° inci-

dence their is good agreement up to backscatter, but does not predict the observed

peak in the diffusely scattered light at 0, - 600. The simulation for -40 ° incidence

shows broad agreement with the experimental result although, again, not enough

light is backward scattered at larger angles.

Wavelength A = 3.39 pm

Increasing the wavelength further to A = 3.39 pm the roughness parameters are

then r/A = 0.937 and k/A = 0.361. Comparing the cross-sections in Figures 4.20

and 4.21 to those for the shorter wavelengths, similar features can be seen. In com-

paring the cross-sections between experiment and theory at this wavelength, little

more need be mentioned other than the agreements are very good across all of the

incidence angles considered.

4.5.4 Comments on computational rigour

Although the calculated scattering cross-sections satisfy the energy conservation crite-

rion to within 5% [see the unitaritity values U in each Figure], some general comments

on computational rigour can be drawn from the comparisons with experimental metal

and dielectric results. On the whole the computations agree well wi h the experimen-

tal observations near normal incidence but agreement lessens for increasing incidence

angle, particularly for the reflective metallic surface. One possible cause of this reduc-

tion may stem from describing the diffusing surface at uniform horizontal intervals

rather than at uniform intervals along the profile itself. It is therefore the valley walls

which are least defined in such a description, and it is these portions of the surface

which become more strongly illuminated away from normal incidence. Inadequate

description of the field amplitudes along these portions, from the incident field and

multiple interactions, may lead to the observed emphasis of forward-scattered radi-

ation for higher incidence angles, whereas the experiments show stronger backward

scatter. It may also explain why the calculations sometimes fail to predict backscatter

enhancement away from normal incidence; a particular case in point is for the wave-

length A = 3.39 pm scattered from the metallic diffuser in Figures 4.9 and 4.10. One

of the best qualitative agreements overall is found to occur for the dielectric diffuser
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dicted [-] scattering cross-sections. Measurements: dielectric diffuser #46; calculations:
perfect dielectric. r/,\ = 0.937 and Oh/X = 0.361; N = 2 x 200 realizations; surface length
L = 40A'; sampling interval A ft A/10; refractive index nt 1.412; wavelength A =3.39 Prn.
Ee(9j,.): A) 9=0*, B) 9, -20*, C) 9, -40*.
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Figure 4.21: Comparisons between experimentally measured (o] and theoretically pre-
dicted [-) scattering cross-sections. Measurements: dielectric diffuser #46; calculations:

C ~perfect dielectric. 7/A = 2.76 and oA/AX = 1.06; N = 2 x 200 realizatais; surface length
UL =40A; sampling interval A f A/10; refractive index n =1.412; wavelength A =3.39 pm.

Br(8i,8.): A) P, 0*, B) 9, -20*, C) 9. -400.
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at the wavelength A = 3.39 pm, i.e. single scattering of long wavelengths.

4.5.5 Dielectric scattering (transmission)

Leaving surface reflection at the wavelength A = 10.6 pm to the experimental synopsis

in § 4.6, we now consider the field transmitted below a dielectric, random surface

when illuminated from free-space above. The diffuser used for this investigation is

a dielectric replica of diffuser #39, but this time in the form of a parallel-sided slab

[refer to § 3.5]. For the illuminating wavelength A = 0.633 pm the surface roughness

parameters are /A = 4.69 and oh/A = 1.86, and the refractive index n = 1.411.

For comparison purposes, the experimental data presented in Figures 4.22 and 4.23

have been normalized to provide the best fit with the numerical results for normal

incidence. It should be pointed out that the data have been converted via Snell's

refraction law, assuming refraction at a plane face, to represent transmission within

the medium.

The scattering cross-sections of both p and s incident polarizations in Figures 4.22

and 4.23 are virtually identical. The vertical dashed line in each graph represents the

direction of specular transmission in the absence of surface roughness, i.e., Snell's

refraction angle at a plane dielectric interface. Introducing slight roughness to a

flat dielectric surface, one would expect the transmitted light to be concentrated

around the refraction angle. However, for the roughness parameters of diffuser #39

an interesting effect is observed [61]. The peak transmission actually occurs closer to

the 'straight-through' direction than the refraction angle. The surface roughness has

the effect of making the light ignore the change in refractive index as it enters the

dielectric medium.

An explanation of this observed effect may be found from the following discussion.

As the incidence angle is increased, the local angle of incidence at each point on

the surface will either increase or decrease according to the direction of the local

slope. For nearly transparent media, the scattering mechanisms are dominated by

single interactions. As a consequence, the contributions to the transmitted light from

slopes whose local incidence angle is increasing will be redu--d, since they will be less

strongly illuminated. The transmitted light will therefore consist mainly of singly

scattered light paths with low local incidence angles. These paths will experience
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Figure 4.22: Comparisons between experimentally measured [o] and theoretically pre-
dicted [-] scattering cross-sections in transmidssion. Measurements: dielectric diffuser #39;

~* ccalculations: perfect dielectric. r/A = 4.69 and o&,/A = 1.86; N = 2 x 200 realizations; Sur-
face length L = 40A; sampling interval A ft A/10; refractive index n = 1.411; wavelength
A =0.633 mm. 2""(8, 0.): A) 9, 0 0, B) 9, -20, C) 9, -40, D) 9, = 6*
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Figure 4.23: Comparisons between experimentally measured [o] and theoretically pre-
dicted [-] scattering cross-sections in transmission. Measurements: dielectric diffuser #39;
calculations: perfect dielectric. r/A = 4.69 and ,/A = 1.86; N = 2 x 200 realizations; sur-
face length L = 40A; sampling interval A ft A/10; refractive index n =1.411; wavelength
A 0.633 pm. 3(j,.): A) 0,B) i= -20 C) = -40 D) -60.
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little refraction away from the direction of the incident beam for a moderate index of

refraction. If we increase the refractive index in the simulation, we would therefore

expect the light to be more diffusely scattered in transmission because of stronger

refraction. This is indeed the case as the results in Figure 4.24 show when the

refractive index is increased to n Vi /-. The transmission scattering cross-section

3.0A- ) 3.0-

2.5- 2.5 -

2.0- -2.0-

0.5 - /- 0.5-

0.0- i ,l , ,l , 1 ,l 1 , , 0.0 , ,

•60 -40 -20 0 20 40 60 -60 .40 -20 0 20 40 60
Scatteing angle. 9, / derees c angle, , dgreeas

Figure 4.24: Numerically calculated scattering cross-sections for p [-] and a f- -] incident
polarizations in transmission. n/A = 5.02 and oh /A = 1.93; N = 2 x 200 realizations; surface
length L = 40A; sampling interval A f A/10; the refractive index has been artificially
increased from n = 1.411 to n = V1--; wavelength A = 0.633 pr. E (O9,,): A) 9. = 00,
B) 0, = -40c.

is no longer predominantly peaked in one direction. From the studies presented in

§ 6.2.2 it is shown that single scattering is still the dominant mechanism despite the

increase in reflectivity.

The experimental measurements in Figures 4.22 and 4.23, although supporting

the theoretical findings, do require a certain amount of comment. It was originally

thought that the rather fiat-topped appearance of the measurements for normal in-

cidence were somehow due to misalignment of the diffuser and/or the illuminating

beam [61, page 1262]. However, subsequent studies of simulated light scattering have

suggested that these measurements are actually correct, but are obtained from a

diffuser with different roughness parameters [refer to § 6.2.21.

Although the diffuser was very carefully prepared for these transmission experi-

( ments, its back face inevitably contained the small curvatures of the original meniscus,

C
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but did appear flat to the eye. This would potentially affect the measured scatter-

ing cross-sections, although the comparisons are still quite good. The abrupt cut-off

seen in Figures 4.22c and 4.23d at 0. f 450 is due to total-internal-reflection at

the diffuser's back face; the detectable light falls within a cone defined by the an-

gle 101 < arcsin(1/1.411) f 45.10. Although the majority of the transmitted light for

-60 ° incidence is internally reflected, the overlapping measured and calculated values

are reasonably comparable.

4.6 Experimental synopsis

The figures which follow form the main content of the experimentally determined

scattering cross-sections presented in this dissertation. Figures 4.25 - 4.26 represent

the scattering of light by a highly reflective diffuser (gold-coated diffuser #46) for

incidence angles 9, = 00 --+ -60 ° , over the wavelength range A = 0.633 - 10.6 pm;

both ':. and E., cross-sections are presented. The data have been normalized ass-

suming 100% reflectivity of the gold coating. Other than the comments on various

effects observed in earlier sections, the presence of a specular component appearing

in the E,,(-60° , ,) measurement for the wavelength A = 3.39 pm [Figure 4.26c] is

brought to the reader's attention. At this wavelength the surface roughness parame-

ters have the values 7/A = 0.937 and h/A = 0.361. The specular components in the

measurements for the wavelength A = 10.6 pm have been omitted.

Figures 4.27 - 4.28 represent the scattering of light in reflection by an identical,

transparent diffuser (dielectric diffuser #46) for incidence angles 6i = 0 --, -60 ° ,

over the wavelength range A = 0.633 - 10.6 pm; both E. and 2, cross-sections

are presented. The data have not been normalized in an absolute sense, but the

measurements for each individual wavelength are relatively comparable. Specular

components are again present in the E(-60° , 0) measurements for the wavelength A =

3.39 pm [Figure 4.28c], but this time for both incident polarizations. The specular

components in the measurements for the wavelength A = 10.6 pm have been omitted.
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Figure 4.25: Experimental scattering cross-sections measured from gold-coated dif-fuser #46 for the indicated wavelengths. r = 3.18 ~m, and up1  1.22 pm. 8. [o];
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Figure 4.26: Experimental scattering cross-sections measured from gold-coated dif-
fuser #46 for the indicated wavelengths. r = 3.18 pm and ah = 1.22 pm. [o)a;

0. [A). Wavelength A =3.39 pm: A) 9, = 0*, B) 9A = -30*, C) 9, -60..
Wavelength A = 10.6 pim: A) 9. 0, B) 9, = -20*, C) 9, = -40*.
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Figure 4.28: Experimental scattering cross-sections measured from dielectric diffuser #46
for the indicated wavelengths. r = 3.18 ~m. and at, = 1.22 pm. 0 . [o;(9,.)[1
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10.6 pm: A) 9, 00, B) 9i = -20*, C) 9, = -40*.



Chapter 5

An Analytic Approach to
Electromagnetic Scattering

5.1 Introduction

The discussion in Chapter 4 led to an exact solution for the far-zone light fields

scattered from a known surface profile h = h(x), expressed as an integral equation.

Discretization of the profile allowed the integral to be approximated by a set of matrix

equations summed over the points describing the profile. Due to its limited length,

numerically calculated results for a particular profile are subject to a large degree of

speckle-noise. The signal-to-noise ratio can be increased by running many calculations

on independent, yet statistically identical, random profiles and taking their average.

Such an approach is described as being a Monte-Carlo simulation, expressing the final

solution as the mean of a large number of independent realizations.

The problem addressed in this chapter is that of finding an analytic solution for

the far-zone light field scattered by a rough surface of known statistics. That is, the

solution is analytic in so far as only the statistics of the surface profile are required, not

the form of the profile itself. Numerical evaluation of the analytic solution therefore

requires only one 'realization'.

One branch of electromagnetic theory which describes the interaction of elec-

tric and magnetic fields with media, in a well-formulated way, is that of iransmis-

sion line propagation. The conversion of Maxwell's field equations with appropriate

boundary conditions into so-called Telegraphist 's Equations is discussed in detail by

Schelkunoff (711 for a number of illustrative examples. This conversion makes it possi-
1? ble to apply the well-documented techniques of treating transmission lines (241 to aid

131I8
_____ _______
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the solution of one-dimensional field problems with complicated boundary conditions.

The transmission line approach to the problem of rough surface scattering has been

addressed by R. E. Collin and is discussed in detail in this chapter.

5.2 Formulation of the problem

Consider two parallel, semi-infinite, dielectric slabs separated by a vacuum. The

field in and between the slabs, generated by a suitable source, can be expressed

in terms of transverse electric and magnetic modes which satisfy certain boundary

conditions at the dielectric interfaces. If a pure TE or TM mode is launched along

this leaky waveguide then the field at any point can be described in terms of this

mode. Now, consider that a small but discont. iuous change in the waveguide's cross-

section is introduced at some point. The effect of this discontinuity on a wave in one

mode is to generate waves in other modes propagating in opposite directions from

the discontinuity. Describing a continuously varying cross-section as a set of short,

constant cross-sections, a fluctuating boundary therefore represents the continuous

coupling of modes along the waveguide. At the limit of one dielectric slab being

moved to infinity, the problem becomes that of a source above a dielectric half-

space; by describing the dielectric interface as a random function, the problem of

light scattering from randomly rough surfaces can be formulated.

5.2.1 TM (p) polarization eigenfunction spectrum

Consider a magnetic line source J. = Ji generating a magnetic field H = Hi above

a flat, dielectric half-space as illustrated in Figure 5.1. From the discussion of TM

waves in § 4.3.2, Maxwell's equations

1- V x H = -iwco E (5.a)

V x E = iwpoHJ, (5.1b)

are subject to the boundary conditions

H' H- (5.2a)

OH+ I OH-
= (5.2b)
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J.

(X'V')" H = (0, 0, H)
E f (E,,,EyO)

oi

C - KEo, IY-h
P=;4 PO z( X

Figure 5.1: Magnetic line source above a flat, dielectric half-space. The parameters . and
p, are the relative perittivity and permeability of the medium, respectively.

at the interface y = h. The symbols + and - denote evaluation above and below the

interface respectively. The magnetic line current .. = I, 6(x - x')6(y - y'), where

6(u) ic a Dirac delta function situated at u = 0. Eliminating the electric field from

equations (5.1a) and (5.1b), using the identity V x (0a) = OV x a + VO x a, we can

show that
a2 (y)1 (k( ) + p,e,(y)k02 H = -iw,(y),-OI 6(x - x')b(y - it')

From the brief discussion in Appendix B (§ A.2.1), we can construct a Green's function

G = G(x, y) which satisfies the inhomogeneous equation

20+ C(Y)+ ( l - ) + ,e,t(y)k2 G = -,(y) (x - x')6(y - y') (5.3)

where G satisfies the same continuity conditions (5.2a,b) as H.

It is possible to synthesize a two-dimensional Green's function from two associated

one-dimensional Green's functions. Let us assume that we have two Green's functions

G,(x) and G,(y) which satisfy the equations
02G +( x')

and

-!- (/,,e,(Y) k + A.) G, = -,(y) 6(y - y') (5.4)

where the separation parameters A, and A. are complex. We can combine G:(z) with

G,(y) to give G(x,y) by the relation

G(z,y) I i- G,(:; A. -A.,)C,(y;X) d,, (5.5)

V.

"CI
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where C is a contour in the complex A, plane, enclosing all singularities of G, and

excluding those of G.,. Substituting for G(z, ii) in equation (5.3) we find the result

that

!jG,(y; ffdA = c,(y) 6 (y - y') (5.6)

which will form the basis of our eigenfunction expansion of the transverse Green's

function G,( 1,).

Away from the source at z = z', G. satisfies the homogeneous equation

82G.02--
T + A.G, = 0

which has the general solution

G.(z) = C ev'/XT Z- 'l

describing wave propagation parallel to the flat dielectric slab and outward from the

source. In Appendix B, a brief discussion of the Stiirm-Liouville equation leads to

condition (A.16) which the Green's function must satisfy at the source. Applying this

condition to G., the proportionality constant C is determined with the result that

G,(x) = -1 ei, .z--,'
2iV/X'

which has a branch point at A. = 0. Assuming that the source is in the vacuum

(y' > h), the transverse Green's function G, above the interface [y > h, C,(y) =

1, u,(y) = 1] has the general solution

G,(Y) = C1 e iyo
y -

y
'
l + C2 eikyo(I-h) (5.7)

where C, and C2 are constants and k20 - + A,. The first term in equation (5.7)

represents the source contribution and the second term represents plane-wave reflec-

tion from the surface. Below the surface [y < h, c,(y) = x, p,(y) = p,] G,(y) can be

shown to have the general solution

Gv(y) = C3e
-
i
k
v
(
v
-h)

where k2 = pKk 2 +A, and represents transmission into the dielectric slab. Applying

the continuity conditions at the boundary and condition (A.16) at the source, the
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transverse Green's function is found to be

1 e jk o y _ v R e i k ,2h e ik &( v+ y,)

2iko 2ik5 o
GC(y) = (I + (5.8)

where the reflection coefficient

R = Kko:11 - k3,
Kk,o + kj

In the complex A, plane, G, has a simple pole from the reflection coefficient when

Kko 0 + k, = 0 which corresponds to a surface-wave mode. G, also has branch points

at X, = -k2 and A, = -p,,xk 2, i.e. points in the complex plane which can not be

enclosed by a contour if A, is to remain single-valued on that contour. Introducing

branch cuts from these points which can not be crossed by a contour, A, is forced to be

single-valued along any contour in the plane. Away from its singularities we require

G,, to be analytic in the far-zone, i.e. as Iy[ -* oo. Thus we choose the branch of

our complex plane such that !m[k. , o, k,11 > 0, i.e. exp(ik ,oy + y']) --. 0 as y - +oo

and exp(-ik, [y - h]) -o 0 as y - -oo; introducing the branch cuts illustrated in

Figure 5.2 ensures that this condition is satisfied. From the Cauchy integral formula

surface-wave pole at Ay pkn

-k-

-A4K4k C,

Figure 5.2: Eigenfunction expansion of the transverse Green's function G, by contour
integration. Allowing for small loses in the dielectric medium oc = se + igc. The contour
C encloses all singularities of Gv(y; A,) and is equivalent to Co + C, around each branch cut
and the surface-wave pole.

C (the closed contour C in equation (5.6) is equivalent to the contour Co + C1 around the

57i
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branch cuts in Figure 5.2. The phases V of the complex values k 0  , and

k,, = V +pkk2 -F , are limited to the range 0 V:5 r (the square-root halves the

phase of the exponent's argument) along both contours, and so the imaginary term

is always positive, i.e. sin((p) > 0.

Considering only the contribution from contour Co (ignoring the surface-wave pole)

we can show, by a change of variables, that

-j G, d, - - 2k dkvo =e,(y) (y - y')
2ric 21ri f no

Along the lower side of CO, k, 0 becomes negative and so the integral can be transformed

as follows:

jQ(k~o)kodkyO= jG,( -kk',dk, 0 + jG(ko)kodko

= jt ,(kyo) - G,(-kyo)] k, 0dk, 0

and the magnitude sign in G, can then be dropped. Substituting for G, from equa-

tion (5.8), after a small amount of algebra we obtain the symmetrical expression for

2w j[_Leik0("h) + riyyh)X

x iO~'h + r/-eik(l'-h)] dkvo (y)6(y')

over the range k,,0 > 0, and similarly

1 2 1 1 CikV(rh)X

x [ ~iko('-h) + dk,0 = ~y'(-)6(y

for y < h. From these equations we can recognize the eigenfunction identity

fjoo(ko, &)bo(ko, y') dko = -,(y) 6(y - y')

The normalized eigenfunctions can be identified as being

e -i (V- h) + V/e ik' - h) y > h

o(k,o, y) = 7 (5.9)
2 1 I e ' '- y < h

7+T j
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for k,0 _> 0, and can also be shown to satisfy the orthogonality relationship

_ Y) dy = 6(ko - k'o) (5.10)

The eigenfunction set Oo(ko, y > h) represents the radiation-waves which can propa-

gate to the far-zone above the surface. Below the surface the eigenfunction 0e(kto, y <

h) can propagate to the transmission far-zone in a non-absorbing dielectric medium.

Considering the contribution from contour C1 we can show that

If G,_dA G2k, dki = r,(y) 6(y - y')

Along contour C1, k,0 does not change sign but ky1 becomes negative along the lower

side; transforming the integral as before:

no.kklde 5 = f w[G,(k51 ) - G,(-k 1 )]k dk51

Rearranging the integrand to be symmetrical in y and y', and noting that k,]/kyo =

K(1 - R)/(1 + R), we get

f-K eiko(y-h) e k' (Y'- h ) dl = Cr(y) 6(y -

over the range k 1 2! 0 for y > h, and

1_ [ (I - R) ,,. (,_h) [R e-kli(y-h) - e iki,(y-h)] dk,, = (i) 6(i - Y')27r J0 R I o=E Y (

for y < h. As before, we can see the eigenfunction identity

ow01 (k, , , &I, (k,,, y') dk, = ,(y)(i, -i')

The normalized eigenfunctions can be identified as being

i)= f (1 - R) eik-(Yu- h) y > h-1 ,kj y) =.72)
"RI e ik. j€. - A) -Re - 'kYI(Y- h)j y< h

for k1 2 0, and can be shown to satisfy the orthogonality relationship

/'Y ,y = 6(k,,1512

Over the contour C, the phase of the complex parameter ko varies from r/2 to r

jc as shown in Figure 5.3. Propagation above the surface (y > h) only occurs for real

I ,
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i '- i"we
II

A,'%[A,]

kk:,

Figure 5.3: Phase p of kwo as A 3 moves along C1: (A) IklI > V,/p.'i--ko, V -- ;
(B) Ik11 < V -1ko,p --. ?/2.

ko, i.e. when

kyl > I k0

e.g. case (A) in Figure 5.3. However, the phase of kO leads to the exponential factor

e-ilk (-h)

which represents a propagating wave above but towards the surface, and so does not

contribute to the scattered field in the far-zone above the surface. When

ky, < 4 - 1 ko

e.g. case (B) in Figure 5.3, the phase of ko leads to the exponential factor

e- Ikyl(y-h)

which represents a wave decaying with height above the surface. Below the sur-

face, the eigenfunctions are of a similar form to the radiation-wave eigenfunctions

¢0(kpo,y > h) and can propagate to the transmission far-zone if excited in a non-

absorbing medium. The set of eigenfunctions 01 are known as lateml-waves and it

can be shown that they are orthogonal to the radiation-wave eigenfunctions 00, i.e.

(ko, ),(k,,y) .xdy = 0 (5.13)i
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The final contribution to the eigenvalue spectrum is the discrete term (residue)

due to the surface-wave pole. Integration around the contour enclosing the pole at

cKko + k 1 = 0 leads to the expression

i e( = 6,,

for y _> h, and for y < h

i e-ijk(V-h)eikO(V'- h) =

where 6,, is the Kronecker delta function. We can therefore determine the eigen-

modes describing the surface-wave to be

k, -(l +i), f ei&,o, -h) y_>h
( 0 -) -- V-- e- ,I - ) > _ h

Assuming that p, ; 1, the condition KkO + kv, = 0 can be rearranged to give

tan(e,) = VW

where O, is the angle of incidence. Hence it is clear that excitation of the surface-wave

occurs for a TM wave incident at the Brewster angle of incidence.

Due to our choice of branch cuts, the condition that lm[k o, k11] > 0 is imposed

over the entire complex plane. At the surface-wave pole, then, the imaginary parts of

ky0 and k51 are positive and non-zero. Hence the exponential terms in the eigenmodes

0. can be shown to decay with distance above and below the surface - the wave

is truly confined to the surface of the dielectric slab and does not contribute to the

far-zone fields.

5.2.2 TE (s) polarization eigenfunction spectrum

Consider an electric line source J. = Ji generating an electric field E = Ei above a

flat, dielectric half-space as illustrated in Figure 5.4. Following the discussion of TE

waves in § 4.3.1, Maxwell's equations

1
- V xE = iwpoH (5.14a),,(1/)

C' ( V x H = -iwe,(y)coE + J. (5.14b)

C

C
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J,( .Ja E - (0,0 , E)

H = (HtJt,.0)

Figure 5.4: Electric line source above a fiat, dielectric half-space. The parameters i and
u,(y) are the relative pernitiitty and permeability of the medium, respectively.

are subject to the continuity conditions

E = E- (5.15a)
aE+  1 aE-(51 b=E (5.15b)

at the dielectric boundary y = h. Eliminating the magnetic field between equa-

tions (5.14a) and (5.14b), by taking the curl of equation (5.14a), we can show that

0E ( I )E + p,(y)e,(y)k2 E = -iwp,(y)poIe 6(z - ')6(y - y')

where Je = Ie b(x - T')6(y - y'). In order to find the TE eigenfunction spectrum we

need to find the Green's function G(r, y) which satisfies the equation

0'G 0 ( 1 0G'J +,(y)c,(y)IG = -p-(y)(z-z')6(y -y')

where G satisfies the same conditions (5.15a,b) as E at the interface. Following a pro-

cedure similar to that discussed in § 5.2.1 for TM waves we can find two Green's func-

tions G,(z) and G, (y) which satisfy equation (5.5). The transverse Green's function

G,(y) can be written in terms of an eigenfunction expansion using contour integration

in the complex plane. The integral along the contour enclosing the singularities of

GY is equivalent to two branch-cut integrals, yielding two sets of eigenfunctions t0

and V,. Essentially identical expressions for ¢0 and 01 are found for TE modes as

were found for TM modes in § 5.2.1; the only exception being the expression for the
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reflection coefficient

RTE -#ko - k M R = cko - kil
PkO + k.l ck1 o + kl

For p, ; 1 there is no solution to u,kio+kl = 0 and hence there is no singularity from

the reflection coefficient in the complex plane. In contrast to TM incident radiation,

there is therefore no equivalent Brewster angle for TE waves and no surface-wave

modes are excited.

The TE eigenfunctions can be shown to satisfy the orthogonality relationships

L71 ,(k5,,y)j(kL, v)- jdy = 6(k, - kyj) 7 = 0,1

and

L o(ko, y)0(k.1, y ) dy = 0

For brevity, the eigenfunctions derived for TM incident waves will be used, without

loss of generality, for the proceeding analysis. Due to the symmetry that exists

between the magnetic and electric fields in Maxwell's equations, general expressions

for TM and TE waves are related via the transformations

Ie - 1. Im -- , I e -1 E --, H H --, -E (5.16)

yielding expressions identical to those derived from first principles.

5.2.3 The primary field

When both the source and the observer are both above the interface, the primary field

at the point of observation is the sum of the field due to the source itself and that of

its image below the interface. From Figure 5.5 we can derive an expression for the

primary field above and below a flat, dielectric interface. Assuming r' - x 2 + y, 2 >

h, we can employ simple geometry to show the relations

RA f r'+zsinO-ycos9,

R2 s r'+zsin,+(y-2h)cosO

where Oi is the angle of incidence. The field due to the line source and its image is

given by

U ) = -kJ [H2(koR,) + R(Oj) H02(koR 2)i 4

IC
(-,



Section 5.2.3 142

(x*,2h-y')ll

i (soure image)

Figure 5.5: Calculation of the primary field above a flat, dielectric slab.

where H (kr) is the zero-th order Hankel function of the second kind and YO =

is the wave admittance of free-space. In the far-zone the asymptotic value of the

Hankel function is [1, eqn. 9.23]

lim H02(kr) = ;_ e -

hence we can express the primary field above the surface (y > h) as

Hp(xy) = OIR/(kO)ei(k~xkoh) [v'o)eik o(yh + (5.17)

where k. = ko sin 0,, ko = kocosOi and the complex wave amplitude at the origin H0

is

Ho k0Y0Jm 2 e~o'fHo = -.----- e o -,(5.18)4 Vk ror,

By comparing equation (5.17) with equation (5.9) we can express the primary field

in terms of the continuous eigenfunction spectrum 0o(k~o, y > h):

,im H,(z, y) = H0oo2,R(ko) ei(kzr-kcA)Oo(k' , y) (5.19)

This expression can also be shown to hold for an observer below the surface (y < h),

where the eigenfunction is then described by Oo(kvo, y < h). In this case the transverse

wave-vector is k 1 = Vr4 7 ka cos 61i where the transmission angle satisfies Snell's law

of refraction sin 2e, = K sin2 0i.
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5.3 Scattering from a small step height

For a remote line source above a flat, dielectric half-space the primary field can be

expressed in terms of the radiation-wave eigenfunction b(ko, y) alone on both sides

of the interface. The radiation-wave and lateral-wave eigenfunctions are orthogonal

and so, in the absence of any variation of the surface profile, no lateral-waves are

excited. Consequently all fields can be expressed as an expansion of the radiation-

wave eigenfunctions only

H(x, y) j I (kso)ek' -t + b(kyo)e-i '- ] Oo(k,o, y) dkV0

where a(kyo) and b(kyo) are the forward and backward propagating amplitudes re-

spectively.

If we introduce a small but discontinuous step of height Ah at a point along the

dielectric surface, the eigenfunctions 0 and the amplitudes a and b will be perturbed

by a small amount after the step. The perturbation may itself lead to excitation

of other modes, e.g. lateral-waves. Since only radiation-waves and lateral-waves can

propagate to the far-zone, we need only consider field expansions about the step in

terms of these modes; see Figure 5.6. The field after the step (x > x,) may be

A

by -.,NN. l 4..-,.-_. C

A

A

I a

b bx I I

Figure 5.6: Introduction of a small step height 6h to the flat, dielectric half-space.

expanded as

H(x, y) 0 [(k)ek " + !(kvo)e - ' "k- ] (k,o, y) dk50 +

+ [ k +(

0 O |~~--j(,,y ~
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where the perturbed parameters

a=a+6a b=b+6b =6c a=6d

and the eigenfunctions

i Pb(k.,y;h+6h)=ik+6OI

assuming a small step height 6 < h.

The magnetic field is subject to boundary conditions (5.2a,b) at the step. Conti-

nuity of the field H (5.2a) at x = z. to first order gives us

j0[6a eik" + A be-ik ] Oo dko = - I[. 'k ' + be-'] Abo dkyo -

-jo[bc eik. + 6d P',°' i dk, 1  (5.20)

Requiring continuity of the quantity e'(y)a H/Ox (5.2b) at x = x,, we can similarly

show that

j a eikzx - be-ikzx] k: - L dk,,o = '[ i- --. -k,x] k,,±- dk,o +

+ o'[bce'k - - bde-'k-r] k, ,. dk,11  (5.21)

Ultimately we need to obtain expressions for the perturbation amplitudes ba, 6b, bc,

and 6d of the fields produced by the step in addition to the primary field. These extra

fields will be shown to consist of two terms: one being the total scattered field due to

the step, while the other exactly cancels the source-image term of the primary field.

5.3.1 The reflected field

Multiplying equation (5.20) by Oo(k0, y)/e,(y) and integrating over all y, we can

invoke the orthogonality relations (5.10) and (5.13) to obtain

ba(k, O)e ik., + b(kIO)e-ikL'z.=[ eik$- eik.] ] d O (52o,-o~e , S~k,) k=- . [e + b d-'"]

where k' = 'o(k' 0, y). Similarly from equation (5.21) we can show that

-O b(k~o,0)~k =I dksoMj [a e"-s' -L 000;~ 5.3
k.. Yo (5.23)
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AA

Er =

A

Cr= " y=h A, y fi h+Sh

: XfXs ,

Figure 5.7: Transition of transverse eigenfunctions across a small step height.

where e,(y < h + h) = K. With reference to Figure 5.7 the integral over y can be

evaluated as follows:

dy [V y dyyf,- 0h h 0 ,/'+ j dy 0oVO- I dy" ° 0
Y) 11 64) h h C' (Y0010, + +h+Ih

Jy. Jhy 01 - (+l/ ) O

To first order in h, the last term may be approximated by

JI+L. I - ~/Iy~ ;~

where we have assumed that h = 0')'. Substituting for the perturbed

parameters 6, b, and 0 we can readily show to first order that equation (5.23) reduces

to

a(k'O)e ik - "b(kY'O)ikz. dkoL [a e'.... - b X

x '0o,=h 'oI.,=,A-JhO (5.24)

Considering only the forward propagating waves (z increasing) we can ignore the

backward amplitude b without loss of generality, and by eliminating 6b' between

equations (5.22) and (5.24) we can find the perturbation amplitude 6 a'
2 ,a(k,o)e Ao ( ,, , '-' ,o _I = ,

- dko (I + L)-ae'CO(k, ' (5.25)
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The coupling integral Co is given by

Co(k~o,k',0) = lim b o(kyo,)o(ko,y) 1 dy

where the perturbation eigenfunction

6to = Oo(ko, y; h + Ah) - oo(kvo, y; h)

and can be shown to be of the form

-ik, o h [veikao(-h) - -Ie-ko(V-h)] y>h

6o = I (5.27)
2r ikr16h I + I e- ik'" ( - h )  

y < h

for a small step height 6h < h. Substituting boo into equation (5.26) and replacing

(y - h) by the new variable y, the terms evaluated at the limits y = ±M tend to zero

as A -+ 00 if small losses are assumed. The surviving terms at the boundary y = 0

lead to the expression

6h [(l+R' R+R ' c (I + R)( + R') k
C°(k°'k'°) -2,r, v~A 1,-h --- =,-5- + k0- k,_-J Kk,o-L7r ,R' ko + k' o k,,o - k'o/ kyl + kl .1

Using the relations

kk2 2 2 2
Yo0 + k = k' ky, + k2 = P7 Kk- k 0-k 0

2 k' - k

we can show, after a certain amount of algebra, that the coupling integral can be

expressed by

k) 26h kok r [(kk', -Il.k2)(K - 1) -'k 2 (i. - 1)]
, )o rk=.,VrRR(k. -k.) (Kkvo + k.1)(Kk' o+ k' )

Hence, substituting for Co and the eigenfunctions Obo!, and 00 1h, equation (5.25) can

be rewritten as

bat:O = j"Z. dkvoa(k1 o)e'., h k xok'o

.- kbk')(K _ 1) + (2k(p ).28)
(Kk, + k,,)(Kk'o + k' 1)

Expressing the primary field in equation (5.19) as an eigenfunction expansion in 100

H,(x, y) = ja(k'O)e zto(kiOy)dk
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we can multiply throughout by Oo(ko,y)/,E,(y) and invoke the orthogonality rela-

tionship (5.10) to yield the forward propagating amplitude

a(ko)e - Hojr 0kO) C'(ki -i )b(ki0 - kvo)

From equation (5.28) we can then show that the perturbation amplitude is given by

oa(k,0 )e'kz- = 5h kk A4 v/Hoei k ;
zs

- k;Oh)
,rk, V7,(k

where
[(k' k1 - Ckik;)(. - 1) - K2k2(p, - 1)]

(ock' + k' )(,k,o + k11)

The first order, forward-propagating, radiation field scattered by the step above

the surface is given by

H;(x,y) = j6a(ko)e -xo(k1,o,y)dkvo x > x,

and is in addition to the specular component of the primary field; there is no con-

tribution from lateral waves above the surface. If we make the assumption that our

randomly rough, dielectric surface is gently varying with small slopes, we can describe

the surface as a series of small step heights such as the one we have just considered.

A perturbed wave amplitude ba will be generated at each step and is assumed to

propagate along x without further scattering. For a surface which extends from -L

to L, the total scattered field accumulated over all of the steps along the surface is

then given by

H'(x,y) = (dB- dk __O ____-iph_

J-L ax J. rkR'(k-4

x [RM eik;,(Vh) + -kOVh

where we have assumed that
dh

h A dz.
dx.

Considering only the waves propagating upwards from the surface, i.e. the term

exp(iky,0[y - h]), the accumulated scattered field can then be written as

H T  J-l dz JO V d kvoV (14k' -1k4)'

II'
. . ...... dk H o



Section 5.3.1 148

Integrating the surface integral by parts we obtain
tL ino k' k'

H;r(-T, y) = dz, dk- Y Hoe'e 'e --L irkT0k --g' e+Pro )

I ,dk' kl HO-i(k+o)hoei; xieio, 2 sin([ki - kJ]L)

Jr 'k ik Y (Y2+ - V) (5.29)

where the surface height smoothly tends to a constant value h = h0 for 1z.1 __ L.

The last integral in equation (5.29) can be shown to have a special property for a

surface of infinite extent. For large L

sin([k' - k' ]L)
lim [=(k - k.) (5.30)L.-- (k. -k.;)

and changing the integration variable using the transformation

d k _0  .dk,,

the integral reduces to

= -0o [k 'a
2 _ Kki2')(, - 1) - K2ko(p, - 1)] eiko(YIh)ek.

-Ho. (k' I (.k.0+ k,'1 )2 e kOv2)eiz

Using the relation
k', = k 2 + pK,, - 1)k2

we can show that the integral can be further reduced to give

( k ' - k y' ) H o ik,;o ( y- 2ho )_ei :, - R (O )H o e 'k e ( y- 2 h)eC i;

(Kkyi + k,',)Hok(-2 4 )kz.

which exactly cancels the specularly reflected component of the primary field [equa-

tion (5.19)]. The remaining integral in equation (5.29) therefore represents the total

scattered field above the surface, given by
r . Ltz no k' Puk

H;(, ) _ ' =Ldz j dk" Y -v _ .Hoe,(,_)e(k+o)hezekoh (5.31)Ho (X,) (k 0 + k0)

If the surface is flat (h = ho) and of infinite extent, the surface integral gives
L

lim [ dx. ei(ki - t )x = 2ir6(k, - k,) (5.32)
L- t J -L

which demonstrates that the specular component is recovered for a flat surface.
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We wish to evaluate the scattered field H, in the far-zone, i.e. for large arguments

z, y. Integration over k;0 in equation (5.31) can therefore be achieved by the method

of steepest descents (stationary phase) which is discussed briefly in Appendix C in

relation to this equation. From equation (A.18) the resulting expression for the far-

zone scattered field in reflection can be shown to equal

H'(x f Ld 'koYoI1 CiC. [(Cii,.P, - SSo)( - j-) +1-
JL 2,, (C, + C.)(C, + NV .Clow.C + vz.C,.)

x ik0(r+') .ik(S.S.)X~e-kO(C.+C.)()

where we have substituted for H0 from equation (5.18) and the symbols have t.

following identities:

Ci = cos8i Si = sinGi
C. = osO. S, = sinG0
Cli =Cos 01 Ci. = os 01,

The angular directions in vacuum and dielectric are related by Snell's law of refraction

sin 0i = V/-i sin 01j sin 0. = V sin# 1,

Employing the duality relations (5.16) the far-zone TE field in reflection can be shown

to equal

L d ikolm CC. [(Rc18K - SS,)( - -) + 1-K
-L 2,rY (C, + C )(C + -fCr ,)(C. + - 1 )

eik(r+r'leiko(S,_S), e_ikolC,+C, lh(Xo)

5.3.2 The transmitted field

Multiplying equation (5.20) by ?(k,,,y)/c,(y) and integrating over all y, we can

invoke the orthogonality relations (5.12) and (5.13) to obtain

+ d , 1ik =.- 10  [noikz -k;=.. (, o (5.33)

where hbl = 01 (ki, y). We can similarly show from equation (5.21) that

bo(k;,)'- 6d(k ,)e-". = - dk,, ,[e.- .- - x
k_.
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Again considering only forward propagating waves, the amplitude 6d' can be elimi-

nated between equations (5.33) and (5.34) to give

2 cXk')e k/ . I)F k Poh b2 Lc~k' esk~ - ~ dk,o 2"aeik- b

-jdk 1,o ( k. aeik-z-Ci(ki,, ,) (5.35)

The coupling integral C, is given by

C, = ILm -L xbO(k O, y)tki(k,,,) *jdy

Substituting for the eigenfunction perturbation 6 bo [equation (5.27)] and the lateral-

wave eigenfunctions 01 [equation (5.11)], the coupling integral can be shown to satisfy

the equation

/ k\ _ 6h4,Akok',1 [(l - O)k,Okyj - k') (Mic - 1)kO2I
+ ~.C,(kso, k' 0 ) = 2rik V'f(I4 -k 2 )(Kk~o+ k,,)(iko + ki,)

Hence, substituting for C1, the eigenfunctions Ot'l, 'k~h, and the primary field am-

plitude a(ko) equation (5.35) can be expressed as

. .... fv. vlhvrl C~t~h V/2 Hoe(k.-k;oh)
6c~~k' )e i rkf_ -k. -h. k;0 ~ i) 7e~kkh

where
= ( - c)(k, 0k, 1 + kkc) + ick (l -)C' = Ift~ 0

(Kk' + kil)(Kk- 0 + k 1)

The first-order, forward-propagating field scattered by the step below the surface is

given by

H,'(x,y) = JO[6a(k',,)Oo(k,y) + bc(k ,)Ol(k,, y )] eik zdk,1  z > X,

and is in addition to the primary field. There are therefore contributions from both

the radiation and lateral wave eigenfunctions in transmission.

Further analytical treatment of the transmission problem is complicated by the

number of contributions to the far-field and is beyond the scope of the present work.

However, if we were to ignore the radiation wave term involving b0 and apply the

-~ ~---~----".
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same analysis as was used for the reflection case, we arrive at the following expression

for the transmitted far-zone field

'L ikYo CC , [i - ,.- (C,,C.V/IA PT+ iS)(1 -
H~(x, -2 -=j ikVI.XH(C, -Y) 1_C1

r)(C + vj/-Clj(. + F/IC,.)

where k, = ,p- k0 . This expression is identical to that presented by Bahar applying

"full-wave" analysis to the transmission problem 11, equation (2.24)] and does not

include all possible wave contributions. Further study of this expression reveals some

anomolous asymptotes whch are introduced as a result of the stationary phase eval-

uation. Quite clearly this expression is not an adequate solution of the transmission

problem.

5.3.3 Comparison with "full-wave" theory

The expressions derived in sections 5.3.1 and 5.3.2 for the fields scattered by a ran-

domly rough surface are identical to those presented by Bahar employing "full-wave"

theory [6, equations (3.2a),(3.7a)]. Bahar's formulation ir'tially involves a complete

wave expansion (radiation, lateral, and surface-waves) of the transverse fields in terms

of local basis functions for a flat surface. Using the orthogonal properties of these

functions, Maxwell's equations are converted into a set of coupled, first-order, differ-

ential equations. These telegraphist's equations relate the longitudinal, propagation

amplitudes via mode-coupling and source terms. The equations for the amplitudes

are solved using an iterative approach. Ignoring mode-coupling, the initial solutions

correspond to the primary fields; then, ignoring further source contributions, the

amplitudes obtained represent first-order coupling between modes excited by the pri-

mary fields [5, page 15141. An explicit dependence on the surface slope in the field

expansion is removed using an integration by parts. The integrated term is then

disregarded as being an edge-effect [4, page 366], but is actually the exact negative

of the surface component from the primary field which is not considered. The mis-

interpretation of this term is corrected in more recent applications of the full-wave

theory [11, page 1876].
C Bahar has applied the basic formulation of the full-wave theory to many situations,

C including the two-dimensional scattering problem [7] even though use of the tele-

tI
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graphist's equations is limited to one-dimensional problems only. The transmission

line approach to rough surface scattering gives a clearer, physical model of the approx-

imations made in the content of full-wave theory, as applied to the one-dimensional

scattering problem. The expressions derived for the scattered fields are physically

justifiable within the confines of the assumptions made; primarily the theory is only

valid for low-sloped surfaces although there is no limitation on the surface height.

In this theory, the primary field above a flat, dielectric surface is described by

an incident plane wave and its specular reflection from the surface. Similarly, below

the surface the primary field is described by the specularly transmitted wave. This

approximation is valid while the surface profile is slowly varying; the scattered fields

are then due to the scattering of these primary fields by small step heights in the

surface profile.

The scattering theory so far described considers the total scattered field to be the

sum of the contributions from each horizontal, surface element dx' as in Figure 5.8,

i.e.

H; = I dH. H' = f dH:

where

dH; = C','(O,, 9,) e s -( )h(z° (5.36a)
.r

dHt = CtS'(6, O,)-i-r e{o(s s °eZ Ci(-oc" -kCi )dx (5.36b)

The parameters C' and C' are suitable constants, while 3' and S4 are the scattering

coefficients. Bahar's prescription for removing the restriction of small slopes is to

consider the fields in equations (5.36a,b) to be valid for surface elements at an arbi-

trary angle y, whereupon the angles are measured with respect to the local surface

normal; see Figure 5.9. Thus equations (5.36a & b) from the regular full-wave theory

become

dH; = C'S'(91 - 7, O + dz,

d H ~ = 'S (9 - y,%r- cos y( X.))
d H ' f l a t ecCry. T h e dire cti nC h(.) do

in the extended full-wave theory. The directions of the station ary- phase points in the
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cor

Figure 5.8: ordenta transfatne ofya ane elemeahrzntal strip thexded ull

wave theory.,y

9. -x .+(ec ield)

and~~~~ 
U thi 

cors o dn angle i th op sng al sac ar lc uldfom siny l

law:Y

ZI 1 7

si 9.= i(9 +')/./ ~ (rfece field) x~y

Figure 5.9: Coordinate transformation of an angled elemental strip in the extended full-
wave theory.

scattered fields have been transformed to

0. -- 0. +'Y (reflected field)
010 -- f 01- 7 (transmitted field)

and their corresponding angles in the opposing half-space are calculated from Snell's

law:

sin0 jo = sin(O0 +-y)/Vrc (reflected field)

sin 8, = Voi'sin( 1o, - -f) (transmitted field)

It is interesting to note that the arguments of the exponents in equations (5.36a,b)

are invariant to coordinate the nceor scatdifferential scattered radiation fields
I Care made to vanish when the incident or scatter angles are grazing with respect to
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the local tangent plane [6, page 18], i.e.

19i - 7 -, + - a]. - Y - ±2 (5.37)
2 2 2~--±

and so incorporates a primitive shadowing function [8, page 334].

5.4 The mean scattered power

For a far-zone, scattered field of the form

lim H.(r) = %.(Oi, 0o; h,'7)---k

the mean, differential, scattering cross-section (DSCS) [equation (4.30)] is given by

= (IN.(o,0.; h, -12)(53IHol 22Lcos91  (5.38)

where (-..) indicates a statistical average over the heights and slopes of the surface.

The scattered field at any point can be described as a sum of the coherent and

incoherent fields at that point. The coherent, or mean field, hC is given by

7-tC = CH.)

The incoherent field N1 is therefore

= W. - WC

The mean, scattered power P. in the direction 0, is given by

P. --
= V( + NON, + "7*))

= (17jI2)+I17cI2

since "H. (7 t) = WC (Qi) = 0. The coherent power Pc = ItcI2 is generally localized

to the specular direction, whereas the incoherent power Py = (I7,I 2 ) may be finite

in any direction. The coherent component dominates the total scattered power when

the surface is flat. Introducing surface roughness, the incoherent power increases at
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the expense of the coherent power until, for sufficiently large roughness, the radiation

is almost entirely incoherently scattered.

Since both the height h and the slope a = tan -f are random variables, calcula-

tion of the coherently scattered power requires the joint probability density function

p(h(z.), s(z°)). Bahar assumes that the heights and slopes are independent for Gaus-

sian surfaces [9, page 5217], thus

p(h, ) = pA(h)p.(s)

Assuming zero-mean, Gaussian densities we can write

ph (h) = ~.exp (- ,),

ps(s) = exp 2

where ah is the rms height and uo. is the rms slope. Since s = tan -1 we can construct

P (7) from the relation

7-) = V o.cos2y 2o2

The mean field for a particular pair of incident and scatter angles is then found by

evaluating the integral

7H¢ = (H,) --- qd h W.(h)ph(h)p.&(v)

Averaging over the surface height involves the integral

( h2  dh (_V2__2)
Jexp -i vh - I M- exp

where { k0 cos i + k0 cosO (reflected field)
ko cos Oi - k, cos 01, (transmitted field)

In reflection, X(v) = exp(-v2c2/2) is the one-dimensional characteristic function for

the surface height. The remaining integral over - can be evaluated numerically for

each pair of angles Oi. ,. in reflection and P, 01. in transmission, setting the integrand

to zero whenever the slope is such that the local incident or scatter angles exceed

(' grazing, i.e. conditions (5.37).
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Calculation of the incoherently scattered power P,, or the variance, involves eval-

uation of the integral

requiring the joint probability function p(h(zo), -y(z.); h(x'o), -y(x')). Assuming uncor-

related heights and slopes, averaging over the surface height involves the integral

J0 xp (-i-[h - h'J)p,,(h; h') dh dh'

where, for joint Gaussian statistics [equation (3.5)],

ph(h; h) = I -ex1 h 2 - 2h' + h2

The correlation coefficient for a Gaussian surface is given by equation(3.7)

= p (_ ( 2 )

where r is the le correlation length. Integration over the heights yields the function

X2(v, -V) = exp (_ V 2o(1 - 0))

which is the joint characteristic function for the case of reflection.

Bahar assumes that the slope density is of the form

M s(' S') = p(S) O(s - 3' e,p , -

indicating that the slopes are more strongly correlated than the heights. Making this

approximation we can numerically evaluate the resulting slope integral

W .(h, -y) N;(h', -f)p, (-t) d-j

The slope dependence yt(xo) is then removed from the remaining surface integral

which involves

JLJL 2 ~~eeX )d d-Ts

Making the substitutions I =z - z' and w = x. + x' the integral can be numerically

evaluated from the equivalent expression

2 - (4L - 2 111) dl

e
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where u = k0 sin 0, - k0 sin 0j. Hence, considering the reflected radiation field to be

of the form
.H, = C S(-r)e(W . - h ) d -

_-L Cos7

for a particular pair of incident and scatter angles, 9, and 0., the total mean scattered

power can be numerically calculated from the expression
ri2 11 L 22

p.(7j. 12)1 S( 2dye h cos(ul) (2L - Il) dl
_ \Ia.I/ v/sa. J-Lo2~JJ2L

We can then evaluate the mean, differential scattering cross-section from the expres-

sion given in equation (5.38).

5.5 Numerical results

The results presented in this section concentrate on the largely single-scattering, di-

electric diffuser #46 for the wavelengths \ = 0.633 pm and 10.6 pr. The regular

theory describes the analysis developed in this chapter and the extended theory in-

cludes the modifications proposed by Bahar [6] to remove the limitations of low slopes.

The results from the regular theory in Figure 5.10 (,\ = 0.633 pr) show quanti-

tative agreement with the rigorous calculations in Figures 4.15 and 4.16. Away from

normal incidence the =,, cross-sections are larger than expected in the backscat-

ter direction but show good qualitative agreement with the experimental results in

Figure 4.27. The limitations of the regular theory are actually exaggerated in the

extended theory calculations and the magnitudes of the cross-sections are generally

much higher than many rigorous calculations suggest for diffuser #46 [52, 70]. The

extended calculations show poor qualitative agreement with the experimental mea-

surements in Figure 4.27.

Similar comments apply to the results in Figure 5.11 for the wavelength A -

10.6 prn. The regular calculations show reasonable qualitative agreement with the

experimental results in Figure 4.28 and quantitative agreement with rigorous cal-

culations, although E. is slightly higher than expected for normal incidence. The

extended theory calculations in Figure 5.11 again do not compare as favourably as

the regular calculations.

Metallic scattering results for both regular and extended theories do not compare

well with experimental measurements. This is primarily due to the lack of multiple

C.
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Figure 5.10: Regular and extended full-wave calculations for dielectric diffuser #46. r/A
5.02 and vu&/A = 1.93; surface length L =40A; refractive index n = 1.411; wavelength
A =0.633 pm. =D,9 )f-; :(Oj,Oa)[ 1J: A) 9, = 0*, B) 9, = -30*, C) 6i = -60*.
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Figure 5.11: Regular and extended full-wave calculations for dielectric diffuser #46. r/A
0.30 and ah/A = 0.12; surface length L =40A; refractive index n = 1.51; wavelength
A = 10.6um M''(0j[,0,) 9,9)[-- ] A) Oi 00, B) 9, = 30e, C) 19i -600.
Coherent components not removed.
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scattering in the formulations. Calculations from both theories suggest no evidence

of a backscatter peak being predicted. For metallic diffuser #46 the extended scat-

tering theory exhibits a peak close to backscatter for incidence angles 10I Z 200;

however, this peak is not present near normal incidence, contrary to all experimental

observations of backscatter enhancement. There are a number of features introduced

by Bahar's modifications which, had they been introduced a priori, would have in-

validated the original formulation. These features are discussed in more detail by

Collin [25]. The "backscatter" peaks predicted by the extended theory are thought

to be artifacts of the modifications to the regular theory.



Chapter 6

Graphic Results and Observations

6.1 Introduction

In previous chapters, the main content of the work has concentrated on investigat-

ing the planar scattering of transversley polarized light, TE (s) and TM (p), by a

one-dimensional, randomly rough diffuser through numerical simulation and experi-

mental demonstration. This work has provided a reliable database of experimentally

determined scattering cross-sections for identical, gold-coated and dielectric diffusers

(Tr -_ 3 pm, ah 1 pm) over the wavelength range 0.63-10.6 pm. Aside from varia-

tions of the modal TE and TM cross-sections, there are interesting investigations that

can be carried out which reveal more of the scattering mechanisms' nature. This chap-

ter contains some of the more unusual aspects of light scattering from one-dimensional

diffusers encountered during this research.

6.2 Geometric ray-tracing

Although the notion of treating propagating electromagnetic waves as a bundle of

non-diffracting rays seems a little diverse, geometric ray-tracing has enjoyed success-

ful application in the field of Applied Optics for many years. The physics of the

interaction between a light-ray and a flat, dielectric medium is described by Snell's

invariant n sin 0, which can be used to determine the propagation directions of both

reflected and refracted light-rays. For the case of a flat, metallic medium only the

reflected rays need to be considered. Modulation of the energy 'carried' by each

ray is determined by Fresnel's reflection and transmission coefficients. Geometric

ray-tracing assumes that the 'wavelength' of a ray is too small to experience any

161
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diffractive effects by edges or apertures; i.e. A -. 0, sometimes referred to as the
'geometric optics limit'. Tracing rays from a randomly rough surface, we can there-

fore assume a local tangent plane approximation to apply Snell's law and Fresnel's

equations at each interaction. The far-field distribution of the scattered light is, in

part, determined by the ray number density; the number of rays in a certain direction

collected over a finite angular interval, e.g. every half a degree.

Using the method described in § 4.4.1, random surface profiles of the required

Gaussian statistics can be numerically generated for a Monte Carlo simulation. The

length of each surface is somewhat arbitrary, since doubling the length has the same

averaging effect as tracing from two independent surfaces. Since the rays do not

diffract there are no 'edge-effects' due to the finite surface length, although anomolous

scattering near grazing angles can occur if the incident ray bundle fills the entire sur-

face. The ray-tracing algorithm used to produce the following calculations generates

a random profile described by 4096 points. Although only the central 2000 points

(equivalent to 80 pm) are illuminated, the entire profile length is taken into account

before a ray can propagate to the far-field. This algorithm minimizes anomolous

scattering near grazing angles.

One of the main advantages of adopting a ray-tracing approach to light scattering

is the ease with which the single and multiple scattering contributions can be sep-

arated from each other. The shadowing effects of illumination and observation are

also inherent to the ray-tracing mechanism. Thus the main ingredients of rigorous

scattering theories are included in this simple treatment of the problem.

6.2.1 Metallic, coherent ray-tracing

To simulate illumination of the rough surface by a coherent light beam, such as that

from a laser, the path length of each ray can be taken into account before the scattered

light intensity is calculated. This 'coherent' ray-trace will go some way towards

revealing any interference mechanisms that affect the distribution of the scattered

light. For a particular surface realization, the light amplitude in a given direction

will have a number of phase contributions from different points on the surface. Each

realization produces something looking like a speckle pattern, and the final scattering

cross-section is expressed as the mean of an ensemble of surface realizations. For

L ...... ------
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these coherent calculations, 10000 rays were traced per surface and the cross-sections

were averaged over 1000 realizations.

Figure 6.1 shows the results of a coherent ray-trace from an impenetrable surface

with the statistical parameters of diffuser #46 (,r = 3.18 pr, o = 1.22 pr) for the

'wavelength' A = 0.633 pm. The incidence angle is 90 = -10" and the backscat-

0.8

B 0.6

0.4

0.0- rdoJ-b r

-80 -60 -40 -20 0 20 40 60 80
Scattering angle, ,/ degrees

Figure 6.1: Coherent ray-trace calculations for an impenetrable diffuser. r = 3.18 pm,
ah = 1.22 pm. -(-10*,0,).

ter direction is denoted by the vertical dashed line. The surface is assumed to have

100% reflectivity, independent of polarization, so only one cross-section is generated.

The total curve is the coherent sum of the single, double, and triple-scatter contri-

butions. The single-scatter curve exhibits a slight bias towards backward scattering

angles (0, > 00), whereas the double-scatter rays favour the forward scattering angles

(0, < 00) producing an enhanced peak in the backscatter direction. It is interesting

to note that the peak is approximately twice the height of the diffusely scattered

light in neighbouring angles of the double-scatter curve. This peak is solely due to

the constructive interference between forward and time-reversed light paths along

the surface, which can only occur in the backscatter direction. The triple-scatter

contribution at this incidence angle is negligable.

In analogy to the comparisons between rigorous theory and experimental measure-

ments in Figure 4.6, Figure 6.2 compares the ray-trace cross-sections with the same

s polarized, experimental data (gold-coated diffuser #46, wavelength A = 0.633 prm).
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For normal incidence an enhanced backscatter peak is observed in the double-scatter

contribution of Figure 6.2a. The total scattering cross-section agrees very well with

experimental measurement for the scattering angles 10,1 Z 120. Although the double-

scatter contribution does contain a backscatter peak, it does not exhibit the subsidiary

structure that accompanies the peak in the experimental measurement. For 0o = -20*

incidence, Figure 6.2b, the total-scatter contribution is in good agreement with the ex-

perimental data except near backscatter. The double-scatter term is skewed towards

forward scattering angles and has a very small backscatter peak but, again, there is

no subsidiary structure. The comparison between the cross-sections for 0o = -40*,

Figure 6.2c, is still favourable with the emphasis on backward scattered light. The

double-scatter term does not exhibit a backscatter peak, but the experimental peak

is not very large anyway. With the increase in incidence angle the triple-scatter term

is just visible.

Of the comparisons between rigorous theory versus experiment and ray-tracing

versus experiment, the simplistic ray-tracing model seems to more correctly predict

the distribution of the diffusely scattered light. Although the rigorous theory does

not agree very well with the experimental cross-sections for large incidence angles,

similar theoretical studies do tend to support these calculated results. One criticism

that has been levelled at the experimental measurements, in defence of the theories, is

that the true surface parameters T and ah may be different from the measured values,

or that the diffuser contains extra scattering structures. However, the ray-tracing

calculations demonstrate that it is possible for a surface with the quoted parameters

for diffuser #46 to scatter light as strongly as the experiments suggest.

Increased surface roughness

A surface with steeper slopes and deeper features will scatter light more strongly

through an increase in multiple scattering. An incoherent ray-trace was used to cal-

culate the possible effects on the individual scattering components for the surface

parameters r = 2.0 um and at, = 2.0 tm. The cross-sections in Figure 6.3 repre-

sent the ray number density only, no coherent interference effects are included. The

single-scatter cross-section has a broad distribution, but is dominated by the multiple

scattering components. The largest proportion of the rays have been double-scattered,
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Figure 6.3: Incoherent ray-trace calculations for an impenetrable diffuser. r : 2.0 pm,
ah = 2.0 pm; incidence angle 00 = -10*.

but a considerable number have also undergone three or more scattering events and

the triple-scatter cross-section displays a peak in the backscatter direction. Although

the double-scatter cross-section would contribute a coherent peak, higher orders of

multiple scattering send a ray preferentially in the backscatter direction.

6.2.2 Dielectric, incoherent ray-tracing

Where the ray-trace for the metallic diffuser was coherent, by an incoherent ray-trace

we mean that the ray's path length is of no consequence, and the light intensity is

calculated purely on the basis of ray density in a given direction. The dielectric ray-

tracing algorithm is otherwise the same as that used for the metallic ray-trace, except

for the provision of a transmitted field. Each incident ray is allowed to generate a total

of 14 rays which account for three scattering events in reflection and transmission.

The ray-trace also allows for the possibility of 'tunneling' through the surface valley

walls. For these incoherent calculations, 2000 rays were traced per surface and the

cross-sections were averaged over 600 surface realizations.

Reflected field

Figure 6.4 shows the ray-trace scattering cross-sections calculated in reflection for

dielectric diffuser #46 with a refractive index of n = 1.411. Individual contribu-
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tions from the single and double-scatter rays have been separated for the incident

polarizations p and a. The contribution from triple-scatter rays is negligable.

For normal incidence, Figure 6.4a, single-scattering is the dominant reflection

mechanism for both polarizations. The double-scatter a cross-section has a low but

broad distribution, whereas that for p is virtually zero. At backscatter the single-

scatter cross-sections are equal, indicating that the backscattered light is due to near-

normal reflection from horizontal portions of the surface. This is to be expected

for reflection dominated by single-scattering. Increasing the incidence angle to 00 =

-20*, Figure 6.4b, the distributions have become skewed and the single-scatter cross-

sections still meet at backscatter, again indicating near-normal reflection but this

time from tilted surface elements. The double-scatter a cross-section has increased in

forward scattering angles (0° < 0) but has diminished in backward angles (0. > 0°).

For 00 = -40 ° , Figure 6.4c, the increase in Fresnel reflectance with incidence angle

has meant an increase in multiple scattering for a polarized rays, but the reflection of

p polarized rays is almost entirely single scattering. The single-scatter cross-sections

still meet at backscatter and the p cross-section has a null reflectance at 0. - -70 °

due to the Brewster effect.

The graphs shown in Figure 6.5 compare the total ray-trace cross-sections to the

rigorous calculations and experimental data of § 4.5.3. The comparisons between

ray-trace and experiment are surprisingly good, particularly for the p polarized cross-

sections. What is even more surprising is that the rm.y-trace cross-sections are vir-

tually identical to those of the rigorous calculations. It would therefore appear that

light scattering from a dielectric surface, even one as rough as diffuser #46, can be

explained simply from geometrical arguments.

Transmitted field

Continuing our study of ray-tracing from a dielectric diffuser, we now consider the

scattering cross-sections in transmission. On the strength of the comparisons between

experiment and rigorous theory in § 4.5.3, the ray-trace cross-sections in Figure 6.6

are compared with rigorous calculations for dielectric diffuser #46. As was found for

the case of reflection, the ray-trace cross-sections are almost indistinguishable from

those of the rigorous calculations. The transmission effec~s demonstrated in § 4.5.3
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and reference 1611 can therefore be explained in terms of simple refraction at local

tangent planes.

Unlike the reflected cross-sections, the multiple-scattering contributions in trans-

mission are virtually nil even for high incidence angles. It is not until we expand

the vertical axes that we can see where the multiply scattered rays are directed; see

Figure 6.7. For normal incidence, Figures 6.7a and 6.7d, the double scattered rays

are confined to widely separated lobe structures which peak at 11 ft 70* and are

completely excluded from the single-scatter cross-section. The triple-scattered rays

have a broad distribution over all scattering angles and peak at 9. = 00. Multiple

scattering for s polarization appears stronger than for p. Increasing the incidence an-

gle, the backward scattered lobe of the double-scatter cross-section rapidly diminishes

and the single and double cross-sections overlap each another.

The comparisons between the scattering cross-sections in Figure 6.7 elegantly

illustrate the strength of the ray-tracing model. The rigorous calculations quite evi-

dently include the effects of multiple scattering but, by itself, the theory is unable to

separate them out from the single scattering contribution. In combination with the

ray-trace calculations, all of the components in the rigorous, transmission scattering

cross-sections have been identified. An unusual fringing effect, which is not repro-

duced by the ray-trace, occurs at the overlap between the single and double-scatter

cross-sections. The effect is most evident for normal incidence and is not thought to

be an artifact of the finite surface length in the calculations. An explanation of this

apparent interference effect has yet to be found.

Increased reflectivity

The effects of increasing the refractive index, and hence the reflectivity, of the di-

electric medium was examined in § 4.5.3. Using the analytical power of the ray-

tracing model we can investigate what effects this has on individual components of

the scattered light. Comparisons between the ray-trace and rigorous calculations in

reflection are shown in Figure 6.8 for dielectric diffuser #46 with a refractive index

of n = 0-00. The increase in surface reflectivity can be seen from the magnitudes

of the cross-sections compared to those of Figure 6.4a. Despite the high reflectivity,

the p polarized, double-scatter cross-section in Figure 6.8a is still small. This effect
9C
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Figure 6.8: Comparisons between the reflection cross-sections from ray-trace [-] and
rigorous [---] calculations for a dielectric diffuser. r/A = 5.02, qh/A = 1.93; refractive
index n v-T1.0. A) -"(0 ,O,), B) -,(0*,0,).

explains the observation of Michel [56, chapter 6] when inducing backscatter enhance-

ment in the multiple scattering contribution from highly reflecting dielectric surfaces;

to increase this component appreciably requires a strongly diffusing surface. The

s polarized, double-scatter cross-section in Figure 6.8b actually exceeds the single-

scatter cross-section of Figure 6.4a and, had the ray-trace been coherent, would have

produced an enhanced backscatter peak.

In transmission, the scattered light was previously found to have a lower and

broader distribution inside a dielectric medium with a high reflectivity; see Fig-

ure 4.24. From Figures 6.9b and 6.9d we can see that the increased width of the trans-

mitted peak is a single scattering effect, produced by the increase in the medium's re-

fractive power. Comparing Figures 6.9b and 6.9d to Figures 6.7a and 6.7d, we can see

that the double-scatter cross-sections have increased, particularly for p polarization.

Surprisingly, however, there is no appreciable contribution from the triple-scatter

component for both polarizations.

Increased surface roughness

Studying the transmitted field scattered by a dielectric diffuser (§ 4.5.5), it was noted

that the experimental data had a flat-topped appearence for normal incidence. With

IC
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the aid of the ray-tracing model, calculations have shown that similar transmission

cross-sections are obtained for Gaussian surfaces with slightly larger ah values, i.e.

for deeper surfaces. Figure 6.10 compares the ray-trace cross-sections calculated for

the parameters 7- = 3.18 pm and ah = 1.75 pm to those from rigorous calculations

for dielectric diffuser #46 (r = 3.18 pm, ,, = 1.22 pm). The dominance of single

scattering in transmission makes the cross-sections quite sensitive to changes in the

surface roughness pe rarneters. Increasing a further produces more flat-topped cross-

sections similar to the experimental results in Figures 4.22A and 4.23A, but also

widens their distributions.

3.5 --- 3-5
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*~2.5 -2.5-
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1.0 1.0

05- 0.5
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Figure 6.10: Calculated scattering cross-sections in transmission for normal incidence.
7- = 3.18 pm, refractive index n = 1.411, wavelength A = 0.633 pr; ray-trace [-] o, =
1.75 pM, rigorous theory [- - =] o, 1.22 pm. A) - , ) B) E (00,9.).

Visible light scattering from an air/dielectric interface as rough as diffuser #46

is dominated by single-scattering mechanisms. This suggests that the range of va-

lidity for single-scattering tneories, such as the Kirchhoff Approximation, is greater

for dielectric scattering problems compared to their limited application in metallic

problems. The surface roughness limits at which the ray-trace cross-sections deviate

from the corresponding rigorous calculations has not been investigated.

in the next section we experimentally investigate Stokes' polarization parameters

of light scattered in reflection by identical metallic and dielectric diffusers. Despite

straightforward calculation of the parameters from the expressions in § 2.5.1, few

I
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numerical studies have been reported of the parameters for light scattered from ran-

domly rough surfaces [20].

6.3 Measurement of Stokes' parameters

The four Stokes parameters completely describe the polarization state of a light field.

Expressing the parameters as a column vector, the scattering properties of an il-

luminated body can be described by a 4 x 4 Mueller matrix relating the scattered

and incident Stokes vectors. Experimental measurement of all 16 matrix elements

for a general scattering object can be a lengthy process. The measurements involve

combinations of incident and detected polarizations and require stable experimental

conditions (e.g. illuminating beam power) [13]. However, for an object such as a

one-dimensional diffuser, symmetry reduces the number to just four non-vanishing,

independent elements [811 and the task is greatly simplified [refer to § 2.5.1].

In accord with previously presented measurements, we shall adopt the Stokes

vector

S = (I,I., U,V)

IP and 1, are the, by now, familiar p and s scattering cross-sections, while U and

V are the differences between +450/ - 450 linear polarizations (U = 1+ - L) and

right/left circular polarizations (V = IR - IL), respectively. The scattering properties

of a one-dimensional diffuser are then described by the Mueller matrix k, such that[11  0 0 0
0 M22  0 0 s o
0 0 M33  M34

0 0 -m3 m33

relating the scattered Stokes vector S to the incident vector O. From the discussion

in § 2.5.1 it is possible to selectively measure each of the elements n1 1 , M 2 2, M33,

and m34 by suitable combinations of incident and detected polarization states. The

elements in1 l and n22 were directly measured for the incident Stokes vectors So =

S, = (1,0,0,0) and So = S., = (0,1,0,0), respectively. Measurement of elements m3

and m 34 was achieved for the incident vector So = S+ = 1(l, 1,2,0), detecting the
+45* linear and circularly polarized scattered light, respectively.
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6.3.1 Metallic scattering

To begin our discussion of Stokes' parameters, Figure 6.11 shows the scattering cross-

sections measured from gold-coated diffuser #46 at the wavelength A = 0.633 pm

for normal incidence. It is difficult to make an absolute measurement of the total

power scattered by the diffuser; surface waves induced by the random roughness carry

energy away from both p and s polarized light fields on real metals. Although the

p polarized fields couple more strongly with surface waves, the absorption losses (_

5% for p) have been neglected and both p and s cross-sections have been normalized

to unity. Likewise, the small losses (- 3%) have been ignored in the -45* linear and

circularly polarized cross-sections, the sums of the respective measurements having

been normalized to unity. The resulting analysis of these measurements will therefore

differ from the true results by a normalization factor of order unity.

Figure 6.11a shows the familiar p and s scattering cross-sections for normal inci-

dence with strong backscatter structures. The cross-sections in Figure 6.1 lb represent

the scattered light linearly polarized at the angles -45* to the plane of incidence [re-

fer to Figure 2.4]; the incident beam is linearly polarized at +450, So = S+. The I-

cross-section shows a small backscatter peak, whereas the peak for 1+ is quite pro-

nounced with strong subsidiary structures. For larger scattering angles 4 gradually

reduces to a low, constant value before vanishing at the grazing scattering angles.

I_, on the other hand, slowly increases until 10.1 ; 500 and then drops to zero in a

similar fashion to 1, and I,. The comparison between the IR and IL cross-sections in

Figure 6.1 Ic shows that there is a remarkable difference in their backscattered struc-

tures. The backscatter peak for IL is barely visible, whereas that for IR is almost as

strong as the enhancement for both I, and I. in Figure 6.11a. IR is the dominant

cross-section for 10.1 S 500 but then falls below IL towards the grazing angles.

The measurements of the I, and /. cross-sections demonstrate the phenomenon

of backscatter enhancement when a diffuser is illuminated by the fundamental modes

TM and TE. However, the I* and IR cross-sections graphically reveal informationL

about the scattering mechanisms at the diffuser's surface. Considering a planar scat-

tering model, an explanation for some of the observed effects may be found in the

following discussion.
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Discussion

The incident beam in Figures 6.1lb and 6.1lc is linearly polarized at an angle of +45*

to the plane of incidence. We shall assume that a local tangent plane model can be

applied to the interaction of a plane wave component of the incident beam with the

diffusing surface. The transmitted field inside a good conducting metal is heavily

attenuated and decays rapidly with depth. The complex refractive index of the metal

and continuity of the tangential electric fields at the surface introduce phase shifts

between the p and s electric fields. These phase shifts are described by the complex

Fresnel reflection coefficients p = IrpleIO' and F, = Irale O . Examining the real and

imaginary components of Fp and F, we can write

f= Irple i(SC) F = -Ird e"6

where b and c are positive, real phases, dependent on the metal's complex refractive

index n = nR + in 1 and the local incidence angle. Considering a plane wave com-

ponent of the reflected field, the difference between the two reflectivities produces

a left-handed, elliptically polarized state after the first reflection, as illustrated in

Figure 6.12. The reflected light from such single interactions will be predominantly

orientated at an angle of -45* to the plane of incidence and left-hand polarized. This

would explain the broad distributions of the L and IL cross-sections in Figures 6.1lb

and 6.1 1c. If the reflected field interacts with the surface a second time, it will become

more elliptically polarized, its handedness will be reversed, and it will be orientated

at +450 to the plane of incidence. We would therefore expect the I+ and IR cross-

sections to represent light which has been scattered twice from the surface, i.e. double

scattering. The presence of large backscatter peaks for I+ and IR, and their absence

from L and IL, strongly supports the argument that backscatter enhancement is a

multiple scattering phenomenon [63]. The small backscatter structure for L in Fig-

ure 6.11b is almost certainly due to a small -45* linear component of the elliptically

polarized, double-scattered fields. Measurements of the corresponding polarization

cross-sections for 00 = -20* and 00 = -40°, Figures 6.13 and 6.14, show basically

the same features as for normal incidence, but skewed with the increase in incidence

angle. The backscatter peak remains a feature of the I+ and IR cross-sections.

Constructing Stokes' parameters from the measured scattering cross-sections, we

( present the four Mueller matrix elements in Figure 6.15 for each incidence angle,

i C
F

Al
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Figure 6.12: Effects of single and double scattering from a fiat, gold surface on +450
linearly polarized light.

describing the scattering properties of the gold-coated diffuser #46 for the wave-

length A = 0.633 pm. Although the above discussion suggests qualitative reasons

for some of the observed features, quantitative explanation of the individual matrix

elements calls for a fundamental understanding of Stokes' parameters and light in-

teraction with real media. The true scattering mechanisms will be complicated by

sub-wavelength surface structures and rotation of the polarization ellipse through

differential reflection of the p and s electric fields. The dependence of Fresnel's coeffi-

cients on the metal's refractive index indicates that the matrix elements m3 and m4

are likely to be more strongly dependent on the material properties of the diffuser

than mn and M22.

6.3.2 Dielectric scattering

To conclude our discussion of Stokes' parameters, we now consider the complete

description of a one-dimensional, dielectric diffuser's scattering properties. To main-

tain the general theme throughout this dissertation of comparisons between identical
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metallic and dielectric diffusers, Stokes' parameters of the light scattered by dielectric

diffuser #46 have been measured for the wavelength A = 0.633 pm. The refractive

index of the dielectric medium at this wavelength is n = 1.411 and has a negligable

imaginary component (mn[n] < 10-T). The cross-sections presented for the dielectric

diffuser have not been normalized in an absolute manner, although they are relatively

comparable.

The cross-sections I, and I. in Figure 6.16A are the same as were previously

reported i. 5 4.5.3 for the incident polarizations TM and TE, respectively. The

measurements in Figure 6.16b represent the cross-sections I+ and I for an incident

beam, linearly polarized at an angle of +450 to the plane of incidence, i.e. So = S+.

L has an almost featureless distribution for 10.1 < 500 and appears to be the average

of 1, and I,. Plotting I+ against the expanded, right-hand axis has revealed a clearly

defined enhanced backscatter peak with subsidiary maxima. An explanation of this

remarkable result can be found in the following discussion.

Discussion

It has already been established in § 4.5.3 that light reflection from this transparent

diffuser is dominated by single scattering mechanisms. Since the refractive index has

virtually no imaginary component, Fresnel's reflection coefficients are real and have

the forms illustrated in Figure 6.17. The I, cross-sectilon in Figure 6.16a does not

exhibit a null reflectance other than at the grazing angles. From Figure 6.17 we may

therefore assume that the local incidence angle for the first reflection is less than

the Brewster angle 10ij < 0 , in which case the reflection coefficients may be written

as rp = IrpI and r. = -Ir.I. Applying the same arguments as in the discussion for

metallic scattering, we can show that the L cross-section is dominated by single

interactions, whereas + will be sensitive to any double scattering events. We can

clearly see that the 4 cross-section in Figure 6.16b exhibits enhanced backscatter

including subsidiary maxima, an effect not observed before from a dielectric diffuser

in such detail.

Towards grazing scattering angles, p reflectance will be suppressed as the local

incidence angle approaches the Brewster angle 194 --+ OB and the reflected light will

tend to be a polarized. This explains the lobe structure observed for 4+ at scattering
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Figure 6.17: Fresne]'s amplitude reflection coefficients for p and a polarized light. Reflection
from a flat, dielectric medium of real refractive index n.

angles 10oI Z 500. Since the reflection coefficients are real, the scattered light will

remain linearly polarized, only its amplitude and orientation will be altered. For

normal incidence, the I+ cross-section is much smaller than L, hence measuring L

is similar to measuring I, and I. simultaneously. Although the right and left circular

cross-sections are not presented, measurements have shown that they are negligably

different from each other. This indicates that the reflection coefficients are indeed

real, since the scattered light has no preferred handedness. Combining the measured

scattering cross-sections we can construct the Mueller matrix elements from Stokes'

parameters; see Figure 6.16c. The fourth element m34 vanishes for light which is

linearly polarized, leaving only three, non-zero matrix elements for a non-absorbing,

dielectric medium.

Similar measurements have been taken from the same diffuser for the incidence an-

gle 90 = -20*; see Figure 6.18. A small backscatter peak is still visible for 8o = -200

in the expanded 4 cross-section of Figure 6.18b. The lobe structure of I+ has be-

come exaggerated towards foward grazing angles as the light becomes more s polarized

(note the null reflectance in the I, cross-secfion of Figure 6.18a while that of I. is still

appreciable). Increasing the incidence -ngle to go = -40 ° , Figure 6.19b, 4 and L

become more skewed but no backscatter peak is displayed for I+. Experimentally, a

peak was still observed in the backscatter direction at this incidence angle when the

detector was switched to a higher sensitivity.
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Comparing the Mueller matrix elements for the dielectric diffuser in Figures 6.16c,

6.18c, and 6.19c to those for the metallic diffuser in Figure 6.15, apart from the

different scattering distributions of mn and in 22 , it is clear that elements m33 and

m4 are strongly dependent on the diffuser's material properties.

6.4 Thin-film, dielectric diffusers

In sections 4.5.3 and 6.2.2 we have shown how enhanced backscattering can be in-

duced in the light scattering properties of dielectric diffusers, which do not otherwise

show the effect. Although the angular dependence of the scattering cross-sections in

Figure 6.8 was not particularly sensitive to an increase in the refractive index, the

degree of multiple scattering was greatly affected leading to backscatter enhancement

of s polarized light. Replacing the semi-infinite dielectric medium by a thin-film,

dielectric diffuser on a reflecting substrate, the p and s scattering cross-sections are

completely changed and exhibit strongly enhanced backscatter.

6.4.1 Diffuser fabrication

Employing the methods described in § 3.3.3, a randomly rough diffuser can be etched

into the surface of a photoresist-coated substrate. The method of transferring the

rough surface into a thin dielectric film is unfortunately a destructive one, and so the

photoresist profile must be characterized at this stage.

Preparing a sample of the silicone elastomer used to form the dielectric replicas

in § 3.5, a few drops are applied to the centre of the photoresist diffuser. By spinning

the substrate on a turntable, the elastomer spreads to form an approximately uniform

film over the rough surface. The thickness of the film can be controlled to a certain

extent by the spin-speed and the quantity of elastomer; - 10 drops of silicone spun

at -- 2000 r.p.m. can produce a film thickness of ,- 10 pm. After curing (see § 3.5),

the dielectric film is removed by immersing the substrate in acetone. The photoresist

dissolves away and, with a little encouragement, the thin film floats to the surface.

If the film has some directionality (e.g. a one-dimensional diffuser) it should be iden-

tified in some way before immersion, e.g. removal of a corner. The best method of

removing the film from the surface, without touching it, is to scoop it out onto an

aluminium slide mount diffusing-side-down. For a one-dimensional diffuser this is not
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a trivial problem since the surface corrugations have to be aligned. The elastomer is

a fairly robust material, even as a thin film, and will not degrade if it takes some time

to remove from the acetone bath! With a certain amount of dexterity and luck, the

mounted diffuser will look something like the illustration in Figure 6.20. The final

tgo/d-coated
rear face

diffu~sing surface

aluminium d
slide mount

Figure 6.20: Mounting of a one-dimensional, thin-film, dielectric diffuser allowing access
to front and back faces.

stage is the application of a gold-coating to the plane, back face using standard evap-

oration techniques. The coating process itself should be fairly quick since prolonged

exposure to high temperatures can cause the elastomer to distort.

6.4.2 Experimental measurements

The motivation for investigating this type of scattering system came from the work of

Jakeman and Tapster [41, 42, 75] studying the light scattering properties of a deep,

random phase screen placed in front of a mirror. This particular system displays a

strongly enhanced intensity in the backscatter direction.

The scattering cross-sections presented in Figure 6.21 were measured from dielec-

tric diffuser #50, with approximately 9 pm separating the diffusing surface from its

gold-coated substrate. The original photoresist surface of diffuser #50 was character-

ized as having the statistical parameters r = 3.06±0.05 pm and al, = 1.15±0.02 pm,

using the methods described in § 3.4. The cross-sections for normal incidence, Fig-

ures 6.21a and 6.21d, have a normal-like distribution about a strong peak in the

backscatter direction. Subsidiary peaks are observed for the shorter wavelength,

II
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whereas the longer wavelength only exhibits a wider backscatter peak. Increasing the

incidence angle, the normal distribution remains centered about the specular direction

0. = 00 and the backscatter peak gradually reduces in size. For 00 = -20* incidence,

Figures 6.21c and 6.21f, the width of the incoherently scattered distribution is just

wide enough for a small backscatter peak to be observed. Rigorous calculations of

light scattering from thin-film diffusers have shown close quantitative agreement with

the experimental results in Figure 6.21b [47].

The scattering cross-sections presented in Figure 6.22 were measured from dif-

fuser #50, but this time for the longer wavelength A = 3.39 pm. The dominant

feature in all of these cross-sections is the coherent reflection in the specular direc-

tion. Although no peak is observed, the cross-sections do show a slight bias in the

backscatter direction. Interesting fringe structure accompanies the coherent reflec-

tion and is quite vivid for 8o = -20*, Figure 6.22d. This structure is thought to be

caused by the interference between plane wave components reflected from the diffus-

ing surface and the flat substrate, in a manner similar to that from a Fabry-Perot

interferometer.

Using a physical optics approach, Jakeman identifies two possible mechanisms

leading to backscatter enhancement [42]. The first is the constructive interference

between time-reversed light paths, as previously encountered in § 4.5.2, except the

reflecting substrate allows passage through different surface inhomogeneities. The

second mechanism relies on the reflecting substrate lying in the focusing region of the

diffusing surface. Each lens-like asperity wi:l form a focus at some point below the

surface, in much the same way as the patterns are formed on the floor of a shallow

pool of disturbed water. If the focus occurs on the substrate, the reflected light will

pass back through the same lens-like asperity producing a random 'corner-cube' efGct

and geometrical backscatter enhancement.

The focusing region occurs approximately at a depth 6 given by

6 1 r n(, _J n -)

The mean thickness of diffuser #50 is d ft 9 pm compared with a focusing depth of

6 f 8.2 pm, which would explain the strong enhancement observed in Figure 6.21.

Moving the reflecting substrate away from the focusing region, the corner-cube mech-

anism would not be supported and the interference backscattering mechanism would
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Figure 6.22: Scattering cross-sections measured from thin-film, dielectric diffuser #50 on a
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dominate. The reflecting substrate allows for the first and last scattering events

along a light path to be widely separated. From the discussion in § 4.5.2 we would

therefore expect the backscatter peak to be reduced in size and considerably nar-

rower for a thick film, dielectric diffuser. The scattering cross-sections in Figure 6.23

were measured from diffuser #52 which has the parameters r = 3.70 ± 0.08 pm and

at = 1.30 ± 0.02 pm, and a mean thickness of d 50 pm. The incoherent distri-

2.0-

I 1.0

0 .5-

10I 1.0--I

00.5
.I ... I''' I *''' I'' I

-5 0 5 10 15
0.0 - Scauering angle, 9, degrees
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Scattering angle, 0, / degrees

Figure 6.23: Scattering cross-sections measured from thin-film, dielectric diffuser #52
on a gold-coated substrate. r = 3.70 pm, al = 1.30 pm; mean thickness d _ 50 pm.
-pp(O, 9 a) [o]; -,(60,9.) [A]: O0 = -5 . Wavelength A = 0.633 pm; refractive index
n = 1.411.

butions are very similar to those of diffuser #50 except for the apparent absence of

a backscatter peak. In fact the peak is so narrow that it is below the resolution of

the measuring equipment. The inset graph was measured over a very short range of

angles around backscatter and displays a small, narrow peak in each cross-section.

The photograph in Figure 6.24a emphasizes how narrow the backscatter peak

is. Diffuser #52 is inside the spherical screen and is illuminated by a diverging,

a polarized laser beam (A = 0.633 pm) which enters through the small hole. The

black lines represent the horizontal and vertical directions; the surface corrugations

are parallel to the vertical direction. As can be seen from the photograph, the one-

dimensional nature of the diffuser confines the scattered light to a narrow distribution

about the horizontal plane. A bright vertical line can be seen across the entrance hole

and this is the enhanced backscatter peak; its position does not change as the diffuser
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Figure 6.24: Demonstrations of the light scattering properties of thin-film, dielectric dif-
fuser #52; r = 3.7 pmo, ah = 1.3 pm, A = 0.633 pm. Upper photograph: planar light
scattering; a narrow backscatter peak can be seen across the entrance hole. Lower pho-
tograph: oblique incidence; the scattered light describes a conic surface but displays no

r enhancement.

C

C
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is rotated about its vertical axis.

An interesting effect occurs if the diffuser is tilted about its horizontal axis instead

of its vertical axis. In Figure 6.24b the diffuser has been rotated through 45° about

its mean surface normal and then tilted backwards slightly. The incident linear polar-

ization has also been rotated through 48. The scattered light is no longer confined to

a plane but, instead, describes the surface of a cone. As can be seen from the photo-

graph there is no enhanced backscatter; the incoherently scattered light is smoothly

distributed over the conic surface. The term backscatter is used rather loosely here

because, strictly speaking, there is no backscattered light. If the mechanisms pro-

ducing the backscatter peak were still supported the peak would appear between the

horizontal and vertical markers on the screen.

What has happened here is that the time-reversal symmetry between scattering

events has been broken. Because the dielectric medium is transparent and many

wavelengths thick, there is likely to be only one light path connecting any two scat-

tering centres; light incident on the second scattering centre will be transmitted and

reflected to a third scattering centre, not the first. Hence there are no interference

effects in the incoherently scattered light.

If we now examine diffuser #50 under the same experimental conditions as for

diffuser #52 an unusual effect is revealed. Diffuser #50 has a much thinner dielectric

film than diffuser #52 and we have already seen how its enhanced backscatter r'Lak is

much wider. This is demonstrated in the planar scattering geometry of Figure 6.25a

compared to that of Figure 6.24a. If the diffuser is now rotated and tilted as before, we

can see from the photograph in Figure 6.25b that the peak and minima associated with

backscatter remain features of the scattered light. Although time-reversal symmetry

was broken for diffuser #52, diffuser #50 apparently still supports some form of time-

reversible scattering mechanism. Arguments for a possible mechanism may be found

in the following discussion.

Discussion

Dielectric slabs on conducting planes can support TEM surface waves [24, page 485].

These surface waves propagate in a zig-zag fashion within the slab in much the same

way as an optical fibre guides a light field. The incident and scattered radiation
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Figure 6.25: Demonstrations of the light scattering properties of thin-film, dielectric dif-
fuser #50; r = 3.1 pm, ah = 1.1 pm, A = 0.633 pm. Upper photograph: planar light
scattering; a wide backscatter peak can be seen across the entrance hole. Lower photo-
graph: oblique incidence; the scattered light describes a conic surface and also displays
enhanced structure.
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fields can couple with surface waves via the surface roughness of the air/dielectric

interface. In this way surface waves can form the intermediate, time-reversible step

between two scattering events, leading to interference effects in the scattered light

fields. The reason why diffuser #52 does not support a time-reversible mechanism,

as Figure 6.24b suggests, is presumably because the surface waves are too strongly

damped in the thicker dielectric film, but this has yet to be confirmed.

6.5 Antibackscatter enhancement

6.5.1 Experimental observation

The investigations of oblique scattering from thin-film, dielectric diffusers leads us to

the final scattering system which will be considered in this chapter. We return to the

case of scattering from a one-dimensional, metallic difuser, but this time for obliquely

incident light, i.e. the incidence plane is not perpendicular to the surface grooves.

For this experiment we have used an aluminium-coated diffuser (#5) with the

roughness parameters r -. 3 pjm and oh - 2 pm. During fabrication this diffuser was

over-developed to expose parts of the substrate; whilst being very rough the diffuser

also produces a coherent reflection, enabling the specular direction to be determined.

The photograph in Figure 6.26a shows the usual case where the incident and scattered

light fields are co-planar. Strong backscatter enhancement is observed across the

entrance hole and, although the photograph is not clear, up to second order minima

were seen. The specular reflection actually coincides with the first order maximum

to the right of the backscatter peak.

Rotating the diffuser through 450 and tilting it backwards slightly, the incidence

plane is no longer perpendicular to the grooves and the scattered light describes a

conic surface. As can be seen from the in Figure 6.26b, the scattering mechanisms

responsible for the enhanced backscatter in Figure 6.26a produce the same structures

in the antibackscatter direction (the mirror image of the backscatter direction, the

mirror being parallel to the mean surface normal and perpendicular to the grooves).

The specularly reflected light is actually at the intersection of the scattered light

and the upper vertical marker. Rotating the linear polarization of the incident beam

had no effect on the antibackscatter structure. Figure 6.27 illustrates the scattering

geometry for this case.
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Figure 6.26: Demonstrations of the light scattering propertie of aluminium-coated dif-
fuser #5; r -3 pm, ah - 2 pm, A = 0.633 pm. Upper photograph: planar light scatter-
ing; strong backscatter structure can be seen around the entrance hole. Lower photograph:
oblique incidence; the scattered light describes a conic sbrface and also displays enhanced
structure.
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Figure 6.27: The scattering geometry for oblique incidence. The scattered light describes
a conical surface orientated parallel to the surface grooves, determined by the dispersion
relation k2 = k + k + kZ. A: antibackscatter direction, 0 = 00, 4' = '00; S: specular
direction, 0 = 00, = -0.

This observation of antibackscatter enhancement supports theoretical studies car-

ried out by Depine of oblique incidence scattering from randomly rough surfaces and

random impedance planes [28, 27]. The work of Depine suggests that the enhancement

in the conical scattering case (antibackscatter) is closely related to the surface wave

phenomena associated with backscatter enhancement in planar scattering problems;

a result which was suggested in the discussion at the end of § 6.4.2 as an explanation

of the antibackscatter enhancement observed from thin-film, dielectric diffuser #50 in

Figure 6.25b. It would appear then that the phenomenon of enhanced backscattering

from one-dimensional diffusers is a special case of the more general oblique incidence

problem; the enhanced features in the obliquely scattered light are present for all of

the diffusers except the thick-film, dielectric diffuser #52 in Figure 6.24.

The broad, enhanced structure of the scattered light is present for oblique illumi-

nation of diffusers #5 and #50. In comparison the much narrower structure displayed

by diffuser #52 is only present for the true case of light scattered back towards the

source. The difference between the angular widths of the enhanced structures is

indicative of the scales over which the scattering mechanisms occur; wide structures

suggest that the light is scattered within a small region, whereas the narrow structures
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indicate long range scattering mechanisms.



Chapter 7

Concluding Remarks

The scattering of light from one-dimensional, randomly rough diffusers has been inves-

tigated through controlled optical experiments and comparisons with light scattering

simulations from a number of theoretical studies. The experiments were carried out

using characterized Gaussian diffusers having statistical roughness parameters of the

same order as the illuminating wavelength r, ah -, A, where r is the 1/e correlation

length, Uh is the r.m.s. height, and A is the radiation wavelength. This degree of rough-

ness is sometimes referred to as the resonance regime of scattering, falling between

the perturbation (small scale) and physical optics/lKirchhoff (large scale) regimes.

The mathematical models which were considered include the numerical solution of

a rigorous integral equation; an analytical transmission-line approach equivalent to

Bahar's "full wave" scattering theory; and geometrical ray-tracing.

In chapter two, results are presented of the scattering cross-sections for a flat

surface of compacted BaSO4 powder. Apart from the Lambertian-like distribution

expected from this reflection standard, a sharply defined backscatter peak was ob-

served in the incoherently scattered light. The reflected light was strongly depolarized

from the incident linear TM and TE polarizations due to multiple scattering within

the BaS0 4 medium. In accord with multiple scattering theories, a possible mech-

anism for the enhanced backscatter peak is the constructive interference between

forward and time-reversed light paths which occurs in the backscatter direction [2].

From the discussion in § 4.5.2, higher order interference effects are washed out by

multiple scattering which explains why no subsidiary structures were observed. The

differences in backscatter enhancement between co and cross-polarized measurements

are compatible with volume scattering phenomena [2, 67]. In particular the cross-
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polarized light paths are only partially coherent in the backscatter direction and do

not give as strong an enhancement as the co-polarized paths.

Fabrication and characterization of randomly rough diffusers is discussed in chap-

ter three. A method is described of replicating the diffusing profile into a transparent,

dielectric medium enabling the scattering properties of a metallic diffuser to be com-

pared to those of its dielectric replica. The diffusers considered throughout this dis-

sertation have been rough in only one dimension, i.e. they are random gratings. The

reason for this is to accomodate presently developed rigorous models which are limited

to scattering in one dimension only; the production of one-dimensional, characterized

diffusers is therefore of great importance in these early stages of development.

In chapter four, rigorous integral equations are presented for the far-field TM

and TE scattering cross-sections from a derivation based on the Helmholtz-Kirchhoff

integral equation. Theoretical calculations for one-dimensional, perfectly conduct-

ing and non-absorbing dielectric diffusers are critically compared with experimental

measurements from characterized diffusers. Over the visible and near infra-red wave-

lengths considered, the measurements from a gold-coated diffuser (a good conductor)

exhibit strong backscatter enhancement, whereas those from an identical dielectric

diffuser show no enhancement at all. Theoretical studies in chapter six demonstrate

that one difference between metallic and dielectric scattering is the degree to which

multiple-scattering mechanisms contribute to the light field in relation to those of

single-scattering. The interaction mechanisms for dielectric diffusers of the type in-

vestigated are almost entirely single-scattering because the medium is highly trans-

parent. At each localized interaction most of the incident light is transmitted and

only a small amount is reflected from the surface. These arguments and the observed

differences between the metallic and dielectric scattering cross-sections tend to indi-

cate that backscatter enhancement is a multiple scattering phenomenon. A simple

geometrical argument, based on a multiple scattering mechanism, suggests the linear

relationship

A6 oc-

where AO is the backscatter peak width. Analysis of the experimental cross-sections

from metallic diffusers for the shorter wavelengths appears to support this relation,

particularly towards the geometrical optics limit (A -- 0).

F¢
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Agreement between rigorous theory and experimental measurements is quite rea-

sonable near normal incidence, but generally deteriorates for larger incidence angles;

the metallic experimental results for all but the longest wavelength considered exhibit

enhanced backscatter peaks up to 40* incidence, unlike the calculations. The theory,

however, does reproduce all of the general features observed in the experiments on

metallic and dielectric diffusers. The best agreement between theory and experi-

ment, including large incidence angles, was found to be when the surface parameters

were smaller than the illuminating wavelength 7, o, : A/3. For this scale of surface

roughness a coherent, or specular, component is present and increases in strength as

the surface appears shallower to the incident wavelength. No backscatter enhance-

ment was observed for the longest wavelength considered (A = 10.6 Jm), although

the incoherently scattered TM radiation did exhibit a maximum in the backscatter

direction.

The analysis discussed in chapter five uses a transmission line approach to solve

the one-dimensional scattering problem and leads to an analytical solution. This so-

lution differs from the integral equation method described in chapter four in that it

only requires the statistical parameters of the surface profile to calculate the scatter-

ing cross-sections, not an ensemble of random profiles. The final expressions for the

scattered fields only require numerical evaluation for each pair of incidence and scat-

ter angles, which is far less computationally intensive than the Monte-Carlo method.

The formulation of an analytic solution poses a more complicated problem to solve

than does the problem of scattering from a deterministic profile. The electromagnetic

fields above and below a flat, semi-infinite, vacuum/dielectric interface illuminated

by a plane wave are shown to be composed of two continuous eigenmode expansions

(radiation and lateral waves) and a discrete expansion (surface waves). The first

stage in the transmission line approach is to introduce a small step height into the

flat dielectric surface. The height discontinuity introduces a small perturbation to the

eigenmode expansions which, to first order, is the field scattered by the step. Treat-

ing a rough surface as a sequence of discontinuous steps, the total single-scattered

field can be described as the continuous integral along the surface of all such locally

perturbed fields. Modelling a surface profile in this way has no limitation on the

surface height which can be represented, but will only be valid for surfaces with low

slopes and large curvatures. This analysis leads to a set of field equations for a one-



Concluding Remarks 205

dimensional, randomly rough diffuser which are identical to those presented by Bahar

employing "full-wave" theory [6]. Despite implied accuracy by Bahar the calculations

in chapter five indicate that, for surface structures in the resonance regime, there are

large discrepancies between the experimental measurements and "full-wave" theory.

The best agreement is found to occur for scattering from a dielectric diffuser when

considering the so-called "iterative" solution outlined above. Light scattering from a

dielectric surface is dominated by single-scatter interactions, yet Bahars "extended"

full-wave theory does not reproduce the qualitative features observed in the experi-

mental scattering cross-sections. The validity of the steps transforming the iterative

solutions into the extended full-wave solutions must therefore be in question.

The third model which was used to investigate how light is scattered by rough

surfaces is that of geometrical ray-tracing and is considered in chapter six. Concep-

tually the principles behind light rays and their interaction with media are simplistic

but, having said that, the calculated cross-sections are remarkably similar to the ex-

perimental measurements. Taking the phase of each ray into account and treating

a metallic diffuser as an impenetrable surface, it is demonstrated how a backscatter

peak is present only in the double-scatter (multiple scattering) term. Light scattered

from an identical dielectric diffuser :s dominated by single-scatter interactions and so

multiple-scatter mechanisms are very much suppressed. The absence of a backscat-

ter peak in this calculation demonstrates how backscatter enhancement is associated

with multiple scattering mechanisms. What the geometrical model loses in math-

emetical rigour it gains in analytical power. This is particularly well demonstrated

in the calculations of the field transmitted by a dielectric diffuser. It is shown how

small but distinct terms in the scattering cross-sections can be attributed solely to

multiple scattering contributions.

A complete description of the polarization state of a light field can be achieved

by measuring its Stokes parameters. The scattering properties of a diffuser can then

be described in terms of a Mueller matrix relating the parameters of the scattered

field to those of the incident field. Symmetry can usually be invoked to reduce the

number of elements needed for a complete description of the matrix. For a one-

dimensional diffuser there are only four independent matrix elements. The elements

for identical metallic and dielectric diffusers are presented in chapter six over a range

(" of incidence angles for one wavelength. The measurements yield results which are con-

I
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sistent with identifiable scattering events at the surface; i.e. the contributions from

single and double-scattering events are separated. There is strong experimental evi-

dence to support the argument that backscatter enhancement is a multiple-scattering

phenomenon. A particular case is where a dielectric scattering cross-section exhibits

a very small, but clearly defined, backscatter peak with subsidiary structures which

can not be explained by single-scattering arguments.

An alternative form of scattering system is investigated in chapter six, that of

a thin-film, dielectric diffuser mounted on a reflecting substrate. The light reflected

from such a system is almost entirely multiply scattered since the dielectric medium

is highly transparent. The diffusers are analogous to the combination of a random

phase screen placed in front of a plane mirror. Experimental and theoretical studies

of phase screens with mirrors suggest that they can support a number of multiply

scattered, backscatter mechanisms [41]. The experimental cross-sections from the

thin-film diffusers certainly exhibit very strong backscatter peaks. It is demonstrated

how the width of the peak diminishes as the reflecting substrate is moved away from

the diffusing surface. In keeping with diffraction theory, narrower features in the

scatter pattern tend to indicate scattering interactions over larger portions of the

surface. One would therefore expect that long range mechanisms are dominant for

thicker film diffusers.

The final scattering case considered is that of light obliquely incident onto metallic

and thin-film, dielectric diffusers. In this case the incident wavevector has a compo-

nent parallel to the corrugations of the one-dimensional diffuser and the scattered

light describes a conic surface. From the photographs presented in chapter six it is

clear that the backscatter enhancement so far investigated is a special case of the

oblique incidence problem. The structures associated with enhanced backscatter ac-

tually appear in the so-called antibackscatter direction (the image of the backscatter

direction in a mirror which is parallel to the mean surface normal and perpendicular

to the surface grooves). Surface waves excited by the incident radiation could form the

intermediate, time-reversible step between the incoming and outgoing waves. Interfer-

ence effects will then still be present in oblique incidence scattering provided that the

forward and reverse surface waves are coherent with one another. The thicker of the

two thin-film diffusers only exhibits enhanced scattering close to the true backscatter

direction and therefore appears to introduce partial coherence between the interfer-
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ing light paths. Precisely which mechanisms lead to antibackscatter enhancement is

not intuitively obvious but clearly they are at the root of the enhanced backscatter

phenomenon.

Future work

The present studies of rough surface light scattering are leading to a better under-

standing of how electromagnetic radiation interacts with real materials. Increasingly

powerful analytical tools are being developed to curb the limitations of current the-

oretical models. In particular, advances have been made in theoretical treatments of

the two-dimensional scattering problem. There are, however, aspects of light scatter-

ing unique to the one-dimensional problem which need to be more fully understood.

What Stokes' parameters actually reveal about the scattering mechanisms is not well

known, but the simple measurements and calculations for one-dimensional systems

may yield valuable information applicable to more complicated systems. Of imme-

diate relevance to enhanced backscattering mechanisms are studies of the oblique

incidence problem and the conditions under which antibackscatter enhancement oc-

curs. There is no equivalent problem for scattering from a two-dimensional surface.
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Mathematical Appendix

A.1 The Helmholtz-Kirchhoff Integral Equation

If a volume V is bounded by a surface S, then for two scalar functions V and , which

are finite, continuous, and can be differentiated twice in the region V,

L(V 2o~ - o'v2v) dV =f( pVP - O'Vp) -dS (A.1)

which is known as Green's second theorem. The proof of this theorem stems from

Gauss' Law (or the divergence theorem) which relates the net outflow of a scalar field

from the volume V (likening the field to a fluid) to its flux through the enclosing

surface S. The surface element dS = ndS, where n is the unit normal and is positive

when pointing outwards from the enclosed volume. The enclosing surface may consist

of a number of separate surfaces, such as those shown in Figure A.I. In this case the

Figure A.I: Volume V bounded by three surfaces: S 1, S2, and S3.
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surface integral in equation (A.1) becomes

..."')"dS = ('"..)"dS+ ...(') "dS + ... ') "dS

Green's theorem is a very important relationship for solving boundary-value problems

in electromagnetic theory.

Many problems in electromagnetic theory can be reduced from the vectorial,

transverse-wave descriptions of Maxwell's equations to source-free, scalar-wave equa-

tions of the form

V24(r) + k2
O(r) = 0

which is known as the scalar Helmholtz equation. The field 0(r) describes some scalar

component of, e.g., the electric field, either E., E., or E., and the constant k = 27r/A

is the wavenumber. In the presence of sources j(r) (i.e. contained in the volume of

interest) the field O(r) is a solution of the inhomogeneous Helmholtz equation

V2O(r) + k2O(r) = -j(r) (A.2)

Green's second theorem can be used to obtain a solution to equation (A.2) within a

volume V, subject to certain boundary conditions at the enclosing surface S.

In order to implement equation (A.1) a second, arbitrary, well-behaved scalar field

must be found. The field G(R) = (I/4rR) eik R can be shown to satisfy the Helmholtz

equation

V2 G(R) + k2 G(R) = 0

in a region away from the origin (i.e. R $ 0). In a small, spherical volume AV of

diminishing radius R about the origin, G(R) can also be shown to satisfy the integral

equation

Rira/ (V'0 + PG) dV =

In other words, G(R) is a solution of the equation

i2
V 2G(r, r') + k 2G(r, r') = -6(r - r') (A.3)

where R = r-r, and r' is the location of a unit (delta) source. The function G(r, r') =

(1/4lr - r'l) ei'l - 1 is commonly referred to as the spherical Green's function or

propagation function. The form of the Green's function depends on the equation

which governs the system; it describes the response of a particular system to a unit
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(delta) impulse, as may be seen by comparing equation (A.3) with equation (A.2).

The delta function 6(r) has the property that

b(r)(r -r) dV O(r') if r' is contained in V (A.4)
jv i 0 if r' is outside V

Consider the situation illustrated in Figure A.2. A volume V is enclosed by a

V

• j(r)

Figure A.2: Volume V contains a source j(r) and is bounded by surfaces S, and S2 . The
surface normals n are positive, pointing outwards from V.

surface S = S, + S2, with appropriately directed surface normals n. The region

outside S, will be ignored, but the region outside S2 is identified as the volume V.

The volume V contains source(s) j(r) and volume V is a homogeneous, source-free,

scattering medium. The labels r> and r< denote any points inside the regions V and

V' respectively.

A.1.1 External field solutions

For an observer in region V, the scalar fields q and G satisfy the inhomogeneous

Helmholtz equations

V24'(r) + k0(r) = -j(r) (A.5)

V2G(r, r>) + k2G(r,r>) = -6(r- r>) (A.6)
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Substituting V 2
0 and V 2G into equation (A.1) and using equation (A.4), we obtain

the relation

0(r>) j j(r)G(r, r>)dV + [G(r., r>)VO(r.) - qO(r.)VG(r., r>)]. dS (A.7)

where r, denotes a point on the bounding surface S. The volume integral in equa-

tion (A.7) is clearly the incident field

Lij(r)G(r,r>)dV = Oi.(r>)

The surface integral in equation (A.7) takes into account the presence of any sources

outside the bounding surface S. If the surface S1 is extended outwards to enclose an

infinite region, i.e. V -. oo, then it will contain all sources (V' is source-free) and as

such the surface integral contribution from S, can be shown to vanish. Equation (A.7)

can then be written as

0(r>) = O,.(r>) + E+(r>) (A.8)

where

E+(r) = j 1 [q(r.)VG(r,, r) - G(r,, r)VO(r.)] • dS (A.9)

The surface element ndS has been replaced by -ndS (i.e. the normal points outwards

from region V') and S+ is a bounding surface which is infinitesimally close to the true

surface S 2 when approached from region V. At the limit S+ 
- S2, equation (A.9)

represents the external field contribution from the surface of the scattering region

VI, i.e. it is the surface-scattered or reflected field. Equation (A.8) is known as the

Helmholtz-Kirchhoff integral equation, describing the total field outside the scattering

medium.

For an observer in region ', r> is replaced by r< in equation (A.6) and, substi-

tuting V2 and V2G into equation (A.1), we find, with the help of equation (A.4),

0 -- Oi(r<) + E.*(r<,) (A.10)

Equation (A.10) states that the incident field in volume V due to the sources in

volume V is exactly cancelled by the field induced on the surface S+ (which effectively

encloses region V). This is, in essence, the fundamental principal behind the Ewald-

Oseen extinction theorem [65].F
Ac



Appendix A 212

A.1.2 Internal field solutions

In order to obtain an expression for the field inside volume V' we must solve the

following Helmholtz equations for the source-free region

V 2O(r) + k' 2Or) = 0

V2G(r, r<) + k'2G(r, r<) = -b(r - r<)

Again using equations (A.1) and (A.4), we find for an observer in V

q(r<) = - (r)(A.11)

where

E-(r) = f [¢(r.)VG(r,,r) - G(r.,r)VO(r.)] dS

The surface integral E-(r) is similar to E+(r) except that the limiting case as S --+ S 2

is taken approaching S 2 from inside the region V. Equation (A.11) represents the

transmitted field in a source-free medium, the surface integral E-(r<) taking account

of sources outside S'.

The final solution to be found, for the effects of the internal field as observed from

t1.P external region V, is obtained following similar arguments as for the previous

cases and is

0 = E-(r>) (A.12)

i.e., there is no external field contribution from the integral over the surface just inside

$ 2 . This is somewhat expected since region V is source-free.

A.2 The Stiirm-Liouville Equation

Many of the guided-wave problems in electromagnetic theory reduce to the solution

of a differential equation which has the general form

d- [pdo(x7j + [q(x) + Ao (x)] O(x)= 0 (A.13)

and is known as the Stfirm-Liouville equation. The functions p(x), q(x), and a(x) are

generally continuous over the range of the problem a < x < b, and A is a separation

constant.

'I
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The solutions to equation (A.13) are found by applying certain boundary values

at z = a, b. These boundary conditions may be of the form

0=0 --O =0
dx

or a linear combination of them both. For a given set of boundary conditions there

exists an infinite number of possible solutions, or eigenfunctions, 40n each with an

associated constant, or eigenvalue, An. It is a straightforward exercise to show that

the orthogonality relationship that exists between two normalized eigenfunctions is

b n ( a x dx= { n rn

where a(x) takes the form of a weighting function.

A.2.1 Green's function

A very important tool in the sohltion of boundary-value problems is the Green's

function. Consider the inhomogeneous Stfirm-Liouville equation

- [ (x'-) E '] + [q(x,') + A-(x')] 4(x') = -f(XI) (A.14)

where f(x') is an extended source or forcing function driving the system. The Green's

f,unction G(x, x') is defined as being the solution of the equation when the driving

force is a point source of unit strength, i.e.

d [p(x -] + lq(x) + A(x)] G = -6(x - x') (A.15)

where the Dirac delta function b(u) represents a unit source situated at u = 0. The

solutions to equation (A.14) over the range a < x < b are subject to the boundary

values specifying either 0, dO/dx, or their linear combination at x = a, b. If we

multiply equation (A.14) by G(x,z') and subtract the result from equation (A.15)

multiplied by q(x), after an integration by parts, we obtain

() = j (x,')f(x')dz'+ G(x,x))p(xp)j- (,)P(,,) dG(x x)

If the boundary values in the original problem are specified as being equal to zero,

then we choose G(x, x') to satisfy the same conditiors whereupon the boundary terms

vanish. The solution can then be expressed as
b

-O(x) = G(x, z')f(x') dx'

F

itm n I



Appendix A 214

which describes the solution as the superposition of point sources having the anpli-

tudes f(x')dx'. For non-zero boundary values, e.g. do/dx = c, choosing 'he corre-

sponding Green's function condition to be zero, e.g. dG/dx = 0, enables the boundary

term to be evaluated from known quantities.

From equation (A.15) a further condition on the Green's function can be found

to hold at the source x = x'

f z'6 r dG] 1 x'+6 IZ11
lim I I,_d- p(z)-- +f d, [q(x) + Ao(x) = ir I'-6(x - x') dx
6 -0 Jz'-6 J -0 Jz'-6

Since the functions q, a, and G are continuous at the source, the integral involving

the term q + Aa vanishes, leaving the result that

) = -1 (A.16)

at the source.

Expressing the Green's function as an expansion of the complete set of eigenfunc-

tions, we can show that

G(x,x') - ,(X)On(X')

,,=I A -An,

which has poles at A = An. These poles are known as the spectrum of the Green's

function. For finite range problems the spectrum is discrete. However, as the range

is increased the poles converge until, for an infinite range, the spectrum becomes

continuous and the Green's function has branch-point singularities instead of poles.

This technique of expressing the Green's function as an expansion of the eigenfunction

set is used in chapter 5 to find the transverse eigenfunctions for a line source above a

flat, dielectric slab.

A.3 Asymptotic evaluation of the radiation field:
Rayleigh's method of stationary phase

Far-zone reflection

The integral to be evaluated for large values of r is

I = jdk ,of(k' ,~'X'(.0o , , , , - (A .17)
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where

14=ki+k,j

r zi+yj

For small changes in k;o the function f(k',0 ) is slowly varying. However, since r is very

large, the function exp(ik, r) oscillates rapidly for similar changes in k;0. Therefore

the contributions from various points along the range 0 < k'O0 < oc will tend to

cancel. The only contributions will come from points where, to first order, 4 - r does

not vary with small changes in k,0. Such points are known as stationary phase points

and occur where
d(k.r) - o

dk;O

The function f(k,'o) need only be evaluated at the stationary phase points, leaving

the integral evaluation of exp(ik • r) only.

Making the substitutions x = r sin 0, and y = r cos 0,, the stationary phase points

can be shown to occur when

d(k'0 .-r) '- - = r cos 0, - -sinO, 0
dk"o k. 0

i.e.

k., = k0 sin 0. k,, 0 = k0 cos 0.

Expanding k • r in a Taylor series about the stationary phase points

rd(k'- r) .- kcos
k .r = ko + o dko 2

since the first derivative is zero. The second derivative is given by

d 2 (k. r) r
dk 0' - =  ko sin' 0.O

Making the substitution

sin . (k' - ocos 0.)

the integral can be written as

I = f(k = kocosO.)eik.r / 2kisinO. L - i *2

rr4
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where f kocot 0o FV/2k. Away from grazing angles (0o3 2

.. 2 . 2
da e-  da e-  = v" e-4

and the asymptotic integral (A.17) can therefore be evaluated from the expression

I = f(ko = k cosO.)e'(4-, )vk' sin,. (A.18)

,w~mmk 
r 
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