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Contract DAJA45-90-C-0008

Nonlinear Filtering
and Approximation Techniques

This report presents the results obtained by the contractors in the study of partially observed
diffusions. Because nonlinear filtering is a central theme in the works reported below, we begin
with a brief presentation of this problem.

Let {(Xt, Y), t > 0} be a pair of stochastic processes satisfying

dXt = b(Xt) dt + o(Xt) d~I + p(.') dVj
11)

d)', = h(Xt) dt + dVt

where {(14't, Vi), t > 0} are two independent Wiener processes, and the initial state X0 is a
random variable independent of {(11', VO ,) > 01. The process {Xt, I > 0} is not observed. We
observe {Yt, t > 01 and we seek to estimate the current state X, given the information available
at time t, i.e. given Yj = oa(Y, 0 < s < t).

Note that the choice of the above model (1) means that the state process {X, . I > 0} is a
continuous Markov process.

The best estimate in the mean square error sense, of any function of the unknown r.v. -f
say O(Xj), based on Yf, is the conditional mean E[j(.\t) I Ytj], and computing this quantity for
any function 0(-) reduces to computing the conditional law of -t given Yt. Assuming that this
conditional law has a density with respect to the Lebesgue measure, it is well known that an
unnormalized version pt(x) of the conditional density satisfies a recursive equation. actually a
stochastic PDE called the Zakai equation

d

dpt = L'ptdt + Z B;ptdYt (2)
k=1

where L' and B; are the adjoint in the L2 sense of the partial differential operators

L = ' ,- + b b - a n,2 X- = Y and B k = h k + ZPk,=

respectively. Note that at each time t, pt(') is a random function of the state variable x. i.e. a
random element of an infinite dimensional space. This is of course a serious problem for practical
implementation.

Let us describe the results which have been obtained during the period covered by the present
contract.
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1 ZPB

The purpose of this software is to make available the experience accumulated by the contractors
about numerical techniques in nonlinear filtering. The basic idea is, given a formal description of
both the model (1) and the problem to be solved (e.g. filtering, smoothing, hypotheses testing.
etc.), to produce a program for the numerical solution of the corresponding Zakai equation (2).

The current version of ZPB is based on the computer algebra system Maple'. The main
improvement over previous versions, is the existence of a user interface and graphical tools
based on the X Window system2 . The interface guides the user through the following steps

o definition/modification of the model and the problem to be solved, and automatic gener-
ation of the corresponding Fortran program,

o definition/modification of numerical values related with either the model or the algorithm,
execution of the Fortran program, and visualization of the results.

o saving/loading of interesting examples.

Graphical tools are available to visualize the results of the computation

o a representation of both the simulated state trajectory and the estimated state trajectory
vs. time is provided in a first window, as well as a shaded area representing some confidence
region for the conditional distribution at a given level,

o a time can be selected in the first window, and a representation of the conditional density
at the selected time is then provided in a second window,

o it is also possible to visualize in the second window, the continuous time evolution of the
conditional density.

A short document presenting what is currently available in ZPB, and what is to be developed
in the near future, is joint to the report.

2 Discretization of the Zakai equation

We are interested in studying numerical methods for the approximate solution of the Zakai
equation (2)

d
dpi = L pt dt + E B Pt dYtk

k=1

where L is a second order partial differential operator, and Bk are first order partial differential
operators.

'Maple is a registered trademark of Waterloo Maple Software.
2The X Window system is a trademark of the MIT.
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In the case of independent noise, where p =_ 0 in equation (1) so that Bk = hk are "zero-th
order" partial differential operators, we have studied in [10] time discretization schemes based
on splitting-up approximation, with error estimate of order O(A) and O(A 31 2 ) where A is the
time step. A probabilistic interpretation of the discrerization schemes was also provided.

In the case of correlated noise, we have proposed in [3] a time discretisation scheme based
on the same splitting-up approach, with error estimate of order O(A). The correction part
in the splitting-up approximation. is related with a degenerate stochastic PDE. for which a
representation result in terms of stochastic characteristics can be found in [9] and [8]. We
have obtained a time discretization scheme for the degenerate stochastic PDE based on Euler
approximation of the stochastic characteristics, with error estimate of order O(A 1 2 ).

Finally, extending the results of Raviart in the deterministic case [20], we have proposed
in [4] a space discretization based on particle approximation, for first order stochastic PDE in
Stratonovich form, which are degenerate second order stochastic PDE.

In relation % ith the design of finite time observers for deterministic partially observed systemb
presented in [5], full discretization schemes have been introduced in the special case of noise free
state equations, where both a - 0 and p = 0 in equation (1), see [7].

3 Filtering of piecewise linear systems

D Continuous time systems

We consider a multi-dimensional stochastic system with dim X = dim Y = m. described by

dX, = b(Xt)dt + f(X,)dV + g(X,)dlVV,
(3)

dYt = h(X,)dt+EdWt

where E is a small parameter.

Our interest is for the situation where the coefficients are linear (or constant) on each con-
ponent of a finite polyhedral partition I0, 1 < i < 1} of the state space R'. For the sake of
simplicity we assume that I = 2. i.e. 0- = jx (x. u) < 0) and 0+ = x : (x, u) ? 0} where
u is some non zero vectir of R'. Let A = Ir (x, u) = 0) denote the separating hyperplane.
We assume that the coefficients of (3) satisfy

b(x) = B_x B+x

f(x) = F_ F+

g(z) = G_ G+

h(x) = H_.T Hz

and we assume that both H_ and H+ are invertible. The case where h(.) is one-to-one ha-
been considered in the previous contract, and we asume here that h(-) is not globally injective.
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On each of the half spaces 0- and O+ we have a linear system with non Gaussian initial
condition. If we knew that the state would remain in a given half space for a certain time
interval, then it would be natural to approximate the optimal nonlinear filter by the Kalman-
Bucy filter associated with that half space. The design of an approximate filter is based on this
idea.

o two Kalman filters X and k,- are considered which are associated with the two linear
systems corresponding to the original piecewise linear system,

o a first test is used to find a time interval [a, b] such that Xt does not cross the separating
hyperplane A in [a,b]

o provided that such a time interval [a, b] has been found, a second test is used to decide
whether Xt E 0. or X, E 0+ on [a,b], i.e. to decide which Kalman filter 9,+ or .X- to
follow on [a,b].

We have proved in [19] that art hYperplane-crossing test can be designed with exponentially
small probability of error. and that it is possible to design a test to decide between 0- and E+,
under either one of the following ddtctability hypothesis

(DH 1 ) H-E-H- 5 H+E+H..

F =H-_E-_H' = H+ E+H;

(D11 2 ) ker [H_ B- H-- - H+ B+ H'+I C A

the matrix F- [H- B- H -1' - H + B+ H-'+ is symmetric

where E- = F- F: + G- G_ and similarily for E+.

The main difference between the two detectability hypothesis is that under (DII), we can
decide almost instantaneously with an exponentially small probability of error, whereas under
(DH12 ), we need the interval [a.b] to be long enough (actually almost infinite) in order to get an
exponentially small probability of error.

Some examples in the case where dim X > dim Y have been also considered in [14], [18].
and 119[.

0 Discrete time systems

We consider a one-dimensional discrete time stochastic dynamical system described by

xk+l = xk + eb(xk) + Va(xzk) Wk

Yk = h(Xk) + V k

where e is a small parameter. Such a system results e.g. from the discretization, with time step
At= e, of a continuous time system with small observation noise, such as (3) above.
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Our interest is for the situation where the coefficients are piecewise linear (or constant) i.e.

b(x) = B_z B+x

a(x) = o_ a+

h(x) = Hx Hz

In the case where h(.) is not one-to-one (i.e. H+ H_ < 0), we introduce the following detectabil-
ity hypotheses

(DHI) H2 a2  2 2_ _ j H+ a+

H'2- = H 2l72

(DI1 2)
B_ 5 B+

The case where hypothesis (Dll) holds has been considered in [2]. Under hypothesis (DI12 ). we
have proved in [15] that an efficient approximate filter can be built, which is based oil the same
following idea than ill the continuous time situation

o two Kalman filters i+ and i- are considered which are associated with the two linear
systems corresponding to the original piecewise linear system,

o a first test is used to find a time interval [a, b] such that Xk does not cross the zero axis ih
[a,b] with high probability.

o provided that such a time interval [a, b] has been found, a second test is used to decide on
the sign of xz in [a. b], i.e. to decide which Kalman filter i + or i- to follow.

Using the same heuristic approach as in [2], i.e. approximating some discrete processes by
diffusion processes, explicit expressions have been obtained for the selection of thresholds.

Some numerical experiments have been performed on various examples, and the proposed
approximate filter has been compared with the optimal filter obtained from the numerical so-
lution of the corresponding Zakai equation. It is worth to mention that the Fortran programs
for the numerical solution of the Zakai equations, have been automatically generated by our
software ZPB which is described above.

4 Statistics of partially observed diffusions

We have shown in [1] that the Zakai equation provides also a w~y to compute the likelihood

function/ratio in a large variety of statistical problems for partially observed diffusion processes.
including parameter estimation, binary detection, change detection, etc.

45
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An important issue is to prove that these statistical procedures based on the likelihood
approach, can provide good estimates or decisions in some asymptotic sense. Consider for
example the statistical model

dXt = ba(Xt) dt + E dWi ,

dY = he(Xt)dt + edV ,

where 6 E 0 is an unknown parameter, which appears in the coefficients be(-), he(.) and also in
the density p0(.) of the initial condition X 0.

Computing the likelihood function for the estimation of the unknown parameter 0 on the
basis of observations {Yt , 0 < t _ T). involves the solution of the Zakai equation corresponding
to the associated filtering problelm. We have proved in [6] the consistency of the MLE under the
small noise asymptotics e 1 0. in the following way

" using largc deviations theory. it is proved that the limiting points of the MLE sequence
belong to the set of ininlinizing points of a least-squares type functional for the estimation
of 0 in the limiting deterministic system = 0,

o under an identifiability property of this limiting deterministic system, this set reduces to
the "true" value of the parameter.

5 Transfer to the US

F. LeGland has presented some results on time discretization of the Zakai equation [10], and
filtering of piecewise linear systems [17], at the IEEE CDC in Tampa (December 1989).

P. Milheiro de Oliveira has presented the results on approximate filters for discrete titinc
systems [13], at the IEEE CDC in Honolulu (December 1990).

E. Pardoux, F. Campillo and F. LeGland have participated to the NSF-INRIA Workshop oil
Stochastic Analysis, organized at Rutgers University, where the results on particle approximation
for first order stochastic PDE [4], and numerical approximation of nonlinear filters and finite
time observers [7] have been presented (May 1991).

E. Pardoux anm F. LeGland have participated to the International Conference on Stochas-
tic Partial Differential Equations, and have given tutorial lectures at the School-Seminar on
Stochastic Partial Differential Equations, organized at the University of Northern Carolina in
Charlotte, with partial support of the Army' Research Office (May 1991).

E. Pardoux has given a series of lectures on Nonlinear Filtering and Associated Partial
Differential Equations, in Ecole d'Ete de Probabilitds XIX in Saint-Flour (August 1989). The
lecture notes [16] present the most recent developpments in the theory of nonlinear filtering.
including results obtained by the contractors, for the first time in book form.
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Introduction

The purpose of ZPB is to produce Fortran programs for the numerical solution of the Zakai
equation. This equation allows to solve various estimation problems in partially observed
systems, such as

" state estimation : filtering, fixed-interval smoothing, fixed-lag smoothing, etc.

" detection, either off-line or sequential,

" parameter estimation,

" change detection (disorder), either off-line or sequential.

Given a description of both the model and the problem to be solved, the Fortran pro-
grams are generated with the help of the computer algebra system Maple. This description
is contained in a file zpb.data, in the form of Maple instructions keyword:=value;.

The generated Fortran programs rely on routines from the scientific library NAG, which
is assumed to be available.

In addition to the Maple program, an interface is provided to help the user defining
the model and the problem to be solved, and graphical tools are available to visualize the
results. Both the interface and the graphical tools are based on the X Window system.

The possible models and problems to be solved, and some of the algorithms actually
implemented in the generated Fortran programs, are presented in these notes.

Maple is a trademark of Waterloo Maple Software. NAG is a trademark of the Numerical
Analysis Group Ltd. PostScript is a trademark of Adobe Systems Inc. The X Window
system is a trademark of the MIT.
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A Models of Partially Observed Systems

The class of systems to be considered is modeled as a rn-dimensional diffusion process

dX, = b,(X,) dt + a,(X,) dW, ,

where {Wt, t > O} is a r-dimensional Wiener process with covariance matrix Q. This
includes the particular case of systems modeled as the solution of an ordinary differential
equation 'x, = b,(¥,).

In the case of a noise driven state equation, it is assumed that the state is
one-dimensional. Extension to two-dimensional state is planned.

OBSERVATIONS

The state of the system is not directly observed. However, d-dimensional noisy nonlinear
observations of the state are available, either at discrete times {tI, t2 ...

Zk = hk(X(,) + vk ,

where {vl,v 2 ,. is a d-dimensional Gaussian white-noise sequence, with non singular
covariance matrix R, or in continuous time

zt = h,(X,) + vt,

where {vt, t > 0} is a d-dimensional Gaussian white-noise process, with non singular
covariance matrix R. Introducing the integrated observation process

= = z. ds,

the observation equation becomes

d 't = h,(X,) dt + d';

where {V, t > 0} is a d-dimensional Wiener process, with non singular covariance ma-
trix R.

Another information about the model is the correlation structure between the state
noise and the observation noise.

It is assumed that the state noise and the observation noise are independent.
Extension to allow noise correlation is planned, see Florchinger-LeGland [4]
and [5].

2
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A first description of the model is provided by the following keywords to be defined
in the file zpb.data

dim-state dimension m of the state (integer)
noise-driven-state true Ifalse

I if noise-driven-state=truel
dim-noise dimension r of the drivingnoise (integer

observation-mode discrete I continuous
dim.obs dimension d of the observation (integer)

COEFFICIENTS

The next step is to provide the algebraic expression of the drift vector bt(.), the diffusion
matrix at(.) (in the case of a noise driven state), and the observation function hk(-) or h&)
depending on whether the observations are available at discrete times or in continuous
time. In addition, the probability distribution of the m-dimensional initial state X 0 has
to be selected among the following elementary probability distributions

(i) Dirac mazr at point x0,

(ii) Gaussian distribution, with mean p and covariance matrix E,

(iii) uniform distribution on an coordinate cube [xi, x 2].

Extension to allow mixture of elementary probability distributions is planned.

A further description of the model is provided by the following addiIonal keywords
to be defined in the file zpb. data

drift drift rn-vector (algebraic Maple expression)

lif noise- rivenistate=true
diffusion diffusion (m,r)-matrix (algebraic Maple expression)

observation observation d-vector (algebraic Maple expression)
initial diracigaussian iuniform

PARAMETERS]

The algebraic expression of the coefficients can contain, in addition to the state variable x,
or xl,... ,xm if the state is m-dimensional, and the time variable t, some other parame-
ters. A list of these parameters is build by the Maple program, from the description of the
model given in the file zpb.data, and stored in the file .model. Additional parameters
include

3
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(i) parameters of the initial probability distribution,

(ii) covariance matrices Q and R (diagonal) of the noise processes,

The numerical values of all these parameters are read at run time by the generated Fortran
programs in two different files simul .data and filt .data, This allows to consider mis-
specified estimation problems, i.e. to address robustness issues.

Extensions to allow the covariances matrices to depend on parameters, and
to treat more general robustness issues (different algebraic expression of the
coefficients for simulation and filtering), are planned.

4
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B Estimation Problems and their Solutions

With the diffusion equation

dXt = bt(X,)dt + a, (Xt)dWt,

is associated the following time dependent second order partial differential operator

Ea- + Fbt
Lt = a, , ~ O

with the covariance matrix at =a U Q o t •

The state estimation problem consists in estimating the state X, given only the ob-
servations. In the case of discrete time observations, the observation o-algebra is defined
by

Zk = a(Z, ,Zk)

whereas, in the case of continuous time observations, it is defined by

Y = a(Y, 0 < s < t).

Notation Throughout the paper, the scalar product and the corresponding norm in
Rd, associated with the symmetric positive definite matrix R -', are denoted by ( ), -
and I -IR-' respectively.

FILTERING]

The goal here is to estimate recursively the current state Xt at time t , given only the
past observations up to time t.

DISCRETE TIME OBSERVATIONS

Introduce the conditional a priori and a posteriori probability densities

p.(x)dx = P(X,, E dx I Zk 1) and pk()dx = P(X,, E dxI Zk)

respectively. For any tk-1 < t < tk , introduce also

p ,(x) dx = P(X, E dx I Zk_ I).

The transition from Pk'- (x) to pk(x) is divided into two steps

75



e prediction step : between tk-1 and tk , the density pk(z) solves the Fokker-Planck
equation

- L, p,

with initial condition p,_, (x) = pk-i 1(x) , which gives in particular p- (x) = p' (x)

* correction step : the Bayes formula gives

Pk (X) = Ck - V k( P (X)'

where
*k(x) = exp{-2 IZk -hA()lR

is the likelihood function for the estimation of Xtk, based on the observation zk alone,
and Ck is a normalization constant.

CONTINUOUS TIME OBSERVATIONS

The unnormalized conditional probability density solves the Zakai equation

dp, = L* pi di + p, (h, dY)R-1

i.e.
P(X, E dz I Y,) = c, . p,(x)dx

where ct is a normalization constant.

SAMPLED OBSERVATIONS

Introduce a uniform partition 0 = to < ... < tk < ... of the time interval [0, oc), with
time step A = tk - t4-1. The first step is to sample the available observation trajectory.
i.e. to build the following sequence of compressed observations

Y = l[ t' - = _h.(X,)ds + slVt4 - V._I] , (.)

and to use the approximate observation model

yka =h,(X,,)+v x 
(,)

instead, where ,...} is a Gaussian white noise sequence with covariance matrix
R/A.

Defining the sampled observation a-algebra

yk, = (Y1..., Y'),
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it is possible to use the results available for the case of discrete time observations. Intro-
duce the conditional priori and a posteiori probability densities

p;(x)dx = P(X,, E dX I Yk-,) and pk(x)dx = P(X,, E dx I Y6),

respectively. For any tk-, < t < tk, introduce also
pt(x)dx = P(X, E dx I Y-) I

The transition from pk-I(x) to pk(x) is divided into two steps just as in the case of
discrete time observations, except that the correction step involves

%P-"(x) = expI- A ly -ht,(x)I'

which is the likelihood function for the estimation of X,, in the approximate observation
model (**), based on the sampled observation y' alone as defined in (*), and ck is a
normalization constant.

[FIXED INTERVAL SMOOTHING

The goal here is to estimate the state Xj at any time 0 < t < T, given all the observations
in the time interval [0, T].

DISCRETE TIME OBSERVATIONS

Assume that the final time T satisfies t
N : T < t

N+1 for some N. Introduce the condi-
tional smoothing probability density

qk(x)dx = P(Xt, E dx I ZN)

For any t-1 -5 t < tk , introduce also

qt(x)dx = P(X, E dx I ZN).

These probability densities are absolutely continuous with respect to the corresponding
filtering densities, i.e. qk(x) = pk(x)" vk(x) aid qt(x) = pk(x). v(x).

The backward transition from vk(x) to Vk-I(x) is divided into two steps

e at time tk
v (x) = Ck . 'k(X) - Vk(X)

where
'Pk(x) = exp{H2 Izt - lik(Z)IR-I

is again the likelihood function for the estimation of X,, based on the observation
zk alone, and ck is a normalization constant.

7



* between tk and tk-i , the derivative v,'(x) solves the backward Fokker-Planck equa-
tion

- t + Lt vt = 0
with initial condition v (x) = v-(x) , which gives in particular Vk-I(X) = v'_(x)

It is immediate by duality, that

(pk, Vk) = (pk,v) = (pk_, vk-1)

which implies that the conditional densities qk(x) are properly normalized.

CONTINUOUS TIME OBSERVATIONS

Here also, the unnormalized smoothing conditional probability density is absolutely con-
tinuous with respect to the corresponding unnormalized filtering conditional probabty
density, i.e. qt(x) = pt(x) • vt(x) where the derivative solves the backward Zakai equation

dvt + Lt vtdt + vt (htd}')R-1 = 0

i.e.

P(Xt E dx I Yr) CT q,(x)dx,

where CT is a normalization constant.

II

0 T

SAMPLED OBSERVATIONS

This case is very similar to the case of discrete time observations. Introduce the conditional
smoothing probability density

qk(x)dx = P(Xt, E dx IYA) .

8



For any tk-I < t , introduce also

qtk(x)dx = P(X, E dxIy,).

These probability densities are absolutely continuous with respect to the corresponding
filtering densities, i.e. qk(x) = pk(x) .Vk(X) and q (x) = p1(x) . Vt(x) .

The backward transition from Vk(X) to vk_1(x) is divided into two steps, just as in the
case of discrete time observations, except that the correction step involves

*4(z) = exp{ Iy - hgk ()R-}

which is the likelihood function for the estimation of Xg, in the approximate observation
model (**), based on the sampled observation y" alone as defined in (*), and Ck is a
normalization constant.

The description of the estimation problem to be solved is provided by the following
keyword to be defined in the file zpb.data

U problem filtering I smoothing

Extensions to other state estimation problems, such as fized-lag smoothing. or
to statistical problems, including parameter estimation, detection, change de-
tection, etc., either off-line or sequential, are planned, see Campillo-LeGland [1].

9
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C Numerical Algorithms

Given a model and an estimation problem to be solved about this model, both described in
the Maple file zpb.data, the purpose of ZPB is to provide Fortran programs and visualiza-
tion tools, for the numerical experimentation and evaluation of the estimation algorithm.
This involves two different tasks

* simulation : the goal here is to generate a trajectory of the state process, and a
sequence of either discrete time or sampled observations, to be stored into the files
zpb. state and zpb. obs respectively.

e estimation : the goal here is to combine a priori information about the model and
the observations to be read from the file zpb.obs, in order to solve the selected
estimation problem. Results are stored into the files zpb. est i, and zpb. density.

From now on, the state process is assumed to be one-dimensional.

Extensions to allow two-dimensional state process, are planned.

ISIMULATION

The time horizon T and the time step A between successive observations, are read from the
file algo .data, under the name tmax and dt respectively. A refined time step AM = A/A
is introduced, where the number M of local iterations for the simulation is also read from
the file algo.data, under the name locsimul.

The state Xt, is approximated by -k using the Milshtein discretization scheme [10]

to = tk-,
ti = t - +1_ , < i < Mf

tk = tkM I

0 Xk-I ,

i i-1 - m , i1
Xk xi, + bq~ (xj' A '- u~-(Xr W'k

+ 1 o"'- ,(') 0 ) [Iw I - AM] 1 < I <Al

- MXk =Xk

where {w,, w"} is a Gaussian white-noise sequence with covariance matrix Q -AM .

On the other hand, the generation of the sequence of observations is different whether
they are discrete time or sampled observations.

10
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DISCRETE TIME OBSERVATIONS

The observation zk is simulated using the approximation tk of the state Xt"

zk = hk(±k) + Vk ,

where Vk is a Gaussian random vector with non singular covariance matrix R.

SAMPLED OBSERVATIONS

The sampled observation ya as defined in (*) are simulated using the approximation
{X, , x"} of the state process between tk-1 and tk

k Ith,, (x' + k,

where vk is a Gaussian random vector with non singular covariance matrix R/A.

Gaussian random variables are generated according to the Box-Muller algorithm, see
Rubinstein [121. A routine boxmuller is provided in the library libzpb.a. Uniformly
distributed random variables are generated by the NAG library routine g05caf, in con-

junction with gO5cbf. The seed of the random generator is read from the file algo.data
under the name seed.

Extensions to include more accurate discretization of the deterministic part of
the state equation, are planned.

ESTIMATION

It follows from the discussion above, that either for the filtering or the smoothing problem,
and whether the observations are in discrete time or sampled, it is needed to discretize
the Fokker-Planck equation between tk_1 and tk

t -

11



TIME DISCRETIZATION

The time horizon T and the time step A between successive observations, are read from the
file algo .data, under the name tax and dt respectively. A refined time step Ap = A/P
is introduced, where the number P of local iterations for the prediction step is also read
from the file algo.data, under the name locpred.

The filtering density pk is approximated by Pk using the implicit Euler scheme

to = tk-I

ti = t, - I +AP, I<i<P

tk = IP 
,

Pk = Pk-i

[I- Ap L,-']" pi = p-' , 1 <i<P

Pk = ck- 'Pk-P

This approximation is based on

pA. - Pt.i=J L*p ds 2,kL: ds p. A p L - p,

SPACE DISCRETIZATION

Following Kushner [8], the second order partial differential operator Lt is approximated by
a finite difference matrix, on a regular bounded coordinate grid. Only the one-dimensional
case is considered here. The bounded domain is an interval D = [_1,T] . The end points
x, T and the mesh size 6 are read from the file algo.data under the name xmin, xmax
and dx respectively.

Let R6 denote a one-dimensional coordinate grid with mesh size 6. For any x E R6
let N 6(x) = {x, x ± b} denote the set of neighbours. The restricted grid is D6 = D n R6
the set of interior grid points is D6 = {x E D : N6(x) C D61 , and the set of boundary
points is r6 = Db \ D6

X-8 z z+8
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The first order partial derivative is approximated by non centered upwind finite dif-
ference schemes, in a way depending on the drift coefficient

O(X + b) - OW
b , if bt(x) > 0

X OW O(X- b) if b,(x) < 0

The second order partial derivative is approximated by the usual centered finite difference
scheme a2 ~ (x + )- 20(x) + O(x- 6)

It follows that for any interior point x E D6

L, O(x) _ b+(x) €(x + b) - OWx + b-(x) OWx - O(x - b)

6 6

+la,(x) O(x6) - 20(x) + O(x - 6)

_L O(x) = L (xy) 0(y).

The only non zero terms in the time dependent matrix L' are the terms involving neigh-
bours [ous L1(xx±6)= 

[a(x) + 6 b(x)]

L6(x,x) = 1at(X + 6 1bdxW]

and in addition the following properties are satisfied

L'(x,y) > 0 for y i x

F L6(x,y) = 0
yE D,

A (x) b- (x,x) = ,L(x,y) > 0

where the latter is a consequence of the two others.

For any boundary point x E F , the definition of the finite difference matrix depends
on the boundary condition to be satisfied.

* absorbing (stopping) boundary :

Lf(x, y) = 0 for all y E Nb(x)

13
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* reflecting boundary

at leftmost grid point
L'(x,x) =-A(x)

t'-x, x + 6) A (x)

tL'(x, x - b) =0,

at rightmost grid point

L,(x,x) =-A(x)

L't(X, X + 6) =0

L',(x, x - 6) = (x)

The nature of the boundary condition is read from the file algo .data under the name
boundary which can take the two possible values stopping Ireflect ion.

These properties show that the time dependent matrix L' is the instantaneous jump
intensity matrix of a pure jump Markov process {X,', t > 01 evolving on the grid D/, .
Conditionned on the current position x E Db , the inter-jump time and the next position
are independent random variables. Moreover, the inter-jump time is an exponential
random variable with parameter Ab(x) , and the probability distribution of the next
position is given by irb(x,y) = L6(x,y)/A(x) , for all y E D.

FULL DISCRETIZATION

Combining finite difference approximation of the second order partial differential operator
Lf, with implicit Euler time discretization, results in the following sequence of linear
systems

POk = Pk-I

[I -Ap L6k- ] Pk, = Pk- < <i<P

P <<

Pk= ck - k-Pk *

This is a tridiagonal linear system which can be solved by direct method : first, the
matrix is factorized using Gaussian elimination algorithm with partial pivoting, then the
resulting upper and lower triangular systems are solved. This is done by the NAG library
routines fOllef and fO41ef respectively.

Extensions to include iterative methods, or multigrid methods for the solution
of the linear system are planned, and will have to be used in the case of a
multi-dimensional state equation.

14



PARAMETERS

A list of the algorithm parameters is build by the Maple program, and stored in the file
* algo. These parameters include

dt - time step,

tmin, tmax - ends of the time interval,

locsimul - number of local iterations for the simulation,

seed - seed of the random number generator,

xmin, xmax - bounds of the bounded space discretization grid,

dx - mesh of the space discretization grid,

locpred - number of local iterations for the prediction,

boundary - nature of the boundary condition, etc.

15



D Organization of a Session

The user has first to provide a description of both the model and the problem to be
solved. This description is contained in a file zpb. data, in the form of Maple instructions
keyword: =value;. The list of admissible keywords is summarized below

dim-state dimension m of the state (integer)
noise-driven-state true I false

I if noise-driven-stateftrue
dim-noise dimension r of the driving noise (integer)

observation-mode discrete! continuous
U dim-obs dimension d of the observation (integer)

drift drift m-vector (Maple expression)
I if noise-driven-state=true

diffusion diffusion (m,r)-matrix (Maple expression)
observation observation d-vector (Maple expression)

initial dirac l gaussian! uniform

problem filtering I smoothing

The file zpb.data can be created with any text editor. Under X Window, a user
interface is provided to create and modify the file zpb.data a .,, ali,.

When this first stage is completed, the Maple pTc."rain is called, and Fortran programs
are generated and compiled. Two data files .mdel and .algo are also generated. which
contain respectively the list of parameters relevant to the model and the problem to
be solved. The user has to provide huinerical -' ips f-'r these parameters, which are
contained in three different input files simul.data, estim.data and algo.data. Here
again, these files can be created and modified with any text editor. Under X Window.
the user interface allows to create and modify the files simul.data, estim.data and
algo. data automatically.

When this second stage is completed. the Fortran files are executed and the results are
stored in the output files zpb.state, zpb.estim and zpb.density, which contain the
simulated state sequence, the estimated state sequence (usually the conditional mean),
and the conditional density sequence.

Under X Window, graphical tools are provided, which allow to visualize the data in
the output files, in the following way

" a representation of both the simulated state sequence and the estimated state se
quence vs. time, is provided in a first window, as well as a shaded area representing
some confidence region for the conditional distribution at a given level,

* a time can be selected in the first window, and a representation of the conditional
density at the selected time is then provided in a second window,

16



* it is also possible to visualize in the second window, the continuous time evolution
of the conditional density.

In earlier versions of the software, Fortran programs were provided for the graphic
visualisation of the results, based on the Graphical Kernel System GKS [3,7] library.

The organization of a ZPB session is summarized by the following flowchart.

17



text
X Window edior
interface zpb.data

1pm 
I

.model simul.f

.algo estim.f

Fortran
interface compiler

simuldata
estim.data simul
algo.data estim

Fortran
programi
zpb.state
zpb.estim
zpb.density

7 ................ zatio n ............ E J
GK$X Window program

interface
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E Example

Consider the nonlinear filtering problem for the following quadratic sensor system

dX, = -3X, dt + dW ,

dY = (X, + X9)dt + dV,

where {W, t > 0} and {V,, t > 0} are independent Wiener processes with variance Q
and R respectively. The initial condition Xo is a Gaussian random variable with mean
p and variance E. Note that when c = 0, the observation function is linear and the
conditional law is Gaussian, whereas when e - 0, the observation function is symmetric
around x0 = -1/2e, and is not injective, which can result in a multi-modal conditional
density when the signal is in the neighbourhood r4 ro.

This model is described by a sequence of Maple instructions in the file zpb.data. The
corresponding Fortran files are automaticaly generated and compiled, as well as the file
.model containing the list of model parameters, see Figure 1.

Two numerical examples are considered below, for different values of the parameter E.
Numerical values of the model parameters are given in the following table

/3 0.2
E0.0 or 0.25

0.0
1.0

Q__ 1.0
0.001

In both Figure 2 and 3, the level of the shaded confidence region is 0.95
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observation-.mode:- 'continuous';
noise..driven-state:=true;
dim-state:1l;
initial:='gaussian';
drift:=-beta*x;

diffusion:=l;
dim-obs : =;
observation:-x+eps*x-2;
problem:-='filtering';

beta
eps
X0
qO

qq

rr

Figure 1: Description file zpb. data and corresponding parameter file .model
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time =2.80 ZPB The Mefisto Project (INRIA)
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Figure 2: Linear observation function (c =0.00)
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time = 2.80 ZPB -- The Mefisto Project (INRIA)
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Figure 3: Non-injective observation function (E 0.25)
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TIME DISCRETIZATION
OF NONLINEAR FILTERING EQUATIONS*

Francois LE GLAND

LNRIA Sophia-Antipolis
Route des Lucioles

F-06565 VALBONNE COdex

Abstract Some computable approximate expressions 2 The filtering problem
are provided for the conditional law of diffusion processes
observed in continuous time. The numerical schemes are On a measurable space (11, F) are given a probability
derived through an approximation of the original filter- measure P, and a pair of stochastic processes {Xt, t > 0}
ing problem. Given a partition of the time interval, this and { Y, t > 0} taking values in R' and Rd respectively,
procedure consists in sampling the available observation such that under P
sample path and approximating the a priori law of the
diffusion process. This results in approximation schemes dY = h(Xt) dt + dV (1)

for the Zaekai equation, for which rate of convergence are where {V, t > 0} is a standard Wiener process, inde-
provided. pendent of {Xt, t > 0}.

Note that the a priori law of the signal {Xt, t > 0}

1 Introduction is not specified at this point. The observation function
satisfy the following hypothesis

The purpose of this paper is to give computable and h is a measurable and bounded function from
accurate approximate expressions for the conditional law R"- to Rd.
of a diffusion process observed in continuous time. Since
this conditional law depends on both Remrk 2.1 As usual, (1) is the mathematical way of

the a priori information, provided by the semi-group expressing that some measurement

{Pt. t > 0} or equivalently the infinitesimal genera- zt = h(Xt) + t , (2)
tor L,

is available at time t, where {lt., t > 0} is a Gaussian
* the available observation sample-path {Yt, t _ 0}. white-noise process, independent of {Xt, t > 0).

the approximation problem under consideration should Introduce the a-algebras
reduce in some sense to

* approximate the a priori law of the original diffusion F, -  
(X., 0 < < t) ,

process, e.g. by the more simple a priori law of some

other process, y" : or(Y - Y., s < !5 t) , Yt ! 31•

* extract the most useful information from the avail- The problem is to estimate X, from Y,, i.e. to compute
able continuous time measurements {Yt. t > 0}. the conditional (a posteriori) law of X, given Yt. defined

by E(O(Xt) I Yt). Introducing

The general situation of filtering a signal process from
noisy continuous measurements will be considered. At e (
each step of the approximation procedure, the general

formulas will be applied to the particular case of diffu-
sion processes, in order to check whether or not some and Z, Z 4, it is standard that, for all T > 0 the orig-
computable expression has been obtained. Note that only inaJ probability measure P is equivalent on [0, T] to the
time discretization is considered here: the discretization reference probability measure pt with Radon-Nikodym
with respect to the space variable, e.g. the approximation derivative ZT, so that under Pt {y,, t > 0} is a stan-
of the partial differential operator L by finite differences dard Wiener process, independent of {Xt, t > 0).
is not taken into consideration. By the Bayes formula

*Reseach p-tialy supported by Systee Rsearh Center, Uni- Et( (X)Z [ Y,)
vesity of Maryland, sad by USACCE under Contract DAJA4&- E((t, ) I Y) = 0
87-M-02% E(Z, I Y,)
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so that it is enough to compute {fp, t > 0} defined by Here are two examples of admissible sampling proce-
dures, to be considered throughout the paper.(p,,,) Et , (X,)Z, ! Ye).
Example 1. Define

In the particular case where the signal fXt, t > 01 is a

diffusion process with infinitesimal generator L. {Pt, t >
01 is the unique solution of the Zakai equation . ; Y-.+1 - Yt,= z. ds , (4)

dpt = L'pt dt + h'pt dYt (3) which is the mean value of the actual measurements (2)

on the time interval t, < a < t+,. In this example, Yr.+,
It is readily seen on this equation that pt depends on the is generated by the random variable ti. Note that, under
a priori law of {Xt, t > 0} represented by the partial dif- the reference probability measure Pt, {,, i > 0) are
ferential operator L, and on the observation sample-path mutually independent d-dimensional Gaussian random
{Yt, t > 01. However, equation (3) is not computable variables with zero mean and covariance matrix 6j1.
and should be approximated. The approach presented
here, is to rather approximate the original filtering prob- Example 2. Define
lem by a simpler problem, and to consider the resulting
equation for the conditional law in this new filtering prob- 1 f.

+
' 1 f , dT do

lem as an approximation to equation (3). In Section 5, T = a (t..)S-t..l
the rate of convergence for such approximations will be
provided, by direct numerical analysis of equation (3). ,, f i+' 1- s)dY- f ,+ d

The presentation adopted follows Korezlioglu-Maz- % 6i 1.* d 6d
ziotto [2]. There is indeed three successive steps in the which are two other different ways of computing some
global approximation procedure. In the first step, sam- mean value of the actual measurements (2) on the time
pling and data compression of the observation sample- interval t, t a < t,+l. In this example. ::+, is gen-
path {Yt, t > 01 is performed. Then, th,, ignal {Xt, t i - -

0,Lis approximated by some p' . constant process erated by the random variables t and . Note that
{Xt, t > 0}. In the last step, t t a priori law of the = t. and that, under the reference probability mea-
process {X, t > 0} is ap- uY .ed. Only the first two sure P1. {(C,) i > 01 are mutually independent 2d-
steps will be considered here. dimensional Gaussian random variables with zero mean

and covariance matrix 6jE, where

3 Sampling of the observation r II
sample-path = .

Throughout the paper, an infinite partition In particular, the characteristic function of satis-

0=fto<et <...<t<... X(ab) E
t (exp{a%'+b}'e)

of [0, +oc) is introduced, to be denoted by v, with time exp {1(Ja12 +a-b+ lb[2)6,}  (5)

increments 6i - t,+: - ti.
Sampling a- I1 data compression is the pre-processing The problem is now to estimate Xt, from Y,., i.e. to

procedure by which the new information contained in compute the conditional law of Xt. given Yt.. By the
the continuous measurements received in the time inter- Bayes formula
val t, < t < ti+I and represented by Y'.,, is summarized
into a finite number of random variables. This is formal- EtX) X) )Zt. lYe.)
ized in the following Et(Zt, I t.)

Definition 3.1 An admissible sampling procedure rel- so that it is enough to compute {pj, i ? 0) defined by
ative to the partition w is a family IV,:+, , > of )
a-algebras which satisfy, for all i > 0 (p,,0) = EI(O(X,)Z,. Y,.)

-' Y is generated by a finite number of The first step is provided by the following
random variables, Proposition 3.2 Introduce

(ic) Y',:+ , = , .v,
' :+ Elt(Z'* I -Vt.+, V

In addition, the following notations are used + !, I

-Cg ffi V 
y ' 
.... A-4

= 
Yr. " Then

i=1 (p,+i,,) = E1([U+0]Z,, I y , ,) (6)



PROOF. 4 Piecewise constant approxima-
tion of the signal process

= Et( b(Xt,+ )Zt, Z :+, I Y , )The purpose of this section is to investigate the effect

SEt(6(Xt.,,)Z,. of replacing the signal process {Xt, t > 0) by a piecewise
constant process jXt, t > 0} whose values on "pieces"

EIt:+, I -Yt.+, v Y,, v Yt., ) I 5i,+') are related in some way to the values taken by the orig-
inal signal process at some particular instants. This is

formalized in the following

= Et(Z, Et(b(Xi,+)--": , I Ft. V Y, V V,+,) 1yt*+') Definition 4.1 A process {fXt, t > O} is subordinate to

= Et([Ui+,O]Zt. I Yt.,) • 0 the process {Xt, t > 0} relatively to the partition w if,
for all i > 0

Going back to the examples introduced above, the ex- X, is 't.+, -measurable, t, < t < t+i.
pression for -:.+ will be derived, and it will be checked
whether or not the additional hypothesis that the signal The following example provide a particular class of

{Xt, t > 01 is a diffusion process can lead to computable subordinate process, to be used throughout the paper.

expressions.
Example. For all i > 0 are given

Example 1 (Continued). For the sampling procedure a partition {A i , 1 <_j k(i)} of the time interval
defined by j, it is proved in [2] that [tti~i) ,

= exp ,- 1Ih.i26(7 an increasing sequence

ti < 7 < ... < 7j < ... < Ti < t'+.

where Then the piecewise constant process {Xt, t > 0} defined

h, h(X.) ds. by
Xt = X , 

, if t EA,

However, replacing this expression into (6) does not pro- is subordinate to {X,, t > 0} relatively to the partition
vide a computable expression, even if the additional hy- 7r. There is a similar class of subordinate processes, where
pothesis that the signal {Xt, t > 0} is a diffusion process the time interval to be partitioned is rather (tI, t,+j .
is introduced.

The problem is to chose {Xt. t > 0) in such a way

Example 2 (Continued). For the sampling procedure that the conditional law of Xt, given Tt. is more simple

defined by it can be proved that to handle than the conditional law of Xt, given Tt.. and
is even computable in the particular case where the signal

= e •{Xt, t > 0) is a diffusion process.
ep [ + [h,], Introduce

-i(Ih1, 2 + [h]h, + Ih12))i -l]I  jjh~j26, (8) 2'4 = exp h* (.,)dY, - lh(X,)12 dT (9)
exp 1 [01 4 } 2exp {[h,]-C'- ,Ilh'126,1,.exp (Ll! '12

e 4h, - and Z, = Zt. Under the reference probability measure

Pt, the processes {X7, t > 0} and {Y, t > 0 are in-
where dependent, so that the stochastic integral in (9) is well

defined, although {Xg, t > 0} is not necessarily adapted.

= 2 + V( ) h(X.) ds, Therefore, it is possible for all T > 0 to define a new
6, t+ 1 -ti probability measure T equivalent on [0,T] to Pt with

Radon-Nikodym derivative ZT, so that under P

k( t" X-s dY=h(X)dt+dV7 t .I t I t i where {Vt. t _ 01 is a standard Wiener process, inde-

and the weight function U is defined for all 0 < 9 < 1 by pendent of {Xt, t > 01.
(O) A- 60 - 2. The problem is now to estimate t. fromYt., i.e. to

compute the conditional law of Xt. given y,,. By the
Here again, replacing this expression into (6) does not Bayes formula

provide a computable expression, even if the additional
hypothesis that the signal {X 2 , t > 01 is a diffusion pro- -(t(4 1,)[ r.Y--)
cess is introduced. = Et( Y, .)

I;
!i



so that it is enough to compute {y,, i > 0} defined by Then h, = h(Xt.+,) and ,,= ,.,) . Therefore

(Pi, E) ) E (Xt,7 I R.) - " ,+,O = E'(O(X,.,) *,(X,.,) I Y,. Vy,.,)

It follows from the proof of Proposition 3.2 that Under the additional hypothesis that the signal {Xt, t >
0} is a diffusion process with semi-group {Pt, t > 0}( )= Et((U,+, ]2,. I Y,.+) , (10) =

'Ui+l = t"6, [*iO](Xt,),
where, for all i > 0

and
""+, = 'Zt 11, VI@ =',+ E(tiO M0]t., I T,.+,)

, = (@,,P6.[* ,K]).
, I . .vY. ,).

Going back to the examples introduced above, some This results in the following recurrence

particular piecewise constant subordinate processes will

be considered, the corresponding expression for =t., will = (13)

be derived, and it will be checked whether or not the which gives another time discretization scheme for the
additional hypothesis that the signal {Xt, t > 0} is a Zaka equation (3).

diffusion process can lead to computable expressions. Remark 4.2 In the numerical scheme (12) (reap. (13))

the transition from p, to Pi+j reflects the following sit-
Example 1 (Continued). For the sampling procedure uation: A new measurement Ci is available, which is a

defined by ti, + has the same form than (7) where compression of the information provided by {zt. t, < t <
now t, 1 } according to (4). This measurement is interpreted

h i h( ,d . as a noisy nonlinear observation of Xt, (reap. Xt,,). and
6, it. is combined with the current estimate T, of Xt, to pro-

Two different piecewise constant subordinate processes duce an estimate + of Xt,,,.
will be considered.

[7a Define Example 2 (Continued). For the sampling procedure

= t. if ti <t <+2) defined by -) has the same form than (8)
where now

Then hi = h(Xt.) and = *,(Xt,) , where for all
I 6 Jt*t 8 -t

x E R- h' = wl ) t h+-X, s

'l i ( x ) ! e x p { h ' (x )_ - 1 1 h ( . ) 2 6 , } ( 1 1 ) h 1 ft .+ ' f i ) . -i

Therefore 6 . ti+1 - ,)
The following family, parametrized by 0 < a < . of

U '= (X ) E ( I .) • piecewise constant subordinate processes will be consid-

Under the additional hypothesis that the signal {Xt. t > ered

O} is a diffusion process with semi-group {Pt, t > 0} - Xt. if t E A'

U"+1 4= Xi(X.) [P 6.0](Xt) Xt',, if t E [t,t,+i)\A?

and where for all i > 0. A, denotes the following subset of

=P ) EI(*v [P6(Xt.)Zt, Ithe time interval [t,. t,+1 )

= (,,C[P6,0]) , t' + a6, t'+1 - 06,

so that { ,, i > 0} satisfies the following recurrence t, + 16, t'+1

+ = P;,[,,] , (12)
It is then possible to find a particular value ao for

which is a computable expression, and can be considered which
as a time discretization scheme for the Zakai equation h' = h(X, ) . h' = h(X,,)
(3). The rate of convergence of this approximation will T (be.~psieredin ectin 5Therefore (8) becomesbe o _sidered in Section 5.

lb Define -

il = X' . if t, < t < t,+,. .eyp {i1h(Xt,+,) - h(X,,)l 
2

6}



where for all x E R' Remark 5.1 Similar rate of convergence has already
(x) -1been obtained for approximation of nonlinear filtering

expr ,h(x) -. h(z) 26i ? , problems, in Picard [6] and Newton [4]. The proof in [6]

uses only probabilistic arguments and does not consider

x) exp (h()C - 1h()126,} , the Zakai equation, but rather the underlying nonlinearfiltering problem. In [4], the Zakai equation is consid-
and ered for pure-jump Markov processes rather than diffu-

S ) E ) X+ sion processes, and the approximation procedure relies
on the stochastic Taylor formula of Wagner-Platen (7,8].

•xp {#lh(X,,+,) - h(X.,)126,)1 IF, v +) Define, for all E R"

Under the additional hypothesis that the signal Xt , t > ( - Y.) - (t -

01 is a diffusion process with semi-group IPt, t01 *(z) exph(z)( - -h(z)I
2 ( ).

= ' (Xt,) Q6.[*](Xr.) , Note that two operators are involved in (16)

athe unbounded operator L" which generates the ad-
and joint semi-group {Pt*, t > 0} ,

= E1(4'(X,.) Qd.[*P](X.)YZ,. I Y,.+,) the multiplication operator B which generates the

- I, Qs.['14]) . two-parameter stochastic semi-group {f*, 0 < 8 <
t} ,

so that { ,. i > 01 satisfies the following recurrence so that the time discretization scheme (15) is a Trotter-

P,+='---- ('iQ /,] . (14) like product formula for the Zakai equation (16). See
Bensoussan-Glowinski-Rascanu [1] for a related work in

where the family of operators {Q6, 6 > 01 is defined by this direction.

Qbo! -2 Et(X,+ 6 ) exp {-LIh(Xt+6 ) - h(Xt)12
6} y F,) • The main assumption of this section is that the signal

Note that 4'1(z) 10 (x) = 41i(x) , and that the opera- {Xt. t > 0) is a diffusion process

tor Q6. can be seen as a perturbation of the semi-group dXt = b(Xt) dt + o(Xt) dWt , Xo - po(x) dr
P6, However. it is not obvious that (14) is a computable
expression and can be considered as a time discretization
of the Zakai equation (3). The relevant analysis and the dY = h(Xt)dt + dVt.
rate of convergence of this approximation will be consid-
ered elsewhere. Define a a and a = .- The coefficients sat-

5 A product formula and its rate isfy the following hypotheses

(i) po is a density on R- ,

of convergence (ii) a is a continuous and bounded function on

The purpose of this section is to study, from the point Fp. and a is a uniformly elliptic m x m
of view of numerical analysis. the following recurrence matrix, i.e. a(x) > al ,

(iii) b and 1 are bounded and measurable func-
T,,+= PZ.[ ] (15) tions from R" to R" ,

derived in the previous section, as a time discretization (iv) h is a measurable and bounded function

scheme for the Zakai equation from R- to R
d 

.

The infinitesimal generator of the semi-group JP, t >
dp = L p dt + hp dY . (16) 0} is defined by

Recall that Y a 2 9
(pt., 0) =Et(O(Xt,)Zt, I Ye.) 2 z.V axc) F- .o ..." -z

( = E1(O(Xt,)t, I R, , and satisfies, under the hypotheses, the following coer-

so that Pi should be "close" to pt,. Indeed it will be civity property: for all u E H'(R-)

proved below that 2(Lu,u) + pilull2 
f: A~u2 , (17)

{Etip,- P., 122 < C6 where I" II denotes the norm in the Sobolev space
HI (R-). Existence and uniqueness of a solution to equa-

where 6 is the mesh of the partition ir up to time t,, and tion (16) is proved in Pardoux [5] and Krylov-Rozovskii

. I denotes the norm in the Sobolev space L2(Rm). [3].



Theorem 5.2 Suppose that, in addition to (i)-(iv) Therefore

(v) a,b and 3 have bounded first derivative, 1#t1
2 
< Cit - tki 2 IP1kI'I12

(vi) h has bounded derivatives up to order 2 .

Then, ifpo E H1 (R-) EtII3,Is < Cjt _ tk[
2 EtII'kkI2

max {Et-p h 2kI}1/2 < C6 (18) Cjt - tkJ
2 exp {C(t - tk)} ElI1k12

which proves (19).

PRoOF. Under the hypotheses, it follows from Theo- Remark 5.3 The same rate of convergence holds for the
rem 2.1 of [5] that p E L

2
(fZ; C(10,T] ; H'(Rn))). Also. approximation scheme (13).

for all i > 0 ,P E L
2
(n; HI(R- )) and in addition

The next step is to approximate the adjoint semi-
max EtlipkI < C. group {P., t > 0} itself, i.e. to approximate the asso-

ciated Fokker-Planck equation. For instance, using an

Fnso that = v, implicit Euler scheme results in the following approxi-For t > tj. define v= Pt[q ] , stht = mation scheme
and k+ I = vt,+ . Differentiating with resa -t to t gives

dv, = L'vg dt+ {P,_,,[B1 ,jk]}" dY

= 'LVv dt + [Bpt]" dY + f dY, References
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TIME-DISCRETIZATION OF THE ZAKAI
EQUATION FOR DIFFUSION PROCESSES

OBSERVED IN CORRELATED NOISE*
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A time discretization scheme is provided for the Zakai ecsation, a stochastic PDE which gives the
conditional density of a diffusion process observed in white-noise. The case where the observation noise
and the state noise are correlated, is considered. The numerical scheme is based on a Trotter-like
product formula, whi,'h exhibits prediction and correction- steps, and for which an error estimate of
order 6 is proved, where 6 is the time discretization step. The correction step is associated with a
degenerate second-order stochastic PDE, for which a representation result in terms of stochastic
characteristics has been proved by Krylov-Rozovskii [13] and Kunita [15, 17]. A discretization scheme
is then provided to approximate these stochastic characteristics. Under the additional assumption that
the correlation coefficient is constant, an error estimate of order /b- is proved for the overall numerical
scheme. This has been proved to be the best possible error estimate by Elliott-Glowinski [7].

KEY WORDS: Diffusion processes, correlated noises, nonlinear filtering, Zakai equation, stochastic
PDE, stochastic characteristics, time discretization.

1. INTRODUCTION

The purpose of this paper is to present a computable time discretization scheme for
the Zakai equation of nonlinear filtering with correlated noises, and to provide an
estimate of the rate of convergence.

In the case of independent noises, the problem has been studied by Kushner
[18], Newton [21], Korezlioglu-Mazziotto [11], Bennaton [1], DiMasi-Pratelli-
Runggaldier [6], Picard [22], Bensoussan-Glowinski-Rascanu [2] and Le Gland
[20]. Some of these authors have actually considered the associated Zakai
equation. Time discretization schemes have been provided with a rate of conver-
gence of order 6, where 6 is the time discretization step.

In the case of correlated noises, the problem has been studied by Elliott-
Glowinski [7]. The best approximation of the continuous filter based on the

*Research partially supported by USACCE under Contract DAJA45-90-C-0008.
tAlso: INRIA Lorraine, CESCOM, Technopole de Metz 2000, 4 rue Marconi, F-57070 Metz, France.
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234 P. FLORCHINGER AND F. LE GLAND

values of the observation process at a regular partition (with mesh b) has been
considered, and it has been proved that the rate of convergence is of order /
However, no algorithm is provided to actually compute this approximation.

The paper is organized as follows. In Section 2, the nonlinear filtering problem
is presented. Some results on the Zakai equation, and on a related degenerate
second-order stochastic PDE, are recalled in Section 3. A Trotter-like product
formula is then considered, with an error estimate of order 6. However, this
numerical scheme is not computable. In Section 4, a representation result in terms
of stochastic characteristics is presented for the degenerate second-order stochastic
PDE. This part follows mainly the work of Krylov-Rozovskii [13]--see also
Kunita [15,17]. A time discretization scheme is presented in Section 5, based on
an approximation of the stochastic characteristics. Under the additional assump-
tion that the correlation coefficient is constant, an error estimate of order f/6 can
be proved. In addition, this numerical scheme is actually computable, as far as time
discretization is concerned, i.e. up to space discretization.

2. THE FILTERING PROBLEM

Consider the following stochastic differential system, defined on the probability
space (fl , P)

dX, = b(X,) dt + a(X,) dW + p(X,) d V,

dY,=h(X,)dt+dV

where the non observed component {Xt>0 takes values in R', and the
observation { Y, t > 0} takes values in Rd. { 2:, t 0 0} and { V, t > 0} are independent
Wiener processes of appropriate dimension, with covariance matrix I (identity) and
r respectively. For the clarity of exposition, it is assumed throughout the paper
that r=I. In addition, the random variable Xo is independent of the Wiener
processes, with probability distribution po(x)dx.

Throughout the paper, it is assumed that the coefficients, b, a, p and h are
globally Lipschitz continuous functions defined on R', so that the stochastic
differential system has a unique strong solution. The following definitions are used:
aAaa* and c pp*. In particular, it is not assumed that either a or c is uniformly
elliptic.

With the diffusion process {X,,t O) are associated the two partial differential
operators

L A I [ a ' , J + c " S + a a --

X + Ob "

LOA a 'j82 + b'
21j1 ~ xx .1 ax"
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Another family of partial differential operators to be considered is

BtAh +i p x6, 1-k:d.

Introducing

C'AXp {Jh*(Xj dY - j h(Xj 2d Z1 & 4,

it is standard that, for all T >0 the original probability measure P is equivalent on
[0, TJ to the reference probability measure Pt with Radon-Nikodym derivative Z,
so that under Pt

dX, = b(X,) dt + a(X,) dWI, + p(X,) [d Y,- h(X,) dt], (2.1)

where { W, t > 01 and { Y,,t :01 are independent Wiener processes, with covariance
matrix I (identity), and the random variable X0 is independent of the Wiener
processes, with probability distribution po(x)dx.

The Bayes formula gives

E(f(X,) I Y,) = Et(f(X)Z, 1,)

Et(Z, 1 -3(,)

and in addition

Et(f(X,) Z, 1,) = f (x)p,(x) dx,

where the unnormalized conditional density {p,,t__0 satisfies the Zakai equation
[25]

d

dp,=L*pdt+ I B p, dY,. (2.2)
k I

Consider then the following decomposition of the Zakai equation (2.2)

dp,=L*pdt+A*p,dt+ Y B*p, dY',
k-1

where

AAL-Lo= I c'ij 8a2

2 A axj"
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On one hand, the partial differential operator Lo generates a strongly continuous
semigroup {P,,t O}. On the other hand, it is possible to associate a stochastic
semigroup {Q,,05s 5t} with the following degenerate second-order stochastic
PDE

dp, fA*p, dt+ .Btp, dY,, (2.3)

which is studied below. Therefore, it is worth studying the following Trotter-like
product formulas for approximating the original Zakai equation (2.2)

(2.4)

where j t+er-t and =to<tuc .. <t<-..
The main interest of such product formulas is that the original equation has been
split into a second-order deterministic PDE (prediction step), and a degenerate
second-order stochastic PDE (correction step). In the case of independent noises,

this stochastic PDE reduces to a zero-order equation, for which there exists a
straightforward explicit solution. In the case of correlated noises, a representation
result is available by the method of stochastic characteristics (i.e. involving the
stochastic flow of diffeomorphism associated with a SDE driven by the obser-
vation process), see Krylov-Rozovskii [13] and Section 4 below.

Remark 2.1 A similar prediction-correction numerical scheme was obtained by
Kushner [18] in the case of independent noises.

Remark 2.2 Written in Stratonovict, form, equation (2.3) is a first-order
stochastic PDE. For such an equation, one can use the representation result of
Kunita [15, 17], and translate the stochastic characteristics equations from Strato-
novich form back to It6 form, to recover the representation result of [13].

As a consequence of the above discussion, there will be two steps in designing

the approximation to the original Zakai equation (2.2)

* first use a Trotter-like product formula,

* then approximate the solution of the degenerate second-order stochastic PDE,
by approximating the stochastic flow of diffeomorphisms involved in the
stochastic characteristics method of [13].

It will be proved that the first step can be achieved with a rate of convergence of
order 6, whereas the rate of convergence for the second step (and a fortiori for the
global approximation procedure) is of order ./6 only, where 6-A maxit 0 6j.

3. TROTTER-LIKE PRODUCT FORMULA

For all n _ 0, let H" denote the space of real-valued Lebesgue-measurable functions
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on Ro whose generalized derivatives up to order n are square-integrable, with
norm

IluJl. E JIMo(X)12 dX<00.

In addition, the following shorthand notations will be used throughout the paper.
Ikl--II'11_ and 1 II-l[.

The beginning of this section is devoted to recall existence, uniqueness and
regularity results for the Zakai equation

d
dp,=fiL*p, dt + Bkp, dY,, (3.1)

kffi

and the degenerate second-order stochastic PDE

j

dp,--A*pdt+ Y BtpgdY,, (3.2)
k=1

with semigroup {Q;,Os5t}.
Although no coercivity hypothesis is satisfied, the following result is proved in

Krylov-Rozovskii [13].

THEOREM 3.1 Let n 1 be fixed. Assume that

" a and c have bounded derivatives up to order max (n, 2),
" b, p and h have bounded derivatives up to order n,
" the initial condition satisfies Poc H".

Then both Eqs. (3.1) and (3.2) have a unique solution pe M2 (O, T; H"). In addition

p e L2(a. CQ([0, T]; Hn)),

and the following estimate holds

Ef [sup 1ip11. QlIpoIjI2eCT.

Similarly, for the Fokker-Planck equation

p; = Lap,, (3.3)

and the following deterministic PDE associated with (3.2)

p, = A'p,, (3.4)



238 P. FLORCHINGER AND F. LE GLAND

with semigroup {Pr,ta0} and {T',tO} respectively, it holds

THEOREM 3.2 Let n ! 1 be fixed. Assume that

* a and c have bounded derivatives up to order max (n, 2),

* b has bounded derivatives up to order n,

* the initial condition satisfies Po e H".

Then both Eqs. (3.3) and (3.4) have a unique solution p e L2(0, T; H). In addition

p e C.([O, T]; H'),

and the following estimate holds

sup 1p,[f, 2 < I[poll.2 eCT.

Remark 3.3 In the case where the coefficients a and c are uniformly elliptic, a
slightly stronger theorem holds, see Krylov-Rozovskii [12] and Pardoux (23].

l Error Estimate

The purpose here is to study one of the Trotter-like product formulas (2.4).

THEOREM 3.4 Consider the following approximation scheme

(3.5)

Assume that

* a c, b, p, and h have bounded derivatives up to order 3,

* the initial condition satisfies Po e H3 .

Then P approximates the solution p,, of the original Zakai equation (3.1) with a rate
of convergence of order 6. Indeed

Proof The idea is to get an equation for v, A P*,Q4,' with 0 smooth enough,
that is similar to the original Zakai equation for p, except for some perturbation
terms which have to be estimated. This gives an estimate of the one-step error, and
the global estimate is obtained using the Gronwall lemma.

Differentiating with respect to t

dv,=Lov, dt + PL, A*Q ,'dt+ B:Q'41dY
L h-i J
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=Lov, dt+Av dt+ B, B~v dY
k-I

d

+ [P*_A* - A*P,*_]Q ,'dt + [P*_,B* - B*Pfj_ dYk,

k-I

if i

L*v, dt+ .Bf v, dYk+ fhdt+ e dY,',
Ik- I 1

where the perturbation terms are defined by

f,[P*_,A*-A*P,*_,]Qf and eAg • • -B,•P:] 4t

respectively. The difference ,4 v,-p, satisfies

d d

dcL~edt BtedYk+fdt+ Y g 1Y.
ks1 k=1

Using estimates of [13]

E 1 ,2  E,,12 + f dT [f[ C , ec"- .
Ete, Ete,+CEtf I12 dT + CEt X 112

S k= iS

Assume that the following estimates hold

Ef = __C( -s)'Etll[ 3ec(' - '),  (3.6)

EtII, II= < C(T_-) s)EtI0112 e ''-s).  (3.7)

Then the Gronwall lemma would yield

Et1 2 -5 [EtlE,12 + C(t - s)3EtIIII2] ec" -s),

provided 0 e L 2(fl H-). Now, it follows from the assumptions and from Theorem
3.1, that PeL2(flH3 ) for all i, so that setting s=ti, t=t 1 and 0= p

EtP, -I ,, .'I1 2 [Et[p5 - p,,1
2 + C(t,+ - t,)'EtIll ,[ 3 eC(Y -,

and the result follows from the discrete Gronwall lemma. The end of the proof is
devoted to proving estimates (3.6) and (3.7).

0 Estimate (3.6)

The following perturbation result

-A



240 P. FLORCHINGER AND F. LE GLAND

[P,*A - AP;,]u = P ,. A - A* J4]P ,*.,u dr',

holds for u smooth enough. It follows from the assumptions, that the partial
differential operator D A [LA*-A*L ] is bounded from H3 to H°. In addition, it
follows from Theorem 3.2 that {P*,t_)0} is a strongly continuous semigroup in
both H' and H3. Therefore

T

Ifr, -_ S P P,D? -,Q,, dT' QC - s)1100113 e"-"1.

Then

Etf,12 6 C( -s)EtIQf2 ec(? <= C(r _S) 2 Et:10 112 ecI - S.

C Estimate (3.7)

Similarly, the following perturbation result

[P, _,- BP,-s] u - P,"[LB - BLo]P,-,ud,

holds for u smooth enough. It follows from the assumptions, that the partial
differential operator Dk [L B*-B:L ] is bounded from H3 to H'. In addition, it
follows from Theorem 3.2 that {P*,t2_0} is a strongly continuous semigroup in
both H' and H3 . Therefore

T

Then

EtIg,11'2 iC( - s)2EtIIQ~sIIl ec C(t -<CTS)2 EtI10112 ecIT -S). E

Remark 3.5 In the case where the coefficient a is uniformly elliptic, the same
error estimate can be proved under weaker regularity assumptions on the
coefficients and the initial condition, see Florchinger-LeGland [8].

Remark 3.6 It is possible to approximate the stochastic differential equation
(2.1), in such a way that the approximation p, given by (2.4), is actually the
conditional density of the approximate process at time ts, given the observations
Y,. This problem will be addressed elsewhere.

The approximation scheme (3.5) is not yet computable. First, the Fokker-Planck
equation (3.3) with semigroup {P*, t2- 0}, has to be approximated: this is a rather
standard problem, for which one can use e.g. the backward Euler scheme, or some
other approximation scheme. On the other hand, some representation results are
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presented in the next section, which can be used for the approximation of the
degenerate second-order stochastic PDE (3.2), with semigroup {Q, 0__s_ t}.

4. STOCHASTIC CHARACTERISTICS

Parallel to the decomposition of the stochastic PDE (2.2), there is a similar
decomposition for the stochastic differential equation (2.1). With the first
component

dX, = b(X,) dt + a(X,) dW,

is associated the partial differential operator Lo and the Fokker-Planck equation
(3.3). It is proved below that the second component

dX, = p(X,) [dY, - h(X,) dt], (4.1)

is associated with the degenerate second-order stochastic PDE (3.2) and the
corresponding deterministic PDE (3.4).

The beginning of this section is devoted to recall results concerning the
stochastic flow of diffeomorphisms associated with the stochastic differential
equation (4.1).

THEOREM 4.1 Let ,(') be the stochastic flow associated with the forward stochas-
tic differential equation

d,= p()[dY, - h( ,) dt]. (4.2)

Assume that the coefficients h and p have bounded derivatives up to order (n + 1).
Then ,J() is a C"-diffeomorphism in R'.

Under the assumption that the coefficient p has bounded derivatives up to order 2,
the inverse map 3() is given explicitly as the (backward) stochastic flow 1,J-)
associated with the backward stochastic differential equation

dq, = p(?l,)@ [dY - h(,) dt] - po(?1,) dt, (4.3)

with
d

k=1 j-1 OXJ

The regularity of ,(') was first proved by Blagoveschenskii-Freidlin [3], whereas
the rest of the theorem is proved in Kunita [16].

PRoPosITIoN 4.2 The Jacobian J,.(') (i.e. the determinant of the Jacobian matrix)
of the diffeomorphism , satisfies
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J,,(x) A exp {ja*(C.,(x))[dY - h(C,,(x)) dr]

-, ho( ,.,(x)) d)) drj (4.4)

with

a Y. -=divph, 1:5k-5d

_.I , Y X Y -  - and hoAY Y -p

Proof Transform first the stochastic differential equation (4.2) into Stratono-
vich form

d, = [dY1- h( ,) dt] -Po(,) dt.

Similarly to the Liouville formula for ordinary differential equations, see Hartman
[10], it holds

d log J.,,(x) [ *(x)) a [d Y - h( 3,. (x)) dt.' - ho( 3 5.(x)) dt -4 div Po( 3. (x)) dt.

Transforming back to It6 form

d log J,.,(x) = a*(C. ,(x)) [dY - h( ,.(x)) dt] - ho( ,. (x)) dt

-div Po(C,.,(x)) dt + fao( ,.,(x)) dt.

Now it holds

' a (apLk\divpo=X cI,

4 d a I P
j ',
i

I i xi k- I i Ia Xj

which finishes the proof. 0

Remark 4.3 Note that [J,. ,.())]- is actually the Jacobian of the inverse
diffeomorphism .

Define



ZAKAI EQUATION 243

cip(x) Aexp ih*((..(x)) d))2d. (4.5)

and

SS-, f ' a .((x)) [dY - h(,. ,(x)) dr] + J, ho( ,.,(x)) dr + f &( A, ,x)) d4}.

Introduce the following definition

Qsq(x) Aq(r,(x))O, 1 ,(x)), (4.6)

or equivalently

Q~sq( .,x)) = q(x)0EJ,(x).

where the same notation has been used as in the previous section. This will be
justified by the Theorem 4.8 to be proved below.

Remark 4.4 Under the additional assumption that the coefficient p has
bounded derivatives up to order 2, the Lemma 6.2 of [16, Chapter 2] gives the
following explicit expressions in terms of backward It6 stochastic integrals

-. (n.x)) = exp h*(ih.,(x))EdY - -fh(h(x))12 dT -f ho(h,(x))dz ,

J..AtO,.x))-exp {J i(P7,.,(x))ED[dY-h(1,Ax)) dr]

l t

-, ho(,. (x)) dT - f(i, ( 1,,(x)) dT - i a(n,.,(x)) dT
S S S

where the coefficients ho and ao have already been defined as

J m A d Waz d am p
hop'and a o*

Therefore

_$1
~~ I
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r1,.(x) .,.Xe,.J(x)) =exp {Jh*(Q.(x))@dY,- - h~q, 4X))1
2 dr

S 2.

I g t "

- *(qx))E [dY, - h(q,.(x)) dr] + 5 i(o,.jx)) dr + o(q,.x)) d. (4.7)
S 8 S

Remark 4.5 If p=O, then , (x)=x so that

Qsq(x) = q(x) exp {h*(x)( Y - Y,) - 1h(x) 2(t -S),

which is actually the explicit solution of the equation

4
dq, = Y hkq, d Yk,

k=1

with initial condition q at time s. In this case, (2.4) reduces to the discretization
schemes considered in [2, 18,20].

First, the following stability result holds

PROPOSrON 4.6 Let n>__O be fixed. Assume that

* c, p and h have bounded derivatives up to order (n+ 1),
e the initial condition satisfies q e HR.

Then Qrq is a square integrable random variable with values in HR. In addition, the
following estimate holds

{Etj lQsql I.' I ---< 1. e°'f - S).

Proof It is enough to prove the result for n = 0.

Using the change of variable x = n,.(y) i.e. y = ,.,(x)

Et'Qsql2 = Et S [Iq(p7.,(Y))[,.t( ,.,(Y))] 2 dy = I Iq(x)[ 2E {O,,(x)} dx,

and the result follows from the estimate

sup E{E).t(x)) <ec -s). El

Another property of the two-parameter stochastic semigroup {Qs,0 sst} is

provided by the following

PRoposmoN 4.7 Let {T, t -a 0} be the semigroup generated by

A- c 'J

A = Ix c x.0
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Then
EtQ,= T:*.

Proof Using the same change of variable as in the proof of Propositin- 1.5, it
holds

(Et(Qq),f) = Et f q(P7,(y))9,.,,jy))f(y) dy= J q(x)EUf( ,.Ax))] dx,

for any test-function f Now, under the original probability measure P

d = p( t) dV,

where { V, t 2 0) is a Wiener process with covariance matrix I. Therefore

(El"(Qq),f) = (q, T -_J) = (Tf*-.q,f). M]

The following representation result of the solution of Eq. (3.2) in terms of the
stochastic characteristics i.,'), is the stochastic counterpart of the usual method of
characteristics for linear first-order PDE. It has been proved by Krylov-Rozovskii
[13] and Kunita [15, 17].

THEOREM 4.8 Let {Q[,s:=t} be defined by (4.6). Then, the unique solution of
equation (3.2) satisfies

q,(x) = Qsq,(x). (4.8)

Proof The proof given below is essentially that of [13]. Introduce

where {4,, s__ Tr <t} is deterministic.

It follows from the It6 formula that qAEt(.q,) satisfies

d

',=A*, + Y B4,0 , (4.9)
k=1

with the initial condition q, = Et(q,). On the other hand, define

,(x)A E' f( ,,Ax)) exp 44, h( ,.,.(x)) dt'

where undei the probability PO

ii:

I
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da, = p( j[d V? + 4,, dr],

and { VO, t 0) is a Wiener process with covariance matrix I. By the Feynman-
Kac formula, {(i,,S <t} satisfies a PDE which is dual to (4.9), so that
(4,f) =(4,, Q). Consider now the right-hand side in the representation result (4.8).
Then

C~ ~q(x)= .(x)~?(1t ,x) ep {J b(x,()) d}[Js /~q 1{))]-1

with

.,(x A expj [h(¢.,(x)) + ,j "d,- 'jh({s,,Jx))+ ,1dT .

Define next iU, Et(C Qlqs). The Fubini theorem, the change of variable x = r,,,(y)
and the Lemma 6.2 of [16, Chapter 2] give

(, f) = E S f (y)q,(,I,.,(y)) ,(h.,(Y)) exp { *h(,. ,(y)) d} [JX,(y.(Y))] -' dy

=Et ff( 1  (x))q(x)E- (x) exp {5 i h( ,(x)) dr} dx

= 5 4l(x)Et [f (.,(x))-O,(x) exp {J * h( .,(x)) dT}] dx

= j4,(x)E [f(3 ,.(x)) exp { 0*h( ,.(x)) dT}] dx =(4,, v,).

It follows that (4, f)= (U, f) for arbitrary test-function f and arbitrary (0,, S T:5
t}, which finishes the proof. F

5. APPROXIMATION OF THE STOCHASTIC CHARACTERISTICS

It has been proved in Section 4 that the stochastic semigroup {QS, 0._s5t}
associated with the degenerate second-order stochastic PDE (3.2) satisfies

Q4(x) = 4(n,.jx))r,.(x), (5.1)

where 1,.,() is the inverse of the stochastic flow of diffeomorphisms {,.()
associated with the stochastic differential equation (4.2), and r,.(x) has been
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defined in (4.7). The purpose of this section is to investigate approximations of
(5.1).

Considering that q,j) is also the stochastic flow of diffeomorphisms associated
with the backward stochastic differential equation (4.3), it is natural to consider
the following approximation

(x) a_ ¢(q,.x)).(x), (5.2)

where
,,x) A- x - p,(x) [ Y, - , - h(x)(t - s)] + po(X)(t - s),

and

rj,,(x) A exp {h*(x)( Y, - Y) - jh(x)I2 (t - s) - a*(x)[ Y, - Y- h(x)(t - s)]

+ (x)(t -s) + ,o(x)(t -s)},

are computable approximations of i,.+Jx) and F,.8(x) respectively, both depending
only on the increments (Y,- Y,).

Remark 5.1 One possible approach would be to approximate 1,r*(. ) by the
stochastic flow of diffeomorphisms associated with the ordinary differential
equation obtained from (4.3) by replacing the observation sample-path {Y,, 0< t <
T} with some regular approximation, such as the Euler stepwise approximation or
the polygonal interpolation. The numerical analysis of such an approximation
should not be very difficult. However, the resulting approximation would not be
explicitly computable.

The remainder of this section is devoted to studying the rate of convergence of
this approximation. First, a stability result similar to Proposition 4.6 is needed.

CONDrnON A Let n > 0 be fixed. Assume that the initial condition satisfies q e H".
Then Q-q is a square integrable random variable with values in H". In addition,

the following estimate holds

{EtjIQ'qjj 1/2 _ IjqIL. ec,-,.

Remark 5.2 Because q.,) is not a diffeomorphism, this stability result can not
be proved in the same way as in the proof of Proposition 4.6. The following
proposition, which is proved in the Appendix, shows that Condition (A) holds in
the simple case where the correlation coefficient p is constant. Whether this
remains true in the general case-or how to modify the approximation scheme in
such a way that Condition (A) holds without any additional assumption on the
correlation coefficient-is still an open probkm (however, see Remark A.1 below).

PR3PosMoN 5.3 Let n :O be fixed. Assume that

" p is constant,

" h has bounded derivatives up to order n.
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Then Condition (A) holds.

Remark 5.4 The approximations ,(x) and r,,(x) are based on the explicit
expressions for ihJx) and r,5(x), given in (4.3) and (4.7) respectively. This explains
why the regularity assumptions on the coefficient h are different in Proposition 4.6
and Proposition 5.3.

Remark 5.5 In the case where the correlation coefficient p is constant, the
approximations of j.,(x) and rj(x) take the simple form

q,. (x)A x x- p [ Y, - Y.,- h(x)(t - s)],

and

r, (x) A exp {h*(x)( Y - Y) - j Ih(x)I 2(t S)),

respectively.

Next, the following proposition provides an error estimate for commuting the
operator Q, and spatial derivatives.

PRoposMoN 5.6 Let n >0 and a a multi-index, be fixed. Assume that

" p has bounded derivatives up to order (n + jai + 2),
" h has bounded derivatives up to order (n + Ila),
" the initial condition satisfies q c - +H

Then, under Condition (A)

{EtlQlDq - DOQqll.1 C t - sjqjj+ ,.,.

Here again, the proof of this proposition is given in the Appendix.

El Overall Error Estimate

The main result of the paper is provided by the following

THEoREM 5.7 Consider the following approximation scheme

pi+ I nP. A.1 , ,

Assume that

" a and c have bounded derivatives up to order 4,
" b and p have bounded derivatives up to order 3,
" h has bounded derivatives up to order 2,

" the initial condition satisfies Po e H2 .

Then, under Condition (A), Pi approximates the solution p, of the original equation
(3.1) with a rate of convergence of order 1. Indeed
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EtfP,-p,,I2}"' - C%/6llpoll1.

Proof In view of Theorem 3.4, it is enough to prove that

{Etj,- pj 2}112 =< c161Ipo11.

Similarly to the proof of Theorem 3.4, the idea is to get an equation for ) with
0 smooth enough, that is similar to the original Eq. (3.2) for QYO, except for the
initial condition and for some perturbation terms which have to be estimated. This
gives an estimate of the one-step error, and the global estimate is obtained using
the Gronwall lemma. Throughout the proof, the summation convention over
repeated indices i, j, is used.

Differentiating both sides of (5.2) with respect to t

d )(x)=BX (I7,.,(x)) p(x)[dY, -hk(x) dt] + po(x) dt] r.(x)

1 a20 d+ - q ())x o(x-~)dO ,x
So i eTxj " = 1

dI
+0(,,(x)) Y h,(x)dY,- Ih(x)12 dt- - h,(x)[drk-h(x)dt]

1k=1 2k=1

+ d(x) dt + ao(x) dt + I[ h(x)- _a(x)12 dt] r,.,(x)

I 52 2

+ [i(x) + %o(X) + 1a(X) j(l,(.x))r,. (X) dr

dd

+ 7. hi(x)-;(x)](,.x))r,.x) dY;

jt k.I

2x I

ll1
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d a6
- , p(x)T-(q,5 (x))r,.(x)dY,.

X1

Now, it can be checked that

I at2 1a2U and po+ d c

Therefore, it holds

d~4x) c'(X) aO(qi"Jx))

+ac~ 60 1 a2C"Q
+ W (,)) + (x)4KIX) r,,,x)dt

a 8 ax ax, a x

+ ~ hk(xyO~,.x))- p(x)q.,(x)- (x)(1x)) Y Jxd~

k= 
i

+1__ 1 F Q'Ox)p8x)4,~x _ ()Q5.x)d 1
Fa~ ~ _ aS1j aXjL'a,.x 2Jd

+ 
d

_ k-I k1Y
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where the perturbation terms are defined by

-_a___46 __ 02 a 10
2 ~Lh ea xj axajOXJX atx, ax1

and

- A [0. 0-

respectively. Using estimates of [13]

Etl:eu_2<[Etll 2+CEtf 12ldr+CEt zji i112 d-] ect-s).

Moreover, it follows from Proposition 5.6 that

Etlfl2 < C( -s)Etll~ll2 ec")-',

Etlk jj II < C(T -,)Etll ll 212 C<t- j,

and therefore the Gronwall lemma yields

Et ,z12 < [EtII 2 + C(t- s)2EtIli!l] ec'( - ),

provided O E H2. Now, it follows from the assumptions and in particular Condition
(A), that Pi L2(1.;H 2) for all i, so that setting s=t, t=ti+1 , 0b= P and = pi

,,- QI,,I< [EtI p,-Ai2 + C(t,+, - )2Etlill] ec'' -

Next
Etl ,+,- pi+,12 = EtlP6,[Q:," ,- Q,,.,'p,]I

_ [Et_,-A, 2 + C(t,+, - t) 2EtlpIl] efC-1 I-"),

and the result follows from the discrete Gronwall lemma. 0

A further step in the time-discretization would consist in approximating the
Fokker-Planck semigroup {P,*,t a_0}, using some classical approximation scheme.
For instance, using the backward Euler scheme would result in the following
global approximation scheme

with the same error estimate.

_ l l l m 1i m I
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[] Particle Approximation

Another possible approach to approximate the degenerate second-order stochastic
PDE (3.2)-based also on the representation (5.1) in terms of stochastic character-
istics-would be to use particle methods, adapting the results presented in Raviart
[24] for deterministic first-order PDE. The basic idea is to solve exactly Eq. (3.2)
for an approximation of the initial condition, rather than approximate the
stochastic characteristics as was done before.

Suppose that, at time t, an approximation of the conditional probability
distribution q(x)dx is available, in terms of a convex linear combination of Dirac
masses sitting at some particle locations {(x, k e K} with corresponding weights
{a,kEK} i.e.

q(x) dx~ - Ya6(x - x). (5.3)

Solving exactly Eq. (3.2) in weak sense, with the approximation (5.3) as initial
condition, gives the following approximation

Q','.,q(x)dx~ Y a'.6 x+ ,, )

for the solution at time ti+. The new particle locations {x +,,kceK} and the

corresponding weights {a +1 , k e K} are computed according to
I 1 ,,,.,( ) and a+-=aj--,.,.(x ),

where ,() is the diffeomorphism associated with Eq. (4.2), and - has been
defined in (4.5).

The error estimate associated with this particle approximation will be studied
elsewhere.

6. CONCLUSION

A time-discretization scheme of the Zakai equation for diffusion processes
observed in correlated noise has been proposed, based on the stochastic character-
istics introduced in [13, 15, 17]. Under the additional assumption that the correla-
tion coefficient is constant, it has been shown that the rate of convergence of this
approximation is of order ,i6, where 6 is the time discretization step.

The same rate of convergence has been obtained in Elliott-Glowinski [7] for a
different approximation

* on one hand, the approximation considered in [7] has a probabilistic
interpretation, which is not the case so far for the time discretization scheme
presented here (however, see Remark 3.6 above),



I
ZAKAI EQUATION 253

e on the other hand, the latter is actually computable, whereas no numerical
algorithm is provide to compute the approximation considered in [7].

Another point of interest would be to study some particle approximation for the
degenerate second-order stochastic PDE, adapting the results presented in Raviart
[24] for deterministic first-order PDE.

As was pointed out to the authors by Harold Kushner and the anonymous
referee, one would have to discretize the space variable and to bound the state
space, in order to get a completely computable numerical scheme. This is a
different problem, for which several approaches have already been used: finite
difference approximation, by Kushner [18] and DiMasi-Runggaldier [5], finite
element method, by Bennaton [1] and Germani-Piccioni [9], with error estimate.
The reference [9] also provides error estimate for bounding the state space, using
weighted Sobolev spaces introduced by Krylov-Rozovskii [14]. Therefore, the time
discretization scheme presented in the paper should be combined with such space
discretization techniques, in order to be completely computable. To some extent,
the choice of the space discretization scheme is dependent on the application: for
instance, the method of characteristics (also called particle approximation in [24])
is well-adapted to first-order PDE arising in the filtering of noise-free processes,
and has been recently used in target tracking applications, see Campillo-Le Gland
[4] and Lasdas-Davis [19].
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APPENDIX

Proof of Stability and Commutation Estimates

The purpose of this appendix is to prove the stability and commutation estimates
for the approximation introduced in Section 5.

Proof of Proposition 5.3 It is enough to prove the result for n= 0.

Since j.P) is not a diffeomorphism, one can not use a change of variable as in the
proof of Proposition 4.6. Instead, one uses the fact that 4j3 x) and rj) are very
simple functions of the Gaussian random variable (Y, - Y.). First

EtIJ2Qql2 = Et I [jq(j,jx))jr,. Xfl 2 dx

1S)1
-( s)]d/ IS I l(x - p(x)[w - h(x)(t - s)] + po(X)Q -

x exp {2h*(x)w - Ih(x)j1(t - s) - 2az(x) [w - h~)t- s)]
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+ 2(x)(t - s) + 2ao(x)(t - s)} exp { - - dw dx.I 2(t-s)J

Next

2[h(x)-a(x)]*w- w =2h(x)-a(x)j2(t-s)- 1w-2[h(x)-a(x)](t-s)12
2(t - s) 2(t -s)

so that, using the new variables (x, v) with v = w-2[h(x)-a(x)](t-s)

EtlQ'q 2 5 eC"- [27(ts)]s) 2  q(x-p(x)v

+ y(x)(t - s))12 exp { - dv dx,

where (x) A po(x) - p(x)[h(x) - 2a(x)].
In the particular case where p(x) p, the application F(x) A x - pv + ,(x)(t - s) is

a diffeomorphism provided 0:_ (t - s) < 1/C, and moreover the Jacobian is bounded
below by [1- C(t-s)]. Therefore, using the new variables (y, z) with y= F(x)

EtlQsq12 < 1 s -ii~ I J f q(y)12 exp~ { 2t-) dv dyEtIq 1- C(t -s) [2r(t -s)] " ' ~ ) 2ex  t-s~j

1ect - s) I Iq(y)12 dy,I - C(t - s

provided 0< (t - s)<< 51/C, which finishes the proof. El

Remark A.) According to the detail of the proof above, it is enough for the
Condition (A) to hold, that

I2h(t l s)]i/2 JJ q(x- p(x)v + y(x)(t-s)1 2 exp - dv dx <eCQ- J lq(y)12 dy,

for any bounded function y.

Proof of Proposition 5.6 Here again, it is enough to prove the result for n=0
and jal =1. Throughout the proof, the summation convention over repeated indices
j is used.

For q smooth enough, it holds

41
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+~(~J))~ ?~3kx)- (x) )[Y -Y -(t-s)h(x) ]

-h (x) + e xUax ak1 aXi

+ q(, (x) - _~ L ( -5)h(t-)](x)]
/ ~ d x ahk

hk () +Ai () + a q(X) .

at 'ax Li i A

h , (x + a 1o() q (X
+(t-Csts)L W i q2 I

+ - xi ai(~tx- -"x)[kC*(t-s)hkq)]2. Elx
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Abstract

A class of degenerate second order stochastic PDE is considered, for which a rep-
resentation result in terms of stochastic characteristics has been proved by Krylov-
Rozovskii [2] and Kunita [3,4]. An example of a stochastic PDE in this class has
been exhibited in Florchinger-LeGland [1] as the result of a Trotter-like product
formula for the Zakai equation of diffusion processes observed in correlated noise.
Particle approximations are introduced for this class of stochastic PDE, and er-
ror estimates are provided which extend the results of Raviart [6] on first order
deterministic PDE.

1 Introduction

Consider the following stochastic differential equation

dXt = b(Xt)dt + o(X) [dW't - e(Xt)dt] , (1.1)

where {Wt, t > 0) is a d-dimensional standard Wiener process, and the associated sto-

chastic flow of diffeomorphisms ( 0 < s < t}, and define

-0,t(x) _ exp N e'(o,,(x))dWo

-~J0e(..(x) I' ds + jc( o,. (-)) ds}

*Research partially supported by USACCE under Contract DAJA45-90-C-0008.
talso: INRIA Lorraine, CESCOM, Technopole de Metz 2000, 4 rue Marconi, F-57070 METZ.
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Introduce the following partial differential operators
m 9 2 m a

m a

i=l ax,

with a = a *, and the stochastic PDE

d

dqt = L*qt dt + F Bq dVk . (1.2)
k= 1

Because of the relation a = a a* between coefficients of higher order partial derivatives
in operators L and Bk, equation (1.2) is a degenerate second order stochastic PDE or
equivalently, after transformation into Stratonovich form, a first order stochastic PDE.
Existence and representation results have been obtained by Kunita [41 for (generally
nonlinear) first order stochastic PDE, based on the notion of stochastic characteristics.

In a previous work [1], the Zakai equation for the nonlinear filtering of diffusion pro-
cesses observed in correlated noise has been considered. A decomposition of the Zakai
equation has been introduced, exhibiting a degenerate second order stochastic PDE sim-
ilar to (1.2) in the correction step. In addition, a time discretization scheme has been
proposed for this degenerate second order stochastic PDE, with rate of convergence of
order V3, where 6 is the time step.

The purpose of this paper is to provide a discretization scheme of the degenerate second
order stochastic PDE (1.2) with respect to the space variable x E R ' . This approximation
relies on the representation of the solution in terms of stochastic characteristics, and
approximation of the initial condition by a convex linear combination of Dirac masses.
This kind of aproximation is called a particle approximation, see Raviart [6].

More specifically, for any probability measure p(dx) on R-, define the transformed
measure Qi p(dx) by

(Q , ) = I 0( os(x)) =-ozt(x) p(dx) , (1.3)

for any test function 0, or equivalently

Q o(A) = f. (A) -o, (r) p (dx)

Note that, if 0 is regular enough, then the t6 formula gives

d

d[ 0(o,,(x) Eo,,(x)] = L(o,,(x)). ,,,(x)dt + E BkO( o,,(x)) .- o,(x) d ik
k=1

2



Therefore yt(dz) = Qu(dz) solves equation (1.2) in weak form, i.e.

d

dt= L*pj dt + E_ B;d k, d0o=. p. (1.4)
k=l

Consider next the following two different assumptions on the original mnasure po(dx)

0 Assume that the original measure p(dx) has a density q(x) with respect to the
Lebesgue measure on R-, i.e. u(dx) = q(x) dx. Then, the transformed measure Q, p(dx)
has itself a density qt(x) which satisfies

qj( o,j(x)) " Jot(x) = Bot(x) " q(x)

or in integrated form
j qt(x) dx = f A B- 1 (x) . q(x) dx

Here, Jo,(') is the Jacobian (i.e. the determinant of the Jacobian matrix) of the sto-
chastic flow o,('). In addition, the density qt(x) solves the degenerate second order
stochastic PDE

d

dqt = L*q, dt + F Bqt dlk , qo = q. (1.5)
k=1

O Assume that the original measure p(dx) is a convex linear combination of Dirac
masses, also called particles

p(dx) = a'(x - x)
iE1

where {a' , i E I) are the particle weights. and {x', i E I) are the particle locations.
Then, the transformed measure Qt p(dx) has a similar representation

Q, p(dx) = E: a' 6(x -x'

where tfe particles have been transported by the flow i.e. x' = o,t(x'), and the weights
have been updated according to al = a-

The idea behind particle approximation for equation (1.2) is the following

given an initial condition po(dx) with density qo(x), , nd an approximation Po(dx)

in terms of a linear convex combination of Dirac masses,

use the exact solution of equation (1.4) with the approximation P,'(dx) as initial

condition, as an approximation for the solution of the original equation (1.5), and
get error estimate if possible.

3



This can be illustrated by the following diagram

qo(-) dx = po(dx) o ptho(dx)

Qi Qt

qt(x)dx = p i(dx) o ph(dx)

The remaining of this section is devoted to recalling standard results concerning sto-

chastic flows of diffeomorphisms and stochastic PDE.

Proposition 1.1 Let n > 0 be fixed. Assume that

b, a and e hare bounded derivatives up to order (n + 1).

* c has bounded derivatives up to order n.

Then 4,j(-) is a C"-diffeomorphism in Rm . Ir addition, the following estimates hold for
all p > 1

sup E I[D i.t(x)U'] < l<zn 1 j_ n
XER- I I

sup E [D'-( .T()I < oo, 0 < < n.

Restricting to compact sets of R-, it is possible to invert the supremum and the
mathematical expectation in the estimates above, see the Corollary 4.6.7 of Kunita [5]

Proposition 1.2 Under the assumptions of the Proposition 1.1, there exists a constant
C > 0, such that for any compact set B C R' and E > 0 the following uniform estimates

hold for all p > 1

E Lsup ID°Ot(x)lP] . _C[1l+,5'-I, ]_<IoIn,

E [sup [D ,(x)] C [1 + 6- < a < nE

where 6 = 6(B) denotes the diameter of B.
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For all n > 0, p _> 1, let Wn' p 
= W' 'P(R " ) denote the space of real-valued Lebesgue-

measurable functions on R' whose generalized derivatives up to order n are integrable in
p-mean, and define the corresponding norm 11. [n,p and semi-norm I kIp by

IuIn, Z J )and Iu.I, - JID
0<1lln Iaj=n

respectively.

Consider the following degenerate second order stochastic PDE
d

dq, = L*q, dt + F B, q, dW k
, qo = q . (1.6)

k=1

Although no coercivity hypothesis is satisfied, the following existence, uniqueness and
regularity result is proved in Krylov-Rozovskii [2].

Theorem 1.3 Let n > 1 be fired. Assume that

* a has bounded derivatives up to order max(n, 2),

* b, a, c and e have bounded derivatives up to order n,

* the initial condition satisfies qo E W ' P.

Then equation (1.6) has a unique solution q E MP(0, T; 14",P). In addition

q C- LP(SQ, C ,(10, T); 14,"P)),

and the following estimate holds

E[ sup lIqll,] 5 IlqolIIP e CT
O<t<T

2 Quadrature-based particle approximation

With the quadrature formula (A.1)

Jg(x) dx Zw' 9(x')
iEI

is associated the following particle approximation for the initial density qo(x)

qo(x) dx = po(dx) _ ph (dx) = _wqo(x) 6(x - x') . (2.1)
iEl

This induces the following particle approximation for the solution q,(x) of equation (1.6)

qt(x) dx = pt(dx) - p4(dx) = Ew'Eo,t(x' ) qo(x') 6(x - o,(x))
iE1

The following error estimate holds in Sobolev space with negative exponent, which
extends the result of Raviart to the case of first order otochastic PDE.

i5
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Theorem 2.1 Let n > m be fixed. Assume that

b, a, c and e have bounded derivatives up to order (n + 1),
* the initial condition satisfies qo E Wn'p .

Then there exists a constant C > 0 independent of h, such that

Ellp - A (ll-., < C h" InqoIl.p

PROOF. Let 0 E W'n'' be an arbitrary test function. Since

(,, 4)) = J ( o,,(x)) -o,(x) qo(x) dx, (ph, 4) = Zw 4)(xo.(x)--,{X') qo(x')
iEI

it follows from Theorem A.2 that

(p, )) - (p', 4) C h" IgKnj

with g = .ot E-o, qo , provided g E Wn ," n > m.

Under the assumptions on the coefficients, 4 o o,t E W'P' and Eo,t • qo E W"'', for
conjugate p and p'. Moreover, the generalized Leibniz formula yields

191 ., - Z f Ix.(x) DO(C.,,(x)) Dqo(x)l dx

where I, denotes the set of pairs (a, f3) of multi-indices such that lal + 1301 < n, and Xo,()

are random fields involving the derivatives of o.() and '-ot(-) up to order n. Using back
and forth the changes of variable induced by the differomorphisms o.t(') and ( and
the H6lder inequality, gives

IgI. < f Ix ( (x)) D'4(x) D' qo( -(x))J [Jo,-'(x))-' dx

~ {fID-[o(x)Idxi D(.,(x))

(aP)EIn!5 x.,(.)D~q~x~[ [o,,(x)]-(())]- dxl/

Therefore

11lt, 0)_ (11,) 1 < hn { Ixo,(x) Dqo(.) l [J0,,()] -J - ' ) dx}
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and

EI~g i11nj C V ~ i:{E {jx.,,,(x)IP [ 0 ~x]P

ID'
3qo(x) IPdx}

From estimates in Proposition 1.1, it holds

sup E {Ixo.q(x)I p [J0,(x)]- (P- ')} < 0-rER"

so that
Ellp - ph11-.' -< C h' Ilqoll.,p •

Regularization

Let ((x) be a continuous cut-off function defined on R', which satisfies

(i) J((x) dx = 1

(ii) fx'((x) dx o 0<jl i< k -1,

(iii) f xj' 1((x)l d., < o

for some k > 2. For any e > 0, (,(x) is defined by the following scaling

With the particle approximation

Pt (dx) = 6 o~f(x') qo(x') 6(x - x')
iEl

is associated the regularized measure

"" (dx) = p* (,(dx) = qh,,(x) dx

where the density q,' (x) is given by

qte(X) = -'-o,t(x') qo(x') (.(x - x,)
iEl

The main result of this section is the following theorem, which is an extension of the
Theorem 4.2 in [6], to the case of first order stochastic PDE.

7
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Theorem 2.2 Let n > m be fixed. Assume that

* the cut-off function C satisfies (i)-(iii) for some k > 2, and E W"n,

* b, a, c and e have bounded derivatives up to order (t + 1),
* the initial condition satisfies qo E W"P,

where I = max(k,n).

Then, there exists a constant C independent of both h and c, such that

{Ejq , - qhP _ C { Ilql k.p + (h/c)" IjqoII.,P}

PROOF. Obviously
q, - qP" = [q, - q, * (,) + [q, * - ]

First, it follows from Lemma 4.4 in [6] that

Ilq, - q,* (jo.p - c r Iqtlk.

provided q, E H' k'p . Under the assumptions, Theorem 1.3 gives

{EIlq, - q,* .,P < C -" {-Ijq,k'YIP < C IlqoI1k,p-

On the other hand, using the change of variable induced by the diffeomorphism Jf).
it holds for all x E Rm

• (,(x) - qh() = Eo.t(z) qo(z) (,(x - o,,(z)) dz

- 6 x ,.,s-- 1 (xi)qo(zi) (,(x - ot(r')) = E(g(x,.))

iEl

with g(x,.) = Eo,t qo- ((x - o.i). Therefore, it follows from Theorem A.1 that for all
xE R

jq, * (,(x) - q "(x)l _ C h" 1g(x, ")1n.i

provided g(x, .) E Wa", n >_ m. Moreover, the generalized Leibniz formula yields

19(X, 
' ) [ a 5 FI J ),(z) Dqo(z)D(,(x - o,,(z))j dx

(o)EI.

where In denotes the set of pairs (a, /3) of multi-indices such that [a] + /13 5 n, and x,()
are random fields involving the derivatives of o.() and Eo,t() up to order n. From the
technical lemma below, it follows that

f < C {d {f/~ax .)no)CI

8



Making use of

D 0 4,(x) = _____

taking mathematical expectation on both sides, and raising to the power I1/p gives

(EJIIg(x, -) Ip',dx } < C 1 1101." {J I fx.,xP[Jo dz.)]-(P-1)}

lDaqo(x-)IPdx}

From estimates in Proposition 1.1, it holds

sup E {ixZ,"q(X)iP [JO,, t')hPl1)}I < oo
XER"-

Therefore

{E11qt t 0 P }1/P < C h- EJ j g(x, -)n dx}I

:5 C (h/c)" III m., IlqoII,,p - 0

Lemma 2.3 Let f E LP and g E L', and define

1(X) f f(z-) _q(x - &o, (z)) dz

Then I E LP and in addition

I J l1(.r)Ipdx}ll < {J lf(xHIP [J,(X)rhP1) dx} J/ g(.,I

PROOF. Using back and forth the changes of variable induced by the differomorphisms
od)and and the Lemma 4.3 in [61, gives

1(X) = f(c't'(z)) [Jo"(c't(z))]-' g(x - z) dz

and

{f J I(z)IP dx}l _ {f If( ,9(x))P tJo,( 0-,(x)LP dx}J" Ig(x)I dx

5 {Jf(X)IP [Jo"(x)y-(P) dx~ ]jg(x) I dx

9



3 Adapted particle approximation

Consider the particle approximation (A.3) for the initial condition uo(dx)

o(d-) p 0(dx) = b 6(x - xi)
iEI

where the particle weights {a', i E I) and the particle locations {aI , i E I} are defined
in the following way

=/AO(B') = o(dx) , xl x oax
a ) d a- plfo=do ,

depending on the measure po(dx). This induces the following particle approximation for
the solution u,(x) of equation (1.4)

p, (dx) - p' (dx) a' Zoe(x') A (x - Oj (x'))
SEl

Parallel to the Theorem 2.1 above, the following error estimate holds in Sobolev space
with negative exponent.

Theor,'m 3.1 Assume that

b, a, c and e have bounded derivatives up to order 3,

• for all i E I, the set B' C R- is compact.

Then :'ere exists a constant C > 0, such that

EIlpt - P ,11-2,1 !5 C E-67 a',
iEl

where as = Aio(B') and 6, = 6(B') denotes the diameter of the set B'.

PRoo, . Let E W2, o be an arbitrary test function. Since

=J= (o) po(dx) ,,(I, 0) E -a( O" (')) -oA(.-')
if I

it folic vs from estimate (A.6) that

- ( h, ) < -'2 Ig 2 .. , 6, a',
'E1

10



with g = o ,t o,t, where B' denotes the convex hull of B'. The generalized Leibniz
formula yields

1g12,oo < E sup Ix,(x) D0 O( o,,(x))I
I1<2 xEB

:5 Ek. sup y(X)IspDOxl

xo( ar radomfilinolvingIOI I. zEB
<5 110112,.o E suplXo()l,

1.1<2 xEB

where X (') are random fields involving the derivatives of 0.(') and Eo,t(.) up to order 2.
Therefore

I 't,-) - _ sup 6a'
iEI 1.1<2 zEB'1

and

Ellp, - i411-2 _ Z E xQrI 62 a'
i'El ll_<2 kLEB' J

From estimates in Proposition 1.2, it holds

E sup I'Xo(X)] :5 C [I+6,-

for some p, where bi = 6(B') denotes the diameter of both B' and its convex hull B'. so
that

Ellp, - ,11-2.1 C [1 + 62- ] , 6a' .1
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A Particle approximation of functions

Consider the following quadrature formula on R-

I g(x)dx W,' g(x), (A.1)
iel

where fx', i E I) is a coordinate grid of size h > 0. 1 = Zm and w' = h' is the Lebesgue
measure of the m-dimensional cube B' with center r9 and edge size h. For all g E C(R-),
the quadrature error associated with the quadrature formula (A.1) is defined by

Ej (g) g B (x) dx - ,Li 9(x i ) , E(9) Ey Ej(g).

iEI

The following estimate is proved in Raviart [6]

Theorem A.1 There is a constant C > 0 independent of h such that

IE(g)[ !5 C h" jgjkj

for all g E W"' , n >_ n.

Let p(dx) be a probability measure on R' having a continuous density q(x) with
respect to the Lebesgue measure. i.e. p(dx) = q(x) dx. With the quadrature formula (A.1)
is associated the following particle approximation for the density q(x)

q(x) dx = p(dx) ph(dx) = '"q(x') b(x - x') , (A.2)

so that, for any test function €

(p,¢) O4(x)q(-)dx , (ph,) = w¢(x')q(x')
tEl

The following result is proved in Raviart [6]

Theorem A.2 There is a constant C > 0 independent of h such that

11p - p'll-.,p --- C h' jlqjjl.,,

for all q E W'f'P, n > m.

12



PROOF. From Theorem A.1, it holds

- (ph,)I - IE(g)I < C h' 1g1,,

with g = . q , provided g E W- ' , n > m. The generalized Leibniz formula and the
H61der inequality yield

IgI.,I -< C 11I 11.,,p, Iqll.,,,,
for conjugate p and p', and therefore

IlI' - f-,, = sup 1,- (h, O )1 < C h' JlqJJ.,,, 0
,O E w " , ' II 0' ll , ,

Another possible approximation is to consider a partition {B, i E I} of R', and to
define the following particle approximation for the probability measure p(dx)

p(dx) _ ph(d.) = Za' (x - x') , (A.3)
iEJ

where the particle weights {a', i E I} and the particle locations {x, i E 11 are defined
in the following way

= (B') ,(dx) a' x(d(A.4)

depending on the measure p(dx) so that, for any test function 0

= (x)p(d.r), (", ) = a',(x ')
i~E

For all 0 E C(Rm ), the quadrature error associated with the formula (A.3), is defined by

Ei'(0) O s (x) p (dx) - a' 0(.') , E'(0) F E'(0) .

iEl

Parallel to the Theorem A.2 above, the following result holds

Theorem A.3 For any partition {B i , i E I}

!II' - ,h"11-2,, < 1 E ,2 a' , (A.5)
iEl

where a' = u(B') and , = (B i) denotes the diameter of the set B'.
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PROOF. Let 0 E W 2'- be an arbitrary test-function. Using Taylor expansion around
the point x = xi yields

O() = O(x') + (x - x')* DO(x')

+ (x - x). {j(I - u) D 2 [uX + (1- u)x'] du} (x - x')

and the definition (A.4) gives

E) = fB,(x - x) {fj'(1 - u) D 2 [uX + (1 - u)x'] du} (x - x') dx.

Therefore

A Ix -xIll ,(dx) I2 oo.' ,

where kr denotes the convex hull of B'. Then

(p,) - (ph,) ) E'(1)i 2< b -I [2,,, a', (A.6)
iEl

and

l-h_ (p, 0) - (W, I F a. 0
OE"W2

,- 110112,. - 'iEl

Remark A.4 If the partition {Bi, i E 1) is given, with b, < C h for all i E I, then

IIl - Phll ,2  < C h .

On the other hand, if the partition {B,, i E 11 has to be chosen so a. to make the
quadrature error as small as possible, then .stimate (A.5) can be used to derive the
following criterion

6a i =c for alliE I

This criterion based on equidistribution of the local quadrature error, has the following
interesting property

* a set with a large mass, will be split into some smaller subsets,

* conversely, neighbouring sets with small masses, will be packed together into one
single set.
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I Models of Partially Observed Systems

We consider partially observed systems of the form

dX, = b(X,)dt+ a(Xt) dW
(1)

dYt = h(X,)dt + dV

where {Wt, t > 0) and {V, t > 0} are independent Wiener processes of appropriate dimensions.
with covariance matrices I and R respectively. We are interested in the state estimation problem.
under various hypotheses concerning a = a a* and R.

Consider first the two extreme cases If a 0 and R = 0, we are dealing with an observecr
problem for the deterministic system

) , b(X,)
xi (2)

z,= h(X,)

At the other extreme, if R is non-singular, we are dealing with a nonlinear filtering problem for the
diffusion process (1). We can also easily handle the following intermediate case: If R is non-singular
and a = 0, we are again dealing with a nonlinear filtering problem but the state equation is now an
ODE

dYt = h(X,)dt + dV

Let us point out that the solution of the state estimation problem is radically different, depeiding
on whether R is non-singular or identically zero. On the other hand, whether a is non-singular.
singular or identically zero only affects the algorithms to be used.

Our purpose is to present, for each of the three main cases described above, a solution to the state
estimation problem, and to suggest some numerical approximation procedures. The general idea is
to study the asymptotics R -4 0. As a by-product, we expect to obtain some numerical algorithms
for the nonlinear filtering problem, that are robust when the non-singular matrix R is small.



II Solutions to State Estimation Problems

We assume for simplicity that b E C (R14 , Rm) and h E Cb(Rm, RP), unless otherwise stated.

Let us begin with the nonlinear filtering (NLF) problem.

El When R is non-singular, the Bayesian approach to the state estimation problem is to compute the
unnormalized conditional probability distribution ut(dx) of the state X,, given the past observations
Yt = a(Y., 0 < s < t). By definition

(p,,f)= Et[f(Xt) Zt I Yt],

for any test function f, where

z, = exp { *(Xr)R1 dY - 1I h(X,) 2-, dr} and Z, = Z° ,

and Pt is the reference probability measure. The probability distribution ut(dx) satisfies a stochastic
PDE in weak sense. Usually, this p.d.f. has a density w.r.t. the Lebesgue measure, i.e. pt(dz) =
p,(x) dx. A sufficient condition for this to hold, is that the probability distribution 110(dx) of Ihe
initial condition X0 has already a density w.r.t. the Lebesgue measure, i.e. po(dx) = po(x)d.r. We
will assume that po(x) > 0 for all x E R'. The unnormalized conditional density p,(x) is the unique
solution of the Zakai equation

dpt = L'pt dt + pth*R-1 dY, (3)

with initial condition po(x), where L" is the formal adjoint of the second-order partial differential
operator

L = - tr l a 2 ] + b .- -9

associated with the SDE
dXt = b(X1)dt + o(X,)dl] . (4)

o If in addition r = 0, then the Zakai equation (3) becomes a first order stochastic PDE. for which
a representation result is available in terms of the flow D,(x) associated with the ODE

X, = b(Xt) (5)

Actually, define

Jt-.(x) = det[ aD-'(x) ] = exp div b(4,._(x))dr,

Z~~)= exp {jh(-t,.(x))R-' dY, - h (ID I(.(x))I~ dr}

In this case, the unique solution of the Zakai equation (3) satisfies

J(,, (x) = -, . p,(x) - ), (6)

or equivalently, introducing the logarithmic transform Wj(x) = -log pt(x)

W,(4, ) - log J_.,(x) = W,(x) - log .,(.) . (7)
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I
We turn now to the observer problem.

Let {x, 0 < t < T} denote the true state trajectory producing the available observation tra-
jectory {zt, 0 < t < T}. The idea is to build an observer by considering the limit of a sequence of
nonlinear filtering problems with noise covariances going to zero. Two different cases are possible

Introduce small noises of similar intensities in both the state equation and the observation, i.e.
set a = cI and R = cI,

I Introduce a small noise in the observation only, i.e. set a = 0 and R = eI.

0 In the first case, it is proved in James [2] that

-Clogp'(X) -+ m"(-)

in probability uniformly on compact subsets of x E R' , where up to an additive constant independent
of x, m,(x) is the unique solution of the Hamilton-Jacobi equation

49t 2  b' (8)

with initial condition m'(x) = 0, in the viscosity sense, where

V(x) = - h(z ) 2

In addition, m(x) is the value function associated with the following control problem. Introduce
first the action functional I,( ) = -t  1. - b( ) 2

if E C([0, TI; R m ) is absolutely continuous, and lt( ) = +co otherwise. Define also

F, = V V( ) ds = 1 j z, - h( ,) 12 ds

Then
m ',( ) = inf {Id )+ F( , = }

Clearly m,(x) _ 0 and m,(xz) = 0 for the true state trajectory, and we define our observer as the set

V, = argmin mt(x) = {x E R' : m,(x) = 0} (9)
VER-

Obviously x E i, for all t > 0. It is proved in James [3] that, provided the deterministic system (2)
is observable on [0, T] (i.e. the map x0 i-4 {z,, 0 < s < t} is injective), the set-valued observer (9)
is actually a finite-time observer (FTO) on [0,/'] (meaning that V, is defined in terms of a recursive
systen, with the property that i , {x,} for all t > T).

1 3
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O1 In the second case, it follows from equation (7) that

-elogJ4(I) = EW(X) 11 m(x)

in probability uniformly on compact subsets of x E R-, where up to an additive constant independent

of x, m,(x) is given by

V,= V(4,(x)) ds or mt(x) = (47'3 (x)) ds

i.e. mt(x) = Ft(t'ix), where t.x is the unique solution of the ODE (5) ending in x at time t. In
addition, mt(x) is the unique solution of the linear first-order PDE

rnt +b n
_t +-b" -g- - Vt =0,

satisfying the initial condition m 0 = 0. Just as above, it is clear that mt(x) > 0 and mt(x,) = 0 for
the true state trajectory, and we define our observer as the set

= argmin m,(z) = Ix E R" : mt(x) =} (10)
xER-

Here again, it is obvious that x" E j for all t > 0, and in addition the set-valued observer defined
by (10) is actually a FTO on [0, T], provided the deterministic system (2) is observable on [0. T].

Note that mt(x) = F,( ''tx) where It(Q'x) = 0 (i.e. ',' solves the ODE (5) exactly) and '" - x
whereas in the definition of mrn(x), a penalty l]( ) is put on those trajectories that do not solve
the ODE (5). This is a less severe requirement, and is reflected in the relation ro4(r) < nl1(x). Note

however that ., = i'. This is the set of those points that are indistinguishable from the true state x,.
In conclusion, the observer (10) is more precise than the observer (9), whereas the latter is expected
to be more robust w.r.t. modeling errors.

III Numerical Approximation

In this section, we restrict ourselves to the situation where the state satisfies an ODE, in which case
the solution to the NLF problem is given by (6), where R is non-singular, and the corresponding
FTO is given by (10). where R =_ 0.

Concerning the approximation of the NLF (6), we wish to compute an approximate normal-
ized conditional density p ' (x) (where A and 6 denote the time discretization step and the space
discretization step respectively) with the following property

(+) asA,6 Oas A,, 1

E lp"', (x) - ctp(x)Idx - 0 for all t > 0

where c, is a normalization constant.

Concerning the approximation of the FTO (10), our approach is to build a family .11 with the
following property

4



(*)if the deterministic system (2) is observable on [0, Tj, then as A, 6 1 0

dist(j 1 x; 1) -- + 0 for al t > T

A necessary and sufficient condition for (*)to hold is dist(i'O"6 i) -~ 0 as A, 110. The approxi-

mate observer ik will be defined in terms of an approximate value function mnf"(X), i.e.

-t~~5=XE) unifomly n<coipa

and a sufficient condition for (**) to hold is cA6 10 and m[a]x ' d)uifrl n obpc

subsets of R"-, as A, 6 .J 0.

Time Discretization

Consider a uniform partition 0 = to < ... < t,, < ... of the time interval (0, on). with time step

A= Ik- tk-,. The first step is to sample the available observation trajectory.

The nonlinear filtering problem. If noisy observations {Yj , t > 0) are available, we first build the

following sequence of compressed observations

YkA 111 - l IhX)d t

and we use the approximate model

X, b(Xt)

i k h(X,,) +t II)

1% nere O{eA, k = 1, 2.~ - } is a Gaussian white noise sequence with covariance matrix R/A.

The solution of the NLi' problem for the approximate model (11) is given in terms of thy( a priolri

and a posteriori conditional probability densities defined by
P' i(x) dx = P(Xt, E dx Y~) and p' (x) dx = P(X,, E dx

respectively, where Y, 4 = aA ,y'). The transition from pA1 x op()i dvddit w

steps

prediction step :Transport by the flow gives p' 1 (x) = T& p' (x) where ~t~ t > 0} is the

semigroup associated with the linear first-order PDE

- Lpt . (12)

An explicit solution is available for tnis equation

P'k' I Oa W)- J W =Pka-I W(13)

or equivalently

for all Bore] set A C Rm.

5



*correction step : According to the Bayes formula

Pk'(X) = ck 1 k'~ pk'() (15)

where
HI~z x -A l'~ - h(x)I-}

is the likelihood function for the estimation of Xt, in the approximate model (11). based oxi thle
obsevatin k alone, and cl, is a normalization constant.

Introducing the logarithmic transform 14",'(x) =-logp"(x), it follows from from (13) and (15)
that

W,~z)- lgJ(4'(X)) = -ogCi + Wk &(-'(x)) + !A Jy - h(x)I- 12 (16)

The ohserver problem. If perfect observations {zt, i >_ 0} are available, i.e. R =- 0, we can simply
Use Zj, = zt, and our model becomes

( k = b(X,)

Zk = h(X,,)

Introducing the asymptotics R =cI in the NLF problem and sending C to zero, it follows from
equation (16) that

-og P'ckx) = cW( "0m~x

in probahility uniformly on compact suhsets of x E R', where mnk(.r) satisfies the following relation

= m~(~(D- X)) + V"(X

where

V,'(x) = 11z' - h(x) 12  and 4& z~ds = h(X 3 ) d, # Z

It is clear that mA(x) 0. However, because the averaged observation z' used in the definition of
Ink'(x) is different from the actual observation zk, we have llk(xr,) -/ 0 in general for the tria state
trajectory. Therefore, we decide to use the actual observation Zi. in the definition Of ka) nta
of the averaged observation Zk, i.e.

,, (X) = m6 1 (4- I(X)) + I, 1(X) . (8

w~here
V.(x) = ljz,, - x)1

This relation can be divided into two steps

prediction step : Transport by the flow gives m r ) a n 1 x hr S )i h
2

sernigroup associated with the linear first-order PDE

at + ax 0(19)

An explicit solution is available for this equation

M, I($A(z) = M, '(X) .(20)
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* correction step The contribution of the new observation Zk to the approximate value function
is given by

m'(x) = m_](x) + A Vk(X).

We note that
mA_ (x) = Fk ,( ikx) and m(x) =

where ',' is the unique solution of the ODE (5) ending in x at time t, and the functional Fk()
satisfies for all E C([0,T]; R-)

k(," W= F_,(,) + A Vk(,,) = A {V,(,,,,)+ + Vi(C,)}

Now it is clear that m'(x) > 0 and mr(xt ) = 0 for the true state trajectory, and we define our
observer as the set

.iA = argmin mA(x) = {x E R- : m'(x) = 0} (21)
zER"

Obviously xt - i' for all k, and one can verify using the explicit formulas that mA ](x) -- m,(x)
uniformly on compact subsets as A .1 0, with the consequence that property (**) holds for this
discrete-time approximation.

Model Approximation and PDE Discretization

To obtain computable algorithms, it is necessary to discretize the linear first-order PDE (12) or (19)
involved in the prediction step. Generally speaking, two classes of methods can be used : in the finitc
differcnce approximation (FD) a fixed bounded grid is used, and partial differential operators are
approximated by finite differences on grid points, whereas in the flow-based approximaton (FLOW)
the explicit representation (13) or (20) is used to move grid points (or alternatively cells) along the
flow of the ODE (5).

A Finite Difference

A finite difference nonlinear filter. To derive a finite difference algorithm, we must first constrain
the nonlinear filtering problem to a bounded domain. Let D C R- be a m-dimensional open cube.
After Dupuis-Ishii [1], we constrain the ODE (5) to the convex set f) as follows. For x E aD, let
v(x) = { v E R'- : Iv = 1, (v,x - z) < 0 for all z E D } denote the set of inward unit normals.
For x C D, v E R', the projection 7r(x,v) of the velocity vector v at x is given by v if x E D.
or v + [(v, -v*(x, v)) V 0] v*(x, v) if X E aD, where v*(x, v) is an element of v(x) which maximizes
(v, -v), v E v(x). Define then b(x) = 7r(x,b(x)), x E D. By Theorem 5.1 of Dupuis-Ishii [I], there
exists a unique absolutely continuous solution of the constrained ODE

4o=b(,) a.e. 0 <s <t (22)

satisfying 0 = x E /.

A finite difference algorithm is obtained using a Markov chain scheme similar to those described
in Kushner [5]. Let R' denote a coordinate grid of size 6 > 0. We define a system of neighborhoods
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Ns(x)={ z E R : z = x or z = x4- ei for some i = for x E R-, where c, E R-
denotes the i-th unit vector. We define next D-6 = D n Rlp, D' = { E : N6 (x) C D6 },
and aD' = 6 \ D'. We define the jump intensity matrix L6(x, z) of a pure jump Markov process
X, t > 0} taking values in D6 by

-Ib(x)Ii/6 if z = x,

Lb(x,z) = b*(x)/l if z= x±6e and i = 1....m (23)

0 if z V N6(X),

with the notation lull = JulI + .-- + lu,-I for any u = (u ,....,u.). If we use an implicit time
discretization scheme, we obtain the finite difference equation

p'6(x) - A E L;(x,z) p"'(z) = ck. -%(x)"pA'6 (x), (24)

zEN 6(x)
11,6

for x E D6 and k = 1,..., where ck is a normalization constant, and the initial condition p, (X) is
a suitable approximation of the density po(x). This relation can be divided into two steps

• prediction step: Transport by the flow gives

[I - A L;] pA_ (x) = pa(x)

• correction step : According to the Bayes formula

where ck is a normalization constant.

The following result is proved in Kushner [5] using weak convergence X6 ==:> X. as 6 0.

Theorem 1 Property (*) holds for the finite difference nonlinear filtering algorithm.

A finite difference observer. To derive a finite difference algorithm, we still need to constrain the
observer problem to a bounded domain. However, because we are going to approximate (18). we
must consider the ODE (5) as running backward in time, before we constrain it to the convex
set D. We use the same definition as above for the set v(x) of inward unit normals. For x E
D, v E R', the projection 7r(x,v) of the velocity vector v at x is now given by v if x E D. or
t + [(v, v'(x, v)) V 0] v*(X, v) if x E OD, where v*(x, v) is an element of v(x) which maximizes (u. v).

," E v(x). Define then b(x) = -7r(z, -b(x)), x C D By Theorem 5.1 of Dupuis-Ishii 11] again, there
exists a unique absolutely continuous solution ( = , of the constrained ODE

(,=b )a.e. 0 <s < t, 2

satisfying = x E D.

8



Select 3 E C(R ' ) non-negative, 3 0 on D' C D, with D' nO D = 0, and 3 > 0 on aD. Nov.

define the value function for x E D, t > 0 by

mt(x) = /3(fo) + + /3({,)] ds , (26)

where is the solution of the constrained ODE (25). Then mt(x) is the unique viscosity solution of
the Hamilton-Jacobi equation, see Lions [6]

at +b-a,

-- -- -Vt-3=0 inDx(0,S],
(27)

-V =0 on9Dx(0,S],

satisfying the initial condition mo(x) = 3(x) for x E D. In addition, m satisfies in the viscosity sense

at -x V -  0  onDx(0, S]. (28)

Define the corresponding observer as the set

it = argmin mt(x) = {x E R" : mt(x) = 0} (29)
--ER-

Let I= {xo E D' : *(xo) E D', 0 < s < S}. Ifx E 1, then x4 E it for all0 < t < S, and
the observer (29) defines a FTO provided the deterministic system (2) is observabh on [0. T]. see
James [4].

We again use a Markov chain finite difference scheme. However, we discretize the boundary
equation (28) rather than the boundary condition in (27). We use the same definition as above for
the grid R', the system of neighborhoods N6(x), and the subsets D, D' and OD' = D' \ D' of
the grid R6'. Assume that v = b/A is a fixed real number, indicating the "speed" of the algorithm.
satisfying

v > max Ib(x)l . 30)-- ED

We define the transition probabilities 7ra' 6(x,z) = P({-1 = z I G = x) for a backward Markov
chain {{' k = [S/Aj,...., 0} by

[ - Ib(x)h/v if z = x,

7rA'(X,z) = j b(X)/V, if z= ±c, and i = 1,..., n (31)

0 if z V N6 (x)

Note that E[jk - k = ]= -A b(X).

If we replace 4'D(x) in (18) by the state CA of the backward Markov chain starting at =
and take expectations, we obtain the finite difference equation

m'6(x) = A k(X) + 3(X)] (32)
-EN6(-)

for x E 6 and k = 1. [S/A], with initial condition mo 6 (x) = 3(x). This relation can be divided
into two steps

9



* prediction step: Transport by the flow gives
MA,Z (X =r ,6 M~

mk-(x) = k m (x).

* correction step: The contribution of the new observation Zk to the approximate value function
is given by

k = mk!(X) + A [Vk(X) + I(X)]

The finite difference observer set is defined by

x.s = argmin m"x,. (33)
zED'

Obviously, there is no reason for this approximate observer to satisfy the non-asymptotic consistency
property : in general we can not guarantee that x*, E ik

The following result is proved in James [4].

Theorem 2 If x; E 1, then property (**) holds for the finite difference observer algorithm.

Remark 3 It is also shown in [4] that under additional regularity assumptions dist(x/.') =

O(v/b) as 6 10.

Remark 4 The speed constraint (30) which appears in the finite difference observer algorithm is
actually a stability condition for the explicit time-discretization scheme used in (32). From the
probabilistic point of view, it ensures that (31) defines transition probabilities. We do not need a
similar constraint for the finite difference NLF algorithm, because we are using there an inplicit
time-discretization scheme.

B Flow-Based Approximation

Let us first describe the approximate model we are going to use.

We assume that at each time tk, a partition {B', i e IkI} of the state space R" is given, and we
define the discrete It-valued state n' by the relation

{nb }={ 1  3 (3-1)

The idea behind our approximation is to suppose that, at each step of the algorithm, any information
(e.g. probability distribution, likelihood function, value function) about the continuous state V,, is
immediately compressed into some information about the discrete state n'. We can think of memory
constraint as a justification for this compression mechanism. As a consequence, whenever information
is needed about the continuous state Xt, it has to be deduced from the corresponding information
about the discrete state n6, resulting in compression error.

Making explicit use of the flow associated with (5), we have

f~qE BJ =f , E ti(BI)} U E B"- n 41-1(B,)}(5

10
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where
I_[i ={ E I _- : Bj -6- n7'(B') $ e,

provided solves the ODE (5). Notice that in general the set lk_,[i] has finite cardinality.

Various possible choices are available for the partitions, e.g.

• It- = I 1 - 1P and Bki = 4 4(Bk-,) for all i E 1P. In this case n' = n ,, ~. h icrt tt~ Inthi cas =k i.e. the discrete state
process is constant over time, but the sets B' can become very complicated after some .teps.

I, P = _- and Bk = Bk- 1 for all i E 6. In this case, the partition is constant ovel time.
but updating the discrete state can be cumbersome.

Between these two extreme cases, a trade-off has to be found in order to reduce the computational
burden of updating both the partition and the discrete probability distribution : B, should both be
"close" to 4',A(Bk_ 1 ) and have a simple geometry.

A flow-based nonlinear filter. According to our approximation approach, we introduce the discrete
a priori and a posteriori conditional probability distributions

-.L = P(X, E BI I Yk'-,) and jk~ =P(XtEB,, I Y),

respectively, where again Yk' = (y,... ,y'). Making use of (35) transport by the flow gives

= 7 P(X,. nB f4'B,, y 1.;E tL_1.1

k- n ID- 1,B) I(x) dx_.~~~ ~ k BL n,-'Bk) ( ,n ,(Bk )) JB ,¢X ' -"

= A(B _ '(B )) fA(x)

, _,[q , A(B-'2EJ~ (B.'-, nD-B' __

IEIL1 Ii]j-,

Next, according to the Bayes formula

S= ek lB (p~(id
ck a (x) p( p (x)(d)

Ck Pka • • (x) x

2EBk

where ck is a normalization constant. This approximation can be justified in the small noise case,
using the Laplace asymptotic formula.

11
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To obtain a computable algorithm, we introduce new discrete probability distributions p, and
A, and the corresponding densities

p Band pk k(,\lB) iff z E B'

We then define the transition from { -, i E Ik_1} to {, i g I}, by the following two steps

• prediction step : Transport by the flow gives

i - = .- A(Bj-1 n -t-1(Bi))

l lk-~ 1 =BI - )
2 - k _ _ _ _ _ _ _

correction step : The contribution of the new observation y' is given by

Pk = Ck Rk - p(36)

where ck is a normalization constant, and
R' = maxP(x)

is the generalized likelihood function for the estimation of nZ based on the observation y' alone.

Theorem 5 In the case I = I_- P, let {B,, i E P denote a finite partition of a bounded
domain D with diam(B,) < b. Then property (*) holds for this flow-based nonlinear filtering algo-
rithm.

A flow-based observer. According to our approximation approach, we introduce the a priori and a
posteriori discrete value functions

k-_ I =in{F,_ ( ' ) : x E Bk' and iWk = inffF( t"r) : xE B'} (37)

respectively. Making use of (35) transport by the flow gives

ii_ = inf inf (F ( tkI.. x E B 1 n -a'(Bk')}> inf ,i{.2 .E1,,' l- [)jE/:_'til

Next, by definition of the functional F ( ),

= inf (' . ) + A Vk( x ) : X E Bk} > _+ A inf V()
k k EB

Thus the discrete value functions satisfy difference inequalities. Unfortunately, this does not give
a recursive mechanism for computation. Instead, we introduce new discrete value functions ru'l 1

and m,, and the corresponding value functions
A'" (--) = rnnd='n

= k m 1  and M'k"(X) = Mk iff x E B,

We then define the transition from {nk,_ , i E Ikj to {m , i E 10 by the following two steps

12



• prediction step: Transport by the flow gives

rk_ = inf m- 1
2 ,EIkl 1 [1

* correction step The contribution of the new observation zk is given by

mrk = n_, +- A inf Vk(x).
2 zEB k

By construction, it is clear that rn' 6(x) > 0 and rna"(x%) = 0 for the true state trajectory, and we
define our observer as the set

-" = argmin ma' (x) k {x E Rm : rn"(x) = 0} , (38)

or equivalently

B' UB with I ={iEI1 : m=01

By an inductive comparison argument, it is easy to show that ma'6(z) < m'(x), with the consequence
that iA C i''. Therefore, x,, E i, .

Theorem 6 In the case I = I' 6 and Bk' = 4Pa(B'_) for all i E P, let {B;, i E I } dnoh

a finite partition of a bounded domain D with diam(B,) < 6. If x; E D, then property (*-*) will hold
for this flow-based observer algorithm.

As noticed in James [3], the only thing that matters is the argmin set, not the value function
itself. This remark can be used to design a simplified algorithm for the construction of the set-
valued observer (38). We introduce the piecewise-constant logical value functions mi (z) taking
values TRUE or FALSE, and defined iteratively by the following relations

= V -
CE11 ]

M'tk TV A

whreTRUE if inf Vk(x)= 0

= ZEB,

FALSE otherwise

It is clear that k = TRUE iffmn = 0, so that an equivalent expression for the set-valued observer (3S)
is given by

'"= U B' with I '={iEIk': -iT -=TRUE}

Corollary 7 Under the assumptions of Theorem 6, property (*-*) will hold for the simplificd algo-
rithm.

13
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Remark 8 In the particular case where I' I_ 1 -6 and B = (B _) for all i E I , the
algorithms exhibit a parallel structure explicitly. On the other hand, these algorithis asbsme that
certain calculations can be made exactly. This is not always possible, in which case one would have
e.g. to discretize the ODE (5) or use the following approximations

4 ,(p( . d . , p( .) m ax q ( ) T ' k2x )I Er
A (BL ) k E, X '(-

inf m(x) _ m(z) inf Vk(z) f Vk(x)
ZEB, zE Bk

where x4 is some point in Bk.

14



IV Numerical Experiments

A A One Dimensional Example

We consider a one dimensional model with

b(x, t) = -0.2x + 0.8 cos(2.5t) h(x) = sgn(x).

Even though the observation function is discontinuous, the convergence results are still valid, se,
James [4]. The location of the trajectory is determined at the first time t* it crosses the origin, su
the system is observable.

Figure 1 (below) shows results for the simplified (logical) fl. .w-based observer algorithm, wi: h
the choice If = Ik_- 6 and Bk, = -a(B'_) for all i E 1, ' 0.05, 6 = 0.02, and noise-fe
observations. The estimate it is a one-dimensional set for tim t before t, and zero-dimensiolal
after this time.

Figure 2 illustrates the numerical results obtained from the !.-ite difference nonlinear filter algo-
iithm. Here, A = 0.05, 6 = 0.005, R = 10- , and the observati.n path was noise-free. Notice the
jumps in the conditional mean trajectory and the peaking of the conditional density function each
time the origin is crossed. Numerical viscosity causes the density to spread between these times.

Figure 3 shows results for the finite difference observer algorithm, with 6 = 0.02, A = 0.0198.
v = 1.01, and noise-free observations. The plot of the value function clearly shows the valley
containing the state trajectory.

Figure 4 shows results for the flow-based nonlinear filtering algorithm, with the choice I = I'
16 and Bk = (IA(B_,) for all i E 16, A = 0.05, 6 = 0.02, R = 10

- 4 , and noise-free observations.
Marginals for the conditional density are shown for times befor, and after time t*.

Figure 1. Flow-based observer, simp!ified algorithm.
State xt and estimate it trajectories.
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Figure 4. Flow-based nonlinear filter.
(a) State xt trajectory, 90% confidence region, density at t = 0.2;
(b) State xt trajectory, 90% confidence region, density at t = 0.5.
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B A Four Dimensional Example

We consider here the problem of target motion analysis, which is to estimate the trajectory (positio
and velocity) of a target moving at constant speed along a straight line at the surface of the sea.
We suppose that bearings-only measurements are available in discrete time, taken from a moving
observation platform. If the observation platform itself moves at constant speed along a straight line,
the problem is non-observable. However, as soon as the observation platform changes its course, the
problem becomes observable. Assuming that the direction of motion of the target is known, which is
true in the case of perfect observations, we can reduce the problem to three dimensions. The state
vector is X = (z, y, v) and the state equation

it = Vt iJt = 0 Vlt = 0 .

The observation function is
-Px

h(x, y, v, t) = arctan[ x - xt

where (xzt, yt') is the (known) position of the observation platform at time t.

For this problem, the flow is known explicitly, and the flow-based algorithms (for both the
nonlinear filtering and the observer case) are explicitly parallelizable. A variant of the flow-based
NLF algorithm has been implemented at INRIA on a 16K Connection Machine from Thinking
Machines Corporation. Numerical experiments have been carried out, using noisy observations with
standard deviations ranging between one and five degrees. The goal is to find better maneuvers, and
to investigate them off-line. The filter is not intended to be run in real-time on the ship.

Acknowledgment: Research supported by NSF Grant "USA-France (INRIA) Collaborative Re-
search in Stochastic Control"NSF-INT-89-06965.
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Finite Dimensional
Approximate Filters in the
case of High Signal-to-Noise
Ratio

E. Pardoux, M.C. Roubaud
Universitd de Provence and INRIA

Abstract

We present some recent results on nonlinear filtering problems
with high signal-to-noise ratio. We concentrate mainly on the scalar
case, where the observation function is not one to one. We describe
two situations where a good suboptimal filter is provided by a bunch
of one dimensional filters, together with statistical tests for choosing
which filter should be followed.

1 Introduction

It is by now well known (see e.g. Pardoux [9]) that the nonlinear
filtering problem is a difficult one, whose optimal solution is in most
cases given only by the solution of an infinite dimensional equation,
the Zaka equation.

On the other hand, up to now all pratical filtering problems are
solved by approximate linear filters, in particular the well-known
extended Kalman filter (see e.g. [9]). However, the extended Kalman
filter does not rely on any mathematical foundation, it is known both
from theory (see [9], Picard [14] and section 2 below) and experience
that it sometimes behaves very poorly, while it gives very satisfactory
results in many situations.

A good framework for a mathematical analysis of approximate
filters, including the extended Kalman filter, is the situation of a

I
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high signal-to-noise ratio, i.e. we consider the following non linear
filtering problem :

dXj = f(Xt)dt+g(Xt)d4
dY = h(Xi)dt+edW,

where {Xt} is the unobserved process to be filtered, (Yt} is the ob-
servation process, {VJ and {Wj) are mutually independent standard
Wiener processes, all processes being scalar for simplicity. The goal
is to obtain asymptotic results as e -. 0 (with e > 0).

In the case where h is one to one, this problem has first been
analysed by Bobrovsky, Zakai [2] and Katzur, Bobrovsky, Schuss [6].
Jean Picard has then given a very complete mathematical analysis
of this problem, see [10], [11], [12], [13], and Bensoussan [1] has
given another proof of most of Picard's results. Those results can be
very roughly summarized as follows : for small e > 0, the variance
of the conditional law is of order E, the optimal and suboptimal
filters have a short memory (old observations are quickly "forgotten"
by the filter), and there exist various finite dimensional suboptimal
filters whose output is close to the conditional expectation of Xt
given {Y.,0 < s < t} (including the extended Kalman filter and a
one dimensional filter whose "error" is of the order of E). Let us
note that analogous results have been established for discrete-time
problems by Milheiro [7].

A second class of problems concerns the case where h is not one
to one. Two cases of such an h are as follows. Case A is where h
is locally one to one ; in the situation dim X = dim Y = 1 which
we shall consider below, this means that h is piecewise monotone.
Case B is where dimX > dimY (say dimX = 2,dimY = 1); and h
is a function of say XI only, h being either monotone or piecewise
monotone.

The aim of this paper is to present some recent results for the
two above problems. We shall mainly be concerned with case A, and
give some hints concerning case B.

The organisation of the paper is as follows. In section 2, we shall
present case A, discuss the problem in case c = 0 (no observation
noise), introduce two "detectability assumptions" and compare them.

L ___ ____ ____
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In section 3, we shall treat in some detail case A under one of the
two detectability assumptions. In section 4, we shall comment on
some recent results concerning case B.

Let us insist upon the fact that we shall not try in this paper
to formulate the most general known results, but rather to present
some of the main ideas on simple examples. More general results can
be found in the references which we shall give below.

2 Case A: Piecewise Monotone Observation
Function.

In this section, we want to formulate the nonlinear filtering problem
with small observation noise

dX, = f(Xt) dt + g(X)dVt
dY = h(Xt) dt + edWt

where all processes are scalar and h is piecewise monotone.
To be more specific, let us assume that g - 1 ; f, h E C' (1) with

bounded derivatives ; h has a unique minimum at x = 0, such that

h(O) = h'(0) = 0

and h'(x) < 0 for x < 0,h'(x) > 0 for x > 0.

Remark 2.1 : Inefficiency of the extended Kalman filter. The ex-
tended Kalman filter for the above situation is :

{ dX) = f(Xt)dt + E- 2 Rth'(X,)(dY - h(X)dt)
dRt/dt = 2f'(X,)R, + - c-2 h'(Y) 2 R

Note that (except possibly near t = 0) Rt is of the order of
e, hence E-2h'()t) is of the order of e- 1 . Replacing dY by its
expression in the first equation above yields :

dX, = [f(X,) + E-2 h'(X,)(h(X,) - h(X,))]dt + C-Rth(fc,)dW,

We note that, thanks to the leading term in the drift, the ex-
tended Kalman filter is such that h(Xt) tends to follow closely h(Xt).

ii
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However this effect of the drift is counterbalanced by the noise term,
which is also of the order of c- 1 . But the main point is that the ex-
tended Kalman filter has no tendency whatsoever to correct a wrong
sign : if It and Xt have the same sign, the drift tends to get then
closer, and if Xt and Xt have opposite signs, Xt and Xt tend to stay
for away one from the other (while the drift tends to get h(X) and
h(Xt) closer). In fact, if f(O) = 0, then Xt never changes sign, since
h'(O) = 0, while X. changes sign after arbitrarily large times with
positive probability.C'

Our aim is to present an efficient finite dimensional filter for the
above problem in two particular cases. In order to simplify the sequel,
we shall from now on assume that h is piecewise linear, i.e.

h [z h+x z > 0
h~z>)Sh-xz ,<O

with h+ > O, h- < 0. Of course, h is no longer C1 .
We want to consider cases where the variance of the conditional

law of Xt, given {Y; 0 _< s < t} is small (at least "most" of the time).
in order to see what kind of condition is needed, let us now consider

the (simpler) case where c = 0

dXt = f(Xt)dt+dVt

dY/dt = h(Xt)

Since h(Xt) is completely observed, it suffices, in order to recover
Xt, to recover its sign. We first note that we know exactly when
Xt reaches 0, and when it does not change sign. Hence the problem

is : given a time interval [a,b] such that Xt $ 0, t E [a,b], can one
recover the sign of Xt, from the observation of h(Xt), t E [a,b] ?

This is clearly impossible in the case f = 0 and h- = -h+,

since there is no way to recover the sign of a Wiener process from its
absolute value. Therefore we need to introduce what we call a "de-
tectability assumption". There are two such possible assumptions.

The first one is

(DA) Ih+ I Ih-l
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In this case, we have that

d <h(X.)> h2+ t E [a,b] if X, > 0, t E [a,b]

and d __ b fxo .b
< h(X.) >t= h2 t E [ab]ifX<0, tEab]

In other words, under (DA1), the quadratic variation of the process
{h(Xt)} tells us instantaneously the sign of Xt.

If (DA1) does not hold (say h+ = -h- = 1, i.e. h(x) = jxl), we
can still do something, provided the drift helps us. We now formulate
the second detectability assumption, assuming for simplicity that
h(x) = lI=-

(DA2) f(-)+ f(-x) o,x E?

Let Zt = h(Xt). If Xt > 0, t E [a,b], then

dZt = f(Z)dt + dV, t E [a,b].

If Xt < 0, t E [a,b], then

dZt = - f (- Zt)dt - dVt, t E [a, b]

i.e. we observe a Wiener process plus a drift, which differs depending
on the sign of Xt, thanks to (DA2). The log-likelihood ratio is given
to us in this case by the Girsanov theorem : for a < t < b,

L(a,t) = f(Z.) + f(-Z,)dZ, -I J'f2(Z) _ f 2 (-Z4Jd,

Note that if Xt > 0, t E [a,b],

L(a, t) = 1 If Z.) + f(-Z.)12 ds + j'i(Z.) + f(-Z .)dV

and if X, < 0, 1 E [a,b],

L(a,-) j[f(Z.) + f(-Zo)]2ds - j[f(Z) + f(-Z)]dA/

Li
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Hence L(a,t) is likely to be positive in case Xt > 0, a < t < b
and to be negative in case Xt < 0. The quality of the test (i.e. the
probability of making the right decision) depends on the value of

U= [f(Z.) + f(-Z.)12 ds,

which of course depends on t - a. The larger Ut is, the smaller the
probability of making a wrong decision is, since from the strong law
of large numbers :

L(a,t) 1U - as t -. 00, a.s. on {Uo +00}
Ut 2

if X, > 0, t > a, and the limit is - if X, < 0, 1 > a. However, in
most cases Xt changes sign after some time, and we don't want to
wait too long before making a decision.

Clearly, the situation is very different under (DA1) and under
(DA2). Under (DAI), the sign of Xt is detected instantaneously,
while under (DA2) some time is needed for the probability of a wrong
decision to be small.

Let us now describe the stragegy for a finite dimensional subop-
timal filter in the case e > 0. We expect that most of the time the
conditional law of Xt, given {Y,0 < s < t} will be almost completely
concentrated on one side of 0. Hence a good estimate of Xg should be
given by an approximate filter for problem (2.1) with h(z) replaced
by h+x (resp. hz) if Xt > 0 (resp. < 0). Therefore we consider the
two auxiliary filtering problems :

{ dXt = f(Xt)dt+g(Xt)dVt
(2.1+) dY = h+Xtdi+edW

and f dXt = f(Xt)dt+g(Xt)dV
dY = hXtdt+cdW

to which we associate, following Picard [131 the two filters

(2.2+) dX + = f(X + ) dt + E-'(dY, - h+X+dt)
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(2.2-) d± T = f(±;t-) dt - C](dY - h-_±T dt)

The filtering procedure which we propose consists in following
alternatively the filter (2.2+) and the filter (2.2-). Note that since
these two filters are given by stiff equations, the way they are initial-
ized at the time where we start to follow them is irrelevant. In order
to choose which filter to follow, we need :

a) to isolate time-intervals on which {Xt} is very unlikely to
change sign.

b) to decide which is the sign of {Xt} on a time interval on which
we believe that this sign is fixed.

We then follow the corresponding filter until a possible zero cross-
ing by X, is detected.

When Xt is close to zero and/or we cannot decide its sign, we
estimate it by 0.

This program has been rigorously developped under (DA1) by
Fleming, Ji, Pardoux [3] and Roubaud [15] in the piecewise linear
case ([15] allows noise correlation and a piecewise constant diffusion
coefficient) and by Fleming, Pardoux [5] in the nonlinear case with
a piecewise monotone observation function. Numerical experiments
are reported in Fleming, Ji, Salarne, Zhang [4].

The same program has been developped under (DA2) by Roubaud
[15] in the piecewise linear case, and numerical experiments are re-
ported in Milheiro, Roubaud [8]. In the next section, we shall present
some of the ideas in Roubaud [15], on the above example.

3 Case A : Piecewise Monotone Observa-
tion Function under the Detectability As-
sumption (DA2)

We consider again the filtering problem (2.1) under the condition
(DA2)

f dX, = f(X,)dt +dV( dYt = IXtldt+cdWt

Ii
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with the assumption

(3.2) 3k s.t. If (x)I :5 k(l + Inj), X E IR,

and the initial condition Xo = zo. We associate to (3.1) the two
"filters" (see section 2):

(3.3+) d±+ f f(±,) dt + r-'(dY, - Xtdt)

(3.3..) d±;- f f()Xfdt - C(dY, + Xrtdt)

with the initial condition fct = 4,j = xO

3.1 Detection of the zero crossing by {X~}

We first need to detect when Xt Might cross zero. For that sake, we
shall make use of the:

Lemma 3.1 For any 0 < a < b, c > 0, 0 < a < 1/2 and 0 < #f<
1 - 2o, there exist k > 0, Eo > 0 sat. for any 0 < E < o

P(sup IIXt I - fXt+I > c6') : exp(- k/e9)
[a,b]

Proof :It follows readily from (3.1), (3.2+) and the It&-Tanaka
formula ({Lj,t > 0) denotes the local time at 0 of {Xt})

d(IX, I-f() - e'(IXI - fXt)dt

+(sign(Xg)f (XI) - f(Xkt))dt + sign(Xt)dVt - dWj + 2dLt

iX'i - ec+= -/C(lxoI - fCO)
+jie-It)/e(sign(X*)f (X3) - f (-t.)) ds

+ 0j e-(t-)Iesign(X,) dV, - JO e(1)Iedi

It suffices to establish the result for each of the terms in the above
right side. The four first terms are treated as in [5, Lemma 3.1] with
the help of Lemma 3.2 below. The last term is analysed as in [15,
Proposition 1.3.11.0~
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Lemma 3.2 For any 0 < a < b, there exists c > '3 s.t.

E sup exp[cX,] 1 < 00
<t<b J

supE up exp[c(X+
)2] <cc

Proof : The first result is well-known (see e.g. [15, Lemma 1.2.7]).
The second one can be established as follows :

d.x+ = f(X+)dt + E-1 (IXI - fC+)dt + dWt

For x E R and {Zt} a bounded variation process, let Ut(x,z)
denote the solution of : t

U,(x,z) = z + f(U(x,z))ds + W + Zt

Let UM = Ut(xo, ZM), where {Z M } is the smallest increasing process
s.t.

U,(xo, ZM) _ X, t > 0,
and Ut = Ut(xo, Zm ), where {Z,) is the largest decreasing process
s.t.

Ut(zo,Z') 5 IXtl, t > 0.
It follows from a comparison theorems for one dimensional SDEs that

U ( Z0, Z ) _< fct+  !5 U( Zo, ZM )

and

E( sup exp[CU2(zo,Zm)] + su, exp[cU?(xo,Z M )]) < o0t';[f,b] trz[Ob]

follows from the same result for {IXtI}. Note that another proof of
the second part of this Lemma, which carries over to higher dimen-
sion, is given in [15, Lemma 1.2.8].>

ii4
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With the help of Lemma 3.1, we can easily build a procedure
which detects the possible zero crossings by {Xt}.

We choose Z > 0 and 0 < a < 1/2. Whenever X)+ < &, we
conclude that Xt might be zero, and we choose 0 as the estimate
of Xt. Whenever ±,+ > ZE* , we decide that Xg 0 0 and we try to
estimate its sign. For any 0 < a < b, we define

C(ab) = {X+ > &0 ,a < t < b}

The next and last step consists in a test for deciding, conditionned
upon the observation to belonf, to C(a,b), upon the sign of Xt,t E
[a, b].

There are two possible tests for this problem. The frst one is
an extrapolation of the test used in the case 6 = 0, and the second
one is a likelihood ratio test based on the ou'puts of the two filters
(3.3+) and (3.3.).

B'1fore presenting those two tests, let us formulate a stronger
version of (DA2), which will be supposed to hold throughout the
rest of this section :

(DA2s) 3 c,d > 0 s.t. inf [f(x) + f(y)] > d

3.2 Deciding the Sign of Xt : a Test based on the In-
crements of {Y}.

Define

F(x) = 0[f(y) + f(-y)]dy

L(a,b), which was defined in section 2, can be rewritten as

L(a,b) = F'Zb)- F(Z.)+ [f'(-Zt) - f'(Z)]dt

+
+ j[12(_Z) - f2(Zt)]dt

Of course, in the case c > 0, Zt = h(Xt) is not observed, and
L(a,b) is no longer a statistics. We note that
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&-o(Y+ _ Y) = e 1 , Zds + Wt+. - Wt

- Zt + W+ - Wt

Let m = [-'(b-a)] (['] denotes the integer part of its argument),
tk = a + ke, k = O,l. n,

2k = C'(Y,+ - Y), k = 0,1 ... m-

We can then define the statistics

LV(a,b) = F(2m,-) - F(2o)

+ e/2 Z [f'(-Zk) - f'(Zk) + f 2 (-2) - f2 (2Z)]

k=0

Assuming in addition to the above hypotheses that f' is Lipschitz,
it is not hard to show that for small E > 0 Le(a,b) is close to L(ab).
Hence, if Le(a,b) > 0 (resp. < 0), and provided the observation
belongs to C(a,b) and f,'[f(Z) + f(-Zt)]'dt is large enough, there
is a high probability that Xt > 0 (resp. < 0), t E [a,b].

Again, the details can be found in [15]. We note that the exten-
sion of this method to higher dimension requises that f be a gradient.

3.3 A Likelihood Ratio Test based on the Outputs of
the two Approximate Linear Filters.

We consider again the filtering problem (3.1), to which we associate
the two approximate linear filters (3.3+) and (3.3-). Note that, if
Y, = a{Y.;0 < s < t},

dY = E(IXtj/Yt)dt + Edvt

where {vt}, the innovation process, is a standard Wiener process (see
e.g.[9]). We expect that if Xt > 0 ('resp. < 0), t E (a,b], then Xj+
(resp. XT) is very dose to E(IXI/Yt), at least after some time.

I,
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Therefore we introduce the following quantity, which we interpret
as being an approximate log-likelihood ratio. Let a < e < b. Define

i= +X2 dY( -+/fC (dY, /2 - If I)dt

We shall now show that, provided e-a is not too small and b-e
is large enough, the conditional probability

P(Le > O/A+(a,b)),

where A+(a,b) {X 1 > 0,a < t < b}, is very close to one. A similar
result holds for P(L t < O/A_(a,b)). let

W = -P J4v, - IX.I)dV - (X. - 1)2ds]

and P+ be a new probability measure given by

dP+d- = Mb+

From Girsanov's theorem,

dY = Xdt + EdW + , 0 < t < b

where {W+,O < t < b} is a standard Wiener process under P+.
Hence, again from well-known results from nonlinear filtering, if

+= E+(X,/Y,), 0 < t < b

then

dY, = C+dt + edv+,O < t < b

We have

Le = C-1 z (ft+ fC)d&+ + e-/2jz b(X + + XJ) 2 dt

+ C-2 (k
+ +.,k)(X + -X)dtJr.X )dt
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We shall show that on A+(a,b) the third term above is negligible,
compared to the second term. Hence the sign of L' is given by that

of Of : i - 'joq+ + .)d, + -2/2 f'(±,+ + k< )2 di

= Nb+1/2<N>b

where {Nt} is a P+ martingale. Hence P+(Le,+ > 0/ < N >b> r)
is dose to one when r is large. We now establish :

Lemma 3.3 For any 0 < 3 < 1, r < (b-e)d2 , there exists k, co > 0
s.t. for any E E [O,eo],

P(C-2 jb(k+ + k-) 2 dt < r) < exp(-k/'3)

Proof : From lemma 3.1 (and its analogue with X+ replaced by
-X-), for any < 1, there exists k,co s.t. :

P({supIIXtI-XI> } U {suplIIXtI+Xri> >})<exp(-kle')
[a,b]

However,

7(x,+ +X) -E-'( + + X-) + (t,) + f(-)

hence

t + - ( + kfl +] e-( )/([f(Xk ) + f(J;-)ds

The first term in the above right side is very small for t > e. The
second term is bounded below by :

e(i - e- (e- a)/ e) inf [f(X+) + f(,k")]

Provided If(+ + )T 1 -< c, we deduce from (DA 2s) that

f(~) +f(--) > d

I
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The result now follows. 0
The fact that the term

&2j(X+ + Xfl) ,+
- +)dt

is negligible on A+(a, b) follows from Lemma 3.3, the obvious remark
that P+ and P coincide on A+(a,b) (since M + = 1 on this set) and
Theorem 3 from Picard [13] which states that for any p > 1,

(E+[It + - f1CX+j)1/ = o(E3/2)

We can easily conclude from the above :

Proposition 3.1 There exists a continuous decreasing function p:
R+ - IR+, with lim,-+. p(x) = 0, and for any p > 1, there exist
k, Eo > 0 s.t. :

P({L6 < 0} n A+(a,b) nC(a,b)):5 kP + p(b - a)

for any E E (0, Co]. 

We note that the difference with the results under (DA 1) is the
appearance of the term p(b-a) : for a fixed interval [a,b], under (DA
2) the probability of making a wrong decision does not tend to zero
as e 1 0. This is consistent with the results is the E = 0 case.

4 Remarks on the problems with dim X >
dim Y

Suppose that dimX = 2 and dimY = 1, and that

dY = h(Xl ) dt + EdW,

Assume first that h is monotone. Then one can show (see Yaesh,
Bobrovsky, Schuss [16], Picard [14]) that there exist efficient lin-
earized filters, provided that the variance of the conditional law of
Xt, given {Y.,0 <_ s < t} is small. But now this need not be the case
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in general. It is the case for the following model, which has been
rigorously analysed by Milheiro [7].

dXt = f,(XiX?)dt
dX? =f2(XtXt)dt+g(X ,X,)dVt
dY = h(Xt )di + EdWt

where f is C2 , for each x 1 ,X2 - fl(zX,2) is one to one and its in-
verse is Lipschitz, and some further regularity assumptions are satis-
fied. Milheiro [7] gives a two dimensional filter with output Xt which
is such that, for t > to > 0,

E(lXt - .;I2) =0(e3/2), E(IX? - X,2 12) =0(E112)

It is also possible to derive approximate finite dimensional filters,
even when the covariance of the conditional law is not small with
E, provided the problem has a special structure. Let us describe a

problem which has been successfuly treated in Roubaud [15]. Again,
dim X = 2 and dim Y = 1. We assume that:

dX, = (f(X) + bX2)dt + GdVt
dY = h(X') dt + dW

where f : B? -- JR2 and h : JR - JR are piecewise--linear (with
say two pieces), h being non monotone, b E B?2 , G is a 2 x 2 matrix,
and {V} is two-dimensional standard Wiener process. As in the
preceding section, we associate to this problem two (linear) filters,
and test procedures to decide which filter to follow. The conditional
variance in the z direction is small, but it is in general of order
one in the x2 direction. The fact that the system is linear in X 2 is
crucial here. Note that one major difference with the situation of the
preceding section is that the filter (or at least its second component)
does not have a short memory.
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Abstract Therefore, a second problem is to assume that the
model (1) is parametrized by some unknown param-

The purpose of this paper is to study some statis- eter 0 in e C RP, and to estimate 0 on the basis of
tical problems parameter estimation, binary detec- observations Y,. Several statistical problems are in-
tion, change detection (disorder problem), etc. for troduced in Section 2 for the parametrized model (1).
partially observed diffusion processes, using the like- Off-line statistical procedures based on likelihood are
lihood approach. presented in Section 3. It is shown in Section 4 that

It is shown that the stochastic PDE related to the the Zakai equation provides also a way to compute
state estimation problem, provides also a way to corn- these likelihood statistics.
pute the likelihood function/ratio. Another issue is to prove that the statistical algo-

A recent result on consistency of the MLE, in the rithms based on the likelihood approach, actually pro-
small noise asymptotics, is also presented. vide good estimates, in some asymptotic sense. A re-

cent result in this direction has been obtained for the
consistency of the MLE, in the small noise asymp-

1 Introduction totics, see James-LeGland [4].

Consider the following partially observed stochastic
differential system, defined on some probability space 2 Statistical problems

dX, = b(X,)dt + (X,)dW, (1) Let e C RP denote the parameter space. Assume
dY, = h(Xt) di + dVt that observations {Y, 0 < t < T) are available from

the following model
where the non observed process {Xj, t > 0) and
the observation {Y,, t > 0) takes values in Rm and dXt = bo(X,) dl + o'(Xt) dW'

Rd respectively. IWt , t > 0) and {Vt, t > 0) are
independent Wiener processes of appropriate dimen- dY = he(X,) d + dt1,O
sion, with covariance matrix I, and the random vari-
able Xo is independent of the Wiener processes, with The statistical problems to be considered in this
probability distribution po(z) dz. The available in- paper are
formation at time I is contained in the e-algebra
Yt = '(Y,, 0 < 8 < t). (a) parameter estimation : estimate 0 E 0.

The first problem one is faced with, is state esti-
mation : to estimate recursively the state X, given (b) binary detection : decide between the two simple
observations Y, up to time t. The solution to this hypotheses
first problem is given by the Zakai equation, a sto- Ho : 9 = ,
chastic partial differential equation which computes
recursively the conditional density of Xt given Y,. H8 = 91
This assumes that the partially observed dynamical
system (1) is completely identified, which usually is Another related problem is the sequential binary
not the case. detection problem.

*isseawch partially supported by USACCE under Cotrasct
DAJA4S-10-C-005, and by CNRS--GR Autonmatique. (c) change detection (disorder problem): decide be-
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tween the two composite hypotheses Introduce

HO: 0=0o, Z[0] exp { h;(X,)dY, - .2 f he(X)1 2 
drl

HI : there exists 0 < r < T, such that and Zio] ._ and Z [] z0[e]J Provided the probability ruea-

0 -=0 on 0< t<r sures on R- with densities 
p
t, 

0 E 
) 

are mutually
- absolutely continuous, the statistical model defined

0=01 on r < < T. above is dominated by some probability measure P
t

.
_ Indeed, it is proved in [2] that

In case HI has been decided, another problem of Proposition 3.1 The probability measures in M are
interest is to estimate the change time r. mutually absolutely continuous. In addition

A variant of this problem, is when only 00 is dP, ( ]
known : the alternate hypothesis HI is compos- d E(Zp[] YT)

ite with respect to both r and 01. In case H1 has
been decided, both r and 01 are to be estimated, where Pt is the reference probability measure.

(d) Bayesian change detection (jump Markov param- Parameter estimation
eter) : recursively estimate 0, given Y,, assuming
that {ot, t > 0) is a finite state Markov pro- The likelihood function for the estimation of 0,
cess, independent of the Wiener processes, with based on observations in Yr, is given by
jump intensity matrix Q. This problem is closely dP
related to state estimation, see Loparo-Roth- L[0] = d IT = E.(ZT[]IYT), (3)
Eckert [7]. 

dpt 1Y(

For each of the problems listed above, the first step aiid the maximum likelihood estimate (MLE) is de-

is to provide an expression, in terms of conditional fined as
expectation, for the likelihood function (LF), the like- 0 E argmax L[O]

lihood ratio (LR), or the generalized likelihood ratio 0Ee

(GLR), depending on the problem. To find 0, one can use an iterative optimization al-
gorithm for the maximization of the likelihood func-
tion L[O]. An alternative approach is to use the EM al-

3 Likelihood based off-line gorithm, as proposed by Dembo-Zeitouni [3]. This
statistics algorithm is based on the following immediate con-

sequence of the Jensen inequality, where 1[4] denotes

Statistical model On the canonical space 0 the log-likelihood function

C([0, 1; R " 
+d) are given Io] - [O'] = log E,( Tt I [ YT)

* a pair of stochastic processes {X,, 0 < t < T}

and {Y,, 0 < t < T) taking values in R" and _ E 'I ZT[O]
Rd respectively, > ,,og [ ] I T),- 0]

* a family M = {Pe, 0 E e) of probability mea- The idea of the EM algorithm is to replace the direct
sures, maximization of L[0], by the iterative maximization

of the auxiliary function, i.e.
such that under P0 + Eargmax Q[1, "]

dXt = b#(X,)dt+v(Xt)dW6 OE14

(2) Under mild hypotheses, the sequence { >, n _ 0}
dY = h, (X,)dt + dV,# converges to a stationary point of the original likeli-

hood function L[8]. See Campillo-LeGland [2] for awhere {W , 0 _< t _< T) and {Vs , 0 < t _< T} are comparison between the two approaches.

independent Wiener processes of appropriate dimen-

sion, with covariance matrix I, and the random vari- Binary detection
able X0 is independent of the Wiener processes, with
probability distribution po0(z) dx. Throughout the pa- The likelihood ratio for deciding between hypothe-
per, the coefficients are assumed to be continuous and ses H0 and Hi, based on observations in YT, is given
bounded functions on R-. by

The main assumption is that all the available infor- R != dP L I (4)
mation is contained in YT = e(Yt , 0 < f < T). R dP YT L 00] '(

I



where Pi = P#, for i = 0, 1. The likelihood ratio Note that, with this definition, the probability asso-
test is defined by the following reject region for the ciated with the null hypothesis H0 is P1 .
null hypothesis H0  The generalized likelihood ratio for deciding be-

tween hypotheses Ho and H 1, based on observations
_ in YT, is given by

where c > 1 is the threshold. R m dPr L[r]
Rmax- =max-, (6)

Sequential binary detection 0_<r<T dPr Y T 0:5rT L[T]

In this problem, the horizon is not fixed. Let Rt where

denote the likelihood ratio for deciding between hy- r dl' T - E YT)
potheses Ho and H 1 , based on observations in Y1. An LH - Et(Z [r]
admissible decision policy for the sequential binary de- dPt Yr

tection problem, is defined by a stopping time r and is the likelihood function for the estimation of the
a Y,-measurable {O, 1}-valued decision random vari- change time r, based on observations in YT. The gen-
able 6 : if 6 = 0 (resp. 6 = 1) the null hypothesis H0  eralized likelihood ratio test is defined by the following
is accepted (resp. rejected). In other words, 6 defines reject region for the null hypothesis H0
a reject region for the null hypothesis Ho. A threshold
decision policy is defined by a stopping time of the R > c,

form where c > 1 is the threshold.
r = inf{t > 0 : R, V (A, B)) Moreover, in case H, has been decided, the maximum

and a reject region for the null hypothesis H0 of the likelihood estimate of the change time r, based on
form observations in YT, is given by(1, if&f>B,

6 = E argmax L[r].
0 , if R , < A 0 <5 _T

where 0 < A < 1 < B < oo are the constant Introducing the or-algebras .' = o(X,, 0 < s <
thresholds. This problem has been studied by Baras- t) and Y,' = o'(Y, - Y, , s < r < t), the following
LaVigna [1], following Liptser-Shiryayev [6]. decomposition holds for the likelihood function L(r]

Change detection (disorder) L[r] = Et(ZT[r] I YT) = El,(Z,[0] 
• 
Z1I] I YT)

The statistical model for this problem can be de- = El (El(Z,[0]. Zj,[1 1 r, V Y, V Y-) I YT)
scribed through the introduction of time dependent
coefficients : for 0 < r < T, let P, denote the proba-
bility measure on the canonical space Q2, under which = E (,0]. Ell(Zi[1] 1Y, V Yr) I YT)

dX, = b,(t,X)dt + (X,)dW47 (5) = E, (Z,[[0] E'(Z [1] 17r, V Y r) I YT)
dY = h,(t,XI)dt + dV'

where Z,[i] = Z:[Oi] for i = 0,1. Definingwhere {W , 0 < I < T} and {Vt'*, 0 < I < T} are

independent Wiener processes of appropriate dimen- v"(z) = E'(Z-[1] I 3 v {X, = z})
sion, with covariance matrix I, and

A it holds

b,(t,z) = bo(z) + [bl(z) - bo(z)] 1{r _< i < T) , L[r] = Et (Z, [0]. v,(X,) I Yr)

hl(t,z) = ho(z) + [hi(z) - hO(z)] l{r< t < T) = E,,(Z,.[0]. v(X,),IY) (7)

where b.(z) = b,,(x) and hi(z) = h,.(z) for i =
0,1 The purpose of the next section is to provide some

Introducing for 0 < r < T computational procedure, that would allow to numer-
ically compute the likelihood based statistics intro-

Z,[r] = exp{j h:(r,X,)dY, - fh,(r, X,)'dr} duced so far.

and Z,[r] g Z0 [r] , it holds that the probability mena- 4 Computational likelihood
sures {Pt 0 < r < T) are mutually absolutely con- statistics
tinuous. Moreover

dP, t'E (ZT[r] I YT) In this section, the link between the likelihood
lPt YT E based statistical problems introduced above, and the



state estimation problem, will be investigated. At this Binary detection
point, it is necessary to introduce some notations and
definitions related to nonlinear filtering and smooth- A similsr expression holds for the likelihood ra-
ing. tio (4)

For the sake of simplicity, any reference to the pa- - ( 1)
rameter 0 will be dropped for the time being. -i (_1

0 Filtering: Let pt denote the unnormalized condi- Here the unnormalized conditional density {Pt,

tional density of the random variable X, given Y, 0) solves the Zaka equation

defined byd=Lpdhpdi, ()defined byd14 = L~pP, dt + h~p , dYt , (1

(p,€) =E (0(X)Z Z3) (8Y where L = L, andhi =h, for i=0,1

for any test-function 4,. The unnormalized condi-
tional density {pt, t > 0} satisfies the Zakai equa- Change detection (disorder)
tion [8]

dpj = Lpt dt + h*p dY , (9) Let {p, t > 0} and {v", t > 0) denote the solution

where L is the following partial differential operator, of
associated with the stochastic differential system (1) dp, = L;(t)p dt + h;(t)p dY,

.1 .(. 82 + b(.)L9 and
L _ E ax c~x aJ()*

.jy=1 ,=1 dvt + L,(t)v- dt + h*(t)v, dY = 0 , Vo. = 1

0 Smoothing (fixed-interval): Let T > 0 denote the respectively, where h,(t) is shorthand for h,(i, .).
fixed end-time, and qt denote the unnormalized con- The generalized likelihhod ratio (6) is given by
ditional density of the random variable Xt given YT,
defined by R- max ) (12)

(q,,4,) a= Et (O(X,)ZT I Yr). - <_ (p0 , 1) (

Introducing the backward Zakai equation However, a much more efficient expression can be ob-
tained. Indeed, for all 0 < I < T

dvt + Lv, dt + h'v, dYt=0, t r =I, (10)

it is proved in Pardoux [8,9] that (pt,v 1 ) is indepen- L[r] = (v,1) = (p,v)

dent of t and qt = Pt -vt . In addition and in particular for I = r
v,(z)-E 1(-Z4. lIY4.V{X = }) .

L[r] = (p,,v,) (p,v4), (13)
Existence, uniqueness and regularity results for sto-
chastic PDE can be found in Pardoux [8]. where

Let now L# and L,(t) denote the partial differential dp? = L~p dt + hpa dY, , (14)
operators

and
82 _I (8;b*- Z a'"(.) ___x, +Z z, dv +Livdt + h'vdY = 0,=1 (15)

$,j---I "

L,(I) m a (_) + 6,(ti' L8 Therefore, it is enough to solve two stochastic PDE,
2z(8) (L- ")Oai" the forward equation (14) with parameter 00, and the

backward equation (15) with parameter 01. This gives
associated with the stochastic differential equation (2) the following expression for the generalized likelihood
and (5) respectively, ratio

R=mx(PIO IV)

Parameter estimation 0<,!xT (4 .1)

The following expression holds for the likelihood which is much more efficient than the original expres-
function (3) sion (12), which would require to solve an infinite

L[O] - (4,1), number of stochastic PDE (see Figure 1).

where the unnormalized conditional density {(p, 1>
0) solves the Zakai equation Remark 4.1 The expression (13) for the likelihood

ratio could also be obtained from the previous expres-
dp: Lp; di + h;?,4 dY . sion (7) obtained by decomposition.



means that the frequency of the jumps is small - it
0" is possible to obtain an asymptotic expansion of the

unnormalized conditional distribution in powers of c.

| I 5 Asymptotic statistics

Some off-line statistical procedures based on likeli-

0 r T hood, have been presented. Whether these statistical
procedures actually provide good results, has to be
investigated in some asymptotic sense. Two kind of

Figure 1: Stochastic PDE for the disorder problem. asymptotics are generally considered in the statistics
of random processes, see Kutoyants [5]

It can also be proved that the likelihood function the small noise asymptotics, where the noise co-

r -- L[r] is smooth, provided the change can only variances are of order vc-, and r is sent to zero,

occur in the drift coefficient, i.e. h0 = hl. Actually,
using the two-sided stochastic calculus developped in the long-time asymptotics, where the observa-

Pardoux [10] tion horizon T is sent to infinity.

0 ± , 0 + • , v This section is devoted to presenting a recent result on
d(p,, v ) = (dthe consistency of the MLE in the small noise asymp-

totics, see James-LeGland [4].

Statistical model On the canonical space () =

= (p0, [Lo - L,] v,) dt . C([0, T] ; R!"+d) are given

a pair of stochastic processes {X,, 0 < t < T)
Bayesian change detection and {Y, 0 < I < T} taking values in R' and

The unnormalized conditional distribution of the Rd respectively,

compound state (Xt,Ot) given observations in 3t, is for each c > 0, a family M = {Po. , 0 E e} of
defined by probability measures.

(p ,) = El(O(X,) 1{0, =i} ZdO] 13,) , such that under Pa.,

for i = 1, 2,... N , where in this section the process dX, = bo(Xi)dt + V"
{Zt[0], 0 < t < T} is defined by (17)

Z'[0] exp h(X,)dY, r - j Ii,(X )I'dr dY, = h(Xt)dt + redV '.

I-e f. ( d l I} where fWtr", 0< I < T} and {V,0 , 0 < I < T}

and Zt[O] Z'[] . In addition {p, 0 < f < T) sat- are independent Wiener processes of appropriate di-

isfies the following system of coupled Zakai equations mension, with covariance matrix I, and the random
variable X 0 is independent of the Wiener processes,

N with probability distribution po (z) dr. It is assumed
dp = L!p[ di + hp dYt + , qji p, di, (16) that the initial density is of the form

j=1 • ,
where Q = {qij is the jump intensity matrix for P "( ) = Co,' ( exp{-ISe")}

the Markov process {0,, 0 < I < T). Note that in
system (16) the coupling occurs only through zero- where the function So' has an unique minimizer ?-.

order state-independent coefficients.
The unnormalized marginal conditional distribu- Limiting deterministic system For any 9 E E,

tion consider the following deterministic differential sys-
(p, 1) = c, .P(01 =I Yi ), tem

can be used to compute the maximum a posteriori ( - b(Z) , =

(MAP) estimate (W) Y

EMAP E argmax (p, 1) . = h,(4) = 0
1_<i<] which is obtained from (17) by sending r to zero. This

Assuming that the jump intensity matrix is of the defines a family M' = {(E'), 0 E e} of deterministic
form c - Q where c > 0 is a small parameter - which differential systems.

ii
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Abstract

In this paper we provide a consistency result for the MLE for partially observed diffu-
sion processes with small noise intensities. We prove that if the underlying deterministic
system enjoys an identifiability property, then any MLE is close to the true parameter
if the noise intensities are small enough. The proof uses large deviations limits obtained
by PDE vanishing viscosity methods. A deterministic method of parameter estimation is
formulated. We also specialize our results to a binary detection problem, and compare
deterministic and stochastic notions of identifiability.

Key words: Parameter estimation, nonlinear filtering, large deviations.

1980 subject classifications: 62F12, 93E10, 93E11, 60F10
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ResumnA

On d~montre la consistance du maximum de vraisemblance pour l'estimation de para-
m~tes dans les processus de diffusion partiellement observes, dans le cas de petits bruits.
Si le syst~me d~terministe sous-jacent est identifiable, alors tout estiznateur dui maximum
de vraisemblance est proche de la vraie valeur du param~tre inconnu, paurvu que les bruits
soient assez petits. La d~monstration utilise des r~sultats de grandes dM'iations, qui sant
obtenus par des techniques d'EDP (vanishing viscosity). On applique ce r6sultat hL un
prob~me de detection s~quentielle, et on compare les notions d~terministe et stachastique

Mots-Cids: Estimation de param~tres, filtrage non-lin~aire, grandes deviations.
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1 Introduction

In this paper we provide a consistency result for the Maximum Likelihood Estimator
(MLE) for partially observed diffusions with small noise.

The problem of computing the MLE for partially observed diffusions has received re-
cent attention. Dembo and Zeitouni 171 have investigated the EM algorithm, and Campillo
and Le Gland [21 have compared this algorithm with a direct maximization approach. Of
course, the goal of such efforts is to compute a good estimate of the unknown parameter.
The success or otherwise of such algorithms depends on whether the MLE itself is a good
approximation to the unknown parameter. The purpose of this paper is to address this
question of consistency when the diffusion and observation noise intensities are "small".

Our result was in part inspired by some large deviations limit results for nonlinear
filtering in Hijab [11], James and Bars [121, James [13]. The theory of large deviations
for diffusions with small noise is presented in Freidlin and Wentzell [10]. We exploit the
fact that, on finite time intervals, the diffusion X with observations Y are "close" to a
deterministic process x' with observations y'. We formulate a deterministic method of
parameter estimation for this deterministic process.

We prove that if the underlying deterministic system is identifiable and if a is the true
parameter, then any MLE i' is close to ct if - > 0 is small enough. Our proof uses PDE
vanishing viscosity methods and Laplace's asymptotic method.

As an application of our results, we study a binary sequential detection problem,
discussed in Barns and La Vigna [1], when the noise intensities are small. Deterministic
and stochastic notions of identifiability are compared in the context of threshold decision
policies.

,i i'1
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2 Maximum Likelihood Estimation

On a measurable space (0, F) we consider

* for each e > 0, a family M. = {Po,,, 0 E 0} of probability measures,

* a nair of stochastic processes X = {Xt, 0 < t < T} and Y -{=Y, 0 < t < T}
taking values in R"' and Rd respectively,

such that under P,

dX, = be(X,)dt + dWo" , Xo .po"(x)dx

dYt = ho(Xt) dt + dV" , Yo 0,

where {Wto, 0 < t < T} and {V8e, 0 < t < T} are independent Wiener processes, with
covariance matrices eI and c'd respectively, and X0 is a random variable independent
of the Wiener processes, with density of the form

P0x)' Co., expl- SAX)} 1 (2.1)

The set of parameters 8 C R P is compact, and the coefficients satisfy the following
hypotheses

(i) for all 0 e e, be E C (R-, R-), and he E C (Rm, Rd),

(ii) for all 0 E 0, S,* is convex, locally Lzpschitz continuous, and for some
'to E R m , S08() = 0 , S0o(x) > 0 if x $ to. Assume also

C1 + CiIxl2 > S.o(X) > C21xl - C,

for all x E Rn , 0 E E.

Further, the functions be, he and So depend continuously on the parameter 0 in the sense
that

(iii) for each 6 > 0, R > 0, there exists -y > 0 such that 1O' - 01 < -y implies

sup Ibo,(x) - bo(x)l < 6 , sup Ihe.(x) - ho(x) < 6
zeR- zEfR-

sup ISo'(x) - S'(x)l < 6
rEB(O,R)

2



There is no loss in generality in assuming that fl is the canonical space C([0, T]; Rm+d),
in which case X and Y are the canonical processes on C([0,T] ; R') and C([0,TI ; Rd)
respectively, and Pe,, is the probability law of (X, Y).

It is assumed that only Y is observed. Let YT denote the a-algebra generated by
the process Y on C([0, T]; Rd). The probability measures in M' are mutually absolutely
continuous, and the log-likelihood function for estimating the parameter e in the statistical
model M' given YT, can be expressed (note the minus sign) as

- t(0) = E log Et, (z '
t IYT).-

Here P, is a probability measure equivalent to Po,,, with Radon-Nikodym derivative

Z9 C dP9 ,, = 1 { h;(X,)dY, - fT 1h(Xo)2 ds

so that under Pt.e

dXt = be(Xt) dt + dWM't  , Xo " po (x) dx,

where {Wt', t > 0} and {Y, t > O} are independent Wiener processes, with covariance
matrices Ie. and CId respectively, and the random variable X0 is independent of the
Wiener processes, see [2].

The maximum likelihood estimate (MLE) of the parameter 0 in the statistical model
M', is defined on the canonical space C([0, T]; R d) by

0 E argmin 1(0)
OEo

The likelihood function can be computed through the solution of the Zakai equation

dp'"(x, t) = [L;.,p''](x, t) dt + -h;(x)po'(x, t) dY , (2.2)

where L;,, is the adjoint operator of the infinitesimal generator LO,. of the diffusion process
X under the probability measure Pe,

2 2  
" aL,. '7= zaz- +  

b--.
*1 8xO l ( ar.

Indeed
f'(0) = -log R p9 '(x, T) dx . (2.3)

The filtering problem is discussed in detail in Liptser and Shiryayev [15]. The following
lemma is proved in the Appendix.

3
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Lemma 2.1 The log-likelihood function -tE(O) depends continuously on the parameter
6 E 8 a.s.

Let now 8 be fixed. When c 1 0, the following weak convergence result holds on
C([0,T]; R4+"):

PF,, A 6(.0,"t),

where (x e , y') is given by the deterministic differential system

s = be(xo) , A = A{e - he(-) , y. = 0.

In particular, for all 8 E 8 , 6 > 0

Pe,.( sup IYt - yii1 > 6) ' 0 , (2.4)
o<t<T

see Freidlin and Wentzell [10].

Remark 2.2 As long as e > 0, the probability measures in M' are mutually absolutely
continuous, which allows us to define the log-likelihood function -t'(0). On the other
hand, asymptotically when e 1 0, these probability measures look more and more mutually
singular, which, together with an identifiability property of the underlying deterministic

system, indicates that the MLE may be consistent. Actually, this result will be proved
below.

The purpose of the next Section is to consider the problem of estimating the unknown
parameter 0 in the deterministic model M 0 = {(Eo), 8 E 8}.

4
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3 Deterministic Parameter Estimation

Consider the family M' = {(E), B E e} of deterministic differential systems

4 be(x 9), 4_ 4
(z) / (3.1){ yf = he(4) , yo =0.

Note that for all 8 E E, (Ee) describes the weak limit as e 1 0 of the family of probability
measures {P., E > 0}.

The problem is to estimate the unknown parameter 9 on the basis of an observation
record, which is supposed to be the output of some deterministic differential systems in
M'0 . Introduce the following definition:

Definition 3.1 The model M' is identifiable on [0, TI if for all 8' 0 0 in e, there exists
t E [0, TJ such that 14' y1 .

In other words, the mapping 9 '-0 {yt, 0 < t < T} is injective. The deterministic
parameter estimation problem consists of inverting this mapping. This can be expressed
in terms of the following variational problem.

Define the following functional on C([0,T] ; R)

(3.2)

It - h,()1 2 ds - t 1j01' ds,

if , is absolutely continuous, Jg( , t) = +oo otherwise. For all x E R ' set

W."(x, t) _= inf f{J8 ( , t) : t = x} I. (3.3)

The value function Wg(x, t) is continuous in (x, t) and is the unique viscosity solution of
the Hamilton-Jacobi equation [121

-iN(Xt) + He(x, t, DW0(x, t)) = 0 , W"(x, 0) = SO(x) , (3.4)

where the Hamiltonian H.,(x, t, A) is defined by

HO(x, t, A) = max {A(bo(x) + u) - 1u12} - -1ga h(x)12 + 1IglI2
(3.5)

= b;(X)A + 11A2 + h;(x)jt' - 1Ih,(x)l12

I: 2
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For definitions and an introduction to viscosity solutions of Hamilton-Jacobi equations,
the reader is refered to Crandall and Lions [3], Crandall, Evans and Lions [5].

Consider the following functional, defined on e by

1a(O)= inf WO(x, T) =inf{J,( ,T): EC([0,T;Rm )} . (3.6)
ZER-

A deterministic estimate (DPE) of the unknown parameter 0 in the model M' on the
basis of the observation record {y,, 0 < t < T} is defined by

i. E M. ' argmin 1.(0) . (3.7)
9E6

The main result of this section is the following:

Theorem 3.2 If the model M' is identifiable, then for all a E 0

M. = {c}.

Thus, under the identifiability hypothesis, the DPE is uniquely defined and the unknown
parameter can, in principle, be computed exactly from (3.4), (3.6), (3.7). Before proving

Theorem 3.2, we give a lemma which ensures that argmin t4(O) # 0, and also provides
0EO

useful estimates.

Lemma 3.3 For all a E E

(i) there are constants C > 0, C' > 0 such that, for all x E R"m, 0 E e

CIlXI2 + C > WO(x,T) > Clxj - C'

(ii) for all R > 0, 6 > 0 there exists -y > 0 such that 0' - 61 < Y implies

sup IW,(x,T) - WO(x,T)I < 6
.EB(0,R)

(zii) the mapping e - Q,(B) is continuous.

PROOF. In the sequel, every constant independent of 0,a E E and (x,t) E R-' x [0, Tj
will be denoted by C or C'. For any absolutely continuous function E C([0,T]; R")
and any A > 0, we have

1It21 < k.12+ fI, I2d- +A f I 12 d ,

6



and by Gronwall's lemma,

1& 12 < ( . I2 + Aj I&I 2dr) eXp{ (t -)/}.(3.8)

Since sup sup Ih(x)I < C it follows that, for all a E 8
GEO -ER-

2T .02d

and hence for all a, 0 E E

W O(x, t) >_-C , (x, t) E R" x [0, T]

Let Le. t) denote the Lagrangian in (3.2). It is easy to prove the following estimates

1'.j &1dr < I f' , - be($')12 d, + 1f Ib(&) 2dr < I L#(.,r)dT-+ C,

4 2 . 2 . a

1jI b (&)12 d, < 1tkr12dr+I be 4 2 dr <jI & 12 dr +C
In particular

t1 .12ds-C< J.(f,t) < S.(o)-+ ' I.12ds + C

Proof of (i): Setting f = x on [0, T], gives for 0 < t < T

W .(x,O <- ) 5 (f,0 t) -S.O(X) + C <_ C, IX12 + C .

Choose A > 0 such that N = T/A is an integer and 4eC1 A < 1. For n 1,...,N the
Dynamic Programming principle implies

WO(z,nA) = inf W(L-,_., (],,s)ds -1=+z}

Given 6 > 0, recursively select E' E C([0, T]; R m ) for n = N,... ,l as follows: N =X,

=~ and

( - )A) + .,s)ds < W(f,,nA) + -

(3.9)

< I fnn 12 + C +

Then n
III f 1'1ds < CIf",& 12 + C+

7
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and from (3.8)

+e e _ + jInI2 + I(C + N

which implies 6
ICA 2 < 2e In- 1)AI + (C + b)/C . (3.1)

Define .' E C([O, T]; Rm ) by = { for t E [(n - 1)A, nA], n = 1,...,N. Then O = z
and by iterating (3.10) we obtain

IT11 < CN IC1' 2 + cN.

Now also, by iterating (3.9)

J(CO,T) < W.(.,T) + 6 , (3.11)

and consequently

W*(x,T) _ J.(C,T) - 6 > S o(C) - C > CIxI - C',

which proves (i).

Proof of (ii): Let R > 0, b > 0 and X E B(0, R). Choose C as in (3.11). Then, from the
above estimates,

-foT I1l ds < Cn.

Using (3.8) we deduce that if x E B(O, R), then there exists k' > 0 such that C0' E B(0, r')
for all 0 E E. Therefore

W.' (x, T) - W.(x, T)

J 0(, T) - J e(e, T) + 1 b
I _ b. T # 0)2d

S. - S,(4) + 2 . - b,(Id )j2 ds - 2Te - bo() 2 ds

+J ds - 1 lyI - he(C.) ds + 16

Now, if 10 ' - 01 is small enough

ISOO(Oo) - so'(Vo)l < ib4
I, h(C)12 ds I - *2ds, < 16

0 4



Also
jf

T  , - b()l2ds - I~s - be()1 2 ds

T o 1/

!5j ki ds I 1/ J be() be(e) ds}~l

+1 JT Ibe,(e) - be( :)l Ibs() + be(e)I ds <

if 10' - 01 is small enough. Hence, there exists -y > 0 such that I0' - 01 < - implies

Wf (x, T) - W,(x, T) < 6.

Reversing the role of 0' and 0 proves (ii).

Finally, (iii) follows from (i)-(ii) and Lemma A.2. 0

PROOF OF THEOREM 3.2. From (3.2), (3.3) and (3.6) we have

J 8( , T ) >! c ., = 1 1 ds ,

for all 0 E 9 and E C([0, T] ; Rm), so that 1,(0) > c.. From (3.1) we have

J.(xa, T) = c. ,

so that for all 0 E E, 1,(a) = c. < 1,(0). Therefore a E M.

Assume that 0 E M.. Then ,(0) = f,(a) and

t.') = inf{J.e( ,T) e C([0, TI; R')} = Jf( ,T)

for some e C([0, T]; Rm ), since J, (.,T) is lower semi-continuous. Then from (3.2)

(i) So( ) = 0

(ii) He 0 < ) 0 s <T ,

(iii) =hg ) ,0 < s < T .

From (i) o = to, and therefore by (ii) and (3.1) 8 = x 0 < s < T . Then (iii) and
(3.1) imply

1 = h;,x*,) = l* , 0 < s < T .

Now since the model M' is identifiable, this equality forces 0 = a, which proves the
theorem. 0

9
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Remark 3.4 The notion of identifiability is reminiscent of a notion of observability for
nonlinear systems, which also has a variationai characterization, see James [13] [14].
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4 Consistency Result for MLE

The main result of this paper is the following:

Theorem 4.1 For all a E 9

(i) any MLE sequence {, e > 0} converges in P., -probability to the deterministic set

M.: for all 6 > 0
P.,(d(Oe, M) > 6) - 0

(zi) if the deterministic model M' is identifiable, then any MLE sequence {i, E > 0}
converges in Pa.,-probability to the "true" parameter: for all 6 > 0

- > 6) , 0.

The proof of this theorem depends on a technical extension of large deviations limit
results for nonlinear filtering contained in James and Baras [12], James [13]. We need to
show that certain limits are uniform in the parameter 0 E E. The key technical lemma is
the following:

Lemma 4.2 The sequence {i'(8), c > 0} converges in P.,-probability uniformly in

OE 19 to fo(O): for a16t> 0

P .'(sup I C(0) - f (0) 1 > 6) '42. 0.
OEO

We next prove Theorem 4.1 using Lemma 4.2; the remainder of this section is con-
cerned with proving Lemma 4.2.

PROOF OF THEOREM 4.1. By Lemma A.1 for all 6 > 0 there exists -y > 0 such that

{sup It'(0) - t. (0)1 < y} C {d(j', Ma) < 6}
@E@

Therefore, by Lemma 4.2

Pa.,(d(O', M,,) > 6) < P,,,(sup 11'(0) - /QO)j > -y) . 0
8E8

which proves (i).

The proof of (ii) follows at once from (i) and Theorem 3.2. C

11
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As in James and Baras [121, James [13], we employ the vanishing viscosity method of
Evans and Ishii [8]. We proceed by a logarithmic change of variables used by Fleming
and Mitter [9]. Define

Wo"(x, t) - - logp'C(x, t) . (4.1)

The Yt-measurable random variable W'.'(x, t) + h;(x)Y can be extended to a continuous
function defined on the whole canonical space 11o - {7 E C([0, 7; Rd) 70 0}, which
we denote by ue"[7](x,t), see [9] and [12]. For any fixed 7 E fno

ue'e[71 E C 2.'(Rm x [0,7]; R)

is the unique solution of the Hamilton-Jacobi-Bellman equation

9u,'[7](x, t) - EAu"'[ 7](x,t) + He,'[ 7](x,t,Du,[ 7](x,t)) = 0-5i (4.2)
u, 17](X, 0) = SAX) - clog ce,.

where the Hamiltonian H*,, 7](x,t, A) is defined by

H'"[7](x,t,A)  g;(x,7h)A + 11\1' - V ,'(x,,h)

0,1(x, ?) VY(x, 7) + e7*Aho(x) + edivgo(x, 7),
(4.3)

VI(x, i7) 
=  Ihe(x)12 + b;7*Dho(x) - X(Dhe(x))* 7717* Dhe(x),

90(X, 7) -= bo(x) - 7*Dho(x)

Next, for 7 E Slo let
uE[7] E C(Rm x [0,T]; R)

denote the unique viscosity solution of the Hamilton-Jacobi equation

U[,l(x, t) + H6 [71(x,t, Due[7 (x,t)) = 0 , u'"[17](x,0) = S0(x) (4.4)

where the Hamiltonian H6 [7](x, t, A) is defined by

Ho[71(x,t,A) = g(x,r )A + IAI2 
- V9(x,r) . (4.5)

Lemma 4.3 We have
lim us" [7](x, t) = u'[771 (x, t)

uniformly in 0 e E) and t E [0, 7] and uniformly on compact subsets of 7 e rio and
x E Rm~.

12



PROOF. The following estimates are obtained as in James and Baras [12], James [13],
using methods introduced in Evans and Ishii [8], Crandall and Lions [4]. Let R > 0 and
K c QO be compact. Then if c > 0 is sufficiently small, we have

I-'°'[17l(-,t0 < C

IDu',[77](x,t)l < C

Iu"" 17(x,t) - uC'"[D ](Is)I < c(vCt - s12 + It - sl)
for some constant C > 0 and for all 0 E E, t E [0,71, 77 E K and x E B(0,R). By
the Arzela-Ascoli theorem, there is a subsequence Ek 1 0 such that uo,4[7] converges
uniformly on B(0, R) x [0, T] to a continuous function w. This function satisfies the
Hamilton-Jacobi equation (4.4), and by uniqueness, w = u'[7] (Crandall and Lions [3]).
Hence u ,'[71 - u0 [77] as e 1 0.

Now u'[77] is a continuous function of 77 E K, 0 E E (see the proof of Lemma 3.3 (ii)).
Using this fact and the uniform estimate above we conclude that the convergence is
uniform. 0

Now
W*.'(x,t) = u9 '[Y](x,t) - h;(x)Y,

and
W"(x, t) = u8[y'](x, t) - h;(x)y,*

Lemma 4.4 We have
lim We"(x,t) = W:(Xt)
CIO

in P,,-probability uniformly in 0 E e, t E [0,T] and uniformly on compact subsets of
x E R m .

PROOF. Let p denote a metric on C(Rm x [0, T], R) corresponding to uniform conver-
gence on compact subsets. By (2.4), it is enough to show that for each 6 > 0

P (,suppp(u"[Y], u[y"]) > 6) C 0

Gfe

Choose 3 > 0 such that 117 - Y"11 < 03 implies

supp(u[ 1],u9 [y]) < 26
80o

From Lemma 4.3, if II? - y"11 < 0 and 0 < - < e0 then

sup p(u0[ l, u0[ 1) <

13
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Therefore, if 0 < e < co then

&,e(supp(G"[Y],UG[Ya]) > 6)

:5 P..(supp((u[yJ'U'[y]) > .26; IIy - Y'11I <0/)

+P.As(upp(U'[Y],U'(y'1) > 12b; Ily - Y'1 < /8)

+P.c,(IIY - y"11 >)/3) !S P,(1Y - yolI > /3) -10 0,

by (2.4).0

PROOF OF LEMMA 4.2. Recall from (2.3) and (3.6) that

1'(8) = -clogJ exp{ WG.'(x,T)} dx a.s.

t4(O) = inf W0O(x,T)

From the proof of Lemma 2.1 we see that

W6-'(x,T) ! C~xI - C' , a

for all E > 0, 0 E 19, where C is random and satisfies the following estimate

C' < -ol 1 + C.'

From Lemma A.3, there exists E0 > 0, /3 > 0 and c > 0 such that 0 < e < eo

sup p(We6", Wg") </ and ItY - i"atI < c
098

implies
sup 11'(0) < 6() 6.
8E9

Therefore, for 0 < e <c

P,e(sup I1'(0) - 4(O)I > 6)
*E9

5 Pa.c(sUpp(W*.tW.1) > /3) + PO,e(lY - Y-11 > C) _'1 0
Or.0

by (2.4) and Lemma 4.4. 0
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5 Binary Sequential Detection

In this section we discuss some aspects of a binary detection problem studied by Baras
and LaVigna [1], when the noise intensities are small.

Let e = {0, 1} and let X and Y be the signal and the observation processes described
in Section 2. For e > 0 fixed, we consider the two hypotheses Ho and H1. Under H0 the law
of (X, Y) is P0,,, whilst under HI the law of (X, Y) is P,,. The problem is to determine
which hypothesis is true, that is to detect the signal. In this section, fl = C([0, oo), R-+d).

A key technical assumption, essentially an identifiability condition, used in Baras and
LaVigna [1] is the following

1 ho'(t) - hi'(t)12 dt = o a.s. (5.1)

where ho,(t) a= Eo,,(ha(Xt) I Y,)

and
y3 =or (Y, 0 < s < t).

The deterministic analogue of (5.1) is

fo _y
° -,12 dt = oc. (5.2)

Clearly, (5.2) implies that the model M' defined by (3.1) is identifiable. In fact, if

a =infIT > 0:jI?_A3 ' 12 dt >0},

then M' is identifiable on each interval [0, T] with T > a.

The following result is a consequence of Theorem 4.1.

Theorem 5.1 Assume (5.2) holds and T > a. Define the MLE O" for the interval [0, T1.
Then, for a = 0, 1

In [1], Baras and LaVigna use a threshold decision policy to decide which of the

hypotheses is valid. Define the likelihood ratio

A'T ~ exp! { ~hi~(t) - hT,.(t)] dY, - I L I (t)1
2  

1 ho (t)1
2] dt}

i 1
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Note that as e 0, I-- jfo ' - gIldt under Ho
6 log A'T

+ -jfjdt under H,

A threshold policy u' = (r',6') consists of a {Yt, t > 0}-stopping time r' and a
Y, -measurable {0, 1}-valued random variable 6' defined by

7" inf{T > 0 : A' (el ' , ebl)},

I if A,. =e b/ '

0 if A", = ea/e

for some constants a < 0 < b. If 6' = I we decide that hypothesis H, is valid (i.e. that
0 = 1), whilst if 6' = 0 we decide H0 (i.e. 0 = 0). Of course, our decision may be in error.
Define an error probability for the policy u'

e(u') z Po,,(6 = 1) + P,(6 = 0)

Theorem 5.2 If (5.1) holds, then

e(u )  0

PROOF. Under assumption (5.1), Baras and LaVigna [1] prove that

T' < Oo a.s

and
1 - I°

=) ea'/(eb/c - 1)
= 1)- eb/c - eo/, P1,(6f= 0) -e /

Since a < 0 < b, the conclusion follows.

Thus, assuming (5.1), the probability of making an incorrect decision converges to
zero as e 1 0, and so (5.1) can be viewed as an identifiability criterion for the statistical
model M' = {P 0,,, P.,1.

We can define a deterministic threshold policy u = (-r, 6) as follows. Define

16



Let a<O < bandset
- = inf{T>0 : FT (a,b)}

r 1 if F,=b,

(0 if F,=a.

Theorem 5.3 Assume that (5.2) holds. Then for any threshold policy u = (r, 6) with
a<O<b, wehaver <oo and

6 = 1 if and only if H, is valid,

6 = 0 if and only if HO is valid.

PROOF. Under H1 , yt = y,' and for T > 0

FT I _y - j12 dt >0 .

By (5.2), there exists T > 0 such that FT, = b. Consequently r < T, and 6 = 1.

Similarly, under H0 , yt = y and for T > 0

FT = - 2T - L. 1
2 dt < 0.

We conclude again r < oo and 6 = 0.

Thus a deterministic threshold policy always makes the correct decision under the
(stronger) identifiability condition (5.2).

Fo , )mpute u' (approximately), Baras and LaVigna [I] use a numerical solution of
th Z. 'Ai equation. The above suggests an approximation when e 1 0 is small. Now

FT = Fr(y° , y'; y) .

Compute approximations o, to y', y' by numerically integrating the differential system
(3.1). Set

where Y is the noisy observation record. Now define, for a < 0 < b

= inf{T > 0 Ft V (a,b)}

I' / if = b ,

t0 if / = a .

17
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If the integration is sufficiently accurate, then we expect for a = 0. 1

P.,,(k = 6') 904 0.

Note that lal, b can be increased to increase the level of confidence.

Remark 5.4 In practice, the initial condition x0 is not known, so that one would have
to estimate az0 also, for instance using an observer.

18
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I A Appendix

j This Appendix contains some technical results used in the paper, and a proof of Lemma
2.1.

Lemma A-1 Let A C RI' be compact. For any 0 E C(A, R) define the set

Let f ,g E C(A, R). Then for all a > 0 there exists 03 > 0 such that

sup If (A) - g(A)I <3 i mplies V.\ F M(9 ) ,d(A, M(f) <a
AEA

PROOF. If not, there exists a > 0 and a sequence {gi, i > 0) such that

suplf(A)-g(A)1--0 asi-oc,
AEA

and
d(A., M(f)) 2! a for some A, E M(g.)

Since A is compact, we can assume that A, - A* E A as i -~ oo. Consequently

d(A,M(f)) >! a. (Al1)

Let A(f) E M(f). Then

= f (A(f)) + [g.( (f)) - f (A(f))] + [giO-) - g4O(f)) + ff(A, - g-(Ool

f (A(f)) + [g,(A(f)) - f ()(f))] + If (A) - .A]

f f (f )) + 2sup f (X) - g,\)I

Sending i -o o we obtain f(A-) :5 f (A(f) That is A* E M (f ) which contradicts (A.l).
0

Lemma A.2 Let A C RP' be compact, and F' E C(R, R) be such that

(a) there are constants C > 0, C' > 0 such that, for all z E Rm , A E A

FA(z) , C~zI - C',
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(b) for all R > 0, 6 > 0 there exists 7 > 0 such that iA' - Al < 7 implies

sup IFA(z) - F\'(z)l < 6
zEB(0,R)

Define mA A inf F(z). Then

(i) there exists a constant R > 0 such that, for all A E A

argmin FA(z) C B(0, R)
zER,"

(ii) the mapping A - m, is continuous.

PROOF. For any A E A let zA E argmin F(z). The existence of z' follows from the
ER-

continuity of FA and the coercivity hypothesis (a). Moreover

mA =f (?) _ CjzAl - C

and thus for all A E A Izl<mA + C'

- C

Fix Ao E A. By (b) for each 6 > 0 there exists -f > 0 such that X - Aol < -y implies

mA < F-(z-o) = m4 + [F\(z4) - F'°(zX°)] < m' + 6.

Then JA - Aol < -f implies

zAEB(OR), with RX m'A'+6+ C'
C

which proves (i).

By (b) again, this implies

mAo < F4o(z?) = m- + [F°(z\) - F\(z\)]

< mA%+ sup lF"°(z)-F'(z)l<mA+6,
zEB(O,R)

and the proof of the lemma is now complete. 0

The next lemma is a variant of Laplace's asymptotic method.
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Lemma A.3 Let A C R P be compact, and F1, G E C(R-, R) 5e such that

(a) there are constants C > 0, C' > 0 such that, for all z E R7, A E A

FA(z) _ Clzl - C' , GA(z) _ Clzl - C',

(b) for all R > 0, 6 > 0 there exists - > 0 such that A' - AI < 7 implies

sup IF'\(z) - FA'(z)l < 6, sup IGA(z) - GA'(z)l < b
zEB(O,R) zEB(O,R)

Let p denote a metric on C(Rm, R) corresponding to uniform convergence on compact

sets.

Then, for all 6 > 0 there exists 3 > 0, eo > 0 (depending on G) such that 0 < e < co
and

sup p(F, G") < /,
AEA

implies

sup clogJ exp{-1F(z)}dz + inf GA(z) <6AEA m ER-

PROOF. Define
rA(F) = inf FA(z) , m\(G) = inf GA(z).ER- 'ER-

Lower bound: It follows from Lemma A.2 that the mappin, A - m(F) and A -. mA(G)
are continuous. Further, there is a constant R > 0 such that

R
argmin GA(z) C B(O,

for all A E A. Thus we can choose 0 < /3 < 6/12 such that supp(F-, G\) < /3 implies
AEA

supIm(F)- m(G)l < 16
AEA

and
argmin FA(z) C B(O, R)

IER-

for all A E A. Set
BA ' {z E R' : FA(z) - m(F) < 16}.

Increasing R if necessary, B' C B(0, R) for all A E A by the uniform coercivity hypothesis

(a).
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Now (z, A) '-* GA(z) is uniformly continuous on B(O, R) x A, so there exists r > 0 such
that

jz - z'j + JA - A'I < r implies IG\(z) - GA'(z')j < 16,
and also, since 0 < 3 < -L

IFA(z) - FA'(z')l < 2-L6 + 1b = 1 6

for any z, z' E B(0, R) and any A, A' E A.

Let z
A E argmin FA(z). Then zA E B(0, R) and

Iz - zAI < r implies IF(z) - mr(F)l < .6,

for all A E A. That is B(zA, ?,) C Bsk for all A E A. Therefore

00 > V > (B6 ) vr > 0,

where p denotes the Lebesgue measure in R', and v, (resp. VR) denotes the Lebesgue
measure of a ball of radius r (resp. R) in R .

Now
aX( ) -1 ep-F(z)} dz

a\(,E) IR xi-1

>J exp{- F(z)}dz > p(B) exp{--(m (F)+ 4,}

and

c loga(e) > Elogv,m - re(F) - 16

_ elog V, - mr\(G) - 26 > -rnA(G) - 6

provided 0 < e < E, for some el independent of A E A.

Upper bound: Let 0 < v < 1. The uniform coercivity hypothesis (a) implies

aA(6) expl- F(z)} exp{-F"(z)}dz

exp{- 1 MA(F)) f exPi vFA(z)} dz

- exp{-i-- m'(F)} exp{- "E} I. expi - -Iz}dz

!S exp~li- V Cm(F). exp{ .,} C
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for all e > 0. Therefore

elog a(E) < -(1 - v)mA(F) + vC' + mE(loge - log vC)

< -mA(G) + 1(1 - v)b + z/mA(G) + 'C' + me(loge - log C)

Choose v so small that vm(G) + C' < 1b. Next, choose 0 < Eo < el such that
mw(log e - log C) < 16 for 0 < E < e0. Then we have:

elog aA () < - M" (G) + b

provided 0 < e < e0. 03

We turn now to the

PROOF OF LEMMA 2.1. From Sections 2 and 4 we have

1'(0) = -clog] q0".(x,T) exp-h;(x)YT}dx a.s.,

where for a.e. w E f, qe8e E C6' 2(R- x [0, 2]) and solves the "robust" Zakai equation

(xt) - !eAq' (x,t) + §*(x, t)Dq,"(x,t) + _1' (x't)q9"(x t) = 0

q ,(X, 0) =Poo"(W

with
Vo,(x, t) = V9(x, t) + !eY,'Ahe(x) + sdiv§g(x, t)

Ve'(x, t) ! IIhe(_)12 + b;Y*Dh9(x) - 1(Dhe(x))" Y Y* Dhe(x),

§e(x, t) '= bo(x) - Y'7Dhe(x);

see Davis [6]. Fix E > 0 and w E fl such that the above holds. Now Jgs(x,t) 1 C and
1V'(x, t)[ < C in R- x [0,T]. Then

9q (X, t) - eAqE(x, t) + (x, t)Dq9'(x, t) - Cq"(x, t) < 0,

and by the maximum principle, for all (x, t) e R" x [0, T]

q*"(x, t) - exp{-C-} }P (X) !5 exp{- (C21xl - C' - CT)}

i.e.
W','(x,t) _ C2I - C2- CT ,
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where C is random and satisfies the following estimate

CcO sup y a2+C

Therefore, by the Lebesgue dominated convergence theorem, it is enough to show that if
Ok - 00 in E) as k -, oo, then q**,'(x, T) - q*06(xT) for each X E R4'. The difference

z q ekn qO. satisfies

19 z(Xt) - 16Az(X, t) + §;k(X't) Dz(r, t) + !1re~(~)(

-[g(x, t) - §*. (x, t)] *Dqeoc(x, t) - ~[~~(X, t) - V~(X, t)] q (oe t)

and hence

a 2z(x, t) - 1 Az (x t) + §*,(x, t) Dz(x,t) - 1-Cz(x,t) Ce, P(01:,00)(I +-

where P(6,k, 00) -. 0 as k - oo. Then by the maximum principle

z (x,t) !5 exp{ECT} z(x, 0) +T expTCO.P(Ok, 00) (1 +

Now

z(x,O)! 11 exp{- C (C2IXI - C)2 '(X) - S

Consequently, sending k -~ oo we obtain

kl mc I q"' (x, T) - qeo.'(x, T)}

Similarly, we obtain the reverse inequality and conclude.
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