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University of Washington

IAbstract
Optimal Control Designs for an Inverted Cart-Pendulum Array

by John Edwin Shaw

Chairperson of Supervisory Committee: Prof. Juris Vagners

Dept. of Aeronautics and Astronautics

Optimal control design employing LQG methodology for an inverted cart-pendulum

array (a non-minimum phase system) is explored. Motivation for the study is the

availability of a laboratory hardware setup for implementation and experimentation,

including use of analog computers for controllers. The dynamics of the open-loop

plant are developed using Lagrangian techniques. The minimum-time optimization

problem involving pump-up to an inverted configuration is examined. The opti-

mal regulator problem is solved for several control scenarios, and the use of optional

integral states is discussed. Various optimal estimation configurations include opti-

mal estimators as well as simple differentiators. Robustness properties are analyzed

for various control configurations. Actual hardware implementation and results are

discussed and further study is suggested.
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Chapter 1

i5 INTRODUCTION

1.1 Background

Il The concept of an inve;ted free-swinging pendulum aboard a movable platform or
"cart" provides a variety of interesting control scenarios, the simplest of which is,

of course, to maintain a simple pendulum in an upright configuration with as little

control as possible. Forces strategically applied on the cart can produce accelerations

within the system to keep the pendulum upright.

~i

0 0

Figure 1.1: A Simple Cart-Pendulum Device
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Although the concept of inverted pendulum control has been around for decades,,

the full nonlinear cart-pendulum problem was first addressed by Mori, Nishihara,

and Furuta in the 1975 International Journal of Control. In 1983, Ewald Reekers

employed the concepts discussed by Mori et al on an actual hardware arrangement3constructed at the University of Duisburg, Germany. Reeker's work involved a digital

implementation for the nonlinear "pump-up" phase, and a full-state feedback regu-

j lator employing eigenplacement techniques as well as a conventional observer for a

linear controller.

3In 1990, a duplicate of the Duisburg Cart-Pendulum Was delivered to the ControL

Laboratory of the Department of Aeronautics and Astronautics at the University of

Washingtoh in Seattle. This thesis represents the first attemv, to place the U.W.

Cart-Pendulum into an operational status. The approach taken here is intended to

expand on the work done in Duisburg by applying principles of optimization and linear1 quadratic regulator (LQR) and estimator (LQE) techniques to optimize performance

and maintain robustness. Since the given apparatus represents a fixed system, the

I control law design approach described is geared towards solving the specific control

problem posed by the existing hardware.

j Naturally, as we might expect in any control problem, the system has to operate

within certain constraints. These include a limit to how far the cart may move along

a finite path, and limits on the control mechanism (i.e. motor) used to move the cart

and pendulum. Limitations on sensors also play an important role on the control

design. As we shall see, the simplest inverted cart pendulum array is at least aI fourth-order system. The actual number of states that are directly meastrable and

the reliability of the outputs ca- be major drivers in the design of a control system.

1.2 Problem Statement

A variety of control scenarios exist for the inverted Cart-Pendulum array. Clearly,3an initially upright pendulum aboard a motionless cart with no outside disturbances

is in equilibrium, and, although the equilibrium is unstable, no control is needed.

However, usually there exist disturbances, or initial conditions that are not precisely

at the equlibrium values, and therefore active control is required to keep the pendu-

lum upright. Thus, the first and simplest control problem would be one involving
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nonhomogeneous initial conditions, e.g. a slight "offset" in pendulum angle, or initial
motion in the cart that will produce an acceleration in the system when friction comes
into play. Another, more complex, scenario might involve a "step" command to the
cart to move a linear distance while keeping the pendulum upright. Further scenarios
could include periodic commands to the cart, and combinations of commands and
nonhomogeneous initial conditions,

j But a more "complete" problem would entail a situation in which the pendulum is
initially hanging downward in its naturally stable equilibrium position, and is subse-

I quently "pumped-up" as quickly as possible into an inverted configuration and then
maintained there. This maneuver is best achieved in two distinct phases, involving,
respectively: (1) an open-loop control law (or supervisory control logic) utilizing the
known nonlinear system dynamics to "pump-up" the pendulum in minimum time,
and (2) an optimal linear feedback controller utilizing linearized system dynamics to
stabilize the pendulum in its naturally unstable inverted configuration. We will exam-
ine this particular "complete" inverted Cart-Pendulum problem, and produce both

£ a "pump-up" control law and linear controller designs that will achieve the desired
performance.1 The final objective is to actually implement these designs on laboratory hardware,

and evaluate performance in light of expectations.

1 1.3 Hardware Description

31.3.1 Cart-Pendulum Array

A schematic of the actual hardware laboratory setup system used in experimentation
is shown in Figure 1.2. The Cart-Pendulum array itself consists of an aluminum
"cart" sliding along a lubricated rail, as shown in Figure 1.3. The cart is attached3 to a belt and pulley arrangement, which is itself attached to the control device, or
motor. The complete nonlinear dynamics of the Cart-Pendulum array are developed

I thoroughly in Chapter 2.

In addition to the physical components, the Cart-Pendulum also has two poten-

tiometers, each of which measures a given quantity in the system. One outputs a

voltage (against a reference voltage) proportional to the position of the cart on the
track, while the other produces voltage proportional to the angle of the pendulum.
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I outputs

( MOTOR(9
4 I

CART-PENDULUM I
Control L _----- ----------

g Signal

5Control- P6AAOPower Servo Command GP-5 ANALOG
_____ ____COMPUTER

I ~ ~Supply Amp :CMUE

I Figure 1.2: Diagram of Hardware Setup in Laboratory

I
Both of these output signals are directed to the computer controller.3Also of interest are two safety switches, one on each end of the cart track. They

are situated such that when the cart passes over either of them, power to the motor

is automatically cut, thereby preventing the motor from attempting to drive the cart

beyond the confines of the track. One objective of control design is to keep the cart

within the track boundaries defined by these switches.

1.3.2 Motor-Actuator Assembly

The motor-actuator assembly consists of (1) the motor itself, which is physically con-

nected to the belt and pulley arrangement, as well as (2) a servo motor amplifier, and

(3) a power supply. The "servo amp" serves to convert an input control command

signal (usually the output of the controller) into an actual power signal to the motor.
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I
PENDULUMI

I Motor &

I I CARTPPulle

I I Figure 1.3: Basic Cart-Pendulum Arrangement

It draws on the connected power supply. The motor also has a tachometer attached,3 which outputs a voltage proportional to the speed of rotation of the motor. Ap-

propriate positive and negative voltages correspond to clockwise or counterclockwise

I rotation.

Data and results of tests performed on the actual motor used in the laboratory

3 are located in Appendix A.

5 1.3.3 Analog Computer

The controller for these particular experiments is a Comdyna GP-6 analog com-

I puter, which accepts output signals from the potentiometers -connected to the Cart-

Pendulum and tachometer on the motor, and produces a control command voltage

which it sends to the servo amplifier. Its:internal structure consists primarily of op-

erational amplifiers and potentiometers, which can be wired and set appropriately to

configure the unit as a controller.
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a6

I Ft__ __ __

I Actuator F Cart-Pendulum

Plant

I
3 Controller M

I Figure 1.4: Control Systemn Block Diagram

1.3.4 System Inputs and Outputs

I The overall control system block diagram is shown in Figure 1.4. Clearly, the system
is single-input-multiple-output (SIMO) in nature, with the input being a command

3 signal from the controller and the outputs consisting of voltages from the two poten-
tiometers and tachometer mentioned previously. This is indicated in Figure 1.4, with

I the thick line representing multiple outputs.

I
I

IN
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Figure 1.7: Motor, Servo-Amplifier, and Analog Computer
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I Figure 1.8: Cart-Pendulum in Operation in Laboratory
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Chapter 2

5 SYSTEM MODELING AND DYNAMICS

1 2.1 Cart-Pendulum Modeling and Dynamics

1 2. 1.1 Basic Cart-Pendulum Model

The Cart-Pendulum array consists simply of a cart moving along a straight track, aihd3 a pendulum swinging freely from the mobile cart as shown in Figure 1.3. Before any

kind of control analysis can be performed, it is necessary to have an understanding

of the natural dynamics of the Cart-Pendulum system. Our approach here is to first

develop the full nonlinear equations of motion. These will be used to obtain the
"pump-up" control law portion (i.e. "Phase 1") of the complete inverted pendulum

problem. Then, by making useful assumptions about equlibrium, we can modify the

nonlinear equations into a set of more simple linear equations of motion. To these we

Scan apply linear control theory to obtain an effective feedback controller to maintain

the pendulum in its unstable uprighL position ("Phase 2").3 Figure 2.1 shows the various system parameters (masses, forces, accelerations,

etc.) and coordinates used to describe the location of the cart and pendulum in

space. Since the cart is restricted to movement in only one dimension (i.e. on the

bar only), its position can be described by a single coordinate, s. Similarly, since the

pendulum is of fixed length and rotates in a fixed plane, only one coordinate, the

angle 0, is required to locate its position relative to the cart. 1':nce, the system has

only two degrees-of-freedom, and only two generalized coordinates are required to3 completely determine the configuration of the Cart-Pendulum at any instant. These

two coordinates (s,O) plus their respective velocities ( ,b) compose the fourth order3 dynamics model that will be used to describe the Cart-Pendulum array.

The system parameters (i.e. masses, forces, etc.) may vary with different types of

hardware arrangements. Actual values for the parameters for the configuration used

for experimentation are given in Appendix B. The parameters and their preferred

units are defined as follows:

IP
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IM, m

I M

I I s

IFigure 2.1: Pendulum Diagram

I
m : pendulum mass (kg)

M cart mass (kg)

0 :pendulum angle (degrees)

s : cart displacement (meters)

Fu : control input force (Newtons)3 bVF :viscous friction constant, proportional to cart velocity (kg/s)
c rotational friction constant, proportional to angular velocity (kgm 2/s)3t: "effective length" of the pendulum (meters)

g gravitational acceleration (m/s 2)

Note that the effects of friction are limited to that of the cart sliding on the bar

and the pendulum rotating on its hinge, and that both are considered to be viscous in
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nature, i.e. directly proportional to the cart velocity and pendulum angular velocity,

respectively. Thus, we assume constant coulomb friction forces are negligible along

the lubricated bar and on the pendulum hinge. Note also the input to the system is

a force directed along the direction of cart motion. This model ignores the inertias

and frictional forces acting on the belt and pulleys, which are considered to be part

of the motor assembly and will be examined later.I,
2.1.2 Cart-Pendulum Nonlinear Equations of Motion: Lagrangian Techniques

We will develop the system equations of motion using Lagrangian techniques. The ap-

proach involves determining the kinetic and potential energies of system components,

3 forming the Lagrangian, and then deriving a motion equation for each generalized

coordinate.

3 The equations for kinetic energy of the system:

T = TCART + TPENDULUM (2.1)

TCART = M() (2.2)

TPENDULUM = m ((s + e6 cos 0)2 + (-6O sin 0)2) (2.3)

The equations for potential energy of the system:

I V = VCART + VPENDULUM (2.4)

VCART = 0 (2.5)

VPENDULUM = mg(l +cos 0) (2.6)

1 The Lagrangian is given by:

L = T-V

3 = TCART + TPENDULUM - VCART - VPENDULUM
I M (p)2 + IrM (( +1 fcos 0)2 + (-_sil 0)2) - mge(1 +cos0)

22

I The basic Lagrangian equations of motion are given by:

d OL L3t() - , O (2.7)

d ) - -0 = Q8 (2.8)

3
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where the generalized forces Q are given by:

SQS = Fu -'bvF

SI0 =

Performing the derivatives on L and including the generalized forces produces our

final nonlinear Lagrangian equations of motion:

(M + m)9 + bvF + mf(-0 2 sin 0 + cos 0) = Fu (2.9)

5_ + - -in + cos = 0 (2.10)

U The next step is to put these equations into a state space format. A system of two

second order equations will contain four states, which we define as follows:

x.31  ,$

XI S
il ' =  X2 = 0 (.1

X3

X4

Using the state notation and solving Equations 2.9 and 2.10 for 9 and 0, we obtain

the following nonlinear state equations:

;l = X3 (2.12)

i2 = X4 (2.13)
bVF 1 F, (2.14)i 3 =  - V 3 + m (X4 sin X2 - X4 COS X2) + M, (2.14

M+mxM+m
cX4  g . 1.

X4 = 2 + f sinx 2 - 7x 3 cosx 2  (2.15)

Expression of these equations explicitly in terms of the states, for use in computer

programs, numerical algorithms, etc. is shown by:
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I

Il = X3 (2.16)

i2 = X4 (2.17)
i1 =bVFX3 + mfx sin X2

- (M + m) - mco$2x 2 [

+ jx 4 cos x 2 - mg sin x 2 cos x 2 + FuI (2.18)
= gX+Sil 2  1(-bvpxa cos x2

;i4 = - -- X4 + 9 sin X2 -T t[(M + m) - Ico52 X21'] X CSX

2 2
+mex sin xz cos x2 + x4cos x2

3 - mgsinx 2 cos 2 x2 + cosx 2Fu) (2.19)

'3 2.1.3 Cart-Pendulum Linear Equations of Motion

To linearize the nonlinear equationsto form our linear model, we assume the following

disturbances from equilibrium, where so and 00 denote the equilibrium values:

8 = 8o+A8
0 = 00o+AOI

Then, assuming (1) so = 0o = 0, and (2) As and AO are very small, the nonlinearU equations 2.9 and 2.10 reduce to the following linearized equations of motion:

(M + m)9 + bvF. + me = (2.20)

me2  e ge (2.21)Uo- f f
The equations can be rearranged as follows:

9+ - .-- 0 + -- 0 = Fu (2.22)M Mt MMV

O~ [1-ra 2+ 4 - -]1"-[ + ']- bvF.= 1
me2- + 1 -MIFu (2.23)

I
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From which we define the four linear state equations as follows:

Il = X3 (2.24)

i2 = X4 (2.25)
5 mg bVF c(2

M3 = _ - M--3 1--X4 + V% (2.26)

4 = + + + ] + Mv-X - -7FU  (2.27)

I
Therefore, put into a final state space format, we have:

U1 0 0 1 0 X, 0

d x 2  0 0 0 1 X2 + 0 Fu
I d X 3  0 --- i -C X3 1

M Mt X3
X4 0 (M+" 6M Ft (Ml4Io M~~gMeM inMe-~ Mt.

*Mt(2.28)

I Clearly, this Cart-Pendulum plant is a fourth order system. To determine system

eigenvalues, we simply compute the determinant of (AI - A) and set it equal to zero:

A 0 -1 0

det 0 A 0 -1 0
M M M1

o -_ , A + (f+m)c+IM1 M1 M~nl

3 If we let the following variables equal the positive values of their respective ex-

pressions in the -A matrix, i.e.:

a3 2  
Mg

I M

3 a34  M

I
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a 2 (M + m)ga42 -- AM

a4 bVF
I a43 -

Mi

(M + m)c
a44  - Mmn2

then the general form of the characteristic equation is giv, -by:

0 = A4 + (a33 + a44)A3 + (a44a33 - a43a34 - a42)A'2 + (a 43 a 32 - a42a33)A(2.29)

= A4 + C3A3 + C2A2 C1 A (2.30)

3 Explicit expressions for ',ie Ci are given below:

G = (bVF+ (M+)c

2I_((M + m)cbvF bvFc
Me' Mine Me

C, = 1 (mgbvF- (M + m)gbvF)

gbvF
Me

U Clearly, one of the system eigenvalues A1 will always be at zero, regardless of Me
values given for system parameters. We can solve for the general location of the other3 three by using the form for roots of a cubic equation [Eshbach 223]. Let:

36 3q=c3C1-C ,.=- C1 c2C-C

and
S ,= (r + q3+r2)i3 S2 (I- Fq 3 )

The general form of the roots is then given by:

I A2 = [(SI + S2)- c /C3

A3  [- (1 " 7 + - S2) - C21 / C3

24 2
A4~~ = I+2 - -(.1 -S2) - C2] / G3I

I
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I
The final expressions for the eigenvalues in terms of the system parameters are

rather complex and will not be given here. However, we can see from the explicit

expressions for the Ci that C1 is always negative, and a more careful look at C2

will show that it, too, will almost always be negative (unless friction constants are

absurdly high or pendulum length is zero, etc.). Thus, Equation 2.30 displays only

one change in sign. According to Routh's stability analysis, this indicates one of the

3 remaining eigenvalues has a sign opposite the other two [Franklin 113], and, in fact,

this one eigenvalue is in the right half-plane, the other two being in the left half-

plane. This indicates an unstable system with one unstable mode, which, of course,

we expect, since the pendulum is inherently unstable.

Further experimentation with the Routh stability array can reveal instances (if

system parameters are at certain values) in which the two stable eigenvalue can actu-

ally depart from the real axis and form a conjugate pair of complex poles. However,

all four eigenvalues will almost always lie on the real axis for realistic values for system

parameters. It is not difficult to show that assuming the system is frictionless will

cause the lower right-hand quarter of the state system matrix to disappear, causing

C1 to go to zero, and placing one of the otherwise stable eigenvalues at the origin.

3 This would result in two poles at zero, and two on the real axis, one in each half-plane.

It is also important to note that the Cart-Pendulum plant is typically a non-

minimum phase system, depending on choice of outputs. As shown in Chapter 4, the

transfer functions -L and ' each have a finite zero in the right half-plane for typical

system parameter values. The implications of this characteristic will be discussed in

detail in Chapter 4.

I

I 2.2 Motor Assembly Modeling and Dynamics

3 As discussed in Chapter 1, the entire Cart-Pendulum system consists of three essen-

tial components: (1) the Cart-Pendulum itself, (2) the motor assembly, and '3) the

controller. The dynamic model for the first component has been thoroughly devel-

oped above, and the design of the third component will be thg topic of the majority ofU the following chapters. The task here is to produce a suitable model for the interim
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I Figure 2.2: Diagram of Servo Amp-Motor Arrangement

I

component: the motor actuator. As previously mentioned, the "actuator" in this

case includes all components that come between the controller output voltage signal,

and the force the belt exerts on the cart. Thus, the servo amplifier, motor, pulleys,3 and belt all contribute to the dynamics of the actuator.

The complete model for the motor actuator is shown in Figure 2.2. As shown, the3 command signal from the controller enters the servo-amplifier, which is connected to a

power supply. The servo-amp then produces a voltage, proportional to the command

signal by a constant, KA. The motor converts the voltage va into a net torque on the

motor shaft, Tet, and, in turn, into a force applied on the cart, FU. The equations

I of motion for the motor are given by:
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3 di.
Va = Ladt + Rai + Vb (2.31)

vb = Kw (2.32)

Jo= E Torques = Ki - Dw - F (2.33)

where La is motor inductance, K is the motor constant, R, is resistance within the

motor, J is the inertia of the motor and of the pulleys and belt attached to the

motor, D is viscous damping within the motor, and F contains all forces of friction

not contained in viscous friction. Usually motor inductance La is small enough that

3 its effects are negligible, and it can be ignored.

Our objective here is to transform the nonlinear motor equations into a linear

model that can be employed in linear control design. Substituting Equation 2.32 into

Equation 2.31 and assuming inductance is negligible produces:

SVa = Rai + Kw (2.34)

3 Solving this equation for i and substituting into Equation 2.33 produces:

K K 2

J= -V-- + D)w - F! (2.35)

At this point, to obain a linear model, we must assume the friction term, Ff,
is negligible. We can address the friction issue after obtaining the linear model.
Eliminating F and transforming into the Laplace domain produces the following:

Jsw(s) = K K 2

JVa(s) - (--f + D)w(s) (2.36)

which leads to the transfer function:

W(S) K2+DR (2.37)D+-K2/+1R

To obtain the transfer function we desire, ) we must multiply the above trans-

fer function by the one relating w to the force applied by the motor to the system,
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Fu. This is shown in Figure 2.3, and is expressed by;

Fu(s) 1 Tnei(s)

w(s) - r t()

1 Js

Js

where T,, is the net torque output of the motor (not including friction) and r is the

radius of the pulley, through which we convert output torque to an output force, F.

Thus, the complete transfer function is:

PIs) - r(K2+DR)S

Va(S) (-JR)s + 1

Of course, we still have not accounted for the friction force, F1 . Assuming that

this force is relatively constant for w 0 0, we can express the final force applied to

the cart, FU, as follows:

F u = F -Ff (2.39)

where the sign of the friction force is determined by the direction of motor rotation:

Ff = sign(w)jFI (2.40)

This relationship is also oxpressed in Figure 2.3. We are unable to apply this friction

term in the linear model, but it will be useful to remember when analyzing system

response and results.

I VJS 1

II

I
I Figure 2.3: Relating Input Voltage to Output Force

I
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Since the tendency of actuators is to introduce a slight delay between given inputs

and resultant outputs, they are commonly modeled as first-order systems (a single
pole) with an exponential rise or decay, as we have shown with the motor equations.

An actuator may or may not have a zero. The transfer function can be expressed in

the form: Ku(s + z) Ku

rs + 1 rs + I
where r is the time constant of the actuator, a measure of how quickly it responds

to a given input. These forms of actuator models are shown in the bottom of Fig-

I ure 2.4. In the time domain, the time constant appears as a parameter in a function

of exponential decay:3 X(t) = e

For our motor model, J

D+ K2

The addition of a first-order actuator model to our four-state Cart-Pendulum now

increases the total order of our system to five, and adds an additional pole to the left

half-plane (as well as a zero to the origin for this particular model). Note that this

I pole will always (for open-loop system) be at the location:

AACTUATOR - - + Oi

It would appear we are "stuck" with this extra pole in our control system design.

However, if we discover that the actuator pole is relatively far enough from the

imaginary axis (i.e. it has a relatively low time constant) compared to the poles

describing the dynamics of the Cart-Pendulum, the behavior of the actuator begins

to approximate a simple proportional gain model. In this case, the "connection"

between u and Fu is a simple gain, KU, as shown in the top of Figure 2.4. This

I gain would provide the appropriate conversion from voltage input to force output. In

short, the rate of decay or rise in actuator response is much faster than the response of

I the natural system, and the effect of the "fast pole" on the system is small [Franklin

54].

Therefore, it may be possible to abandon the first-order model during control

system design and replace it with an instantaneous one, thus simplifying design pro-

cedure, without suffering in performance. In previous works, this has been common

I
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practice. Mori et al assumed the control command was "directly applied to the cart

without any delay" [Mori 674]. Reekers showed that the actuator pole on the servo-

motor assembly used in Duisburg was significantly faster than the plant dynamics,
and could therefore be approximated by a proportional gain [Reekers 5]. We will

examine this possibility more closely during linear control system design. Results of

actual analysis performed on the hardware actuator used in the University of Wash-

ingtoh laboratory are located in Appendix B.

I
i
I
t
i
I

I
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Chapter 3

PENDULUM "PUMP-UP" CONTROL FROM
NON-INVERTED CONFIGURATION

3.1 Introduction

The "complete" inverted pendulum problem, as described in Chapter 1, demands

3that the pendulum first be "pumped-up" into the inverted configuration ("Phase

1"). The idea of "pump-up" or "swing-up" of the cart-pendulum involves beginning

initially in the stable (pendulum hanging downward) position, and subjecting the

'cart-pendulumto a "schedule" of accelerations in both directions that will eventually

cause the pendulum to swing into a nearly upright, position. Once there, a linear

.feedback controller can then be imposed to maintain the pendulum in its otherwise

unstable inverted configuration.
IThe best way to implement the "pump-up" control scenario is through an open-

loop control schedule; i.e. a preplanned schedule of control inputs that are applied
to the system without requiring any continuous feedback (although, we will see that
some forms of feedback can be useful in the case of supervisory control). Knowledge

of the system parameters and the control available should enable us to analytically

determine the optimal pump-up control schedule.

One effective way to pose the pump-up problem is to require that the cart be

2 3 positioned in the middle of the track (s = 0) and the pendulum be upright (9 = 0)
at some final time TF, with little or no cart velocity or pendulum angular velocity.

I' Constraints include requiring the cart to remain within the operating confines of the

track, applying only limited control (u,,n < u < um.), and requiring the terminal

Itime TF to be minimized. What results is a minimum-fime optimization problem with

terminal constraints on the states (namely, that they be homogeneous). Imposing a

path constraint, namely that the cart position not go beyond the track boundaries,

could also be added. The nonlinear equations of motion must be used in this pump-up: analysis, since the small-angle assumptions made during linearization (i.e. sin 0 ; 0
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and cos 0 , 1) are no longer valid.

3.2 Formulation of the Optimization, Problem

Note that our non-linear state equations (2.16, 2.17, 2.18, and 2.19) can be separated

into terms containing functions of the states x and control u by themselves. So let
our n non-linear state equations of motion take the following form:

- f(x,u) fo(x) + fA(x,u) (3.1)

Our objective is to minimize the amount of time required to pass from an initial

state (described at t = 0) to a final state (described at t = TF), determined when

specified conditions are met. Thus, as a minimum-time problem, the general form of

the non-constrained cost function takes the form:

J T ldt (3.2)

The final time TF is characterized by specified terminal constraints on the states.

The number of constraints for our problem may vary froi 1 (where we demand only

that 0 = 0 at TF) to 4 (where we demand all states, positions and velocities, return

to zero). Clearly, the more constraints, the more complex the problem and the more

likely TF will be greater. These terminal constraints on the states (x(TF) = 0) can

be expressed as a vector function V) of length v, where 1 < v < n:

O(x(TF),TF) = 0 (3.3)

Of course, in addition to specified terminal constraints, the states must adhere

to natural constraints within the interval 0 < t < TF; namely, the equations of

motion themselves. Adjoining these constraints on the states produces a Hamiltonian

function in the following form:

H(x, u, A) = 1 + ATf(x, u) (3.4)

which can be broken down using Equation 3.1 to form the following, where AT is the

transpose of the n-dimensional adjoint (or co-state) vector A:
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H(x, u, A) = I +A Tfo(X) + ATf, (X, U) (3.5)

A rigorous pursuit of the optimal minimum-time solution requires the solution of a

system of equations which define the necessary conditions. The necessary conditions

for optimality [Bryson 89] are as follows:

i f(x,u)= (OH)T (3.6)
I0

x(to) = x0  (3.7)

a O)T = (Of)TA (3.8)
ax O9x

T~b

AT(TF) " (V x)TaO (3.9)

11 (x(TF), TF) = 0 (3.10)

and finally, to del t.,nine the final time,

l [v TO + L]T, = 0 (3.11)

The control is defined from:

0 flTA (3.12)

if u is not bounded, or simply from

rninu, H

if u is bounded.
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These equations ( 3.6 through 3.12) provide enough conditions to find all un-

known quantities. This results in a rather complex tw0-point boundary value prob.

lem [Bryson 89], and is a complete project in itself. But we can obtain a simple-and

practical optimal pump-up theory by simply looking at Equation 3.5 more closely

and deriving the form that the control must take. Rewrite 3.5 to read:

g(x,u,A) -HI(x,AT) + H2(x,AT)u (3.13)

which is legitimate, since u is linear in all terms of the non-linear equations of motion

(Equations 2.9 and 2.10). Since our goal is to minimize H and our only means of

tdoing so is our control u, the form (and sign),of H1 is irrelevant. To minimize the

term H2(x, AT)u, we employ the following for u:

JH 2 <0 = UUMAX (3.14)

n 2 >0 = U UMIN (3.15)

The conclusion is that the optimal control for the pump-up scenario, must be of

the "bang-bang" variety, where only the minimum (greatest negative) and maximum

(greatest positive) possible control inputs are used [Mori 93]. There is a possible

exception: note that if H2 = 0, the value of u with regard to minimization of H

cannot be determined since the Hamiltonian itself gives no information concerning

* explicit minimization with respect to u. In this case, the optimal control is hidden
within the dynamics of the system which determine H2,,and the control solution is

a singular arc [Bryson 252]. For purposes of simplicity, we will assume an optimal

pump-up control law can be found that demands only three possible values for u:

SU UMAX

U = UMIN

I u =0

The u = 0 instance may be necessary to restrict the cart from moving beyond the

track limits.i,
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3.3 Open Loop Bang-Bang Control Scheduling

IGiven that bang-bang control should produce a near-minimum-time pump-up, a strat-

egy for designing a control schedule can be devised. The idea is to accelerate the

'I pendulum forcefully enough to swing it up quickly, yet keep the cart within its op-

erating limits on the cart, and return all velocities to near zero and the cart to the

center position when the pendulum has reached a nearly upright configuration. The

cart should be moving slowly or not at all and in the center of the track (s = 0) so

that when the linear controller takes over, it has plenty of room in which to operate.

Similarly, we want the pendulum angular velocity near zero at the terminal time so

that there is no danger the pendulum will continue to swing around out of the "zone

of linearity" before the linear controller has time to engage and become effective.

ft Keeping these "constraints" in mind, we can proceed with the control schedule

philosophy. Accelerations on the cart pro-ace the most effective accelerations on the

swinging pendulum when the pendulum-s in a vertical state. Thus, it is desirable to

coordinate the reversals in control (i.e. the"bangs") with crossings of the pendulum

with the vertical. Thus, a clever strategy to employ is one used by Reekers [Reekers

100], whereby each pendulum crossing of the 0 = 1800 point is followed by three

control phases: (1) an acceleration to pump up the pendulum, (2) a deceleration to

3, return the velocity of the cart to zero (and keep it within the track boundaries), and

(3). a "waiting period," where u = 0 until the pendulum again crosses the 0 = 180'

point. Once another crossing takes place, the sequence is repeated, with the control

directions reversed.

The optimal control profile using this strategy will vary as system parameters

vary. Changes in masses, friction terms, pendulum length, and especially available

control will affect the control schedule. But, for a given set of masses, pendulum

Ilength, frictional forces, and maximum available control force, there will be one op-

timal control schedule. Figure 3.1 shows the time histories of the four system states,) given a control schedule described by Figure 3.2 for the basic cart-pendulum system

parameters given in Table B.1 in Appendix B. The maximum control available was

assumed to be 15 Newtons. Note that the velocities approach zero as the pendulum

angle approaches 0' (that being upright), and the cart returns to the middle of the

track.
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21 Figure 3.1: State Time Histories with Typical Bang-Bang Control Schedule

6The actual switching times employed are listed in Table 3.1. These were ob-
tained through computer analysis by simulating the nonlinear dynamics of the cart-
pendulum. The pump-up maneuver was initiated by applying the first "bang" to
the cart (pendulum resting at 0 = 1800), then monitorihg the simulated pendulum
angular velocity to detect when the pendulum reached the highest point of its first
upswing. When pendulum velocity had decayed to zero, the first reverse "bang" was
be applied. Then cart velocity was monitored; when it returned to zero, the third
phase-zero control input-began. The control sequence began again, in the form ofaanother "series" of phases, when the pendulum crossed the 1800 position. In sum-
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mary:I
0 = 1800 = Positive Control Input (Phase 1)

s 0 = 0 Negative Control Input (Phase 2)

= 0 = Zero Control Input (Phase 3)

0 = 180 = Negative Control Input (Phase 1)

and so on.

The pump-up problem could theoretically be optimized even further by timing

series changes to coincide not only with crossings of the 1800 point, but also with
crossings of the 900 and -900 points. It is easy to show that such accelerations on
the pendulum while above the horizontal would help to drive it upwards even quicker.

3.4 "Pump-up" Feedback Possibilities

Up to this point we have assumed that the pump-up maneuver would be strictly
open-loop. However, it may actually be possible to use a form of supervisory control
strategy using observations of the system states to schedule the timing of the "three-
phase" control strategy, and therefore abandon a pre-prograrmned control schedule.

The control logic used in computer simulation to obtain the open-loop control
Sschedule could also be employed actively to command the actuator bang-bang con-

trol switches. As before, the pump-up maneuver would be started with a positive
command'to the actuator. Then, b monitoring pendulum angle, pendulum angular
velocity, and cart velocity, the successive switches could be directed by a supervisory
controller at the appropriate times to perform the optimal pump-up schedule. It may

also be possible, even necessary, to monitor cart position feedback as a safeguard
against tendencies to exceed the limits of the track.

3.5 "Hand-off" to Linear Controller

The ultimate goal of the pump-up control law, regardless of whether it is open-
loop or employs a supervisory control scheme, is to bring the pendulum as close to

I
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11 Figure 3.2: Bang-Bang Control Schedule

its unstable equilibrium position as possible, allowing a linear feedback controller

to "assumne control" of the systemn and maintain the pendulum there. This "hand-
off" point needs to be chosen carefully, and will involve evaluation of not only the

pendulum's position, but also its velocity, as well as cart position and velocity. Even

if the pendulum is nearly upright and moving slowly, linear control may not yet be>5 possible if the cart is at the end of the track (and therefore has no room to maneuver),
or is moving quickly enough that it will reach the end before linear control can take

JR effect.

The ideal situation is the one already shown in Figure 3.1, where not only is the

II
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pendulum essentially upright and motionless, but the Cart is hardly moving and near
the center of the track (s = 0). We would expect any reasonably effective feedback

controller to be able to control the system at this point. Indeed, the plots indicate
a period of "relative stability" of .5 seconds or more (from approximately 5.0 to 5.5
seconds) in which a hand-off could take place. Table 3.1 indicates 5.20 seconds as a
good time to initiate linear control.

Hand-off difficulties arise when the states are not as close to their ideal homoge-
neous values as we would like. What is necessary, then, is a determination of a "zone3of control" within which the linear controller is effective. This enters into the realm of
"fuzzy" control logic, in which penalty weightings on nonhomogeneous values for theai states can produce a related cost function. Linear control would be initiated when
this cost falls below a certain value.

3.6 Experimental Observations

jExperience with the pump-up problem in Duisburg [Reekers 681 and at the University
of Washington has revealed that experimentation with the actual system, employing
the same strategy of three-phase pumping and using theoretical performance (like
that shown in Figures 3.1 and 3.2) as a guide, is a reliable method for determining a
useful bang-bang pump-up control law. Unmodeled and/or unpredictable frictional

'I. forces within the system, plant model inaccuracies, and a variety of other possible fac-
tors make physical experimentation a necessary part of determining the final control

i sequence.

Implementation of supervisory control logic would hopefully eliminate the prob-
lems posed by unexpected forces in the system. However, it would tend to make the
timing of transition to linear control a bit more unpredictable, and makes the need
for effective hand-off logic greater.

,!
I
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I Phase 1 Fumax 0.00 sec

SERIES 1 Phase 2 Fu,,in 0.35 sec

Phase 3 0 0.61 sec

Phase 1 Fu,,i, 0.65 sec

SERIES 2 Phase 2 Fu??ax 1.00 sec

Phase 3 0 1.235 sec

Phase 1 Fun 1.34 sec

SERIES 3 Phase 2 Fuinin, 1.70 sec
Phase 3 0 1.955 sec

Phase 1 Fumij, 2.09' sec

SERIES 4 Phase 2 Fumax 2.40 sec

I Phase 3 0 2.65 sec

Phase 1 Funax 3.00 sec
SERIES 5 Phase 2 Fu,,i, 3.30 sec

Phase 3 0 3.60 sec

Phase 1 Fu,,i, 3.98 sec

SERIES 6 Phase 2 Fu,,a, 4.22 sec
Phase 3 0 4.42 sec

£ HANDOFF TO LINEAR CONTROLLER 5.20 sec

I Table 3.1: Table of Bang-Bang Switching Times

I

I

I



Chapter 4

*1 OPTIMAL LINEAR QUADRATIC CONTROL AND

ESTIMATIONI
4.1 Introduction

We assume that the "pump-up" control sequence has successfully raised the pendulum

to a near vertical position, brought the cart near the middle of the track, and reduced

both velocities to nearly zero. Phase 1 is complete, and responsibility for pendulum

control is now "handed off" to a linear controller (Phase 2). Such a controller may

take many forms, but our approach here will be to develop an optimal full-state

feedback control system. Such a controller is certainly more complex than a classical

first or second order control system, but, if properly implemented, is capable of being

far more effective, while hopefully maintaining similar levels of robustness.

j As shown in linear dynamics in Chapter 2, the Cart-Pendulum is either a fourth

or fifth-order system, depending upon whether or not an actuator state is included.

If we assume the actuator acts with very little delay, the system has four states, and

employs the state system matrix given in Equation 2.28 and shown again below:

I, 0 0 10 X

d x2  0 0 0 1 x 2  + 0 Fu (4.1)
.|dt X3 0 -i _6_- C X3

M -M M Ma

0 (+n)g 6p _M+)c_ 1
L M Me Me 2  X4 j -M

Our full-state feedback controller, then, will require feedback values for the quan-

tities s, 0, ., and 0 (xI, x2 , x3, and x4). As already noted, the system hardware

provides for the direct output measurements of the first two quantities through po-

tentiometers attached to the Cart-Pendulum, as well a measurement for the third

Il
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quantity in the form of the motor tachometer output. However, no direct measure-

ment of the fourth quantity, 0, is available. Thus, in order for the full-state feedback
controller to be effective, this value must somehow be estimated continuously. This
provides an additional challenge to the optimal linear control design.

The complete system (aside from the controller itself) has a minimum order of four,
and can be successfully modeled as such. However, a fourth-order model assumes
control commands and the subsequent control inputs are nearly instantaneous, and
that the motor produces no delay. But, as pointed out in Section 2.2, if we decide
the dynamics of the motor assembly are slow enough compared to the dynamics of
the plant, it may be necessary to include an additional fifth state in our design: an

I actuator state. This state, too, must be estimated in some way to make full-state
feedback feasible. We will examine both system models, fourth and fifth order, in the

control design.

, The optimal control and estimation problem can be approached in a variety of
ways, but almost always boils down to three essential tasks: (1) synthesis of an
optimal control law, (2) synthesis of an optimal estimator, and (3) integration of

both estimator and control law into an optimal controller [Maciejowski 224].1 The approach here will be to first develop the optimal LQ regulator and control
law. This is done, of course, assuming all states are available through measurement.
The next task is to develop the optimal estimator, which, for this particular problem,

can be done several ways. Finally, the two can be integrated, and the performance
and robustness of the control design can be examined.

4.2 LQ Regulator Design

4.2.1 Basic LQR Design for Fourth-Order System

As shown in Figure 4.1, all four states x are employed using full-state feedback through
the gain matrix 0 to obtain the control u. Under conventional eigenplacement ap-
proach, G is found by determining what gains are necessary to place the closed loop

poles at designated locations [Franklin 419]. While effective, this method lacks the
versatility and efficiency of an optimization approach.

In its simplest form, the optimization problem involves minimizing the following
cost function:
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Actuator Cart-Pendulum X
Plant

II

Figure 4.1: LQ Regulator Controller Block Diagram

= F XTQX + UTRu dt (4.2)

where Q is a positive semi-definite weighting matrix on states x and R is a positive

definite weighting matrix on controls u [Bryson 158]. The optimal control law u(t)

for the regulator problem is given by:

u(t) = -R-' BT SoX(t) (4.3)

where So is the symmetric positive semi-definite solution to the following steady-state

Ricatti equation:
- ATSo - SoA + SoBR - 'BTS o - Q = 0 (4.4)

The optimal full-state feedback gain matrix G is, of course, given simply by:

G = -R -1 BT So (4.5)

and has dimensions p x n, with p the number of inputs (1 for this SIMO system), and

n the number of states incorporated in the full-state feedback design. This second

number may vary, depending on how actuators are modeled, whether we include

additional states within our controller, etc. The final simplified optimal control law
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takes the form:£ u(t) = Gx(t) (4.6)

The closed loop system, as shown in Figure 4.1, is guaranteed to be asymptotically5stable as long as the following conditions hold:
(1) The pair (A,B) is stabilizable, i.e. all unstable modes are controllable.1 (2) The pair (A,H) is detectable, i.e. all unstable modes are observable.

The matrix H is defined as the square root of the weighting matrix Q, such that

HTH=Q.

Clearly, the most important part in the optimal design process is selection of the
weights within the weighting matrices Q and R. In the simplest arrangement, both

matrices are diagonal with diagonal elements corresponding to weights on the states
x and controls u, respectively. The inverted Cart-Pendulum array provides, at a

j minimum, four states, and generally one control. Thus, the Q and R matrices might

take the following form:

q, 0 0 0

I 0 q2 0 0Q= 0 0 q3 0 47

0 0 0 q4

R = [riJ (4.8)

where the weights qi and ri are to be determined.
Selection of these weights can be dependent upon the type of performance desired

-from the system for any particular control scenario or maneuver. Variation in the

weights will result in changes to the gain matrix G and will ultimately affect the type
of control imposed on the system. [For example, in a scenario that would emphasizeI minimizing the pendulum angle and angular velocity but puts little or no restriction
on cart position or velocity, we would expect q2 and q4 (the weights on 0 and 0,I respectively) to be large relative to q, and q3 (weights on s and .] The end result
is that we will have a variety of "gain schedules" G corresponding to various control

'5 scenarios and weighting schemes.

For practical applications, the weights may be fine-tuned to specific values after

observation and trial-and-error. However, for initial selection of weights to set up a

I
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"general" control scenario, it is helpful to employ a rule of thumb first suggested by

j Bryson:

qi - (4.9)

ri =(4.10)

where oi and -fi are the maximum allowable values for the respective states/controls.

4.2.2 Addition of Integral States

We might find it useful to include more states in our system than just the four that
are the natural dynamics of the Cart-Pendulum. Use of integral states and proper

weights upon them may helpto eliminate any steady-state or residual error that may

linger in the system. Tile weights placed upon these states in the Q matrix will
dictate how quickly we would like our control system to respond to error that has

accumulated. The addition-of two integral states expands our state vector and Q
matrix as shown:

I
X21 0

, x = (4.11)

X.5 fs
X6 f 0O

q, 0 0 0 0 0

0 q2 0 0 0 0

0 0 q3 0 0 0
Q 0 0 q4  0 0 (4.12)

0 0 0 q 00
0 0 0 0 q5 0

0 0 0 0 0 q6

The addition of integral states increases the order of the controller by one or two

(we could use either or both integrators), but allows an added dimension of control

design. Note that by setting qs, q6 = 0 we effectively cut the connection of the
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UActuator Cart-Pendulum x2

'_ _ Plant K3
x-4

I ~__ _G G5
x6 1/s

Figure 4.2: LQ Regulator with Integral States

I
integrators to the system and regain the original fourth-order model. Figure 4.2

shows how the addition of integrators to the system produces two additional states.

It should be noted that the addition of integral states, though it may aid in error

reduction, often adversely affects system performance. Careful consideration must be

given (through experimenatation, etc) to the assigned weights on these states to be

certain they do not dominate the regulator control law.

4 .2.3 Addition of Actuator State

Thus far we have assumed the actuator could be modeled with simply a proportional

gain. However, as pointed out in Section 2.2, the actuator lag or delay may be

significant compared to the dynamics of the Cart-Pendulum, and an additional state

modeling the first-order lag may be necessary. Such a model may take the following

I
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form within the control loop:

Fu _Ku

Ucommand 7S "+ 1

If the actuator transfer function can be determined explicitly from simple motor

dynamics, it may include the zero at the origin described in Chapter 2:

Fu Kus
Ucommand TS +

In either case, the LQR design expands to a possible seventh-order system, producing

a feedback gain for the actuator state as well. The addition of this state increases

the complexity of the system and can affect performance (especially if the actuator

pole is close to the poles of the plant), but may be necessary to accurately model the

*1 actual system dynamics. The weighting placed on this state is best determined by

experimentation, but should be somewhat low compared to that of the others. Figure

3 4.3 shows the feedback path of the actuator state to the gain matrix G.

Analysis of theoretical performance should indicate how much the addition of an

ft actuator state does affect the system. If little difference is noticed, then the initial

assumption that the actuator dynamic§ are relatively fast compared to the system

dynamics may indeed be accurate, and the actuator state can be ignored.

g ,f.2.4 LQR Performance Capabilities

Now we have essentially completed the LQ regulator design. It is a matter of proof

to show that a stable LQR design guarantees certain robustness characteristics. In

terms of Bode analysis, the following margins are guaranteed at our control input:

Gain Margin GM: 6 a) < GM < o

Phase Margin 0: 600 < 0

As briefly mentioned in Chapter 2, the Cart-Pendulum system is non-minimum

phase in nature; i.e. the system transfer matrix has zeros located in the right-hand

plane. This characteristic prevents us from achieving perfect regulation as the weight-g ing on the control term in our cost function goes to zero, in contrast to perfect regu-

a
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U Actuator Cart-Pendulum x2
Acuao Plant 3,

al x 4

I

I/

I I "

Figure 4.3: 7th-Order Regulator with Actuator Statea
lation that could be achieved if the system were minimum phase:

Minimum Phase: R -4 0 = J = 0

Non-Minimum Phase: R -4 0 = J - 0

Thus, regardless of the amount of control available, our cost J will always have

some nonzero minimum value. This minimum cost can be calculated, and is a function

of the Riccati solution matrix So:

2 T2-xo Soxo (4.13)

where xo is the initial condition vector for the states. Note that if all states are

initially at their nominal values, we have J = 0, the only instan. e in which this is1 possible for our system.

a
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This concludes the optimal LQ regulator design. In a later section, we will exam-5 ine the theoretical performance of a Cart-Pendulum system in a basic configuration

employing several variations of the LQR design outlined above.

14.3 LQ Estimator Design

,i It is not always the case, unfortunately, that all states are available from measure-

ments. And it is also not realistic to assume that all measurements of states are in

I fact the actual values of the states without any error. Having solved the LQ regulator

problem and obtained an optimal control law, the next task is to assure it can be

implemented as efficiently as possible. This requires -providing the part of the con-

troller that includes the gain matrix G with values for the states that are as accurate

as possible. In our particular hardware configuration described in Chapter 1, onlyIthree of the four plant states are measurable as system outputs: s (xI), 0 (x2), and

(x3). Additional states may involve one or two integral states, as well as an actuator

state. Somehow, the three measured states must supply the one to four other states

needed by the appropriate LQR gain matrix.3 To simplify the design procedure, we will assume that we have available "black

box" integrator devices that are capable of producing near perfect integral signals of

input quantities (these devices are simply part of the controller, and are physically

located within the analog computer in the laboratory) Thus, by simply seiding the
cart and pendulum position outputs through these integrators, suitable values for the
integral states are obtained. This constitutes a crude form of "optimal estimation,"

but is fairly reliable (it should also be noted that the integral states themselves are
"optional" in nature, and are a fabrication of the controller used to provide an extra

dimension in control possibilities).5The primary task remaining, then, is to provide suitable estimates for the pendu-

lum angular velocity 0 (X4), and, if necessary, the actuator state a,.

S .3.1 Employment of a Simple Diferentiator

To begin, we will assume we have a high-performance motor (i.e. fast actuator dy-

namics), so only a value for 0 is required. Since this one required estimated state is5simply the derivative of another measurable state, the first logical step is to simply

I
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employ a "black-box" differentiator to approximate its value. In theory, this is no

different from using integrators to obtain integral states, and is indeed a practical

first step towards implementing a practical control system. The appearance of such

a control system is shown in Figure 4.4.

However, in practice, simple differentiators tend to introduce significant amounts of

noise into output signals. Also, use of a simple differentiator assumes the input signal

I is reliable, and does not provide the capability to use the information available in

other states to provide a truly accurate estimate of the desired state. Thus, insertion

of an output-feedback estimator into the loop, even to obtain an estimate for 0 alone,

may produce the best results.

!X
IActuator Cart-Pendulum x2

Plant x3

IA1

Figure 4.4: Control System with Simple Differentiator
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4.3.2 Optimal Estimator Design

The conventional method for determining the poles of the estimator (or observer).

is not too different from the eigenplacement approach used to obtain a full-state

feedback gain matrix: an estimator gain matrix K is slected 'such that the poles

of the estimator system matrix (A-KC) are placed at designated stable 1ocations.

However, as before, an optimal approach to the synthesis of this gain matrix is more

versatile and efficient.

If we approximate the actuator with a proportional gain (no added state(s)) and

include integrators in the design, our system takes the shape shown ,in Figure 4.5.

Note that some kind of estimator is required to obtain an estimate for 0 (the x4 state).

5 In a manner very similar to the LQ regulator design, we employ weighting matrices

and a steady-state Ricatti equation to obtain an optimal LQ estimator. The optimal

estimation problem involves finding the best estimate for the states, i [Maciejowski

241] that minimizes the cost function:

I J - lir E[(x - ,)(x - 4] (4.14)

5 To introduce noise into our system, we consider our plant model to have the form:

1 =Ax+Bu+I'w

y=Cx+v

I where w and v are white noises with covariances given by [Maciejowski 223]:

E[wwT] = W E[vv T = V

The optimal estimation Kalman-filter gain matrix K is obtained from:

K = pCTV -  (4.15)

where P is the solution to the following steady-state Riccati equation:

PAT + AP pcTv-'cP + WT =AP (4.16)
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I
I xl

Actuator Cart-Pendulum x2

H Plant x3

G x4 Estimator

Figure 4.5: LQG System with Integrators

Equation 4.16 is "dual" to Equation 4.4 [Maciejowski 224]. The gain matrix K is
n x in, with n the number of states and m the number of outputs y from the actual

plant. The estimator dynamics then take the form:

= A+Bu+K(y-g) (4.17)

-C5 (4.18)

which can be rewritten:

" (A- KC) + Bu + Ky (4.19)

y= C (4.20)
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Clearly, the estimator gain matrix K "optimizes" placement of the estimator state

3 matrix poles, i'.e. the eigenvalues of (A - KC). The values within K are determined

primarily by the noise weighting matrices, W and V. Both are square matrices,
* with W having dimensions equal to the number of input disturbances modeled in

the system, and V having dimensions m x m, the number of outputs of the plant.

Choosing the weights for these matrices is similar to -choosing the weights for their

I 3"dual" counterparts, Q and R. Typically, the weights within W will reflect root-

mean-square disturbance levels of the respective process noises, while weights within

j V will indicate the error statistics associated with respective sensors (i.e. unreliable

measurements will have smaller weights).

The final objective of the optimal estimator is to produce estimates for those statesI which we are unable to measure directly. In our case, input of the three plant outputs

3 s, 0, and . into the estimator produces a reliable estimate for the fourth state, 0.

3 4.4 Regulator-Estimator Integration, Loop Transfer Recovery

The third essential step in the LQG design is to integrate the LQR and LQE designs5 into the single multi-variable feedback control loop. This is done by simply aligning

the appropriate outputs of the plant itself, the additional outputs provided by the

3estimator (or differentiator), and the outputs of the integrators (if included) with

the inputs to the optimal full-state feedback gain matrix G. This is essentially the

* arrangement already shown in Figure 4.5.

There are problems which arise as a result of this connection. As shown by Ma-
ciejowski, the remarkably high stability margins guaranteed by LQR design alone
have a tendency to become very poor once the LQE design is incorporated into the
loop. The suggested method for solving this problem involves modifying the esti-

mator dynamics (i.e. the poles of [A - KC]) by causing them to either (1) cancel

plant dynamics, especially zeroes, or (2) become much faster than the plant dynamics

I 3[Maciejowski 231].

The procedure is called "Loop Transfer Recovery" (LTR), and involves introducing

more weight on the process noise matrix W by multiplying it by a scalar constant
p. As p is increased, to quote Maciejowski, "the Kalman filter is being 'told' that an
increasing proportion of the variance in the plant output is due to state variations,

I
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and a decreasing proportion to measurement errors" [233].

5 The advantage is this: as p is increased, the usually poor stability margins resulting

from the integration of the LQE design vith the LQR design grow, and approach5the original LQR robustness as p -- oo. Thus, we can effectively "recover" the

robustness properties lost through LQR-LQE integration.

* But there are two problems with this. First, as p is inc. eased, the ability of the

system to respond effectively to disturbances in the system is decreased. And more

importantly, as Maciejowski again makes clear, LTR is not gaaranteed to work i, --

i non-minimum phase systems. The reason goes back to the original idea that some of

the estimator dynamics should try to cancel plant zeroes. Since some zeros are in the3 right half-plane for our system, LTR cannot necessarily achieve all of its objectives.

So what should be done? According to Maciejowski: "the strategy to use with non-

minimum phase plants is to follow the usual LTR procedure and hope for the best"

[259]. By experimentation and analysis, we can determine whether LTR will help us

* recover LQR stability margins without detrimental -effect on the rest of the system.

Thus, to properly apply LTR, we first connect the LQR gain matrix with its

* appropriate inputs, and check stability margins and compare them to those of the

original LQR design. Then, test increasing values for the scalar constant p:

W = pxWo

I until acceptable stability margins are regained.

4.5 Theoretical Performance of Basic Configuration

Having discussed the methodology employed in the design of an optimal LQG control

system for the inverted Cart-Pendulum, we now apply it to the system in a particular

configuration and examine numerical computer simulation results. The integrators

can be incorporated into the plant itself (since the gain matrix "sees" a sixth order

system) by placing poles very close to the origin (placing them directly on the origin

can present numerical difficulties).

§1i
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4.5.1 CASE 1: No Actuator State

3 Using system parameters defined in Table B.1 (see Appendix B), assuming all three
measurements are available, we obtain the following state space model for the Cart-

5Pendulum plant:

0 0 1 0 0 0

0 0 0 1 0 0
A 0 -0.8946 -0.7256. 0.0007 0 0

: 0 24.9454 1.6915 -0.0183 0 0

1 0 0 0 -. 00002 0

0 0 1 0 0 0 -. 00001

SB 0 00.2815 .656 3  T 0

S1 0 0 0 0

C = 0 1 0 0 D = 0
0 0 1 0 0

This configuration gives us open-loop plant poles at:

3A, = 0.0

A2 = 4.9588

3 A3 = -5.0388

A4 = -0.6639

3 A5 = -. 00002

A6 = -. 00001

Incidentally, finite zeros are located at the following points for the listed transfer

functions:

SS-Fu : z = -4.7896 z2 = 4.7729

z F = -4.7896 z2 =4.7729 z3 =0

I
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T and

The zeros of the transfer functions as well as the remaining zeros of the3 other two transfer functions are either infinite or very close to the origin. Note the

two zeros in the right half-plane: these make the system non-minimum phase, and

also have a frequency close to that of the poles of the system. This characteristic

becomes important during Loop Transfer Recovery. I

To form the LQR weighting matrices Q and R, let the "maximum allowable ex-
cursions" be as follows:

3 s :61 = 0.2 meters

0 : 02 = 0.1 radians

3 s : oa = 0.2 meters/second

9 : a4 = 0.1 radians/second

1 Is : 5s=.2
0 o : 0*6=.1

FT : = 3.1623 Newtons

U producing:

1 25.0 0 0 0 0 0

0 100.0 0 0 0 0

Q = 0 0 25.0 0 0 0 R = [0.100]
0 0 0 100.0 0 0

0 0 0 0 25.0 0

0 0 0 0 0 100.0

ISolution of the related Ricatti equation (Equation 4.4) produces the following 1 x 6

LQR gain matrix G:

G = [ -39.8530 - 249.4119 - 44.8988 - 60.0125 - 15.8106 - 3.2014e - 9

IWhen this LQ regulator is "hooked up" to create the closed loop system shown

in Figure 4.1, the control loop Bode plot shown in Figure 4.6 is obtained, and the

I
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Figure 4.6: Control Loop Bode Plot for Case 1: LQR Only

following control loop robustness properties are recovered:

Gain Margin GM = 11.19d)

I Phase Mai-gin qS = 79.12'

3 The closed loop poles, or the eigenvalues of (A - BC), are located at:

Al = -22.2917

A2 = -1.7309 + 1.2205i

1 A3 = - 1.7309 - 1.2205i
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Fiue4.7: State Time Histories for Case 1: LQR Only

A4= -.67j 513
As = -. 8667 + .5163i

A6 = -00001

For purposes of comparison, if the integrators are removed from the system (i.e.'35 = a6 = 0), we obtain a slightly different gain matrix G:

G =[-15.8114 - 209.0301 - 31.0045 - 52.9470 0 01

Also, without integrators, the following control loop robustness properties are
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Figure 4.8: State Time Histories for Case 1: LQR Only, No Integrators

recovered:

GainMargin GM = -11.47 ch

25 Phase Margino = -80.14o

Figures 4.7 and 4.8 show the time histories of the four states .for control sys-3 tems with and without integrators, respectively. The simulations begin with a non-

homogeneous initial condition only on 0 of 100. Clearly, in both instances, the control3 is very effective in returning both the cart position and the pendulum angle to zero.

Of course, not all states are measurable directly, so incorporation of an estimator

is necessary and will undoubtedly degrade this "ideal" performance and robustness.

II
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For the sake of simplicity, we set the noise matrices initially as identity matrices as-

3 follows:

1 0 0

I V = 0 1 W = [1]
0 0 1

3 and we allow the matrix r to assume the values in the matrix B to simulate noise

within the actuator input:

r = [.000 .000 .2815 -. 6563]T

Solution of the related Ricatti equation as discussed above produces the following

U optimal estimation Kalman gain matrix:

1 .3081 -. 2708 .0880

K -. 2708 9.6765 -1.5053
.0880 -1.5053 .28213 -1.3313 47.9871 -7.4821

Closing the loop with the estimator included produces the following robustness

U properties:

3 Gain Margins GM = 1.029 d)

Phase Margins 0 = 5.671'

3Clearly, these margins are far below acceptable levels. However, application of the

Loop Transfer Recovery techniques mentioned above should help to improve robust-

Sness. We hope, of course, that the non-minimum phase characteristics of our system

will not hamper our efforts. After some experimentation, multiplying the W matrix

3 by a value of p = 1.0 + e7 is.found to produce acceptable stability margins. Using

the new W matrix and resolving the LQE problem, the revised Kalman gain matrix

* is found to be:

.0010 -. 0001 .0010

.3100100 -.0001 .0098 -.0023
.0010 -.0023 .8896

-. 0007 .0509 -2.0735

I
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Figure 4.9: State Time Histories for Case 1: LQG with LTRU

Now, after Loop Transfer Recovery, our robustness properties are:

Gain Margin GM = -11.0d

3 Phase Margin = -77.23o

3 These can be observed directly in Figure 4.10. As we expect, the margins are not

as good as those obtained through straightforward LQR analysis, but are reasonably
large. Figure 4.9 shows the time histories for three states, s, 0, and 0, as well as

the estimator estimate for 0. A small measure of error is detectable on the plot, but
otherwise the estimator performs rather effectively.

I
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Figure 4.10: Control Loop Bode Plot for Case 1: LQG with LTR

The closed-loop eigenvalues of the final LQR/LQE system are the same closed-loop

eigenvalues found under LQR analysis (i.e the poles of (A-BG)), plus the eigenvalues

of the estimator (the poles of A-KC), given below:

A7 = -890.28

A8 = -6.1005

A9 = -3.7219
Ajo = -1.0058



I
I57

4.5.2 CASE 2: Addition of Simple First-Order Actuator State

Our second simulation case will include a simple first-order model (without a zro

for the actuator state with the time constant r = 0.10 as shown:

3 Fu _ 1 10
FUcOMMAND .ls+1 S+10

N The effect is to introduce a small lag in the system between the control command u,

and actual control input FU. Addition of this first-order model to the loop increases

U the order of the system by one and results in the following state space matrices:

3 -10 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

A = 2.8153 0 -0.8946 -0.7256 0.0007 0 0

-6.5625 0 24.9454 1.6915 -0.0183 0 0

0 1 0 0 0 -. 00002 0

0 0 1 0 0 0 -.00001

B = [ 0 0 0 0 00 T

1 0 0 0 0
C -- 0 1 0 0 D = 0

I0 0 1 0 0

This configuration gives us an additional open-loop plant pole at:

A7 = -10.0

which is reasonably close to the other system poles.

Setting the weight on the actuator state to zero, i.e. ar = 0, and keeping all other

weights identical to those in Case 1 (integrators included) produces the following

full-state feedback gain matrix G:

G = [18.82 -40.87 -351.01 -52.35 -78.11 -15.811 -5.654e -9

3
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1 Figure 4.11: State Time Histories for Case 2: LQR only

And the following control loop robustness properties are recovered:

Gain Margin GM = -10.93 d)

Phase Mai-gin 0 = -66.6'

I Now the closed loop poles (the eigenvalues of (A - BG)) are located at:

A, = -12.1893 +8.6795i

I A2 = -12.1893 -8.6795i

A3 = -1.7241 +1.2216i
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I A4 = -1.7241 - 1.2216i

5 A5 = -. 8668 +.5162i

A6 = -.8668-.5162i

A7 = -.00001

Figure 4.11 shows the time histories of two states, s and 0, as well as the input

command FUcOMMIAND (the command signal to the actuator) and the actual actuator

output Fu. As before, the simulation begins with a non-homogeneous initial condition

1 on 0 of 100.

Using the same noise weighting matrices, W and V, as before (both identity ma-3 trices), we obtain the following Kalman filter gain matrix:

.0011 .00004 .0128

.3078 -.2709 .0579

K = -.2709 9.6705 -1.5052
.0879 -1.5052 .2785

-1.3321 47.9864 -7.4754

* The following robustness properties result:

Gain Margins GM = .8027 b

3 Phase Margins q = 4.2160

Again, these margins are far below acceptable values. Employing the same value

:7 for p used in Case 1 (p = 100) for Loop Transfer Recovery, we obtain a corrected

Kalman gain matrix:

.0005 -. 0042 2.7225

.0010 -.0001 .00103 K = 1000 x -.0001 .0098 -. 0023

.0010 -.0023 .1231U -.0007 .0509 -. 2868

and the following stability margins:

U Gain Margins GM = -9.353 b

Phase Margins 0 = -52.78'
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- Figure 4.12: Control Loop Bode Plot for Case 2: LQG with LTR

'* Now the estimator poles (the poles of A-KG) are located at:

A7 = -66.9027 + 66.5345i

A8 = -66.9027 - 66.5345i

A9 = -6.1065

3A 10 = -3.7219

Aii = -1.0058

IAgain, Loop Transfer Recovery recovers most of the original LQR stability mar-

gins. These are visible in the control loop Bode plot shown in Figure 4.12. Time
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I histories of states s and 0 as well as Fvco,,,,d and Fu are shown in Figure 4.13.
Clearly, the performance is not as good as that for Case 1, where no actuator stateI was used; however, it is the best performance that can be expected with an actuator
that does introduce a lag into the system. The amount of control input indicated

I relative to the amount of control commanded in Figure 4.13 is evidence of this lag
property.I
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3 Figure 4.13: State Time Histories for Case 2: LQG with LTR

U
I
!
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1 4.5.3 CASE 3: Addition of Simple First-Order Actuator State

3 Our third simulation case will include a simple first-order model now including the

zero at the origin derived in the motor equations in Chapter 2. The transfer function1 for the motor-actuator is now:

Fu s los
FUCOMMAND .Is+1 S+10

* This keeps the plant and open loop poles the same as the ones used in Case 2.

Keeping the weights on the states the same also produces the following full-state

feedback gain matrix G:

G [18.82 -40.87 -351.01 -52.35 -78.11 - 15.811 -5.654e-9

And the following control loop robustness properties are recovered:1
3 Gain Margin GM = -15.72d

Phase Margin 0 = 000

N Now the closed loop poles (the eigenvalues of (A - BG)) are located at:

U A1 = -212.59

A2 = -1.7338+ 1.3877i

A3 = -1.7338- 1.3877i

A4 = -. 8525 +.4938i

A5 = -. 8525 - .4938i

3 A6 = -. 00001

A7 = 0

I Aplying the LQE/LTR procedure, using p = le5 this time, produces the Kalman

gain matrix:

K'
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0. Cart Position 10Pendulum Angle
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U Figure 4.14: State Time Histories for Case 3: LQG with LTR

I6.275e - 1 .-2.036e - 1 3.127e + 2
9.944c - 1 -6.921e -2 9.811e - 1

K = -6.9201e - 2 9.819e+O0 -2.304e+ 0
9.811e - 1 -2.304e + 0 8.796e + 2

-7.051e - 1 5.09e + 1 -2.050e + 3

and the following stability margins:

I Gain Margins GM = -14.72dL

Phase Mar-ginso~ = 000



1 64

I MAGNITUDE PLOT
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1 Figure 4.15: Control Loop Bode Plot for Case 3: LQG with IJTR

Now the estimator poles (the poles of A-KC) are located at:

A7 = -890.34

A8 = -6.1065

A9 = -3.7219

jAj 0 = -1.0058

All = -6.592e - 5

IFigure 4.14 shows the time histories of two states and the control command and

input. The amount of control input indicated relative to the amount of control
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conunanded is evidence of the "lead" property introduced by the zero at the origin-

1 4.6 Discussion of Expected Results

5 One of the greatest problems with LQR/LQE methods is the sensitivity of the ro-
bustness to plant uncertainties [Maciejowski 231]. Small errors or imperfect models

with regard to the plant can make an otherwise robust LQG design have slim stability

margins. Tables 4.1 and 4.2 show how the optimal LQR gain matrix G varies with
variations in the plant parameters for each of the cases described above. As shown,

the gains change very little for 10% variations in each of the individual parameters.

The last entry in each table shows the gain matrix requiied if all parameters are

I increased by 10%. Again, the changes are not that high, especially compared to the
control loop gain margins given for each case. Thus, we might feel confident that the

5LQG method, including application of LTR principles, has given us a fairly reliable

and robust control design.3 However, it remains to be seen in actual implementation how effective the sys-

tem truly is. Unforseen uncertainties or output measurement error could produce

problems. LQG design, though complex and powerful, can be sensitive to these un-

predictabilities. The best approach is to implement, observe results, and analyze
performance to find ways to produce a better overall design.

I
I
I
I

I
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I,
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I

GAIN MATRIX G

Nominal -3.985e+1 -2.494e+2 -4.489e+1 -6.001e+1 -1.581e+1 3.201e-9

bvF +10% -3.986e+1 -2.495e+2 -4.519e+1 -6.035e+1 -1,581e+l -1.746e-9
-10% -3.984e+1 -2.493e+2 -4.401e+1 -5.999e+1 -1.581e+1 -4.948e-9

c +10% -3.985e+1 -2.494e+2 -4.490e+1 -6.001e+1 -1.581e+1 -9.027e-9

-10% -3.985e+l -2.494e+2 -4.489e+1 -6.00le+1 -1.581e+1 -2.037e-9

e +10% -4.003e+1 -2.543e+2 -4.534e+l -6.315e+l -1.581e+1 -2.037e-9

-10% -3.965e+1 -2.439e+2 -4.440e+1 -5.695e+1 -1.581e+1 -3.492e-9

M M +10% -3.999e+1 -2.564e+2 -4.527e+1 -6.128e+1 -1.581e+1 -5.675e-9

-10% -3.971e+1 -2.425e+2 -4.454e+1 -4.454e+1 -1.581e+1 -2.910e-10

im +10% -3.986e+1 -2.498e+2 -4.491e+l -6.004e+1 -1.581e+1 -8.731e-9

-10% -3.985e+1 -2.490e+2 -4.489e+1 -5.999e+1 -1.581e+1 -1.746e-9

All +10% -4.021e+1 -2.624e+2 -4.606e+1 -6.458e+1 -1.581e+1 -3.201e-9

Table 4.1: Table of Parameter Variations vs. LQR Gains: Case 1

I
I

'I

i
I . i
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I GAIN MATRIX G

Nominal 1.881+1 -4.087+1 -3.510+2 -5.235+1 -7.811+1 -1.581+1 -5.654-9

bVF +10% 1.815+1 -4.087+1 -3.512+2 -5.311+1 -7.814+1 -1.581+1 -5.763-9

-10% 1.385+1 -4.086+1 -3.509+2 -5.159+1 -7.807+1 -1.581+1 -1.524-9

I c +10% 1.861+1 -4.088+1 -3.512+2 -5.104+1 -7.810+1 -1.581+1 -9.799-10

-10% 1.862+1 -4.087+1 -3.509+2 -5.509+1 -7.811+1 -1.581+1 -3.765-9

1 l +10% 1.795+1 -4.106+1 -3.538+2 -5.267+1 -8.193+1 -1.581+1 -8.618-10

-10% 1.984+1 -4.066+1 -3.487+2 -5.201+1 -7.431+1 -1.581+1 -4.450-10

M +10% 1.812+1 -4.108+1 -3.628+2 -5.263+1 -8.042+1 -1.581+1 -6.252-9

-10% 1.966+1 -4.070+1 -3.393+2 -5.212+1 -7.582+1 -1.581+1 -7.581-9

rn +10% 1.883+1 -4.088+1 -3.521+2 -5.237+1 -7.818+1 -1.581+1 -3.939-10

-10% 1.880+1 -4.087+1 -3.499+2 -5.234+1 -7.803+1 -1.581+1 -3.541-9

All +10% 1.723+1 -4.127+1 -3.669+2 -5.372+1 -8.449+1 -1.581+1 -5.413-9

Table 4.2: Table of Parameter Variations vs. LQR Gains: Case 2

I

C
I

I
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Chapter 5

4ANALOG IMPLEMENTATION AND EXPERIMENTAL
RESULTS

5.1 Introduction

One of the primary objectives for the near-future of the University of Washington

Cart-Pendulum is the implementation of a digital controller device, i.e. an actual

computer, into the control loop. This digital controller will utilize software specifically
geared towards the implementation of control designs on physical systems. The broad

capabilities of such a controller are discussed in Chapter 6.

Unfortunately, the digital computer controller was not available for the experi-

ments described in this chapter, so use of a less flexible device for a controller was

necessary. The tests conducted were limited to implementation of LQR design full-
state feedback gains only, with no estimator and a simple differentiator to provide

the value for 0. Implementation was done without integral states at first, followed by
inclusion of fO later.f Before any simulations were attempted on the actual laboratory hardware, ex-

tensive testing was performed on the motor itself and on the actuator as a unit to

determine dynamic characteristics, as well as appropriate voltage levels and constants.

These tests and their results are discussed in Appendix A.

Of particular interest are the circuit proportion constants given in Table A.2.
These permit actual physical values of meters, radians, Newtons, etc. to be translated

into voltages used within the controller, and vice-versa. In order to implement the

gain matrices found under theoretical analysis, the required scaling is as follows:

G = Kfenor x G' x Ku

K = KIfnsors x K'

Iwhere G and K are the theoretical gain matrices, Kensors and Ku are the constants

given in Table A.2, and G' and K' are the gains actually implemented on the-system.

I
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The system was wired such that all potentiometer outputs would provide voltages

with the same sign conventions (relative -to a common ground) as those values they

represent. Similarly, the controller output signal u, was of the same sign as the
required system input force, Ku, so all of the circuit proportion constants in Table

A.2 are positive.

5.2 Analog Computer Hookup

tFigure 5.1 shows the basic wiring diagram for the Comdyna GP-6 analog computer
used in the conducted experiment. Note that the values for 0 and fa are obtained

by running the 0 signal through a differentiator and integrator, respectively. Each of

these devices can be wired easily on a GP-6. The path for the fs signal is shown as a

dotted line, since this integral state was never used in the testing (it is shown merely
to demonstrate how it could be wired).

Operational amplifiers on the GP-6 automatically invert (i.e. change the sign)
signals through them, so inverters themselves are necessary in the case of 6 and fO

(and fs) to "re-invert" to obtain proper sign. These inverters are shown in Figure

7g 5.1 as small triangles.

All signals are multiplied by their respective gains, which are set in potentiometers

denoted by circles on the diagram. The signals are then all fed into the summer shown,
where they are added to produce the control signal. The output is fed through one

more potentiometer, strictly for testing purposes, and then passes out of the GP-6

as the control signal, u,. Potentiometers in the GP-6 merely multiply a signal by a

fraction of unity, so those signals requiring gains greater than unity, namely 0 and .,

required additional multiplication at the input of the summer as shown.

5.3 hnplementation and Testing

To obtain a set of LQR full-state feedback gains without the integral state fs, a new
Q matrix was used and a new gain matrix G found. Since no estimator was involved

and therefore no estimation of an actuator state was possible, we were forced to

assume the proportional gain actuator model (see Case 1, Chapter 4, Section 4.5).

I
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Figure 5.1: GP-6 Wiring Diagram for Test 1
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- The initial weighting matrices were:

5 25.0, 0 0 0 0 0,

0 100.0 '0 0 0 0

0 00 00 0
0 0 0 25.0 '0 0 R [0.10

0 0 0 0 00
0 0 0 0 0 100.0

Note-that the weight on the cart velocity ., as well as the weight on the integral state
fs, was set to zero. Also, the weight on pendulum velocity was reduced, intended

to place less emphasis on G , and therefore less responsibility on the potentially
inaccurate differentiator. Solution of the LQRproblem using methods described in'I Chapter 4 produced the following gain matrix G:

G -15.8114 - 1567625 - 22.5763 - 35.1574 0.0 - .0000323

The associated stability margins with this particular design were:

I GainMargin GM = -8,371dc

Phase Margin 0 = -71.53'

The computer simulations produced using this gain arrangement are not too different

from those shown in the LQR testcases in Chapter 4.

Implementation of the computed gain matrix G into the analog computer was

accomplished in the manner described at the beginning of this chapter. Correcting

for the appropriate circuit voltage constants found in Table A.2, the "wired" gains

were found as follows:

GS = -15.8114 ' G= -.22610302

Go =-156.7625 G' = -2.67233

Gi = -22.5763 - G = -2.71367
I G = -35.1574 - G= -.599328

Gfe = -.0000323 4 GI 0  -.001000

f
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9 Note that the gains GO and G$ are both greater than uiity, hence the need for

the multiplication by 10 at the input to the summer for both of these signals. The

potentiometers in the GP-6 were set to the above values (with the potentiometers

corresponding to G' and G being set to -.267233 and -.271367, respectively). The
gain GfO was set at -.001, the smallest gain setting possible on the GP-6.

Tests were performed on each state feedback gain independently (i.e. all the rest

disconnected) to see if the actuator responded appropriately. The "test" potentiome-

ter, shown in Figure 5.1 as Gu, was varied to provide weak or strong control inputs

*as desired.

With the gains wired in as described and the pendulum raised to the unstable

3' :equilibrium position, the loop was closed and the computer was allowed to assume
W control. Immediately, the pendulum moved in a -0 direction, and the cart compen-

sated by moving in the -s direction, but could not right the pendulum and continued

I until it hit the track limit switches, causing the motor to shut down. This was clearly

an unstable condition and an unsatisfactory result.5 Subsequent experimentation with the pendulum and monitoring of GP-6 signals

revealed a large amount of noise within the differentiator, producing an unpredictable5 bias in the system even when the pendulum was stationary (the tendency of simple

differentiators to produce noise was a drawback mentioned in Chapter 4). With all

system states close to their homogeneous conditions, the amount of noise might have

been enough to exceed the given gain margin for the control loop.

Further experimentation involved arbitrarily raising the integral gain Gfo from

its extremely low value to values as high as the gain on the pendulum angle, Ge.
Increasing the integral gain helped the system out considerably, and for a value of

It Gfe = .800 the pendulum became reasonably stable for a short period of time. The

cart would still travel to the edge of the track and trip the switch, but performed a

few oscillations about equilibrium (i.e. the s = 0 and 0 = 0 points) before doing so.

Finally, the gains on cart position and velocity, G, and G, were reduced to put5more emphasis on pendulum stability and less emphasis on cart location. Again, this

seemed to help the system. The pendulum angle never exceeded more than two or

It three degrees, even when provided an "impulse" by a finger. The cart moved slowly

and would often remain within the confines of the track for more than a minute before

inevitably hitting one of the shutoff switches.
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1 5.4 Discussion of Results

5 Clearly, the actual results were different from the desired results, but important

observations and suggestions can be made from the limited tests conducted.

The output potentiometers (and the tachometer) produced signals that were re-

markably accurate. Particularly effective was the potentiometer measuring pendulum

angle, which was so sensitive the naked eye could barely perceive the angle changes
that produced corresponding signal voltage changes. The alignment of zero voltage

output with the pendulum vertical was also accurate. Thus, there is probaly little
error being produced in the actual outputs of the system.

The aforementioned differentiator noise problem is probably the greatest single

source of state error in the system. This factor emphasizes the need for a reliable

estimator to produce the needed states. The raising of the integral gain helped to

Ii alleviate this problem somewhat, but did not eliminate it. There was no LQR gain
schedule G that could be obtained that would not use the state 0, so the problem

could not be "worked around."

Also, tests on the integrator itself indicated that it tended to "drift" over time, and
return or stay at a homogeneous value even when the input (pendulum angle in this

case) was homogeneous. This might partially explain, in addition to differentiator

noise, the tendency for the cart to wander slowly around at high integral gain. A

possible solution to this problem, aside from finding a more reliable "black-box"

integrator, is to abolish the black-box altogether and estimate fO within an estimator.

Hence another reason to incorporate a reliable estimator.

Another possible source of difficulty lies within the actuator portion of the control

loop. The "dead zone" due to friction shown in Appendix A, where a range of

small control input voltages around zero produce no motor output, introduces an

unmodeled nonlinearity into the system. The effect of this is unpredictable, and may

be contributing to some of our problems. Add to this the fact that even a linear model

for the actuator is left out of this particular implementation, and the motor-actuator

as a source of error becomes even more likely. Once again, use of an estimator to

provide an actuator state for full-state feedback would prove useful.
Finally, there may be actual error in the plant model itself. The assumption that

all friction forces within the Cart-Pendulum are viscous in nature is certainly not



| 74I

100% correct, and may be inaccurate enough to cause significant error 'within, the

system. Tables 4.1 and 4.2 showed that small changes to the friction parameters'(as
well as to others) within the plant should not drastically affect the system. However,

unmodeled types of friction, to include coulomb, static, etc., might produce greaterIproblems.
Nevertheless, the U.W. Cart-Pendulum control system has reached an operational

I status, if for not more than a couple minutes or so! The observations gained from these

tests should prove useful when additional control designs are ready to be implemented

'3 and/or more flexible equipment is available.

I

I
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Chapter 6

5i CONCLUSIONS AND RECOMMENDATIONS FOR
FURTHER STUDY

6.1 Conclusions

The purpose of this paper has been to provide a baseline for control system design andI implementation on the new inverted Cart-Pendulum apparatus at the University of

Washington, Department of Aeronautics and Astronautics. The nonlinear equations

of motion and linear equations about equilibrium have been developed, and their

characteristics have been described. As shown, the nonlinear equations are necessary
when addressing the pump-up problem, and have been expressed in state form toIprovide easy application to computer algorithms and routines. The characteristics of
the fourth-order linear system, one which is unstable and non-minimum phase, have5 also been described.

Analysis to find actual values for system parameters has been carried out, and5' fairly reliable values have been obtained. Extensive tests on the motor-actuator have

produced good approximations for motor parameters and a working transfer function.1 to use as a linear model.
The minimum-time pump-up problem has been addressed through application of

optimization principles, and a practical solution in the form of bang-bang control has

'I been suggested. This solution could be applied though an open-loop control law or
through closed loop supervisory control logic.

IThe LQR/LQE approach to control system design has been applied to the partic-
ular hardware system at hand, and a good feeling for the quality of performance and5 robustness has been obtained. LTR procedure during LQE design has thus far shown
no ill effects with regard to the non-minimum phase nature of the system, and has

permitted recovery of almost all of the robustness properties guaranteed in the LQR
portion of design. The variation of the LQG solution with incorporation of different3l actuator models has been explored.
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Finally, a working control loop consisting of the Cart-Pendulum itself with mea-

sured outputs, a controlling mechanism, a servo-amplifier, power supply, and mo-

tor/actuator has been constructed. Initial implementation of full-state feedback
methods on the actual hardware has been made, employing an analog computer as a

'I controller. Although not all control scenarios were tested, the results of experiments

thus far should serve as a useful guide for further control design and experimentation

on the Cart-Pendulum.

1 6.2 Recommendations

Clearly, one of the first steps to take towards perfecting control of the Cart-Pendulum
should be the implementation of the proposed digital controller mechanism, which

would introduce an actual computer into the control loop. Analog computers can be

useful for low order controller designs, but the more complex controllers resulting from

full-state feedback gains, optimal estimators, and integral state addition can make

analog devices difficult to implement and even harder to monitor. A digital controller

of the type in question would allow continuous monitoring of plant outputs and control5 inputs, produce essentially "noiseless" (with respect to plant outputs) integral states
and state estimates, and even record system data so that comprehensive post-test

analysis can be conducted.

The digital controller will be a necessity if the pump-up control strategy is to be

f used in any way. The open-loop method could be employed by inserting the bang-

bang control schedule into an actual program that would produce the appropriate

- control signals at the proper times. Supervisory control logic for pump-up should be

relatively easy to program into the digital controller as well.
The bare essentials of the minimum-time pump-up problem have been developed

5 here, but solution of the complete two-point boundary problem remains. Subjecting

the optimization problem to added constraints, to include hard limits on cart position

nI velocity, may produce an even more complex problem. Mori et al found the
solution of this boundary problem to be extremely complex; they attempted to solve

Ithe problem using "a convergence procedure utilizing the gradient method," but were
not able to obtain a rigorous solution, stating the "feasible orbits are very 'twisted'

S. and cannot be obtained without special care or a powerful algorithm" [Mori 686].
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Nevertheless, it may be possible to construct a strong enough algorithm that can

produce a useful solution.

With regard to linear control, it is clear from experimental data that the actuator

* plays a rather significant role in the dynamics of the system, and probably should

I not be ignored. A proper step would be to implement a LQG controller employing

the zero-pole transfer function derived for the actuator in Chapter 2 and Appendix

A. If the actuator continues to cause problems, then a greater understanding of the

actuator dynamics, especially of the effects of friction, is needed. It is possible that

a second order model may be required to more accurately model the actuator. It

is also quite possible that frictional' effects are so significant that no linear model

can accurately describe the actuator dynamics. One other possible conclusion is

that the motor at hand (the French-built RX-330-A) may be inadequate in terms of

time constant and torque/force available. A more powerful device may diminish the

actuator difficulties encountered.

If implementation difficulties with both the controller and the actuator can be

3 minimized, all that remains is to perfect and expand various control designs for

different control scenarios. First, the LQG scenarios described in this paper should be5i tested and the weights in the four LQG weighting matrices Q, R, W, and V varied

as necessary to produce the best results. Variations in the design procedure itself

might include (1) eliminating the "black box" integrators and producing the integral
states through the estimator, and/or (2) experimenting with reduced-order estimator

designs that will produce essentially the same outputs as a full-order estimator. Also,
a deeper analysis of the response of this non-mininmum phase system to LTR procedure

might reveal a better way to obtain optimal estimation of the states

Once the LQG control designs have been successfully inplemented, more advanced

control concepts could be examined. H-infinity optimal control and parameter op-

timization techniques might produce control designs far more flexible, effective, and

robust than the LQG designs featured here.

5 iFinally, it may prove useful to expand the Cart-Pendulum control system design

problem to a more flexible hardware arrangement. Furuta et al have introduced a

turntable Cart-Pendulum array, where the pendulum is mounted to the outer edge of

a rotating disk rather than a cart. This clever arrangement eliminates the track edge6 constraints imposed by the linear Cart-Pendulum, and instead provides an essentially
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infinite, rotating path [Furuta 191]. Also, implementation of the actuator into the

loop is far more direct, diminishing the actuator modeling difficulties experienced

with the conventional "belt-and-pulley" arrangement. While the elimination of such

practical application obstacles may be frowned upon by some educators,-such a system

would allow for more freedom of design and measurement of system response.

I
I
I
I

I
I
1
I
I
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ii Appendix A

IMOTOR ANALYSIS AND CONTROLLER/ACTUATOR
GAINS

A.1 Motor Analysis

The motor used in actual experimentation was a pulse-modulated Alsthom-Parvex
3 RX-330-A, made in France. A number of tests were performed on the motor before

U any experiments were conducted. All tests were done with the motor hooked up to
the pulleys and belt of the hardware (the cart-pendulum is considered to be a separate1, system and was not attached).

Many of the parameters given in the motor specifications had to be recalculated,
since attachment of the pulleys and belt would have changed their values. Some of

those given specifications are:

IR = 0.30il

La = 3.3OmH

J,,,otor = O.00072kgm 2

Ra and La remain fixed, while the total inertia J will be higher than just Jmoto, alone.

A.1.1 TEST 1: Computation of Kt,h

To compute KItah, the motor was run up clockwise (viewing the motor from the

front) to various speeds, each of which were measured using a strobescope. The

respective tachometer voltage outputs were then recorded. Then the motor was run
counter-clockwise, and the same test performed. Plots showing the results are shown

in Figure A.1. As shown, the value for Ktah was slightly different for clockwise and
counter-clockwise rotations of the motor. Reasons for this difference are not known.

For the remainder of the tests, whenever Ktach was required, the motor was rotated
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counter-clockwise. The computed values for Ktjach:

I volt _volt

Kltachcw = 005406- = .054080
rpm radf see

3 8 ... ......... ... ... ....... .............................................................

. 7.......

6.............

...4....................................

o. . . ..... .................*..................

Io o:Mean Ratib CCW- i= .0047061 volt/rj~m

0'x 2 ~ __ :ean Rati& CW+ .0052449 volt/O

0 20 40 60 800 1000 1200 1400 1600 1800
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5 Figure A.1: TEST 1: Plots of Data to Obtain Ktj0 ,h
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A.1.2 TEST 2: Computation of Motor Constant K

To obtain the motor constant K, the power supply was disconnected and the motor

was rotated by hand to produce the tachometer and motor terminal voltage outputs

I shown in Figure A.3. K is computed by calculating the ratio between the motor

voltage Va and tachometer voltage Vtach, then multiplying by Iftach. The actual value

for K is shown as follows:

~Va
K = x KItach

Vtach

1.90 x .044940 volt
rad/sec

3 volt

rad/sec

, A.1.3 TEST S: Zero-Current Test

The zero-current test was performed by simply running up the motor to approximately

1000 rpm, and then shutting off the power supply. The result was a zero-current

situation, in which the only forces acting against the motor are mechanical damping

forces within the actuator. This is expressed by:

3c = -Dw-Ff (A.1)

The effects of mechanical damping are clearly visible in Figure A.4, and appear

ahmost perfectly linear in nature. The results of this test allow us to make the

reasonable assumption that mechanical damping is dominated by the friction force,3 Ff, which is close to being a constant force. D is clearly very small compared to Ff.

5 A.1.4 TEST 4: Zero- Voltage Test

To perform the zero voltage test, the motor was first run up to approximately 1000

rpm using an external power supply. Then the power was cut to the motor while a

simultaneous short was introduced across the motor. The result was a zero-voltage

situation which comanded the motor to zero rpm, which can be expressed by:

K 2  .
Jc = (D + - )w - Ff (A.2)

tlR
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The effects of total damping, as shown in Figure A.5, assume the shape of a typical

3 first-order decay, which indicates that the total damping is dominated Kby the viscousK2

term, D + "-" This supports the assumption made back in Chapter 2 that friction

forces F could be assumed negligible. Since we have already sbown that D is small
compared to Ff, the !- term clearly dominates total friction. Recall the transfer

function calculated in Chapter 2 relating motor speed w to voltage va:

- K
-K2+DR (A.3)

I Va (S) (D+'T/ ')s +1(A)

If we assume the plot shown in Figure A.5 provides a reasonably good approximation

of the response of the transfer function to a step command, fitting an appropriate

first-order decay to it should determine the value of the time constant r. Figure A.6

shows how a first-order decay with r = .2 produces roughly the same rate of decay

as the results of the test in Figure A.5. Thus, the following is true:

D + K2/R

I Since K and R are known and D .. 0, we can obtain a value for J:

= (.2 sec) (.085386 volts/rad/sec)2IjI 0.3 f
=.00486 kgmrn2

U Note that this number compares favorably with the original specification given on

the inertia of the motor alone: J,,,otor = .00072 kgmr2. We would expect the increase

shown to accommodate the added inertias of the pulleys and belt. We now have

estimates for all of the important parameters for the motor. The final step is to find

Ia numerical expression for the transfer function F(). Recall from Chapter 2 this
transfer function is given by:

I JK
Fu(s) r(K2+DR)S- (A.4)
V(S) (D+2,R)S + 1

. ..... ...
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The radius of the pulley is measured to be: r = .080573 meters (this is shown in
lj Appendix B). Substituting in the values now known for our motor, we obtain:

JK

Fu(s) _r(_K+DR)s

Va(s) (D-R-A) s+l

(.00486)(.0886)
.08((.085386) ) S

(486) +- 0 48)0+ (.0486)2/(0.3))s + 1

.7064s
I = .2s +1

Recall from Figure 2.2 that the amplification of the controller signal, u,, to the3 servo-amp voltage ea is given by:

ea = Kau,

3 IAssuming the voltage drop across the servo-amp resistor Ro is small, we can use:

g IVa = Kauc

Therefore, the final transfer function, in the form shown in Chapter 2, is:

Fu(s) .7064 Ka s Ku s
Va(s) .2s + 1 .2s + 1 (A.5)

The results of a related test are shown in Figure A.7. Here, the bang-bang ca-

pability of the motor is shown. The motor was first run up to approximately 1000

ii rpm, then the voltage applied to the motor was immediately reversed, effectively

commanding the motor to run up to -1000 rpm. After the motor settled at this value,3the voltage was reversed again, causing the motor to reverse back to 1000 rpm. We

would expect to transition from 1000 rpm to -1000 rpm (and the reverse) to exhibit5the same first-order step response shown in Figure A.5. However, as Figure A.7 shows,

the decay or rise to the commanded value is noticeably slowed as the motor speed

5 passes through zero. This would appear to indicate the presence of significant friction

effects at low speeds; again, something that cannot be ignored during performance
5analysis.
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A. 1.5 TEST 5: Computation of Ku

An approximation for the constant Ku was obtained by introducing measured positive

and negative voltage inputs to the actuator, u,, and measuring as accurately as

possible the resulting steady-state forces applied to the cart, FU. Figure A.8 shows

the plots of data for positive and negative voltage inputs. A linear proportion can

be extracted from them. to produce an estimate for Ku. Note the "dead zone" that

appears between voltages of approximately 0.20 and -.20 volts. At these inputs, no

output fuice was detectable. It should be noted that the observed forces would have

already included the constant (nonlinear) friction forces described in Equation 2.39.

The effect of the constant friction force is evidenced on explains the observation of

the dead zone found during the test.

The approximate value for Ku was computed to be:

Ku = 14.010 Newtons
volt

The magnitude of this constant friction force could be approximated by the width of

the dead zone on either side of the origin multiplied by Ku:

.20 volts x Ku = 2.80 Newtons

This assumes, of course, that the friction force Ff is a constant, and that the relation-

ship between Fv and u, is linear near the origin, and that Kur is also a valid constant

of proportion for the relationship.

A.2 System Gain Computation

The potentiometers attached to the Cart-Pendulum and the tachometer attached to

the motor produce outputs in the form of volts, although they essentially measure

quantities in other units; i.e. meters, radians, etc. Also, as already established, the

motor-actuator assembly, at a minimum, has a proportional gain which allows us

to translate the command voltage u (from the controller) into a force on the cart.

Thus, an experimenatally determined set of gains is required to make the proper

transformation in order for the controller's theoretical gain matrices to have any

meaning. Most of these were obtained by simply measuring physical quantities in the
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t system and recording the corresponding voltage. As stated in Chapter 5, the system

was wired such that all potentiometer outputs (and the controller signal u,) would

provide voltages with the same'sign conventions (relative to a common ground) as
those values they represent, so all of the circuit proportion constants are positive. The
constant Ku was determined from motor tests, as described in the previous section.
Figure A.2 shows the location of the gain constants within the closed system.

0
P ____ 

S

S ~ K K Ke

Motor

IKu VS I Vs Ye

UCOMMND CONTROLLER

5 Figure A.2: System with Gain Arrangement

I
The following values were found for the final system state gain constants:

I 0 volts

5f, meter

I
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if 4.190, volts
radian

If1.990 revolutions xKah 054.volts
rn/sec xKGh= 0 5 4 m/sec

if 4.100volts
rad/sec

ICU 1.010Newtons
Ku = 4.010 volt

These are displayed in Table A.2.
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U
I

I Motor Resistance (given, at 250 C) R. 0.30 fl

Motor Inductance (given) L, 3.30 mH
Motor-Actuator Constant K .085386 vol

Motor-Actuator Inertia J .00486 kg m 2

Tachometer Constant - CW Rotation iftachcw _050085
volt

Tachometer Constant - CCW Rotation Kta:hccw .044940 vltI
3 Table A.1: Table of Motor-Actuator Parameters

I
I

Cart Position Constant K 5.000 volts/meter

Pendulum Angle Constant K9  4.190 volts/radian

Cart Velocity Constant Kj 0.5941 volts/m/sec

Pendulum Velocity Constant If 4.190 volts/rad/secg Actuator Command Constant KU 14.010 Newtons/volt

3Table A.2: Table of Computed System Constants

I
U
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3TOP: Motor Output BOTTOM: TahOutput

0

> k/ -

TIE(5scnd/iiin

Fiur A.3 TESTf 2: D+ata t+o Obtain Motor Consant
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I 'MECHANICAL DAMPING TEST

;I TIME (.5 seconds/division)

Figure A.4: TEST 3: Zero-Current - Mechanical Damping
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I STEP COMMAND TEST

I>

0

Ti e (1scnd/iiin

Fiur A.:TS :Zr-otae-TtlDmig
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'1 Figure A.6: Comparing Theoretical First-Order with Motor
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I
I
I
I MOTOR BANG-BANG TEST

1
I - ------ -

I
(I)
~ i-H+ -1-1-14 -I-H-F +4-4-F 1+H- 4-4-H 1-4-H H-I-F
0I c'JCl) - - -

I--j

0U
I
I Time (.5 seconds/divIsion)

UI Figure A.7: Actuator Bang-Bang Test

3
U
I
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1 ~20..........POste Force (Motor Clockwise

.. .... ..... .. .1 0. . ...................

10 ~~.. . . . . .. . . . ......... . . . . ...........--..............

w * DEAD ZONE

-10 .. ..... ....... ........... .................

-20.. .... ... .......... .... .......

-30 -~- -- ~ Negative Force (Motor Counter :Clockwise)

2 -1.5 1 -0.5 0 0.5 1 1.5 2 2.5
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Figure A.8: TEST 5: Plots of Data to Obtain. Ku
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Appendix B

I EXPERIMENTAL DETERMINATION OF SYSTEM
PARAMETERS

B.1 Review of System Parameters

Recall from Chapter 2 the parameters used to describe the dynamics of the Cart-
Pendulum array:

m : pendulum mass (kg)

M : cart mass (kg)

: "effective length" of the pendulum (meters)
g : gravitational acceleration (m/s 2)3 bvF : viscous friction constant, proportional to cart velocity (kg/m)

c : rotational friction constant, proportional to angular velocity

We add to these two more parameters of interest:

d : cart usable track length (meters)

r : pulley radius

UThe first four quantities should be relatively trivial to obtain. The mass of the

pendulum can be measured using reliable weight-measuring devices. The "effective

length" of the pendulum was assumed to be the distance from the point at which
the pendulum was attached to the hinge to the center of mass of the pendulum,3 and is easily determined. The cart on the actual apparatus could not be removed for
weighing, since it contained sealed bearings. However, documentation from Duisburg,3 the source of manufacture, quotes a value for the cart mass which appears to be

accurate, based on density and volume estimates for the aluminum cart. The value
for gravitational acceleration is widely published; since the actual experimentation

was performed at the University of Washington at low elevation, a reliable value for
g at sea level was obtained from Eshbach's Handbook for Engineers.

U
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The value for d, the usable track length, was found by simply measuring the

distance from one cutoff switch to the other (these switches were described in Chapter

1). The pulley radius r, which serves to convert motor output torque to force applied

to the cart, was measured by moving the cart a fixed distance on the rail, observing

I the precise number of rotations of the pulley, and converting the measured linear

distance to pulley radii.3 Actual Values obtained for the basic pendulum configuration were:

m = 0.324 kg

3 M = 3.552 kg

t = 0.429 m

g 9.807 rn/s 2

d = 1.090 m

r = .080573 m

B.2 Frictional Terms

The final two parameters to determine are both friction terms. These are character-

* istically the most difficult to determine, and are most likely to change unpredictably.

* It may be difficult to consistently lubricate the bar or hinge to the same degree to

maintain the same values for sliding and roational friction, and there may be un-3measurable inperfections in the system parts that may introduce unseen resistance

forces. Thus, the elements of uncertainty in the system may very well be dominated3by imperfectly modeled frictional effects. Nevertheless, a reasonable estimate of the

forces opposing motion within the system may be obtained through proper analysis.

B.21 Cart Sliding Viscous Friction

3 As discussed in Chapter 2, the frictional effects resulting from the movement of the

cart on the lubricated bar or rail were assumed to be completely viscous in nature.

* This assumes that that any constant (i.e. coulomb) friction forces are very small and

negligible uompared to viscous friction forceL. This assumption is least accurate, of

course, when the cart is stationary; at this instance, the only frictional forces present

are coulomb forces. However, observation of the performance of the cart on the well-

lubricated bar seems to indicate that general frictional effects seem to be dominated by

U
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those proportional to the cart's own speed: velocity decay appears more exponential

3 (indicative of viscous friction) than linear (a coulomb friction indication).

* Thus, assuming that friction on the sliding cart was strictly viscous, the following

method was employed to determine the viscous friction constant, bVF. The entire

I pendulum array was elevated at one end to make the angle of the bar with horizontal

equal to an angle 0. Then the cart (with pendulum attached but fixed) was allowed

Sto slide from the high end of the bar to the low end, and the time taken to travel

this distance was recorded, The motion of the cart can be described by the following
I equation:

(M + m)9 + bvF = (M + m)gsin 
(B.1)

1 This is a second order differential equation, with the quantities M + m, g, and

€ known, and bVF being the parameter we wish to find. A normal second-order

differential equation requires two conditions to be completely solved, so we require1a third in order to obtain the unknown constant. These three initial and boundary

* conditions are known from experimentation:

S (0) = 0

I' (0) = 0
s(tj)= d

where d is the total length of the bar and tf is the time taken for the cart to travel

the length of the bar. The final expression is not explicit in terms of bvF, so iteration

is necessary to arrive at a final value.

For our particular configuration, the differential equation took the form:

I+ b = (9.81m/s 2) sin 9.5* (B.2)

3 where b = bt/(M + m). Solving this equation and applying the boundary conditions

mentioned above, with:

3 s(0) = 0
A(0) = 0

:I s(tf) = 132.5cm

t = 1.460sec
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we obtain an implicit solution for b in the form:
1.325b2 - 2.3886b + e146 - 1.636 = 0 (B.3)

Iteratively solving for b produces b = .665 and, subsequently:

bvF = 2.57754kg/s

It should be noted that these tests were performed with the rail and cart freshly3 Ilubricated with a common lubricant, WD-40. The same lubrication should be applied
before experiments to assure the frictional force is as close to the predicted values of

3 possible. Small changes in the lubrication condition of the apparatus could lead to

large differences between expected and actual values for th cart viscous friction.

IB.2.2 Pendulum Rotational Viscous Friction

As with the cart viscous friction, we assume the friction opposing rotation of the pen-
dulum about its hinge is solely viscous in nature. This assumption is not a necessity;

ideed, it has been shown that good estimates for both viscous and coulomb friction

constants can be obtained from thorough experimentation [Oakley 271]. However,
as with the cart, observation of the behavior of the swinging pendulum indicates3 that forces opposing its rotation seem to be dominated by those frictional effects

proportional to velocity.3 To obtain an estimate for the viscous rotational friction constant, c, the pendu-

lum was allowed to swing freely with the cart fixed on the bar. The motion of the3 pendulum can be described by the following equation:

I0 + cO + mgsin 0 = 0 (B.4)

where I is the moment of inertia of the pendulum about the hinge. If we assume
I = mJ2 (as we have done throughout our dynamic modeling), we obtain:

i+ c +  sin0=0 (B.5)

Clearly, if c = 0, the pendulum, given an initial angle of elevation, would oscillate

in the pattern of a perfect sinusoid forever. Therefore, by observing the decay of
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I pendulum swing over time, we can estimate the amount-of damping that the friction

must be injecting into the system.

The method used to determine c involved starting the pendulum at some initial

angle 4, and then allowing it to swing freely. By observing plots of the pendulum

angle vs. time, a first order decaying exponential curve could be obtained that would

describe the decay of the oscillating amplitude.

The value obtained for c was checked by simulating the same experiment on a

computer, using the obtained value for viscous damping friction. Results similar to

those obtained in the laboratory were obtained, verifying our results. Note also that

the fact that the friction manifested itself as a first-order exponential decay and not

a linear curve verifies that friction is dominated by viscous and not coulomb effects.

The value for c for our basic configuration was found to be approximately:

c = 0.O01kgm 2 /s

3 Cart Mass M 3.552 kg

Pendulum Mass m 0.324 kg

Pendulum Length e 0.429 m

Gravitational Acceleration g 9.807 m/s 2

Cart Viscous Friction Constant bvF 2.5775 kg/s
Pendulum Viscous Friction Constant c 0.001 kgm2/s

Usable Track Length d 1.090 m

Pulley Radius r .080573 m

Table B.I: Table of Computed Physical System Parameters


