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ABSTRACT

This report describes a new convergent aspiration based
algorithm (CAIN - Convergent Aspiration based INterior method) for
solving the multiple objective linear programming (MOLP) problem.
Initial motivation for the research was provided by a recently
developed methodology for the discrete multiple criteria decision
making problem called AIM (Aspiration-Level Interactive model).
.ilthough CAIN uses many of the features implemented in AIM, the
continuous MOLP provides for an entirely different domain of
research. As part of CAIN, an innovative decision maker (DM)
interaction technique called ALaRM (Aspiration Level Range Method)
was concurrently developed. Using ALaRM, an interior point
strategy for converging to efficient solutions is employed based
upon DM levels of aspiration for the objectives. This technique,
the Algorithm of Centers, has been shown to converge in polynomial
time (unlike many simplex based strategies). CAIN is shown to be
simple and practical from a DM standpoint, and is believed to
represent an improvement over existing aspiration based MOLP
techniques.
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1.0 INTRODUCTION

Interactive techniques for solving the Multiple Criteria

Decision Making (MCDM) problem refer to methods of obtaining

(ideally, converging to) a nondominated (efficient, pareto-optimal)

"best compromise solution" based upon progressive preference

articulations of one or more decision maker(s) (DM). Drawing upon

the ideas of various researchers, Lofti, Stewart, and Zionts (1990)

have developed "An Aspiration Level Interactive Model (AIM) for

MCDM". Motivated by the need for a simple yet practical

interactive procedure, AIM solves the discrete alternative MCDM

problem based upon the concept of DM levels of aspiration for a

given set of objectives.

The primary objective of this research was to extend

aspiration level concepts to the realm of continuous linear MCDM

problems. Specifically, this paper shall present a conceptually

simple and practical approach for solving multiple objective linear

programming (MOLP) problems based upon DM levels of aspiration.

The algorithm, hereafter known as CAIN (Convergent Aspiration-based

INterior method) uses optimization concepts ranging from the most

traditional to the most recent. In addition, an innovative method

of interacting with a DM renders CAIN conceptually modest and user

friendly.

Toward this end, section 2 begins with an examination of the

generic MOLP problem formulation. After an understanding of MOLP

concepts and terminology has been established, section 3 reviews

some traditional MOLP solution techniques. Although every attempt

1



was made to be thorough, emphasis was placed on interactive

algorithms as opposed to those requiring prior or "after the fact"

articulation of DM desires. In addition, because of their impact

on this research (indeed they provided the initial motivation),

section 4 is devoted to detailed discussions of AIM, a continuous

case variation of AIM called CASE (Convergent Aspiration level

SEarch Method), and other more modern interactive algorithms

developed for solving continuous decision problems. Subsequent to

these reviews, the CAIN algorithm is developed in section 5. As

implied by its nomenclature, CAIN uses an interior point technique

as its method of convergence to a nondominated solution. While

simple in concept, this method, known as the Algorithm of Centers

(Trafalis, 1990) is mathematically advanced. Since it is not the

intent of this report to overwhelm readers or potential users with

mathematical theory, actual development of the Algorithm of Centers

is left as Appendix A. Following formal development of CAIN,

section 6 presents numerical examples featuring CAIN and a

fictitious DM. Subjective comparisons between CAIN and other

existing MOLP solution methodologies follow in section 7. Finally,

section 8 includes conclusions and some recommendations for further

research.

Throughout this paper, it is assumed that the reader is

familiar with basic concepts of single objective optimization.

More specifically, familiarity with such concepts as the simplex

method, extreme points, extreme point adjacency, defining

hyperplanes of a feasible region, feasibility, and pivoting is

2



necessary for full comprehension of traditional MOLP techniques.

However, for the reader interested solely in CAIN and its

development, only the most basic knowledge of the simplex algorithm

is required for full conceptual comprehension.
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2.0 MULTIPLE OBJECTIVE LINEAR PROGRAMMING (MOLP)

MOLP is a special class of the general MCDM problem in which

all objective functions an constraints are linear. In general,

formulations of MOLPs can exist in terms of decision variables (the

decision space) or complete objective functions (the objective

space). The following sections review both of these formuiation

strategies.

2.1 Formulation in the Decision Space

Given a set of p objective functions and in constraints, the

general MOLP can be fcrmulated in the decision space as:

Max f 1 (x) =c(1 )x Vi=I,2, . . .,p (1)

s.t. ajt xabj Vj=l,2, ... m (2)
x 0

where c"I - 1 x n vector of cost coefficients
x n x 1 vector of decision variables

a. - n x 1 vector of technological coefficients
for the jth real constraint

bj a right-hand-side constant for the jth real
constraint

Definition 2.1.1: The set defined by:

X={x ' aJ x b  Vj=1,2, ... m}

is called the set of feasible decision

vectors or the feasible region in

the decision spaco.

Definition 2.1.2: r set X in En (E-space) is called a convex

set if given any two points x, and x2 in

4



X, AXI + (1-1)x 2 E X VI E [0,1]. (Bazaraa,

1990)

Definition 2.1.3: A set X in E" is bounded if there exists a

number such that IxI < k Vx E X where II II

represents the Euclidean norm (Bazaraa,

1990).

For purposes of this paper, X is assumed bounded and convex.

Furthermore, the maximization convention is assumed for all

objective functions. Recall that

Max c~"x = - Min - cix Vi=1,2, . . .,p

Therefore, any minimization objective is easily converted to

the maximization convention.

Unfortunately, most practical applications for MOLP involve

objective functions which conflict and cannot all be maximized

simultaneously. This dilemma is examined further in the context of

"ideal" and "nadir" solutions in section 2.5.

2.2 Decision Space Example

A consumer wishes to purchase three products, A, B, and C.

Each unit of product A costs $4, each unit of product B costs $3,

and each unit of product C costs $5. The consumer has only $60 and

two objectives: f1: purchase the maximum number of units of

products A and B combined, and f 2 : purchase the maximum number of

units of product C. Define the following variables:

5



x, L- number of units of product A to purchase
x 2 LO number of units of product B to purchase
x. - number of units of product C to purchase

The MOLP formulation in the decision space can then be

expressed as follows.

Max f 1 = x + 2

Max f 2 = X3
s.t. 4x, + 3x 2 + 5x3 1 60

X1 , x 2 , x 3 1 0

Here, c(1 ) - (1,1,0), c( 2) - (0,0,1)

x L (xJ, a1 i -3 and hi L -60

Note the problem exists in E 3 .

2.3 Formulation in the Objective Space

Assuming an initial MOLP formulation in terms of decision

variables, X can be mapped into the set of feasible objective space

vectors F giving MOLP formulation in the objective space.

Algebraically, each decision variable (x,, i=l,2, ... n) is solved in

terms of objective function variables (f1, i=l,2,...,p). These

expressions are then substituted for the decision variables in the

defining equations of X. In set notation:

X-F={fjgtfzh, Vr=1.2,...,m+n} (3)

where g.L - p x 1 vector of objective space constraint
coefficients for the rth objective space
constraint

f Le p x 1 vector of objective function values for
objectives f., i=1,2, ... ,p

hX m right-hand-side element of the rth objective
space constraint

Definition 2.3.1: The set defined by:

6



F N {f I gf z hr Vr=1,2, ... ,m+rA

is called the set of feasible objective

vectors or the feasible region in the

objective space.

2.4 Objective Space Example

For the example given in section 2.2, the objective space

equivalent formulation can be written as:

Max f,
Max f 2

s.t. 3f, 5f 2  06
f, 0

f 2 >0

where g, Le (-3g2m() g3  (1)
f LfM and h2J m-(ff~i), h3 0
Note the formulation exists in E2 .

2.5 Observations

Notice that the objective space constraint coefficients (g,

r=l,2, .. . ,m+n) and the right-hand-side elements (hr, r=l,2, . . . ,r+n)

can be algebraically adjusted to any convenient values maintaining

consistency between X and F. Note also that in general, the

existence of m+n objective space constraints is predicated by

existence of the m real and n nonnegativity constraints of X.

Often, as is the case with this example, some of the constraints

prove redundant. Here, the nonnegativity constraints for both x.

and x2 map into the same constraint, f, 0.

7



Two important observations should be recognized from the

example mapping of X into F. First, the order of the problem was

reduced. In the decision space, the problem formulation exists in

E3 whereas in the objective space, the order was reduced to E2.

This is often the case as there usually exist fewer objectives than

decision variables (p<n). Secondly, note the simplicity of the

objective functions in the objective space. Since each objective

function is assigned a single objective space variable, the mapped

objective functions will always require the maximization of a

single unique variable. These advantages of objective space

formulation have been integrated into the CAIN algorithm as shall

become clear during its development in section 5. The advantages

will be particularly evident during the DM interaction segment.

Because of these benefits, MOLP formulation hereafter is referred

to in the context of the objective space.

Definition 2.5.1: An objective space vector f is termed an

alternative iff f e F.

When considering possible alternatives to MOLP, a rational DM

will only care to consider the set of efficient (nondominated,

pareto-optimal) alternatives provided he or she is aware of their

existence. Formally, an efficient alternative can be defined as

follows.

Definition 2.5.2: An alternative f' is said to be an

efficient (nondominated, pareto-optimal)

solution of MOLP iff there exists no other

8



alternative f such that:

fi z fi Vi=I,2, .... p

An integral concept of the CAIN DM interaction phase is that

of an ideal value.

Definition 2.5.3: An ideal solution, f" is a solution vector

which simultaneously maximizes every

objective f,, i=1,2,...,p for a given

MOLP.

Clearly, if f" is indeed feasible to MOLP, it would always be

the most desirable solution. In practical problems, however, the

objective functions conflict and the ideal solution is not

achievable. Nevertheless, because the concept of the ideal is so

key to the method of DM interaction used by CAIN, the reader should

be familiar with its computation. For any objective, f, its ideal

value can be found by maximizing f, individually, ignoring all

other objectives, subject to the defined feasible objective space.

That is,

f Max f. Vi=I,2,.. p
s.t. f E F

The vector of all ideal values is f*. A variation of this

generic ideal definition used by CAIN is developed in section 5.

Definition 2.5.4 A nadir solution, f", is a solution vector

which simultaneously minimizes every

objective f,, i=l,2, ... ,p for a given MOLP.

Clearly, the nadir is the antithesis of the ideal and its

9



components can be computed for every f, as

N Mi fl Vin f2,..,p
s.t. f E F

As with the ideal, the vector of all nadir values is f'.

2.6 Graphical Example

Fig. 2.1 shows the feasible objective space for the example

f2
14 -

Ideal fo f2 C0,12) IDEAL 1L0U ION C20,12)

12 ....------- ------------------

10

00

8

- - 10 5 0 06)

C 10, 5)

2

0 ____________ 
Ideal for fl $20,0)

0 ri 5 10 15 20 25 30

f2d f I

CO0,O)--nadIr solution
fig 2.1

MOLP of section 2.4. Observe that point (10,5) is a dominated

alternative since either of the objective functions (f, or f,) could

be increased without compromising the value of the other objective.

For instance, alternative (10,6) is said to dominate alternative

(10,5) since a gain is realized in f2 without sacrificing on f,.

Furthermore, alternative (10,6) is an efficient alternative. Note

that an increase in either objective at this point must be

10



ac-ompanied by a decrease in the other objective in order for the

alternative to remain feasible. Close examination of the feasible

objective space F reveals that the set of all efficient

alternatives lies along the defining hyperplane 3f, + 5f 2 = 60. in

the two dimensional objective space, the set of all efficient

alternatives is always clearly visible via the "northeast rule"

(under the maximization convention) . Simply stated, the rule

translates the axes of the positive quadrant to each point in F.

If no other points feasible to F exist in the quadrant, then the

alternative is efficient. This rule is not valid in higher

dimensions, however, and identification of all 4fficient

alternatives can be a difficult computational task.

Definition 7: The set of all efficient alternatives, F',

F e F lie along efficient faces (edges,

surfaces, higher order hyperplanes) of F. The

collection all efficient faces of F is termed

the efficient frontier.

As with the efficient vectors in the decision space X, the

efficient frontier will always occur along the boundary of F (see

Yu, 1985).

Finally, take note of the ideal and nadir solutions. As is

usually the case for conflicting objectives, the ideal solution is

infeasible. On the other hand, although not desired, the nadir

solution for this example could be achieved.

Given this background, solution techniques for MOLP can be

discussed. Section 3 explores some of the more popular traditional

11



techniques. Section 4 follows with a detailed review of the most

recent and/or practical interactive algorithms for MOLP.

12



3.0 TRADITIONAL MOLP SOLUTION METHODOLOGIES

3.1 Introduction

The MOLP problem described in section 2 has been the

motivation for development of numerous algorithms involvina

continuous decision variables. In order to better organize a

review of such algorithms, a classification system based upon the

timing of elicitation of preference information from a DM shall be

followed. In the broadest sense, the timing of algorithm

interaction with a DM has three possibilities. Some techniques

employ what is known as prior articulation of DM preferences. in

other words, complete interaction with the DM takes place before

any algorithm computations begin. At the other extreme, techniques

which employ posteriori articulation of preferences only confer

with a DM after the particular algorithm has been completed.

Between these extremes exist techniques which employ a progressive

articulation of preferences. These algorithms gather information

in stages (or iterations) coincident with the solution generating

process. Ideally, the DM is guiding the process to his or her

"best compromise solution". These algorithms are better known as

"interactive" techniques and have been the subject of much recent

research in the MCDM arena. A special subclass of the interactive

techniques are the "aspiration-level" techniques, so called because

of the type of information sought from the decision maker. CAIN

falls into this class of interactive aspiration-level methods.

Therefore, although this review shall bear mention of the entire

spectrum of MOLP techniques, emphasis shall be placed upon the

13



traditional interactive methods. First, however, because they

formed the backbone of most MOLP solution theory, the prior and

Posteriori approaches merit some consideration.

3.2 Prior articulation methods

3.2.1 Preemptive Goal Programming

Preemptive linear goal programming (Lee, 1973) may be the most

recognized MOLP solution technique regardless of classification.

Although Lee is given most of the credit for the practical

development and applications of goal programming, its foundations

were laid by Charnes and Cooper (1961) and Ijiri (1965). In short,

goal programming attempts to minimize a set of deviations from DM

specified multiple goals for mathematically defined objectives.

The goals are considered simultaneously but are weighted according

to their relative importance. Essentially, these preemptive

priorities invoke a ranking system for the deviational variables

such that only the highest priority goals are solved first.

Subsequently, the second highest priority goals are met as closely

as possible (deviations minimized) without disturbing the higher

priority goals. The process continues through the lowest priority

objectives. Since its development, several variations of goal

programming and goal programming solution techniques have appeared

(see Ravindran (1985) and Arthur and Ravindran (1978)). However,

the preemptive formulation proposed by Lee remains the most

recognized in the field.

3.2.2 Maximin Programming and Surveys

Essentially, preemptive linear goal programming is the only

14



prior articulation method used in practice for solving MOLPs.

Another lesser known technique is that of Maximin Programming.

Although this technique will not be expounded here, further

information can be found in Dyson (1980) . For the interested

reader, surveys of prior articulation techniques for solving

general MCDM problems, linear or not, can be found in Dyer and

Sarin (1979), Farquhar (1977), Keeney and Raiffa (1976), and

Kornbluth (1973)

3.2.3 Critique of prior articulation techniques

Despite their early contributions to MCDM, the prior

articulation methods are not as practical as once thought.

Obviously, by requiring DM input of goals prior to any preliminary

computations, a DM is often left in a position of setting

"ignorant" aspirations. With no information regarding the range of

potentially achievable solutions, it is highly unlikely DM

aspirations would approach an efficient alternative. This often

occurs in linear goal programming as the deviational variables

either assume all zero (a dominated alternative) or all nonzero

(i.e. no goals are achievable) values. While it is true that

several iterations of prior methods could eventually lead to an

efficient solution (note this would actually entail an interactive

method), there is still no semblance of convergence to a DM

specified best compromise solution.

3.3 Posteriori articulation methods

The foundation for much MOLP research was built upon

techniques requiring a posteriori preference articulation.

15



Algorithms which employ this type of strategy can generally be

divided into two categories: 1) those concentrating on finding all

efficient extreme points, and 2) those which concentrate on finding

the entire efficient set. It has been established (Yu, 1985) that

the set of efficient points of a given decision space X lies on the

boundary of X assuming linear independence of the objective

functions. Since the faces (facets, edges, points) can be

characterized by the extreme points and/or extreme rays of X, it

can be shown that if an interior point of a face is efficient, then

the whole face is efficient (Yu, 1985). Thus, the entire efficient

set is connected and the entire efficient domain can be explored

point by point without ever leaving the set. As a result, MOLPs

tend to lend themselves to simplex based techniques in order to

identify efficient extreme points. Given these extreme points,

several techniques have been suggested for connecting these points

and thus constructing the efficient frontier.

3.3.1 CateQory 1: Finding all efficient extreme points

In general, algorithms in category (1) consist of three phases

(Steuer, 1976a). Phases I and II deal with finding an initial

extreme point and subsequent initial efficient extreme point.

Phase III then identifies the remaining efficient extreme points.

3.3.1.1 The Multiobjective Simplex Methods

The best known of these "efficient extreme point generators"

are the multiobjective simplex methods. Variations of these

algorithms have been proposed by Philip (1972), Evans and Steuer

(1973), Yu and Zeleny (1975), and Zeleny (1982). Multiobjective

16



simplex techniques require an initial efficient extreme point for

initialization. Several techniques for finding an initial

efficient extreme point have been developed (Ecker and Kouada

(1975) , Evans and Steuer, (1973) , and Zeleny, (1974a)) . Once

this point is identified, the simplex algorithm is used to pi-ot

through adjacent extreme points using special conditions (tests) to

identify those which are efficient.

3.3.1.2 Parametric Decomposition (a "weighting" technique)

Because of the computational burden of multiobjective simplex

tableaus, a variation of the multiobjective simplex methods known

as parametric decomposition was developed in 1973 by Zeleny (see

Zeleny, 1982). Instead of optimizing the several objectives

separately, the objectives are combined into a normalized weighted

objective function. In the case of MOLP, maximizing this objective

function for all possible weighting coefficients reveals the entire

set of efficient extreme points. Thus, the parametric weight space

is "decomposed" into subsets associated with nondominated

solutions.

3.3.1.3 Other weighting techniques

An approach proposed by Gal (1976), Ecker and Kouada (1978),

and Ecker et. al. (1980) makes explicit use of weighting

characterizations to identify noninferior extreme points. Given

two adjacent extreme points to MOLP, these researchers have shown

that the alternatives are adjacent efficient extreme points iff 1)

they are adjacent basic feasible solutions, and 2) they are both

optimal solutions to the same weighted objective function for some

17



set of positive weights.

3.3.2 Category 2: Finding the entire efficient set

The mcre recent work n the posteriori class has concentrated

on algorithms for generating the entire efficient set. The reason

for this is clear. In most instances, the best compromise solution

will be an efficient point which is not an extreme point. Thus,

these methoas concentrate on finding the maximal efficient faces of

the constraint set. Unfortunately, these methods are not as

computationally straightforward as extreme point identification.

Sage (1977) uses information about pairwise adjacency of extreme

points to construct undirected graphs of binary intersection

matrices. Applications of this approach can be found in Zeleny

(1974a) , Yu and Zeleny (1975), and Isermann (1977, 1979) . As

reported by Chankong and Haimes (1983), it is also possible to use

weighting methods to identify noninferior faces. For the interested

reader, other work in this area has been accomplished by Ecker et.

al. (1980) and Yu and Zeleny (1975).

3.3.3 Critique of posteriori techniques

Although interestino 'r t theoretical base, the a

posteriori techniques suffer from two major shortc-minzs. First,

computation of all efficient faces (or even extreme points) can

become quite impractical. Theoretically, an exponential number of

extreme points can arise. Furthermore, given that all efficient

faces or extreme points can be identified, presentation of these

solutions to a DM in a manner such that he or she can choose Rmong

them can prove to be an even more difficult undertaking.
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3.4 Interactive techniques for MOLP

Many researchers believe that interactive methods may be the

answer to weaknesses characteristic of the prior and posteriori

methods of sections 3.2.3 and 3.3.3. Traditional interactive

algorithms for solving the MOLP are discussed in the sections which

follow along with brief critiques of each method.

3.4.1 The Interval Criterion Weights Method

The Interval Criterion Weights method (ICW) (Steuer (1976b))

involves DM comparison of 2p+l efficient extreme point solutions at

each iteration where p is the number of objectives. The DM must

choose a most preferred of these solutions. Based upon DM

?lection, the weight space (criterion cone) is reduced, and a new

set of 2p+l solutions is generated for further comparison.

Although commendable for its avoidance of requiring a DM to place

specific weights on objectives, ICW can prove burdensome for a DM

with respect to the number of comparisons required at a given

iteration (i.e. if p is large). A second deficiency results from

the fact that only efficient extreme points are considered. Thus,

efficient alternatives lying on higher dimensional faces are never

presented to the DM for consideration.

3.4.2 Displaced Ideal Method

In the Method of the Displaced Ideal (Zeleny, 1974b), a set of

efficient solutions is reduced at each iteration until it is small

enough for the DM to feel comfortable in choosing one as a best

compromise solution. This is accomplished by removing each

solution which results in an outcome which is at a certain distance
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or further from the "displaced ideal". As with the ICW method, the

DM may be confronted with multiple comparisons of similar

alternatives. Because the method assumes DM ability to choose one

alternative from the set, the algorithm stalls if a DM is unable to

consistently perform the comparison task.

3.4.3 Interactive Paired Comparison Simplex Method

Another more recently developed technique implementing DM

comparison of efficient extreme points is the Interactive Paired

Comparison Simplex Method (Malakooti and Ravindran, 1985) . Similar

to other methods, an initial efficient extreme point is generated.

The algorithm then pivots to another efficient extreme point and

requests the DM comparison of this alternative with the current

point. If the DM prefers the adjacent point, it becomes a "center

solution", the initial point is eliminated, and the algorithm

continues. Otherwise, the adjacent point is eliminated. The

algorithm terminates at a best compromise solution when there are

no efficient adjacent extreme points preferred to the current

point. The main contribution of this method was the development of

a utility efficiency concept, used to eliminate some adjacent

points without requiring DM comparison. Unfortunately, as is the

case with many simplex based algorithms, only extreme points are

considered. Although this technique also assumes DM ability to

make comparisons (like ICW and Displace Ideal), the feature of

requiring only a paired (two at a time) comparison of points makes

the method practical and less burdensome from the DM standpoint.

In addition, a method for handling any inconsistent DM responses
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was also incorporated.

3.4.4 The Method of Zionts and Wallenius

A now famous interactive technique for MOLP is the method of

Zionts and Wallenius (1976) . The algorithm employs a pairwise

comparison technique for systematically evaluating efficient

extreme point solutions. After an efficient extreme point is

attained (usually via a method alluded to in section 3.3.1.1), a DM

is asked to compare it to an adjacent extreme point via tradeoff

preference inquiries. Based upon DM responses, a linear

approximation of the DM's utility function is constructed. At each

iteration, the linear approximation is improved until a

satisfactory solution is achieved. Again, disadvantages appear in

that only extreme points are considered. In addition, the method

of interaction with the DM (tradeoff inquiries) can prove difficult

resulting in DM confusion and inconsistency. Furthermore,

convergence is only guaranteed if a DM's utility function is indeed

linear.

3.5 Aspiration based techniques

As previously alluded, a special class of interactive methods

are of special interest to this research. These are the aspiration

level based techniques. Two of the more noteworthy traditional

methods are discussed below.

3.5.1 STEM/GPSTEM

One of the first techniques to address MOLPs via progressive

articulation of preferences and DM aspiration levels was the Step

Method (STEM) of Benayoun et. al. (1971). STEM employs a single
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objective model which minimizes the maximum weighted distance of

all problem objectives from the "ideal" solution. At each

subsequent iteration, the DM "adjusts" the feasible region by

adjusting the aspiration levels for the objectives.

A variation of STEM, known as GPSTEM, was developed by

Fichefet (1976). GPSTEM combines linear goal programming and STEM

in that at each iteration, a goal program is employed as the single

objective model.

Obviously, these simplex-based techniques are only capable of

divulging extreme point alternatives.

3.5.2 The Method of Wierzbicki (Tchebycheff methods)

One of the most commonly used techniques for generating

efficient solutions for comparison in modern algorithms is the

scalarizing approach of Wierzbicki (1979). In and of itself, this

approach requires prior preference articulation. However, because

of its ability to achieve any alternative on the efficient frontier

(extreme point or not), it is often employed to project aspiration

levels of a DM onto the efficient set. These projections are then

used as the basis for comparisons in interactive techniques. In

fact, the method of Wierzbicki is employed as the "efficient point

generator" for both the AIM and CASE methods discussed in section

4.

The Wierzbicki technique makes use of a penalty scalarizing

function to compute aspiration level projections regardless of

their feasibility. Advantages of this approach include the fact

that it is not simplex based and thus is not confined to extreme
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points. Furthermore, no assumptions are made about the so called

utility function of the DM. On the negative side, the method

generally works well only when aspiration levels are "near" the

efficient frontier. Assuming a DM has no concept of the efficient

set, the Wierzbicki method may produce an undesirable "nearest

nondominated solution" to the aspirations. To compensate,

interactive methods using the Wierzbicki technique may require a

large number of iterations for satisfactory convergence.

3.6 Conclusion

While it is true that CAIN will implement variations of

concepts developed by traditional techniques, initial motivation

for CAIN development stemmed from the newly developed aspiration

based methods. In fact, some of the more practical features of

CAIN are based upon concepts employed in AIM. Section 4 therefore

presents a detailed review of modern aspiration based algorithms.

In addition to a detailed discussion of the discrete AIM technique

(section 4.1), subsequent sections are devoted to previously

developed Tchebycheff interactive strategies for MOLP.
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4.0 MODERN INTERACTIVE ALGORITHMS

4.1 AIM - An Aspiration level Interactive Method

4.1.1 Introduction

AIM (Lofti, Stewart, and Zionts, 1990) is described by its

developers as a simple eclectic approach for solving the discrete

alternative MCDM problem. As the term discrete implies, the method

considers the specific problem of choosing one alternative from a

finite set of defined alternatives. A DM has a set of objectives

which describe each of these alternatives and each alternative has

a specific measure of achievement for each of these objectives. DM

levels of aspiration are used to explore the efficient frontier

with AIM providing feedback as to the feasibility of such

aspirations. Specifically, the fraction of all solutions that

satisfy current aspiration levels is provided considering all

objectives collectively as well one at a time. The user-

friendliness of AIM is further enhanced by suggestions of "nearby

solutions" and by information concerning attainment possibilities

of various alternative objective levels.

4.1.2 Philosophy and notation

AIM assumes a matrix (n x p) of alternatives and objectives

where n represents the total number of alternatives and p

represents the number of objectives. Entries in the matrix consist

of the performance of alternative i with respect to objective j.

A generalized form of the matrix is shown in fig. 4.1.
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fig. 4.1

P11  P12 .. .P,

P 21 p2 2 .... P2P where P._ represents
perfomance of alternative

i for objective j

P2 1 .... fl

AIM permits both cardinal and ordinal objectives (i.e.

objective and subjective scales) and three types of objective

functions:

1) those to be maximized

2) those to be minimized

3) those which have a target level

A noteworthy feature of AIM is incorporation of the concept of

satisficing levels. With each type of objective function, a DM is

permitted to set satisficing thresholds. As defined for AIM, a

satisficing threshold is a level where the DM is "effectively

indifferent to values above (for maximization), below (for

minimization), or within a certain range (for target)". These

thresholds permit the DM the flexibility not to overachieve for any

objective for which a satisficing threshold is defined.

Given an MCDM problem definition in terms of objectives (of

the three possible types above, with or without satisficing

thresholds), a finite set of alternatives, and performances of each

alternative (on cardinal or ordinal scales) for each objective, the

algorithm can begin. For each objective, an absolute or "must"

level is assumed which must be met as well as an aspiration or
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"want" level and, if desired, a satisficing or "ignore" threshold.

Ordinal objectives must be given ordinal values of which only the

order of the values is essential. Furthermore, it assumed that

objectives with a target value can be represented as two

objectives; one maximizing to achieve the lower target value, and

one minimizing to achieve the upper target value. Clearly, the

lower end of the target range cannot exceed the upper end of the

range. For ease of describing the algorithm, the authors define

the following notation:

T,: satisficing threshold for objective i.

z.k: value of alternative k in terms of objective i.

I,: ideal value for objective i according to DM

aspirations: min[T,; maxk{zlk)] in the maximization

case, max[T,; mink{zlkl] in the minimization case.

N,: nadir, or worst possible value, for objective i:

mink{zl} for maximization; mnaxk{zl} for minimization.

Aj: aspiration level for objective i which should not

exceed I,.

4.1.3 Solution Methodology

AIM solution methodology begins by ordering the z~k values from

the least to the most preferred. The DM is then presented with the

following information:

1) A,, the current aspiration level for objective i along

with the percentage of all alternatives that are at

least as desirable with respect to this objective.

Initially, aspiration levels are set to the median
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for each objective given the ordering of the z,

values.

2) aspiration levels one level different from those

presented in 1), both one better and one worse. Again

the percentage of all alternatives at least as

desirable as these values are shown.

3) ideal and nadir values for each objective.

4) the proportion of alternatives that simultaneously

satisfy all aspiration levels given for both 1) and

2).

5) a "nearest" efficient solution to DM aspiration levels

as defined by a penalty scalarizing function proposed

Wierzbicki. Reference to the method of Wierzbicki is

given in the literature review (section 3.5.2).

The Wierzbicki scalarizing function gives a weight on

criterion i of:

A1j - N1

Ii - N1  Vi=I,2 .... p

An examination of these weights reveal the increasing

importance attached to objective i as the aspiration level for i is

moved closer to the ideal value. More specifically, the solution

which minimizes the following penalty scalarizing function is

chosen as the "nearest" efficient solution:
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p

Max, { d, 1 + e E di
i=1

where

d, = (A, - N1 ) (A1 - z-)(I, - N) 2

At this stage, several options are available to the user:

1) Update current aspiration levels. Only realizable

values for each objective are allowed. Note that as

these levels are changed, so too is the nearest

efficient solution.

2) Scan all solutions satisfying current aspiration

levels.

3) Rank the current alternatives according to the

weights specified for the scalarizing function given

above.

4) Scan neighboring solutions. Here the method uses a

simplified version of the ELECTRE method (Roy, 1968):

Alternative j outranks alternative k iff:

i) the fraction of objectives for which j is at

least as good as k is at least 50%.

ii) the following condition is satisfied:
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Max, I, N, I _ c

where c is determined by
the number of neighbor solutions desired

5) Lastly, the DM may explore the distribution of each

of the problem objectives.

4.1.4 Experimentation with AIM

The AIM algorithm has been tested and compared against another

discrete alternative MCDM method, the Analytic Hierarchy Process

(AHP). According to the report, AIM outperformed the AHP "for

numerous measures". For the experiment, 49 second-year graduate

students were asked to solve two decision problems using both a

computer implementation of AIM and Expert Choice, a computer

implementation of AHP. Using AIM, the authors report that 98% of

the participants chose efficient solutions versus 91% for Expert

Choice and 79% for a manual decision process. The differences

proved to be statistically significant. Other measures included

agreement between algorithm choice and a students' final decision,

and attitudes toward the methods. Again, the authors report AIM

superiority to the AHP. A detailed description of the experimental

phase of AIM can be found in Lofti, Stewart, and Zionts (1990).

4.1.5 Critique of AIM

While AIM has implemented several useful features which could

be useful in a continuous MOLP solution approach, it is in many

ways confined to the discrete problem domain. Many of the
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computations performed and information presented by AIM are not

applicable to continuous MOLPs. For instance, information

concerning "percentage of desirable alternatives" and "ranking of

alternatives" is not practical when the alternative set is

infinite.

On a more theoretical note, AIM also suffers from a common

interactive approach deficiency. Specifically, there is no

assurance of convergence to an efficient solution. Wierzbicki

(1979) stated that it is not so important for a DM to select

nondominated solutions, but simply that he or she be aware of their

existence. Unfortunately, the common everyday decision maker may

not fully comprehend the concept of nondominance. For discrete

problems, simply alerting a DM to the existence of efficient

alternatives may be sufficient. However, in the realm of the

continuous domain, the number of potential alternatives can be

overwhelming. Therefore, it is the opinion of this author that for

continuous MOLPs, only efficient alternatives should be presented

to a DM.

On a different front, some thought must be given to the method

of arriving at a nearest nondominated solution. The AIM developers

make reference to the fact that DM aspiration levels should be

"near the efficient frontier" in order for the Wierzbicki method to

have "its greatest effect". Unfortunately, it cannot be assumed

that a potential DM is aware of the efficiency thresholds.

On a more positive note, AIM has implemented some useful

concepts for reducing the burden placed on a DM. The concept of
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requesting aspiration levels rather than often difficult

comparisons between alternatives (which often leads to DM

inconsistency) or tradeoff questions is notable. In addition, the

implementation of satisficing levels gives a DM the opportunity to

realize further gains in other objectives once a given objective is

known to iave r ached the DM's utility saturation point.

In reality, although AIM employs features useful for any MCDM

solution technique, its discrete domain renders AIM and CAIN

incomparable. In sections 4.2 - 4.4, however, three modern

algorithms not confined by extreme points or discrete alternatives

are reviewed for eventual subjective comparison with CAIN. Section

4.5 then concludes the literature reviews with some observations

and a brief introduction to interior point approaches.

4.2 CASE - A ConverQent Aspiration based SEarch method

The original intent of CASE (Yoon, Lofti, and Zionts, 1991)

research was to develop a continuous linear domain extension of the

discrete AIM methodology described in section 4.1. Given an MOLP

formulation in the decision space (see section 2.1) with p

objectives, the CASE algorithm generates a cluster of p+l

alternatives at each iteration based upon DM levels of aspiration.

The method assumes a pseudoconcave utility structure for a DM

throughout the interactive process. Assuming a DM can choose d

preferred solution from the cluster of p+l, CASE eventually reduces

("derives cuts in") the feasible objective space based upon DM

responses to the comparisons. Through successive feasible set

reductions, CASE theoretically converges to a DM aspired best
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compromise solution.

CASE incorporates the concepts of ideal and nadir solutions to

guide DM aspiration levels. Given a defined feasible region, ideal

and nadir solutions are generated for every objective. A DM must

then specify aspiration levels within this range of values. Based

upon the aspirations, CASE generates a nearest nondominated

solution on the efficient frontier using the Wierzbicki scalarizing

technique. Th4s solution becomes a "center" solution.

Concurrently, the system generates p "neighbor" alternatives on the

efficient frontier by using the concept of improving airection

vectors. These solutions are the ultimate result of improving one

objective at a time from the center alternative A DM must then

select a preferred alternative from the cluster of p+l. If a DM

selects one of the neighbor solutions, this alternative becomes the

center solution and another set of p neig.ibors are generated for

comparison. This process continues until a DM selects the center

solution as the most preferred. At this time, CASE generates a cut

in the feasible objective space and thus reduces the feasible

region. Theory behind the cuts rests upon utility concepts. When

a DM chooses the center solution as most preferred, the information

is interpreted as U(zO) > U(z0 + d-) Vj=1,2, ... ,p where zo is the

center solution and dl, j=1,2, .. .p represent improving directions

for each objective. This informaticn in combination with the

assumption of DM pseudoconcave utility permit the feasible region

reau:tions(for theoretical details, see Yoon, Lofti, and Zioits,

(1991)). CASE is terrinated when the reduced objective space is
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considered "small enough", if a predetermined number of iterations

has been reached, or if a DM is satisfied with the chosen solution.

4.3 Karwan-Dell (KD) Method

The KD (Dell and Karwan, 1989) method uses predefined weights

in a specialized form of Tchebycheff LP formulation to generate

nondominated alternatives. The method is based upon pairwise

comparison of alternatives and uses constraints generated on the

weight space as the method of feasible region reduction. This

method is similar to the Z-W algorithm described in section 3.4.4

except that the specialized LP formulation allows generation of

nonextreme point solutions.

Initially, the system determines the ideal solution for each

objective. Two solutions are then generated, a "challenger" and an

"incumbent". The system then asks a DM to compare and choose one

solution from these two alternatives. Based upon the response, the

system generates constraints on the weight space. Unlike Z-W

however, these constraints partition the feasible space into

multiple disjoint convex regions in the weight space. For each of

these regions in the weight space, KD obtains a middle-most set of

weights and from these weights, a nondominated alternative is

generated. The method then groups these alternatives and chooses

the new challenger as an alternative that is significantly

different from the incumbent. The algorithm terminates if no

significantly different alternatives exist or the system has

exceeded a specified number of questions with the incumbent as the

7r-:t desirec alternative.
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4.4 Steuer-Choo (SC) Method

The SC (Steuer and Choo, 1983) algorithm is another method

centered around a weighted Tchebycheff procedure. SC samples the

efficient set by computing the efficient vector closest to an ideal

according to the weighted function. Using a filtering technique,

representatives of smaller and smaller subsets of the efficient

frontier are presented to a DM at each iteration. The procedure

continues to generate sets of weighting vectors within a contracted

cone and subsequently generates sets of efficient .lutions until

a prespecified number of iterations is reached. Like KD, the SC

technique is essentially an extension of an earlier simplex based

method (see ICW, section 3.4.3) The extension allows for

consideration of nonextreme point solutions.

4.5 Observations and Introduction to Interior point methods

Clearly, while traditional methods are confined by simplex

ideology, the new approaches appear centered upon Tchebycheff or

scalarizing techniques for generation of efficient solutions.

While this signifies an improvement in the domain of achievable

solutions, DM interaction techniques appear to have remained intact

over the years. Interactive scalarizing techniques ultimately

require DM comparisons of alternatives and their convergence is

contingent upon DM ability to consistently perform this task.

The main purpose for the review of sections 3 and 4 was not so

much to search for techniques to implement as part of a new

aspiration based algorithm, but rather to explore and shed light on

the current state of MOLP solution methodologies. Until recently,
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virtually all techniques employed in the solution of MOLPs made use

of some form of the simplex method by first converting the MOLP to

one or a series of single objective linear programs and using a

system of weights to produce efficient points. This direction was

undoubtedly and rightfully spawned by the practicality and

computational efficiency of simplex developments of the 1960's and

1970's. However, because of its confinement to extreme points and

the computational complexity of identifying efficient faces, modern

research has begun to explore other optimization options. Today,

a new strategy of optimization is generating enormous interest -

the interior point approach. Although Klee and Minty (1972)

demonstrated that simplex based approaches could theoretically

require an exponential number of pivots (and thus require

exponential time), the computational complexity of linear

programming stagnated the optimization field until 1979. In 1979,

Khachian showed that it was possible to solve LP's in polynomial

time by using an ellipsoid algorithm. Essentially, the ellipsoid

algorithm approximates the linear constraint set with

mathematically well behaved continuous curves. A famous interior

point approach by Karmarkar (1984) and others (Marsten, McShane,

etc.) have since demonstrated the computational effectiveness of

interior point approaches to the single objective LP.

Application of interior point techniques to MOLPs remained

relatively unexplored until 1989 when the well established method

of centers (Huard, 1967) was applied to vector optimization (Morin

and Trafalis, 1989). Given an interior point of a polytope and an
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"ordering cone" of DM preferences, it was shown that a progressive

method of centers converges to an efficient point (Trafalis, 1989)

As the algorithm of centers is key to CAIN, it shall be discussed

in greater detail during CAIN development.

In the development of CAIN, every attempt was made to

incorporate the positive features of previously developed methods.

Concepts such as ideal and nadir solutions, absolute requirements,

satisficing levels, and aspiration levels all form an integral part

of CAIN. On the other hand, while there are many similarities, it

is hoped that there have also been significant improvements. New

techniques have been incorporated in the areas of DM interaction,

efficient solution generation, and convergence. In section 5 which

follows, a detailed development of the CAIN algorithm is presented.
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5.0 A CONVERGENT ASPIRATION BASED INTERIOR METHOD (CAIN) FOR MOLP

5.1 Introduction

Like AIM, development of CAIN was motivated by the need for

a simple, practical approach for guiding a DM to an efficient best

compromise solution considering conflicting objectives. Without

proceeding further, the terms "simple" and "practical" are often

overused without explanation to describe many newly developed

algorithms. In describing CAIN, "simple" makes reference to

computational complexity and theoretical convergence. With the

exception of the mathematical development of the Algorithm of

Centers, CAIN is computationally straightforward. Only solutions

of single objective linear programs are required to initiate CAIN

convergence to efficiency. From a "practicality" standpoint, a DM

must only furnish aspiration levels, and is kept fully aware at all

times of the achievable range of values for each objective.

Through an innovative interaction technique, CAIN forces DM

aspiration levels to remain feasible, yet only presents efficient

solutions to a DM for final consideration. It also incorporates

the ideas of satisficing levels and absolute minimum requirements

employed in AIM.

CAIN is subdivided into three phases: Initialization,

Interaction, and Convergence. After an introduction to the CAIN

problem domain and a new DM interaction technique (sections 5.2 and

5.3), these three phases are explained in detail in sections 5.4 -

5.6. Section 5.7 discusses the theoretical convergence of CAIN.

Finally, sections 5.8 and 5.9 present a formal development of the
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algorithm complete with flowcharts for each phase.

5.2 Interaction Domain

CAIN is designed for DM interaction in the objective space.

Given a problem definition in terms of decision variables (see

equations (1) and (2) in section 2.1), it must be redefined

(mapped) in terms of the objective space (see section 2.3). After

completion of this transformation, DM interaction is necessary for

algorithm initialization. The following section describes a new DM

interaction strategy developed for the CAIN algorithm.

5.3 DM interaction using an Aspiration Level Range Method (ALaRM)

A unique feature of CAIN is its method of interaction with a

DM. The technique, known as ALaRM (Aspiration Level Range Method),

is based upon concepts of ideal and nadir values (see section 2.5)

and works as follows.

Given a feasible region in the objective space (U), ideal and

nadir values for a given objective f, can be computed and presented

to a DM. Using these values as upper and lower bounds, a DM is

requested to furnish a desired level for f,- Normally, this

specified value will reduce the range of achievable values for

other objectives from their respective ideal and nadir values

initially achievable subject to region U alone. Therefore, before

requesting DM desires for another objective f,, new ideal and nadir

values are computed for f, subject to region U and aspirations

already furnished for other obiectives durinQ the current

iteration. This process continues until all objectives are

considered.
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For instance, consider the feasible objective space given by

the example of section 2.4 and shown graphically in fig 5.1.

f2
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Assume a DM desires f, 10. Since the maximization

convention is assumed, any alternative with f, 2! 10 is deemed

acceptable (assuming no satisficing level for f, exists) . Given

this aspiration level constraint for f,, the reduced feasible space

is sho,.ii --n fig 5.2.
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Alarm recomputes ideal and nadir ranges for f2 based upon this

updated feasible space (U') before requesting further aspirations

from a DM. Clearly, the updated ideal value for f2 = 6, down from

its initial potential value of 12. Alarm would then reqiest an

aspiration level for f2 within the range [0,6]. Note that any

point in this range along the line f, = 10 remains feasible, thus

rendering DM aspirations feasible.

The major advantages of Alarm are twofold. First, by

continually updating ideal and nadir values, DM aspirations are

forced to remain feasible. Because the Algorithm of Centers

requires an interior point of the defined feasible region for

initialization, this feature will prove key to CAIN convergence.

Secondly, a DM is constantly kept aware of the achievable range cf

values for all objectives at all times. This differs from

interaction techniques of AIM and CASE where DM aspiration levels

are requested simultaneously. Only after the Wierzbicki function

generates a nondominated solution is a DM made aware of the

feasibility of his or her aspirations. By proceeding to identify

a nearest nondominated for potentially unachievable aspirations, a

DM has no input as to which objectives are compromised to arrive at

the efficient frontier. As will be seen later, CAIN not only keeps

a DM updated with regard to achievable objective levels, but also

permits a DM the flexibility to choose the order in which

aspirations are to be considered.

5.4 Initialization Phase

CAIN initialization requires DM input of minimum requirements
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and any known satisficing levels for each objective. This

interaction follows the Alarm interaction technique of the previous

section. Once these levels are properly defined, initialization is

complete. Minimum requirements and satisficing levels remain rigid

throuqhout the algorithm and are used solely for initialization

purposes. Later, it shall become obvious that these constraints

almost immediately become redundant during the interaction phase.

5.5 Interaction Phase

Two types of DM specifications are permitted and/or required

during the interaction phase:

1) First, a DM is given the option of specifying priority

rankings for the objectives in terms of their relative importance.

Three possible methods of specification are possible:

i) a DM can rank each objective individually as a unique

priority (given p objectives, there will be p

separate rankings).

ii) a DM can establish groups of priorities (given p

objectives, there will be less than p ranking

groups).

iii) a DM can choose not to rank the alternatives (in

which case the objective are given the same

priority and are treated in no particular order).

2 Aspi-r-ati- le-e- s for the objectives are the only required

input from a DM. These levels are requested in the order of the

defined priorities. Again, the Alarm method is employed as the

interaction tool. Ideal and nadir values are computed based upon
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the original feasible objective space, the defined minimum

requirements, any satisficing levels, and any aspiration levels

already defined for other objectives during the current iteration.

Recall that Alarm forces a DM to select aspiration levels between

the respective ideal and nadir values for each objective. As a

result, the levels remain feasible.

A complete iteration consists of successful entry of

aspirations for each objective. In the interest of flexibility,

CAIN allows for DM reconsideration of aspirations within

iterations. Specifically, if a DM deems the range of ideal and

nadir values for a particular objective unacceptable, he or she is

permitted lower aspirations for the higher priority objectives

previously defined during the current iteration. Obviously, the

hope here is to broaden the range of achievable values for the

objective currently under consideration. Furthermore, at the start

of new iterations, a DM is permitted to redefine objective priority

rankings in order to place emphasis on objectives which may not be

progressing satisfactorily.

5.6 Convergence phase

Upon successful completion of an iteration, the Algorithm of

Centers is invoked and converges to a "best compromise solution"

based upon DM defined levels of aspiration. This solution is

presented to the DM. He or she may either accept this solution and

terminate the algorithm or begin another iteration of defining

tighter aspiration levels.

5.7 Observations
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A noteworthy observation of CAIN is its amicable nature from

a DM standpoint. A DM need only furnish aspiration levels for

objectives to initiate convergence to a best compromise solution.

Ranking of objectives is permitted, if desired, but not required.

In this light, CAIN may be described as a form of aspiration based

interior point goal programming. Note that no assumptions are made

concerning a DM's ability to make comparisons between alternatives

or respond to difficult tradeoff inquiries. Such burdensome

requirements were purposely avoided. Furthermore, no implicit

assumptions concerning a DM's utility function are needed. As long

as a DM can choose a desired value from a given range of values for

the each objective, the algorithm will converqe. Toward the

development of a convergent algorithm, some necessary notation and

definitions are presented in the next section. Section 5.8 follows

with a discussion of CAIN convergence. Section 5.9 then presents

a formal development of the CAIN algorithm.

5.7 Definitions

Before formally introducing CAIN, some additional notation is

necessary.

Definition 5.7.1: Let R represent a set of absolute level

constraints imposed by a DM; that is, if

r, represents the absolute minimum

requirement for objective f,

i=l,2, ... ,p, then

R * 1 f f., r, Vi=1,2, . .. ,p

Definition 5.7.2: Let S represent a set of satisficing level
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constraints imposed by a DM; that is, if s,

represents the satisficing level for

objective f,, i=1,2,...,p, then

S a 4 f I f, i a. for some i-1,2,... ,p

In simple terms, a satisficing level s, can be thought of as

a threshold beyond which a DM gains no further satisfaction from

increasing objective f,. By not allowing objective fi to exceed Si,

higher levels of other objectives tf, i o j can be realized. Unlike

set R, set S need not be defined for every objective f, (thus the

use of "some" in the definition) . An aggressive DM would most

certainly have minimum requirements for every objective. However,

this may not be true of satisficing levels. In many cases, it is

likely a DM may wish to maximize all objectives as much as

possible.

Definition 5. 7.3: Let Ak) represent a set of aspiration level

constraints imposed by a DM at the kth

iteration; that is, if a set Wk1 represents

DM aspiration levels y, for objectives f.,

i=l,2,...,p at iteration k, then

W(k) {f fi Y Vi-1,2,...,p)
and A(*){flfIky Vi-1,2,...,p)

where W1 W represents the aspiration level

and A,(k represents the aspiration level

constraint for objective f, at iteration k.

Clearly, if the DM desires a level y1 for objective fi, then
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under the maximization convention, any alternative where

f1j y Vi=I,2, . . . ,p should be eliminated from further consideration

during iteration k.

There is no discernable difference in the way sets R, S, and

set Ak' are imposed within the algorithm. Sets R and S are used

exclusively to initialize CAIN and remain fixed throughout the

interactive and convergence phases. Set Ak' on the other hand is

flexible as a DM articulates tighter aspiration levels for

successive iterations. As shall be shown later, set S also serves

to aid in the definition of the "ideal" values for any objectives

for which set S is defined.

Observe that for a typical iteration, there may exist as many

as m+n+3p objective space constraints defined by sets R, S, and

A" '. The possibility of m+n constraints result from the m real and

n nonnegativity constraints mapped from X to F (although often,

some of these mapped constraints prove redundant). The 3p

constraints can result from sets R, A k, and any constraints

defined for set S. Clearly, constraints from sets R and S will

also prove redundant as aspiration levels tighten the feasible

space. They therefore can and should be eliminated whenever

possible in the interest of reducing problem size.

Although the notion of "ideal" and "nadir" solutions for MOLP

are not unique to the CAIN algorithm (see section 2.5), specialized

definitions of these concepts must be made due to incorporation of

satisficing levels. Specifically,

Definition 5.7.4: An ideal value for a particular
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objective f, during iteration k, Ik, is

the maximum value of fj attsinable subject

to sets F, R, S, and A In formal

notation:

(k) = Max f.
s.t. f E (Ff Rf SfAsA(k)) 

. ,p

Definition 5.7.5: A nadir value for a particular objective

fi during iteration k, N(k, is the minimum

vaLue of f, attainable subject to sets F,

R, and A(k) in formal notation:

k) Min f,N1  s.t. f G (FfRlA(k)) Vi=l,2, ... p

Throughout CAIN, a DM will be presented the option of defining

priority rankings for the objective functions with regard to their

relative importance. More specifically, a DM shall be permitted

the following options:

1) Rank each objective function individually (q=l,2,...,p)

2) Rank the objectives in gr-ups (q=1,2,...<p)

3) Do not rank the objectives (q=l: all objectives have the

same piority).

Toward this end, let:

* a ranking system
Pq = where lq:p.

Furthermore, let P, represent the set of objective functions ranked

as most important, P2 represent the ' riority 2" objectives.. .and

Pq represent the least important objectives.
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Definition 5.7.6: Define a set of indices Jq as follows:

Lq-1, 2,..

where v < p represents the number of

different ranking groups specified by a

DM for the objective functions.

Definition 5.7.7: A complete iteration k occurs when a DM

has successfully established levels for

set A k for all existing objectives.

Upon successful completion of an iteration, CAIN must converge

to an efficient "best compromise solution". Toward this goal,

define an "ordering cone" at iteration k as follows:

Definition 5. 7.8: An ordering cone of DM preferences based

upon DM aspiration levels at iteration k is

defined as:{P
A (k) = I f e n A(k)

Given an interior point W W of F and the ordering cone at

iteration k, it can be shown that the following sequence of steps

(known as the Algorithm of Centers) will converge to an efficient

solution f k. (for proof, see Trafalis, 1989). Furthermore, since

W ' is specified by a DM and defines the ordering cone, f(k)- can be

considered an efficient best compromise solution at iteration k.

0. Set z=0

1. Let W kz be an interior point of F. Consider the
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intersection F,: (W(kls+A(")) nF. Find the

center W(k"z+1 of F,.

2. If I W(k)zI- W(k)zI <e, e small, then stop. Otherwise,

return to step 1 with z=z+l.

For a formal development of the Algorithm of Centers, refer to

Appendix A. Note that Wok) will always define an interior point of

F as a result of the Alarm interaction technique.

5.8 CAIN Converoence

Theoretical convergence of CAIN to an efficient solution is

predicated upon two concepts. The first is theoretical convergence

of the Algorithm of Centers invoked at the end of each iteration.

This proof is presented in Appendix A. A second consideration is

convergence of DM aspiration levels toward the efficient frontier.

CAIN is constructed such that at the beginning of a new iteration

k+l, aspiration constraints from the previous iteration k become

lower bounds for allowable objective aspirations. That is, given

completion of iteration k, the aspiration constraints Ak' become

rigid for iteration k+l. In other words, throughout iteration k+1,

aspiration levels for f,, i=1,2, .. .p, cannot recede below A, k), for

each respective i=1,2,...,p. This mandate is insured by the Alarm

interaction method (note that it is also justified since CAIN

allows a DM the flexibility to modify aspiration levels during a

Qiven iteration as many times as desired) . As a result, DM

aspiration levels are forced closer and closer to the efficient

frontier at each successive iteration. CAIN is therefore forced to

convergence in one of two ways: 1) the Algorithm of Centers

48



converges to an efficient solution at the end of a given iteration

and the DM chooses to accept this as the best compromise solution

and terminate, or 2) the aspiration levels themselves converge to

the efficient frontier. Note that method (1) will occur after only

1 iteration, but is likely to provide an imprecise solution from

the standpoint of DM aspirations. Method (2) on the other hand

provides a more precise approximation of DM aspirations, but will

require a significantly greater number of iterations. As a

possible compromise, a future computer implementation of CAIN

should permit a DM to prespecify a desired number of iterations.

5.9 The CAIN Algorithm

5.9.1 Initialization phase (iteration k=O)

0. Map the decision space formulation into the feasible

objective space: X- F.

1. Set i=l (objective counter).

2. Compute 11(0) and Ni(°0 for fi. (Note: For components of

R and S not yet defined (i.e. when i < p), their

respective constraints are considered nonexistent.

Mathematically,

x, - Vi undefined
81 - Vi undefined

3. Present DM with Di(O) where
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where D (0)

Obtain absolute minimum requirement ri where

Obtain satisficing threshold si where

r, s si i(o) if defined.

4. Set i=i+l.

5. If i > p, CONTINUE TO INTERACTION PHASE. Otherwise,

RETURN TO STEP 2.

5.9.2 Interaction phase

1. Set k=1 (iteration counter).

2. Set q=l (ranking counter).

3. Obtain number of priority ranking groups, v, desired by

DM for the objectives.

4. Obtain priority rankings Pq, q=l,2, . . . ,v for all f.,

i=1,2,...,p from DM.

5. Set i=l (objective function counter).

6. Check: iEJq?

NO -- set i=i+l and RETURN TO STEP 6.

YES -- CONTINUE TO STEP 7.

7. Compute i") and NIk for f..

8. Check:

(k). an accepable rangeMN1kk) for current value of i?

50



Elimnate (k)NO -- Eliminate A1  Vi=1,2, p defined for priority

q.

Check: q = 1?

Elimiate k)
NO -- Eliminate A1  Vi=1,2, ... ,p for priority

q-l. Set q=q-l. RETURN TO STEP 5.

YES -- Eliminate sets R and S. RETURN TO

INITIALIZATION PHASE, STEP 1.

YES -- Obtain DM aspiration level for f,.

9. Set i=i+l

10. Check: i E Jq?

YES -- RETURN TO STEP 7

NO -- Check: i =p?

NO -- RETURN TO STEP 9

YES -- Check: q= v?

NO -- Set q=q+l and RETURN TO STEP 5

YES -- ITERATION COMPLETE. CONTINUE TO

CONVERGENCE PHASE.

5.9.3 Convergence Phase

1. Invoke Algorithm of Centers to converge to an efficient

best compromise solution beginning with region defined

by U(k) = {f I f E F n (Ak) Vi=1,2 ..... p) }

Note that at the completion of one iteration, R and S

been rendered redundant and can be eliminated.

2. Present "best compromise solution" to DM. Check:
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Does DM accept this solution?

YES -- TERMINATE ALGORITHM

NO -- Set k=k+l; RETURN TO INTERACTION PHASE, STEP 3

Flowchart illustrations of CAIN are given in figs. 5.3a, 5.3b,

and 5.3c on the following pages.
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6.0 CAIN EXAMPLES

6. Example 1

In order to present both an algebraic as well as graphical

illustration of CAIN, consider the two dimensional example posed in

section 2.2:

Max f, = x1 + X2
Max f2 = X3
s.t. 4x + 3x2 + 5x3 - 60

X - X 2 , X3  0

6. 1. 1 Initialization

Step 0: Map decision space formulation (X) into objective

space formulation (F):

Max f,
Max f 2

s.t . 3ff 5 f2 - 60

f2 0

Figure 6.1 shows the original feasible objective space (set

F).

f2
14

10

U

4

2

0

05 10 Is 20 25 20

f I

fig. 6.1

56



Steps la,2a,: Set i=1. Compute ideal and nadir solutions for

£. Recall that initially, sets R and S are nonexistent. Thus,

computation of the ideal and nadir values is taken over set F.

max f, M~In f,

gt. 3f,+ 5f2 -e 60 _=20; NVI 0 ) S t. 3f,+ 5.42 -e 6 0 = 0

4f2 ko 4 t0

Step 3a: Present DM with D1 (0 ) and request absolute minimum

level and any satisficing level for fl.

As ae. DM! furnishes th
to1::.:I:**ds+:nhq levels: :~

Step 4a:i=i+1=2

Step 5a: Since 1=2 ~p 2, there must be another objective

to consider. RETURN TO STEP 2.

Step 2b: Based upon DM inputs for fl, compute ideal and nadir

values for f2 as follows. Note that sets R and S are no longer

nonexistent and that redundant constraint if,1 0 can be eliminated.

Ma X f Min f2

s. t. 34fl + 5 f 2 :r 6 0 s.3., + SE2 & 60
f,0 2t 4 5 =9; N!o if k 5 =3
f, 15 is4 15
4f2 2t0 if2 10

Present DM with D2(0) and request input of absolute minimum

requirement and any satisficing level for f2:
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D2
0  (9)

Assihe the

.. ... . .. .,

Step 4b: i i+1=3

SteP 5b: Since i=3 > p=2, initialization is complete.

CONTINUE TO INTERACTION PHASE.

Thus, sets R and S are now defined as:

R m{f,2: }; Sa{f, 15}

Note that set S immediately becomes redundant due to the

continuous updating of ideal and nadir values during the Alarm

interaction segment. The reduced feasible objective space prior to

beginning the interaction phase is shown in fig 6.2.

f2
14 '

12-

r1

4

2

0S10 Is 20 25 30

fl

f 19. 6. 2
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6.1.2 Interaction phase

Steps 1,2: k=1 ; q=1

Step 3a: Obtain number of priority ranking groups desired by

DM for the objectives.

Assume DM desires to rank the
objectives individually:

v=2

Step 4a: Obtain DM priority rankings of objectives:

Assume DM ranks objectives in
order of relative importance
as:

2) f~

Step 5a: Set i=l

Step 6a: Checks and counter updates:

i =I E J? - no - i=i+1=2 E JI? - yes

Step 7a: CAIN recognizes the highest priority objective from

Step 6a. Obtain ideal and nadir solutions for f2

Max f2 Min f2
12 s f, -9 ... N21) = s, t, + 60=4

- .4 .f.N2  4

Step 8a: Present DM with D2"). If DM agrees that this is an

acceptable range for f2, then obtain aspiration level for f2.
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m9

Assume DM concurs with the
allowable range and inputs the
following aspiration level for
f 2:

Y2 5

Step 9a: i=i+1=3

Step 10a: Check and counter updates:

= 3 E Ji? - no - i=3 > p=2? - yes - q=l=s=2? - no - q=q-l=2

CAIN recognizes no more objectives as priority 1 and that a

priority 2 objective exist. ALGORITHM RETURNS TO STEP 5 with a=2.

Step 5b: Set i=1.

Step 6b: Checks and counter updates:

i = 1 EJ 2 ? -yes- GOTOSTEP7

Step 7b: Based upon DM inputs to this point, ideal and nadir

values for priority 2 objective f, are computed:

Max f. Min f,
i s. t. 3 f, + 5f 2  60 s. t. 3f, + 5ff 2 - 60

= 2 > 5 = 11.67 ... N = -if 5 = 5
f2 Z5 f2 5

Step 8b: Present DM with D,('). If this range for f, is

acceptable, obtain aspiration level for t.

(ll167

60



Assume DM concurs wt
allowabl~e range anid furnishes:.
theI following aspiration. level....
for~ f:

Step 9b: i=i+1=2

Step 10b: Updating counters as given in the algorithm, CAIN

branches to the Convergence phase. That is, CAIN recognizes that

input requirements have been met for a complete iteration since

there are no remaining objectives or priorities. Based upon DM

inputs, the reduced feasible objective space after iteration 1 is

shown in fig. 6.3.

f2
14

12

10

a

i

4

2

0 5 10 1520 25 30

f Ia. 6. 3

6.1.3 Convergence Phase

Step 1: CAIN invokes the Algorithm of Centers to converge to

a best compromise solution beginning with region U") = FnA

61



This is illustrated in fig. 6.4.

f2
14 -

12

10

a

4

2

0*

5 10 15 20 25 30

fI

fig. B..I

Step 2: DM can choose to accept this best compromise

solution, or continue narrowing the feasible space with tighter

aspiration levels. Assuming DM is satisfied, the algorithm

terminates at the best compromise solution of fig. 6.4.

6.2 Example 2

As a demonstration of additional CAIN features, reconsider

Example 1. Assume that at Step 8b, a DM is not satisfied with the

range of values presented by DIMI':

(1=(11.67)

Step 8b: Recall that q=2 and since the DM does not concur

with D,(", A, (') is not yet defined. Therefore, there are no

priority 2 aspiration constraints to eliminate (f, is the only 2 n1

priority objective). Since q > 1, A2(1), the priority 1 constraint

is eliminated and the priority counter q is reset to q-1=1. CAIN
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then returns to Step 5 with the feasible objective space defined as

in fig 5.2.

Steps 5c, 6c, 7c, 8c: After updating the counters (q=l, i=1),

the algorithm requests the DM refurnish aspirations for f2 based

upon D2(') from Step 8a. Note the desired aspiration should be

lowered in order to broaden the range for Dl(".

D (1) = 9~

.Assume DM refurnishes
aspiration for f 2 as follows:

Y2 = 4.5

Steps 9c, 10c: Counters are updated (q=2) and CAIN returns to

Step 5 for recomputation of iD,( based upon the new aspiration for

f2 -

Steps 5d, 6d: Update counters - i=1.

Step 7d: Recomputation of i±(" and NI:

Max f1  Min f1
-s. t. 3 f, + 5Sf 2  6 0 _1 . .. (1) s. t. 3 f + 5 f2  ,6 0 _5

fi k 5 1fl > 5
f2 >t 4 .5 f2 z 4. 5

Thus, the achievable ideal for f, has increased from 11.67 to 13.5.

Step 8d: Present DM with updated D,(":

D (13.5)

If the DM concurs with this range, a new aspiration is

requested for f,.
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ASUMe:1:--'- DM CenCUrs:-' n±
furnishes aspiration': for ~a
follows:-: ...........

Therefore, the iteration is completed and CAIN branches to the

convergence phase beginning with the region shown in fig 6.5

8

0 5 "10 "S 20 25 30

. .. .5

Recall that once an iteration is complete, the defined

aspiration levels for that iteration become fixed. Aspirations are

only permitted readjustment during an iteration in order to insure

convergence.
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* SUBJECTIVE COMPARISONS

. ,CAIN vs. Traditional methods

-ie traaitionai MOLP soiutcn :trategies of section : suffer

;rcn cne of two glaring aefi cenc es. _n general. these tecnniaues

are eitner 1 ) restricted to the set cif efficient extreme points as

a result of mplementing the simoiex algorithm as an efficient

solution generator, or 2) too comDutationally complex to be of any

-eal Qractical value. As a rule, traditional techniques employing

a prior articulation or progressive articulation of DM preferences

suffer .rom the first inadeouacy see sections 3.2 and 2.4). On

the other nand, computational complexity and lacK of practicality

are common characteristics of the oosteriori approaches as they

attempt to construct the entire efficient frontier (see section

3.3.2). In addition to these inadequacies, the :raditional

progressive strategies nearly all require DM interactions involving

comparisons of multiple, often similar alternatives (sections 3.4.1

- 2.4.3) or burdensome traceoff inquiries (section 3.4.4).

7raait~onai aspiration cased approacnes aiso tend to suf-er frcm

the simolex restrictions (section 3.5.1).

One particular methodology, the method cf Wierzbic,i ksection

3.5.2) has shown promise in alleviating the extreme point

restr~ctions. As a result, this approach has been employed as the

efficient alternative generator in some of the newer interactive

methodologies. Unfortunately, the wierzbicKi strategy assumes DM

ability to furnish aspiration levels "near the efficient frontier

in crder to oe effective.
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CAIN nas attempted to improve on all of these ooTentia,

deficiencies. By not relying on simplex techniques fcr effizien

alternative generation. it is not bouna to nonaominatea extreme

points. Furthermore. CAIN interaction requires nothing more than

levels of aspiration. This simple progressive articulation is

further enhanced by the Alarm interaction technique. As a result

of requiring no alternative comparisons or tradeoff inquiries, the

potential for DM inconsistency is eliminated. Finally, although

computationally complex, tne Algorithm of Centers is conceDtuall,

comprehendible for the average DM (unlike construction zi the

efficient frontier aiscussed in section 3.2.2) and does not assume

any prior understanding of efficiency.

7.2 CAIN vs. New (Tchebycheff) methods

While obviously superior to most traditional methoos, a

subjective comparison of CAIN to more modern MOLP approaches

should reveal a more realistic measure of its standing. Generally,

these new approaches use variations of Wierzbicki (Tchebycneff,

weighting techniques for generating efficient solutions. The,'

therefore, like CAIN, are not bound to extreme points as are manv

of the traditional methodologies. Since Dotn CAIN and these mooern

strategies are capable of achieving any alternative on the

efficient frontier, the main attribute of comparison beccmes the

various interaction techniques employed.

While CASE, KO. and SC (see sections 4.2 - 4.4) are all aoie

to explore the entire efficient frontier, they also require a DM tc

make some form of comparisons cetween alternatives. if a DM ,s
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-naole to ccnsistent ' cerform tnis tasK. gcrim convergence -s

'mmeaiateiv placea .n jeocaray. As aliuaea tc acove. CAIN requires

-io ccmparison of alternatives. Althougn a CM is permittea to rank

raer -he Ob.lectives ouring the CAIN interaction segment, this

information is not mandatory. CAIN guarantees convergence using

cnly CM furnisned aspirations guidea by the Alarm interacton

system. Furthermore, as a result of Alarm, the Algoritnm of Center

will always converge to an efficient solution at least as good as

DM aspirations. On the other hand, the other algorithms permit

input of infeasible asDoraticns. it is then left to the

Tcheoycheff approach to determine wnicn objectives are compromised

to project back to the efficient frontier.

Subjectively, CAIN appears to possess some advantages over

other comparable MOLP strategies. This is particularly true in the

areas of interaction and convergence. Nevertheless, since CAIN is

still in its infant development stages. actual experimental

comoarisons of CAIN vs. alternative approacnes must b acccmplisnea

before any concrete conclusions can ce crawn.
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8.0 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

This report has described the development of a new aspiration

based interior point algorithm for solving the multiple objective

linear programming (MOLP) problem. The method, known as CAIN

(Convergent Aspiration based INterior method), guides a decision

maker (DM) to a best compromise solution through implementation of

a new DM interaction technique. This technique, called "ALaRM"

(Aspiration Level Range Method) assists in holding DM aspiration

levels feasible at all times while concurrently keeping a DM

abreast of achievable objective values. Once DM aspiration levels

are furnished, CAIN converges to an efficient best compromise

solution (based upon the defined aspirations) via the Algorithm of

Centers, an interior point optimization approach for Multiple

Criteria Decision Making (MCDM).

While subjectively, CAIN appears to possess advantages over

other aspiration techniques for MOLP (section 7), the

computational complexity of the Algorithm of Centers requires

computer implementation to be practical. Thus, the next logical

step is development of a computer algorithm for CAIN. Furthermore,

as of this writing, research is being conducted to improve the

Algorithm of Centers (Haas, 1990). The research is geared toward

reducing the number of iterations, and thlus enhancing its speed of

convergence. This research should be closely monitored for any

features which might benefit CAIN.

Ideally, development of CAIN has marked the beginning of a new
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practical MOLP solution technique. At the very least, it is hoped

that additional interest has been kindled for further research into

the applicability of interior point solution techniques to multiple

criteria decision problems.
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A.0 APPENDIX A - ALGORITHM OF CENTERS

A.1 Interior Point Approach for MOLP (Trafalis, 1989)

This section begins by first presenting some necessary

notation and a problem statement.

Let P be a full-dimensional bounded polytope in R described

by linear inequalities:

P = H, whereH1 = {x I afx b,

and R* is ordered by a constant closed polyhedral cone A. Recall

that a set A is a cone if ay e A for any a > 0 and y G A. A

polyhedral cone is a cone that is also a polyhedron. Thus if A is

also a polyhedral cone, then it can be represented by:

A = I x j Ax z 0 1,

where A is a matrix of proper dimension. Hereafter, the same

notation shall be used for both the polyhedral cone and its

defining matrix.

Consider the following problem:

PROBLEM: Find the set of points " where:

I{X (3i+ A)fnlP{}

This set is called the efficient frontier of P and is a subset of

the boundary of P. Note that the term efficient is used instead of

maximal in order to avoid confusion with the definition of a facet

as a maximal face with respect to set inclusion. Also note that

faces other than n-i -dimensional faces (i.e., facets) can be
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efficient.

Definition A.l.1 (Yu, 1985): A face F of P is called

efficient iff F is a subset of the efficient frontier of P.

Remark: The efficient frontier of P is the union of all

efficient faces of P.

This appendix shall be concerned with finding a point on P.

The concept of an analytical center of a bounded polyhedron

(Sonnevend, 1985 and Bayer and Lagarias, 1986) is fundamental to

the approach.

A.2 Algorithm of Centers for finding an efficient face

This section describes the method of centers (Huard, 1967)

applied to vector optimization. A similar approach was followed by

Renegar (1986) in the single objective linear case.

Let xk be an interior point of P and consider the intersection

Pk, of x + A and P. Next, find the center x '* of P, and start

again with xk l instead of xk. That is, take a sequence of points

{x } that is in general infinite. Section A.3 shall demonstrate

that this sequence converges t- an efficient solution. In formal

notation, the Algorithm of Centers is presented as follows:

Algorithm of Centers

0. Set k=O.

1. Let xk be an interior point of P. Consider the

intersection Pk of xk + A and P. Find the center x * of
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2. If I xk+1 - xk I < e, then stop. Else return to 1 with

k - k+1.

The above algorithm has the following characteristics:

- It is an iterative procedure and the round-nff errors do

not accumulate.

- It approaches an efficient solution from below through

strictly increasing values (with respect to the cone

ordering).

- It is an interior point algorithm whose path is not

influenced by the peculiarities of the feasible region.

Normally, in order to find the analytical center of a convex

polytope defined by linear inequalities, a nonlinear program must

be solved. Recently, several researchers realized the usefulness

of the center of a convex set, and especially the center of a

polyhedron (Eayer and Lagarias, 1986, and Sonnevend, 1985) . It can

be shown that if a polyhedron is defined by a set of linear

inequalities, then methods of computing its center exist.

(Trafalis, 1989).

Next, the concept of a potential function for the set Pk is

described. Let P be the given polyhedron (which is assumed full

dimensional), A le the ordering cone, and x' be a point in int(P).

Define:
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PI {x k + A) n P,

where

m
P= n H1 ,1=i

Hi x I aix 2 b1 ,

and

A={xjA;x 0, s=1,2,...,p).

It follows at once that Pk is a bounded polytope. Next define the

potential function:

f4 : n(k) -R,

such that

m
ffp,(x) = E log( afx - bl) + 9 log( A~x - A-xk).

i=1 S=1

The objective is to maximize f,. It can easily be proven that fPk

is strictly concave on int(Pk) (Bayer and Lagarias, 1986). Thus,

it has a unique maximizer xk+1, and x, , is a solution of

dfpk (x) = 0,

or

T Ta1  + A 0.
i= afx - bi s=1 A-x - Asxk

This is a nonlinear system of equations that can be solved by

Newton's method (Sonnevend, 1985, and Vaidya, 1987).
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A.3 Convergence of the Algorithm

Proof of convergence of the Algorithm of Centers is now

presented using the following notation:

A(1) =( x I Ax a Al 1,

P(;L) = P nAWk,

Sa) = P fint(A(W)),

F(1) = bdr(P ())

I(X) = int(P(l))

Pk = P(xk) ,and

Sk = S(Xk).

The following observations will be helpful for the convergence

proofs:

If S(1) o e, then 1(0) # o, and

If 1(0) = e then S() = 0.

Finally, the following convergence theorem for multiple objective

optimization shall be used:

Theorem A.3.1 (Hazen and Morin, 1984). Let < and . be binary

relations on X such that:

(a) x < y iff x yandnoty - x,

(b) < is transitive, and

(c) the sets x K and r x are closed.

Let T be a point-to-set map on X, and let 0 be a desirable
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set such that:

(d) If x E Q and y E Tx, then x<y, and

(e) 0 is closed from below under ! on X- 0.

Suppose a sequence fxk} is generated satisfying xk 1 E Tx k and

no member of {xkJ is in 0. If xk c S for some compact set

S Q X, then every limit point of (x* is in U.

Using this, the following proof can be constructed.

Theorem A.3.2 (Trafalis, 1989): The sequence [xk} constructed

by the Algorithm of Centers is finite and either the last

element is a weakly efficient point, or else every subsequence

of x converges to an efficient point.

Proof: Invoke Theorem A.3.1 with the ordering in Rn defined

by the cone A. That is,

xk yiffx-yGA, and

x > y iff x-y E K = A-O}.

It is easy to check (a), (b), and (c) of the general convergence

theorem. Next, define a point-to-set map on R' as follows:

T : R - 2 R , Tx = (x + X.

Define the set of desirable points to be:
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Q = eP: +AjfnP= i1}.

Condition (d) of Theorem A.3.1 follows at once from the fact that

if x f 0 and y E Tx , then {y-xl E A. Next, it will be shown that T is

closed form below under on tP-01. Let {xk, yk} be such that:

xk - x, yk 6 T(xk) and yk - y.

Taking the limit, {y-x E K, i.e. y E T(x). If sk = 0, then

P n int(A(xk)) = o. Hence, either x is a weakly efficient solution

or by the above observation, I(xk) o e. In the latter case, the

following nonlinear programming problem must be solved:

max f., (x)

s.t. x e I(Xk).

Note that this problem has a unique solution since Pk is bounded,

the sequence of points xk has the property that no member of it is

in 0, and P is compact. Therefore, invoking Theorem A.3.1 yields

the desired result, namely that the limit of every subsequence is

an efficient point.

Q.E.D.

The main computational burden of the Algorithm of Centers is

related to the determination of the analytical centers of different

iterations. A Newton's path following technique can be used for

this algorithm and can be shown to be polynomial in the number of

iterations. For additional details, see Trafalis (1989).
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