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ABSTRACT

HY-80 -steels are used in submarine and ship construction and it has been found
that small additions of titanium to this steel during manufacture markedly improve the
fracture toughness of the 'heat affected zone (HAZ) of Gas-Metal-Arc-Welding

(GMAW) deposits made from this steel. This has been ascribed to prior austenite grain
boundary pinning by titanium nitride inclusions.

In the present work the weld metals, HAZ and parent metals of GMAW welds made
on HY-S0 steels have been studied by optical, scanning .electron ar.. transmission

electron microscopy. These studies have shown that the Ti treated HY-80 has overall a
tower level on non-metallic inclusions than untreated HYSO which could certainly be
responsible for improved toughness. Unfortunately it proved difhctl_ to correlate
titanium nitride inclusions midh prior-austenite-grain-boundary pinning.
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1. INTRODUCTION

In the mid 1950's design requirements were for a steel o" 5-40 `fP. yield ;trength

for 3--ting and framing in pressure hull structures cfncw submarines. This required that

the steel have adequate strength, ductility and notch toughness. Also, the steel nceded

to possess good ue!dability and the weld deposit would be of adcquate rtrength and

notch toughness. The initial research and deve!-pment work to formulate a steel with

the required mechanical properties and welding behavior resulted in the development of

the quenched and tempered (QT) low alloy steel QT35 which, until !966 was used for

submarine construction in the UK. In the United States a similar design led to the in-

troduction to IIY-80 (High Yield). Changes in the specification since the rirst design

have lowered the maximum allowable carbon content and also introduced minimum

values of manganese, silicon, nickel, molybdenum, sulphur, and phosphorus.

The effects of a small amount of Titanium to control grain size on increasing the

toughness of HY-80 and High Strength Low Alloy (HSLA) steel has become of partic-

ular interest to the U.S. Navy in recent yea:;. A major factor is cost savings through

use of these steels for Naval Construction due to these higher strength steels to notch

toughness and reduction or elimination of preheat for welding.

HY-80 steel is a quenched and tempered, low carbon, nickel, chromium-

molybdenum steel. Manganese, silicon, aluminum, and calcium are added during the

steelmaking process in order to ,counteract the deleterious tffects of sulphur and oxygen

by combining with them to form compounds which float out of large inclusions. Those

remaining are small, hard and remain in the steel as non-ntetallic inclusions. The addi-

tion of titanium to high strength steel weld metal improves its toughness and that the

"improvements are due to a refinement inamicrostructure (Ref. 11. Titanium most often
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combines "ith ritroeen cr oxygen which pronctes intcrgranuiar nuciat•ion c- acc-uar

ferite. Also. it is the inclusion size and distri'-tion which is the bas¢is for th.. ,o ,.t.

of fe.rite. and is fundamental to the rmicrostructural properties. As a resut. tke ccntrol

of microstructure with a maximum resistance to cleavage is an nipcrtant factor as the

strength of Naval construction steels increase.

Attempts to contrcl the weld metal acicular ferrite content has led te welding con-

sumablks containing deoxidizers (TiAl,SiMn) and a balance of aloying elements such

as (V,CuNb,Cr.Mo,BI. Additions of other hardenability :'cments may be used to: en-

sure the desired strength level by solid solution or precipitation strengthening, and to

control the microstructure through nucleation and growth in order to optimize the weld

metals strength.

In Gas Metal Arc deposits the toughness of the low C-alloy steel is efrected by its

microstructure, produced through the transformation in cooling process. The Heat Af-

fected Zone (HAZ) undergoes .microstructural transformations due to thermal cycling

that occurs in the welding process. For this reason the development of the 4nderstand-

ing the role of inclusions in the weld metal phase transformation with mechanical prop-

erties of Titanium treated and untreated HY-80 Ship Building Steels are critical in the

certification of High Strength Low Alloy Steels for Naval ship construction.

In the present work the weld metals, HAZ and pa.cit metals of GMAW welds made

on HY-80 steels have been studied by optical, scanning electron and transmission

electron microscopy. With, a view to understanding the improvements in HAZ

toughnes, which is apparent in multirun'GMAW steels when small amounts of Ti are

present.

2
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!!. BACKGROUND

A. CHARACTERISTICS OF HY-80 STEEL

HIY-80 steel is a low carbon alloy steel quenched and tempered to achieve a yield

strength cf 552 MPa. This low carbon, nickel-chromium -molybdenum steel, developed

"by the U.S. Steel Corporation in cooperaticn with the U.S. Na•y for ship construction.

The principal advantage of the high yield steels are their high strength and toughness

over a wide temperature and their good weldability. HlY steels develop their high

strength from quench and temper heat treatment which leads to a tempered bainite-

martensite microstructure.

The Tim--Temperature-Transformation diagram shown in Figure 1 on page 4

illustrates, these transformations as a function of austenetizing temperature. hleat

treatments for I IY-80 generally consist of austenitzation at approximately 890 C fol-

lowed by a water quefich and tempering in the range )f 621 C to 678 C followed by water

czench [Ref. 21.
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HY-80 is in a general class of high strength steels called low-carbon martensite,

which contain less &.=n 0.18 percent carbon to ensure good weldability. Also, alloymg

elements such as silicon, nickel, chromium, molybdenum, vanadium, titunium, and cop-

per, which serve an important role in establishing the mechanical properties of HY-80.

The chemical composition specifications of the HY-80 steel plate used in this investi-

gation are shown in Table 1.

Table 1. CHEMICAL COMPOSITION SPECIFICATION LIMITS OF HY-80
STEEL PLATE (weight percent). Major elements for heavy gage plate,
greater than one inch.

ELEMENT HY-80 MIL-S-162-16J

C 0.13-0.18
Mn 0.10-0.40

P 0.015

S 0.00s
Si 0.015-0.38
Ni 2.50-3.50

Cr 1.40-1.80

Mo 0.35-0.60

Cu 0.25

Close control of deleterious elements such as sulfur and phosphorus is important.

1. Effect of Alloying Elements

The type and amounts of alloying elements present in a steel determine the

properties of the finished producL Tae effect of common alloying elements in low alloy

steels will be discussed below, with emphasis on their role in HY steel.: (Ref. 31

* Carbon
Carbon is generally the most important alloying element in steels. The

addition of carbon is an inexpensive and efficient method of increasing the strength
of steels and this is accomplished via two methods. First, increases in the carbon
content will increase the hardenability, or the ease of formation of martensite, of a
particu;sr steel. The formation of products such as bainite or martensite greatly
increases the strength level of the steel. In addition to increased hardenability, in.
creasing c&rbon content increases strength by forming a greater percentage of

tS



pcarlite, or by increasing the strength of any martcnsitc or bainite formed. Unfor-
tunatcly, this increased strength is accompanied by decreases in both ductility and
toughness.

In alloy stecels the cffect of carbon on hardenabihty is minor when com-
pared to the efTcct of other elements. Once lower temperature transformation
products are formed, however, carbon plays an important role in determination of
the final properties. Figure 2 illustrates, the hardness or martensite (After Burns,
et al; [Ref. 41) formed, is directly related to the carbon content and this holds true
for both plain carbon and alloy steels. To optimize the balance between strength
and toughness, the carbon con-tent should be kept at the Iowcst level necessary to
obtain the dc.ired strength [Ref. 51.

70
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Figure 2. Ma.ximum hardness carbon content

From a welding point of view it is dcsirablc to keecp thc carbon content to
a mninimum to reduice the tendency for craci.,ng. This is often causcd'w~hen the
carbon content is greater than 0.0 1 percent wh~c' causes sulphur to be *rejected at
the grain boundaries of primary austenite grains, promoting intcrgrinular weakness
and solidification cracking. jRLC. 31

0Manganese
The major role or manganese in steels is to tic up an suliiia present as'im-

purities. The amount of manganese necessary for this purposc is getit-rlly about
30 times the percentage of sulfur., present. Manganese also contributes to incecased

6



hardenability and may have either a beneficial or detrimental effects on toughness,
depending on the steel and its heat treatment'[Ref 61. In high strength weld metal
a higher manganese content is found to be necessary, and Dorschu and Lesnwich
recommended a level of 1.9% to 2.2% when a preheat of 93 C is used [Ref 71.
Higher levels were found to promote cracking and embrittlement, particularly when
the carbon content was high. In addition manganese prevents the formation of
harmful FeS a: grain boundaries by reacting with dissolved sulfur to form MnS.
These MnS inclusions are deformed during the rolling process associated with
structural steel.. Rare earth additions or Ca can be used to cohtrol the shape and
strength of these inclusions. [Ref 31

* Nickel
Nickel has a moderate effect in increasing both yield and ultimate strength.

The disadvantages of adding nickel are increased cost and a slight increase in hot
cracking susceptibility [Ref. 71.

The actual level where cracking occurs is affected by other elements, with higher
sulfur and phosphorus contents resulting in a lower tolerance for Ni [Ref.'6]. The
latter is the reason for the much lower nickel contents in fillers developed for HY
Steels. The additions of Ni increase the strength and toughnes. by solid solution
strengthening and decrease the ductile to brittle transition temperature (DBTT).
[Re 31J

* Chruioiium
In the t.oncentrations present in low alloy steels chromium is effective in

increasing hardenability and promoting the formation of lower bainite [Ref. 71. It
has a moderate effect in increasing yield and ultimate strength, although the tensile
ductility and notch toughness may be reduced [Ref. 61. Chromium is also reported
to have an adverse on toughness when used as a substitute for molybdenum or
nickel in the amounts necessary to maintain a given strength level [Ref. 6]. It is a
moderate carbide former and can increase the susceptibility'of HY steel to temper
embrittlement when present in amounts greater than 1% [Ref. 51. [Ref. 31

. Molybdenum
In many ways the effects of molybdenum are similar to those of chromium,

although it is slightly more effective in increasing hardenability [Ref. 7]. At higher
"levels molybdenum was found to promote embrittlement, with the actual level de-
pendent on the manganese and chromium levels [Ref. 7]. In filler metal develop-
ment a level of 0.4% was required to provide a 7bainitic shelf-, while levels above
0.6% were detrimental to weld properties [Ref. 7]. [Ref. 3]

* Silicon
The' main role of silicon is prevention of porosity by deoxidation during

steelmaking or welding. The effect on haidenability is tcn;roversial, although it is'
generally accepted that siiicon increases the fluidity of the weld pool.. While the
actual value varies, it is the consensus of the literature that excessive silicon reduces
the toughness of low alloy steels [Ref. 61. [Ref. 3]

* Vanadium
Vanadium is a very strong carbide former' and is sometimes added for sec.

ondary hardening. It was found to be necessary to add a small amount of
vanadium to HY steel to retard the loss of strength on tempering. Vanadium in
concentrations greater than 0.010% 'can promote temper embrittlement and alloys
in this category are not recommended where stress relief is required. [Ref 3]

7



*Sulflur and Phosphorus
Suillur and phosphorus are generally rcgardcd as imptiritics in steels. As

the strength level of a stccl inc reased, the tolerance for thecse elements decreases
dramatically, and this shows up as a decrease in toughness. Thesceclements .-all
also contifibutc to hot cracking. [Ref. 31

*Oxygen and Nitrogeni
Hi gh strength steels arc also very sensitive to contamnination from oxygen

and nitrogcn. Because there arc many potential sources of enniariination, these
arc of great concern in wvcldii~g. Figure 3 illustrates, and F~igure 4 on page 9 and
incerase in the oxygen content dcgraded the toughness by both lowering tlh,. low-
ering the tipper shelf energy absorption and increasing the 50 ft-lb transition teml-.

perature.
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Figure 4. Effect of oxygen on the Charpy V notch shelf energy absorption in a 3%
nickel weld metal. (after, Stout, et al; [Ref. 81)

Nitrogen showed a similar effect in increasing the transition temperature. Both
gascs* also had an effect onthe strength level. (Ref. 31

Titanium
The role of Titanium is primarily to protect boron from nitrogen and oxy-

gen and reduce the level of free nitrogen in the weld metal, resulting in an improved
resistance against strain aging (Ren. 91. Boron additions via B.0, in the flux are
often peformcd so boron can, retard ferrite growth.

The precipitation of TiN or titanium-bearing oxides permits boron to seg-
regate to the prior austeniite grain boundaries due to the suppression of boron
compound precipitation. The boron segregation to austenite grain boundaries
lowcrs the surface energy of the grain boundary and retards the nucleation or grain
boundary ferrite. These titanium-bearing precipitates serve as nucleation sites for
acicular ferrite at inclusions by entering deoxidation products. The best impact
properties for 11 SLA steel are obtained when Ti is present to tie-up all free nitrogen
in precipitates [Ref. 101.

2. Structure-Property Relationships In lainitic Steels

Bainitic microstructures can arise in commercial steels by design of the alloy

omposition by proper processing or during welding operation&. Dainitic steels can be
eproved by optimization of alloy chemistry and processing.

A recent development has been the use of accelerated cooling or direct
uenching to achieve levels of mechanical properties characteristic of exptnsive heat-

reated alloy steels from comparatively alloy-rree compositions [Ref. 111.

9



The major advantage of processing steels in this way is that the weldability can
be improved significantly by lowering the carbon equivalent value (CEV). The fracture

toughr -ss of bainite micrcstructures is a "local brittle zone' in the HAZ. The control

of microstructures is of importance by alloying elements or controlling inclusions of the

microstructure. (Cochrane et al., 1990, p.1527)

A description of bainite morphology is lath or plate shaped ferrite grains asso-
ciated with carbide particles. Some morphological attributes do vary systematically with

transformation temperature. 'These are lath size, lath shape, and carbide size and dis-

tribution., The latter forms the principal means of differentiating between 'upper" and

"lower" bainite.. Upper bainite forms at relatively high transformation temperatures with

carbides between ferrite laths, while lower bainite forms at lower temperatures and the

carbides are contained entirely within the ferrite. There are often some differences in the

ferrite morphology between the two types, although these may not be cbvious. on optical

examination in low carbon steels (less than 0.15 weight percent carbon); the ferrite
characteristic of upper bainite is lathlike, whereas in lower bainite, particularly in highe"

carbon steels, the ferrite grains are often platelike. (Cochrane et al., 1990, p.1528)

Another term commonly used to describe low-carbon bainitic steels is "acicular
ferrite". This microstructure, particularly for low-carbon microalloyed Mn-Mo-Nb

thermomechanically processed steels. This term is also, used to define the characteristic

structures noted in as-deposited weld metals, and some guidelines are clearly possible

and necessary so that an' appropriate nomenclature can be used. The genesis of term

"acicular ferrite" can be traced to early stages of the transformation behavior which

showed that the steels formed transformation from a coarse-grain austenire. Studies

using deformation dilatometry indicated that under controlled rolling conditions, a

polygonal ferrite microstructure would be promoted. Close examination of such struc-

tures often shows them to consist of a number of "phases', and them is very little clear
evidence of the the shelflath structure characteristic of bainite. (Cochrane et al., 1990,

-p.1529)

The similarity among Widmastatten ferrite, bainite, and martensite makes iden.
tification very dificult and it is often possible that several structure-property relation.

ships may not be attributable solely to bainite on the basis of metallographic

characteristics. It is also probable that various forms of truly acicular ferrite. are variants

of bainite and further detailed studies of the transformation kinetics should be encour-

aged for'identification. (Cochrane et al., 1990, p.1530)

10



There are several methods of raising toughness: First by, processing the steel to

achieve a fine austenite grain size, or by promoting a subdivision of the parent austenite

by an bainite reaction. These methods require a fully bainitic microstructure from a fine

austenite microstructure requires appreciable additions of alloying elements to maintain

hardenability, whereas the idea of promoting bainite nucleation in a course-grained
austenite, can be applied to low-alloyed steels. (Cochrane et al., 1990, p.1533) This could

be fuirther extended so that the limiting factor for cleavage is the lath size.
There is a critical range in weld metal oxygen content for optimum toughness,

as a result proportions fo coarse bainite or proeutectiod ferrite and the interlocking

acicular ferrite intrangranular bainite will determine the overall toughness of the weld

(Cochrane et al., 1990, p.1537).

3. Inclusions in Steel

By decreasing the amount of oxygen and sulphur in the steel, one can decrease
the effects of the inclusions on mechanical properties. The Electroslag 'Remelt (ESR)

technique generally have low inclusions levels. This is because oxide inclusions go into

solution in the molten tip during remelting. In Vacuum Remelt (VAR) steels have a

greater freedom from oxide inclusions while ESR steels have more freedom from sulfides.

The minimum oxygen level in VAR steel is limited by melt.refractory interactions and

not oxygen content in the vacuum. (Kiessling and Lange, 1978, pp.24-25)

Non-metallic inclusions of steels fall into two groups, those of indigenous and

those of exogenous origin. The former group contains inclusions occurring as a result

of reactions taking place in the molten or solidifying steel bath, whereas the latter con.

tain~s those resulting from mechanical incorporation of slags, refractories or other mate.

rials with which the molten steel comes in contact. The indigenous inclusions, are those

that form by precipitation as a result of homogenous rmactions in the steel. They are

composed principally of oxides and, sulphides and the reactions that form them may'be

induced either by additions to steel by changes in solubility during the cooling and

freezing of the steeL Exogenous inclusions occur in a great variety but, for the most

part, are readily distinquished form the indigenous inclusion, Characteristic features of

exogenous inclusions include a generally larger size, sporadic occurrence, proffered lo.

cation in ingot or casting, irregular shapes and complex structure. They are usually

composed of oxides, a result of compositions of potential exogenous materials such as

slags and refractories. (Kiessling and Lange, 1978, Part I11 p.1)
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a. Composilion of Inclusions in Steel

MnO-SiO2 .AI,0 3 are indigenous oxide inclusions in moderm steels. This
system is of fundamental importance in steelmaking and serves as a convenient basis for

the oxide systems present in non-metallic inclusions. The most important of these other

systems are *lgO-SiO2 -A12 03 and CaO-SiO2-A120 3, both are of special relevance to

exogenous inclusions in steel. After oxygen, sulphur is the most is the most important

non-metallic element in steelmaking practice. [Ref. 121

Oxides in our steels which are aluminum killed and treated with calcium are

based on various calcium aluminates eg. (CaOAI2O3, CaO2A42Z3 ) which are molten

durinig steelmaking and readily float to give clean steel. Mn and Si are not as strong

deoxidants as Ca and Al so, CaG and A'O 3 rich phases are formed. CaO has one of the

lowest free energies of formation among common materials used to refine steel. Calcium
has an high affinity for oxygen and is very effective deoxidant. CaO is usually called lime,

and is the cover slag material formed in bas*c steel processes.

Inclusions containing MgO are characterized by an exogenous origin, the
main sources 1' :ing refractories and the furnace or ladle slags. The MgO particle acts
as a nucleation point for CaO, A1203 and FeO. These oxides may dissolve in. the

aluminate phases in steel inclusions, which may also dissolve oxides of titanium to form

Pi02 if the steel is Ti balanced. (Kiessling and Lange, 1978, p.40-41)

Kiessling and Lange have formed conclusions for the formation of the dif-
ferent sulfide types. MnS if type 1 is formed in rimmed or semi-killed steel. Where the

oxygen content of the liquid steel is high and the sulfur solubility low, resulting in a
precipitation of sulfide is parallel to the deoxidation process and oxygen are precipitated
at the same time from the liquid steel. In alloyed steel, the high alloy components may

be present in the inclusions in solid solution in the sulfide phase and also as precipitated

oxide phases. For example, (MnCr)S and MnOCr20 3. Type I are irregular, often an-
gular in shape and randomly distribute in steel. They usually are present in multiphase

inclusions. (Kiessling and Lange, 1978, p.125)

Type II is found in killed steels, thoroughly-deoxidized with- AL but without.
excess and where the oxygen content is low. 'These steels have a high sulfur solubility

ar.' the sulfide phase' precipitates late in the last parts of the steel ingot to solidify. Type

11 sulfide is found in the primary grain boundaries in a dendrictic, eutectic pattern.
A120% is formed by the Al-deoxidant, and therefore corundum often acts as a nucleus for

the sulfide phase or if found mixed with the sulfide, but always as a separate phase. The
precipitation pattern for Type 11 sulfide depends more on temperature and oxygen con.

12



tent of the steel than for Type I sufiucs, which are precipitated at higher temperatures

and oxygen content. (Kiessling and Lange, 1978, pp.125-126)

Type III is found in steel which have been deoxidized with excess Al. It

was earlier thought that the morphology of Type III sulfides was influenced by A12S3 or

A120 3 nuclei. Kiessling, Bergh and Lange, studied the Al-content of the different sulfides

types and c.und that no Al was present in solid solution in any of the -,fics, at least

in amounts detectable with electron probe analysis greater than 0.1 wcght percent. The

nuclei of the AhO which are associated with Type III 'sulfides are always present in

.eparate phase and have no influence on the outer form of the sulfide. Type III are ir-

regular often angular in shape and randomly distributed in the steel and always forms

monophase inclusions. In the HY steels analyzed the were primarily Type III inclusions.

(Kiessling and Lange, 1978, pp.125-126)

HY-80 is a Aluminum killed steel, and therefore the oxide inclusions ex-

pected to occur are those containing CaO, A1203 and some TiO2 or TiN if the steel is

balanced with Ti. SiO2 and MnO inclusions only occur when Al contents are signif-

icantly below 0.01 weight percent. The sulfur contents are generally very low in HY-80

and so the sulfide inclusions are likely to be MnS Type III and/or Ca(Mn)5, complexes

b. Relationship between Inclusions and A'Iicrostructure

Utilizing a Particle Analyzing Scanning Electron Microscope, Pargeter F:

al determined the inclusion types and associated microstructural morphology with

inclusion types. Acicular ferrite often appeared with aluminum bearing inclusions.

Ferrite sideplates and grain boundary ferrite awe often associated with silicon and

manganese, with or without sulfur. Rare-earth metal (REM) oxides and boron nit'ides

also been reported to nucleate ferrite by other authors. [Ref. 131

B. HY-80 WELD METAL

1. The Microstructure of HY40 Steel Welds

-The, toughness of the weld metal is signirycantly effected by its microstructure.

The final weld metal microstructure will depend on complex variables such as [Ref. 91.:

* The total alley content

* The concentration, chemical composition, and size distribution of non-metallic
inclusions

* The solidification microstructure

* The prior austenite grain size

6 The weld thermal cycle

13



On cooling of the weld metal, equiaxed ferrite grains nucleate and grow from
prior austenite grain boundaries (grain boundary ferrite). Finally, carbon-enriched re-
gions between acicular ferrite laths, or adjacent to grain boundary fcrrite, may eithcr
transform to ferrite and carbide aggregates or martensite. or may rcmain, untransformed,
as retained austenite (microphases) [Ref. 141.

The microstructures are fairly complex and that Iiiany details are not resolvable
with light microscopy. While the microstructures do consist mainly of lowver bainite,
tempered and untempered martensite can also be present, especially, at faster cooling
rates. At slower cooling rates some acicular ferrite or blocky ferrite may form. Using
transmission electron microscopy, small amounts of retained austenite were identified.
The presence of a wide variety of structutres can be contributed to segregation resulting
from solidification. [Ref. 14).

2 Cooling Rate and Mlicrostructur%

Cooling rate is one of the most important factors in determining the micro-
structure and properties of a metal. Figure 5 on page 15 [Ref. 151 shows the effect of
cooling rate on the yield strength of gas metal arc and shielded metal arc deposits in
HY-130. The yield strength drops off at the slower cooling rates %hile increasing for

higher cooling rates.
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For the best bala.ce between strength and toughness, the cooling rate must be con-

troll d within narrow limit-. [Ref. 31

The cocling rate of a weld is determined by many factors including plate thick-

ness, thermal conductivity, heat input, and preheat. Increasing plate thickness increases

the heat sink and the cooling rate and, conversely, thinner plates can present problems

in obtaining sufliciently rapid cooling rates. In most welding operations the cooling rate

is determined by the heat input and preheat. In the initial development work of Dorschu

and Lesnewich it was found necessary to provide some preheat to avoid martensitic

cracking [Ref. 7]. This is the primary reason for preheat in HY Steel. [Ref. 31

3. Influence of Titanium on Weld Metal Micrcstructure and Properties

At low weld metal aluminum levels, titanium seems to play an active role in

nucleation of acicular fetrite at'inclusions by entering the deoxidation products.

Figure 6 on page 17 shows that sm.4l additions of t:,anium greater than 0.0045 percent

Ti 'to the weld metal are essential in order to prodLce large proportions of acicular ferrite

(Grong and Matlock, 1986, p.44). However, a very high concentration of titanium

greater than 0.05-0.10 percent Ti can lead to a deterioration in toughness. This is be-

lieved to be caused by precipitation of finely dispersed, coherent TiN particles in ferrite,

which will overshadow the beneficial effect on the gross microstructure. Their is an op-

timum range of titanium which will produce maximum toughness in weld metals which

will depend on the chemical composition of the weld. Figure 6 on page 17 illustrates

when Ti is added through the filler wire or the flux high volume fractions of acicular

ferrite is achieved. (Grong and Matlock, 1986, pp. 44-45)
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Titanium often combines with nitrogen to form titanium nitride (TiN) or oxygen

to form titanium oxide (TiO 2). These particles are believed to reduce and control the

uncombined oxygen level in the weld pool. TiN and TP0 2 serve as nucleation sites for

Ti, Mn, and Ai oxides which form weld metal inclusions. Harrison and Farrar correlated

oxide inclusion content level with the austenite grain size. A reduction in oxide inclusion

developed large austenite grain size, implying that the inclusions may have an important
effect on grain boundary pinning. [Ref. 161

The recent improvements in weld metal toughness has been do to the under-
standing the ways to increase the volume fraction of acicular ferrite. By the additions

of Boron usually with Ti one can eliminate coarse bainite due to boron pinning of grain
boundaries which improves the toughness in the weld metal.

4. Inclusions in Weld Metal

Inclusions commonly found in weldments will either be exogenous or
indigenous, depending on their origin.. The first type arises from entrapment of welding

slags and surface scale, while indigenous inclusions are formed within the system as a
result of deoxidation reactions (oxides) or solid state precipitation reactions (nitrides,
carbides). The latter group is almost always seen to be heterogeneous in nature both
with respect to chemistry (multiphase particles), shape (angular or spherical particles).

(Grong et al., 1986, p.32)
Melting of the base metal and agitation within the weld pool results in dilution

of filler with base material within the fusion zone. -Impurities within the base material
can react with alloying elements, perhaps forming inclusions of undesirable shape, or
depleting elements. [Ref. 17]

Inclusions can also result from incomplete slag removal during multipass
welding. Therefore slag detachability should be considered when multipass welding is

to be performed. [Ref. 181
The volume fraction and the total number on non-metaUic inclusions in steel

weld deposits is higher than normal in cast steel products, due to the limited time avail.
able for separation and growth of the particles. Also, the size of the inclusions are

smaller and finely dispersed for the same reason. The average inclusion Jiameter is
considerably larger in Submerged Arc (SA) welding compared with GMA for a given

aluminum level as seen in Figure 8 on page 20.
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This difference is due to a higher heat input used in SA compared to GMA, which i.

found to promote growth of the particles because of the extended weld pool retention

time (Grong et al., 1986, p.33).

The presence of inclusions affect the final properties of the weld metal. The weld

metal prior austenite grain size, produced by variation in the density, volume fractioh,

and size distribution of inclusicns can influence the mechanical properties of the

weldment. In addition fine particles generally pin grain boundaries, restricting grain

growth.

a. Composition of Inc4msions in Weld Afetal

Titanium is an alloying element which is of interest as a deoxidizer for steel.
The free energy of formation is low for Ti02 . Th~e coatings of welding electrodes are

often rich in TiO, and this coating forms a slag which is rich in titanium oxides. A study

of the deoxidation mechanism of iron by titanium has been carried out by Evans and
Sloman. A series of different titanium-iron-oxygen compounds were formed, which
could be identified by X-ray diffraction methods. The phases arranged according to their

increasing oxygen content, the following sequence of phases are found: TiV, :!i2O3,
Ti7O3, TiO2 (rutile), FeOTiOM(ilnienite), and FeTiO, (inverse spinel) unknown ,,hase
called X-phase. The inclusions were further studied by Pickering, who identified Wnicro-

scopically all the phases expect the Ti3O, and the X-phase. He questioned the identity
of the TiO phase and suggested that this could also be TiN. TiN appears as an regular
yellowish crystal usually at the grain boundaries. (Kiessling and Lange, 1978, p.12 5 )

If titanium is present MnO-SiO2-TiO2 inc'usions are often found in silicon

killed steels with less than 0.005 weight percent Al where as MnO-Al4O-TiOý inclusions

are often found in lightly aluminum killed steels with 0.005-0.007 weight percent Al.

b. Relationship between Inclusioes and Microstructure

The reduction in oxide' inclusion content provides larger austenite grain
structure, referring that these inclusions have an effect on grain-boundary pinning in
weld metals. If titanium exists only as TiN ,then the ternary phase diagram for

A1zOr-MnO-SiOZ as shown in Figure 9 on 'page 22 provides an indication of other phases

which may occur.
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Because equilibrium is not reached in molten welds, the equilibrium phase show in Fig-

ure 9 may not form. In addition weld inclusions contained titanium and therefore

AI,0 3-TiO,-MnO or A!,0 3 -TiO,-MnO-SiO2 diagram might be more appropriate. How-

ever, A1203 may not b. present if Al level in weld metal is low. Despite extensive

searches in the literature, no such phase diagrams have been found. (Corbett et al.,

1985, pp.16 18-1 6 19)

C. WELDING PROCESS

A reduction in hull fabrication costs and higher productivity can be achieved by

substitution of an HSLA steel for HY Steel. The significant factor in cost savings

through the use of HSLA steel in the elimination or reduction, of preheat for. welding.

The most important property in evaluating the quality of high strength steel weld

produced by the GMAW process is the fracture toughness of the weld metal. This is

strongly influenced by controlling the chemical composition and cooling rate of the

weldment. The use of welding consumables results in some restrictions of welding

process that must be closely controlled in order to optimize fracture toughness include

(Potkay, 1987, p. 32):

* Voltage

* Current

0 Travel Sped

* Arc Length

* Preheat/Interpass temperature

• Number of passes

* Electrode feed rate

* Consumable composition

* Joint Geometry,

1. The GMAW Process

A significant portion of the cost of ship construction is attribute to welding.

The 'cost of ship construction has beer substantially reduced by the cos: effectiveness

of automation and high deposition rates. Figure 10 on page 24 illustrate the GMAW
process used in this investigation.
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In this process the arc between the elcctrode and the workpieace melts to allow a fusion

weld to form. The welding heat is obtained from an arc between a consumable electrode

and the workpiece. Oxygen is deliberately introduced through the shielding gas to im-

prove arc stability. A major variation of the GMAW process is the flux-core arc welding
where fluxes can be inccrporated into the GMAW process. The composition of the filler

material used in this experiment are show in Table 2.

Table 2. CHEMICAL COMPOSITION OF FILLER MATERIAL MIL-1OOS,
(values in weight percent either maximum value or range), yield stress
82-1 l0ksi. elongation 16 percent.

ELEMENT MIL-I00S
C 0.08

Mn 0.08
Si 0.2-0.55
P 0.01
S 0.01

Ni 1.4-2.1
Mo 0.25-0.55
Cr. 0.30
V 0.05

Al 0.10
Ti 0.10
Zr 0.10

The gas metal arc process offers the advantages of high deposition rates and

relatively clean deposited weld metal Since there is no flux, moisture pickup is limited

to the surfaces of the filler wire and the base plate. The main disadvantage is the loss

of shielding gas, in windy conditions and position limitations in some cases. Normally
argon, helium or a mixture of both are used as a shielding gas to protect the weld zone.
Direct current reverse polarity (DCRP) process is' primarily used due to higher deposi.

tion rates that are required.
Inclusions are formed at temperatures about 1800 C and are trapped in the

metal. The final concentrations of oxygen, silicon, titanium and manganese in GMA
weld deposits are controlled by reactions in the small volume of stirred hot metal im-

mediately beneath the root of the arc. (Grong and Matlock, 1986, p.32)
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D. HY-80 HAZ MICROSTRUCTURE
Examination with the Transmission Electron Microscopy (TEM) of the HAZ re-

vealed a microstructure of tempered martensite and tempered bainite with a uniform
distribution of cementite.

Chen and Thompson [Ref. 20] conducted a study on HY-130 weldments, concen-
trating on the HAZ for examination with, the transmission electron microscope. The
prcdom;inate microstructures observed were martensite and bainite, in a variety of forms
and sizes. Retained austenite was found in several areas, although it was present in rel-
atively sma!l amounts when compared to the predominantly martensitic and bainitic
structure. This retained austenite was found only in the GMAW welds, but the factors
underlying the result were not explained. Carbides were found in a number of the
microstructures and the morphology of the carbides was found to be similar to those
seen in lower bainite (elongated rods). Diffraction information from the carbides was
extremely faint and, therefore, conclusive identification was not made. [Ref. 211

1. Influence of Titanium on HAZ Microstructure
Nitrogen has a severe effect on the deposited weld metal; first by causing

porosity, and secondly by embrittlement. Ti can neutralize the negative impurity effects
of nitrogen present in the HAZL

Titanium nitridemay have two effects. First, it enhances intragranular ferrite
nucleation producing an acicular ferrite structure with improved toughness. Secondly,
it is a grain growth inhibitor, Optimum austenite boundary pinning is obtained with TiN
particle size less than 0.05 urn, and a titanium content of about 0.015 percent. [Ref.
221 It has been suggested that Ti up to additions of about 0.04 weight percent have been
found to produce a small increase in acicular ferrite which has a beneficial effect on
toughness by refinement in microstructure. [Ref. 231

There are coarse grains 'in the HAZ near the weld pool resulting in low
toughness. In the coarse grain HAZ were reAustenitization occurs several times in a
multipass weld Ti appears to keep the grain size smaller here and increases the
toughness.

E. SCOPE OF PRESENT WORK
The purpose of the thesis is to examine HY-80 multipass weldments treated with Ti

and untreated with respect to non-metallic inclusions and their effect on microstructure.
Information regarding the size, distribution and composition will be gathered by use of
a scanning electron microscope and Energy Dispersive X-Ray analysis (EDX). Trans-
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mission Electron Microscopy (TEM) will be utilized to understand the improvements in

HAZ, and parent metal multipass GMAW steels when small amounts of Ti are present.

Accourding to Farrar [Ref. 1] small additions of Ti to high strength steel weld metal
. iproves its toughness and that the improvements are due to refinement in microstruc-

ture.

2
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III. EXPERIMENTAL PROCEDURE

A. MATERIAL.
- Two HY-80 steel samples one treated with Ti and one not were provided by the

David Talylor Research Center (DTRC), Annapolis, Maryland. The welded samples
were a multipass GMAW with a heat input of 1OOK J/in and 167 C preheat. Both steels

are Al killed and Ca treated. In the Ti treated steel Basic Oxygen Furnace (BOF)

steelmaking process was used. In the BOF process, pure oxygen is introduced above the
surface of the molten bath. This process is adopted to the process of a blast furnace and

with medium to high phosphorus contents. In the non-Ti treated steel the Electric Arc
Furnace (EAF) was utilized. The absence of an oxidizing heat source permits deoxidized
products in the furnace not to be as rapidly reoxidized in the molten metal. The BOF
process usually tends to produce cleaner steels with fewer non-metallic inclusions. The
experimental procedures consisted of information regarding the size, distribution and
composition of non-metallic inclusions in the HAZ, and parent metal.

B. MECHANICAL PROPERTIES
Charpy V-notch impact energy, for HY-80 GMA treated with- Ti and without was

conducted by Artech Corporation and data provided'to the author by DTRC.

C. MICROSCOPY

1. 'Optical Microscopy

Metallographic mounted and unmounted samples were cut and prepared so a
plane parallel to the plane of the IIAZ and parent metal c~uld be photographed under
optical and SEM magnification to document the general microstructure. Both samples -

were, ground on successive emery paper to 600 grit and polished on a 6jsm diamond
wheel; then on a I gm diamond wheel. Special care was taken not to over polish, which

can result in removal, of small inclusions or any contaminate in subsequent polishing.
Specimens were ultrasonically cleaned in ethanol rinsed and blown dry. Mounted sam-

pies were etched for approximately 20 seconds using a 2 percent nital etching solution

for overall microstructure analysis. The unmounted samples were etched for 1 minute

with an aqveous picric etchent with sodium dodecybenzensulUonate added as a wetting

agent for overall prior austenite grain size measurement.

" ~28'
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D. SCANNING ELECTRON MICROSCOPY

Photographs of etched (Modified Winsteards) solution using Back Scatter .(BS) and
Secondary Electron (SE) image were taken for use in determining prior austenite grain
size and for quantitative analysis on multiphase inciusions and microstructural features.
Information about the composition size, and distribution of inclusionS were gathered by
use of a Cambridge Stero Scan S200 Scanning Electron- Microscope and Energy
Dispersive X-Ray Analysis (EDX). Chemical ana!ysis of inclusions was conducted with
the EDX Spectrometer.

E. TRANSMISSION ELECTRON MICROSCOPY
Wafered samples perpendicular to the plane of the deposited weld metal were pre-

pared using a low speed diamonid saw. Each wafer was hand sanded to a thickness of
less than 0.05mm. The wafers were etched for 10 seconds in a 2 percent nital solution
and optical examination was conducted to map out the weld, HAZ, and parent metal
microstructure. Three-millimeter discs were punched out from the locations discussed
above. Discs were clectochemically thinned to perforation in a Stuers Tenupol
electopolishing device operating at 70 volts with a medium flow rate of 3 percent
perchloric acid, 62 percent ethanol, and 35 percent n-Butoxy Ethanol solution, cooled
to -35 C with liquid nitrogen.

TEM was utilized io characterize the microstructure ,on the HAZ, weld, and parent
Ti treated metal on JEOL model JEM 1OOCX operating at 120kV and, a JEOL model
200CX operating at 200kV at the National Center for Electron Microscopy located at
Lawerence Berkeley Laboratory, Berkeley, California.
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IV. RESULTS AND DISCUSSION

A. MICROSTRUCTURAL OBSERVATION IN HAZ AND PARENT METAL

The HAZ and parent metal of Ti treated and non treated samples were examined
with optical, SEM, and TEM microscopy. This investigation was conducted to charac-

terize, the microstructure of the IIAZ with a view to monitoring the possible pinning of

the prior austenite grain boundarits by Ti inclusions.

B. OPTICAL MICROSCOPY

Light microscopy did not give significant information on the size of the non-metallic

inclusions as the sizes were often between 0.5gum.-2tm. The majority of the small inclu-

sions identified were near or at the limit of resolution of the microscope (0.2pm oil
immersion). The literature reviewed indicated that the mean of the inclusion size dis-
tribution lies below this limit. However, TiN, MnS, and Oxide inclusions between
4pum-5pum in diameter were observed. A montage as shown in Figure I I on page 31 of
the depocited weld metal revealed the microstructural detail in the weld, HAZ, and par-

ent metal.

C. SCANNING ELECTRON MICROCOPY

1. SEM Microscopy

Microstructure observed by the SEM, revealed a bainite and martensite struc-
ture in the parent metal and in the HAZ a tempered bainite and tempered martensite

roicrostructure. Micrographs were taken to measure the prior austenite grain bounda-
ries. Micrographs were also, tak-': of Ti and multiphase inclusions to find out if non-
metallic inclusions pinned austenite. grains, and refined the lath structure, since small

inclusions ar: effective in pinning austenite grain boundaries. Specific inclusions in the
HAZ were micrographed at high magnification in attempt to see if TiN or CaO-TiO2-,
A120 3 were pinning grain boundaries.

a. Ti Treated HAZ Mficrostructure

In Figure 12 on' page 32 shows the Ti Treated HAZ average t .#r austenite

grain size of approximatcly 5nm.
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Figure 11. Montage of Microstructure showing the weld pool, IIAZ and parent

metal
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Figure '12. SENM Micrograph T11 Treated HAZ Prior Austenite Grain Boundaries
SE Image, Etchant Modified Winsteards solution I minute

b. TP Treated Parent Mietal ?$Iicrostruticure

Figure 13) on page 33 , illustrates the bainite and martensite mnicrostructure
with TiO2 inclution within the matrix.



Figure 13. SE-M Micrograph Ti Treated Parent MNetal Ti02 inclusion SE Imag-c,

Etchant Modified Winsteards solution I minute

c. Non- T1 Treatcd HAZ Mlicros fructure

Figure 14 on page 34 shows average prior austenite grain size of Su for the
non Ti treated H-AZ.
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Figure 14. SEM Mikrograph Non Tii Treated HAZ Grain Boundaries BSE Image,
Etchant 'Modified Winsteards solution I miinute

d. Non- Ti Treated Parent Mectal Alicrostructure
In Figure 15 on page 35 reveals an average prior austenite grain size of 20gmr for the
non Ti treated parent metal.
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Figure 15. SEM Mlicrograph Non Ti Treated Parent Metal Grain Boundaries SE

Imame Etchant Modified WVinsteards solution 1 minute

It. Ti Treated HAZ Inclusion Mlicro graphs

Figure 16 on page 36 illustrates a titanium oxide inclusion where Ti is
neutralizing the negative effects of oxygen L the Ti treated HAZ.
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Figure 16. SEM Micrograph Tii Treated HAZ SE Image, Titanium Oxide inclu-

sion Etchant Modified Winsteards solution I minute

Figure 17 on page 37 illustrates a TiZrN inclusion and a shaped modified a Ca(Mn)S.

(A on mnicrograph)
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Figure "17. SEM Micrograph Ti Treated HAZ multiphase TiZrN inclusion and

Ca(M~n)S inclusion BSE Image, Etchant Modified Winsteards solution

1 mninute

The EDX analysis is shown in Figure 18 on page 38 for tnis inclusion.
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Figure 19 on page 39 illustrates a multiphase Ti inclusion in the Ti treated HAZ. Thle
EDX analysis for this particuilar inclusion is show in Figure 20 on page 40

Figure 19. SEMt Micrograph TI Treted HAZ CaAITi1MgO inclusion BSE Image,
Etchant Modified Winsteards solution I minute
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Figure 20. EDX Analysis multiphase CaAITIMgO Inclusion
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f.Ti Treated Parent Mletal Inclusion 'ificrographs

As shown in Figure 21 on page 41 a globular Type III MnS of 4gm was
observed in the Ti treated parent metal whereas in the untreated parent metal a large~r

globular Type III MnS of 20gmr was observered and micrographed refer to Figure 221

on page 42

Figure 2 1. SEM Micrograph Ti Treated Parent Metal MnS Type III inclusion

BSE Image
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Figure 23. SEM Micro-mraph T! Treated Parent Metal TiN inclusion SE Image,

Etchant Modified Winsteards solution I minute

In Figure '414 on page 44 illustrates a 4juni TiN inclusion within the Ti treated Parent
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Figure 24. SEM Micrograph Ti Treated Parent Metal TiN inclusion SE Image,

Etchant Modified Winsteards solution I minute

SEM micrographs of the parent metal and of the HAZ reveal a average
prior austenite grain size of 20,gm and 5gum for Ti treated and. for non Ti treated 201m

and 8um respectively.

2. EDX Analysis

Evaluation of the non-metallic inclusions found in the we!d, HAZ, and parent

metal was achieved with the EDX'KEVEX analysis to determine the chemical nature

of inclusions and the size distribution using 100 fields, The particles that were of sufi-'

cient size to analyze using EDX contained the' following elements: aluminum, titanium,

chromium, nickel, molybdenum, silicon, manganese, and iron. Inclusion size distrib-

utions for oxides, nitrides, and sulfides are presented ,are Figure 25 on page .46 ,

Figure 26 on page 47 , Figure 27 on page *, and Figure 28 on page 49 for non Ti
treated and the following Ti treated figures: Figure 29 on page 50 ,Figure 30 on page

51 , Figure 31 on page 52 , Figure 32 on page 53 . Figure 33 -n page 54 , and

Figure 34 on page 55 as bar graphs indicating the occurrence frequency as a function

of lot size. From these results ,.here is evidence, that Ti (.ombines with Nitrogen or Ox-

ygen to reduce the uncombined oxygen level and assists the caicium with sulfide shape

modification. Large globular MnS inclusions were observed in the non Ti treated sam-
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pies due to the high solidification rate in the weld pool. MnS inclusions within the IIAZ

contribme to hot-tcaring phenomenon in welded steels (Kiessling and Lange, 19'00,

p.1Ol). ,The inclusion distribution influences the austenite to ferrite transformation one

by providing nucleation sites for ferrite during transformation or by pinning the prior

austenite grain boundaries,
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Figure 26. Sulfide Inclusion distribution Non TM Treated Parent Metal
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Figure 2-7. Oxide Inclusion distribution Non Ti Treated Parent, HAZ, Weld

48



A 2':

B-BASE

ra

z I-.

o 1' 10 it 1i 2,3 14 16 14 1 6 1,930 20 H 23 34 36 26
SIZE t)

Figure 28. Sulfide Inclusion distribution Non Ti Treated Parent, 1-1 Z, Weld

49



A-BASE (II MODIFIED)

m-m

I°.

a0

0 ' 1 1 4 S' ST 3 10 Ii 1* 1,3 lI4WIiyaTISII ,,-UIS"

0

Figume 29. Oxide Inclusion distribution Ti Treated Parent Metal

so



A-BASE ( MODIFIED)

S.

z

of I, T

U|

11 If I

Figure 30. Sulfide Inclusion distribution Ti Treated Parent Metal

~51p



A-BASE WITH TI

o

1-

9,°

0 £ a S 4 5 6 7 AD it I0 i 4`3 1,414 16 £17 lfe 0i1l AO34 211
SIZE (UN)

N

Figure 31. Nitride Inclusion distribution TI Treated Parent Metal
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D. TRANSMISSION ELECTRON MJCia)'SCOPY
The mkuro structure, characteriztrd by f EM, is that of tempered martcr~site, tempered

bainite in the HAZ. The parent metal revcaled martensite and bainite microstructure.

The TEM evaluation of the midcrostructure was done using the Ti-treated thin foil spec-

imens, only because o Flack of time.

I. TEM NMicruscopy
a. Ti Treated Parent Ali tal

The fine dispersed interlath carbides are illustrated in: Figure 35, and

Figure 36 on page 57 shows the martensitic microstructure and Figure 37 on page 57

provides information regarding the bainite lath width.

AA

Figure 35. TEM Micrograph Ti1 Treated Parent Metal Interlath Carbides Dark
Field Image
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Figure 36. TEM Micrograph Ti Treated Parent Metal NM~rtensite Bright Field
Image

Figure 37. TEM Micrograph TM Treated Parent Metal Bainite Lath's and Inclu-

sions Dark Field' Image

6. riTreated HAZ

Interlath carbides are illustrated in Figure 38 on page 58. In

Figure 39 on page 58 the average bainite lat's width was measured, and a. ver7 inter.
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esting micrograph of TiN inclusions thai. had been removed during electropolishing is
show,,n in Figure 40 on page 59.

Figure 38. TEM Micrograph Ti Treated HAZ Interlath Carbides Bright Field
Image

AN

Figure 39. TEM Micrograph TI Treated. HAZ Baintite Lath's and, Tempered

Carbides Bright Field Image
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Figure 40. TEM Micrograph Ti Treated HAZ Bainitc Lath's and square TiN

inclusion Bright Field Image

The average bainite lath width for the Ti apparent metal is about 0.2gum
refer, to figure 37-and for the Ti HAZ it is approximately 0.4.um refer to figure 39. The

lath size will increase as the prior austenirc grain size increascs. In a packet of lath

bainite all the laths have the same crystal orientation, an a crack can easily propagate

through a cleavage plane. Thus, decreasing the bainite lath size will increase the number

of crack interfaces and will increase the toughness of the material. The Ti treated sam-

ples revealed a much smaller prior austenite grain size. The primary means to reduce the

prior austenite grain size, and increase toughness, is by the introductio n of small non-

metallic inclusions so that the grain boundaries are pinned. Through the use of fillers

non-metallic inclusions can be readily introduced to the weld metal. Lau [Ref. 241 stated

that the balance iectween titanium, aluminum, boron, oxygen, and nitrogen pays an im-

portant role ih the inclusion population which influences the austenite to ferrite trans-

formaiion by providing nucleation sites for ferrite or by pinning prior austenite grain

boundaries.

Large inclusions are not effective in pinning austenite grain boundaries and

prevent grain growth. However, TiN inclusions were so finely dispersed, they could not

be detected within the grain boundaries. This could be due to the multipass GMAW

process requires less heat then SA process and the TiN. inclusions are redissolvin-. The

higher the heat input it is found to promote growth of the particles because of the ex-
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tended weld pool retention time (Grong et al., 1986, p.33). There was no evidence of

grain boundary pinning by TiN or by a combination of Ti multiphase inclusions. This

is primarily due to the thin area is not big enough to see significant number of prior

austenite grain boundaries. Table 3 is a summary ofSEM micrographs, TEM micro-

graphs and EDX analysis for both the Ti and non Ti treated samples.

Table 3. SUMMARY OF RESULTS

Parent Metal HAZ HAZA Parent Metal.
Charecter Weld

istics Ti Non Ti Ti Non Ti Ti Non Ti
Treated Treated Treated Treated Treated Treated

Prior
Austenite 20,ur 20,um 5Am 8,m

Grain
Size.

Lath 02gm ---- 0.4gm
W idth .... 0.4_ _m .........

Lath
Length 10gm 18gm 4gm 5pum

(Packet)

Bainite
Width 3am 4.8,m 4pm 6.7,m ..

Size
(Packet)

Oxide
inclusion

maxi- I Ijm 23gm .... 2pm 24gm
mum lot

size

Nitride
inclusion

maxi- 6Am .... 4m-
mum lot

size
- - - -

Sulfide
inclusion

maxi- l1gm 20gm *--- . 10Am 24gm
mum lot

size
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E. MECHANICAL PROPERTIES

The data provided from DTRC Charpy V-notch impact energy was plotted for Ti

and non Ti samples refer to Figure 41 on page 62 and Figure 42 on page 63. From

these results there needs to be more data points to give an accurate indication of the

toughness in the HAZ and weld metal. However, from this data the toughness with the

Ti treated material is higher than non Ti-treated.
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V. SUMMARY

A. CONCLUSIONS

Based on this investigation and results, the following conclusions can be drawn:

The inclusion size distribution Will determine the final weld microstructure since

non-metallic inclusions, pin prior austenite grain boundaries and refine lath structure.

The rcsults of the SEM, EDX revealed that Ti reduces the uncombined oxygen level

and 'assists calcium in sulfide shape modification.

That Ti treated samples produced a smaller prior austenite grain boundary and lath

spacing then non Ti treated samples, thus'increasing the toughness of the material.

That potential grain boundary pinning TiN inclusions were very fine, smaller than

0.5prm and it was not possible to correlate these inclusions with prior- austenite grain

boundaries in the prescnt work.

B. RECOMMENDATIONS

The distribution and structure of inclusions in deposited weld metal is dependent on

the flux used that will determine the level of toughness achieved through 1 -iicrostructural

refinement. With further understanding the role of Ti inclusions in HAZ and its role in

the nucleation of the final microstructure is still required. Utilizing carbon extraction

replicas together with TEM observations to determine the size distribution, volume

fraction, composition of inclusions and the correlation of TiN inclusions with prior

austenite grain boundary pinning may prove beneficial in understanding how Ti forms

nucleation sites and its effects on the microstructure.
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