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INTRODUCTION

In recent vears there has been increasina emphasis on the use of composite

materials in armament structures. A current problem in Army cannon design is to

replace a portion of the steel wall thickness with a lighter material. The

inner portion, steel liner, maintains the tube projectile interface and shields

the composite from the extremely hot gases. The outer portion, composite

jacket, is made of single or multilayered graphite-bismaleimide wound and

wrapped on the steel liner. Two subscale models have been fabricated and tested

(refs 1,2). An analytical elastic-plastic solution for the model with a single-

layered composite jacket has been presented in a recent report (ref 3). This

report covers an elastic-plastic analysis for the model with a multilayered com-

posite jdcket. Analytical solutions are presented separately for the composite-

jacket and steel liner and then for the compound cylinder problem. Numerical

results are obtained for loading within and beyond the elastic region uo to

failure.

COMPOSITE JACKET

The composite jacket is made of n layers bounded by radii

(rl,r2,...,rn,rn+1). Each layer is elastically orthotropic but with different

material properties. The strain-stress relations for the k-th layer in

cylindrical coordinates are given by

er(k)- p1/Er , Ur/Eq _vzr/Ez- (k) ar(k)

=
k ~ -re/Er , 1/E6  -'ze/Eq aq(k' (1)

L Z(k) -Vrz/Er -vez/Ee 1/Ez Lz (k)
- _ J

or

Ci(k )  = Sij(k) aj(k) (ij = r,9,z) (2)
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where Sii(k) are components of the compliance matrix. The superscript k refers

to the k-th layer. In plane-strain conditions. the above strain-stress rela-

tions modify to

CO(k) LAro(k) 09e(k) ae(k) (3)

where

Orr(k) = (1I-rz(k)vzr(k))/Er(k)

Are(k) = -(Ver(k)+uez(k)Vzr(k))/Eg(k)

e0e(k) = (j-vz(k)uze(k))/E(k) (4)

The normal traction acting on the interface between (k-l)th and k-th lavers is

denoted by qk. Then the aeneral elastic solution for the k-th laver bounded bv

radii (rkrk+1) and subjected to interface pressure (qk.qk+1) is aiven bv

(ref 4)

ar(k) = (-akqk+Ckak+1)(rk+l/r)9k + l + (akak-bkak+ll(r/rk+1)k-1

ae(k) = 
+ + k(ak k-bkqk+i(r/rk+l

)qk- 1

u(k) = r(Are(k)ar(k)+Aeo(k)ae(k)) (5)

where

dk = rk+l/rk - 9k = (Arr(k)/Aq@
(k ) ) ;

Ck = (dk 2k-1)-I . bk = ckdk 20k . ak = Ckdk9k - 1  (6)

At the two ends of the k-th layer, the expressions for the displacements and

hoop stresses are

uk+ 1 = (Akqk - Bkak+1)rk+l

uk = (Ckqk - Dkqk+l)rk

ae(k) = 2akakqk - (bk+ck)akQk+l at rk+I

ag(k) = (bk+ck)akqk - 2akdk2gkqk+j at rk
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where

Ak = 2akgkAGe(k) * 
8k I Ore(k) + (bk+Ck1QkAee(k)

Ck = -r 0e(k) + (bk+ck)QkAee(k) . Dk = 2akdk2kOee(k) (8)

At the interfaces (rk.k=2 ..... n). the displacements should be continuous and

these require

Ak-lqk_ - Bk-lqk = Ck k - Dkak+l (9)

Let Ok = qk/qn for all k. then On+l = 0, On = 1. and we can calculate Ok-1

backward for k = n to 2 bv

Ok-, = Ak-l-'r(Bk-+Ck)Ok - OkOk+l1

Normalizing by 01 leads to

qk = qk/qj for k = 1.2 ..... n (10)

i.e.. the relative values for the interface pressures when q, = 1. We can also

obtain the corresponding displacements u1 ..... un- Un+l at r, ..... rn.rn+.

STEEL LINER

The steel liner of inside radius a and outer radius b is elastic-

plasticallv isotropic and assumed to obev Tresca's yield criterion. the asso-

ciated flow rule. and linear strain-hardenina. The elastic solution for the

steel liner subJected to internal pressure p and external pressure q is

ar

= 1;(p-q)(b/r) 2 + p-q b2/aaI/(b2/a2-1)

u/r = E-1(1+v)r(p-q)(b/r)Z + (1-2v)(p-q b2 /a2 )l/(b2 /a2 -1) (11)

When the internal pressure p is large enough, part of the steel liner (a 4 r

4 o) will become plastic and P is the elastic-plastic interface. The elastic-

plastic solution can be written in the elastic portion (p 4 r 4 b) as
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E u 1+V.o 02 (u2vr 1 2  q_
aor 2 +a (1V 2 b ;i a

__o _ 
+ + 2- ) 1

-o r 2 r2 b2  ao

azlo= v oZ/b2 - 2v qlo (12)

and in the plastic portion (a 4 r 4 p)

E u = (I-u-2v) Or + (1)0 2

.....r~+~4-- + -(l-)n -

20 r a0  rz
r / a° 1 o 2  1 P a 0 9

=ea 2 r;1n n ) r ao 1n J

az/ao = v o2/b 2 - 2v(1-nA)In - 2v q/ao

= 4(pa/r.-1) • - 3 (1-rn)

M + -------
4 (1-0')

2E m Et -P)
Cn =- - -. a = ao(l+nc (13)

where o is the initial tensile vield stress and Et is the tanoent modulus in

the plastic range of the stress-strain curve.

When the internal pressure is further increased, the steel liner will

become fully-plastic. Usina Tresca's yield criterion, the associated flow rule.

and assumina linear strain-hardenina. the fully-plastic solution derived in

Reference 3 is aiven below.

Subiect to a9 a oz ) ar* the analytical expressions for the stresses and

displacement are

r= -p + ao(1-nA)ln(a) + 2 (1160) r

09 = or + ao(1+icp )

ru = E-'(1-2v)(1+v)r'ar + (b b2  (14)
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where

( = ub/b + (1-2v)(l+v)E-la

-P = - r. b2 /rR - (1-v 2)Oo0/E1/r1 + -? (1-v2)noo/Ej

COMPOUND CYLINDER

The compound cylinder consists of an inner steel liner and an outer com-

posite Jacket. The steel liner of inside radius a and outer radius b is wraoped

by a multilayered composite jacket. The displacement and normal traction at the

interface between the liner and jacket should be continuous, i.e.. q = q, and ub

= ui . From these conditions we can determine the relations between o and a.

When the internal pressure p is small. an explicit functional relation

exists

q (1_a) fE(Cl-Diq 2 ) + (1-v-2V
2 )1 + 2 (15)

where every term in the riaht-hand side is known. The displacement at the bore

can also be expressed as an explicit function of p

( Eua b2 b(3-b 1) E - = (1+V) + (1-v-202 ) - 2(1-v2) b (16)
as p a a! a2 D 16

When the internal pressure is large enough. part of the steel liner will

become plastic. The elastic-plastic solution is aiven in terms of the parameter

o. The conditions of continuity require

9_ - ....- ------- !: /2 (17)o (1-v-2va,) + E(Cl-015 2

This. together with

Sg + 1(1- -- ) + (1-no)In - + - (- - 1) (18)
a0 ao 2 b; a 2 a3



serves to aive an implicit relation between p and q. Bv lettina p = a and b. we

can determine the lower limits p*. q*. ua*. ub* and the upper limits P**. q**.

Ua**. ub**. respectivelv.

When the internal pressure p is further increased. i.e., p > p**. ua >

Ua**. ub > Ub**. the conditions of continuity lead to

*= qr(Cl-01 2 ) + (1-v-2pa)/El (19)

and

2= (1n1n-+ - + V2)11a-1- a(1-n n ( a) E(Cl-Olq 2 ) + (1-v-2')]} (20)oo  a ao - 2u)

It should be pointed out that the pressure q and the displacement ub at the

interface are linear functions of internal pressure p. The bore displacement ua

can be written as

Ua -(1-2v)(I+v) !+ -i (21)
aE a

which is also a linear function of internal pressure p.

NUMERICAL RESULTS

Given any value of internal pressure. we can obtain numerical results for

the stresses and strains in the radial and tanaential directions and also for

the displacement at any radial position in a steel pressure vessel wrapped with

multilavered composites. The steel liner for the subscale test specimens

(ref 1) had an inner diameter of 2.0 inches and an outer diameter of 2.34

inches. The steel was 4130 seamless mechanical tubina heat treated to a hard-

ness of 34 to 36 Rockwell "C." A standard ASTM tensile test was conducted to

determint the 0.1 percent-offset yield strenath (120 Ksi) and the ultimate ten-

sile strenoth (140 Ksi). The composite jacket is a araphite-bismaleimide pro-

duced by Fiberite Corporation. Its cure temperature is 450*F and it is wound

and wrapped on the steel liner in the same manner as the full-scale oun tube
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specimen denoted as CTL III. The layup is again approximately half-scale and

made up of two lonaitudinal layers alternating with two circumferential layers.

Sixteen layers are applied in this wav. Lamina properties for this material are

aiven in Table I. For the purpose of comparison, numerical results are obtained

for four types of composite jackets as shown in Table II. Cases 3 and 4 repre-

sent four hoop-axial and axial-hoop alternating layers, respectively, while

cases 1 and 2 represent eiaht axial and hoop layers. respectively. The total

thickness of each composite Jacket is 0.12 inch. and the steel liner is assumed

to be linear strain-hardeninq with a = 1 inch, b = 1.17 inches. ao = 120 Ksi,

m = 0.04. In addition to the lower and upper limits (p* and p**) of internal

pressure in the elastic-plastic ranae. we also show in Table II two other limits

(Po.8 and P1 .3) which correspond to the internal pressure when Ubib = 0.8 and

1.3 percent. respectively. It should be noted that ub/b is the maximum hoop

strain in the composite. Brittle failure of the composite material is assumed

to occur at a maximum strain of 0.8 or 1.3 percent. The limits (Po.8 or P1. 3 )

will be the maximum values of internal pressure these compound tubes can contain

without failure.

TABLE I. ELASTIC CONSTANTS OF STEEL AND COMPOSITE MATERIALS

I
Ee E. Ez

Material xlO 6 psi xlO' psi xlO 6 psi Vrz Vre Vzo

Hoop lamina Im6 21.0 1.0 1.0 0.40 0.02 0.02

Axial lamina G50 1.3 1.3 31.0 0.01 0.39 0.29

Steel 4130 30.8 30.8 30.8 0.30 0.30 0.30

7



TABLE II. LIMITS OF INTERNAL PRESSURE FOR FOUR CASES

Case Lavup P* P** PO. 8  "1.3

1 (90*)8 16.49 19.44 21.26 23.34

2 (00)8 20.95 25.55 35.20 45.99

3 (00.900)4 18.87 22.70 28.59 35.25

4 (90.0°)4 18.80 22.60 28.38 34.90

The pressure at the interface between the liner and jacket has been

obtained as a function of internal pressure and the results for the first three

cases are shown in Fiqure 1. The results of the hoop strains at the bore.

interface between the liner and jacket, and outside surface for three cases are

shown in Figures 2. 3. and 4 respectively, as functions of internal pressure.

The complete (includinq elastic, elastic-plastic, and fully-plastic) ranaes of

loadings up to PO. 8 have been considered. These numerical results for the

strains are presented here for future comparisons with experimental results.

The results of hoop stresses in the liner at the bore are shown in Ficure 5 as

functions of internal pressure. It should be noted that the relation chanaes

drastically when yielding occurs. The results of hoop stresses in the liner at

the interface are shown in Figure 6 as functions of internal pressure. Thd

relation changes from linear to nonlinear when yielding sets in and more signif-

icant change occurs when the fully-plastic state is reached. The distribution

of hoop stresses in the liner and jacket can be obtained at any given value of

internal pressure. In Figures 7. 8. and 9 we present the numerical results for

three cases of composite jackets at three values of internal pressure. i.e..

p = p*, p** and when half of the liner is plastic. The values of internal

pressure when half of the liner is plastic are p = 18.61. 23.86. 21.41 Ksi for

8



cases 1. 2. 3. respectively. The values of two limits, p* and p**. are aiven in

Table I1 for all four cases. When the composite jacket is made of axial lamina

only, the hoop stresses in the jacket are very small as shown in Fiqure 7. When

the liner is wrapped by hoop lamina only, the hoop stresses in the jacket become

larger as the internal pressure increases as shown in Figure 8. When the jacket

consists of alternating hoop-axial lamina, the hoop stresses become discon-

tinuous not only at the interface between the liner and jacket but also at all

other interfaces between axial and hoop lamina.

9
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