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COVER: Looking upstream at the Connecticut River on 16 March
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- front (white) farther upstream. The ice temperature was
00 C and deterioration of the sheet had begun. (Photo by

M. Ferrick.)
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NOMENCLATURE

ao ,a1. a2,a3  coefficients of the composite polynomial for ice velocity at a point
a, b, c, q parameter groupings in the equation of motion for the ice
AI (x~t) acceleration of the ice
B river width
B i. C, ciefficients in the recurrence relation for othogonal polynomials
Cb speed of the breaking front
Cd dynamic wave speed in the downstream direction
C.1 dimensionless Chezy conveyance coefficient of the ice
C11 apparent or added mass coefficient
elod. d ..... dk coefficients in a linear combination of orthogonal polynomials that approximate

the ice velocity data
d * ith coefficient of the best least-squares fit to the data with orthogonal polynomials
E error measure of the distance between the polynomial approximation and the data
ERROR(t n) the difference between the measured ice velocity and the polynomial representation

at local time tn
f(t n) the measured ice velocity at local time tn
Fd drag force on the ice due to fluid shear
F,, downstream gravitational force on the ice due to its weight
Fm acceleration reaction or force on the ice due to the apparent or added mass
h r  force on the ice from bank resistance

g acceleration due to gravity
<g.h > scalar product between arbitrary functions g and h
I ,12 integrals that are evaluated numerically
MI mass of ice in a control volume
PoPIP ...... Pk series of mutually orthogonal polynomials
Pj ith polynomial in the series of orthogonal polynomials
R, hydraulic radius associated with the ice passing the control volume
S, scalar product of polynomial Pi with itself
St hydraulic gradient of the river
I global time for the ice motion in a river reach
7 local time at a point measured from the arrival of the breaking front that initiates

ice motion
A 7 correction to 7 at each step of the iterative solution
t dummy time variable of integration
tj ice thickness
V flow velocity
1'l~t) local ice velocity at a fixed location represented by the composite polynomial
'I(xt) global ice velocity for the river reach

dummy ice velocity variable of integration
x position along the river reach in a fixed coordinate system
x0 . Xf initial, final position of the ice block

.bf locaticn of the breaking front
XM  position of the moving coordinate system with positive distance measured

upstream from the breaking front
Ar distance between the centers of neighboring ice blocks
I.(/n) weight assigned to the measured ice velocity at local time tn

p density of water

Pt density of ice
Zh bank stress on the ice in the control volume
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Analysis of River Ice Motion Near A Breaking Front

MICHAEL G. FERRICK, PATRICIA B. WEYRICK, SUSAN T. HUNNEWELL

INTRODUCTION bank release of the ice. This ice release, which we call
"support-dominated dynamic breakup," travels rapidly

The characteristics of river ice breakup can vary downstream at a speed that is limited by the dynamic
greatly at a given site in different years, and between wave celerity, but is much greater than the flow veloc-
sites. Damages and flooding caused by breakup generally ity. Distinct breaking and rubble fronts accompany this
increase with river discharge and the thickness and type of failure, with the rubble front following the
competence of the ice cover. As the force of the river breaking front downstream. The distance between these
and the resistance of the ice cover increase, the processes fronts varies, depending on their relative instantaneous
of breakup become increasingly dynamic. In such speeds. The breaking front in a support-dominated
"dynamic breakups" both the ice motion and the river breakup with large plate or sheet movement is difficult
flow exhibit large and rapid changes with time. The to observe, a consequence of minimal ice ridging near
importance of unsteady flow in dynamic breakup has the front. Conversely, in what we call "strength-
been noted by several authors (e.g., Beltaos and dominateddynamicbreakup,"thebrashicefrombreakup
Krishnappan 1982, Billfalk 1982, Doyle and Andres upstream is directly involved in breaking the intact and
1979, Ferrick and Mulherin 1989, Henderson and Gerard stationary ice cover. The ice generally fails in bending
1981, Prowse et al. 1986, Williamson 1989). However, caused by forces resulting from the flow and from the
a theory of dynamic breakup that quantifies the time brash ice movement. The rubble and breaking fronts are
varying flow and ice conditions is not available. An coincident, and the speed of this combined front is
essential part ofsuchatheory woulddescribeconditions usually lower than the flow velocity. However, transi-
near the front of the breakup. tions between these behaviors are common during a

The following description and analysis of dynamic breakup, allowing plate collisions and size reduction
ice breakup follows Ferrick and Mulherin (1989). The ahead of the ice rubble to increase the apparent speed of
"breaking front" in a dynamic breakup is the boundary the rubble front.
between intact stationary ice and moving ice. The The motion of the ice near the breaking front during
breaking front travels downstream, and when it passes a dynamic ice breakup has not received sufficient at-
a given point, the local ice cover that was initially at rest tention. This motion and the parameters that affect it are
also begins to move downstream. The breaking front critical for development or assessment of theories of
represents a discontinuity in the ice acceleration. Ahead dynamic ice breakup. In this report we develop an
of the front both the ice velocity and acceleration are analysis of this motion and demonstrate the results
zero, and behind it they are both positive. The speed of using observeddata from acontrolled dynamic breakup
the breaking front, determined by the force-resistance of the Connecticut River. The known flow conditions
balance, is a function of rivergeometry and flow and ice and almost rigid body motion of the ice sheet near the
characteristics. Behind this front the ice can move as a front provide a relatively simple support-dominated
single sheet, as large plates, or as ice rubble. A second breakup for study. We used videotape of the ice motion
front called the "rubble front" separates the ice sheet or to identify the breaking front and to obtain a time series
plates from the brash ice. The moving ice rubble behind of ice velocity data at a cross section of the river. These
the front extends above the downstream ice as a result data typify the time varying ice velocities that occur
of its thickness. The rubble front location represents a immediately upstream of the breaking front. An empiri-
region of ice convergence and is readily apparent. cal expression for ice velocity was obtained that mini-

The characteristics of dynamic ice breakup depend mized the error and noise in the data and identified the
on the mode of failure of the ice cover A failure at the primary ice motion. This methodology should be gen-
supports of an ice cover produces a sudden bank-to- erally applicable to any dynamic breakup.



Our analysis of the ice motion relies on assumptions Both stage and ice motion data were collected simulta-
that extend these data at a point to a complete descrip- neously at a site located 26 km downstream of the dam.
tion of the motion in the river reach. Many of the results The camera at the 26 km observation site remained
are sensitive to the speed of the breaking front, a focused on a position in the river for almost 300 s
parameter that was not measured locally. However, the starting with the arrival of the breaking front. This
speed of the front was varied over a wide range to segment of the tape was viewed repeatedly until the
explore this sensitivity. The time variations of several paths of ice motion were identified and drawn on a clear
parameters related to the ice motion were obtained for sheet overlying the video monitor. Points on the ice to
the camera site. The variability of the ice velocity with be used for velocity measurement were chosen by their
time indicated a need to formulate and study an equation contrast from the surrounding ice. Start and stop points
of motion for a control volume at this site. In order to were selectedoneach ice flow line near thecenterof the
more completely assess conditions near the front we field of view to define a measurement section. The
also obtain the spatial variations of several parameters spacing between these points was chosen to ensure a
of the ice motion from the perspective of an observer sufficient time of travel for precise and representative
moving with the breaking front. The analysis quantifies velocity measurements, and a length scale foreach flow
several concepts contained in the largely descriptive line was obtained from known local distances. The
frameworkoficebreakupofFerrickandMulherin(1989). videotape was window dubbed with a continuous on-

screen digital time marker to provide accurate and
consistent travel times.

DATA ACQUISITION The length scale divided by the travel time through
the test section provided the estimated ice velocity at the

A controlled ice breakup experiment was conducted mean time of the motion (Fig. 1).The data obtained thus
ontheConnecticutRiverbelowtheWilderDam (Ferrick represent the ice velocity as a function of time at one
and Mulherin 1989)on 15-17 March 1989.Acontrolled longitudinal location in the river. Maximum measure-
flowsurgewasreleasedfromthedamthatcausedtheice ment error bounds were 0.5 m in length and 0.5 s in
breakup to progress downstream with the front of the elapsed time. Combining these errors unfavorably yields
surge. During this experiment river stage and ice motion a maximum ice velocity error of slightly less than 7% at
were recorded at several locations. Video cameras were the peak velocity, corresponding to an absolute error of
positioned along the river bank to record the ice motion. 0.08 m/s.
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Figure I. I'e velocity data from the controlled breakup of the Connecticut River in March 1989 and the 5rh-order
polynomial description of the data obtained from a least squares fit of the sequence of orthogonal polynomials.
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LOCAL ICE VELOCITY POLYNOMIAL An appropriate degree polynomial can be found by
observing both the absolute magnitude and randomness

We will now seek a continuous, differentiable func- of the error. Polynomials of increasing degree incorpo-
tion to represent the ice velocity v, data that were ob- rate additional information from the ice velocity data
tained at the measurement section. A discrete time tn  until the magnitude of the maximum error ceases to
measured from the time of breaking front arrival is decrease and the structure of the error is random.
associated with each ice velocity measurement. These The ice velocity data were fitted with sets of orthogo-
data are represented asf(tn), indicating the measured ice nal polynomials of increasing degree. Based on the
velocity of the nth time in a sequence with increasing error behavior, the set through degree 5 was chosen and
time. We assume that the measured data contain a a plot of the composite polynomial is presented with the
slowly varying component that provides important in- data in Figure 1. The structure of the error is shown in
formation about the changes in ice velocity with time, Figure 2, with a root-mean-square (rms) of 0.03 m/s.
and a comparatively rapid variation of relatively small Errors of this magnitude are in the expected range of
amplitude that represents the error or noise in the data. measurement error. Higherdegree polynomials reduced
The task is to approximatef(tn) with a function v1(t) that the rms error slightly, but did not reduce the maximum
contains most of the information in the data and little of error nor significantly increase the random nature of the
the error or noise. In our analysis, we used orthogonal error.
polynomials to obtain vl1(t). Details of the application of
orthogonal polynomials to fitting the ice velocity data
can be found in the appendix to this report, and addi- ICE VELOCITY AND ACCELERATION
tional background is given by Conte anddeBoor (1980).

The fitted polynomial for ice velocity is obtained as During dynamic river ice breakup the ice motion
a linear combination of orthogonal polynomials. We varies in both time and space. Data are not available to
rewritethisexpressionasa"composite"oftheorthogo- quantify the spatial changes in ice velocity near the
nal polynomials in the form measurement location. In this section we make assump-

- 2 3 4 -5 tions concerning the ice motion that compensate for the
t (J = aj -+ a t + 2.7

2 + a 3 t3 + a4s + a5 t5+... Jack of multiple ice observation points in the reach and

(1) provide a complete description of the motion. We relate

the local time and ice velocity data represented by the
where T is local time measured from the arrival of the polynomial toa"global" reachtime scale, andobtain ice
breaking front, and a o = 0 because the ice velocity is velocity and acceleration for the reach as functions of
zero at T = 0. The error between the composite polyno- both time and space.
mial and the data is represented by a time series for each In the controlled breakup of the Connecticut River,
level of the approximation. The error between the the breaking front stalled briefly 2 km upstream of the
composite polynomial and the data at any time t, is observation site and then moved quickly through the

reach. The flow disturbance caused by the ice release
ERROR (tn) = f(tn) - V (tn) (2) upstream initiated the breakup of the study reach. We
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Figure 2. Structure of the velocity error associated with the 5th-order polynomial.
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will make the following assumptions in order to com- serve that the corresponding global ice velocity Vi(x,t)
pletely specify the ice motion near the breaking front: 1) can be obtained from the ice velocity polynomial as
the speed of the breaking front is analogous to water
wave celerity, 2) this breaking front celerity was con- V(X,t) = V1(7) (5)
stant as the front traveled through a reach of about 2000-
m length containing the observation site, and 3) the Following from the assumptions, the ice velocity is
measured ice velocity-time behavior was the same at constant along parallel, straight lines called characteris-
every point in the reach when offset for different arrival tics in the x-t plane with slope
times of the breaking front.

With these assumptions we know the ice velocity as dx = Cb(
a function of local time 7 at every point in the reach, and dt (6)
local times are related by the relative spatial positions of
the points and the speed of the breaking front. We shown in Figure 3. Constant ice velocity along charac-
arbitrarily define global time t = 0 to correspond to the teristics given by eq 6 can be stated as
breaking front at location x = 0. If Cb is the speed of the
breaking front, then the front arrival at any location x (a a
occurs at t = xICb, corresponding to 7 = 0, and the time + C b - V1 =0 (7)
scales are related as

The ice velocity polynomial defines the motion along a
7 = t -x/C b  (3) vertical line in Figure 3 that extends upward in time

from a point corresponding to the observation site. A
In differential form the time scales given in eq 3 are vertical line at any location xdepicts the same time his-
related as tory of ice velocity following breaking front arrival. The

assumptions have expanded the description of motion at
S_ x't) a point contained in the data to include the ice motion at

dt Cb (4) all points in an x-t plane drawn for the local reach.
Ahead of the breaking front the ice is stationary with

where V, (x,t) is the global velocity. zero acceleration, while behind it the ice undergoes
If global coordinates x and t are specified, we ob- positive acceleration and begins moving downstream.

Figure 3. Sketch of the x-t plane
showing selected lines of constant

-ice velocity including the breaking
front. Ice velocities at fixed loca-

4tions 
are the same through time,

- [ offset by the lag in breaking front
arrival. Ice velocities with distance

Breaking from this front are the same at any
Front time.

5I
5C b

0x 4o 4



The ice acceleration A, is obtained by differentiating zero time in this figure corresponds to the local arrival
eq 5 of the breaking front. The behaviorof these curves is the

same except that the absolute value of the total accelera-
d1 yi .t) d- () _ (8) ) d )tion increases slightly as Cb increases. The maximuai

_ _ _ _ t) dt_ 1i (t) (8) acceleration occurred with the initial motion, dec, eas-
ti d t Cb I di ing rapidly in the first minute. For the remainder of the

record, acceleration oscillated about zero.
which can be evaluated using the ice velocity polyno-
mial. The derivative of the ice velocity polynomial with
respect to 7 is the local ice acceleration as a function of EQUATION OF MOTION FOR ICE
time following the arrival of the breaking front. Alter-
natively, by expanding dVl/dt and using eq 7 we obtain We will now write a simplified equation of motion

for the ice cover that can be solved analytically, and
AI - dV - V+ V V. V1 I - V begin to quantify the effects of various parameters on

d -+ V1 - -i(9) the ice motion. In this initial study we consider the
dt at ax at Cb) forces on the ice due to the flow but, for simplicity, we

With eq 5 and the observation that the local acceleration neglect the response of the flow to the ice motion. The
WjV1/t = dv( 7)/d7, eq 8 and 9 are equivalent, variations in flow parameters causedby ice breakup will

Although the speed of the breaking front near the be quantified in future work.
observation site was not obtained during the field ex- The flow discharge, depth and velocity were all
periment, the average speed of the breaking front ob- increasing through the period of ice velocity measure-
served over a 12-km reach was 2.7 m/s, which included ment. The rate of increase of river stage was constat
temporary stalling at a few locations. The speed of the through the period, but the increase in the flow depth
downstream traveling dynamic wave near the observa- was only a few percent of the initial value. We assume
tion site was 7.5 m/s. The breaking front speed can be that during the measurement period the water surface
nondimensionalized by the flow velocity at the time of profile of the surge that caused the breakup moved
breakup, and a useful range of dimensionless front downstream as a monoclinal wave with constant speed
speeds is from 1, corresponding to the flow velocity, to and unchanging shape. This constant rate of stage
5, corresponding to the downstream dynamic wave increase thus produces a constant energy gradient. With
speed. The total ice acceleration at every point in the constant depth and energy gradient our calculations
reach is presented as a function of time in Figure 4 for indicate an increase in the flow velocity of about 25% of
dimensionless breaking front speeds of 2 and 5. The the initial value during the measurement period. Fhe
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Figure 4. Total ice acceleration at the observation vite for assumed dimensionless bre tingfront speeds of 2 and 5.
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increase in flow velocity is in response to diminished Fm=Cm dV
resistance :o flow as the ice accelerates. However, the r---rn (11)
assumption of constant velocity at the mean value will
bc made to simplify the analysis without introducing a where Cm is an apparent mass coefficient to be deter-
large error. mined experimentally or approximated analytically.

During tie breakup experiment on the Connecticut Wakeet al. (1987) performedaset of experiments on ice
River the sheet broke apart downstream of the measure- floes with various aspect ratios and found Cm = 0.1 for
ment location and provided negligibie resistance to the floes that are large relative to ther thickness.
moving ice upstream. When the ice run finally stalled, 'I ne drag force on the ice due to fluid shear will be
the river was open downstream of the observation site. parameterized using a hydraulic radius. An idealized
Also, force dissipation intenlal to the ice sheet caused vertical profile of water velocity in an ice covered
by ridging away from the banks was not common near channel exhibits a zero velocity at each boundary and a
the breaking front. Therefore, we can neglect down- maximum velocity near mid-depth. The precise loca-
stream support and internal force dissipation and at- tionofthemaximumdeper.dsontherelativeroughnesses
tribute all ice motion resistance to the river banks. of the cover and the bed. Physircaly, the hydraulic
Because of daily and seasonal changes in ,. er stage, radius associated with the ice cover i. the distonce from
the ice sheet exhibitcd well-develope shore cracks the ice to the velocity maximum, and the remainder of
near" each bank prior to the controlled brea ;up. These thedepthis the hydraulic radiusassociatedwiththebed.
cracks were roughly parallel to the banks, but highly The hydraulic radius a~sociated with the ice RI(x,r) is
irregular. There was no connection between the cover obtaineo from the Chezy equation as
and the banks at son-e locations, and rigid interlocking
with shorefast ice at others. To obtain a tractable equa- R I (x,t) = (V - V I (x,t)) I V - V I (xt) I (12)
tion of motion we neglect the forces transmitted through gC2

1 Sf
the cover in the lotigitudinal direction, and consider the
bank resistance term as typical cr locally averaged, where
Following the arrival of the breaking front, the ice C.1 = dimensionless Chezy conveyance coefficient
fractured into small pieces near the banks to allow the associated with the ice
primary sheet or floes to pass. The amount of fracturing g = acceleration due to gravity
depended on the size of these large ice forms relative to V = flow velocity
the local river width, and appeared to vary with ti ie. Sf = hydraulic gradient.
These processes represented an energy loss to the mov-
ing ice that we will lump into the bank resistance. The drag exerted by the cover on the flow is diminished

Consider a stationary control volume that spans the during breakup when V, > 0.
river cross scction at the measurement location and has With the paramete-ization of Ferrick and Mulherin
a unit length in the longitudinal direction. The reason for (1989) for bank resistance, we can now rewrite eq '0 as
this choice of width is that the sizes of the ice sheet or
plates were on the order of the river width. The urit r P, 12 tI-b =(1 Crnl, 1
length is arbitrary, but consistent with the typical or Pg BSf [RI+ -P 2 fi =( + t)
averaged force balance. The equation of motion for the

ice in this control volume can be written as where
PPl = density of water and ice, respectively

B = river width
Fm + Fd + Fg - Fr = n I dVt (10) tI = ice thickness

dt
I = t1B p1

where Tb = bank stress on the ice.
F, = acceleration reaction or force due to the

apparent or added mass When the resistance term in eq 13 is small, the down-
F d = drag force on the ice due to fluid shear stream compenent of the weight of the ice can cause VI to
Fg = downstream gravitational fwu .. ue to the weight exceed V, inuicating a negative R, and downstream drag

of the ice of the ice on the water instead of resistance to the flow.

br = bank resistance force The physical parameters p, pl, B, C. , tI and the hy-
In, = mass of ice in the control volume. draulic parameteis Sf and V are assumed constant at

their mean values forthe initial 300s of ice motion. The
The force due to apparent mass can be parameterized as density of water at 00 C was known, and river width, ice
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Figure 5. Hydraulic radius associated with the ice following the passage of the breaking front. The points are given
by R, = 0.19 + 0.085 sin[it + (2nr/185) (t - 62)].

thickness and ice density were measured immediately an underdamped response of the ice to a disturbance or
prior to the experiment. These measured parameters continuous forcing of the ice velocity oscillation. A free
displayed minor variability relative to their mean values vibration of a system is the result of a temporary initial
through the reach. The ice, bed and combined channel excitation that is then attenuated by damping in the
conveyances for the reach were obtained by calibrating system. Alternatively, the harmonic oscillations in a
the model of Ferrick and Mulherin (1989) against data forced vibration are maintained by the forcing function.
for both open water and ice covered flow conditions. We do not expect that any of the variables taken as
The mean energy gradient and flow velocity values constants caused the periodic behavior.
were estimated using both model calculations and field
measurements.

The hydraulic radius associated with the ice passing TEMPORAL SOLUTIONS FOR ICE VELOCITY
the control volume was found from eq 12 and is AND BANK STRESS
presented in Figure 5. R1 diminished dramatically dur-
ing the first minute of ice motion, and then slowly Inthissection we will address the question of whether
oscillated in theO.1- to0.3-mrange forthe remainderof the oscillations in the ice velocity indicate a free or a
the record. The rapid decrease in R1 for the control vol- forced vibration by developing solutions of the equation
ume demonstrates that the flow is affected by the ice of motion subject to the constant parameter approxima-
motion, and as mentioned, further work that quantifies tions at mean values. Initially, we will remove the time
this coupling at breakup is needed. The resistance to ice dependence from the equation by taking dV1/dt = 0, and
motion prevented the ice velocity from reaching the obtain equilibrium ice velocity as a function of bank
flow velocity, and R1 did not go to zero. The oscillating resistance. Analytical solutions of the complete equa-
segment of the data is closely approximated by a sine tion are then developed for initial conditions of ice at
function about a mean of 0.19 m, with an amplitude of rest and arbitrary positive and negative disturbances
0.085 m and a period of 185 s. The lack of any attenu- from an equilibrium condition. None of these solutions
ation over more than a complete period indicates either exhibit ice velocity oscillations with time. Finally, we
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Figure 6. Equilibrium ice velocitv at the observation site as a function of bank stress.

solve the equation of motion algebraically for bank b = -2 pBV/C2Il
resistance as a function of time, given ice velocity and
acceleration from the measured data and eq 5 and eq 8. c = pB/C2I b
Continuously changing bank resistance was the most 2V

likely cause of the ice velocity oscillations contained in q = 4ac - b2 < 0

the data.
Equilibrium ice velocity as a function of bank stress We are primarily interested in the solution for ice

is presented in Figure 6 for the hydraulic conditions velocity at a point because these results can be directly
present at the time of ice breakup at the observation site. compared to the ice velocity polynomial. Therefore,
At a bank stress of 0.391 kPa the equilibrium ice VI(x,t) and dVidtin e q 14 are replaced with vi(7) and
velocity is equal to the flow velocity. The maximum dvl/d7{ using eq 5 and 8, and eq 14 simplifies to an
bank stress o, :1.87 kPa corresponds to an ice velocity of ordinary differential equation in local time 7 as
zero. and zero resistance corresponds to a maximum ice
velocity of 2.33 m/s. The constant slope of much of this cv~~~=lC~l1-vl 1  (15)

curve follows because the bank stress is a negative CbJ dt
quadratic function of the ice velocity until V, ap-
proaches V. Note that local time 7 =O0can be chosen to coincide with

In most cases of sheet and plate motion during the arrival of the breaking front, or it can be given an
breakup, the ice velocity is lower than the flow velocity, arbitrary definition, and vj( 7) is a general local ice ve-
and eq 13 can be rewritten as locity. With constant physical and hydraulic parameters

at their mean values we can separate variables in eq 15
d~f and write

IV + bVj + a= (I + Cm) m dt (14)

where dt (I +- CM --(b - ( 16 )

foCb f" 10 ,I+ by 1 + a

R = B V 2 + p, gB S f t I - 2 tlc b where land 9"I are variables of integration, and the limits

2

cCi
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of the integrals indicate corresponding local times and 2 2b -l I + b
ice velocities at the control volume. t( + Cm)t I ml 1+ Iltanh- 2

W e initially integrate eq 16 for the case of v, nil Ct, -C J 'b

and obtain

-2 2* ,'+ 1)(19)
t = (1 + Cm) - tanh -  2cv1  + b. ^, •

tV l (17) -(1 + Cm) ml n In IcvI + b a +

where vlo is the ice velocity at t = 0. After some ma-
nipulation, eq 17 can be inverted to obtain v, as a This equation for T as a function of v, is not readily in-
function of time: verted. However, the solution expressed by eq 19 can

be obtained for all ice velocities except the equilibrium
V A 1 bA2  value. At equilibrium the ice velocity does not vary with

S 2c \ I _ (18) time, and the one-to-one correspondence between v1

= +At A, and 7 no longer applies. The solution of the equation of
where motion can be obtained similarly for the case of V > V.

The solutions expressed in eq 18 and eq 19 are

A tanh ( -Vt' presented in Figure 7 for an initial ice velocity of zero,
(I + Cm) r I (-2) several values of bank stress, and dimensionless break-

ing front speeds of 2, 5 and -o. As the dimensionless
A, 2 cvO + b breaking front speed decreases the approach to equilib-

rium occurs more rapidly if all other parameters are the

same. The analytical solution closely approximates the
Integration of eq 16 without simplification yields ice velocity data with "tb = 0.55 kPa, except for the

1.6 1

Cb
V =5

-.25 .. . .. ' .-.... Tb= 0.4 kPa

VI

(M/S) 0.8-
0.4 f1.2

, 1.6

0 80 160 240 320 400
Time (s)

Figure 7. Analytical solution for the increase in ice velocity from rest as afunction of time for several
values of bank resistance and several dimensionless breaking front speeds.
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Figure 8. Analytical solution for the return to equilibrium after positive and negative initial
disturbances for a single bank resistance and several dimensionless breaking front speeds.

velocity oscillations. These same solutions are given in values of 0.0 and 0.1 and dimensionless breaking front
Figure 8 for this value of bank stress and four arbitrary speeds of 2 and 5, covering the range of probable
initial ice velocities that represent positive and negative parameter values. These curves are very similar, with
disturbances from equilibrium. The relative behavior of the greatest differences early in the motion when the ice
these solutions follows that of the curves in Figure 7. acceleration was near its maximum value. The mini-

In order to understand these results we consider two mum bank resistance occurred at about 30 s into the
breakup conditions with the same local velocity and motion. After this initial period the bank shear is out of
local acceleration behavior, and with all parameters phase with the ice acceleration and precedes changes in
equal except for the breaking front speed. As the speed ice velocity. The maximum bank stress in this record
of the breaking front decreases, approaching the ice was about 38% of that preceding the failure, causing ice
velocity, spatial changes in the ice velocity increase, deceleration and increasing R1.Continuously changing
and the total acceleration and the effective inertia of the bank shear due to variable ice plate size was a likely
ice are reduced (eq 15). Under these conditions equilib- cause of variable ice velocity, and it is the only process
rium is quickly reestablished following a disturbance, in this model that can account for this variability.
and therefore, this equilibrium is very stable. Con- Due to the rivercontrol operations, the discharge and
versely, increasing Cb corresponds to increasing the the downstream force on the ice gradually diminished
inertia of the ice, and increased time to restore equilib- following the period of ice velocity measurement. At 17
rium. There are no oscillations of the ice velocity with minutes after the arrival of the breaking front, the ice
time in any of these solutions. plate motion arrested at the measurement location. The

Numerical model results of Ferrick and Mulherin stall occurred at the peak river stage, with knownR! and
(1989) indicate that the bank stress tb increases with time Sf closely approximated by the bed slope. The bank
in response to the arrival of a flow surge, reaching a stress at the stall can be estimated using eq 13 as 1.53
maximum at the arrival of the breaking front. We can kPa, about 82% of that priortothe initial motion. Alarge
develop curves of bank stress with time beginning at flow release on the following day yielded a slightly
t= 0 for the observation site from eq 15 , given the ice higher stage at the downstream force peak with b= 1.59
velocity and acceleration relations as input. The results kPa, and the large plates did not fail. We conclude that
are presented in Figure 9 for apparent mass coefficient large hydraulic forces were the cause of the ice motion
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Figure 9. Bank stress following the passage of the breaking front at dimensionless speeds of 2 and 5, both
considering and neglecting the force due to apparent mass.

and not simply high river stage. The eventual stall ofthe the total time of motion t must be related to 7, the time
run was due to both diminishing forces and high bank since the passage of the breaking front at the present
resistance. location of the block. These time scales are related in

integral form from eq 4 as

SPATIAL VARIATIONS NEAR THE t =Cb dt
BREAKING FRONT 0 Cb - Vt (20)

We will now examine the spatial variation of several where t = 0 is defined as the time of initial motion of the
parameters that describe the ice motion near the break- block and t is a dummy variable of integration. We
ing front. An analysis of the spatial variability comple- observe that t in eq 20 is known, the unknown 7appears
ments the earlier one that provided temporal changes, as the upper limit of the integral and 7< t. The solution
and completes the description of the ice motion. Spatial for? can be obtained by trial, starting from an initial
variations of motion parameters behind the breaking estimate 7 = (1 - 1'i(t)/Cb)t, and repeatedly applying
front are related to those in time at a point. In Figure 3 corrections until I, = t. The correction tot at each itera-
we observe that the ice position, velocity, and accelera- tion is
tion upstream of the breaking front become constant in
time when spatial position is relative to the front. The A=l v (t)11 0
lack of ice ridging and rubbling nearthe front in the field Cb t (21)
indicates that the ice sheet was not undergoing signifi-
cant ice convergence. We find that ice convergence and the updated value is obtained as 7 = 7 - A 7. The
local to the breaking front depends on the speed of the degree of the polynomial represented by vl() in eq 20
front, and note the implications of this result on breakup will depend on the data. Therefore, we evaluate I using
behavior. Gaussian quadrature with limits changed to the standard

In order to obtain the state of motion of an ice block, interval (-1,1):

II
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Figure 10. Time t since the breaking front passed the final block position as a
function of the time of block motion tfora range of dimensionless breaking front
speeds.

, C b ( d t (22) Given t the corresponding value of 7 is known from eq
2 J VI2 ( t + 20-22, and the limits of integration in 1- are specified.

2 Cbt- v]+)1 The final block position xf can then be obtained explic-

itly given the initial position xo. As before, 12 is evalu-
ated using Gaussian quadrature on the standard interval

The time 7as a function of the time of block motion t is (-1,1). The final position of a block relative to the
given in Figure 10fortheConnecticutRivericevelocity breaking front can be determined from the time of
polynomial andarange of dimensionless breaking front motion and speed of the front together with the final
speeds. At small values of time and for large values of position of the block, or from the speed of the front and
Cb/V, the two time scales are nearly the same. However, t at the final position of the block. The velocity of this
for small dimensionless front speeds, these time scales ice block follows from eq 1, and block acceleration is
diverge with increasing time. obtained from eq 8.

The position of an ice block that has been in motion The river ice sheet is idealized as a collection of
for time t can be obtained by relating position and independent blocks initially at rest with known fixed
velocity and then changing the variable of integration coordinate positions x, and having a uniform initial
with eq 4 and 5 spacing Axo. A moving coordinate system xm traveling

with the breaking front passes x = 0 at global time t = 0.
-fVl(1 ) The moving distance coordinate is positive upstream

_'dxjd=1toV , (x , t ) d t = C O 
- d = 12 (23) from the breaking front, and the fixed and moving

0 Cb - V, (t) systems are related as

12



- = . - -Vm (24) speed approaches the flow velocity, the time of motion
rapidly increases immediately behind the breaking front.

where the breaking front location in the fixed system Xbf Blocks that are in motion for a long time experience
= Cbt. Comparing eq 24 with eq 3 we observe that xm many collisions and typical sizes are greatly reduced.
= CbT, where 7 is the local time at position x. Given a As the speed of the front increases, the time of block
dimensionless breaking front speed and the local time 7 motion at a comparable distance from the front dimin-
at the final position of a block, the corresponding ishes, allowing fewer opportunities for collisions and
distance from the front is known and a spatial view of resulting in largertypical sizes. A block that has been in
any parameter can be obtained. We will track many motion for 100 s behind a front with a dimensionless
blocks from stationary initial positions to a location and speedof 5 is about 8 times farther from the front than the
a state of motion at a later time. The results obtained same block in a breakup with a front speed of 1.
below are all presented with distance xm from the Ice velocity and acceleration as a function of dis-
breaking front. tance behind the breaking front are given in Figures 12

The time of block motion as a function of distance and 13, respectively, for a range of dimensionless front
from the breaking front is presented in Figure II for a speeds. As can be seen in Figure 12, the spatial ice
range of dimensionless speeds of the front. As the front velocity gradient decreases as the speed of the breaking

100I

80

Cb
V

60

(s)
2

40-

200

0 40 80 120 160 200
Distance Upstream from Breaking Front (m)

Figure /I Time of block motion as afunction of distance behind the breaking front for a range of
dimensionless speeds of the front.

13



1.2

Cb
V

0.8-

(m/s)

0.4 -
5

I0

0 40 80 120 160 200
Distance Upstream from Breaking Front (m)

Figure 12. Ice velocity as afunction of distance behind the breaking front for a range of dimensionless
speeds of the front.
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Figure 13. Total acceleration as a function of distance behind the breaking front for a range of
dimensionless speeds of the front.
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Figure 14. Ice con vergence as a function of distance behind the breaking front for a range of
dimensionless speeds of the front.

front increases. Paralleling the results at a point, the cases. It decreases significantly as the speed of the front
spatial acceleration relations depicted in Figure 13 increases. Only when Cb/V < 2 is the gradient near the
indicate that the maximum acceleration occurs at the front much greater than at other points upstream, and
breaking front for all front speeds, and that the total these values are more than an order of magnitude larger
acceleration decreases more rapidly behind the front as than those at CbIV > 4. At dimensionless breaking front
Cb decreases. speeds of less than 1, Ax/Axo can be negative with these

Ice convergence is an important characteristic that ice velocity data, indicating that the relative positions of
distinguishes the types of dynamic breakup. When the the ice blocks are interchanged. The combination of
breaking front passes block i it begins to accelerate. The large travel time and significant ice convergence occurs
spacings between this block and its neighbors Axi _ I and at low dimensionless breaking front speeds.
Ax i then begin to change. We will define a quantitative On the Connecticut River the ice convergence near
measure of ice convergence as the final block spacing the front was small, as evidenced by minimal ridging
divided by the initial spacing Ax/Axo .During breakup within the sheet. These observations match the com-
this ratio is generally < 1, indicating a reduced ice puted results if the local breaking front speed ap-
surface area relative to the initial sheet. This ice con- proached the dynamic wave speed. At the other ex-
vergence measure quantifies the extent of the surface treme, as the front speed approaches the flow velocity,
area loss that is necessary for ice continuity. the ice convergence becomes large at the breaking front

Ice convergence, like the other parameters of ice as is typical in strength-dominated breakup. The di-
motion, also develops a steady state in a coordinate mensionless speed of the rubble front on the Con-
system moving with the breaking front. As before, the necticut River averaged just under 1.5. Transitions
results presented in Figure 14 are for a range of dimen- between strength- and support-dominated breakup
sionless breaking front speeds. Ice convergence occurs provide an opportunity for plate collisions and size
everywhere in the moving pack, and generally increases reduction to occur ahead of an existing rubble front.
with distance behind the front. The spatial gradient of Therefore, the rubble front speed can exceed the flow
ice convergence quantifies the local loss of ice surface velocity when the ice velocity does not, and the sepa-
area per unit length. The maximum spatial gradient ration distance between the breaking and rubble fronts
occurs immediately behind the breaking front in all is limited.
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CONCLUSIONS the breaking front is less than or equal to the ice velocity,
the ice convergence near the front is large and the

In this report we quantify parameters of the ice location of the front is distinct.
motion near the breaking front for dynamic breakup of Minimal ice convergence, short travel times and
a river ice cover. Dynamic breakup of river ice is large block sizes near the breaking front are typical of
generally accompanied by large and rapid changes in support-dominated breakup. These characteristics, ob-
both the river flow and the ice motion. The concept of served at the ice velocity measurement site, are consis-
the breaking front as the boundary between moving and tent with this analysis for Cb = Cd >> V1. Conversely,
stationary ice, and the motion of the ice behind it have this analysis indicates that if Cb = VI << Cd, the ice
been investigated using data from the Connecticut River. convergence and time of ice motion are large and block
Our analysis required the assumptions of constant sizes are small near the front, characteristics that are
breaking front speed through a short river reach and typical of strength-dominated breakup.
identical ice velocity behavior at each point in the reach.
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APPENDIX: ORTHOGONAL POLYNOMIALS vi(0) be sufficiently close to zero by giving that point a
greater weight,

In the following discussion we summarize a more
detailed treatment of orthogonal polynomials by Conte w(0) >> I
anddeBoor(1980)andapply ittofittingouricevelocity W(tn) = 1 ,0 < tn < tmax

data. Orthogonal polynomials offer several advantages
for fitting data. The property of orthogonality avoids the Larger values of w(0) decrease the error at t = 0, but the
condition problem in the normal equations that yields other errors generally increase. Substituting eq A2 into
poor least-squares approximations. These polynomials eq A3 yields the errorE as a function of the coefficients
satisfy a recurrence relation between the next higher do .... dk:

degree polynomial and the two previous polynomials in
the sequence, allowing progressive development with E (d0 , .. . , dk ) = <f(t) - d0P0 -... - dkPk,flt)
great efficiency. The error between the composite poly- - dP-. . - dkPk > (A4)
nomial and the data is represented by a time series for
each level of the approximation. By comparing the To minimize E we take VE = 0 and obtain
amplitude and structure of the error it is relatively easy N

to assess the advantage of higher degree approxima- [f (tn) - v(tn)]W(tn) Pi = 0
tions. Finally, these polynomials are readily integrated =

and differentiated.
The ice velocity data were obtained at discrete times or equivalently because the polynomials are ortho-

in the interval (0, tmax). A positive weighting function gonal,
w(t) is defined on this interval, and a scalar product < Pi,f> = < Pi ,vl> = < Pi, Pi> di * (A.5)
between the arbitrary functions g and h can be defined
as where the * notation indicates the best coefficients.

Rearranging eq A5 we obtain

< gh > = g (tn) h(tn)w(tn) (Al)
n -'>-< Pi, Pi > (A6)

where t, t2 . ... tN are fixed times on the interval. The < (A6)

functions g(tn) and h(t n) are orthogonal on this in- The setoforthogonalpolynomialsisdevelopedfrom
terval if<gh> = 0. Given that the polynomials Po(t), Pl (t), the three-term recurrence relation
P_(t) .... are all orthogonal to each other and that each
Pi s a polynomial of exact degree i, then any polynomial Pi~l = (t - B) Pi - Ci Pi - I (A7)
vl(t) of degree < k can be written as

with
v1(t) = doPo(t) + dtPI(t) + ... + dkPk(t) (A2) Bi = <t Pi, Pi > for i = 0, 1,2 ... k - I

Si
with coefficients d0 , dl,..., dk uniquely determined by and
v(tn). our analysis we will obtain a composite polyno- Ci = Si for i = 1, 2 .. k - 1

mial vl(t) that is equivalent to eq A2 and provides the Si- I

best least squares approximation of the ice velocity Equations A6 and A7 require that
data. We can express the squared error in the polynomial
approximation as N

N [P1 (,)f W Q') 0 (A8)
<fit) - vI (t),f(t) - V (t) > = I f(t) - V I(tn)W(tn) n= I

n t To initiate the polynomial sequence we define

(A3)
P-l(t) = 0

and seek a polynomial of degree k that minimizes this
error. The ice velocity at t = 0 is well known [1(O) = 0] Po(t) = I
compared to the other data. Therefore, we specify that
all the data receive equal weighting and require that without the loss of generality.
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