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_ ABSTRACT

This thesis examines the range error propagation and
uncertainties associated with bistatic sonar operations. An
equation for determining range to the target from the receivef
is explored for feasibility of practical applications. This
particular eéuation doe$ not require the separation distance
between the source and receiver however, it does require an
assumption of the mean sound speed over the twn paths éf the
signal even thougk it could change drastically over a few
miles. This thesis explores the contribution of eccentricity
on the'bistatic ellipse and the aésociated error. Examples
demonstrate these effects by comparing cases of unequal mean
sound speeds over the different paths at different values of

eccentricity.
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I. INTRODUCTION

A. BACKGROUND

Early ASW relied soleiy on active sonar, or Echo Ranging.
A pulse of sound was projected into the ocean and if a
subpafine was in the path of the signal, an echo would returb..
The round-trip time of 'trav‘el of this signal was used with the
sound speed in the ocean to determine the range to the target.
This method of ASW was very effective until submarines began
to exploit the water conditiens of the ,‘ocean and became
evasive, i.e., hiding in shadow zones, fronts and eddies, etc.
The projected pulse from the active platform usually could be.
detected byv the submarine at a substantially greater range
than that at which the active pletfom could detect the
reflected pulse from the target because of the greater
transmission loss (TL) over the round trip propagation path
" [Ref. 1]. Thi.s was one of the faetors leading to interest in
pas‘sive sonar. Additjicnelly, passive sonar often utilized -
lower tre'cxuencieS»‘heving smaller losses, which could allow
longer detection raﬁqes [(Ref. 2]. A | |

The structure of the speed-of-sound profile leads to a
deep sound channel which bean be exploited in convergence zone
(C2) propagation; . This propagation mode with its
intrinsically lower acoustic losses provides longer etandott
ranges, keepinq the detectnr out of torpedo ranges of the
submarine. On the other hand, a dieadvantage of passive s'on'ai'

.f.il




is that it requires a relatively time~consuming process of

bearing rate analysis known as Ta:get Motion Analysis (TMA)
to determine range to a target ([Ref. 3}.. Because of this,
active sonar opérations are still important, particularly for
iast minute, close-in prosecutionsvwhere exact range must be
determined quickly for weapon deployment.

As technology advanced, passive .sonar became more
sensitive, pérmitting longer detecfion rangeé; Submarines,
however, reduced their radiated noise lovels nullifying the
advantages of the more sensitive sensors. This progressive
technology also made way for the continued improvement of
- active sonar, extending capabilities' to much 1lower
frequencies; thus permitting active sonar exploitation of the
deep sound channel. Bistatic Active Sonar (BAS) has brought
about longer range detecticn by active sonar, and with it the
aﬁvantage of immediage_determinaﬁion o: the range to the
target. cOnsecg_Jently, the wvulnerability of active sonar
‘platforms has been reduced with tﬁe'techniﬁue of hbistatic

sonar operations.

B. BISTATIC SONAR |

Conventional active sonar is‘monostatic,_neﬁning that the
source and réceiver'ére usually on the same platform, as
. displayed in Figure 1. A pulse is generated by the |source,
transﬁitted fo the target, reflected from the target, and the

resultant echo transmitted back to the receiver. Directional




Figure 1 Monostatic Arrangement

sonar sensors provide an estimate of the bearing of the target
and the range to the target is determined indirectly by the
equation ' ‘

Range = %c’-v (1.1)

where‘ﬁ is the sound speed in ;he ocean, and tbis the round’
trip travel time of the pulse and echo.

Bistatic sonar has'a separatcd source and receiver on two
different platforms. Figure 2 is a repregentative bistatic.
‘arrangement [Ref. 4]. The receiver is positioned away from
the source to receive‘thelreflected signal from the target.
.In the bistatic case, the source, receiver, and target form
a txiaﬁglo which cqmplicat;i the problem eompdrod'to‘thc
monostatic case because the range (R) is more aifficult to
determine. Thnlsourc; is presunably detached and avay trém

the threat, reducing its own wvulnerability. An active




figure 2 Bistatic Arrangement

signal, or "ping", originates at the source, travels tp the
target, is reflected from the target, and then travels to the
receiver as shown by the arrows. The *~tal travel distance
of this signal is X. The receiver also receives a direct
signal fromithe sdurce over the path S. The angle (Yy) is the
sep#ration angle of the aourc.vand the target me..sured at the
receiver. The ultimate goal of such an operation is to obtain
the bearing and‘ range of al ﬁarget with respect to the
racciver. Since the bearing is.directly obtainable from the
directional sonar receivér, determining the ranga (R) is the

problem that is to be treated heres.




II. STATEMENT OF PROBLEM

A. RALGE EQUATION

An equa‘tion rust be derived that solves for range (R) to
the target in terms of known qﬁantities. ‘For our purpcses, we
shall assume that the fotal travel diétances of the acoustic
signal over the two paths between source and receiver, the
distahces X and S in Figure 2, are known. Then, given the

bearing y, we have
| o = X-R | 2.
and, from the law of cosines,
02 = R?+82-2RScosyY. (2.2)

Substitution of the first equation into the second alluws the

elimination of o,
(X-R)? = R? + S -2 RScosy ‘ (I2.3)
Expanding the term on the left gives
| X*-2RX+R? = R*+ 5 -2RScosy. {(2.4)
Rearrénging, we have | |
2RX-2RScosy = X-S7. | (2.5)
Sglvinq for R results in (Ref. 5] | |

. . X-53 : |
R = Fx-scosyy " | | (2.6)

The above equation gives R in terms of S, X, and Y.
. . . sv M




The time of travel of a sigral from the source directly to
the receiver over the path S is t;, and the time of travel for
the indirect route X is t,. The difference between t, and t;
is

t = ty-tg. | (2.7)
These time definitions, combined with the mean sound speed
over the propagation path, determine the distance that the
signal has traveled. Use of

X=Vt, and S = Ve, | (2.8)

yields several different equations involving different

combinations of the variables; V, S, X, t,, t;, t and y [Ref.

6). One such combination can be derived as follows.

Substitution of (2.9) into (2.6), results in

(vt,)2-(ve,)?

R= 3t -ve,zos7) (2.9)
and, the substitution of (2.7) for txlbrovides
. 2'_' 2
R = (V(t+t,))?-(ve,) (2.10)

2 (v(t+t,) -vt,cosy)

Expanding both the numeratoif and the denominator leaves

VBe2+2 Vet + VRLE - V2ed

R = —
2(vt+ve,-ve,cosy)

(2.11)

and simplification gives

oy
z

" .l
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s
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VBt +2VR3te,

R =

2v(t+t,-t,cosy)
Now, use of
1 - cosy = ZSinz%

produces

VE(VE+2VE,)

R =
2v(t+t,-t,+2¢,8in* (1))

and therefore

t(ve+2ve,)
2(t+2t,8in?y/2)

Now, use of the relationship

V2 =
tS

gives

' St St,
N c(t .2 ) |
2(t+2¢t,8in%y/2)

and finally

St(t+2t,)
2¢,(c+2¢,8in%y/2)

(2.12)

(2.13)

(2.14)

(2.15)'

(2.16)

(2.17)

(2.18)

This equation, commonly encountered, is a function of s,'

i:, t;, and v. Measuréd quantities of the variables used above

are often kriown to xhuch more precision than the value of the .

7




mean scund speed V over many miles. Thus V has the largest

amount of uncertainty, because the sound speed profile at the
receiver must be assumed over the whole path of the signai.
(Most bistatic sonar operations use a formula: similar to
Equation 2.18 to determine range from 'the receiver *o the
. target [Ref. 6].) However, this thesis explores the use of. aﬁ
equation that contains V explicitly rather than § and also
allows the treatment of different mean sound speeds. By using
. the variable S, there is an inherent assumption that S has a
readily obtainable value. To see the advantages using V
rather than S, it is appropriate to consider the role of ASW

Command Control and Communications (C3 ), few operational facts

must be discussed.

B. C’ CONSIDERATIONS |
Since S is the distance between the source ’a‘nd receiver,
an accurate position of the source must be known for the
calculation of the separation distance, S. This requires that
reliable communications be maintained between the two vessels
carrying source or receiver (Figure 3I) . snips that are within *
‘"line of sight" 'usually communicate by UHF . (Ulffa High
Frequency) vradio, which is extremely :."eliable, but very
limited_ in. range. ﬁheﬂ ships are séparated by a distance
‘g'reater than "line of sight", approximately zolnm,l other meané
of communication must be utilized. One such method is the HF
’(High Frequency) radio which has a longer raﬁge because of the
".raqio wavé propagation that follows the cﬁrvature of the earth

8 .




sATCOM

Figure 3 Communications Illustration

{Ref. 7). The disadvantége of HF communications is that this
type of communication is extrgmely dependent qh atmospheric
_ cbnditio_ns, since atmospheric "ducting"® is required. Another'
disadvantage of HF communicafions' is the vulnerability of the
HF transﬁitter to diréction finding (QF)' [Ref .‘ 8] by an
opponent.  For example, ‘t':here .are Soviet ﬁFDF sites arouvnd the‘
world that can tr'iangulate'.nt, transmissions to determine the
location of the tréhsmitter. A thira méthod of communicating
over great distances is UHF Satellite communications (SATCGM) .
In this metlhqd',‘ the UHF transmission is "bounced® oflfv of .a
satellite tb another st#tion over the horizon. SATCOM is

extremely reliable, and is indeed a preferred method, but in




the age of "killer satellites," dependency on satelliﬁes can

be extrenely limiting in operationms.

If (2.18) were being used, then a communication link mucst
be maintained. If this link is broken and comhhnicatiops arz
lost, there are two coptions to continue bistatic operations.
The first option is that}the source and receiver move to
within line-of-sight UHF range, typically 20 nm. This would
" reduce the advantage of the bistatic concept because the
receiver is not "out front" exploiting the subma>-ines
reflected energy, and decreasing the source's vulnerability.
The second option in case of lost communications is for the
receiver ship to approximate the source's position by applying
the last known course and speed to the last known position,
also known as Dead Reckoning (DR).,' This . introduces
significant error in the variable S.

An alternate means of locating the target using bistatic
operations would be based on an equation that removes the

necessity to know the distance S directly.

VC. AN ALTERNATIVE EQUATION
To avoid the difficulties mentioned in the previous

section, we return to (2.6),

R- Xa'sz
2 (X-Scosy)

and use the relationships

X =Ut, and S = Vtg (2.19)

10




to introduce differences in the mean sound speed over the

different paths, where U is the mean sound speed over the
reflected path and V is the mean sound speed over the direct

path. Substitui:ing (2.19) into (2.6) results in

b . y2
(Ut,)* - (Vve,) (2.20)

R = .
2 (Ut, - Vt,Cosy)

and by dividing the numerafor_ and' denominator by Vz, it

becomes

(3ef -

. (2.21)
-‘3—,(% tye - t,cosy) _ '

A scaled time, r,, can be introduced to deal with these

differences in speed, where

Ty = -gc,. | (2.22)

Eugation (2.21) can now be r_ewritten as

v(si-¢:

. (2.23)
S 2(Tx t,cosy)

. R=

The equation still réqu.ires values for'r,, t,, an& Y, but

s ig no longer dirgctly used. This thesis examines . the
utility of this equation (2.23) as an alternate to (2.18).

| An important 'pbint to n_oté is that in order for bistatic

operations to take place, convergence zone conditions. must

exist, and for these to exist there must be ia minimum of 200

fathoms of depth excess for reliable propagation [Ref. 3]. In

11




‘essence, bistatic operations usually must take place in the

deep ocean and away from typical frents and eddies where water
conditions change drastically over short distarces.

The feasibility of using this equation will be examined by
means of ‘error analysis. We include in this analysis the
variation in mean sound speed between the two different paths
as well as the urncertainties in beafing and in times of flight

of signal' and echo.

12




III. DEVELOPMENT O7 ANALYSIS MODEL

Analysis of (2.23),

viti-¢3)

R=3 (t, - t,cosy) '

is conducted from the point of view that it is the equation of
an ellipse. Indeed, any bistatic sonar .geometry can be
described in terms of ellipses, the properties of which relate

directly to the sonar parameters.

A. INTRODUCTION OF ELLIPSE

. Figure 4 is a diagram of a bistatic arrangement with' a
superimposed ellipse, where a is half the length of t‘he major
aﬁcis (the semi-major axis), and S is the distance between the
two foci. The eccentricity (e) of an ellipse can be defined by
the ratio e=S/2a. Use of the previously-defined relationéhips

and properties of ellipses then provide additional expressions

. S S 'Vts ts - '
€ % B . B el B o, o
. X Oo+R ut, Ty . : (3. 1)

V.Equation (3.1) reve;xls th&t the effect of 'Ia difference t_:etweep
the mean sound speeds U and 'V over the two paths can ‘be
completely accounted for by making Qn adjustment ' in the
eccentriéity e of the ellipsé. The manipulations that follow
will rgsult in convenient expressions - for the fractional

~ errors invrangg arising»from uncerta_irnties in timing errors,

13




differences between U and V, and bearing errors. The value of
eccentricity may range betwéen 0 ana 1, where e = 0 is a
perfect circle and e = 1 is a Very flat ellipse approacihing a
straight 1line Joining the foci. These elliptical
relationships will be usefui in describing ‘the error

associated with differéntlgeometries.

rigure 4 Elliptical Arrangement

14




B. DIFFERENTIATIXG TERMS

The error in range, AR, can be expressed in terms of the

errors in Vv, 1,, t;, and y as

AR = 9Bpys FRpc o OR

aR 3R
av" " Bty AtS" v, (3.2)

ot E
or, in the form of a fractional error, as

AR _ 18Ry, 10, .1 0R 1 3R
R TRV REAT R, e ALt RFAY (3.3)

The coefficients of the error increments AV, Ar,, Atg, and Ay
on the right side of the equation may .be obtained by
logarithmic partiai differerntiation of (2.23). The
coefficient of AV in the first term on the right is

g

= % : (3.4)

ol

The coefficient in the second term is

orR _ 2Ty 1
Oty 12~ ts : - (3.5)

i

t,-t,cosy
The coefficient in the third term is
-2, cosy

orR . .
Je,  t,3-¢,2  t,.-t,cosy

(3.6)

gl

. Finally the coefficient in the y tern is -

15




F) _ tysiny

o T ,-t,cosy’

1.
Y (3.7)

If these coefficients are assembled, (3.3) may be rewritten as

2t
AR = AV+ - X S - 1‘ Afx
R v TRty ty—tosy
. (3.8)
2t . tgsin
-| = s _- cosy At,- s Y
Ti-t? Ty~ tgcosy T,-tgcosy
Note: t, o Exe Aty VA ty, <, g, and T 0E,

By incorporating the relationships described in (3.1) the

.above equation may be rewritten as
AR AV*( 2 1 )Afx

1-e2 - 1-ecosy) t,

(3.9)

Jf -2e , cosy Aty _ esiny
1-e?* 1l-ecosy) T, 1-ecosy

C. MEAN SQUARE ERROR

The fract.ftongl error ip range 'cdn be obtained throuéh the
use. of this equation if all éi‘rors in the variables v, r,, t,,
ard vy are known completely , both in nacjhitud§ and in
direction. On the other hand, it ali er‘rorsl,' (i.e.,
uncertainties) in the variables Vv, 7, tg, and vy are_as'sumed

to be statistically independent of each other, they may be

16 .




combined into a mean square error (MSE). The MSE is used to

determine the total combined error resulting from errors in
variables in the range equation. It is calculated by taking
the square root of the sum of the squares of the individual.
errors. Each of the terms has an 'un_certainty value (4A)
associated with that particular variable; i..e., At,. The
correct numerical uncertainty values of each variable used
operationally has 2 security classifica‘tion and willl nbt be
used in this thesis. To simplify the notation in the model

the coefficients of the error terms in (3.8) will be expressad

~as A,, A or A;, where

A =(_2 ___1
x 1-e? 1l-ecosy)’

-2e, cosy _
1-e2 1l-ecosy)’:

Ag= =2 siny

l-ecosy’

The use of these coefficients gives the fractional error in

range in ﬁhe fornm

AR _ AV, , At . Aty
R v A Ty *As tx’-’A"A,Y' o (3.10)

The mean sguare fractional error is thus'

17




1 "AWN2 At,\? AL .
R AR "\J (2252 A( ) +a2(Ay)r. (3.12)

ir which it is assumed that the errors on the richt side of
the equation aré statistically independent. Equétion 3.11
calculates error in terms of the fractional timipg errors
referenced to a time base of t,. If it is preferable to
express timing errors bver.each path referenced to the travel

time over each path, then

_ t
= v t5+AGA7. : (3.12)
-
vt 1 U_1
te e= 3, = = Ze—
Note: Ut & V. &,
v, At; v, .u_ Atg At,
—A ZA eA
v, | USVETE, STt

The mean square fractional error is then changed to

1 AWN3 Ar\? At,)?
R (AR)xn'\J('_VY) ,_sz(__c:x) *ez‘a-’z( t::- +Ag (AY)? (‘3.13)
To und‘erétand the use of these equations suppose we
consider the general method by which the range from the

rece.ver ship to the target (R) and the associated range error

' can bna found. Assune, for example, that the signal travel

times t, and t;, and the azimuth angle y all have been
measured. Assume, further, that the average sound speed V

over the direct path from source to receiver is known. Also

‘18




let U, the -aQerage sourld speed over the secondary path,
srurce-to-target-to-receiver, be the same as V, so that =ty
The range R can'then be calculated from 2.23, where

v(td-td)

R= 31 t, - t,cosy)

Assume also fhét the uncertainties in time, At, and At,,
aﬁd ﬁhe u_ncértainties in‘azvimuths', Ay, are all known. The
fractiohél 'e‘rror (uncertainty) in range associated with each
of the uncertainties in the separate- variables can be obtained
as follows. | |

For timing error Iin t, alone the corresponding frﬁctiona'l

error in range is

T A (3.14)

We obtain A; from the graphs of Fig. 5 through 13 after first

calculating the eccentricity,

o= S ats

ty’

for this part,icull'ar' case being studied. ‘simi.llax"ly for error
in t; alone use | |

At’l

(R), At = oA, - as)

and for error in Y use

19
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ARy _ a2
(R/c AcAY, (3.18)

where Ay must be in units of radians. If more than one of the

independent variables is uncertain, then either (3.11) or

(3.13) for the combined errors should be used.

D. ERROR ANALYSBIS

A computer program was written to study the behavior in
range error in each of the three variables t,, t;, and y. The
program, written in FORTRAN, was used for nine diffefent
values of eccentricity: e of the basic range ellipse, from 0.1
to 0.9. The output data of the program, the values of A,, A,
and A;, were plotted in the form of curves from whicﬁ error

estimates can be made for any reasonable scenarios.

20
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IV. RESULTS AND VERIFICATION

A. RESULTS OF MODEL

Figures 5 through 13 are plots of the output data of the
previously mentioned Fortran progra.m.‘ All of these plots
indicate some relationships which will be examined further.
Each of the nine figures is a graph of the errcr coefficients
for a different eccentricity e, beginning with Figure 5 for
the case of eccentricity 0.1 and continuing to Figure 13 with
eccentricity of 0.9. In all of the plots the A, values are
represented by solid 1ines, the Ag values are represented by
dotted lines and the A; values are indicated by dashed lines.
The error coefficien{:s (ordinates)v give the magnitudes of the
errors associated wirh each of the three terms. The baseline
number (S) used for input is inconsequential because the value
of e character:Lzes the driver in ‘the error propagatlon. Each
of the three terms will be evaluated individually.
| The A, term is the indicator of the behavior of fractional
error as ociated only with uncertainty in the value cf tx.
'rhe graphs in the fiqures show how A, and the other error
coefficients vary with bearing angle, Y. The graphs reveal
that for low vaiues of eccentricity e, the. error coefficient
A, begins small and shows a small increase as vy increases to
180°. For 'large values of e, the values of A, remain small

for low |values of: 'Y, but as Y increases, the A, value'
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increases rapidly until about mid range of y, approximately

70°, when it levels off and apnroaches a maximum at 180°.
This information indicates that for small values of e, the
error contribution by the t, term is small for all valuas of
Y. On the other hand, for large values of eccentricity, the
error contribution of t, begins small for angles less than
10°, but r2pidly increases for larger angles until it steadies
out. In practic'al terms, recall that a small value of e means
a small separation distance (S )between the source and
receiver compared to the distance between the receiver and the
target '(R) . Consequently, a smaller S means a smaller error
associated with t,.. For larger values of e, the error
contributed by t, increases drastically for separation angles
(Y) greater than 10°. .

The A; coefficient characterizes the effect of -
uncertainty in the time t,. These values are represented by

the dotted line on each of the nine graphs. For y of 0° and.

’180' this error coefficient is about the same as for the

' previously determined A,. For small values of e, A gradually

decreases to zero, at about 70°, and then increases until it

has the same value as A, at 180°. For higher values of e, the

, value of A drops more rapidly to zero at angles less than 10°

and then approaches the vali;es of A, as it increases sharply
and behaves asymptotically done about 70°. The A; coefficient
goes to zero at moderate values of y, about 70°, for low e,

and it goes 'to zero at small angles fdr large e. When the

T 22




source and receiver are closer to each other than-the receiver
Iis to the target, this angle at which the error-vanishes is
around 70° to 80°, and for large'values of e, this angle is -
much lower, near 10°. |

The error coefficient A;, associated with the y term, is
zero for y values of 0° and 180°, as expected. For smaller
‘values of e, the error coefficient increases slowly until it
peaks at about 90°. For small values of e, the contribution
of the y remains small compared to the bther two termé. Forv
larger values of e, the maximum . value 'of-’As increaées
significantly, and it "shifts" to smaller angles to the léft
as e increasés. In practical terms, when the source is closer
to the receiver than the target is to the receiver, that is,
when S is less than R, the error contribution pf the y value
is relatiVely insignifiéant. If the geometry is such chat e
is large, then the error would be»réduced if the angle ¥y
remains greater than 90°. 'All plo§5'shown inbthe figures

represent the absolute values of the error coefficients.
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B. VERIFICATION OF MODEL
Verification of this model was done by gra_ph'icai o
confirmation (elliptical) of theoretical expressions. The
three variables that contriﬁute 'errors to a particuiar'
bistatic geometry are t,, t;, and y. The variables t, ahd t§'>
determines the eccentricity'of the ellipse and y determines
the location of the target on that ellipse. For each of the~i
three curves, one of the three variables is assumed to be - in :
error by appr071mate1y 10% while the remaining two variables
were considered to be exactly determined. This forces the two
remeining terms to become rero, and the fraction«1l error,
AR/R, is now equal to the one remaining term. The fractional
error can be crudely determined from the elliptical figqure at
yarious values of f and compared with the value of the
appropriate coefficient A,, A;, or A; obtained from one of the
figures (Figures 5 - 13) for a correeponding value of 5. The
first of the terﬁe to be validated is the A, term. 'TVe
ellipses are drawn in Figure 14 that share the same focal
points, because t, is held constant,- thus guaranteeing a
constaﬁt inter-focal distance 's.' Ellipse 1 has an
eccentricity ot'o.ao, 1t the t, valuc is increased by 10%,

the eceontricity can be seen from

p'--fi. for U=V © (4.1)

3




to be reduced to 0.73. Ellipse 2 is the ellipse that results
from this reduced eccentricity with the same source to
receiver gpacing. At any given value of y, there are two
corresponding values of R, and the difference be‘tween,these ,
two is AR. This value is divided by the mean of the two R's,

to give AR/R. In Figure 14 there are four comparisons made at

separate values of y. There is an illustration of what the

A

= ————

Ellipse 1
e=0.80

N\

Figure 14 Validation of A,
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. rigure 15 ' Validation of A,

a small value of y, the AR/R should be relatively small since

'R has its largest values here. As y increases, AR increases

as R decreases resulting in a rapid climb of AR/R which is

‘confirmed in Figures 11 and 12. Finally, as y approaches

180°, AR and R remain constant which explains the asymptotic
behavior of the function at higher values of y.

fhe next term, A;, is validated through Figure 15, where
ty and y. are held constant and t; is decreased by 10%. Ellipse

1 in Figure 15 is the original geometry for a given t; and

///23R

ellipse 2 shows the geometry with t; reduced by 10%, which
gives a. reddced' eccentricity. This Ggraphic is most -

interesting because there is an immediate explanation for the
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zero value of A; at gbout 20° in Figure 11. 'Shortlf beyond
this value of y, the plot behaves quite similarly to the A,
plot. As y increases beyond about 90°, the graph again
demonstrates asymptotic behavior.

The validation of the A, function is shown in figure 16.

AR

/

Figure 16 Validation of A,

The validation in this c;se'reguires that t, and ¢t remain
constant while y is permitted to change slightly. Since t,
and t; remain constant, so must e remain the same. Thus there
is only one ellipse to be considered here. Figure 16 show#l‘
four angles y and four associated Ay's shown by thé dotted
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lines. The difference in length between the dotted line and

the solid line is the AR value. Note that AR is zero where y

is either 0°* or 180°. The g’raphic_: demonstrates that for
higher values of e, as in this case, there will be a maximum
value of AR between 20° and 50°, followed by a gradual Aecline-
to zero as ¥y increasgs to 180°. For lower values o;".
eccentricity, the AR value reaches its maximum close to 90°
and has a much smaller value than in the' case of larger
eccentricity.

The geometrical analysis resulting in Figures 14 through
16 gives a graphical interpretation of the errors arrived at _
algebraically in Chapter III. ~Ffom these figures one can
readily see which errors are mor_elsignificant for the various

conditions that may occur in the range problem.
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V. EXAMPLE CASES

It is helpful to illustrate use of the analysis by
applying it to practical problems.' The following examples
will demonstrate the previously mentioned error propagation in
cases that might be encounfered at sea. These examples will
bé approached as if the calculation were conducted from input
provided by Sonar Control onboard an IASW ship. The
uncertainty numbers used in these examples are not necessarily
reaiistic, but are useful in the den;onstratiop of the method.
The first three examples are of geometries of lowleccentricity

while the Iremaining examples are of high eccentricity.

A. EXAMPLE 1: LOW ECCENTRICITY; NO UNCERTAINTIES IN V
For the first example assume that the mean sound speed is
the same over both paths, that is, U equals V. Figure 17 is
a diégram of an elliptical arrangement of low eccentricity; S
is less than X. Suppose that the following data are provided: '
Y =110° 2 1°
.ty =42.62:0.018
ty = 213.9 £ 0.03 8
V = 4990 ft/s
U=V ‘
conversion = 6076 £t/nm
Calculated values of the various terms in the equations are

then as follows:
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V(t2-tg?)

=78.966nm
2 (ty- tgcosy)

R=

AV _
S5 =0
At
—ZX =.0.000140
tx
At
ts

= 0.000235

Ay = 0.0174 rad

Target

rigure 17 Example Case, Low Eccentricity
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) 2 o1
A, = - = 1.147
x (1-52 1-ecosy)

-2e cosy
= + = -0.737
As (1-¢2 l-ecosy) 0.73

Ag = =218 = _g.176
1-ecosy

) If it is assumed that the uncertainties are random
(independent) then the RMS fractional error may be calculated
from (3.11) in which it is assumed that U =V, so that r, = ¢t,,

and also that AV/V equals 0:

At,\? At,\?
%(AR),,,=JA,’( t‘) +A32( t‘) +A;2(Ay)2=0.003075
- X X .

Thus the expected uncertainty in range, AR, should be about #+

" 500 yards or less.

B. EXAMPLE 2: LOW ECCENTRICITY; UNCERTAINTY IN V

Assume the same situafion as in Example 1, but now assume
an uncertaiﬂty in V of + 3 ft/s. Now, we have aﬁ AV/V value
of 0.0006 in addition to the other errors in Exaiuple. 1. The
term AV/V in (3.11) is now not zero, bﬁﬁ T« = t, as before.

‘The fractional error is now

2 2 o
712 (AR) ;pp --\J(-‘?;,‘-’)2 +A,=( Ati‘) +A,=( A:’) +A;2(AY)2=0.003133

X

Note that the error in Av/V in this case does not have a large

effect.
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C. EXAMPLE 3: LOW BCCENTRICITY; U AND V UNEQUAL

In.this example the situation is the same as in Example 1
but now let U = 5040 ft/s so that U is not equal to V. The
data to be used are'in this case:

Yy =110° ¢ 1°
tg=42.62 1+ 0.01s
ty = 213.9 £+ 0.03 8

V = 4990 ft/s
U = 5040 ft/s

. Now, it is neéessary to rescale t, ‘as discussed in Chapter

II,C.,(2.22):
U PP
Tx s b= 1.010¢,
From this point, analysis proceeds as in Example 1.

e = _£§ = 0,198
Tx

V(t,2-tg?) o
R = e teeayy " 70873 am
w2 ___ 1 .
Ax (1-32 l-ecosy) ?'145

T a1




-2e, cosy
A, = + = -0.733
s (1-e3 lfecosy)

A, = —~esiny ., _y.174
1-ecosy _

Now, we use (3.11) with r, » t,, and AV/V = 0, to get

. 2 2
Liar ,\Jsz( Afx) *As’( Atg) +A;2(AY)2=0.003133
R Tx T

D 4

The mean square fractional error is now somewhat greater than

that in Example 1, as might be expected.

D. EXAMPLE 4: HIGH scczuwnxcxr!; NO UNCERTAINTIES IN V
Assume that the mean sound speed is the same over both
paths. Figure 18 is a diagram of an elliptical arrangement of
high eccentricity, which means that the source and feceiver'
are generally farther apart than the target and receiver.

Suppose that the following data are provided:

.vy = 1i0°% + 1°
tgy = 85.23 + 0.01 8
ty = 106.54 + 0,033
V = 4990 ft/s

U=V
t
e= -3 =0.8
tx
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v(t2-tg?)

= 12.37 nm

2 (ty - tgco8y)

I
-

Source . 85.23 sec Receiver

Figure 18 Example Case, High Eccentricity

2 1 '
. = - ‘ = 4.77
Ax ( 1-e2 1-ecosy) °

-2e cosy ’
= + . = -4,
Ag (1_ Ry 3 ) 4.713

A = —esiny _ _4.590
l-ecosy

Equation (3.11) gives for this case:

1 '« [[AV2, 4 2 A%k 2BV, L 2. |
2(AR) o, \l( V") +A,( 'x) +A,( 7| *Ad'(81)? =0.010398

ﬁote that AR/R i# almost a factor of 3 greater than in the
previoug examples of low 'eccerlltricity.' .However,,. for the
' geometry, the actual range errﬁr is 260 yards, about half of
the expected error of the earligr cases. It is 'important ﬁo
point out that the fractional error AR/R is a fairly sensitive
fuction of eccentricity, but the actual range eftor depends on

the size of the ellipse.
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®. EXAMPLE 5: UNCERTAINTY IN V

Here the same data are provided as in Example 4, but in
tﬁis case V has uncertainty of # 3'ft/s. This time we have
Avy/v =:0.0006 to be included in the RMS calulation, as was
used in Example 2, and again r, = t,. The RMS fractional

uncertainty is thus

I 2 2 '
—; (AR) ., = \J (A—‘:’)2 +A,’(—A—t-5) +A,’(—At—t§) +Ag(AY)?=0.010398 .

Tx x
The expected range error in this case is also about 260 yards.

¥. EXAMPLE 6: U AND V UNEQUAL
In this example, as in Example 3, assume thaé the same
data are provided as in the two previous examples except that
U is not equal to V and there is no uncertainty in V. Thus,
¥ =110° ¢ 1°
tg =85.23 2 0.01s

ty = 106.54 + 0.03 g

V = 4990 ft/s
U = 5040 ft/s

Again we must rescale t; by using r,:

T, ty » 1.01¢,

<lg

and the process prdceeds as in'Example 4.

. .
e= 2 20,792
*x

Use (3.11) with t, ».r,, and AV/V = 0 to get a fractional error
| " | 44 | |




V(s2-tg®) -

R =12.959
2 (1, - tgcosy) 12.359 nm
2 1
A= - = 4.
x (1-—92 1-ecosy) 4.580

-2e cosy
Ag = + -4.5
s (1-92 1-ecosy) N 20

Ay = —2530Y . g, 586

l-ecosy

2 2
l(AR)m- Az .f‘il.' +Ag2 Ats +A2(Ay)2=0.010327
R . ! tx tx '

The expected range error is here about 270 yards, slightly

larger than in Examples 4 and 5.
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VI. COHCLUSION

A. DISCUSSION AND RESULTS

Improved quieting techniques by submarines have been very
effective in reducing the explaitéble emissions for paésive
sensors. On the other hand,.detection by active sonar is
independent of the submarine’s quieting efforts and gives the
added bonus of providing an immediate deterninagion of range
to the target.: Thus, active sonar seems to give certain
obvious advantages. Additiovnally, a bistatic sonar technique
increases detection range of active sonar and reduces the .
vulnerability of the active platform. |

This thesis has examined a method of predicting range and
range unicertainties in bistatic sonar operations. The method
described here offers flexibility over conventional methods
that rely heavily on communication between source and receiver
for successful operations. Operatidnal’methods that use the
separation distance S are often preferred over thosc'that'
Ircquir- a knowledge of the mean sound sécod V, especially near
tronts. and éddies vhérc the mean sound speed may change
'dra-tically in a few miles. Howevor,‘ghis thesis has lhbﬁn
that the preference of using the baseline over the mean sound
speed jis unfounded. | -

As shown in ﬁho-praviouq chaptgt; the range error is
-contfollod to a great exteht by the'ccccntriéity-ot thc range

- ellipse, the largest crrofl'occurrinq in the cases of high

.46




eccentricicy. Examples are given to provide representative

applications of the range Equation (2.3) and to give the
estimates of the range errors. '

We have seen that fractional error AR/R tends to be small
when e is small, although dependance oﬁ - 1is still quité

significant. This suggests thatlsméll base-line geometries

(small values of S leading to small e) are to be preferred it

' these are operationally feasible.
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