

3

004

TECHNICAL REPORT ARCCB-TR-91031

ELASTIC-PLASTIC ANALYSIS OF A STEEL PRESSURE VESSEL WRAPPED WITH MULTILAYERED COMPOSITES

PETER C. T. CHEN

91

19

OCTOBER 1991

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

91-16938

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacturer(s) does not constitute an official indorsement or approval.

DESTRUCTION NOTICE

For classified documents, follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX.

For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

For unclassified, unlimited documents, destroy when the report is no longer needed. Do not return it to the originator.

REPORT DO	OCUMENTATION P	AGE	Form Approved OMB No. 0704-0188
gathering and maintaining the data needed, and	completing and reviewing the collection of for reducing this burden, to Washington He	information Send comments regarding	ing instructions, searching existing data sources, this burden estimate or any other aspect of this rmation Operations and Reports, 1215 Jefferson 704–0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blan	k) 2. REPORT DATE October 1991	3. REPORT TYPE AND D. Final	ATES COVERED
4. TITLE AND SUBTITLE			FUNDING NUMBERS
ELASTIC-PLASTIC ANALY VESSEL WRAPPED WITH M			CMS NO. 6111.02.H610.011 DN NO. 1A04ZOCANMSC
6. AUTHOR(S) Peter C.T. Chen			
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)	8.	PERFORMING ORGANIZATION
U.S. Army ARDEC Benet Laboratories, S Watervliet, NY 12189-4		AR	CCB-TR-91031
9. SPONSORING/MONITORING AGE U.S. Army ARDEC Close Combat Armament Picatinny Arsenal, NJ	s Center	5) 10.	SPONSORING / MONITORING AGENCY REPORT NUMBER
Presented at the Eigh Cornell University, I <u>Published in Proceedin</u> 12a. DISTRIBUTION/AVAILABILITY S Approved for public re	thaca, NY, 19-22 June ngs of the Conference MATEMENT	2 1990. 1990.	es and Computing,
13. ABSTRACT (Maximum 200 words An elastic-plastic and composite-jacketed cyl different material pro pressure vessel wrappe obtained for three typ strains, and stresses	alysis of stresses an linder is studied her operties. Analytical ed with multilayered pes of composite jack	e. Each layer is o expressions are de composites. Numeri ets. The interface	rthotropic but with rived for a steel cal results are
14. SUBJECT TERMS Multilayered Jacket, F Steel Pressure Vessel,	Elastic-Plastic Analy Composite Material	sis,	15. NUMBER OF PAGES 20 16. PRICE CODE
17. SECURITY CLASSIFICATION 1 OF REPORT	8. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATI OF ABSTRACT	ON 20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	ur
NSN 7540-01-280-5500			Standard Form 298 (Rev. 2-89)

•

. •

.

.

Prescribed by ANSI Std. 239-18 298-102

TABLE OF CONTENTS

INTRODUCTION	1
COMPOSITE JACKET	1
STEEL LINER	3
COMPOUND CYLINDER	5
NUMERICAL RESULTS	6
REFERENCES	10

TABLES

1.	ELASTIC CONSTANTS OF STEEL AND COMPOSITE MATERIALS	7
II.	LIMITS OF INTERNAL PRESSURE FOR FOUR CASES	8

LIST OF ILLUSTRATIONS

1.	Interface pressure as a function of internal pressure	11
2.	Hoop strain at the bore as a function of internal pressure	12
3.	Hoop strain at the interface as a function of internal pressure	13
4.	Hoop strain at the outside as a function of internal pressure	14
5.	Hoop stress at the bore as a function of internal pressure	15
6.	Hoop stress in the liner at the interface as a function of internal pressure	16
7.	Distribution of hoop stresses in the liner and jacket for case 1	17
8.	Distribution of hoop stresses in the liner and jacket for case 2	
9.	Distribution of hoop stresses in the liner and jacket for case 3	19

i

Distribution/ Availatizity Godas ATTLE BY STON Dist $\mathbb{T}^{n} \to \mathbb{T}^{n}$

Page

INTRODUCTION

In recent years there has been increasing emphasis on the use of composite materials in armament structures. A current problem in Army cannon design is to replace a portion of the steel wall thickness with a lighter material. The inner portion, steel liner, maintains the tube projectile interface and shields the composite from the extremely hot gases. The outer portion, composite jacket, is made of single or multilayered graphite-bismaleimide wound and wrapped on the steel liner. Two subscale models have been fabricated and tested (refs 1,2). An analytical elastic-plastic solution for the model with a single-layered composite jacket has been presented in a recent report (ref 3). This report covers an elastic-plastic analysis for the model with a multilayered composite jacket. Analytical solutions are presented separately for the composite-jacket and steel liner and then for the compound cylinder problem. Numerical results are obtained for loading within and beyond the elastic region up to failure.

COMPOSITE JACKET

The composite jacket is made of n layers bounded by radii $(r_1, r_2, \ldots, r_n, r_{n+1})$. Each layer is elastically orthotropic but with different material properties. The strain-stress relations for the k-th layer in cylindrical coordinates are given by

$$\begin{bmatrix} \epsilon_{\mathbf{r}}^{(\mathbf{k})} \\ \epsilon_{\theta}^{(\mathbf{k})} \\ \epsilon_{z}^{(\mathbf{k})} \end{bmatrix} = \begin{bmatrix} 1/E_{\mathbf{r}} & -\nu_{\theta \mathbf{r}}/E_{\theta} & -\nu_{z \mathbf{r}}/E_{z} \\ -\nu_{\mathbf{r}\theta}/E_{\mathbf{r}} & 1/E_{\theta} & -\nu_{z\theta}/E_{\theta} \\ -\nu_{\mathbf{r}z}/E_{\mathbf{r}} & -\nu_{\theta z}/E_{\theta} & 1/E_{z} \end{bmatrix}^{(\mathbf{k})} \begin{bmatrix} \sigma_{\mathbf{r}}^{(\mathbf{k})} \\ \sigma_{\theta}^{(\mathbf{k})} \\ \sigma_{z}^{(\mathbf{k})} \end{bmatrix}^{(1)}$$

or

$$\epsilon_{i}(k) = S_{ij}(k) \sigma_{j}(k)$$
 (i, j = r, θ , z) (2)

where $S_{ij}^{(k)}$ are components of the compliance matrix. The superscript k refers to the k-th layer. In plane-strain conditions, the above strain-stress relations modify to

$$\begin{bmatrix} \epsilon_{r}^{(k)} \\ \epsilon_{\theta}^{(k)} \end{bmatrix} = \begin{bmatrix} \beta_{rr}^{(k)} & \beta_{r\theta}^{(k)} \\ \beta_{r\theta}^{(k)} & \beta_{\theta\theta}^{(k)} \end{bmatrix} \begin{bmatrix} \sigma_{r}^{(k)} \\ \sigma_{\theta}^{(k)} \end{bmatrix}$$
(3)

where

$$\beta_{rr}^{(k)} = (1 - \nu_{rz}^{(k)} \nu_{zr}^{(k)}) / E_{r}^{(k)}$$

$$\beta_{r\theta}^{(k)} = -(\nu_{\theta r}^{(k)} + \nu_{\theta z}^{(k)} \nu_{zr}^{(k)}) / E_{\theta}^{(k)}$$

$$\beta_{\theta \theta}^{(k)} = (1 - \nu_{\theta z}^{(k)} \nu_{z\theta}^{(k)}) / E_{\theta}^{(k)}$$
(4)

The normal traction acting on the interface between (k-1)th and k-th layers is denoted by q_k . Then the general elastic solution for the k-th layer bounded by radii (r_k, r_{k+1}) and subjected to interface pressure (q_k, q_{k+1}) is given by (ref 4)

$$\sigma_{r}^{(k)} = (-a_{k}q_{k}+c_{k}q_{k+1})(r_{k+1}/r)^{\underline{q}k+1} + (a_{k}q_{k}-b_{k}q_{k+1})(r/r_{k+1})^{\underline{q}k-1}$$

$$\sigma_{\theta}^{(k)} = \underline{q}_{k}(a_{k}q_{k}-c_{k}q_{k+1})(r_{k+1}/r)^{\underline{q}k+1} + \underline{q}_{k}(a_{k}q_{k}-b_{k}q_{k+1})(r/r_{k+1})^{\underline{q}k-1}$$

$$u^{(k)} = r(\beta_{r\theta}^{(k)}\sigma_{r}^{(k)}+\beta_{\theta\theta}^{(k)}\sigma_{\theta}^{(k)})$$
(5)

where

$$d_{k} = r_{k+1}/r_{k} , \quad a_{k} = (\beta_{rr}^{(k)}/\beta_{\theta\theta}^{(k)})^{s}$$

$$c_{k} = (d_{k}^{2g_{k}}-1)^{-1} , \quad b_{k} = c_{k}d_{k}^{2g_{k}} , \quad a_{k} = c_{k}d_{k}^{g_{k}-1}$$
(6)

At the two ends of the k-th layer, the expressions for the displacements and hoop stresses are

$$u_{k+1} = (A_kq_k - B_kq_{k+1})r_{k+1}$$
$$u_k = (C_kq_k - D_kq_{k+1})r_k$$
$$\sigma_{\theta}^{(k)} = 2a_kq_kq_k - (b_k+c_k)q_kq_{k+1} \quad \text{at } r_{k+1}$$
$$\sigma_{\theta}^{(k)} = (b_k+c_k)q_kq_k - 2a_kd_k^2q_kq_{k+1} \quad \text{at } r_k$$

where

$$A_{k} = 2a_{k}q_{k}\beta_{\theta\theta}^{(k)} , \quad B_{k} = \beta_{r\theta}^{(k)} + (b_{k}+c_{k})q_{k}\beta_{\theta\theta}^{(k)}$$

$$C_{k} = -\beta_{r\theta}^{(k)} + (b_{k}+c_{k})q_{k}\beta_{\theta\theta}^{(k)} , \quad D_{k} = 2a_{k}d_{k}^{2}q_{k}\beta_{\theta\theta}^{(k)}$$
(8)

At the interfaces $(r_k, k=2, ..., n)$, the displacements should be continuous and these require

$$A_{k-1}q_{k-1} - B_{k-1}q_k = C_k q_k - D_k q_{k+1}$$
 (9)

Let $\overline{O}_k = q_k/q_n$ for all k. then $\overline{O}_{n+1} = 0$, $\overline{O}_n = 1$, and we can calculate \overline{O}_{k-1} backward for k = n to 2 by

$$\bar{O}_{k-1} = A_{k-1}^{-1} [(B_{k-1} + C_k)\bar{O}_k - D_k\bar{O}_{k+1}]$$

Normalizing by $\bar{0}_1$ leads to

$$q_k = q_k/q_1$$
 for $k = 1, 2, ..., n$ (10)

i.e.. the relative values for the interface pressures when $q_1 = 1$. We can also obtain the corresponding displacements $\bar{u}_1, \ldots, \bar{u}_n$, \bar{u}_{n+1} at $r_1, \ldots, r_n, r_{n+1}$.

STEEL LINER

The steel liner of inside radius a and outer radius b is elasticplastically isotropic and assumed to obev Tresca's vield criterion. the associated flow rule, and linear strain-hardening. The elastic solution for the steel liner subjected to internal pressure p and external pressure q is

$$\sigma_{r} = \{\mp(p-q)(b/r)^{2} + p-q b^{2}/a^{2}\}/(b^{2}/a^{2}-1) \\ \sigma_{\theta}$$

 $u/r = E^{-1}(1+\nu)[(p-q)(b/r)^{2} + (1-2\nu)(p-q b^{2}/a^{2})]/(b^{2}/a^{2}-1)$ (11)

When the internal pressure p is large enough, part of the steel liner (a $\leq r$ $\leq \rho$) will become plastic and ρ is the elastic-plastic interface. The elasticplastic solution can be written in the elastic portion ($\rho \leq r \leq b$) as

$$\frac{E}{\sigma_{0}} \frac{u}{r} = \frac{1+\nu}{2} \frac{\rho^{2}}{r^{2}} + (1-\nu-2\nu^{2})\left[\frac{1}{2}\frac{\rho^{2}}{b^{2}} - \frac{q}{\sigma_{0}}\right]$$

$$\frac{\sigma_{r}/\sigma_{0}}{\sigma_{\theta}/\sigma_{0}} = \frac{1}{2}\left(\mp \frac{\rho^{2}}{r^{2}} + \frac{\rho^{2}}{b^{2}}\right) - \frac{q}{\sigma_{0}}$$

$$\sigma_{z}/\sigma_{0} = \nu \rho^{z}/b^{2} - 2\nu q/\sigma_{0}$$
(12)

and in the plastic portion (a $\leq r \leq \rho$)

$$\frac{E}{\sigma_0} \frac{u}{r} = (1 - v - 2v^2) \frac{\sigma_r}{\sigma_0} + (1 - v^2) \frac{\rho_r^2}{r^2}$$

$$\frac{\sigma_r / \sigma_0}{\sigma_0 / \sigma_0} = \mp \frac{1}{2} (1 - \eta \beta + \eta \beta) \frac{\rho_r^2}{r^2} + \frac{1}{2} \frac{\rho_r^2}{b^2} - (1 - \eta \beta) \ln \frac{\rho}{r} - \frac{q}{\sigma_0}$$

$$\frac{\sigma_z / \sigma_0}{\sigma_z / \sigma_0} = v \rho^2 / b^2 - 2v (1 - \eta \beta) \ln \frac{\rho}{r} - 2v q / \sigma_0$$

$$\frac{e^p}{e^p} = \beta (\rho^2 / r^2 - 1) \quad n\beta = \frac{---\frac{m}{m} + \frac{3}{4} \frac{(1 - m)}{(1 - v^2)}}{(1 - v^2)}$$

$$n = \frac{2}{\sqrt{3}} \frac{E}{\sigma_0} \frac{m}{1 - m} \quad m = \frac{E_t}{E} \quad \sigma = \sigma_0 (1 + \eta \tilde{e}^p) \quad (13)$$

where σ_0 is the initial tensile yield stress and E_t is the tangent modulus in the plastic range of the stress-strain curve.

When the internal pressure is further increased, the steel liner will become fully-plastic. Using Tresca's yield criterion, the associated flow rule. and assuming linear strain-hardening, the fully-plastic solution derived in Reference 3 is given below.

Subject to $\sigma_{\theta} \ge \sigma_{z} \ge \sigma_{r}$, the analytical expressions for the stresses and displacement are

$$\sigma_{\Gamma} = -p + \sigma_{0}(1-\eta\beta)\ln(\frac{\Gamma}{a}) + \frac{1}{2}\frac{\eta\beta}{(1-\nu^{2})}\left[\frac{b^{2}}{a^{2}} - \frac{b^{2}}{r^{2}}\right]E\phi$$

$$\sigma_{\theta} = \sigma_{\Gamma} + \sigma_{0}(1+\eta\overline{e}^{p})$$

$$ru = E^{-1}(1-2\nu)(1+\nu)r^{2}\sigma_{\Gamma} + \phi b^{2} \qquad (14)$$

where

$$\phi = u_{b}/b + (1-2\nu)(1+\nu)E^{-1}q$$

$$\bar{\epsilon}^{p} = -\frac{2}{\sqrt{3}} \left[\phi \ b^{2}/r^{2} - (1-\nu^{2})\sigma_{0}/E \right] / \left[1 + -\frac{2}{\sqrt{3}} (1-\nu^{2})\eta\sigma_{0}/E \right]$$

COMPOUND CYLINDER

The compound cylinder consists of an inner steel liner and an outer composite jacket. The steel liner of inside radius a and outer radius b is wrapped by a multilayered composite jacket. The displacement and normal traction at the interface between the liner and jacket should be continuous. i.e., $q = q_1$ and u_b = u_1 . From these conditions we can determine the relations between p and q.

When the internal pressure p is small. an explicit functional relation exists

$$\frac{2p}{q} = \frac{(b^2/a^2-1)}{(1-\nu^2)} \left[E(C_1 - D_1 q_2) + (1-\nu - 2\nu^2) \right] + 2$$
(15)

where every term in the right-hand side is known. The displacement at the bore can also be expressed as an explicit function of p

$$\left(\frac{b^{2}}{a^{2}}-1\right)\frac{E}{p}\frac{u_{a}}{a}=(1+\nu)\frac{b^{2}}{a^{2}}+(1-\nu-2\nu^{2})-2(1-\nu^{2})\frac{b^{2}}{a^{2}}\frac{Q}{p}$$
(16)

When the internal pressure is large enough, part of the steel liner will become plastic. The elastic-plastic solution is given in terms of the parameter o. The conditions of continuity require

$$g_{-} = \frac{(1-v^2)\varrho^2/b^2}{(1-v-2v^2) + E(C_1-D_1\bar{q}_2)}$$
(17)

This. together with

$$\frac{P_{-}}{\sigma_{0}} = \frac{g_{-}}{\sigma_{0}} + \frac{1}{2}(1 - \frac{\rho^{2}}{b^{2}}) + (1 - n\beta)\ln\frac{\rho}{a} + \frac{n\beta}{2}(\frac{\rho^{2}}{a^{2}} - 1)$$
(18)

serves to give an implicit relation between p and q. By letting $\rho = a$ and b, we can determine the lower limits p*, q*, u_a^* , u_b^* and the upper limits p**, q**, u_a^{**} , u_b^{**} , respectively.

When the internal pressure p is further increased. i.e., $p > p^{**}$. $u_a > u_a^{**}$. $u_b > u_b^{**}$. the conditions of continuity lead to

$$\phi = q[(C_1 - D_1 q_2) + (1 - \nu - 2\nu^2)/E]$$
(19)

and

$$\frac{p}{\sigma_0} = (1 - \eta\beta) \ln \frac{b}{a} + \frac{q}{\sigma_0} \left\{ 1 + \frac{\eta\beta(b^2/a^2 - 1)}{2(1 - \nu^2)} \left[E(C_1 - D_1 q_2) + (1 - \nu - 2\nu^2) \right] \right\}$$
(20)

It should be pointed out that the pressure q and the displacement u_b at the interface are linear functions of internal pressure p. The bore displacement u_a can be written as

$$\frac{u_a}{a} = -(1-2\nu)(1+\nu) \frac{P}{E} + \frac{b^2}{a^2} \phi \qquad (21)$$

which is also a linear function of internal pressure p.

NUMERICAL RESULTS

Given any value of internal pressure. we can obtain numerical results for the stresses and strains in the radial and tangential directions and also for the displacement at any radial position in a steel pressure vessel wrapped with multilayered composites. The steel liner for the subscale test specimens (ref 1) had an inner diameter of 2.0 inches and an outer diameter of 2.34 inches. The steel was 4130 seamless mechanical tubing heat treated to a hardness of 34 to 36 Rockwell "C." A standard ASTM tensile test was conducted to determine the 0.1 percent offset yield strength (120 Ksi) and the ultimate tensile strength (140 Ksi). The composite jacket is a graphite-bismaleimide produced by Fiberite Corporation. Its cure temperature is 450°F and it is wound and wrapped on the steel liner in the same manner as the full-scale gun tube

specimen denoted as CTL III. The layup is again approximately half-scale and made up of two longitudinal lavers alternating with two circumferential lavers. Sixteen lavers are applied in this way. Lamina properties for this material are given in Table I. For the purpose of comparison. numerical results are obtained for four types of composite jackets as shown in Table II. Cases 3 and 4 represent four hoop-axial and axial-hoop alternating lavers, respectively, while cases 1 and 2 represent eight axial and hoop layers, respectively. The total thickness of each composite jacket is 0.12 inch. and the steel liner is assumed to be linear strain-hardening with a = 1 inch, b = 1.17 inches. σ_0 = 120 Ksi, m = 0.04. In addition to the lower and upper limits (p* and p**) of internal pressure in the elastic-plastic range, we also show in Table II two other limits ($P_{0.8}$ and $P_{1.3}$) which correspond to the internal pressure when $u_b/b = 0.8$ and 1.3 percent. respectively. It should be noted that $u_{\rm b}/b$ is the maximum hoop strain in the composite. Brittle failure of the composite material is assumed to occur at a maximum strain of 0.8 or 1.3 percent. The limits ($P_{0.8}$ or $P_{1.3}$) will be the maximum values of internal pressure these compound tubes can contain without failure.

Material	E _θ x10¶ psi	E. x10 psi	Ez x10• psi	Vrz	Vrθ	Vzθ
Hoop lamina Im6	21.0	1.0	1.0	0.40	0.02	0.02
Axial lamina G50	1.3	1.3	31.0	0.01	0.39	0.29
Steel 4130	30.8	30.8	30.8	0.30	0.30	0.30

TABLE I. ELASTIC CONSTANTS OF STEEL AND COMPOSITE MATERIALS

Case	Lavup	p*	p**	P0.8	۲1.3
1	(90°) ₈	16.49	19.44	21.26	23.34
2	(0°) ₈	20.95	25.55	35.20	45.99
3	(0°,90°) ₄	18.87	22.70	28.59	35.25
4	(90°,0°) ₄	18.80	22.60	28.38	34.90

TABLE II. LIMITS OF INTERNAL PRESSURE FOR FOUR CASES

The pressure at the interface between the liner and jacket has been obtained as a function of internal pressure and the results for the first three cases are shown in Figure 1. The results of the hoop strains at the bore. interface between the liner and jacket, and outside surface for three cases are shown in Figures 2, 3, and 4. respectively, as functions of internal pressure. The complete (including elastic. elastic-plastic, and fully-plastic) ranges of loadings up to P_{0.8} have been considered. These numerical results for the strains are presented here for future comparisons with experimental results. The results of hoop stresses in the liner at the bore are shown in Ficure 5 as functions of internal pressure. It should be noted that the relation changes drastically when yielding occurs. The results of hoop stresses in the liner at the interface are shown in Figure 6 as functions of internal pressure. The relation changes from linear to nonlinear when yielding sets in and more significant change occurs when the fully-plastic state is reached. The distribution of hoop stresses in the liner and jacket can be obtained at any given value of internal pressure. In Figures 7, 8, and 9 we present the numerical results for three cases of composite jackets at three values of internal pressure. i.e.. $p = p^*$, p^{**} and when half of the liner is plastic. The values of internal pressure when half of the liner is plastic are p = 18.61, 23.86, 21.41 Ksi for

cases 1. 2. 3. respectively. The values of two limits, p* and p**. are given in Table II for all four cases. When the composite jacket is made of axial lamina only, the hoop stresses in the jacket are very small as shown in Figure 7. When the liner is wrapped by hoop lamina only, the hoop stresses in the jacket become larger as the internal pressure increases as shown in Figure 8. When the jacket consists of alternating hoop-axial lamina, the hoop stresses become discontinuous not only at the interface between the liner and jacket but also at all other interfaces between axial and hoop lamina.

REFERENCES

- M.A. Scavullo, M.D. Witherell, K. Miner, T.E. O'Brien, and W. Yaiser. "Experimental and Analytical Investigation of a Steel Pressure Vessel Overwrapped With Graphite Bismaleimide," ARDEC Technical Report ARCCB-TR-87013, Benet Weapons Laboratory, Watervliet, NY, May 1987.
- M.D. Witherell and M.A. Scavullo, "An Investigation of Stresses and Strains in an Internally Pressurized, Composite-Jacketed Steel Cylinder," ARDEC Technical Report ARCCB-TR-88042, Benet Laboratories, Watervliet, NY. November 1988.
- P.C.T. Chen, "Elastic-Plastic Analysis of a Thick-Walled Composite Tube Subjected to Internal Pressure," ARDEC Technical Report ARCCB-TR-89027, Benet Laboratories, Watervliet, NY, October 1989.
- S.W. Tsai, <u>Composite Design</u>, 3rd Edition, Think Composites, Dayton, OH, 1987.

Figure 1. Interface pressure as a function of internal pressure.

ILLERAT DERSARE ' 100 ERI

Figure 2. Hoop strain at the bore as a function of internal pressure.

IRLEBRYT DEESSABE ' JOO ESI

Figure 3. Hoop strain at the interface as a function of internal pressure.

ISI OOL ' IEASSIEL TYREIIRI

Figure 4. Hoop strain at the outside as a function of internal pressure.

INTERAL PERSUES , 100 KSI

.

Hoop stress at the bore as a function of internal pressure. Figure 5.

ISI 001 ' IEASSIE TYNEIN

Figure 6. Hoop stress in the liner at the interface as a function of internal pressure.

181 001 ' 18085384 TYNRLAN

Figure 7. Distribution of hoop stresses in the liner and jacket for case 1.

1006 215122 ' 100 E21

>

¥

HOOL STRESS ' 100 KSI

1006 STRESS ' 100 KSI

TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

	COPIES
CHIEF. DEVELOPMENT ENGINEERING DIVISION ATTN: SMCAR-CCB-D	1
-DA -DC	1
-DI	1
-0P	1
-OR	1
-DS (SYSTEMS)	1
CHIEF, ENGINEERING SUPPORT DIVISION	
ATTN: SMCAR-CCB-S	1
-SE	1
CHIEF, RESEARCH DIVISION	
ATTN: SMCAR-CCB-R	2
-RA	1
-RE	1
-RM -RP	1 1
	1
	_
TECHNICAL LIBRARY ATTN: SMCAR-CCB-TL	5
TECHNICAL PUBLICATIONS & EDITING SECTION ATTN: SMCAR-CCB-TL	3
OPERATIONS DIRECTORATE ATTN: SHCWV-ODP-P	1
DIRECTOR, PROCUREMENT DIRECTORATE ATTN: SMCWV-PP	1
DIRECTOR, PRODUCT ASSURANCE DIRECTORATE ATTN: SMCWV-QA	1

NOTE: PLEASE NOTIFY DIRECTOR, BENET LABORATORIES, ATTN: SMCAR-CCB-TL, OF ANY ADDRESS CHANGES.

.

NO. OF COPIES

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

NO. OF COPIES

1

12

ASST SEC OF THE ARMY
RESEARCH AND DEVELOPMENT
ATTN: DEPT FOR SCI AND TECH
THE PENTAGON
WASHINGTON, D.C. 20310-0103
ADMINISTRATOR
DEFENSE TECHNICAL INFO CENTER
ATTN: DTIC-FDAC
CAMERON STATION
ALEXANDRIA, VA 22304-6145
COMMANDER
US ARMY ARDEC

US ARAT ARDEC		
ATTN: SMCAR-AEE		1
SMCAR-AES, BLDG. 321		1
SMCAR-AET-O, BLDG. 351N		1
SMCAR-CC		1
SMCAR-CCP-A		i
SMCAR-FSA		1
SMCAR-FSM-E		1
SMCAR-FSS-D, BLDG. 94		1
SMCAR-IMI-I (STINFO) BLDG.	59	2
PICATINNY ARSENAL, NJ 07806-5000		

DIRECTOR

US ARMY BALLISTIC RESEARCH LABORATORY ATTN: SLCBR-DD-T, BLDG. 305 1 ABERDEEN PROVING GROUND, MD 21005-5066

DIRECTOR

US ARMY MATERIEL SYSTEMS ANALYSIS ACTV ATTN: AMXSY-MP 1 ABERDEEN PROVING GROUND, MD 21005-5071

COMMANDER

HQ, AMCCOM ATTN: AMSMC-IMP-L Rock Island, IL 61299-6000

ATTN: SMCRI-ENM 1 ROCK ISLAND, IL 61299-5000 DIRECTOR US ARMY INDUSTRIAL BASE ENGR ACTV ATTN: AMXIB-P 1 ROCK ISLAND, IL 61299-7260 COMMANDER US ARMY TANK-AUTMV R&D COMMAND ATTN: AMSTA-DDL (TECH LIB) 1 WARREN, MI 48397-5000 COMMANDER US MILITARY ACADEMY 1

ATTN: DEPARTMENT OF MECHANICS WEST POINT, NY 10996-1792

US ARMY MISSILE COMMAND REDSTONE SCIENTIFIC INFO CTR 2 ATTN: DOCUMENTS SECT, BLDG. 4484 REDSTONE ARSENAL, AL 35898-5241

COMMANDER

COMMANDER

ROCK ISLAND ARSENAL

US ARMY FGN SCIENCE AND TECH CTR ATTN: DRXST-SD 1 220 7TH STREET, N.E. CHARLOTTESVILLE, VA 22901

COMMANDER US ARMY LABCOM MATERIALS TECHNOLOGY LAB ATTN: SLCMT-IML (TECH LIB

ATTN: SLCMT-IML (TECH LIB) Watertown, ma 02172-0001

<u>NOTE:</u> PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, US ARMY AMCCOM, ATTN: BENET LABORATORIES, SMCAR-CCB-TL, WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.

1

NO. OF COPIES

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

-	O. OF		NO. OF COPIES
COMMANDER US ARMY LABCOM, ISA ATTN: SLCIS-IM-TL 2800 POWDER MILL ROAD ADELPHI, MD 20783-1145	1	COMMANDER AIR FORCE ARMAMENT LABORATORY ATTN: AFATL/MN EGLIN AFB, FL 32542-5434	1
COMMANDER US ARMY RESEARCH OFFICE ATTN: CHIEF, IPO P.O. BOX 12211	1	COMMANDER AIR FORCE ARMAMENT LABORATORY ATTN: AFATL/MNF EGLIN AFB, FL 32542-5434	1
RESEARCH TRIANGLE PARK, NC 27709-22	211	MIAC/CINDAS PURDUE UNIVERSITY 2595 YEAGER ROAD	
US NAVAL RESEARCH LAB ATTN: MATERIALS SCI & TECH DIVISION CODE 26-27 (DOC LIB) WASHINGTON, D.C. 20375	1 1	WEST LAFAYETTE, IN 47905	1
DIRECTOR US ARMY BALLISTIC RESEARCH LABORATOF ATTN: SLCBR-IB-M (DR. BRUCE BURNS) ABERDEEN PROVING GROUND, MD 21005-50	1		

<u>MOTE</u>: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, US ARMY AMCCOM, ATTN: BENET LABORATORIES, SMCAR-CCB-TL, WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.