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1.0 Introduction

The turbulent flow amund a wing-body junction is a very complex, highly three
dimensional flow, yet it is commonly encountered. Figure 1.1 shows a simpified wing-
body junction tflow. Note that the tunnel coordinate system is shown, which will be uzed
to present the majority of the data. The dominating flow characteristic is the mean
secondary flow suucture known as the horseshoe (or necklace) vortex. Near the
appendage nose, the flow is highly unsteady, and velocity histograms show bimodal
behavior, termed the zero-flow and backflow modes (Devenport and Simpson, 1990b).
Flow visualizations performed in this region using hy drogen bubbles in water (Kim, 1991)
show a very complex, highly rurbulent flow, where the instantaneous velocity distribution
is often very unlike the mean flow patterns asscciated with either flow mode. The flow
field resulting as this unsteady vortical structure is stretched and skewed around the body
is complex and not well understood. The author’s study attempts to gain insight into the

physical nature of the junction vortex flow by examining and comparing his
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measurements to those of other researchers with the same body shape, but varying
approach boundary layer flow conditions.

The horseshoe vortex is created by a combination of two effects, the skewing and
stretching of the ransverse vorticity present in the incoming turbulent boundaxy layer as
it passes the wing, and the rolling up of the incoming fluid along the centerline due to
the large adverse pressure gradient created by the wing geometry. The term horseshoe
vortex is a misleading description, since it is not a typical "tornado" type vortex. The
mean vorticity distribution tends to be flattened into a more elliptical shape, and the
majority of the streamwise vorticity (£2,), except near the appendage surface, is

contributed by the transverse skewing term, dW/JY. Dickinson’s (1986a,b) work in

McMahon er al. (1987) discusses the two general types of secendary flow |, first
described by Prandil, flows of the “first kind" and "second kind". Secondary flows of the
first kind are caused by a shear laysr which becomes skewed about a streamwise axis.
The subsequent transport of vorticity into the streamwise direction results in the
generation of secondary flow., A wing-body junction flow falls into this category. The
curvature of the streamlines and resuliing pressure gradients skew the shear layer and
stretch the resulting streamwise vorticity. Secondary flows of the second kind are caused
by Reynolds stress gradients in planes normnal to the streamwise direction. This type of
flow occurs in corners created by intersecting semi-infinite planes, and is described by

Gessner (1973).
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There are many initiatives for researching junction flows. Junction flows are
commonly present at aircraft wing roots, at ship and submarine appendage-hull junctons,
at bases of bridge supports, in turbo-machinery flows, and also in flows with injection,
or a componeznt of the injection, normal to the main flow. The vortical flow structure can
cause problems such as scouring and deterioration of support foundations, excessive heat
transfer, and excessive noise and vibration due to the creation of additional turbulence in
the junction. Eurthcr research leads to 2 greater understanding of the physical nature of
juncture flows, and also, vortical and 3-D turbulent shear flows in general, enabling
control of their adverse effects. Also, additional experimental work gives CFD
researchers a larger data base for comparison of numerical results.

The author’s investigation of a wing-body junction flow was performed by taking
U, W, u’, w’, and -#w hot-wire measurements in 6 YZ planes adjacent to and downstream
of an appendage-flat plate junction (Figure 1.1). Thesz planes are designated S through
11. The locations of planes 12-15 are given in Table 1.1. The appendage geometry was
a 3:2 elliptical nose joined at its maximum thickness to a NACA 0020 section which
formed the tail. A total of 64 profiles of approximately 30 points each were taken using
a boundary layer type single hot-wire probe. Much farther downstream, U and «” data
were obtained in 3 YZ planes (planes 13-15) located in the far-wake region, again using
a single hot-wire probe. A total of 45 profiles were taken in these planes. Two of these
far wake planes were located in a diverging section of the wind tunnel, in order to study
the effects of an adverse pressure gradient on the trailing legs of the horseshoe vortex.

This configuration, described fully in section 2.2, simulates the conditions over the aft
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portion of a body with a tapering surface, such as an aircraft fuselage or the hull of a
submersible.

The main emphasis of this study, however, is the comparison of data from junction
flow experiments involving the same body shape, the aforementioned 3:2 elliptic nose
with a NACA 0020 tail. The purpose of the comparisons is to determine the approach
boundary layer effects on the junction flow. Section 1.1.2 describes these experiments,
and section 1.2 outlines the author’s research goals. The literature review focuses on
Jjunction flow experiments which examined the effects of varying the approach boundary

layer, since these studies are most relevant to the author’s work.

1.1 Review of Previous Work

A great amount of previous work has been done researching the flow in a

turbulent wing-body junction. Past research has involved various measurement mcthods

e R N e e T i b e e N ] V.o ~

and also various appendage geometries. Junciure ilow siudies can be divided inio two
broad categories based on geometry, 1) flows around a cylinder mounted normal to a flat
plate, and 2) flows around a more streamlined or airfoil shape mounted normal to a flat

plate.
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1.1.1 Cylindrical Appendage-Flat Plate Juncture Flow Studies

Measurements for these flows are usually taken only upstream of the maximum
thickness due to the large scale separation and unsteadiness present in the large wake
region. These experiments are useful in studying the formation or the horseshoe vortex,
and the flow structure in the steady flow region is similiar to that in the nose regions of
more streamlined shapes.

Baker (1980) studied the changes in the horseshoe vortex structure at the base of
a cylinder due to variations in the incoming boundary layer. Using oil-flow visualization,
he examined the change in distances X and Xy as Reg and 8'/D changed. X is the
location of the saddle point, or primary separation, and X, is the location of the
secondary separation, which indicates the main voriex position. Reg. is the Reynolds
number based on the approach boundary layer displacement thickness (&°), and D is the
cylinder diameter. Figure 1.2 shows sketches of ihe oil-flow pattern observed, and the
significance of Xg and Xy. Baker conjectured that a 4-vortex mean flow model was
applicable for this pattern, also shown i1 Figure 1.2. By measuring mean pressure along
the flow centerline, he found a local minimum in pressure which corresponded to the
primary vortex location, Xy (see Figure 5.3). From these mean pressure measurements,
Baker postulated that changes in Reg or 8/D do not change the vertical dimension of
the vortex system in the plane of symmetry. From the oil-flow results, he concluded that
the 4-vortex mean flow model existed along the centerline for 4,000 < Reg. < 90,000 and

0233 < §'/D < .25.
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Later studies by Baker (1985) attempt to further quantify the effects of Reg. and
3'/D on the locations of minimum and maximum t,, corresponding to Xg and X,
respectively. Using Lis data as well as data from Ram (1963), Langston and Boyle
(1982), and Peake and Galway (1965), he attempted to correlate X /D, X /D = f(Reg,
d°/D) for laminar and turbulent boundary layers. For turbulent boundary layers, his

results were

Xy/D = 0.100(Reg.)"! For 1,000 < Reg. < 11,000
Xs/D = 0.373(Reg) For 1,500 < Reg < 10,000
Xs/D = 15.6(Re;) For 10,000 < Reg. < 18,000

where Xy and Xy are measured from the cylinder leading edge. Note the lack of
dependence on §°/D. Baker (1985) also presents a theoretical investigation supporting
the lack of dependence on §°/D. Note that the author has included the references for
Ram and Peake and Galway for informational purposes only, as he was unable to obtain
copies of these references.

Belik (1973) performed research similiar to Baker’s. The goal of his experimental
work was to correlate X /D, found using oil-flow visualization, for a cylinder-end wall
junction flow, as functions in the form f(Reg, Shy) or f(Shy, Foy). Shy is the vortex
Strouhial number, defined by Belik as U,,;/(D2), where Q in this case is the vorticity of
the horseshoe vortex system. He assumed Q to be constant in a planc perpindicular to the
cylinder's surface. Foy is the vortex Fourier number, defined as vQ/(U,)>. Belik

assumnes that Q ~ wy ~ (3(U)/dY),,.. For a typical turbulent boundary layer, he assumes
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(BUYIY),ve = -5(U,;/8). After substitution, Shy = 28/D, and Foy = .5(v/U,8). It can
then b2 seen that Foy ~ Reg.

Belik also found X /D for a variety of artificially produced turbulent boundary
layers with differing (d(U,,,)/0Y),,. values, and therefore different vaines of Fo,. He
reached the final funcdonal relationship of Xg /D = f(Foy, Rep) for the range 36,000 <
Rep < 220,000 and .4 x 10°° < Foy < 3.5 x 10°. The function correlating the data is

Xs /D = (10°%/Fo,)*(.516 + .111(10"°Rep)) (6 =.016)
This is a very weak function of Rep. The approximation to Xs/D = f(Foy) is

X /D = .57(10°%Foy)" (g =.0202)
One can see that X /D o (Rey)"®. This is the same type of functional relationship which
Baker laier observed.

Belik alsc ineasured mean static pressures at the wall along the centerline. For
the cases presented, the local minimum in C, corresponding to the vortex core iocation
was relatively constasit, remaining at X,/D = .21 (again comparable to Baker’s results).
The oil-flow visualiza:ions shown seem to indicate a vortex system similiar to Baker’s.
Unforiunateiy, Beiik does not give details of the incoming boundary layer parameters such
as 9 or 8" for a more direct comparison to Baker’s work. The estimated range of &/D
is .(97 to 1.48. and from this, an estimate of the & /D range would be approximately .015
< &8'/D < .22. This coresponds to a Reg, range of 540 to 48,400,

Eckerle and Laagston (1987) also performed studies on a junction tflow around a
circular cylinder. They performed surface static pressure measurements, surface flow

visualizations, and mean velocity measurements with a five-hole probe. Their test
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conditions wer= U, = 30.5 m/s, Rep, = 550,000, Reg. = 8,470, Re, = 6,270, 8/D = .099,
and §'/D = .0154, where D = 29.8 cm. The saddle point location, X¢/D, for these flow
conditions was approximately .4, while X,/D was approximately .22. Baker’s correlation
gives values of .503 and .25 respectively. Eckerle and Langston concluded that for their
case, the single primary vortex model applied, and that the horseshoe vortex structure
became fuily formed between the 5° and 25° planes (centerline plane at 0°). Note that
their vorter moiiel conclusion does nut violate Baker's earlier findings, as 8°/D = .0154,
which is outside the range given by Baker.

Latrlewr and Langston (1990) present an intriguing study of an iceformation design
of a hull near a cylindcr/hull juncture. The geometrical features of the resulting
iceformation sre directly related to flow and thermal boundary conditions. The test
parameiers varied were 0 = (Tp - T)/(T, - Tg) and Rep, where T, = temperature of fluid,
T, =freezing teirnerature, and Ty = temperature of boundary surface. The Rep range was
737 10 1,543,

LaFleur and Langston present sketches of their results, showing separations as
ridges in the ice, and valleys being formed by reattaching flow. For 8 fixed at .37, the
Rep =737 case resulted in oniy 1 visible voriex in the plane of symmetry, while the other
cases produced 2 predominate vorticies (Baker’s 4 vortex model). Finally, they found
when using an iceform contour in the junction, a 5 to 6% drag reduction over the flat-
plate case could te achieved.

Agui anc Andreopoulos’ (1990) study of the flow around a cylinder was concerned

with the mean and fluctating wall static pressures. Their main goal was an increased
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physical understanding of junction flows. They were hoping to gain information about
the vorticity flux out of the wall by measuring the wall static pressures. They describe
the relationship between the wall vorticity flux and wall pressure in a later paper (1991).

From the momentum equation evaluated at the wall, the equations are

¥ _ _ X9

oX H ay (1.1)
ap) _  XBY

az "or

These relationships show the importance of the wall pressure gradient caused by the body.

Two cylinder junction flow cases are presented, Rey = 1.0 x 10° and 2.2 x 10°
(Agui and Andreopoulos, 1990). The given X¢/D values for these cases are .26 and .32,
respectively. The time averaged flow structure was taken to be represented by the 2
vortex model (1 main vortex). An estimate of the boundary layer thickness is given as
0/D = .1. It is not clear if this is constant for both Réynolds numbers, and one would
think that & would decrease as Rey, increased. However §/D = .1 gives Reg. estimartes
of 1,500 and 3,300 for &7/8 ratios of .15, and 8°/D = .015, which shows X, increasing

as Re;. increases, agreeing with Baker’s and Belik’s results.

1.1.2 Streamlined Appendage-Flat Plate Juncture Flow Studies

The past decade has seen much research conceming the juncture flow around a
streamlined appendage. The pressure gradients around the aft portion of most streamlined
shapes, unlike a cylinder, arc usually mild enough to delay separation until the trailing

cdge region. As oil-flow patterns show (Figure 3.10a), most streamlined appendage
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Jjuncture flows have a distinctive fish-tai! wall-limiting strzamline pattern, resulting from
separation at the trailing edge. Because of the lack of lurge scale separation, and
corresponding unsteadiness, measurements can be made adjacent to and in the wake of
the appendage.

Dickinson (1986a,b) presents a jun-ture flow study on a body with a 3:2 elliptic
nose joined to a 0020 tail section at their resp-ctive maximum thicknesses. He first tested
a 0020 appendage shape, but he reports that this more streamlined shape did not produce
crossflow velocities as great as the modified 0020 appendage. The larger crossflow
velocities caused by the more rounded, blunter nose enables the trailing horseshoe vortex
structure to be more easily identified.
modified NACA 0020 geometry in a YZ plane at X/C = 3.00. Two junction geometries
were used: the unmodified junction (appendage surface normal to floor at wing-body
intersection), and a junction wrapped by a fillet of radius 3.81 cm (.53 T). Two different
approach boundary layers were produced. The thick boundary layer case is identical to
the author’s approach flow. The thin boundary layer case, created using a false floor, was
approximately 50% as thick as the former case (see Table 3.3). Devenport er al. mainly
studied the effects of adding the fillet to the appendage base. They found that the vortex
legs were further apart and that the region of boundary layer distortion was larger when
using the fillet. They conciuded that the fillet’s primary consequence was to increase the
effective appendage nose radius. It was also seen that the horseshoe vortex was only

slightly effected by the changing approach boundary layer thicknesses.
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In addition to the above studies, many other experiments have been performed
using the modified NACA 0020 appendage shape, which has become somewhat of a
standard test case within the past decade. Aside from the studies done using it within the
Aerospace and Ocean Engineering Department at Virginia Tech, measurements were done
on this shape in the Mechanical Engineering Department at Virginia Tech (Shin, 1989).
McMabhon et al. (1987) also performed junction flow studies using the modified NACA
0020 geometry. Table 1.1 lists the locations and types of measurements taken in juncture
flows with this same geometry. Note that Table 1.1 includes measurements made in YZ
planes only, which are comparable to the author’s measurements. Complete data sets
from Dickinson (1986b), McMahon et al. (1987), Devenport and Simpson (1990a), and
evenporn ef al. (1950) were made avaiiabie to the author on disk, while tabular data and
figures from Shin (1989) were available. Selected profiles of Shin’s data, with 2/T
locations matching the author’s locations almost exactly, were entered into computer data
files for plotting and numerical calculations. The availablity of data from the other
researchers made comparison of their experimental results possible.

Giher research done on the junction flow produced by the modified NACA 0020
appendage shape includes upstream boundary layer profiles along a streamline, showing
the pressure induced skewing of the incoming flow (Olcmen, 1990), and skin-friction
measurements made with an oil-flow laser interferometer (Ailinger, 1990). Shin (1989)
reports on the effects of various short, strake-like leading edge fairing geometries added
to the modified NACA 0020 appendage. Devenport and Simpson (1990b) made LDV

measurements in the plane of symmetry at the appendage nose. These results, as
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mentioned at the beginning of the chapter, clearly show the bimodal characteristics of the
flow in the nose region. The wind tunnel and inflow boundary layer parameters for
Devenport and Simpson’s LDV measurements were the same as for the author’s work.
Rife (1991) studied the relationship between velocity and surface pressure fluctuations in
the bimodal flow region using an LDV and microphones. Kim (1991) also made
measurements on the same appendage shape, but in a water tunnel. Using an LDV, he
made measurements in the plane of symmetry at two different Reynolds numbers. His
data also show the bimodal characteristics of the flow quite clearly.

Many other experimenters have rescarched wing-body flows around various
strearnlined appendages. Mehta (1984) studied the effects that the appendage nose shape
had on the ansport of vorticity in the streamwise direction. Shin (1989) aiso examined
the effects of nose geometry on the horseshoe vortex mean flow structure. The results
of these researchers are used in chapter 6.

Kubendran et al. (1986) examined the turbulent junciure flow around a constant
thickness body with a 3.2 elliptic nose. They documented the mean vorte< path, and
noted similaritics between the turbulent shear stresses and the mean flow strain rates.
Similarities between profiles of 4" and w' were also found. Shabaka and Bradshaw’s
(1981) measurements in a wing-body junction revealed that the eddy viscosities for the -
uv and -aw Reynolds stresses are anisotropic and are negative over large regions. They
concluded that calculation methods based on eddy viscosities are likely to be unsuitable

for juncture flows.
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Wood and Westphal (1991) present measurements taken in a lifting wing-body
junction. They report that the trailing suction-surface leg is the stronger of the two
trailing vorticies. Since streamlines passing over the suction side of the appendage are
more distorted, this is an intuitive result. Moore and Forlini examined the junction flow
around a Rankine half-body, a geometry with a well known potential flow solution. Their
measurements, which include mean velocity results in 4 cross-stream planes, were
primarily intended for validation of numerical calculations.

Rood (1984) investigated the temporal flow features inherent i a wing-body
junction flow. He found distinct flow structures in the approach boundary layer, in the
wing-body horseshoe voriex, and in the junction vortex-wake flow. These flow structures
were all due to the presence of the wing, one resulting from the distortion of pre-existing
structures in the approach boundary layer, and the others newly created by the wing.
Rood reports that the structures’ characteristic frequencies were at least an order of
magnitude lower than the Strouhal-type shedding from the wing trailing edge.

Several researchers have performed experiments involving vortices embedded in
turbulent boundary layers. Cutler and Bradshaw (1986) studied the pair of rmailing
vortices generated by a delta wing along a flat plate, simulating a close-coupled canard
and aircraft wing. Westphal er al. (1985) examined the behavior of a vortex embedded
in a turbulent boundary layer subjected to an adverse pressure gradient, using zero
pressure gradient results for comparison. Shizawa and Eaton (1990) investigated the
interaction of a vortex embedded in a skewed turbulent boundary layer, a configuration

similiar to the trailing edge region of a streamlined appendage-flat plate junction.
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Westphal er al. and Shizawa and Eaton beth used half-delta wings protruding from the
flat plate to generate the embedded vortices. Even though the vorticity magnitudes
encountered and distribution patterns produced by these flows are somewhat different than
encountered in a junction vortex, the results of these studies are relevant to the author’s

work and are discussed in chapter 4.

1.1.3 Numerical Work in Appendage-Junction Flows

Some numerical work has been performed on the juncture tflow problem for both
laminar and turbulent flows. While accurate sclutions for the laminar cases arve relatively
common, the turbulent flow solutions suffer from the lack of an adequate 3-D turbulence
model.

Visbail (1991) studied the laminar juncture flow around a circular cylinder. He
obtained solutions for 8/D = .1 and Rep, values in the range of 500 to 5,400. He observed
a non-unique relationship between wall limiting streamline patterns and the flow above
the plate. He also observed that the flow became unsteady above Rep = 4,000, with the
resulting Strouhal number (defined as fD/U,,,) equal to .21. This result agrees quite well
with Sh = .20, found by experiment (referenced in Visbail, 1991). Visbail reports that
this unsteady behavior is not due to Karman vortex shedding in the cylinder’s wake.

Deng et al. (1990), performed calculations on the turbulent flow in the junction
around an appendage with the same geometry studied by the author and several others.
The inflow boundary layer conditions matched Dickinson’s thick boundary layer test case

(1986a,b, see Table 3.3). The sweamwise velocity contours compare well qualitatively

Introduction 14




with experimental results, but quantitatively, the calculated isovels are consistently less
than the experimental results. This may be due to appendage blockage cffects present in
Dickinson’s test. These effects are discussed in section 4.4, No turbulent fluctuation
results are presented.

Sung and Lin (1988) obtained solutions to the Navier-Stokes equations using the
Baldwin-Lomax turbulence model for the fiow through a wing-body junction. Their
primary interest was to investigate the effects of adding triangular shaped fairings to the
leading and trailing edges of the appendage, similiar to fairings used by Shin (1989).
From the three different leading edge fairing configurations, they found that a longer
fairing, which extended further upstream, was optimum in terms of reducing the mean
velocity distortion in the wake. They also determined that trailing edge fairings are
marginally beneficial when combined with a leading edge fairing. Maximum total drag

reduction was 5% less than the no fairing case.

1.2 Author’s Research Program and Objectives

1.2.1 Experimental Research Goals

The experimental research program of the author was designed to meet several
goals. 1) To further expand the 3:2 elliptic nose, 0020 tail junction flow database with
high quality (low uncertainty) measurements. 2) To examine the data closely to gain a

more complete understanding of the physical nature of the flow  3) Most import.ntly, to
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compare these data to other measurzments taken in juncture flows with the same
geometry. The other data sets to be used for comparisors are shown in Table 1.1. Table
3.3 shows the inflow conditions for each data set, and section 3.2 discusses the varying
approach boundary layer parameters. Through comparisons, the effects of Res., Re,,
8'/T, U, /T, U,.48, and other parameters on the junction flow will be rnore fully
understood.

A final goal is to compare the author’s 'ot-wire dawa to that cbtained by LDV
where possible. Olcmen (1990) noticed discrepancies in comparing the results of hot-wire
and LDV measurenients, He found that near wall turbulence measurements and mean
velocity measurements very near the wall (Y™ < 50) did not agree between the two
experimental techniques. Additional information is sought concerning this problem. C;

estimates were also made and compared to Ailinger’s (1990} resuits.

1.2.2 Description of Numerical Work

In addition to wind tunnel measurements, numerical computations using vortex
panels were used to gain insight into the effects of geometry on the horseshoe vortex
structure. This was accomplished by using a 2-D inviscid vortex panel calculation given
by Kuethe and Chow (1986) to predict the velocity distributions around various
appendage shapes.

The geometry of an appendage eifects the distribution and total amount of
vorticity (circulation] present in a horseshoe vortex in two ways. High velocity gradients

aroand the appendage nose lead to high rates of vortex stretching, increasing the peak
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vorticity and affecting the shape of the vortex structure. In addition, the geometrical
bluntness of the appendagr: causes a stronger adverse pressure gradient, increasing the
initial vortex roll-up, which increases the circulation in the horseshoe vortex.

Mehta (1984) experimentally studied the horseshoe vorticies produced by different
appendage nose shapes. He verified that increased appendage bluntness causes a stronger,
more structured vortex. Also, by comparing their work to other researchers, Kubendran
er al. (1986) found that the horseshoe vortex path and its strength are related to the nose
slenderness ratio. They report that the secondary flow in a junction created by an
appendage with a large nose slendemess ratio (12:1) is mainly due to the cross-stream
gradients of the Reynolds stresses (Prandtl’s "second kind" secondary flow).

The numerical work was carried out by computing the velocity distributions
around a wide variety of appendage shapes. The final results include correlations between
appendage geometries and average vortex stretching rates, and between a vorticity
transport parameter (determined numerically) and a non-dimensional circulation estimate
fromm Mehia’s experimental work (1984). The numerical research goals and resulis are

fully discussed in chapter 6.
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2.0 Experimental Apparatus and Techniques

Unless otherwise noted, all data presented were taken in the Virginia Tech Low
Speed Boundary Layer Tunnel. This tunnel has been used in much previous work at VPI
and SU as well as Southern Methodist University (Ahn, 1986, Devenport and Simpson,
1990a, 1990b, Devenport et al., 1989, Simpson et al., 1380).

This chapter describes the appendage, wind tunnel, instrumentation and

cxperimental techniques, data collection and reduction, and uncertainty estimates.

2.1 Appendage Description

The appencage (or wing) used in this study was made up of a 3:2 elliptic nose @
joined to a NACA 0020 tail section at its maximum thickness. The section coordinates

are given in Table 2.1, and Figure 2.1 shows its cross secuon. As mentioned in chapter
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1, this body shape has been studied in many other experiments. It has a maximum
thickness (T) of 7.17 cm, a chord (C) of 30.5 cm, and is 22.9 cm high.

To prevent unsteadiness due 0 natural flow transition, boundary layer trips made
from 6.35 mm wide strips of 120 grade sandpaper were attached to the appendage with
the sandpaper leading edge positioned 28.2 mm downstream of the wing leading edge.
Appendage boundary layer data were presented by Devenport and Simpson (199Ca) using
these trips. The appendage boundary layer thickness at its trailing edge is = .25 T in the
two dimensional flow region. The symmetry of the appendage boundary layer was taken
to be a good indication of overall flow symmetry (Figure 3.7). Devenport and Simpson
also report no separation is visible in the two dimensional flow region of the appendage

(1.06 < Y/T < 2.12) vsing oii-flow visualization. Section 3.1.2 presents the data

describing the appendage boundary layer.

2.2 Wind Tunnel

The Virginia Tech AOE Low Speed Boundary Layer Tunnel test section is shown
in Figure 2.2, The test section, which measures 8 m long by .21 m wide, can be divided
into 3 regions as shown, These different regions will be described in following sections.
The test flow for this open circuit tunnel is driven by a 25 horsepower centrifugal blower.
The flow passes through an air filter, blower, fixed-setting flow damper (to control flow

speed), a section of honeycomb to straighten and remove flow swirl, 7 turbulence screens,
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and a two dimensional 4:1 contraction nozzle before entering the test section, The test
section floor is constructed of fin-form plywood 19 mm thick, except for two access
panels around the wing, which are €.4 mm plexiglas. The side walls are float plate glass,

and the ceiling is made of 6.4 mm plexiglas reinforced with aluminum channel.

2.2.1 Test Section Description, Regions 1 and 2

Within the first 1.63 m of region 1, the flow undergoes a further 1.5:1 contraction,
ending at a throat 25.4 ¢m in height. From the throat to the end of region 2, the upper
wall diverges slowly to a height of 26.67 cm over a length of 3.54 m. This divergence
reduces the variation in C; of the test flow due to boundary layer growth along the floor
and ceiling. A 6.3 mm forward facing step trips the boundary layer at the beginning of
region 1.

Plexiglas wall liners 6.4 mm thick support the ceiling in regions 1 and 2.
Positioning the wall liners 330 mm (X/C = 1.08) upstream of the appendage leading edge,
and 203 mm (X/C = .605) downstream of the trailing edge allowed the appendage
blockage effects to be :duced by crudely pproximating its two dimensional potential
flow streamlines (Figure 2.3). Note that the dizcontinuities caused by the wall liners were
faired over with tape. By comparing potential flow results 1o measurements of the static

pressure at the wall, Devenport and Simpson (1990a) show the absence of any substantial

blockage effects in the flow.
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2.2.2 Test Section Description, Region 3

Rezion 3 of :he test section was modified by the author for gathering appendage
far-wwake data. It was designed to study the decay of the trailing voriex/wake structure
in the presence of an adverse pressure gradient. This region utilizes the tunnel’s active
boundary layer control to bleed off a portion of the incoming side wall boundary layers.
Figure 2.4 shows oil flow results of the areas around the boundary layer control suction
slots. The oil flows and tufts were used to adjust the mass flow through the slots so that
the inner side wall boundary layer would be bled off while maintaining a two dimensional
flow in the freestream. The active boundary layer control system is further described by
Simpson er al. (1980). A boundary layer "scoop” was built into the ceiling of region 3
(Tiguic 2.5). Iis purpuse was 1o skim off the inner Z ¢m of the ceiling boundary layer,
and thus prevent separation in the diverging section.

Figure 2.5 also presents the dimensions of the diverging section. Research by
Reneau, Iohnston, and Kline (1967), shows that for a diffuser with these dimensions, no
separation should occur downstream of the throat. The inner side wall liners were made
of $.5 mm thick piexigias, while the ceiling sections were made of 6.4 mm thick plexiglas
reinforced with aluminum channel. The scoop section was constructed of plexiglas 3.2
mum thick to facilitate the needed ceiling curvature. The leading edge was tapered to 1.6
mm, rounded, and angled upwards approximstely 2° to prevent separation off the lower

side of the scoop. Figure 2.6 shows a portion of the results from: an oil-flow visualization

performed at the scoop leading edge. No separation was in evidence at the scoop leading

edge.
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A back-pressure screen was constructed to match the static pressure in region 2
to the atmospheric pressure and minimize air leakage into the test section. After adjusting
the open area ratio of the screen with tape, the final pressure difference was
approximately -.1 inches of water (atmospheric pressure slightly greater than region 2
pressure). This allowed for a small factor of safety, as a positive pressure difference
would tend to raise the st section ceiling in regions 1 and 2. The ceiling section in
region 3 had to be helc .~ place due to the increasing internal pressure as the flow
diverged. Oil fiow visushization was used extensively in region 3 to assure that the flow
was not separating, panicularly in the side wall/floor junction areas. The oil flows
showed no sudstantial separation present for X/C < 12, where C is the appendage chord

leng

2.2.3 Appendage Mounting

The leading edge of the appendage was located 1.39 m downstream of the throat
in region 2. The ceiling curvature defining the start of region 3, begins 2.24 m
downstream of the appendage leading edge. The body was mounted at zero incidence and
sweep along the tunnel centerline. A 37 mm gap was left between the end of the
appendage and the tunnel ceiling to prevent the formation of a second junction vortex

along the ceiling.
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2.2.4 Wind Tunnel Performance

The flow characreristics of regions 1 and 2 have been documented in previous
work. Devenport and Simpson (1990a) report that the freestream flow of region 2 is
uniform to within .5% in the spaawise (Z) direction and 1% in the vertical (Y) direction,
with a rms turbulence intensity of .2% at U, = 27 m/s. Detailed documentation of
regions 1 and 2 was performed by Aka (198%). He rroorts that the boundary layer in
regions 1 and 2 is an equilibiium boundary layer and that it closely satisfies the two
dimensional momentum integral equation. A:so, the velocity and pressure spectra show
no preferred frequencies. Figure 2.7 shows mean velocity measurements in the potential
core of regions 1 and 2, and displays the lack of any substantial pressure gradients past
X = 70 inchies (1.78 a2).

The flow characteristics in the diverging section {(rzgion 3) were documented by

the author and will be discussed in section 3.1.

2.3 Experimenial Techniques and Instrumentation

2.3.1 Coordinate Systems

Four different coordinate systems were used to reduce and present the data; wire,
local stream, local freestream, and tunnel coordinate systems. The Y-axis for all of these
systems is always perpendicular to the floor. Figure 2.8 shows the relationship between

tunnel and local freestream coordinates. The local freestream coordinates are defined by

Experimental Apparatus and Techniques 23




setting W = 0 in the freestrearn. This coordinate system is fixed with respect to Y, but
it orientation changes as X and Z change. The tunnel coordinate system is fixed for all
X, Y, and Z, and its orientation is shown in Figure 1.1. The angle a is defined positive
by right-hand rule convention, and when subscripted, the subscript refers 1o the coordinate
system from which the angle is measured (the angle in Figure 2.8 would be o). The
majority of the data is presented in tunnel coordinates.

F:gure 2.9 shows two coordinate systems fundamental to the initial data reduction,
the wire and local stream coordinate systems. The wire system is fixed with respect to
the hot-wire probe. The local stream coordinate system is defined by W =0 at every X,
Y, and Z location. Dutside the boundary layer, the local freestream and local stream
coordinates should be idenucal. [igure 2.9 also shows the local tlow angle being
measured from some arvitrary coordinate systenml. The importance of the wire and local

stream coordinate systems can be seen 1n section 2.5.2.

2.3.2 Instrumentation anr. Datu Collection

All data collection, with the exception of the streamwise traverses made in the
potential core of region 3, was performed with a TSI model 1218-T1.5 boundary layer
hot-wire probe. The streamwise traverse data was collected with a TSI model 1210-T1.5
straight hot-wire probe. Each probe sensor is approximately .004 mm in diameter and 1.3
mrn in length.

For both probes, « Miller-tpe integrated circuit constant temperature hot-wire

anermometer was used. Details of this anemometer are given by Miller (1976). A method
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of frequency response testing using a sine wave generator is given by Simpson et al.
(1979). Employing this method, the author found the frequency response of the
anemomgter to be in excess of 20 kHz for an overheat ratio of 1.7 and U 4 = 27 m/s.
Calibrations were made with a TSI model 1125 calibrator from flow speeds of
approximately 9.5 m/s to 29.5 m/s. Using King’s Law for a constant temperature

anemometer in incompressible flow,

E? = A" + B°Ug 2.1
the velocity versus output voltage relationship could be linearized within the data
reduction computer program, The piobe was calibrated by fixing the exponent n at .45
and then finding the coefficients A" and B’ using a linear least-squates curve fit. The
compurer then varied n to obtain the maximum correlation coefficient. The final value
of n was usually in the range .39 < n < .41. Correlation coefficients in excess of .99999
were attainable using this method.

Figure 2.10 shows a block diagram of the equipment used for calibration and data
acquisition. An IBM AT computer with a 12 bit Data Translation DT2801 A/D converter
was used to sample, reduce, and record the anemometer signals. The offset amplifier,
with a cutoff frequency of approximately 40 kHz, scrved as a signal conditioner for the
A/D board and also as a signal buffer. The voltmeters were used to calibrate the
amplifier (which was done every 60 to 90 minutes) and also, along with the oscilloscope,

to monitor the anemometer signal.

Us, u's, W's, -iwg, and Opc measurements were taken at a single location by

yawing the hot-wire (held in the XZ plane) about the Y-axis (perpendicular to the floor)
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to three different angles. These angles were approximately +30° and 0° relative to the
local streamwise direction. This procedure is explained in greater detail in section 2.5.
At each orientation, 7000 samples were iaken at 5§ kHz, for a record length of 1.4
seconds. The effective record length was longer than this, since the computer processed
blocks of 1000 samples, each block taking approximately 5 to 8 seconds to process.
Therefore, the 7000 samples were distributed over 35 to 50 seconds. No time series data
were recorded, as all the initial data processing was done by the data acquisition program.

To take measurements, the probe was positioned in the flow on a rotating support
(Figure 2.11). Because the probe sensor is offset from its support axis, a "dog-leg" probe
holder was used to position the sensor at the center of rotation. The probe support was
held by a lead screw traverse system positioned above the test section ceiling, enzbling
movement in the YZ plane. The initial probe position from the wall was determined
using a cathetometer to measure the distance from the probe to its refiected image from
the floor. Table 2,2 presents the estimated X, Y, and Z location uncertainties. Note that

the uncertainties in X and Z increase with height above the floor due to slight probe
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2.4 Uncertainty Estimates

One of the goals for these measurements to obtain low uncertainty data. The

"jitter" program method, presented by Moffat (1982), was used to estimate the 95%
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confidence levels for the reduced data using the daia reduction technique discussed in the
next scction. The experimental uacertainties are shewn in Table 2.3. Nominal
uncertainty estimates for the reduced data (tunnel or freestream coordinates) are shown
in Table 2.4. Although the jitter program estimates a 5% uncertainty for the w’ and -aw
data, the scatter in the results seem to indicate that 7% to 10% may be a better, or even
optmistic, uncertainty estimate.

To aid in future measurements, the contributions of each of the experimental
uncertainties to the total uncertainty of the reduced results were broken down by
percentage. The major contributors for each quantity can be seen in Table 2.5. Of note
is the major contribution (greater than 95%) of probe yaw angle uncertainty to the total
uncertainty in Qe and Woye.

It should be noted that these uncertainty estimates do not account for systematic
or bias errors in the experiment. These figures merely represent the likely scatter due to
random effects. Systematic errors were hard to avoid when aligning the probe with the
tunnel coordinate system. Using a 2-D inviscid flow calculation, attempts were made to
identify and correct for these errors. Section 4.3.3 discusses the corrections made for
these alignment errors.  Another known source of systematic ecrors can be seen in some
of the profile plots of u';c/U,,¢ and w'r/U,,, (plane 10 data in Figures 4.99 and 4.101, for
example). A small amount of noise (= 3 mV rms) could be seen using an oscilloscope
when the hot-wire probe was in the freestream. The origin of the noise was finally traced
1o a computer monitor, and moving the monitor solved the problem, The other

fluctuating quantity (-w) was not affected due to the nature of the data reduction
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equations and only the freestream data seemed to be affected for 4" and w’. To check
repeatibility, a test was performed by taking multiple Ug and o measurements at X/C
= 1.05, Z/T = -.2. The test showed the mean streamwise velocity results to be repeatible
within 1% of U,,,, with nominal differences in oy of 1.5°.

Finally, the errors of the other data sets examined in this study need to be
estimated to compare.with the author’s data. Table 2.6 lists the errors given in the
references for each of the data sets. McMahon et al. and Dickinson both give
uncertainties in the same form as the author, as a percentage of measured value.
Devenport and Simpson report uncertainties as absolute quantities, regardless of the value

being measured. The errors listed for McMahon’s case are the maximum possible errors,

and 90

N

of the uncertainties are only half ‘of the given maximum values. Dickinson
reports uncertainties only for mean quantities. Not listed in Table 2.6 are Ailinger’s skin
frictdon uncertainties. For the locations in planes 5, 8, and 10, the uncertainties of his
data ranged from 2% to 10%. A good nominal uncertainty estimate would be 5% or 6%
of the measured C; value.

The experimental techniques varied for each data set, and this in itself may have
brought about bias errors, or "bias differences” between each data set. A discussion on
this subject is beyond Lhc scope of this thesis, but the reader should be aware of this fact.

it is the author’s opinion that none of the data sets, as a whole, suffer from uncertainties

or bias errors that would invalidate general comparisons,
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2.5 Data Reduction

A method previously used by Devenport and Simpson (19¢0a) was used to obtain
the desired quantities. This method avoids the problem of having to linearize every

voltage sample and thus speeds up the data reduction.

2.5.1 Calculation of Uyyand u',;

By letting
ElZ_A ]
U' g = HE) = ( ) (2.2)
2 B
and
E'=E + e (2.3)
U'g = Ug + g 4

f(E") can be expanded in a Taylor series about E. In doing se, U, and &', can be found
in terms of E, E?, E®, and E* (note that these are mean quantities, e.g. the average of the
square of the voltages). These quantities can be obtained by looping through the voltage
arrays only one ime. A more complete listing and derivation of the equations involved
is given in appendix A.

To test the accuracy of this method, a simulation was done using a computer

routine that generated a set of random samples with a Gaussian distribution. Since the
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mean and variance of this simulated velocity distribution were known a priori, the errors
using this methed could be calculated, given nominal values of the calibration coefficients
A’, B®, and n. A record length of 5,000 data sampl=s were used, and the coefficients
were A® =.1225, B" = .09, and n = .41, No attempt was made to simulate the skewness
present in a real boundary layer velocity histogram.

Figuares 2.12a and 2.12b show the results of the simulations using various Uy, /U,
values. The calculated errors diverged rapidly when u’/U,., became greater than
approximately .25. The absolute values of the errors are plotted, so it should be noted

that «’/U,, was always underestimated by the method in Appendix A. As seen from

Figure 2.12b, both of the error functions seem to have a correlation in the form log(error)
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was less than 0005 and &' /U,y Was less than .003. The maximum local turbulence
value ever encountered is usually around .30 for an equilibrium boundary layer, so this
method is quite accurate at common /U, values. The maximum local turbulence
levels encountered by the author in the vicinity of the wing/body junction was .27, in
tlane 10 at the wing tailing edge.
usually at Y/T < .01. Nominal near wall values of u’/U, , in plane 10 were .14 to0 .25,
In other planes near the appendage, the nominal near wall values were rarcly greater than
.20. In rcgion 3, the near wall values of u’/U,,,, were much higher, with nominal values

of .2 to .31, and a maximum value of .39 in plane 15. For this reason, attempts were

made to correct the data in region 3.
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The corrections were made by curve fitting the error functions (Figure 2.12b). The
final equations were
U, /Upw = (e"2763”)(u'/U,w1 y*+96319 Pxy = .9973 (2.53)
W o fUpen = (€55 U,y )55 Py = 9984 (2.5b)
The correction criteria used was a correction greater than 1% of the value being corrected,
and a local turbulence intensity of more than .05. Using these criteria, no U/U,, data was
corrected. In plane 13, 31 corrections were made, with an average correction. of -.001.
in plane 14, 96 corrections were made, with an average of -.0012, and in plane 15, 180
corrections were made, with an average of -.0011. The maximum correction ever made
was only 2.5% of the original value, with the nominal corrections in the range 1% to
1.5%. The effects of these corrections can be seen in the profile plots of the u’ data in

planes 13-15 (see section 4.3.2).

2.5.2 Calculation of Ug, u's, w'g, -iWg, and o
As mentioned earlier, the procedure for obtaining Ug, u’s, W's, -dWs, and o in
planes 5 through 11 is the same as described by Devenport and Simpson (1990a). This

procedure is similiar to the “conventional” method described by Rodi (1975). He reports

that this method is accurate for turbulence intensities below 25% of U, The two

coordinate systems used for the calculations are shown in Figure 2.8. The angle « is

positive as shown following right hand rule convention. Using the equation
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U = UL+ KWWY + I2WE, (2.6)
as shown in Jorgensen (1971), the expression for the effective cooling velocity can be
written as

U = (Ugcosa + Wsina)? + hV; @)
+ k? (-Ugsina + Wgcosa)?
where o has been measured with respect to the wire coordinate system. One can expand

equation (2.7) into a more convenient form:

Uy = AU; + BV; + CW; + FUW, (2.8)

where

A = cos’e + k’sin’a
B=h
C = sina + k%*cosla

F = 2(1-k*)cose sing

Since U, Vg, and W are components in the time-mean flow coordinate system,

W = 0 by definition, and

U's = Ug + ug
Vig=Vs+ v 2.9)
W= wg

If it is further assumed that

ug , v, we, Vo < 25U

then
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2 .2 2 2
ug , vs , W ,uws,sts,V§<< Us , U, , Ugwy

After dropping these second order terms, the relevant equations become

Uy = Uy/A (2.10)

2 — /
(W) = AW/ ) + %%(W’s)2 + F uwg (2.11)

where A and F are functions of the local streamn mean flow angle measured with respect
* to the probe, which changes as the probe is yawed. Using equation 2.10 and two
measurements taken at yaw angles of approximately £30°, the flow yaw angle with
respect 1o an arbirary datum and the magnitude of the mean velocity vector can be found.
The angle datum was selected such that & = 0° when the velocity vector was aligned with
Xre. After taking another measurement at a third yaw angle, preferably aligned with oy,
a simultaneous system of equations can be solved to yield values for u’g, w's, and -y,
with redundant values of Ug and ag. The coefficient of axial sensivity, k, was taken to
be .12 for these measurements. There is a great amount of uncertainty in this figure, but
as Table 2.5 shows, this uncertainty does not sreatly effect the reduced quantities.

The output from the data acquistion program (mean velocity vector magnitude and
direction, and 3 components of the Reynolds stress tensor in the XZ plane) was given in
the local stzeam coordinate system. This output was then transformed into the tunnel
coordinate systemn. Since the initial probe rlignment was done by eye, a relatively large
error could propagate through the results of data presented in tunnel coordinates. Protile

data presented in the local freestream coordinate sysiem would eliminate the alignment
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error, since the relative angular measurements for different Y locations in each profile are PY

more accurate. The tunnel coordinate system was used, however, since it was considered

better for comparing data sets. Note that for planes 13, 14, and 15, the probe was not B

rotated and only Uqc and u'rc were measured. This was done mainly in the interest of ¢

time, as this meant only a third as much time was spent taking data. Also, it is

reasonable to assume that much of the secondary flow structure present froin the )
oK

horseshoe vortex becomes diffused and washed out, particularly as the flow diverges in -

the adverse pressure gradient.
L
L]
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o
e
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3.0 Description of Test Conditions

An effort was made to keep the daily test conditions as uniform as possible. The
wind tnnel lab area was air-conditioned, and temperature equilibrium was established at
approximately 25° C after running the wind tunnel and laboratory air-conditioner for 30
minutes. Constant temperature was important for accurate hot-wire measurements and
also to keep flow characteristics (fiow properties, separation locations, etc.) from varying.
The daily variadon in temperature was estimated at + ,5° C. Note that a temperature
uncertainty of £ 1° C was used in table 2.3. This figure was used as a worst case
estimate.

The daily atmospheric pressure was approximately 945 * 10 mb, and the daily

reference velocity was approximately 26,75 £ .75 m/s. Small changes in U

ref Were

constantly updated as measurements were made.
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3.1 Flow Characteristics

3.1.1 Empty Tunnel Flow Characteristics

To document the flow characteristics in the adverse pressure gradient region,
potential core and boundary layer measurements were taken in regions 2 and 3 without
the wing. When taking these measurements, side wall inserts were used in region 2 to
fill the gaps used to approximate the potential flow strearnlines when the wing was
installed,

Data from the potential core streamwise traverses are shown in Figure 3.1. A 1-
dimensional inviscid continuity calculation was done for comparison to the U/U, s and C,
results, and is shown in Figure 3.1 by the solid line. The variation is mainly due to the
additional blockage caused by the growing boundary layer. An increase in the freestream
value of «’ from .2% t0 .7% occurs as the flow passes through region 3. Note the slight
"hump” in the U/U,; and C, data where region 3 begins. This is due to the blockage
effects of the suction slots and the boundary layer bleed scoop at the ceiling. The change
in C, with respect to X/C was estimated using cenual differencing. The results for
d(C,)/d(X/C) are also shown in Figure 3.1.

Figure 3.2 shows U/U,,, and u’/U_, profile data for 3 locatons in region 3. The
mean velocity seems to decrease almost uniformly as X/C increases. The turbulence
intensity in the inner boundary layer region decreases as Upg decreases, contrary to the

turbulence behavior in the freestrcam. As seen from Figure 3.2, the boundary layer
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profiles seem to have similiar shapes. Calculations were done to determine if these

profiles resulted from an equilibrium boundary layer which could be described by

Ups = (X-X )" (3.1)
as given by Rotta (1962). These profiles, however, failed to meet the criteria required for
an equilibrium turbulent boundary layer.

Using Spalding’s wall law (Spalding, 19C1) for tne inner region, C; estitnates were
calculated for the three boundary layer profiles measured in region 3. Spalding’s equation

is given as
Y = Ute i@V -1-kU* - (kUL kU - L kU ) (3.2)
G 21 31 4l

where k = 0.407 and G = 10. Figure 3.3 gives an example of how well equation (3.2)
fit these profiles. Table 3.1 lists the profile parameters. The displacement thickness &)
results were used to perform a more accurate 1-D “inviscid" calculation for the velocity
distribution in region 3. The dashed line in Figure 3.1 shows the results of the
calculation. The calculated U/U, values with the § correction are closer to the
measured values, but as X/C increases, the results diverge. To perform the calculation
correctly, the boundary layer growth along the tunnel roof and sidewalls must also be
accounted for. A simple calculation shows that although the physical angle of divergence
of region 3 is 4.996°, the U/U_, vs. X/C potentizl core data show a mean "inviscid"

divergence angle of 3.276° with a standard deviation of 1.16% for X/C > 8.
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3.1.2 Appendage Flow Characteristics

As previously mentioned, a large amount of data are presented regarding this flow
in Devenport and Simpson (1990a). Some of the data aw pissented here to give
additional information about the wing-body junction flow char+~ieristcs.

Figure 3.4 shows a surface plot of the C, distribution cn the st wall surrounding
the appendage, and is good for showing the qualitative features of the pressure field.
Note the large adverse pressure gradient imposed on the incoming beundary layer at the
nose of t_hc appendage. As the flow is accelerated around the appendage sides, the
pressure reaches a minimum value just forward of the maximum thickness. At the
minimum pressure locations, an extremely large adverse pressure gradient exists in the
direciion of increasing |Z/T|. As the flow deceleraes, in the presence of a more mild
adverse pressure gradient in the sireamwise direction, positive values of C, occur at the
trailing edge. As oil-flow visualizations show, separation occurs in this region due to the
effects of the pressure gradient and the horseshoe vortex. Separation does not occur in
the 2-dimensional flow region toward the mid-span of the appendage. A comparison of
the waii pressure distribution and that produced by an unbounded potential fiow is shown
in Figure 3.5. While the qualitative distribution is the same, the magnitudes of the
measured C, disuibution are less thaﬁ the calculated values by approximately 25% to
30%. Figure 3.6 shows a comparison of the actual C, distribution at Z/T = £3.17 with
that predicted from potential flow. This data demonstrates the lack of significant

blockage effects in the test flow,
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As mentioned in section 2.1, symmetry of the appendage houndary layer was taken
as a good indication of the flow syminetry (Figure 3.7). Figures 3.8 and 3.9 show the
results of mean velocity and turbulent fluctuation measurements 1 mm downstream of the
trailing edge at various Y/T locations. The 2-dimensionality of the boundary layer
indicates that the junction flow is independent of the height of the wing (Devenport and
Simpson, 1990a). These measurements can be used to determine what features of the
junction flow can be attributed to the wing boundary layer and also for determining the

dissipation characteristics of the wake.

3.1.3 Oil-Flow Visualizaticn Results

Oil-fiow visualizations were performed by previous researchers (Devenpon er al.,
1990, Devenport and Simpson, 1990b, and Clcmen, 1990), and Figures 3.10a,b display
the results. Note that the individual measurement locations are indicated by the white
dots, and the individual XY planes are also indicated in Figure 3.10a. To produce the oil-

flow visualizations, a mixture of kerosine, titanium dioxide powder, and oleic acid was

technique, the original oil flows could be preserved, since the sheet could be removed
from the wind tunnel when the oil had dried.
Examing Figure 3.10b, one can identify the primary separation point (saddle point)

and, closer to the appendage, the collection of pigment along what can be called a line

of low shear (ILOLS) (Devenport and Simpson, 1990b). This line is not a separation line

since oil streaks pass through it near the plane of symmetry. This is in contrast to
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previous researchers’ conclusions. The 4-vortex structure deduced by Baker (1980) and
others may exist instantaneously, but time mean velocity measurements along the
centerline upstream of the wing show only one vortex in the plane of symmetry
(Devenport and Simpson, 1990b). It can be postulated, however, that the LOLS location
and Baker’s Xy location are directly related, since away from the plane of symmetry, the
LOLS more closely resembles an ordinary separation line. This theory is supported by
the fact that for the thin and thick boundary layer cases documented by Devenport et al.
(1990), the variation in Xg and X, o  follow the same trends as Belik (1973) and Baker
found for X and Xy. Note that the oil-flow visualization does show evidence of a small,
counter-rotating vortex very close to the base of the wing, suggesting a mean two vortex
tflow structure.

At the appendage nose, an ordinary separation line emanates from the singular
separation point. Figure 3.11 prescats a sketch showing how the initial vortex roll-up
causes this line. Also note the skewing of the outer sreamlines shown in this figure. As
this inital voritical structure wraps itself around the appendage, the separation line and
initial LOLS merge to form what appears to be an ordinary separation line, at least in the
region adjacent to the appendage. This blending suggests that the *»° °  vortex structure
present at the nose is of no consequence downstream of the wing maximum thickness,
since any individual vortices (aside from the small corner vortex) combine to form one
primary vortex. At the appendage trailing cdge, a "fish tail" wake pattern occurs. This
separation pattern is caused by the pressure recovery ai the trailing edge, and the

secondary flow structure helps to shape it. Figure 3.12 gives the dimensions of the
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characteristic oil-flow pattern, and Table 3.2 lists the locations of the LOLS for planes

5-10.

3.2 Comparison of Incoming Boundary Layer Test Paramefers

One of the main objectives of this research is the determination of the effects of
varying inflow conditions on the properties of a turbulent wing-body junction. The proper
comparison of inflow conditions for the various data sets becomes a key issue because
of this objecrive.

Approach boundary layer data from Dickinson (1986a,b), McMahon ez al. {1987),
and Devenport and Simpson (1990a) was used to evaluate the incoming boundary layer
test parameters. Note that the boundary layer parameters for the author’s data is exactly
the same as for Devenport and Simpson’s data. Incoming boundary layer data for Shin’s
(1689) research was unavailable to the author, and the given values will be used for his

Figure 3.13 shows the approach boundary layer profiles for the three main test
conditions. This data was taken with the wing in place. Devenport’s and McMahon'’s
data is nearest the wing, and therefore is affected by the adverse pressure gradient caused
by the wing geometry more than Dickinson’s data, Since Dickinson’s and McMahon’s
profiles do not include data below U/U, = .5, Spalding’s wall law (equation (3.2)) was

used to estimate additional data points closer to the wall to obtain more accurate
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momentum and displacement thicknesses (as discussed in section 4.1.3). By fitting this
equation to the data, an estimate of C; is also found. Figures 3.14 (a-c) show the resulis
of using this equation to extrapolate additional data points down into the laminar sublayer.
For each profile, 4 additional points were calculated, and are indicated on the figures by
the solid squares. Devenport’s data, taken with a hot-wire held horizontal to the floor,
shows quite good agreement with equation (3.2). Dickinson’s data seems to agree well
also, but suffers slightly from having few points in the inner region. A good fit to
McMahon’s data using equation (3.2) could not be found, so the C; value which matched
the slope of the linear portion of the inner region was used to extrapolate data closer to
the wall. Several possible explanations exist as to why McMahon’s data and Spalding’s
equation do not agree well. The data was obtained using a digitizer, which could lead
to some inaccuracies. The size and design of the probes may have been a problem near
the wall, since one of the probes was a slant wire with its supports protruding from the
floor, a design which could have possibly biased the measvrements. ‘1lic combination of
a thick boundary layer and the close proximity of the wing creating an adverse pressure
gradient could invalidate equation (3.2) near the wall. The latter reason seems the most
likely. Ludwieg-Tillmann’s skin-friction correlation, given by White (1974), was used
1o check for internal consistency of the C; results. The Ludwieg-Tillmann C; results were
very near those calculated from Spalding’s equation, with errors of 4% for Devenport’s
and Simipson’s data, and 2% for both Dickinson’s and McMahon's data.

After fitting equation (3.2) to the three profiles, 8" and 6 were calculated. The

extra points increased these thicknesses appoximately 5% for McMahon's and Dickinson’s
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data, but the changes in Devenport’s results were negligible. McMahon’s and Dickinson’s
profile results were corrected to X/T = -2.146 to match Devenport’s location. Power-laws
were used to correct the data, The relationships (from White, 1974) used were

C; = .0592 Rey

8/X = .37 Rey? (3.3)

6/X ~ .036 Rey
where X is measured from a virtual origin. The shape factor, H, was assumed constant
and used to evaluate §". Table 3.3 lists the approach boundary layer parameters for all
data sets considered in this study. Two important facts to note are (1) that in Shin’s
investigation, the approach boundary layer parameters were measured at X = 0, with no
wing in place, and (2) that Devenport’s data at X/C = 3.00 (plane 12) is from what was
called the thin boundary layer case (Devenport ez al., 1990), those parameters being listed
in the last colamn. The first column lists approach boundary layer comparisons for the
author’s (JLF) hot-wire data, Devenport and Simpson’s (WJD) LDV data, and Devenport

et al.’s (1590) hot-wire data for the rhick boundary layer case.
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4.0 Experimental Results

This chapter presents the experimontal results of the author’s research. The like
quantities are grouped together, with the contour plots and secondary velocity vector plots
shown first, followed by selected individual profile plots which enable a more actailed
examinaton of the results. Because ¢ the large volume of results, no tabular listings are
given. The dara files are available on magnetic disk, and Appendix B describes their
organiza‘ion.

As mentioned praviously, the author’s experimental results include Upe, W, Wre,
wre, -Wwre, and tpe information. In addition to these fundamentai quantities,
(O(W)/AY)S/U,;, heticity density ¢h), the distortion function (fp, ), 8°, 6. and C,, the skin-
friction coefficient based on U, are also presented. The caiculation of these guantities
is described in the next sectien. Hodograph plots are also presented, displaying the
relationship beiween Wy and Ug.

Note that all data were taken nn the starboard side of the appendage. The contour

plots of data in a YZ plane are or.nted as if the observer were looking upstream, with
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the appendage on the left side, and -Z/T increasing to the right. All contour and

secondary velocity plots arc scaled to 1 inch= 1.0 T.

4.1 Descriptiop of Calculated Quantities

The following quantities discussed were all estimated from experimental data.

4.1.1 Streamwise Vorticity (0(W)/oY) and Helicity Density (h)
The streamwise vorticity was calculated since it is a direct indication of the
strength of the secondary flow. The s

eamwise vorticity is given by

q. = M _ &N 4.1)
az

where all quantities are in tunnel coordinates. The differentials were estimated by fitting
a parabola through 5 consecutive data points using a least squares methed, and then
evaluating the derivative of this curve fit ar the cenmal (third) point. Tor the author’s
data, only the contribution due to W could be calculated, #s no V information was
available. This problem was not serious, however, because the mean secondary flow
structure in the juncdon tends to be flattened into an elliptical shape near the wall
(Dickinson, 1986a,b). Within the secondary flow region, the contribution of the W term
to Qy is usually at least an order of magnitude iarger than the V contribution. Figure 4.1

illustrates this imbalance by comparing J(W)/dY and -d(V)/0Z in planes 5 and 8 for data
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sets where V data is available (Devenport and Sirnpson, 1990a, and Dickinson, 1986a,b).
The W term has the larger contribution by far in both planes, to the extent that it
characterizes the vorticity inherent in the secondary flow structure by itself. For this
reason, 0(W)/0Y was the quantity plotted in contour and profile plots, enabling direct
comparisons between all the data sets. Since the term U,/0 is proportional (o the
voritici y present in the approach boundary layer data, all vorticity data was non-
dimensionalized by dividing through by this term, unless otherwise specified. Figure 4.1
was non-dimensionalized in this way.

Helicity is directly related to the vorticity, and is defined by

H= [ VT dVolume) *.2)
The integrand of equation (4.2) is known as the helicity density, and is designated h.
Hussain (1986) discusses the importance of helicity in the study of coherent structures.
He explains that when structuzes with large values of helicity are present, they will have
low dissipation rates and the breakup of large scale into smaller scale motions is slowed.
This occurs as a consequence seen in a form of the Navier-Stokes equation, and the
reader is referred to Hussain (1986) for further reading.

With regards to the author’s work, the non-dimensional helicity density  wag

esamated for all data sets by letting
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W, U .
ho- a(a;t )U""a(a;ft )WTC 62 (43)
Unf

This approximation results from ignoring the mean velocity partial derivatives in the X
and Y directions. In a fashion similar to Qy, h is non-dimensionalized by 8/(U,.)>
Larger values of helicity density, from the preceeding discussion, will indicate longer
lasting vortical structures, with less dissipation due to turbulent momentum transport.

Helicity density contours are presented in chapter 5.

4.1.2 Distortion Function ()
The distortion function was used to separate the effects of the secondary flow
ihie incoining boundary layer and of the appendage gecmetry.

The distortion function is defined by the equation

U _; I Z) Y (4.4
U, T T8

for a constant X/C value. Uy, the local boundary layer edge velocity, was predicted by
hese poienial flow calculations compare favorably to the
experimental results, as can be seen in Figure 4.4, The function g is defined by the outer
"2-D" mean flow distribution in the boundary layer in the given YZ plane location. One

can see that f;, describes the effects of the horseshoe vortex on the mean streamwise flow

distribution, and its value should go to 1 at large Z/T or Y/T.
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4.13 &, 6, and C, Estimates

Results from estimating C, &', and O were used to compare and contrast the
effects of the horseshoe vortex structure in the different data sets. These results are
discussed in section 5.3.4. All results were calculated in the local freestream coordinate
system ((Wg)gs = 0).

The local boundary layer displacement and momentum thicknesses in the local
freestream direction are given by |

5 Ues} (Y
. .!;6 (1__55) d[_T) (4.5)

E

0 _ Ugs (1__135_\ oY) (
T Jo U, |y ) \T)

4
cr\
<

These exnressions were integrated using the rapezoidal rule. The integrand of equation
(4.5) is a maximum at Ugg/Ug, = 0, so using the trapezoidal rule to evaluate 8" for profiles
lacking near wall data was considered a reasonable approximation. The integrand of
equation (4.6) reaches a maximum at U/Ug = .5, and goes to zero as Ugg/Uy approaches
zero, Therefore, using the trapezoidal rule to evaluate 8 for profiles where (Upg/Up)yin
> .5 can result in significant errors. When profile data did not meet the (Upg/Uglyn <
.5 criteria, the U,g/Up = .5 Iocation was roughly estimated using linear interpolation, and
then equaton (4.6) was used to estirnate 9 for all data sets.

Several methods were used to estimate C in the local freestream direction ((Cpyg)

for each profile. Johnston (1960) discusses a technique involving what he refers to as
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hodograph or polar plots of Wrg/U, ¢ vs. Upg/U,.; to obtain a wali law relationship for 3-

dimensional turbulent boundary layers. He suggested the form

U - Ly + 50 4.7)
cos(a , ,.,) 41

where Oy, is measured with respect to the local freestream coordinate system, and U*
is defined using the magnitude of the wall shear stress vector. This angle can be found

by evaluating

Wes

Fs

as Ugs approaches zero, and is presumably also the direction of the local wall shear stress
veetor. Figure 4.2, from White (1974), illusiraies the above reladonship. Johnston reports
some success using equation (4.7) for boundary layers with small secondary flows,

Unfortunately, the hodograph plot idea and Johnston’s wall law breaks down when
bidirectional or "cross-over" profiles are encountered, as shown in Figure 4.2, or for
extreme flow angles. The horseshoe vortex creates such bidirectional polar plots. The
skewing cieaied by the strong secondary flow made estimates of C; obtained using
equations (4.7) and (4.8) highly erratic. The results at some locations, usually well away
from the wing, were encouraging, but overall results were unacceptable,

The other methods used to estimate C; in the local freestream direction were two

skin-friction correlation formulas, given by

Experimental Results 49




C, = 0.246 Re,"®10-97% 4.9) of
-L13H

G = (log ::;:)(1.74.0.3111) (4.10)

1 ok

where H is the shape factor. The former equation is the classical Ludwieg-Tillmann

relation, while the latter is a skin-friction correlation given by White (1974) using Coles’

wall law coefficients. These two correlations are considered accurate only for mean 2- ¢ :
dimensional flows, but were used to provide "last resort” estinaies to facilitate at least
a qualitative comparison of skin-friction results between data sets. Note that (Cp)gg can ®
be used to find the total skin-friction coefficient if oy, is known. )
Figure 4.3 shows an example of the typical C; estimates using the different
.
equations. Note that the results from equation (4.9) and (4.10) are almost identical. \d
Equation (4.10) and the local velocity profile properties were used to generate C; data for
the local smeamwise component of the wall shear stress. These resulis are compared to
Y 4
Ailinger’s (1990) C; results obtained using laser interferometry, and are discussed in B
section 5.3.6. Since the G estimates from equation (4.10) are based on the local \
freestream dyramic pressure, the skin-friction coefficients were multiplied by (Uy/U,»)* ¢ :
to non-dimensionalize C; on the reference dynamic pressure.
L.
of
5
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4.2 Near Wing Data Corrections

A 2-D potential flow solution was obtained for the appendage shape studied using
the vortex panel solution described in chapter 6. The comparison of the author’s
experimental results to the 2-D numerical solution (Figure 4.4) led to corrections of the
flow angle datum in planes 9, 10, and 11.

Plane S comparisons (Figure 4.4a) show good agreement for freestream values of
Ugpg/U,rw The author’s freestream values of a;c do not compare very well, and are
approximately 1.5° to 2.0° off at most locations. Initially, a correction was thought to be
in order, but after examination of the profile plots of Wy/U, in plane 5 (Figure 4.32),
one can scc that wpe never reaches a constant or what could be considered a freestream
value. Considering this fact, no corrections could be justified.

In planes 6 and 7 (Figures 4.4b,c), good overall agreement of both the freestream
velocity and flow angle was observed, and no corrections were needed. In plane 9
(Figure 4.4¢), the flow angies were corrected by -2° for the outer 7 profiles. these
profles were measured aimost 2 weeks after the ini.er 3 profiles (which were not
cor ected), and show a systematic bias error in the probe alignment of -2°, Figure 4.4e
shows the corrected results.

Comparisons in planes 10 and 11 (Figures 4.4f,g) show good agreement for the
freestream velocities, but the author’s experimental freestream o results show some
scatter. These results also showed a possible bias error for all profiles in these two

planes. Tests for symmetry in plane 11 showed that a correction of -1.5° would lead io
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symmetric flow angles, and repeatibility tests showed the o measurements to be precise.
Therefore, a -1.5° correction in o was made for planes 10 and 11.

The effects of the corrections in flow angie for planes 9, 10, and 11 are visible
only in Wyc and apc. The other quantities measured were effected very slightly, which

is expected, since the cosine of 1.5° is .99966.

4.3 Examination of the Present Flow Characteristics

The results of the author’s measurements are discussed in this section. Devenport
and Simpson’s (1990a) LDV data and Devenport et al.’s (1990) data from the thick
boundary layer case is used for continuity from planes 5-15. The LDV data also reveals
additional detail since it contains V velocity component information. Appendix B
describes the organization of the data on magnetic disk. The plots are organized
according to the quantity betng presented, with the contour and velocity vector plots
shown first, followed by boundary layer profile plots from selected X/C, Z/T locations.

The inclusion of individual boundary layer profile plots presents the data in such
detail that to fully discuss the results is beyond the primary objectives of the author’s
research. These plots are included primarily for the interested reader, and therefore will
not aiways be mentioned. At times, however, the profile plots show needed detail

unavailable from the contour plots, particularly near the wall, and they also display results
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not presented in the contour plots. In chapter 5, the profile plots aid in the comparison

of data sets, as well as the determination of the flow scaling parameters.

4.3.1 Near Appendage Data, Plares 5-11

Figures 4.5a and 4.6a display the contours of mean velocity and distortion
function, while Figure 4.7 shows the secondary velocity vectors where available. The
term "secondary velocity vector” is used loosely here in describing the vectors formed by
the Wre and Vo data. Ideally, the velocity vectors should be presented in a way that
distinguishes the actual secondary flow due te the horseshoe vortex from the spanwise
flow due the appendage. Presentation of the vectors in a plane orthogonal to the vortex
axis (or line of low shear) or in freestream coordinates may be more appropriate than
tunnel coordinates, which is the coordinate system used. This system was chosen
primarily to enable clear comparisons with other data sets (chapter 3).

Contours of Uyc/U,,; for planes 5-11 show the significance of the line formed by
the merging of the line of low shear location (LOLS) and the separation line. It is
designated by the dashed line in Figure 4.5a, while the solid line indicates the appendage

surface locaton. A "tongue” or plume of low momentum fluid grows as the flow moves

past the junction. This upward distortion of the boundary layer is always near the LOLS.

The secondary velocity vector plots which contain V information show the maximum
vertical velocities near the LOLS, which also correspond to the distortion function contour
patterns. From examining the relationship between Uy and the secondary velocities, one

can easily see the characteristic pumping action of the horseshoe vortex at work, a
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mechanism which brings higher momentum fluid into the junction, and ejects lower
momentum fluid from the near wall region. Cutler and Bradshaw’s (1986) experimental
results display the same general features, with an initially large crossflow leading to the
transport of fluid away from the wall.

The tongue of low momentum fluid extending from the near-wall boundary layer
changes in shape as X/C increases, growing narrower as the appendage trailing edge is
approached, and then broadening aft of the trailing edge separation location, The
contours of {j change from a more vertical orientation and begin to tilt inwards toward
the centerline as the distortion pattern broadens.

The flow created around an appendage is subjected to skewing and hence should
y experimental flow. They studied a vortex
embedded in a skewed boundary layer created by deflecting the freestream flow 30° in
the transverse di 2ction, and examined the cases resulting from the two possible vortex
rotational directions. It was found that the vortex decayed much quicker in a skewed
rather than 2-D boundary layer case, and that the vortex persisted longer and produced
larger flow distortions in ihe case where the skewed fluld velociiy near the wall was of
opposite sense to the flow induced by the embedded vortex. This flow was designated
case 2 by Shizawa and Eaton. The distortions produced by the opposite case, designated
as case 1, decayed the quickest because the near-wall secondary flow, moving in the same
direction as the vortex induced flow, suppressed separation and inhibited the creation of

the characteristic plume of low momentum fluid. Shizawa and Eaton observed that fluid
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centaining vorticity of opposite sign was able to pass underneath the remains of the case
1 vortex core as the flow developed downstream.

The region upstream of the trailing edge, in planes 6-8, and also in planes 9 and
10 to a lesser extent, exhibits characteristics of Shizawa and Eaton’s case 2 flow. The
secondary velocity vectors clearly show the vortex-induced skewing opposing the
boundary layer skewing caused by the appendage geometry. These conflicting flow
patterns merge to form an energetic separation, as seen by the V velocities i1 plane 8
(X/C = .75). This accounts for the more upright distortion function contours adjacent to
the wing.

Case 1 simulates the wake region of a junction flow, and produces distortion
patterns in mean velecity similiar to the present experiment. Plane 11, at X/C = 1.50
shows very similiar secondary velocity and mean velocity distortion patterns. These
observations suggest that the same vortex decay mechanisms are at work in the two flows,
both adjacent and downstream of the body, even though the skewing for Shizawa and
Eaton's fiow is much stronger. Profile plots of vorticity from plane 11 (Figure 4.90),
showing near-wall regions of negative vorticity, provide further evidence of similiar
vortex decay mechanisms at work. The adverse pressure gradient encountered at the
appendage trailing edge alsoc encourages the broadening of the flow distortions and
diffusion vortical flow structures.

Looking again at the planes adjacent to the appendage, a region of negative
voracity can be seen near the wall outboard of the primary vortex structure in Figure 4.8

and in the profile plots of vorticity. This region is larger than that observed by Cutler and
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Bradshaw (1986) for a 2-D, unskewed boundary layer, but rot as large as seen for
Shizawa and Eaton’s case 2. These two studies show that the magnitude of
"background" boundary layer skewing plays a major role in determining the behavior of
any embedded vortices.

One must be careful about viewing a wing-body junction flow as a vortical flow
structure superimposed over a "background” turbulent boundary layer flowing around an
appencage. These two features of a junction flow are inseparable, and both influence
each other. To illustrate this fact, consider the following relationships. Without an
approach boundary layer, the appendage-generated pressure gradients could not create a

root junction vortex. The resulting vortical flow structure affects the boundary layer mean

the vorticity flux out of the wall (Agui and Andreopoulos, 1991).

Examining the vor;icity distribution, shown by contours of (d(W)/0Y)d/U, in
Figure 4.8, one observes that the vortex is elliptically shaped and near the wall. This is
similiar to Dickinson's (1886a) earlier findings. The initial time-averaged elliptical shape

of the maximum vorticity contours in planes 5-8 su

n oggests that the vortex mav bhe
plangs o-¢ sguggesis (hat the rex may be

meandering. Beginning in plane 9, near the trailing edge, the core vorticity contours
begin to appear more circular in nature, This apparent stabilizing effect may be due to
the increase in distance from the bimodal flow in the nose region. Note that the LOLS

is always located outboard of the vortex core, as expected from the previous examination

of the flow separation mechanism,
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Comparing Figures 4.5a and 4.8, one can se¢ that the vortex core locations
coincide with regions where the streamwise mean flow gradients in the spanwise (Z)
direction are large (the isovels of Upc are almost vertical). This observation clearly
demonstrates the relationship between the redistribution of the mean velocity in the
boundary layer and the vortex position. The vortex depresses the contours of Uge by
drawing in high momentun fluid from the outer boundary layer, displacing low
momenitum, near wall fluid upward, and therefore creating large spanwise mean flow
gradients. Table 4.1 lists the maximum levels of (3(W)/dY)8/U,.; found in the vortex
core at each measurement plane. The decrease in vorticity from the maximum thickness

location to the trailing edge displays evidence of the diffusion and decay occurring in the

VOrtex core.

Due to the no slip condition at the wall, a very thin region of negative vortcity
is concentraied underneath the outer edge of the positive venticity region near the wall.
In plane 5, this vorticity is confined to a region below Y/T = .04 (Figure 4.84), and

exiends outward from approximately the LOLS location. As the flow develops, the area

vortex away from the wall. Similiar behavior is observed by Cutler and Bradshaw (19§6).
Profile plots (Figures 4.84-90) and enlarged contours plots of (9(W)/0Y)&/U,; (Figures
5.27-5.39) may be referred to for details of the negative vorticity region.

The characteristic patterns formed by contours of the squarc root of the Reynolds
normal stress u'yc/U, ¢ are shown in Figure 4.9a. Note how the iocal peaks in turbulence

intensity are centered slightly outboard of the LOLS location, except at X/C == .93, which
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is p2ar the trailing edge separation. T - 2/T| location of the LOLS at X/C = 93 is a
minimum, therefore the relationship between the primary vortex posiiion and the LOLS
may change near this location. Devenport et al. (1590) suggests severual causes for the
local turbulencs peaks. These are a) increased mixing of the boundary layer fluid by the
aorseshoe vortex, b) spanwise meandering of the trailing vortex legs, and ¢) a
destabilizing of the boundary layer caused by the lifting action of the secondary flow near
the LOLS, similiar to the effects of an adverse pressure gradient. The first and third
causes seem to be the most likely. The coincident locations of the steep spanwise
gradients in Urpe and the vortex corves, both positioned indcard of the LOLS, would seern
to discount the second possible cause of the turbulence peaks.

The individual profile plots show the eifects of the secondary flow structure in
greater detail. ‘The kinking of the Uy /U, profiles (Figures 4.10-4.27) shows the effects
of adding higher momentum fluid near the wall, und displacing the lower momentum fluid

further cut of the boundary layer. As the flow moves downsaeam, the distortion of these

profiies becomes much greater  Plots of Vi./U., available from Devenport and

averaged vortex center, and local maxima outboard of the vortex center {Figures 4.29-
4.31). Also note that the V velocities always approach zero near the wall, even ne.r the
LOLS location.

Profile plots of Wi /U ¢ (Figures 4.32-4.38) and ;- (Figures 4.39-4.45) show the
large changes the spanwise flow. In planc 5, the spanwise skewing exceeds 40% of U .

In the downstream planes, br-directional skewirg s often present, pariicularly inboard of
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the LOLS location. The complexity of the 3-D boundary laver at these locations
invalidaies triangular flow models based on hodograph plots (Johnston, 1960). The
hodograph, or polar plots, are displayed ir. Figures 4.77-4.83, and show the complex
relationships existing between Wrg and Ugg in the junction vortex flow region. At larger
values of |Z/T|, however, the boundary layer skewing often resembles Johnsten's (1960)
experimental flow, in which a duct end wall created the skewed boundary layer.

Profiles of the fluctuating quantities u’cc, V'pe, Wirer #Vpc, and dWqe are given in
Figures 4.46-4.76. The profiles of v';c and av;. were obtained from Devenport and
Simpson’s (1990a) LLLV data. The detaiis of the mean flew influence on the distribution
of these quantities within the boundary layer are displayed in these figures. Near the
LOLS, the profiie plois usuaily show local absolute maxima, This is particalarly evident
in plane 5, where Vi and w'pc show large levels near Z/T = -.88, the approximate LOLS
location. The large values in w'rc occur near the wall (Y/T < .01), while smaller
increases in w” and large peaxs in v’y occur at Y/T of approximately .09. This location
coincides precisely with the peaks in uw'yc in plane 5. As the flow moves downstream,
ihe distributions of the normai swesses are more uniform, but small peaks are sill present,
and seem to be related to one another, This appasent relationship suggests that the flow
mechanism responsible for altering the distribution of u’y affects Ve and w'ic in a
similiar fashion,

It is interesting vy compare the normal suresses in plane 5 to the nominal values
occunng for a 2-D flow over a flai plate. Klebanotf™s classical turbulent boundary layer

over a flat plate (frum Scheiz, 1984) shows maximam volues of «/U,, VU, and w'/t,
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to be around .11, .04, and .06, respectively. Allowing for the fact that the present
experimental data are non-dimensicnalized by U, not Ug, the values for 1';-/Ug near the
wall are approximately the same as Klebanoff’s results, but the other tvo wrhulent
quantities are much nigher. The maximum values of v';¢/Ug and w'r/Ug present in plane
5 are well over twice those given by Klebanoff's data. Presenting the data in freestream
coordinates docs not affect this comnparison with 2-dimensional data. As X/C increases,
the local maxima in v';. and w'r decrease to more comparable levels, and by plane 8§,
these maximumm values are approximately .05 and .07, respectively.

The mean Reynolds shearing stresses @,/ (U )* and i#w;/(U,q)* profile plots are
shown in Figures 4.67-4.76. The effects of the altered mean flow gradients are revealed
in these figures. Large negative values of @Wyc exist underneath the mean vortex
structure because of the spanwise gradient in Uy at :Liis location, and also because of the
large mwansverse velocities near the wall. The large values in @y may also be indicative
of vortex meandering. Positive or negative regions of W, can usualiy be explained by
examining the spanwise gradient in Up.. Local maxima or minima seem to occur in
regions marked by high normal stresses as well.

Interestingly, no significant regions of positive @ were found iu planes 5, 8, or
10. Local maximy of &V, which tended toward zero can be easi’y 1dentified at Z/T
locations strongly effected by the horseshoe vortex.

Figures 4.91 and 4.92 show the similiar variations of 8°/8  ,pp and 6/8,,; in the
spanwise direction for each of he YZ measurement planes. These are freestream

coordinate system results. Plancs 5 and 6 display a sharp drop in & and (0 as the body
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is approached, which is a combination of the thinning effects of the near wing pressure
gradients and the developing horseshoe vortex. As |Z/T| increases, the boundary layer
thicknesses are relatively constant in these planes. Beginning with plane 7, the variation
of & and O show local maxima near the LOLS locations. This result is expected from
earlier observations of the streamwise mean velocity contours. The local spanwise
variations in 6" and 6 increase monotomically with downstream distance. Figure 4.94
shows the variation in A /T) and A(6/T) vs. X/C. These parameters, which are a
measure of the extent of the distortive effects due to the horseshoe vortex, increase as the
tlow moves downstream. The initial distortion rate grows very quickly, but levels off to
an almost constant growth rate, The rapid distortion growth is an indication of the
skewing direction of the primary flow over the aft portien of the body, which tends to
increase the distortions (case 2, Shizawa and Eaton, 1990). The reversal in the primary
flow skewing direction decreases the rate of growth of A(8/T) and A(6/T) past X/C = 1.
The maximum changes in & /T and 6/T for planes 5-12 are listed in Table 4.1.

Leval C; estimates were calculated using equation (4.10), and the results arc shown
CCSticam coordingie sysiein. From
the form of equation (4.10), the variation in C; is expected to decrease when 0 increases.
This is in fact what happens, with 1 local minima occuring near the oil-flow visualization
LOLS location. Of course, it is the local shear minima that causes this line, and ideally,
the (Cpyy and LOLS locations shouid coincide precisely. The expected general decrease
in skin friction magnitudes 15 observed os the boundary layer continues to develop in the

streamwise direction,
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4.3.2 Far Wake Daia, Planes 12-15

This section discusses the author’s data taken at X/C locations of 5.89, 9.14, and
11.56, and the data from Devenport et al.’s (1990) thick boundary layer at X/C = 3.00.
The two most downstream positions are in the adverse pressure gradient section (region
3, discussed in section 3.1.1). Only Uyo/U, and uw'ro/U, ., measurements were taken in
these planes. The data pianes spanned 0 < -Z/T < 4.5, which is a large region considering
that the half width of the wind tunnel is approximately 6 wing thicknesses.

Contours of Urc/U,, and u’/U,, in planes 12-15 are given in Figures 4.5b and
4.90. The continuing distertion patterns are weii defined in these far wake planes. Ttis
interesting to note that for the Los Angeles (688) class and Ohio class submarines, the
prapulsor planes are located at approximately X/C = 9 and 11, respectively.

Frem X/C = 1.05 t0 9.14, the vortex induced m an flow distortions move away
from the centerline due to the inducea flow of the wall image vortex. From X/C = 6.14
to X/C = 11.56, the spanwise position of the distortion paderns changes only slightly, if
at all. The vonical flow structure appears to be quite diffused in the far waxe, as the
contours of u'7¢/U,, do not show the local maxima “islands” as in planc 11. Further
evidence of the vortex decay and diffusion is shown by the changing shape of the
contours of W'ro/U, The altnost horizontal "tongue” of high rurbulent fluid at X/C =
3.3 recedes to the point where tha contours of & 7 are almost identicul in shape 10 those
of Urc. The adverse pressure gradient seems to accelervte this change. Note that the

contour plots also show the effects of the s'dewall and ceiling boundary layers.
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Westphal et al. (1985) compared vortices embedded in turbulent boundary layers
in the presence of constant pressure and increasing pressure. Their resulting contours of
mean streamwise velocity show a more defined distortion pattern for the constant pressure
case. They observed that the adverse pressure gradie: t increased the rate of vortex core
growth, but lowered the peak vorticity. The decrease in peak vorticity, which is expected
from Helmholz’s inviscid vorticity theorems, explains the decrease in distortion for the
adverse pressure gradient case, Comparing the contours of Ur/U,.¢ and fp at X/C = 3.00,
5.89, and 9.14 in Figures 4.5b and 4.6b, one can observe the slight diffusion of the
horseshoe vortex distortion pattern. The contours of fp which mark the plume of low
momentum fluid become more vertical, indicating a weakening of the vortex’s
recirculatory action. Comparing the similiarities of the contours of f; from planes 14 and
15, one can see that the increase in the apparent distortion is due primarily to the growing
boundary layer. The rapid growth of the boundary layer makes it difficult to determine
if the distortion pattern is decaying, more quickly due to the adverse pressure gradicat.
The lack of spanwise movement from plane 14 to 15, does indicate the relative weakness
of the trailing horseshoe vortex in region 3. The dominant factor controlling the growth
of the contours of Uy and u’; seems 10 be the expanding boundary layer, and from X/C
= 5.89 10 11.56, the spanwise dimension of the contour distortions appear to grow very
lictle.

[t is »f inierest to note that Westphal er al. also observed that an adverse pressure
gradient seemed to increase vortex core aspect ratio, rreaning that a more elliptic vortex

was ceeated. They report thet this ellipric shape docs not appear to be caused by core
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meandering. This result could not be verified by the present experimental data, since no
Wi information was obtained.

The diffused effects of the horseshoe vortex can be seen in the slight deformation
of the Uo/U, far-wake profiles (Figures 4.26-4.28). The profiles of u'y/U,;, shuw more
kinking, with the local maxima being much further away from the wall (Figures 4.54-
4.56). The profile kinking, which tends to produce closed contours of u', decays rapidly
in the adverse pressure gradient. The peak magnitudes of the velecity fluctuations away
from the wall remain approximately constant downstream of X/C = 3.00, with
Wr/Uedmax = 07 to .08. Note that Figures 4.54-4.56 shows the original vs. the
corrected values of u'ye, as discussed in section 2.5.1.

Figures 4.91b and 4.92b show the far-wake variation of 57/0  ,pp and 6/8,pp in the
spanwise directon. Examining these figures, and also the far-wake contour plots, one can
discern the effects of another region of secondary flow at a larger value of |Z/T|. One
possible source of the smaller secondary flow structure is a flow disturbance occurring
far upstream of the test section. An example of such a disturbance is a small comer
separaticn in the adverse pressure gradient of the tunne! settling chamber.  Ancther
possible cause is a secondary fiow in the corner formed by the wind tunne! side wall and
floor. This is an exawnple of Prandil’s secondary flovs of the second kind, created by
shearing swesses, as described by Gessner (1973).  Figures 4.91b6-4.93b revea! the
disturbances due to this cuier secondary flow, in terms of wcrzased 8 und 6, and
decreased Cp. The position of the local increase in & is approximately constant at /T

=-3.5. The position of maximum 8" and 0 moves from Z/T = -1.5 2t X/C = 3.00 to 2T
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) = -1.8 at X/C = 5.89, where it remains ncarly constant with increasing X/C. Figure 4.94
displays the rapid increase in A(8'/T) and A(6/T) from X/C = 9.14 to 11.56, which is due
to the adverse pressure gradient. Surprisingly, the data do not show a substantial increase
in slope from X/C = 5.89 to 9.14. Table 4.2 lists the maximum changes in 8/T and 6/T

for plares 13-15.
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5.0 Data Set Comparisons

This chapter focuses on the primary motivation for this experimental study: the
determination of the effects of the incoming boundary layer and flow parameters on a
turbulent junction vortex. Tables 1.1 and 3.3 describe the data sets, and Table 2.6 gives
their experimental uncertainties. For discussion purposes, SCD will identify Dickinson’s
(1985a,b) data, HMM will identify McMahon er al.’s (1987) dara, JS will designate
Shin’s (1989) duw, JLF will denote the autho:r’s present data, WJD will identify
Devenport ar.d Sinpson’s (19902) LDV d.'a, as well as Devenport er al.’s (1990) hot-
wire data. The coatour anu veleocity vecte. piots all use the scale 1.0" = .5(T), except
plane 12 (X/C = 3.00), where 1.0" = 1.0(! ..

The symbols used to designatc t» . =icus data sets are consistent for all plots.
The symbol denoting the author’s data is a ~ | 2> 10r Devenport and Simpson’s LDV
data, a wiangle, for Dickinson’s data, a solid « -, - . McMahon er al.’s data, a diamond,

and for Shin’s data, an open circie.

Data Set Comparisons 66




5.1 Examination of Data Set Blockage Effects

As discussed in section 4.2, Figure 4.4 shows comparisons between 2-D potential
flow results and the freestream experimental results from the different data sets. This was
done to obtain a greater understanding of the possible blockage effecis for each data set
to avoid any possible misinterpretions of the differences between the flows. Shin’s data
was corrected to account for the variation in the freestream test section velocity from the
reference velocity (Urgsr/U,oc = 1.077).

Dickinson’s measurments were performed using a 24 inch wide tunnel, with a
model that was 2.4 inches thick, creating a physical blockage of 10%. No allowarices for
streamline curvature were made in his case. Shin’s data was obtained in a 36 inch wide
tunnel, with a 2.8 inch thick model, creating a physical blockage of 7.8%. Again, no
allowances for streamline curvature were made. Devenport’s and the author’s data was
taken in a 36 inch wide tunnel with a 2.4 inch thick model, producing a physical blockage
of 6.7%. However, as described in section 2.2.1, side wall inserts were used to allow for
the outer streamline curvature, in an effort to create negligible blockage effects. Figure
3.6 shows that the blockage effects, if any, are very small.

McMahon er al.’s experimental data was obtained with the appendage located in
a free jet 12 inches downstream of the tunnel exit plane. This configuration is not
actually free of interference effects. The free jet/ambient air interface is constrained to
follow a flow streamline, and the static pres ire along this line must be equal to the
ambien. pressure. However, the pressure along a streamline is not constant, so these two

interface conditions conflict, leading to some form of flow interference. No oil-flow

Data Set Comparisons 67




visualizations of McMahon er al.’s data were available, but the mean flow contours at
X/C = 1,00 show evidence of a large separated flow region in the junction corner, which
may be a consequence of the free jet test flow conditions,

Figure 4.4 shows good general agreement for the velocity magnitudes for all data
sets, especially when one considers that the potential flow calculation did not account for
the appendage boundary layer. The notable exceptions are in plane 8, where McMahca's
freestream velocities are considerably lower (5-10%) than the calculated results. This
result is surprising considering that in plane 10, McMahon’s freestream velocities deviate
only a few percent frem the 2-D potendal flow results. This apparent anomaly may be
a consequence of the separated flow in the appendage trailing edge region.

The resuits from piane 9 show another unexpected result. Figure 4.4e reveals that
the author’s freestream velocides deviate more from the calculated results than those of
Dickinson’s case, which had a higher physical blockage and also did not allow for
streamline curvature. The majority of the data shows both Dickinson’s and the author’s
data to agree surprisingly well, with Dickinson’s freestream velocities usually a few
percent higher.

The effects of blockage are further revealed by examing the freestream skew
angles. Plane 5 data shows a general overestimation of o near the wing, and values of
O that are too low away from the wing. This latter effect is easy to see, as blockage
will cause the flow angle to tend toward zero. Of all the data, Devenport’s LDV data and
Shin’s data appear to agree the best, especially near the maximum values of ay.. Plane

t shows good aye agreement for both the author’s and Shin’s data sets, within 1° at
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almost all locations. Plane 7 shows excellent agreement for the author’s data.
Dickinson’s results here are not as good, showing some possible blockage effects. Plane
8 tells the same story, with Devenport’s and McMahon’s data agreeing very well with the
numerical resuits, but I kinson’s data is constantly offset by 2°. This can be explained
by tunnel blockage, but one cannot discount a bias error in the measurements. At plane
9, the author’s data shows some scatter, but shows general agreement with the potential
flow results. Dickinson's data again does not exhibit freestream flow angles as large as
the potential flow solution predicts. Skipping to plane 11, the ¢ results for all
concemned data sets agree well, with the author’s data showing some scatter. The good
agreement here is most likely a result of small flow anglcs and reduced blockage effects
since the tlow has passed by the wing at this location (X/C = 1.50).

Considering plane 10 (Figure 4.4f), one observes two things right away. First, the
freestream flow angle near the centerline, as predicted by potential flow, changes radically
from X/C = .93 to 1.05. Second, Dickinson’s resuits are not even close to comparing
with the potential flow results, or with the results of the other data sets. The other data
sets, although displaying some scatter, follow the generul trend set by the numerical
results for freestream O quite well. Dickinson’s data shows angles that differ by 4° 1o
8°. This discrepancy is difficult to explain simply by blockage effects, and section 5.3

wilil further discuss this problem.
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5.2 Expected Effects of the Approach Boundary Layer Properties

Before comparing data sets to examine the effects of varying the approach
boundary properties, it is helpful to use intuition to gain any possible a priori knowledge,
so that one knows what to look for and what differences to expect. This section discusses
what effects different approach boundary layers may have on the wing-body flow
structure.

From the previous discussion of Baker’s (1980, 1985) and Belik’s (1973) work,
we see that the initial vortex structure in front of a cvlinder (equivalent to the nose of an
appendage) is primarily a function of two parameters, Reg and 6/T. The displace:aent
thickness § is interchangeable with 8. Reg (or Rey ) cffects the positions of Xy and
X, and the basic vortex structure seems to be dependent on 8°/D (or §°/T) for a given

range of Re;..

5.2.1 Expected Rey Effects

Baker (1980, 1985) found that X, increases as Re;. - ~hich meang that
the vortex’s horizontal size is increasing. He conjectured that changing Reg. does not
change the vertical size of the primary vortex. For Reg < 10,000, Xy increases also, but
at a slower rate than Xy, which means that the distance between X,, and X is decreasing
as Reg. increases. This distance decreases even faster when Reg. > 10,000, as X starts

to decrease ar the larger Reynolds numbers. One can conclude then, that as Reg,

Data Set Comparisons 70




increases, the main vortex will increase in size (X, increases), and will have a more
energetic nitial roll-up (Xg - Xy decreases).

Ignoring the large scale unsteadiness present in the junction flow, a rather simple,
intuitive argument would go as follows. Reqy or Re;., for the flows considered in this
study, is essentially a function of U, (or U,J"), since v is fairly constant for a given
fluid medium (air or water). The freestream fluid mcmenium is directly proportional to
U,.; and the lack of high momentum fluid near the wali is indicated by 6. Therefore, the
product U8 is indicative of the absolute relative difference in fluid momentum between
the boundary layer and the freestream. If the momentum difference is large (large Rey),
then the incoming high momentum fluid easily circulates down into the boundary layer
and forms a suwongly defiued backilow region. If the momentum difference is smail
(small Rey), the backflow region is more diffuse. Realizing that U # indicates the
typical magnitudes of the inertial forces in the boundary layer, yields the same hypothesis.

Studies done in a water tunnel within the Virginia Tech Aerospace Department by
Kim (1991), -port these speculations. As previously mentioned, Kim performed
{ Reg, 330 and 1,100, on the same body shape as the
and stronger backflow region the higher Reynolds number case (Figure 5.1). The higher
Reynolds number case displays the enhanced secondary flow “jetting” effect due to the
relative lack of momentum near the wall. Figure 5.2 presents contours of turbulence

intensity, showing more distinct local maxima concentrated near the wall for Rey = 1,100.

The lower Reynolds numnber case shows several wrbulent "pockets”, suggesting a more
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complex mean flow pattern. The turbulence is spread over a much wider area for the
Re, = 330 case, displaying a more diffused secondary flow structure.

Realizing that U, 8 is not actually the relative momentum difference between the
outer and inner boundary layer regions, the author has come up with a new parameter,
referred to as the momentum deficit factor (MDF). The momentum flux through a
boundary layer is (p)(1J,)*(8-6) per unit width. The "momentum deficit” is equal to
P(U)*(8) per unit width. If T is used as a characteristic width, then a form of MDF is
P(U,.0*(O)(T). Thisis dimensional, however, so the final, non-dimensional form for MDE
1s (Rer)z(efl') which is also equal to (Re)(Reg). Flows with large values of MDF will
tend toward smaller flow distortions and the vortical and turbulent flow structures will be
more intense near the wall, since the low momenwm fluid region acts as a type of "rclief
valve". Table 3.3 shows that for the flows examined in this study, Re, usually varies as
MDF. The cxception to this trend is at the lower Re, cases, where McMahon ¢ al.’s
data has the lowest MDF, despite having a higher Rey than cither the author’s or
Devenport ez al.’s thin boundary layer case.

The downstream effects on vortex position and resulting flow distortion due to the
resistance of the inner boundary layer to the intrusion of freestream tluid can be predicted
by considering Shizawa and Eaton’s (1990) study. As previously discussed in section 4.3,
two cases of a vortex embedded in a skewed boundary layer were studied. Case 1, where
the near wall skewing-induced velocity was in the same direciion as the vortex-induced
velocity, corresponds 1o a case with very low resistance to the intrusion of outer fluid into

the boundary layer (high MDF). Case 2, where the near wall skewing- and vorex-
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induced velocities pposed one another, corresponds to a c2se with high resistance to the
intmsion of outer fluid inte the boundary layer (low MDF). Shizawa and Eaton found
that the vortex associated distortion patterns for case 1 were not as strong and decayed
more quickly than case 2. This was because the primary tlow distoriirn mechanism (the
upward transpcrt of low momentum fluid due to separation) was enhanced in case 2. The
vortex core position moved further away from the wall for case 2. More information

concerning the vorticity distributions for the two cases is discussed in section 4.3.

5.2.2 Expected 8'IT Effects

As mentioned previously, the ratio 8 /T (or 6/T) may effect the initial vortex
structure. Based on the research of previous workers (Baker (1980, 1985), LaFleur and
Langston (1990), and Eckerle and Langston (1987)), it can be postulated ¢hat the number
of vorticies along the centerline increases as §'/T increases. An argument supporting this
hypothesis is that as 8" increases, the corresponding decrease in near wall momentum
effects the primary separation mecnanism, causing a larger number of d:screte vorticies
to be formed in the plane of symmetry. Using flow topology, researchers have suggested
several initial vortex contigurations (2, 4, 6 vortex madels), and for certain raages of 8°/T
values, the number of vorticies seemns to be constant. A sketch showing the various
vortex configurations is given in Figure 5.3.

However, the relevance of the inital vortex structure ca the dov. nstreain flow is
moot issue, based on the conclusions drawn fromi the surface oil-flow visualizations

isection 3.1.3). Any instantaneous, discrete voriex structure present in the nose region

Data Set Comparisons 73



appears to form a time-averaged primary vortex structure downstream of the body’s
maximum thickness location. The primary effect of 8°/T may be its influence on the
bimodal f'ow structure at the appendage nose, which would in tura affect the downstream
turbulence characteristics.

The ratio 8'/T is also an indication of the mass entrainment potential of the vortex.
Since previous measurments (IDevenport ez al.,, 1990) show that the primary vortex
dimensions scale on T, this paramneier relates the relative size of the boundary layer ‘¢ the
horseshoe vortex. Smaller values of §'/T will enable the vortical flow to have a greater
effect on the entire boundary layer, and on the availability of high momentura fluid which

energizes the secondary flow.

5.2.3 Significance of U, /T and U,, /8

U,#T and U,_¢8 form wwo additional parameters of interest. These ratios are
dimensional (units of sec’'), and as such, they are ot true flow parameters by themzelves.
These parameters are useful, however, for non-dimensionalization of vorticity, and
undersanding their effects gives some insight into the basic flow physics.

The average vortex stretching rate for a particular appendage geometry is
controlled by U 4T. According to potential flow theory, as the vortex stratching rate
increases, the peak dimensional vorticity should increase, due to the shrinking of the
vortex tube. The parameter U /0 is relaied to the average spanwise vorticity in the
incoming boundary layer. Therefore, increasing U,/8 should also increase the

dimensionalized suength of the horseshoe vortex, but not the non-div ensionalized
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strength. Determiring the whiich of these two parameters are most appropriate for non-

dimensiopalizing the vorticity increases undersianding of the junction vortex fiow.

5.2.4 Parameiric Space of Data Sets

Figure £.4 clearly displays the varying parameers of each of the dara sets
examined in this study. Shin's parameters, when measured under conditions comparable
to the other data sets, may fall within the region enclosed by the dashed line in «he upper
right corner. This is further aiscussed at the })eginning of section 5.3.

The Lines of constant MDFE in Figure 5.4 show its variaticn with changing Reg and
O/T. The influences of Re, and 6/T on the juncture flow can be easily compared tc the
cifects of MDF using this figrre. Figure 5.4 also can be used as an aid 1n the design of

future parametric studies of wing-body junction flows.

5.3 Data Set Comparison Resulis

The contour and secondary velocity plots will be the main tools for comparing the
data. The profile plot comparisons provide much more detais, and in some instances this
will help to cee the effects of the approach boundary iayer. One must be cautious,
nowever, that the experinigntal uncertainties ae not become a factor when comparing

suoile deiails between the flows.

Data Set Comparisons




One fact is readily apparent when comparing the data sets. The secondary flow
structure scales on T, the maximum appendage thickness, in both the Y and Z directions,
as can be scen by the profile plots of Wq/U, ¢ (Figures 4.32-4.38), the contour plots of
turbulence intensity (Figures 5.40-5.46), and secuundary velocity vector plots (Figures
3.20-5.26). The profile plots of f, show that the distortion function also scales on T, The
data sets do not compare precisely, but one can easily observe that T is more appropriate
as a scaling factor than &. The importance of T as a scaling factor reflects the
dependance of the secondary flow on the pressure field created by the appendage
geomerry. All significant flowfield characteristics originate from the geometry of the
wing-body junction.

A few things to note before continuing ace listed as foilows:

~  The momentum deficit factor for Shin’s data may be cffeétivcly larger than the
listed value, even larger than Dickinson’s value. This is because the actual test secticn
velocity is higher than the given reference velocity (by a factor of 1.077), and also the
given vzlue of € was determined with no appendage in the tunnel. Correcting MDF for
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create a value of MDF equal to Dickinson’s.

* Shin’s secondary velocities near the wall usually show an extremely large V
component, which is not seen in flows with similiar boundary layer parameters (the SCD
datz set). The author believes this apparent anomaly was caused by the probe. This was
the only data cbtained using a 5 hole pressure probe, and the relatively large size of this

probe could have interfered with the flow and/or caused bias errors to occur near the wall.
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g The probe was 3.18 mm in diameter, and measurements were taken to within 3.7 mn of
the wall.

» Dickinson’s secondary velocity and vorticity distribution data appear to be in error
b in plane 10 (Figures 5.25 and 5.35). The flow shown by his data is markedly different
from the other data sets, and no reason can be found to explain it. The data in planes 9

and 11 compare well with other data sets, which leads the author to believe that the

P unusual secondary flow pattern in plane 10 is due to an error. The streamwise mean and
fluctuating velocities in plane 10 do not appear to be significantly effected by this
> problem.
» A relatively large separated flow region is apparent in McMahon er al.’s flow at |
the trailing edge. This can be seen in contours of U; /U, in plane 10 (Figure 5.14). I
P 5.3.1 Mean Velocity Distribution

Contour plots of U;c/U,, and the associated contours of distortion function (fp)
are shown in Figures 5.5-5.19. Secondary velocity plots are given in Figures 5.20-5.26.
These figures reveal the distribution of the mean velocity components within the junction
flow. When comparing "distortion levels
r the line of low shear location that is being referred t0. Greater flow distortion is indicated
by lower values of fp,.

In general, the SCD an¢ JS data sets show broader, more diffused distortion
patterns for the contours of Uy, while contours of fj, reveal that the HMM data has the
highest distortion rates, with the JLF/WJD data falling in between. This is the trend

predicted by the variation in MDF. Using Reg as @ predictor, the JLF/WJD daia would
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have the highest distortion, followed by the HMM data, and then the SCD and JS data
sets,

The validity of the concept behind the momentum deficit factor is perhaps best
shown in plane 12, the farthest downsteam location where comparise '& vere made.
Figures 5.18 and 5.19 show the contours of Urc and f,. The WJD thin boundary layer
case, has the lowest Reg (4,500 compared to 6,300 and 6,800 for the JLF/WJD and HMM
data sets respectively). However, the distortion function results clearly show that the
HMM data has the largest distortion levels (lowest values of fy), while the distortion
pattern in the "tongue” of low momentum fluid is approximately the same for the WJD
thick and thin boundary layer cases. These latter two cases differ in MDF by 11%, while
the WJD thin boundary layer case has an MDF which is 42% greater than the HMM case.

From the examinatdon of the WJD thin and thick boundary layer data in plane 12,
and also the HMM and WJD data in plane 8 (Figure 5.10), one can see that fj, does scale
on T in the Y direction. One can conclude that if the HMM and WJD data had more
similiar values of MDF, then the f contours would look more alike.

Planc by plane comparisons consistently yield the same results. The distorted
contours of Uy are more peaked for the cases with low values of MDF, and are broader
for the cases with high MDF. The contours of f;, show this trend in even greater detail.

The effects of boundary layer thicknesses to body thickness ratios are seen
primarily in the region between the body and the LOLS, where the local boundary layer
is thinned by the sweeping of high momentum fluid into the junction by the horseshoe

vortex. The increase in relative size of the horseshoe vortex compared to the boundary
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layer for flows with low values of §/T results in higher momentum fluid being available
for entrainment into the junction. Figures 5.6-5.19 show slightly larger values of f, ( >
1.0) inboard of the horseshoe vortex for flows with low values of &/T. This is a more
subtle effect than the distortions due to the upliiting of low momentum fluid away from
the wall, and in some instan:es, such as plane 11, the contours of fj; in the thinned region
look alinost identical for different values of d/1.

As the flow moves downstream, another consequence of the momentum deficit
factor is seen. The distortion paiterns of the flows with higher MDF are centered further
outboard, at larger values of |Z/T|. This is an expected wend, and can be explained as
foliows. For flows with higher values of MDF, the flows are similiar to Shizawa and
Euton’s (1990) case 1 flows (see sections 5.2 and 4.3). The vortex-induced velecities
between the wall and the voniex core are larger for case 1 than - case 2, which is more
like a flow with high MDF. This condition lcads to larger vortizity values for the high
MDF cases (Shizawa and Eaton’s case 1 data show this), and the increased voriex-
induced velocities move the horseshoe voitex further from the centerline. The observed
similarities to Shizawa and Eaton’s flows suggests that changing MDF results in a change
in the effective gsometry-induced skewing magnitudes.

In planes 10 and 11, the secondary velocity vector plots show the horseshoe vortex
structure centered farther from the centerline for flows with larger MDF values. In plane
11, it appears that the author’s earlier hypothesis that MDF for the JS data may actually
be slightly higher than for the SCD data is correct, since Shin’s data shows the most

ourboard vortex location. Surprisingly, the spanwise positions for the primary distortion
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do not vary much between the data sets in plane 12. The position for the HMM data
seems farthest from the centerline, contrary to the previous discussion. This contradiction
may be due to the trailing edge separation present in HMM's case.

The HMM secondary velocity results in plane 10 reveal a quite circular secondary
flow pattern near the centerline, unlike that observed for the flows with higher MDF
values. The proximity of this flow structure to the appendage trailing edge may be the
cause of the significant flow separation for the HMM data set. The other flows all have
a rather flat, elliptically shaped pattern, with no substantial V velocities except perhaps
near the LOLS location or the body. These observations substantiate the predicted "relief
valve" effect provided by the inner boundary layer for flows with high MDF. The near
wall channelling of this fluid marked by positive vorticity is discussed in the next section.

The profile plots of mean velocities reveal additional information concerning the
coment scaling of the mean flow distribution. The "kinking” of the U;c/U,, profiles
(Figures 1.10-<.24) tends to scale on T, although the magnitudes are generally not the
some. The distoviion function filters out the effects of the "background” flow.

The appropria = scaling for the distribution of V,/U,., is more difficult to
determiny. Some profilcs display an apparent & scaling (Figure 4.29), and others seem
to scale on T (Figure 4.30). Flows with lower MDF show higher V. magnitudes, which
is expected due to the observea higher distortion levels for these flows.

Most profiles 'g Wic/U,s sShow a very stoong dependence on T (Figures 4.32-

4.38). The variation in freesiream flow angles makes it difficult to compare the relative

skewing magnitudes for the data sets. The hodograph plots (Figures 4.77-4.83) reveal
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very sharply defined crossover profiles for data sets with low /T ratios. The skewing
magnitudes in general appear to be slightly greater for these flows also. This is indicative
of the availability of higher momentum fluid closer to the horseshoe vortex secondary
flow structure. When this fluid is swept into the boundary layer, it causes larger skewing

angles and steeper gradients in Woc.

5.3.2 Vorticity and Helicity Distribution

From observing the coniours of ((W)/3Y)d/U,.; and helicity (defined by equation
(4.3)), the concentration of vorticity near the wall is immediately evident for flows with
higher values of MDF (Figures 5.27-5.38). JS vorticity levels are shown in the individual
profile piots of (d(W)/0Y)0/U,., (Figures 4.84-4.90), and are most simuliar to the SCD
distribution patterns, rcaching higher values near the wall in some cases. This effect 1s
a result of the relative lack of resistance to the insmusion of the secondary flow, creating
a channelling effect near the wall. The profile plots of vorticity also indicate that the
peaks in vorticity scale more apprepriately on T than on §. The no-slip condition at the
wail was not used for calculating (d(W)/dY) near the wall, since this technique can lead
to significant errors for estimating aeﬁvatives.

The trend in the distribution of positive and negative vorticity between the flows
with high and low MDF are again similiar to the flows studied by Shizawa and Eaton
(1990). The lower MDF flows (HMM, JLF/WTD), previously showing characteristics of
Shizawa and Eaton’s case 2 flow, show a relatively stronger pocket of negative vorticity

outboard of the primary vortex (Figure 5.31). A stronger negative vorticity region is also
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observed tor Shizawa and Faion’s case 2 flow, when compared to case 1. The smengths
of the negative vortucity regions are reflected by the Y/T locations of the vortex cores.
The variation in MDF between the data sets correctly predicts the relative Y/T positions
of the vortex cores (as MDF increases, the core is closer to the wall).

By comparing the JS and SCD data to the JLF/WJD data sets, the correct vorticity
scaling parameter appears to be T/U, (remember that {T/8); r = 2, and (T/8)g¢p 5 = 1).
This may be because the average vortex stretching rate, which is proportional to U, /T,
is a dominant factor affecting vorticity magnitudes around the appendage nose.
Comparisons between the HMM and WJD data in plane 8 (Figure 5.31), and also between
the JS and SCD data sets (Figures 4.84-4.90), reveal that 8/U,,; is the appropriate scaling
parameter for the magnitudes seen in the voriex core region. Dlanc 10 Tgure 5.35)
shows similiar results, although the HMM contours show no well defined "core”. The
regions of high positive vorticity near the wing-body comer seen for the HMM daia is
likely due to the separation observed in that region.

The determination of which flows scale on the same parameters may be an
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he contour levels of
(0(W)/9Y)6/U, seen in the SCD and JS data are approximately twice as large as for the
HMM or JLF/WJD data sets. The ratios of /T for the JS and SCD cases are twice as
large as for JLF/WJD, but w.e approximately the same as for HMM s case, indicating that
neither T/U, or 8/U,; would scale the SCD/JS and HMM flows to the same levels. Note
that Rey for the ]S and SCD data is twice as large as JLE/WJTY's and HMM’s values.

Observing that the vorticity levels for the SCD and JS data compare when scaled on
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O/, and that the vorticity levels for the HMM and JLE/WID data arc aiso
approximately scaled by &/U,, one may postulate that the vorticity levels, non-
dimensionalized by &/U,, arc dependent on Req or MDF. The contours of helicity
support these observations, indicating that flows with high values of MDF have more
coherent large scale structures.

The decay of vorticity in the horseshoe vortex core vs. X/C is shown in Figure
5.39. Note that the maximum core values of (3(W)/dY)3/U, at X/C = 1.05 and 1.5 for
the JLE/WJID and HMM data sets were estimated from the contour plots. The semi-log
plots show that a power-law relationship may describe the decay of voriticity. The decay

rate increases as MDF increases, but this trend may be the result of the scaling effects of

8/U, ;. The curves appear to be merging (except for the SCD data at X/C =.93 and 1.50

A\
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with increasing X/C, suggesting a growing dependence on 8/U,, instead of T/U

ref*

3.3.3 Distribution of Turbulen: Quantities

In general, the five turbulent quantities measured agree quite well between the data

show that the turbulence structure is largely governed by the appendage geometry,
therefore scaling on T in the Y and Z directions.

Kim’s (1991) contours of (u'r/U,.)% taken in the plane of symmetry at the
appendage nose, show that increasing Re, confines and concentrates the turbulence
structure in a near-wall region (Figure 5.2). This result seems to indicate that the higher

Re, fiow (SCD) would show a higher concentration of turbulent structures near the wall,
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but this is not necessarily true. There is no obvious concentration of turbulent fluid near
the wall, but in planes 8-11, the contour plots show slightly larger values of #'ro/U,.¢ near
the wall for the SCD data. The profile plots of u'y. reveal how well T scales the flow.

The JLF/WID contours of 4, shows more distinct "islands" of local turbulence
peaks. This may be an effect of the ratio &/T, since a thinner boundary layer has an
initially thinner region marked by highly turbulent fluid, resulting in a less diffused
turbulence structure in the wing-body junction. The HMM contours show neither local
"islands" of peak turbulence intensity ncr relatively high regions of turbulence near the
wall. This is indicative of the low Reg, high &/T approach flow parameters. Note the
large separation region at the trailing edge for the HMM flow, revealed by the high
turbulence levels as Z/T goes to zero (Figure 5.44),

By plane 12, at X/C = 3.00, the flow does not scale on T quite as well as it does
near the appendage (Figure 5.46). The vertical growth of the turbulent structures as X/C
increases appears to be limited by the boundary layer thickness, since they cannot grow
as quickly inio the freestream. When one considers that &/T roughly doubles for each
contour plot in Figure 5.46, the scaling effects of T are qui.c remarkable.

Data for v';/U,; was compared in planes 5, 8, and 10 (Figures 4.57-4.59). The
data from plane 5 clearly shows the scaling effects of T. The cause of the larger peaks
in vz at this locaton for the WID data is not obvious, as plane 8 shows similiar
turbuler.ce levels for the SCD and WD data sets. The initial separation for the lower
Rey (or MDF) flow may be "swonger” in a time-averaged sense, causing higher rms V

velocity fluctuations. The HMM data in planes 8 and 10 show significantly higher levels
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of Virc. This appears to be a combination of low Reg, high &/T effects, since the SCD
and WJD data sets are comparable. Judging from profiles of V;/U, 1n plane 10 (Figure
4.31), high V flnctuations may be a direct result of large mean V velocities, caused by
the combination of low Reg, high 6/T.

The spanwise velocity fluctuations are different from the others, in that the
distribution of w'rc/U,.¢ seems to scale on d instead of T. This may be because w';c does
not show much variatior: through the boundary layer, and in most instances the only
identifiable chunge ~>curs when the turbulence levels drop to their freestream values. The
location of this drop, of course, scales on 8. In planes 8 and 10 (Figures 4.63 and 4.65),
the w’ levels from the HMM data se: are slightly lower than the other 2 data sets (SCD
and JLE/WJD). This again appears to be a low Re,, high 8/T effect, since the SCD and
WID data sets agree very well in the inner boundary layer. It is perhaps liriked to the
generally lower spanwise mean flow velocities observed in the HMM flow, particularly
evident in plane 8 (Figure 4.63).

In a fashion similiar to w'p., the distribution of the mean Reynolds stress
@yo/(U,)? appears to generally scale on &, not T (Figures 4,67 and 4.69). This is scen
by comparing the local maxima and minima, and noting that the SCD and HMM data
compare better to each cdher than to the WJD data. The most negative values of @y are
usually scen for the HMM data set. It is difficult to draw any definite conclusions
regarding @V, due to the scatter in the data and the lack of data for comparison.

The ‘inal turbulence quantity compared is @wpe/(Ug)®  Unlike v, the

distribution of aw, clearly scales on T (Figures 4.70-4.76). Except for the separated
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regions present in the HMM flow, the magnitudes of #wq. ususally agree quite closely
between the data sets. This similiarity shows that @@ is controlled by the horseshoe
vortex flow structure, which is driven by the junction gecmetry. This is contrary to vy,

which appears to depend more on the initial boundary layer thickness.

5.3.4 Boundary Layer Thickness and C, Distrivutions

Figures 4.91 and 4.52 show results of 8'/8° ,pp and 6/8,pp vs. Z/T for all the data
planes (5-15). These results are in the freestream coordinate system. The substantial
differences shown by JS’s data in plane 5 (8°) is an indication of the approach boundary
layer properties being determined with no appendage in the tunnel. The " and 8 data,
in generai, shows that the data sets with fower MDF values have a larger peaks near the
T 5Lt locations, while the data sets with higher MDF values tend not to have peaks in
;2@ boundary layer thicknesses. The ratic &/T appears to play some inportance here,
since the JLi7/WJID data, while similiar to the HMM data, has steeper gradients of & in
the spanwise direction. The larger values of 8 and 6 near the body for HMM's data is
due to the flow separation for that case. The JS and SCD data sets show no iocal
maxima in the majority of the measurement planes, but & and 6 do decrease as |Z/T|
decreases toward the wing.

Surprisingly, the distortive effects when scaled on T (A(8"/T) and A(6/T)) compare
very closely. The values for the HMM data are highest, but are lowest for the JLF/WJID

data, so nothing definite can be said relating MDF or Reg to the variation in A(3'/T) or

AB/T) vs. X/C.

Data Set Comparisons




Results of (Cps vs. Z/T are shown in Figure 4.93 for all data sets. The skin-
friction coefficient in the freestream direction was estimated using equation (4.10). As
expected, the data sets with the largest boundary layer thicknesses had the smallest C;
values. These data sets alse had a much smaller spanwise variation in C,. A local
minima in ; was usually located jus: outside the LOLS as determined by the vil-flows,
and C; increased for all data sets once inside the LOLS location. Plane 5 is an exception,
as no local minima was found in < at this X/C location. C; decreased monotomically as
|Z/T| increased. The LOLS, however, is not well defined at the maximum thickness,

so this result is not unexpected.

5.3.8 Comparison of Hot-Wire and LDV Results

Overall, these results agree well, The profile plots comparing the JLF data to the
WID LDV data in planes 5 and 10 show the closeness of the data sets. The mean
streomwise velocities compare quite well, even at X/C = 1.05, Z/T = 0.0, which one
would not vxpect. The data sets slightly disagree at some locations near the wall, which
is due to a shallower slope in the log region for the JLF hot-wire data. This increases the
values of "Jpc near the wall for the hot-wire data by a few percent at the most.

The differences are greater for the spanwise velocities. There are 4 factors which
influence these ditferences. These are 1) variation in initial probe aligament, affecting
the frecstream flow angle, 2) errors in aligning the hoi-wire probe from point to point,
3) difterences in vertical position, and 4) apparent hot-wire probe interference near the

wall, which is seen as odd variations in Wq as Y decreases. For the most par, the

Data Set Comparisons 87




effects of probe interference appear to be rather limited. From the hodograph plots
(Figure 4,77), some differences in the relationship between Uy and Wy can be observed,
which would tend to rule out vertical positioning as a source of the discrepancies.

The streamwise and spanwise rms normal stress values are always less for the JLF
data near the wall if the hot-wire and LDV data do not agree. These differences are
considerable for the u'r/U,. data, especially in plane 5 (15% variaticns). The generul
agreement for the w'po/U, data is much better, usually within 5%. Section 2.5.1
discusses some inherent errors in the hot-wire data reduction equations. Judging by the
results of the corrections in planes 13-15, where the local turbulence levels were much
higher than near the wing, the data reduction errors can be ruled out as a cause of the
observed differences. A likely cause is a damping effect of the hot-wire probe on the
flow as it nears the wall, which would lower the measured turbulent fluctuations. This
hypothesis is supported by the apparent linear growth in the variations with In(Y/T), a
functional form which is present in the solution describing a laminar flow near an
oscillating wall, which is analogous to a turbulent flow near a stationary wall (Stokes
(i851), and Van Driest (1965), both referenced in Schetz, 1984). Pursuing this discussion
is beyond the scope of this research,

The similiarities in @Wyo/(U,)? are remarkable considering the uncertainties
involved. However, a hot-wire probe damping effect is evident in Figures 4.70 and 4.75
as well. These plots show that the turbulent magnitudes obtained using a hot-wire were

usually less than those obtained using a LDV,
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5.3.6 Comparisox to Ailinger’s C, Results

The C; results obtained using oil-flow interferometry by Ailinger (1990) were
converted to freesiream coordinates and compared to results obtained using equation
(4.10) (Figure 4.93). The wail skew angics reported by Ailinger were used to convert his
data to freestream coordinates.

Knowing that this is a highly 3-dimensional flow, with separation regions and
large spanwise velocities, one would not expect equation (4.10) to estimate C; to within
10-15% of the actual value. Also knowing that Ailinger reported some difficultics in
obtaining low uncertainty skin-fricdon data, especially near the line of low shear, it is
surprising that the C; results compare usually to within 10%. The largest difference in
skin friction estimates occurs in the highly skewed flow inboard of the LOLS in Plane
5. A cautious optimist would view the good agreement between C; estimates as an
indication of the robusmess of skin-friction correlarions based on Re, and the shape
factor, H. A C; estimate accurate to within 10% for highly 3-D flows, based on a

relatively simple formulation, would certainly aid rough engineering calculations,
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6.0 Vortex Panel Calculations

In order to get a ezl for the qualitative differences inherent in horseshoe vortices
of various appendage shapes, a vortex pane! calculation was used to examine the inviscid
flow around several different appendage geometries. This chapter discusses the goals,

methods, and results of the author’s numerical research.

6.1 Numerical Research Program and Objectives

As mentioned in section 1.2.2, the distribution and circulation present in the
horseshoe vortex is affected by the appendage in two ways. The geometrical bluntness
increases the average vortex stretching rate, which increases the peak vorticity and affecrs
the vortex structure. The appendage bluntness also affects the initial vortex roli-up, whict

increases the overall stength of the secondary flow. The author’s findings supt-oit
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Mehta’s (1984) earlier research on the effects of nose shape on the horseshoe vortex. He

found that a non-dimensionalized estimate of the streamwise circulation, Iy, defined as

0
T, = [0 Xdr (6.1)
0 U‘

increases as the appendage nose becomes biunter. In evaluating equation (6.1), Mchta
used the same Z location for all nose shapes, chosing one which passed near the vortex
center. His results were used to obtain a correlation between anper.dage nose geomery
and the horseshoe vortex strength.

One of the main quantities of interest is the partial derivative, d(Vg)/dS, wlich is
the inviscid vortex stretching rate in the direction locally tangent to the body surface. Vg
is the local tangential velocity, and S represents the distance, or arc length, along the
body’s surface. Intcgrating this derivadve around the nosc to the maximum thickness:

—L f ma V9 45 . (~Ks—) (6.2)

S5, 7 ° oS §-§, .
one can calculate the average vortex stretching rate. A major part of the nurncrical
research work was spent examining the dependence of this quantity on the appendage
nose geomewry. Calculating equation (6.2) was performed numerncally using a 2-D
inviscid vortex panel method from Kuethe and Chow (1986). This method uses panels
with linearly varying vortex strengths and solves for no flow through the surface
(tangential flow only) at each panel’s control point. The control points bisected their
respective panels. The computer code from Kuethe and Chow output the tangantial

velocity (V) and coordinate information for each panel’s control point.
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The last numerical research objective involves the temporal flow charactenstics
of the wing-body junction flow. Rood (1984) concluded chat the frequency of large scale
structures in the junction-appendage wake flow »re dependent on the appendage nose
shape. Also, many researchers, no:ably Devenport and Simpsca (1990b), have shown
that a bimodal flow structure exists in the stagnation region of the appendage-body
juncton. The bluntness and resulting velocity gradients at the stagnation point may

greatly afect this bimodal flow structure. The ratios

b
Vo Vs ] (6.3)
as ), 5-S

form two nossible Stronhal numbers characterizing the bimedal structure, where f is the

bimodal switching frequency. The subscripts o and Tmax indicate where the expressions
are evaluated. Tmax indicates the maximum thickness, o indicates the appendage 2-D
stagnationn point. These parameters may also be related to the surface pressure
fluctuations along the stagnation line of the wing-body flow. While f must be determined

by experimental data (surface pressure fluctuations or velocity measurements), the terms

in the denominators of equation (6.3) can be estimated numerically, aiding in future

research of the junction temporal flow characteristics.
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6.2 Appendages Shapes Studied

A total of 30 appendage shapes were studied at 0° angle of attack, while 15 shapes
were studied at 12° angle of attack. Only the geometries with rounded leading edges
were studied at 12° angle of attack, since a sharp leading edge would cause separation in
a viscous flow. The results from an inviscid calculation in such a case would be
meaningless. The appendage shapes studied were

» NACA 00XX family (0006 through 0024)

» Mehta’s body shapes (1984) with faired on tail sections

» 688 submarine sail cross section

« 3:2 elliptic nose with 0020 tail

» Sand 1850 airfoii section

+ Shin’s body shapes (1989)

The modelling of the appendages was done one of two different ways. For

Mehta’s body shapes and the circular nose shape ical expressions were uscd (2 =
f(X)) to achieve the final panel resolution of 132 panels. For all the other shapes,
coordinate data was input, and then cubic splines were used to obtain the final panel
resolution. In all cases, a modified circular arc point distribution was used to establish
the final X/C values. This method automatically clusters control poi- s at the leading and

trailing edges, where higher densities are needed. Figures 6.1(a-¢) show the results of the

panelling schemes. Errors inherent in this numerical modelling process resulied in
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geometrical deviations from the actual apperdage shapes. Geometric characteristics such
as maximum thickness location and leading edge radius (p;¢) are usually in error by at
least few percent. These errors are not significant when examining the relationship
between numerically calculated quantities (as in section 6.3.2). When applying the same
relationships to experimental data, however, one should be careful to use the correct
geometric parameters.

Mehta and Shin both used equations in the fonn

.2y . (6.4)
a Lb

to define the nose shapes of their "wedge elliptic” geometries. If n < 2, the nose comes
to a point, while increasing n leads to a blunter nose. Figure 6.2 shows how n affects the
nose shape for these appendages. In Mehta's experiment, the actual appendages had
“chopped" tails (no trailing edges). A tail was numerically faired onto these appendage
shapes for the computations, utilizing equation (6.4). The tail length was set at 200 mm
(a = 200) and n was always 1.2. For the numerical work, values of n from 1.5 to 3.5,
and T/C ratios of 5 and 10 percent were used to generate a "family" of Mehta-like
appendage shapes. To calculate the nose geometry, the actual values that Mehta used,
a = 150 mm and b = 21 mm, were used. Shin (1989) used values of 1.5 and 2.0 for his
two wedge clliptc shapes, with 2 = 142.24 mm and b = 35.56 mm. The appendages used
had NACA 0020 tails faired on to the nose sections at the maximum thickness, and the

coordinates listed in Shin (1989) were used to define the appendage geometry.
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6.3 Vortex Panel Calculation Results

To accomplish the goals set for this work, the inviscid velocity distribution around
the nose of varying airfoil sections was examined by calculating d(Vy )/9S, which controls
the horseshoe vortex stretching rate. This derivative, and the derivatives used to
approximate p, i, were estimated numerically using central differencing. After much trial
and error, a correlation between the average vortex stretching rate and appendage
geometric parameters was established. A relationship between a vortex transport

parameter (VIP) and Mehta’s experimental circulation estimates (I'y ) was also found.

6.3.1 Preliminary Numerical Results

To verify the vortex panel code results, the output velocity distribution results
from the NACA (00XX sections were compared to wind tunnel data from Abbott and Von
Doenhoff (1959). As Figures 6.3(a-f) indicate, the inviscid approximation is quite
accurate compared to wind tunnel data, especially for the thinner sections. The largest
error encountered was about 1.5% of the maximum value of V/U .. This error, which
increases with appendage thickness, is likely due to the presence of the boundary layer
in the viscous flow. The effect of the boundary layer is to increase the apparent thickness
of the wing, therefore causing the "ocal velocity to increase. The spurious results at the
trailing edge seem to be affected by the relative length of the trailing edge panels. The

shorter these panels became, the greater the jump in the calculated Vg/U, ;. This anomaly
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was judged to be inconsequential with regard to the final results, as the nose regicn, in
the range 0 < X/C < (X/C)ryax » Was the region of interest.

Figures 6.4 and 6.5 present the velocity distributions for the other appendage
shapes. Figures 6.6(a-j) show the results for the 12° angle of a.tack cases. The sharp
peaks in the velocity distribution for the thin appendages are unlikely to occur in the
presence of a viscous fluid. The astute observer will notice that the velocity distributions
around the 688 sail and Sand 1850 sections are not as smooth as the other appendage
results, This is because the coordinates for these appendages were obtained by graphical

methods, and small inaccuracies were inevitable.

6.3.2 Average Vortex Stretching Rate vs. Body Geometry

The results of attempting to correlate the average vortex stretching rate {(non-
dimensionalized by pg/U.) and appendage nose geometry are shown in Figures 6.7(a-d).
This correlation involves only numerically caiculated parameters. The quantity BF is

defined as
g 1 Pl T { f_\ \l (6.5)
2X L Tmas)

This "bluntness factor" was found through trial and error, and represents a great deal of

calculations. More rudimentary parameters were tried, without much success. Examining
its terms, it takes into account the nose leading edge sharpness (p. g ), the "stubbiness” of
the appendage nose ((5/X);mae), and an indicator of the average appendage surface slope

(T /Stmax )- For the appendages with pointed leading edges, p;;; was not set at zero,
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but was estimated numerically using the control points generated by the inviscid code.
The results of the estimate, however, are still quite small. The correlating parameters of
the non-dimensional stretching to appendage geometry was determined for o = (°
independent of o = 12°. When calculated for the a = 12° cases, the average vortex
stretching rate was calculated from the stagnation point around the suction side, to the
maximum thickness location. At « = 12°, the correlation still held remarkably well, but
not Guite as well as for the 0° cases. It should be noted that BF is not a function of the
angle of attack.

Three types of curve fits were applied to the V¢p,/SU,, vs. BF data, linear (y =
mx + b), and two types of log curve fits (log(y) = m log(x) + b). The log curve fits were
minimized on lincar least squares, (emoi” = (v - 10" x™)7) and log least squares (error
= (log(y) - m log(x) - bj%. The linear least square fit was done to minimize the error of
the curve nit at high values of BF. Table 6.1 shows the values obtained from these three
curve fits. The log curve fit based on linear least squares gives the best results in terms
of the correlation coefficient (pyxy ), and variance estimate (). Figures 6.7(a-d) also show

- - ~.

h 1€ curve f1is.

N Y |
10 1CHULLS UL U

[}

i

Velocity profile data from Shin’s (1989) three appendage nose geometries were
used to evaluate the (d(W)/0Y)S/U . distribution at the maximum thickness location for
each geometry. The spanwise location of the profiles was Z/T = -.901, approximately the
vortex center location as defined by the peak vorticity contour. Figure 6.8 shows the
results of the vorticity calculations. The baseline geometry has by far the largest vorticity

levels. Note that the vertical location of maximum vorticity for each case roughly
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coincide with one another, revealing that this dimension may only be weakly effected by
nose shape. Also note the steeper gradient in vorticity for the baseline case, indicating
a greater reiative concentration of vorticity. Figure 6.9 displays how the maximum
vorticity increases with BF. This is an expected result since increasing BF increases the
average vortex stretching rate. However, with the limited number of data points, a

definitive correlation cannot be found.

6.3.3 Streamwise Circulation vs. Vorticity Transport Parameter

The correlation of average vortex stretching rate vs. BF involves only numerical
data, but the second correlation found relates 2 numerically estimated quantity to
experunental resulis. Mehta (1984) derives a simplified vorticity transport equation which
models the transport of transverse vorticity into the streamwise direction, By ignoring
viccous terms, the convection of vorticity by V and W, and the contributions due to y,

Mehta presents the following equation:

2[2) . Bz 0w (6.6)
ax| U )
This equation shows that geometries generating large values of ¢(W)/0X and small values
of U will create the strongest horseshoe vorticies. An appendage with a high bluntess

factor meets both these criteria.

From equation (6.6), a vortex transport parameter (VTP) can be derived, relating

the transported streamwise vorticity to inviscid quantities. Integrating both sides of
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equation (6.6) along the X direction, and setting W = Vsin(8), where 0 is the local panel

angle, the following equation is obtaired:

Qy Q,

X = | £ i 6.7
- [ — 4V sin(®)) (6.7)
By assuming that ®, e Ug /3, and realizing that U = Uy = Vcos(8), the following
relationship can be derived:

Q 1
( U) f ¥ cos(6) AV sin(@)

Evaluating the right hand side of equation (6.8) from the stagnation point to the maximum
thickness location forms the vorticity transport parameter (VTP), which is related 1o Ty.

Figure 6.10 shows the correlation between Mehta’s non-dimensional circulation
estimate and the VTP. Note that the results for the 5% and 10% thick appendages arc
shown. To cormrelate the two cases with different thickness ratios, I'y was divided by
9d(Vs/U,)/O(S/C) evaluated at the stagnation point. This quantity is defined as I'y.
Doing this does not correlate the two set of data completely, as the two lines have slightly
different siopes. 1’y was found to have some dependence on the bluntness factor as well.
The results in Figure 6.10 are only preliminary, since not much data is available for
different appendage shapes. The reader should note that I’y depends swongly on the
approach boundary layer properties, and Mehta’s results correspond to one particular

boundary iayer. Mehta's experimental values for I'y were .076, .102, and .124 for n =

1.5, 2.0, and 3.0, respectively. The experimental parameters were U = 25 m/s, §/T =
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.595, and Rey = 58,000 in the undisturbed boundary layer at the wing leading edge
locatdon.

Ty and Iy were calculated for Shin’s geometries, using the (68(W)/3Y') component
of Qy only, and the results tabulated in Table 6.2. Results for Iy are plotted in Figure
6.10 as well. One can see a different relationship between I''y and VTP for Shin’s daia.
This variation is due to the different approach boundary layer, and may also be duc to the
different geometries involved.

Appendix C tists all results in tabular form for both the 0° and 12° angle of attack

cases, including the ratios relevant to equation (6.3).
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7.0 Conclusions

This chapter attempts to collect and list the most important and significant
conclusions of this study. When discussing the results, the phrase in general was used
quite often to describe certain trends or tendencies. This wording was used because a
contradiction to any statement concerning the data comparisons ceuld be found if the data
is examined long enough. The conclusions were based on observations of all the

available data, and reflect the prevalent trends discovered.

7.1 Basic Flow Physics

Conclusions concerning the basic flow physics resulted from examining the
author’s hot-wire data and Devenport and Simpson’s (1990a) LDV dara. These

conclusions are;
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. The primary horseshoe vortex flow structure is elliptically shaped and near the
wall, similiar to what Dickinson (1986a,b) observed. This characteristic shape may be
due to vortex meandering, caused by the unsteadiness in the nose bimodal flow region.
. The vorticity in the junction vortex is dominated by the change in spanwise
velocity, and the term (d(W)/dY) defines the characteristic distribution of vorticity in the
flow.

. The wall no-slip condition creates a very thin region of high negative vorticity
near the wall underneath the primary vortex, which thickens outboard of the LOLS.

. The line of low shear (LOLS) position defines locations of peak turbulence
intensity and boundary layer thicknesses. The time-averaged positon of the horseshoe
vortex core is inboard of the LOLS, and coincides with the location of large spanwise
gradients in U, /U,

. A quantity termed the "distprtion funcrion" (fp) reveals the effects of the secondary
flow distortions, which enables more conclusive flow comparison results in chapter 5.

. From examining and drawing conclusions from the results of Shizawa and Eaton’s
(1990) study, the importance of the geometry-induced skewing was seen. The conflicting
directions of the skewing-induced and voriex-induced flows near the wall controls the
flow separation. Therefore, the skewing affects the growth of the streamwise mean
velocity distortions, and also the secondary flow structure and associated vorticity
distribution.

. Flow distortion increases with X/C, and grows rapidly when enhanced by a

favorable boundary layer skewing direction. Adverse pressure gradients also enhance the
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growth of flow distortions. The flow over the aft portion of the appendage subjects the
herseshoe vortex to skewing and a mild adverse pressure gradient, which work together
to increase the boundary layer distortions.

. The characteristc peaks in streamwise normal stresses can be explained by the
increased mixing of the boundary layer fluid, and a destabilizing of the boundary layer
caused by the lifting action of the secondary flow.

. The far wake flow distortion patterns reveal a more diffused vortical flow
structure. However, the growing boundary layer, particularly in the adverse pressure
gradient, is the primary cause of flow distortions growth X/C increases.

. The spanwise location of maximum boundary layer thickness (and minimum skin

friction) remains fairly constant at |Z/T| = 1.8 for X/C values greater than 6.

1.2 Effects of the Approach Boundary Layer

Thie conclusions of the main focus of this study are rather qualitative in na~ire, but
this does not diminish their significance. These conclusions were obtained by coimyiaring
the data sets listed in Tables 1.1 and 3.3, and are as follows:

The recondary flow structure and distortion function (f) scale on T in the Y and

Z ducctions. This fact reveals that the horseshoe vortex flow structure is primarily driven

by the aj pendage geometry and associated pressure gradients.
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° The effects of Re, can be easily seen in the nose region using Kim’s (1991) LDV
measurement results. The larger Reynolds number increases the local mean flow
distortions and gradients near the wall, and also concentrates and amplifies the near wall
turburlence levels.

. From the observing the effects of Rey in the nose region, the author postulated
that these effects may be more effectively described by a parameter termed the momentum
defict facior (MDF). ‘this factor, equal to (Rcr)z(G/I'), is indicative of the iclative
dzcrease in momenturn flux near the wall. Flows with large values of MDF would
experience an enhanced near wall jetting of the secondary flow due to the "relief valve"

efrect of near wall, low momentum fluid,

¢ Comparison of the data sets reveals that the MDF correcily predicts the variation
in mean flow distortion magnitudes and associated horseshoe vortex characteristics. Re, ®

inccirectly predicts the relative distortion magnitudes.

. The two vortex configurations studied by Shizawa and Eaton (1990) were found
to have characteristics which corresponded to flows with large MDF (case 1) and flows ¢
with small MDF values (case 2). One can conclude that the effects of the relative
momentum near the wall are to modify the effective flow skewing around the appendage. ®
Low MUDF increased the effective flow skewing, and high MDF decreased the effective .
flow skewing,
. As MDF increases, the following effects are observed: L
- the mean streamwise velocity distortions are not as lorge
- the secondary flow patterns are more elliptic :
®
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the positive vorticity is increasingly concentrated in a near wall region

the regions of negative vorticity outboard of the LOLS are less significant

the movement of the vortex core away from the wall is decreased

the downstream spanwise location of the vortex core is slightly further from the
plane of symmetry

. The vorticity and helicity levels, non-dimensionalized by 6/U,,,, are greater for the
high MDF flows. This may be due in part to increasing U, ¢#/T, which affects the average
vortex stretching rate, and T/U,, may be a more appropriate scaling factor for vorticity.
Definite conclusions regarding the vorticity scaling could rot be reached due to the
variation of MDF, &/U,,, and T/U, between the data sets.

. The effects of decreasing &°/T are seen primarily by increased boundary layer
thinning between the appendage surface and the line of low shear. The increase in
relative size of the vortex to the boundary layer height increases the availability of high

momentum fluid, leading to larger skin friction values. Also, the contours of W';c/U

show more distinct local maxima for lower values of 8'/T, due to the initially thin layer

of turbulent fluid,

. In general, the turbulence quantities show good agreement between the data sets.
The higher Reg flows show only slight increases in streamwise turbulence intensity uear
the wall, which is surprising in light of Kim’s (1991) observations at the appendage nose.
v The quanitities u'rc, V'yc, and @ all appear to scale on T in the vertical
direction, while w'rc and &V seem to scale more appropriately on 8.

. The maximum spanwise variations of & and 0 scale on T.
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. The LDV results of Devenport and Simpson (1990a) generally compare well to
the author’s hotwire results (to within 2-3%). The near wall turbulence measurements
disagree, which may be due to damping of the velocity fluctuations by the hot-wire probe.
. White and Ludwieg-Tillmann’s corrclations predist (Cy)gs to within approximately
5-10% of Ailinger’s measured values. This is remarkablt considering the highly 3-
dimensional nature of this flowfieid.

To gam further understanding of the effects of the approaci boundary layer fiow,
a more rigidly controlled experiment, with less "interfering inpuis”, could be designed.
This experiment would use the same appendage geometry, faci:.ies and experime al

apparatus. The only variations would be in the approach flow conditions.

7.3 Numerically Predicted Effects of Body Geomefry

The vortex panel calculations produced numerical results which revealed a definite
relationship between
. average vortex stretching rate and a parameter describing the geometric bluntness
of the body shape (the bluntness factor, BF)
. strcémwise horseshoe vortex circulation and a vortex transport parameter (VTP)
Calculations were also done to aid in the further study of the junction temporal flow
characteristics.

All of the numerical resuits are preliminary, and more work needs to be done to

fully understand the effects of nose shape on the junction flow. In light of the author’s

Conclusions 106




experimental conclusions, the examination of the 2-D potential flow skewing away from

o
the body may yield further insights into the effects of geometry. Any joint
experimental/numerical study of various appendage shapes would certainly produce

r‘ valuable information. An even more in depth program could further study and account
for the effects of changing the approach boundary layer.

®

L
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Table 1.1. Comparison of measurement locations and quantities measured, 3:2 elliptic
nose, NACA tail junction flow studies

Fleming Dickinson McMahon Shin Devenport
(JLF) (SCD) et al. (J5) et al.
(HMM) (WID)
18 (5) .18 (5) 18 (5) 18 (5)
42 (6) 43 (6)
Measurement .64 (7) 64 (T
Planes (X/C) 75 (8) .75 (8) a5 ()
.93 (9) .93 (9)
1.05 (10) 1.05 (10) 1.00 (10) 1.00 (10) 1.05 (10
1.50 (11) 1.50 (11) 1.50 (11)
3.00 (12) 3.00 (12)°
5.80 (13y
9.14 (14)
11.56 (15)°

Notes:

JLF measurements: U, &', W, w’, -iw taken with single, yawable hot-wire, except

locations designated ()" indicate measurernents of U and u” only. ®
SCD measurements: U, u’, W, w', V, V', -9, -gw taken with hot-film probe.

Dickinson also found mean pressures on wall and made oil-flow

visualizations.
HMM measurements: U, u’, W, w’, V, V', -a?, -iw, -vw taken with rotating, slant-

wire probes. of
JS measurements: U, V, W taken with 5-hole probe. :
WID measurements: U, u', W, w', V, Vv, -V, -aw, -Vw, taken with LDV

(Devenport and Simpson, 1990a). Location designated ()" indicates hot-

wire measurements of U and «’ only (Devenport er al.,(1990)). Also,

measurements were made for both thick and rhin approach boundary layers ;

at X/C = 3.00. d




Table 2.1. Offsets for 3;2 clliptic nose, 0020 tail appendage

X/C Y/C
0.0 0.0
0.015 0.047
’ 0.029 0.065
0.059 0.088
0.088 0.102
0.118 0.111
0.176 0.118
' 0.294 0.114
0.412 0.104
0.529 0.089
0.647 0.072
) 0.765 0.051
0.882 N.028
1.0 0.0
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Table 2.2.

Tables

X. Y, and Z location uncertainties (95% confidence levels)

Uncertainty in X:

Uncertainty in X/T;

Uncertainty in Y:

Uncertainty in Y/T:

Uncertainty in AY:

Uncertainty in Z:

Uncertainty in Z/T:

+(1 + (Y)sin(2°)) (mm)
+(.014 + (Y/T)sin(2°))

* .08 mm
+ .001
+ .03 mm

(Same as X)
(Same as X/T)
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Tabie 2.3.

Tables

Nominal experimental uncertainties (95% confidence levels)

Temperature drift and uncertainty: T1°C

Pressure drift and uncertainty: + 5 mb
Manometer uncertainty: + 012 in
Amplifier offset drift: + 001 V (x .2%)
Amplifier gain drift: t.1(#.5%)
Axial coefficient uncertainty: + .05

Probe angular positioning error: t .5°

Mean voltage error: +.5%

Note: Vezlocity gradient effects were not considered.




Table 24.  Reduced data uncertainty (95% confidence levels) -

Uncertainty in: Uncertainty: e
U/U ¢ t1.5%
W/U, * U/U,,; sin(.5°)
R
WU, t 1.5% .
w/U,.¢ *5%
T/U? + 5% ok
g x.5°
o, + 2.5° (worst case)

Note: Data in tunnel coordinates
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L
) Table 2.5. Typical contributions of experimental uncertainties to reduced uncertainties
(percentage of total uncertainty)
@
Experimental || U/U; | W/U,, | W/U | w/U, | -8/ | Ofg
Uncertainty f U2,
Temperature 1.4 01 13 1.1 0.7 0.0
° Pressure 34| o1 31| 28| 17| o0
Manometer 871 03 84 | 75 46 | 00
Axial coeff. 0.0 1.8 0.5 11.2 230 1.8
° (k)
Prcebe angle 0.5 94.6 22 10.3 22.5 98.1
7 (calibration) 0.0 0.0 0.0 0.0 0.0 0.0
E {(amp, 49.0 1.5 252 35.6 13.2 0.0
® offset)
E (amp. gain) 36.8 1.6 58.4 31.5 34.4 0.0
® Note: Data point location is X/C = .42, Y/T = .0064, Z/T = .692
Data in tunnel coordinates
@
9@
@
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Table 2.6. Quoted experimental uncertainties of data sets used for comparisons of
wing-body junction flows

Quantity sco' | wiD* | HMM® | s*
UlUp VU Wil | £2.5% | %035 | +2% | £007
WiUpy VU Wil | NA | £003 | 8% | -
BIU, -TIU | N/A | £0002 | #6% | -

1 Flow angle N/A N/A +1.0° -

Notes:

The=se figures are all nominal uncertainties

'From Dickinson (1986a)

?LLV unceriainties estimated from Devenport and Simpson (1990a) (note also that
these uncertainties are not given as percentages)

“Fstimuted from McMahon et al. (1987) (these figures are the upper uncertainty
limits)

*Nomnal upper limit on mean velocity uncertainties, from Shin (1989)




;0 Table 3.1. Adverse pressure gradient boundary layer profile properties
o X/C location 10.135 11.08 12.06
Ugs MU, .853 817 782
8 gos /T 1427 1718 1.910
& 273 325 400
* ) 152 166 184
| H (= §'/8) 1.80 1.96 2.18
C; .00142 | 00124 00101
|@
Notes:

C, estimated using Spalding’s wall law (equation 3.2)

® Although T and C do not have any physical meaning for these profiles (wing not
mounied in tunnel), the results are non-dimensionalized by T and C to be
consistent

@
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Table 3.2.  Line of low shear locations Y

ol
Plane #, X/C (Z/T)oLs :
,.18 -.88°

42 .99

64 -94
75 -90 d
, 93 -.87
10, 1.05 -89

Dy

-

VN W

Notes:

*LOLS location in plane 5 is not well defined, location given is an estimate.
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Table 3.3. Approach boundary layer parameters, 3:2 elliptic nose, NACA 0020 tail
wing-body flow studies

Data Set ID || JLF,WID! SCD? HMM? Js* wID*
T (cm) 7.17 6.1 7.1 7.1 7.17
Clm) | 305 25.9 36,9 30.2 30.5

T/C 235 234 239 235 235
U, (m/s) 26.75 30.5 1524 | 209 32.0
§/T 513 1.197 947 115 263
§T 0779 .1345 .1467 .148 043
o/T 0548 1014 | 1003 | 1227 031
H (= 5'/8) 1.42 1.33 1.46 1.206 1387
Re, 63060 | 11,600 | 6800 | 11,700 | 4,500
Res. 8000 | 15400 | 10,000 | 14100 | 6,200
Re; 115000 | 114,400 | 67,800 | 95400 | 145,200
c, 00247 | 00247 | 00232 | .00256 | .0028

U /T (Ifsec) | 373.1 5000 | 2146 | 2944 | 4463

U,/ (sec) | 7273 | 4177 | 2267 | 2561 1,697

MDF (x10%) 7.24 133 4.61 11.2 6.53

Notes:

JLF hot-wire and WJD LDV and hot-wire data, thick boundary layer case, approach
boundary layer profile measured at X/T = -2.146, Z/T = 0.0, with wing in place.

2SCD hot-film data, approach boundary layer profile data corrected from X/T = -3.167,
Z/T = 0.0 to WDIJ location, wing in place.

*HMM hot-wire data, approach boundary layer profile data corrected from X/T = -2.087,
Z/T = 0.0 to WDJ location, wing in place.

‘IS 5-hole probe data, approach boundary layer data at X/T = 0.0, no wing installed.

SWID hot-wire data, thin boundary layer case, plane 12 (X/C = 3.00) only, approach
boundary layer profile measured at X/T = -2.146, Z/T = 0.0.




ol
Table 4.1. Wing-body junction flow horseshoe vortex effects, pianes 5-12 -
Pt | Da Set Z/T limits | QOWYY )y | Baax | AGTT) | AG/T)
JLE | 775,1.525 2.178 2137 | 0220 | .013 -
ST wip | .s5.1.525 2.243 2.049 | 0203 | .029 .
SCD | .551.525 | 4917 | s.146 | .0318 .()_22_; _
6 | JLF | .692,2.00 1112 1112 | 0320 | .021 of
JLE | .555.2.00 6583 483 | 0499 | 032 N
71 sco | 555200 8048 7003 | .0649 | .045 _
WID | .308,1.48 4637 391 | 0772 | .049 ®
8 1 sco | 308,148 5157 | 388 | 0617 | 044 |
HMM | .308,1.48 350 30 | .0939 | .065
. JLF 327,200 | 3500 273 | 0818 | .048 ol
SCD | .327,2.00 9767 670 | 0835 | .057
JLF | .200,2.00 300 200 | 0921 | .055
0| WID | .200,1.60 300 200 | 0944 | 055 .
SCD | .200,2.00 - - 0894 | .063 6
HMM | .200,2.00 300 150 | 0772 | 063 ‘
JLF .200,2.00 250 200 | 0033 | .061
U1 sep | 200200 715 696 | 0991 | .064 of
WID | .354,4.603 . - 0969 | 0626 |
12 (thin)
WID | .354,4.603 . - 1086 | .0689 %
(thick) oy
HMM | .354,2.833 . - 1559 | .0919
Note: (3(W)/dY)yax and h are non-dimensionalized by &/U,, and 8/(U,.,)? respectively.
eR
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Table 4.2.

Wing-body junction flow horseshoe vortex effects, planes 13-15

p# Datm SetID | 2Z/T limits |  A(S/T) A(B/T)
13 LF | 0480 136 092
14 JLF 0,4.80 188 111
15 0,4.00 392 187

JLF




®p
Table 6.1.  Curve fitting results for (Vg /S)hpaPLs/Unes vs BF data (o = 0° and 12°) ©
y = 10°x™ log(y)=m log(x)+b y=mx +b ®
m .88157, .80749 94010, .86617 1.1150, 1.0061
b 048231, .014203 | .10727, .057897 | .016204, .03953 K
Pxy .99969, .99806 99871, 997165 99747, 99356 e -';.?-"_5
c 005777, .01765 | .031187, .038464 | .016294, .03201
Notes: o 5.1._
Columns contain both 0° and 12° cases, separated by a comma
28 points were used for the o = 0° data (J. Shin appendages not used) ’
14 points were used for the o = 12° data (J. Shin aprendage not used) h
oF
ol
of
op
o
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Table 6.2. Effects of nose shape at maximum thickness locations for Shin’s

geometries
Appendage Geometry Iy | (OW)/OY)yyax
3:2 elliptic nose, NACA .140 .0066 2.819
0020 tail
4:1 elliptic nose, NACA 0722 00134 9568
0020 tail
4:1 wedge elliptic nose, 0605 000068 7724
NACA 0020 tail '

Note: ((W)/9Y)y.x is non-dimensionalized by 8/U,.,.
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Adverse pressure gradient boundary layer profiles
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Figure 3.3.

Far waoke boundary layer profile results

equation:

ST RSN V(1.
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Sample of Curve Fit to Adverse Pressure Gradient Section Mean Velocity
Data Using Spalding Wall-Law




?ooam.comu:__mv:m
1oduaAsg woyy) frem 1597 uo ornssord one

uedu-awy jo uonnguusiq  pg gy




~IN

and Simpscn, 1990b)

eF
Figure 3.5.  Contours of Time-Mean Static Pressure in Appendage Nose Region, a)
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Figure 3.12.

Figures

Sketch Showing Dimensions of Characteristic Oil-Flow Patterns for

Baseline Wing (from Olcmen, 1990)
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Figure 3.13.

Approach boundary layer profiles
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Approach boundary layer profile results
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Approach boundary layer profile results
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Approach boundary lcyer profile resulls
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NACA four digit airfoils (132 panels)
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Mehta appendage shapes with wedge elliptic tails (132 panels, T/C = .05)
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Mehta appendage shapes with wedge elliptic tails (132 panels, T/C = .10)
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Other aoppendage shapes studied (132 panels)
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J. Shin 4:1 elliptical nose bodies (132 panels)
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Mehto wing paneling results (T/C = .10, 132 panels)
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Surface Velocity Results (132 panels)
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Surface Velocity Results (132 panels)
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Surface Velocity Results (132 panels)
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Surface Velocity Results (132 panels)
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Surface Velocity Results (132 panels)
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Surface Velccity Results (132 panels)
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NACA' 0006 aiffoi! at 12 deg. AOA
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Figure 6.6c.d. N.v’

NACA 0012 airfoil at 12 deg. ADA

A —

X/C

Appendage Velocity Results, 12° AoA




NACA' 0018 airfoil at 12 deg. AQA

""t"':.lsﬁq

TLBE‘EBBB Béa

1 E O T T T
3
)
R
> :
b
OF =g, SE——
5, :
“ts& : : :
i, ; : |
N ‘%Bﬂ*mmweaeeeeaﬂ*m%
’_2 } J. i L [ e
0.0 0.2 0.4 0.6 c.8 1.0
X/C
3=
NACA 0024 air il ot 12 deg. AQA
-n-‘
-’
0 'i‘%:;, o
S, g
-1 L TPteREoReea e aeR Reseok BEEETT
_._;Z | .- 1 L 4 — 1 el
0.0 0.2 0.4 0.6 0.8 1.0

Figure b.6e,t. NACA Appendage Velocity Results, 12° AoA

350
Figures




® .
Surface Velocity Results {132 panels)
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Vortex paneling resuits (132 panels)
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Vortex paneling results (132 panels)
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Vortex paneling results (132 panels)
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Vortex paneling results (132 panels)
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Figure 6.8.
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Appendix A. Hot-Wire Data Reduction

As previously mentioned in section 2.5, the calculation of Ug, u’s, w's, i, and
0y is taken from Devenpcrt and Simpson (1990a). Note thet in the fellowing equations,

an overbar designates a time averaged quantity. Using equations 3.2, 3.3, and 3.4, {(E")

can be expanded in a Taylor sc ics »2out E (mean voltage):

Uy = f(E) = f(B) + (E'-E)(E) + (E'-Ey%(;@- + o (A1)

Dropping terms higher than second order and taking the tme average of this equation

yields:
— - = (E
U, = B + E zf-;—E)- (A2)
Calculation of ', follows along similiar lines:

Uy = U Uy = ET(E) + E”-E_":)f—;@ (A3)
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@
Squaring equation A.3 and taking the time mean average, the result is: K
a »‘d
o R, PN P Y A
WPy = ENEEY + S BPE" - B + 1B BED) (A9) r:
Note that these equations are in terms of mean voltages only. The mean fluctuating el
voltages can be expressed in terms of mcan powers of voltages. The equations needed
are:
_ ©;
E* = F* - E?
E° = E® - 36%E + 2E° (A.5) f
E" = E* - 4E°E - 6E"E* - B b
e g
Utilizing these equations enatles the reductio.. ~ <, ad ', by looping through the G
array of voltages oniy once.
i
&
<
L
b
®
&
5l
®
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Appendix B. Wing-Body Junction Approach Flow Data

This apypendix contains listings of the appreach flow boundary layer data for the
data sets of Devenport and Simpson {i990a), Dickinsoa {(19864,b) and McMahon et al.,
(1987). The approach flow for Devenport and Simpson’s case is the same as for the
author’s hot-wire data,

The author's dawx dar is available on magnetic disk, and includes all
measaremcnts teken in planes 3-11 12-13 in both tunnel and fre¢stream coordinates. The
text file "FILELIST.DOC" contains infe  -ation regarding the organization of the data

files and their contents. This file is shown in this appendix as well. The other daia sets,

- poremsleme f,....... -~

- oo slem
1kI diuutialr
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Devenport and Simpson thick approach bnundary layer data
(Flemirg’s approach boundary layer is the same)

X/T = =2.146, /T = 0.0

wing thickness = 7.17 cm

nominal reference velocity = 26.38 m/s

temperature = 23 C Pressure = 940 mb

nvmber of points = 30

Y/T U/Uref
.0035411 .39103
.0042493 . 41412
.C049575 .4284C
.00637739 .45372
.0074363 .47239
.0062066 .49328
.011331 .50678
.212810 .52328
LCL6997 .54595
.020538 .55712
.025142 .57837
.030807 549453
.037181 .61043
.0453¢8 .6373A0
.055241 .64853
.067635 .66889
.082153 68786
.10021 .71183
.12181 el
.14837 .162
.18945 .802¢
.21990 .830453
.26806 .86820
.32613 .90733
.3976¢ .94622
.48336 .96978
.58852 .97587
.71671 .97498
.87252 .97695
1.0623 .97722
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Appendix B

Dickinson approach boundary layer data
X/T = -3,1667, 2/T = 0.0

wing thickness = 6.1 ¢m

nominal reference velocity = 30.75 m/s
number of points = 17

Y/T U/Uref
.041667 .6186
.08333 .6879
.12500 L7253
.1667 .7556
.20833 .7782
.3125 .8221
.41667 .8570
.5208 .8864
. 6250 .9097
.729167 L8310
.8333 .9465
1.04167 L9677
1.2500 .9765
1.4583 .9780
1.6667 L9775
1.875 .9778
2.0833 .9781

McMehon, et al. approach boundary layesr data
X/T = =2.087, 2/T = 0.0

wing thickness = 7.1 cm

nominal reference velocity = 15.24 m/s
number of points = 24

Y/IT U/Uref
0.051355 0.,533333
0.065386 0.568857
0.083¢%22 0.599491
0.101458 0.629008
0.118994 0.659542
0.136530 0.667684
0.152813 0.6788¢0
0.172855 0.709415
0.205421 0.715522
0.237988 0.731807
0.274313 0.765394
0.309385 0.782697
G.344457 0.784733
0.380781 0.8091€0
0.450925 0.858C15
0.519816 0.879389
0.606243 0.2058924
0.,655176 0.931298
0.779098 0.95C636
0.8€80320 0.959796
0.956963 0.968957
1,042138 0.972010
1.112282 0.974046
1.180000 0.4973000




ALppendiz B

J. Fleming’'s dala files are organized in the following sanner:

tpXX?7.dat ~ XX indicates the 7 plane nuaber {05-13)
- 77 = "tc” indicates tunnel coordinate systes used to .= at Jata
- "fc¢" indicates ‘reestrean coordinate system used to present dats

data file contents:

fite descriptive header

X/T location of YI plane

average reference velocity (a/s)

nusber of profiles seasured 1n YI plane

no., of pts for lst protile  temp(C) opressure{eb) urefin/s) s flow angle

. (one line for =ack ‘rotile)

no. of pts for last profile temp(C) pressure{ab) uretf(a/s) s flow angle
YT LT U/Uref wu'/Uret wW/tret w'/Ur2f us/Uref”2 flow angle

o oetloe,

Note: The far wake planes contaln only U/Uref and u ‘Uret Jata
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Apperdix C. Voriex Panel Code Data
L
This appendix contains listings of data discussed in Chapter 5. This data is also
® available on disk. The listings containing the data from the Mehta appendage shapes are
"padded” for the I'y and 'y /(d(V)/dS), data, since [’y data was availabie only for n =
1.5, 2.0, and 3.0. The padding was done so that the data could be read into a plotring
®
program correctly.
312 elliptic noss w/ G020 tail (basel:ne wing)
@ BF d(V/Uref}/d(S/C)a  ave. vort, str. VTP rhole/C
1319964 20,2476 392097 110,91 0725128
at 12 degrees aoa
319344 13,7120 . 381362 -7 981%7 0725128
@
688 sail section
BF  d{v/Uret}/a(5/C)e ave. vort, str, VIP rhole/C
k L0494162 40,4319 .0787788 388.372 .0238028
at 12 degrees aoa.
0494182 12,6330 0843323 -18.27E2 02356028
ke
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Mehta appendages (3% thick, ¢ angie of attack)

n BF  d(V/Uret)/d{S/C)o ave. vort. str. VTP  Ganma G/(dV/dS)o rhole/L
1,9 .00279715%  1683.47 004465945 896895 076  4.9149e-% 000932742
i.7 ,00508421 695,743 0084477 2.78939 0000 1.0e-8 00168978
1.9 00483234 500,126 0110023 4,03173 0001 1.0e-8 00226667
1.9 .009044i1 380,278 0184861 9.3984% ,0001 1.0e-8 00299332
2,0 0117391 302,285 0186674 6.86739 ,102  3.3743e~4 0038866
2.2 0187973 L1007 ,0293085 10.91652 001 1.0e-6 00617673
2.9 .0332238 145,409 0505872 15,0588 ,0001 1.0e-8 0108828
3.0 0668013 99,354 0973200 237873 108 1, 24%4e-0 207108
39,1000 19,3194 152306 22,4570 ,000! 1.0e-8 (0392400

Mehta appendages {10% thick, 0 deg. angle of attack)

n 8F  d(V/Uret)/d(SiC}a ave. vort. str, VTP Gansa  5/dV/dS rhole/C
1.9 ,00177800  997.312 .00311492 1.63820 .076 7.6205e-3 ,00122342
1.7 ,00384479 378.020 00669791 4,6861% L0001 1.0e-8 002561354
1.8 .0055781% 263,324 00962287 5.99602 ,0001 1.¢e-8 00383466
£.,9 .00784436 198,335 0174593 8.69434 ,0001 1,0e-8 00538274
) J0107324 155,745 0182997 10,9562 ,102  6.55e-4 00735104
2.2 ,018%901 107,118 0312928 15,8482  .0001 L.Qe-8 012687
2.5 0360552 72,5092 .0992239 23,8528 ,0001 }.0=-B DT84796
3.0 0883042 49,4740 37783 36,1939 124 2,3006%e-3 .03414a9
3.9 (195162 39,3555 (232473 52,6940 ,9001 1,Qe-8 004257
Mehta appendages (10% thick, 12 deg. angle of attack)

n BF d{V/Uret)/d{5/C)o ave, vort, str, VI? Gamma  9/dv/gS rhole/C
2000107324 14,0809 0203631 100) 102 1.0e-8 00735154
T 0360592 13,2448 0697530 1000 L0001 1.0e-8 0244794
INOLE03042 17,1089 157409 1000 124 1.0e-8 0541489
3.9 1533162 16,1564 ,381478 1000 7001 1.5e-3 054257}

Sand 1850 section

BF g(v/uref)/d({S/Clo ave. vart, str. VTP rhole/(C

0132594 S16.567 ,0254399 134,168 .00904039
3t 12 deqrees AQA
0132394 10,8357 0265676 5,47618 00904037
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NACA appendages (0 deg. angle of attack)

10 BF  d(V/Uref)/d(S/C)o  ave. vort, str, VTP
0008 0102643 254,638 0187964 85,5650
0009 ,016168Y 142,179 0292247 140,193
0012 ,0284892 87.8263 0502008 220,485
0015 ,0452494 59,1695 0741781 328.404
0018 ,0713588 42,7754 115248 464,314
0024 ,144320 25,0816 2309 840,104
NACA appendages (12 deg angle of attack)
] BF  d(V/Uref)/d{S/Clo ave. vort, str.  YIP
0006 ,0102643 11,9684 0213248 -8.28003
0009 0161489 13,4485 0314095 5.10029
0012 ,0286892  15.5494 0510680 -B.52875
0013 ,045249% 13,1528 0803748 ~7.86433
0018 0713568 14,4878 J19761 =2.13581
0024 144320 12,8868 213215 -11.35%2
Jo Shin 4:1 elliptac ippendage (n = 2,0)

BF d(v/Uref)/d(S/Cla  ave, vert, str, yIp rhole/C
04729412 53,8457 ,0749548 397,908 ,023844
3t 12 degrees a0a
0429412 12,2378 0777543 ~9.90503 023884

J. Shin 4:1 wedge elliptyc 3ppendage (n = |,5)

BF a(V/Uret)/d(5/Cla  ave. vort, str, VTP rhole/C

00258427 885,798 00531556 174629 Q0183404
Circular nose appendage (teardrop)

BF  d(V/Urei)/d(5/C)o  ave. vort. str, VTP rhoje/C
1,0708y 9. 18308 113342 73.682%  ,21059¢
at 12 degrees ana
1.,07089 8.66207 1,09447 ~27.5322 (21089
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rhale/C
00525416
.00839113
0142438
.0210323
0309974
0347926

rhole/C
100525414
00859113
0142638
0210323
0309974
0347924
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