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Contract DAJA45-90—-C-0008

Nonlinear Filtering
and Approximation Techniques

This report presents the results obtained by the contractors in the study of partially observed
diffusions. Because nonlinear filtering is a central theme in the works reported below, we begin
with a brief presentation of this problem.

Let {(X,,Y:),t > 0} be a pair of stochastic processes satisfying

dX, = b(Xo)dt + o(X,)dW, + p(X,) dV,
(1)
dY, = h(X,)dt + dV,
where {(W,,V;),t > 0} are two independent Wiener processes, and the initial state X is a
random variable independent of {(W, V}),1 > 0}. The process {X,,t > 0} is not observed. We
observe {Y;, t > 0} and we seek to estimate the current state X, given the information available
at time ¢, i.e, given }, = o(Y,,0 < s < t).
Note that the choice of the above model (1) means that the state process {X,.t > 0} is a
continuous Markov process.

The best estimate in the mean square error sense, of any function of the unknown r.v. X,
say ¢(Xy}, based on }}, is the conditional mean E[g(X;) | }\]. and computing this quantity for
any function ¢(-) reduces to computing the conditional law of X, given },. Assuming that this
conditional law has a density with respect to the Lebesgue measure, it is well known that an
unnormalized version p,(x) of the conditional density satisfies a recursive equation. actually a
stochastic PDE called the Zakai equation

d
dp= L™ pedt+ Y By p dY* (2)
k=1
where L* and Bj are the adjoint in the L? sense of the partial differential operators
m 62 m 9 m o
-1 1 r 2 = 2
L-—zlgla 31.311+§b oz, and B, hk+§ﬂk o,

respectively. Note that at each time ¢, p¢(-) is a random function of the state variable z. i.e. a
random element of an infinite dimensional space. This is of course a serious problem for practical
implementation.

Let us describe the results which have been obtained during the period covered by the present
contract.




1 ZPB

The purpose of this software is to make available the experience accumulated by the contractors
about numerical techniques in nonlinear filtering. The basic idea is, given a formal description of
both the model (1) and the problem to be solved (e.g. filtering, smoothing, hypotheses testing.
etc.), to produce a program for the numerical solution of the corresponding Zakai equation (2).

The current version of ZPB is based on the computer algebra system Maple!. The main
improvement over previous versions, is the existence of a user interface and graphical tools
based on the X Window system?. The interface guides the user through the following steps

o definition/modification of the model and the problem to be solved, and automatic gener-
ation of the corresponding Fortran program,

o definition/modification of numerical values related with either the model or the algorithm,
execution of the Fortran program, and visualization of the results,

o saving/loading of interesting examples.
Graphical tools are available to visualize the results of the computation

o a representation of both the simulated state trajectory and the estimated state trajectory
vs. time is provided in a first window, as well as a shaded area representing some confidence
region for the conditional distribution at a given level,

o a time can be selected in the first window, and a representation of the conditional density
at the selected time is then provided in a second window,

o it is also possible to visualize in the second window, the continuous time evolution of the
conditional density.

A short document presenting what is currently available in ZPB, and what is to be developed
in the near future, is joint to the report.

2 Discretization of the Zakai equation

We are interested in studying numerical methods for the approximate solution of the Zakai
equation (2)
d
dp = L*p,dt+ 3 Bip dY
k=1
where L is a second order partial differential operator, and B; are first order partial differential
operators.

'Maple is a registered trademark of Waterloo Maple Software.
2The X Window system is a trademark of the MIT.




In the case of independent noise, where p = 0 in equation (1) so that By = h; are “zero-th
order” partial differential operators, we have studied in [10] time discretization schemes based
on splitting-up approximation, with error estimate of order O(A) and O(A%/2) where A is the
time step. A probabilistic interpretation of the discrerization schemes was also provided.

In the case of correlated noise, we have proposed in [3] a time discretisation scheme based
on the same splitting-up approach, with error estimate of order O(A). The correction part
in the splitting-up approximation. is related with a degenerate stochastic PDE. for which a
representation result in terms of stochastic characteristics can be found in [9] and [8]. We
have obtained a time discretization scheme for the degenerate stochastic PDE based on Euler
approximation of the stochastic characteristics, with error estimate of order O(AY/?),

Finally, extending the results of Raviart in the deterministic case {20], we have proposed
in [4] a space discretization based on particle approximation, for first order stochastic PDE in
Stratonovich form, which are degenerate second order stochastic PDE.

In relation with the design of finite time observers for deterministic partially observed systems
presented in 5], full discretization schemes have been introduced in the special case of noise frec
state equations, where both o = 0 and p = 0 in equation (1), see [7].

3 Filtering of piecewise linear systems

0O Continuous time systems

We consider a multi-dimensional stochastic system with dim X = dim } = m. described by

dX, = b(X)dt+ f(X,)dV, + g(X)dW,
(3)
dY, = h(X,)dt + ¢ dW,

where ¢ is a small parameter.

Our interest is for the situation where the coefficients are linear (or constant) on each com-
ponent of a finite polyhedral partition {©,,1 < i < I} of the state space R™. For the sake of
simplicity we assume that [ = 2.ie. O_ = {z : (r.u) < 0} and O, = {z : (z,u) > 0} where
u is some non zero vecter of R™. Let A = {z : (z,u) = 0} denote the separating hyperplane.
We assume that the coeflicients of (3) satisfy

I € e_ e 0.,,
bz) = B_zx B,z
flz) = F. Fy
g(z) = G- G,
h(z) = H_x H.z

and we assume that both H_ and H, are invertible. The case where h(:) is one-to-one has
been considered in the previous contract, and we asume here that h(-) is not globally injective.




On each of the half spaces ©@_ and ©, we have a linear system with non Gaussian initjal
condition. If we knew that the state would remain in a given half space for a certain time
interval, then it would be natural to approximate the optimal nonlinear filter by the Kalman-
Bucy filter associated with that half space. The design of an approximate filter is based on this
idea.

o two Kalman filters X% and X, are considered which are associated with the two linear
systems corresponding to the original piecewise linear system,

© a first test is used to find a time interval [a,b] such that X, does not cross the separating
hyperplane A in [a,b],

o provided that such a time interval {a,b] has been found, a second test is used to decide
whether X; € O_ or X, € O, on [a.b], i.e. to decide which Kalman filter X;¥ or X to
follow on [a, b].

We have proved in [19] that an hyperplane-crossing test can be designed with exponentially
small probability of error. and that it is possible to design a test to decide between ©_ and O,
under either one of the following detectability hypothesis

(DH;) H_S_H- # H,S, H}
T=H_Y_H:=H,%,H

(DH,) ker fH_B_HZ'-H,B,H'lca
the matrix T-'[H_B_HZ'- H, B, H]'] is symmetric

where X_ = F_ FZ 4+ G_ G* and similarily for £,.

The main difference between the two detectability hypothesis is that under (DH;), we can
decide almost instantaneously with an exponentially small probability of error, whereas under
(DH3), we need the interval [a.b] to be long enough (actually almost infinite) in order to get an
exponentially small probability of error.

Some examples in the case where dim X > dim Y have been also considered in [14], [18].
and [19].

D Discrete time systems

We consider a one-dimensional discrete time stochastic dynamical system described by

75 + e b(zr) + VE o(zh) wi

Ti41

1]

gk = hlzx) + Ve

where ¢ is a small parameter. Such a system results e.g. from the discretization. with time step
At = ¢, of a continuous time system with small observation noise, such as (3) above.
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Our interest is for the situation where the coefficients are piecewise linear (or constant) i.e.

r<0 z2>0
bx) = B_z B,z
o(r) = o_ (%
h(z) = H_z H_z

In the case where A(:) is not one-to-one (i.e. H, H_ < 0), we introduce the following detectabil-
ity hypotheses

(DH;) H? 0% # H2 02

H20% = H;{ ai
(DH3)
B_ # B,

The case where hypothesis (DH) holds has been considered in [2]. Under hypothesis (DH;). we
have proved in [15] that an efficient approximate filter can be built, which is based on the same
following idea than in the continuous time situation

o two Kalman filters iZ' and Z; are considered which are associated with the two linear
systems corresponding to the original piecewise linear system,

o a first test is used to find a time interval [a.b] such that z, does not cross the zero axis in
{a, b] with high probability.

o provided that such a time interval [a,b] has been found. a second test is used to decide on
the sign of z4 in [a.]], i.e. to decide which Kalman filter Z} or Z; to follow.

Using the same heuristic approach as in {2}, i.e. approximating some discrete processes by
diffusion processes. explicit expressions have been obtained for the selection of thresholds.

Some numerical experiments have been performed on various examples, and the proposed
approximate filter has been compared with the optimal filter obtained from the numerical so-
lution of the corresponding Zakai equation. It is worth to mention that the Fortran programs
for the numerical solution of the Zakai equations, have been automatically generated by our
software ZPB which is described above.

4 Statistics of partially observed diffusions

We have shown in 1] that the Zakai equation provides also a w2y to compute the likelihood
function/ratio in a large variety of statistical problems for partially observed diffusion processes.
including : parameter estimation. binary detection, change detection. etc.




An important issue is to prove that these statistical procedures based on the likelihood
approach, can provide good estimates or decisions in some asymptotic sense. Consider for
example the statistical model

dX, ba(Xt)dt+EdW, ’

dY, = hg(X,)dt +edV;,

where @ € © is an unknown parameter, which appears in the coefficients bg(-}, hg(-) and also in
the density p8(~) of the initial condition Xj.

Computing the likelihood function for the estimation of the unknown parameter 8 on the
basis of observations {¥;.0 < t < T}. involves the solution of the Zakai equation corresponding
to the associated filtering problem. We have proved in {6] the consistency of the MLE under the
small noise asymptotics ¢ | 0. in the following way

o using large deviations theory. it is proved that the limiting points of the MLE sequence
belong to the set of minimizing points of a least-squares type functional for the estimation
of 8 in the limiting deterministic system ¢ = 0,

o under an identifiability properiy of this limiting deterministic system, this set reduces to
the “true” value of the parameter.

5 'Transfer to the US

F. LeGland has presented some results on time discretization of the Zakai equation [10]. and
filtering of piecewise linear systems [17], at the IEEE CDC in Tampa (December 1939).

P. Milheiro de Oliveira has presented the results on approximate filters for discrete time
systems [13], at the IEEE CDC in Honolulu (December 1990).

E. Pardoux, F. Campillo and F. LeGland have participated to the NSF-INRIA Workshop on
Stochastic Analysis, organized at Rutgers University, where the results on particle approximation
for first order stochastic PDE [4], and numerical approximation of nonlinear filters and finite
time observers [7]) have been presented (May 1991).

E. Pardoux and I'. LeGland have participated to the International Conference on Stochas-
tic Partial Differential Equations, and have given tutorial lectures at the School-Seminar on
Stochastic Partial Differential Equations. organized at the University of Northern Carolina in
Charlotte, with partial support of the Army Research Office (May 1991).

E. Pardoux has given a series of lectures on Nonlinear Filtering and Associated Partial
Differential Equations. in Ecole d’Ete de Probabilités XIX in Saint-Flour (August 1989). The
lecture notes [16] present the most recent developpments in the theory of nonlinear filtering.
including results obtained by the contractors, for the first time in hook form.
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Introduction

The purpose of ZPB is to produce Fortran programs for the numerical solution of the Zakai
equation. This equation allows to solve various estimation problems in partially observed
systems, such as

o state estimation : filtering, fixed-interval smoothing, fixed-lag smootking, etc.
o detection, either off-line or sequential,
e parameter estimation,

¢ change detection (disorder), either off-line or sequential.

Given a description of both the model and the problem to be solved, the Fortran pro-
grams are generated with the help of the computer algebra system Maple. This description
is contained in a file zpb.data, in the form of Maple instructions keyword:=value;.

The generated Fortran programs rely on routines from the scientific library NAG, which
is assumed to be available.

In addition to the Maple program, an interface is provided to help the user defining
the model and the problem to be solved, and graphical tools are available to visualize the
results. Both the interface and the graphical tools are based on the X Window system.

The possible models and problems to be solved, and some of the algorithms actually
implemented in the generated Fortran programs, are presented in these notes.

Maple is a trademark of Waterloo Maple Software. NAG is a trademark of the Numerical
Analysis Group Ltd. PostScript is a trademark of Adobe Systems Inc. The X Window
system is a trademark of the MIT.




A Models of Partially Observed Systems

The class of systems to be considered is modeled as a m—dimensional diffusion process
dX; = b(X,)dt + o:( X)) dW, ,

where {W,, t > 0} is a r~dimensional Wiener process with covariance matrix . This
includes the particular case of systems modeled as the solution of an ordinary differential
equation

X, = b(X,) .

In the case of a nowse driven slale equalion, it is assumed that the state is
one-dimensional. Ertension to two-dimensional state is planned.

[OBSERVATIONS |

The state of the system is not directly observed. However, d-dimensional noisy nonlinear
observations of the state are available, either at discrete times {¢,,t,,- -}

2 = he{Xy) + v,

where {vy,vs,--+} is a d~dimensional Gaussian white-noise sequence, with non singular
covariance matrix R, or in continuous time

2= h( X)) 4 vy,

where {v;,! > 0} is a d-dimensional Gaussian white-noise process, with non singular
covariance matrix K. Introducing the integrated observation process

t
Y, = / z,ds ,
o
the observation equation becomes
dry = h(X,)dt +dV;
where {V;, t > 0} is a d-dimensional Wiener process, with non singular covariance ma-
trix R.

Another information about the model is the correlation structure between the state
noise and the observation noise.

It is assumed that the state noise and the observation noise are independent.
Erztension to allow notse correlation is planned, see Florchinger-LeGland [4]

and [5].




A first description of the model is provided by the following keywords to be defined
in the file zpb.data

dim_state dimension m of the state (integer)
noise driven_state truelfalse
mnoisejriven_state=tme]
dim noise dimension r of the driving noise (integer)
observationmode discretelcontinuous
dim_obs dimension d of the observation  (in.eger) |

| COEFFICIENTS |

The next step is to provide the algebraic expression of the drift vector &(-), the diffusion
matrix o(:) (in the case of a noise driven state), and the observation function h(-) or k,(-)
depending on whether the observations are available at discrete times or in continuous
time. In addition, the probability distribution of the m-dimensional initial state Xy has
to be selected among the following elementary probability distributions

(i) Dirac mass at point zg,
(i1) Gaussian distribution, with mean p and covariance matrix ¥,
(1i1) uniform distribution on an coordinate cube [z,, z,).

Eztension to allow mizture of elementary probability distributions is planned.

A further description of the model is provided by the following addi.ional keywords
to be defined in the file zpb.data

drift drift m-vector (algebraic Maple expression)
[if noise driven state=true|
diffusion diffusion (m,r)-matrix (algebraic Maple expression)
observation observation d-vector (algebraic Maple expression)
initial diracigaussian|uniform

PARAMETERS

The algebraic expression of the coefficients can contain, in addition to the state variable x,
or x1,...,xm if the state is m-dimensional, and the time variable t, some other parame-
ters. A list of these parameters is build by the Maple program, from the description of the
model given in the file zpb.data, and stored in the file .model. Additional parameters
include




(i) parameters of the initial probability distribution,

(ii) covariance matrices Q and R (diagonal) of the noise processes.

The numerical values of all these parameters are read at run time by the generated Fortran
programs in two different files simul.data and filt.data, This allows to consider mis-
specified estimation problems, i.e. to address robustness issues.

Extensions to allow the covariances matrices to depend on parameters, and
to treat more general robustness issues (different algebraic ezpression of the
coefficients for simulation and filtering), are planned.
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B Estimation Problems and their Solutions

With the diffusion equation
ng = b;(Xg)dt + a,(X,)dW, N

is associated the following time dependent second order partial differential operator
m
=1
T2 z=: dz; 61:, 'Z; ! 0

with the covariance matrix a; = 0y Q o} .

The state estimation problem consists in estimating the state X, given only the ob-
servations. In the case of discrete time observations, the observation o-algebra is defined
by

Zk =0(zh"'72k) 5

whereas, in the case of continuous time observations, it is defined by

YVi=o(Y,,0<s< ).

Notation Throughout the paper, the scalar product and the corresponding norm in
R4, associated with the symmetric positive definite matrix R™!, are denoted by (-, - )g-:
and | - [p-1 respectively.

FILTERING

The goal here is to estimate recursively the current state X, at time t , given only the
past observations up to time 2.

DISCRETE TIME OBSERVATIONS

Introduce the conditional a priori and @ posteriori probability densities
pi(z)dz = P(Xy €dz | Zy)  and  pi(a)de = P(X, € dr | Z4)
respectively. For any t,_; <t < t; , introduce also

pi(z)dz = P(X, € dz | Zy.,) .

The transition from pi_1(z) to pi(z) is divided into two steps




o prediction step : between t;.; and # , the density pf(z) solves the Fokker-Planck
equation

with initial condition pf,_ (z) = pi-1(z) , which gives in particular pj (z) = pf (z) .
® correction step : the Bayes formula gives
pe(z) = - Vi(2) - pi(2)

where

Wi(z) = exp { -} lax — hu(z)lhr}
is the likelihood function for the estimation of X, , based on the observation z; alone,
and ¢k is a normalization constant.

CONTINUOUS TIME OBSERVATIONS

The unnormalized conditional probability density solves the Zakai equation

dpy = L] prdt + pi (he.@Y()p-

P(X;edr|))=c pz)dr,

where ¢, is a normalization constant.

SAMPLED OBSERVATIONS

Introduce a uniform partition 0 = {3 < --- < t; < --- of the time interval [0, 00), with
time step A = tx — t,_;. The first step is to sample the available observation trajectory.
i.e. to build the following sequence of compressed observations

& ) 1
ho(X,)ds + KIV‘* - Vall, (+)

th-1

1 1
yl? = Z[Yu -Y,.,]= A
and to use the approximate observation model

ykA = hln(xl~)+va ('*)

instead, where {v2,v2, .-} is a Gaussian white noise sequence with covariance matrix

R/A.
Defining the sampled observation o-algebra
Ve =0l ),

6




it is possible to use the results available for the case of discrete time observations. Intro-
duce the conditional priori and a posteriori probability densities

pi(z)dz = P(X,, €dz | Y,) and pe(z)dz = P(X,, € dr | VP
respectively. For any t;_, < t < #;, introduce also
Pf(f)d-'” = P(X,edr| ykA—l) .

The transition from pi_1(x) to pe(z) is divided into two steps just as in the case of
discrete time observations, except that the correction step involves

V() = exp {34 [y ~ ke, (2)h-1}

which is the likelihood function for the estimation of X,, in the approximate observation
model (*x), based on the sampled observation y2 alone as defined in (*), and c; is a
normalization constant.

[FIXED INTERVAL SMOOTHING|

The goal here is to estimate the state X, at any time 0 < ¢ < T, given all the observations
in the time interval [0, 7).

DisCRETE TIME OBSERVATIONS

Assume that the final time T satisfies ty < T < {4 for some N. Introduce the condi-
tional smoothing probability density

gr{z)dr = P(X,, €dzr | 2n) .
For any ;.3 <t < i , introduce also
¢f(z)dr = P(X, € dz | Zn) .

These probability densities are absolutely continuous with respect to the corresponding
filtering densities, i.e. ge(z) = pi(z) - ve(z) and ¢¥(z) = p*(z) - v¥(z) .

The backward transition from vk(z) to vx_,(z) is divided into two steps

e at time #;
ve () = i - Ua(z) - 0a(2) ,
where
Wi(z) = exp{~1 {2 - hu(2)}-1 }
is again the likelihood function for the estimation of X,,, based on the observation
z) alone, and c¢; is a normalization constant.

7




o between ?; and t,_, , the derivative v5(z) solves the backward Fokker-Planck equa-

tion !
v,
o TLevi=0,

with initial condition vf (z) = v (z) , which gives in particular vi_;(z) = v (2).
It is immediate by duality, that
(Pryvi) = (Pi» 0% ) = (Ph-1,Vk-1)

which implies that the conditional densities gi(x) are properly normalized.

CONTINUOUS TIME OBSERVATIONS

Here also, the unnormalized smoothing conditional probability density is absolutely con-
tinuous with respect to the corresponding unnormalized filtering conditional probabuty
density, i.e. g:(z) = pi(z) - v;(z) where the derivative solves the backward Zakai equation

dvl + Lt Ut dt + v, (h(‘d}l;)R—l =0 S

i.e.
P(Xiedz|Yr)=cr qx)dr,

where cr 1s a normalization constant.

Vi

SAMPLED OBSERVATIONS

This case is very similar to the case of discrete time observations. Introduce the conditional
smoothing probability density

a(z)dz = P(X,, €dr | Y3).

8




For any ¢, <t <t; , introduce also
gf(z)dz = P(X, € dz | Yay.

These probability densities are absolutely continuous with respect to the corresponding
filtering densities, i.e. gi(z) = pi(z) - vi(z) and ¢¥(z) = p¥(z) - vi(2) .

The backward transition from vi(z) to vy_;(z) is divided into two steps, just as in the
case of discrete time observations, except that the correction step involves

¥ (z) = exp{~1A Iyf ~ hy(2)3 ]} |

which is the likelihood function for the estimation of X,, in the approximate observation
model (*x), based on the sampled observation y® alone as defined in (+), and ¢, is a
normalization constant.

The description of the estimation problem to be solved is provided by the following
keyword to be defined in the file zpb.data

[ problem filtering | smoothing |

Eztensions to other state estimation problems, suck as fized-lag smoothing. or
to statistical problems. including parameter estimation, detection, change de-
tection, etc., either off-line or sequential, are planned, see Campillo-LeGland [1].

Sowumuony




C Numerical Algorithms

Given a model and an estimation problem to be solved about this model, both described in
the Maple file zpb .data, the purpose of ZPB is to provide Fortran programs and visualiza-
tion tools, for the numerical experimentation and evaluation of the estimation algorithm.
This involves two different tasks

e simulation : the goal here is to generate a trajectory of the state process, and a
sequence of either discrete time or sampled observations, to be stored into the files
zpb.state and zpb.obs respectively.

o estimation : the goal here is to combine a priori information about the model and
the observations to be read from the file zpb.obs, in order to solve the selected
estimation problem. Results are stored into the files zpb.estim and zpb.density.

From now on, the state process is assumed to be one-dimensional.

FEztensions to allow two-dimensional state process, are planned.

SIMULATION

The time horizon T and the time step A between successive observations. are read from the
file algo.data, under the name tmax and dt respectively. A refined timestep &ps = A/M
is introduced, where the number M of local iterations for the simulation is also read from
the file algo.data, under the name locsimul.

The state X, is approximated by Zx using the Milshtein discretization scheme [10]

tE =t ,
{ =t + A, 1<i<M

te = tM,

) = Tx

=z + b,;-x(zi") Am+ a,;-x(zi") w}

+og(@ ) o (e) [lwl - aml, 1< M
I, = xt’ ,
where {w},---,w}} is a Gaussian white-noise sequence with covariance matrix Q - Ay .

On the other hand, the generation of the sequence of observations is different whether
they are discrete time or sampled observations.

10




DISCRETE TIME OBSERVATIONS

The observation z; is simulated using the approximation #; of the state X,
2 = hk(i‘k) + v,

where v; is 2 Gaussian random vector with non singular covariance matrix R.

SAMPLED OBSERVATIONS

The sampled observation y2 as defined in (*) are simulated using the approximation
{z},---,zM} of the state process between {;_, and #;

a_ 1 ¢ a
Yk = 37 ;ht;(12)+1'k )

where v is a Gaussian random vector with non singular covariance matrix R/A.

Gaussian random variables are generated according to the Box-Muller algorithm, see
Rubinstein {12]. A routine boxmuller is provided in the library 1ibzpb.a. Uniformly
distributed random variables are generated by the NAG library routine g05caf, in con-
junction with g05cbf. The seed of the random generator is read from the file algo.data
under the name seed.

Eztensions to include more accurate discretization of the deterministic part of
the stale equation, are planned.

ESTIMATION

It follows from the discussion above, that either for the filtering or the smoothing problem,
and whether the observations are in discrete time or sampled, it is needed to discretize
the Fokker-Planck equation between t;_, and t;

on;
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TIME DISCRETIZATION

The time horizon T and the time step A between successive observations, are read from the
file algo.data, under the name tmax and dt respectively. A refined time step Ap = A/P
is introduced, where the number P of local iterations for the prediction step is also read
from the file algo.data, under the name locpred.

The filtering density p; is approximated by P using the implicit Euler scheme

1 =ty ,
6=t + A, 1<i<P
te = tF,
Py = Pr-1,
{ [I-a4r L,L-x]‘p;; =p", 1<i<P
pr = ce Vi pp .

This approximation is based on

%o “ o .
Py — Py = o Ly psds >~ ./:';’ Lidsp, >~ Ap Lt:‘.l Py -

SPACE DISCRETIZATION

Following Kushner [8], the second order partial differential operator L, is approximated by
a finite difference matrix, on a regular bounded coordinate grid. Only the one-dimensional
case is considered here. The bounded domain is an interval D = [z,%Z] . The end points
z, T and the mesh size § are read from the file algo.data under the name xmin, xmax
and dx respectively.

Let R; denote a one~dimensional coordinate grid with mesh size §. For any z € R; ,
let Ns(z) = {z,z £ 6} denote the set of neighbours. The restricted grid is Ds = DN Ry ,
the set of interior grid points is Ds = {z € Ds : Ns(z) C D5} , and the set of boundary
points is Ts = D;s \ Ds .
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The first order partial derivative is approximated by non centered upwind finite dif-
ference schemes, in a way depending on the drift coefficient

$(z +6) - ¢(z)

, if b(z) >0
6 1
%(z) ~ 5

&)_%(1;2 , if by(z) < 0

The second order partial derivative is approximated by the usual centered finite difference

scheme
Fo ) He+E)=2(x) + 6(x = 6)
8277 T 82 ’
It follows that for any interior point z € Dy

L g(a) = b () QTR0 |y KO 282 0)

$(zs) — 2¢(z) + 8(z — §)
52

+%at(1)
~ L gz)= Y Li(z,y) 8(y) -
veD;

The only non zero terms in the time dependent matrix L! are the terms involving neigh-
bours .
Li(z,z £ 6) = o [1az)+6 b (z)]

1
Liz,z) = -5 [a(z) + & Jb(2)]]
and in addition the following properties are satisfied

Li(z,y) 20  fory#=r

> Liz,y) =0
veD,

M(z) = —Li(z,2) = Y Li(z,y) 2 0
¥z

where the latter is a consequence of the two others.

For any boundary point ¢ € 'y , the definition of the finite difference matrix depends
on the boundary condition to be satisfied.

o absorbing (stopping) boundary :
Liz,9)=0  for all y € Ny(z),

13




o reflecting boundary :
at leftmost grid point
J Li(z,z) = —X(2)
Li(z,2+6) = M(x)

| LYz,z-6) =0,
at rightmost grid point

Li(z,z) = -Xi(z)

Lf(:t,:c+ 6 =0

Li(z,z - 6) = X(z) .

The nature of the boundary condition is read from the file algo.data under the name
boundary which can take the two possible values stoppingireflection.

These properties show that the time dependent matrix L¢ is the instantaneous jump
intensity matrix of a pure jump Markov process {X¢, ! > 0} evolving on the grid Dj .
Conditionned on the current position r € Ds , the inter-jump time and the next position
are independent random variables. Moreover, the inter-jump time is an exponential
random variable with parameter As(z) , and the probability distribution of the next
position is given by ws(x,y) = Ls(z,y)/ s(z) , for all y € Ds .

FuLL DISCRETIZATION

Combining finite difference approximation of the second order partial differential operator
L,, with implicit Euler time discretization, results in the following sequence of linear
systems

p2 = Pr-1 s

U-apLial'p=p", 15i<P

Pe = ok Wi-pf .
This is a tridiagonal linear system which can be solved by direct method : first. the
matrix is factorized using Gaussian elimination algorithm with partial pivoting, then the
resulting upper and lower triangular systems are solved. This is done by the NAG library
routines £01lef and f041lef respectively.

Eztensions to include iterative methods, or multigrid methods for the solution
of the linear system are planned, and will have to be used in the case of a
multi-dimensional state equation.

14
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PARAMETERS

A list of the algorithm parameters is build by the Maple program, and stored in
.algo. These parameters include

dt — time step,

tmin, tmax — ends of the time interval,

locsimul — number of local iterations for the simulation,
seed — seed of the random number generator,

xmin, xmax — bounds of the bounded space discretization grid,
dx — mesh of the space discretization grid,

locpred — number of local iterations for the prediction,

boundary — nature of the boundary condition, etc.

15
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D Organization of a Session

The user has first to provide a description of both the model and the problem to be
solved. This description is contained in a file zpb.data, in the form of Maple instructions
keyvord:=value;. The list of admissible keywords is summarized below

dim_state dimension m of the state (integer)
noise driven_state truelfalse
[if noise driven_state=true|
dimnoise dimension r of the driving noise (integer)
observation mode discretel|continuous
dim_obs dimension d of the observation {integer)
drift drift m-vector {Maple expression)
[if noise.driven_state=true
diffusion diffusion (m, r)-matrix (Maple expression)
observation observation d-vector (Maple expression)
initial diraclgaussianluniform
problem filtering | smoothing [

The file zpb.data can be created with any text editor. Under X Window, a user
interface is provided to create and modify the file zpb.data a .. wi.accaliy.

When this first stage is completed, the Maple prosrain is called, and Fortran programs
are generated and compiled. Two data files .model and .algo are also generated. which
contain respectively the list of parameters relevant to the model and the problem to
be solved. The user has to provide numerical ~a!ies for these parameters, which are
contained in three different input files simul.data, estim.data and algo.data. Here
again, these files can be created and modified with any text editor. Under X Window,
the user interface allows to create and modify the files simul.data, estim.data and
algo.data automatically.

When this second stage is completed. the Fortran files are executed and the results are
stored in the output files zpb.state, zpb.estim and zpb.density, which contain the
simulated state sequence, the estimated state sequence (usually the conditional mean),
and the conditional density sequence.

Under X Window, graphical tools are provided, which allow to visualize the data in
the output files, in the following way

¢ a representation of both the simulated state sequence and the estimated state se
quence vs. time, is provided in a first window, as well as a shaded area representing
some confidence region for the conditional distribution at a given level,

® a time can be selected in the first window. and a representation of the conditional
density at the selected time is then provided in a second window,

16




e it is also possible to visualize in the second window, the continuous time evolution
of the conditional density.

In earlier versions of the software, Fortran programs were provided for the graphic
visualisation of the results, based on the Graphical Kernel System GKS [3,7] library.

The organization of a ZPB session is summarized by the following flowchart.
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interface

l text
X Window editor
interface zpb.data
Maple
program

‘model simul.f
algo estim.f
' Fortran
interface compiler
I simul.data
estim.data simul
algo.data estim
Fortran
program
zpb.state
zpb.estim
zpb.density
visualization | T
: GKS
X Window program

interface
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E Example

Consider the nonlinear filtering problem for the following quadratic sensor system

dX; = —B8X,dt +dW,,

dY, = (Xi +e X?)dt +dV,

where {W;, ¢t > 0} and {V;,t > 0} are independent Wiener processes with variance Q
and R respectively. The initial condition Xy is a Gaussian random variable with mean
u and variance L. Note that when ¢ = 0, the observation function is linear and the
conditional law is Gaussian, whereas when ¢ # 0, the observation function is symmetric
around z¢p = —1/2¢, and is not injective, which can result in a multi-modal conditional
density when the signal is in the neighbourhood «1 z.

This model is described by a sequence of Maple instructions in the file zpb.data. The
corresponding Fortran files are automaticaly generated and compiled, as well as the file
.model containing the list of model parameters, see Figure 1.

Two numerical examples are considered below, for different values of the parameter €.
Numerical values of the model parameters are given in the following table

0.2

0.0 or 0.25
0.0

1.0

1.0

0.001

QM o |

In both Figure 2 and 3, the level of the shaded confidence region is 0.95
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observation_mode:=‘continuous’;
noise_driven_state:=true;
dim_state:=1;
initial:='gaussian‘;
drift:=-beta*x;

dim_noise:=1;

diffusion:=1;

dim_obs:=1;
observation:=x+eps*x~2;
problem:=‘filtering‘;

beta
eps
x0
q0
qQq
rr

Figure 1: Description file zpb.data and corresponding parameter file .model
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time = 2.80

ZPB --- The Mefisto Project (INRIA)

T
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K1 1 1 1
0 2 4 6
Figure 2: Linear observation function (¢ = 0.00)
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time = 2.80

ZPB --- The Mefisto Project (INRIA)

Figure 3: Non-injective observation function {¢ = 0.25)
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TIME DISCRETIZATION
OF NONLINEAR FILTERING EQUATIONS*

Frangois LE GLAND

INRIA Sophia-Antipolis
Route des Lucioles
F-06565 VALBONNE Cédex

Abstract Some computable approzimate ezpressions
are provided for the conditional law of diffusion processes
observed in continuous ime. The numerical schemes are
derived through an approzimation of the original filter-
ing problem. Given a partition of the time interval, this
procedure consists in pling the tlable obaervation
sample path and approzimating the a priori law of the
diffusion process. This results in approzimation schemes
for the Zakai equation, for which rate of convergence are
provided.

1 Introduction

The purpose of this paper is to give computable and
accurate approximate expressions for the conditional law
of a diffusion process observed in continuous time. Since
this conditional law depends on both

- the a priori information, provided by the semi-group
{Pe.t > 0} or equivalently the infinitesimal genera-
tor L,

- the available observation sample-path {Y;, t > 0}.

the approximation problem under coasideration should
reduce in some sense to

- approximate the a priori law of the original diffusion
process, e.g. by the more simple a priori law of some
other process,

- extract the most useful information from the avail-
able continuous time measurements {Y;, ¢t > 0}.

The general situation of filtering a signal process from
noisy continuous measurements will be considered. At
each step of the approximation procedure, the general
formulas will be applied to the particular case of diffu-
sion processes, in order to check whether or not some
computable expression has been obtained. Note that only
time discretization is considered here: the discretization
with respect to the space variable, e.g. the approximation
of the partial differential operator L by finite differences
is not taken into consideration.

*Research partially supported by Systeras Research Center, Uni-
versity of Marylsnd, and by USACCE under Contract DAJA4S-
87-M-0296

2 The filtering problem

On a measurable space (2, F) are given a probability
measure P, and a pair of stochastic processes {X, , t > 0}
and {Y;, t > 0} taking values in R™ and R respectively,
such that under P

dY: = h{X,)dt +dV, (¢))

where {V;,t > 0} is a standard Wiener process, inde-
pendent of {X,, t > 0}.

Note that the a priori law of the signal {X,,t > 0}
is not specified at this point. The observation fuaction
satisfy the following hypothesis

h s ¢ measurable and bounded function from
R™ to RY.

Remark 2.1 As usual, (1) is the mathematical way of
expressing that some measurement

2= hX)+ 0, (2)

is available at time ¢, where {n:.t > 0} is a Gaussian
white-noise process, independent of {X,.t > 0}.

Introduce the o-algebras
a
Fe=o(X,,0<051),

»E.

The problem is to estimate X; from Y, i.e. to compute
the conditional (a posteriori) law of X, given ). defined
by E(¢(X:) | Y:). Introducing

2 Lo(Y,-Y, s<T <),

2'Lexp {/' A (X.)dYs -} /.'p»(x,)l’ dr} .

and Z; £ 29, it is standard that, for all T > 0 the orig-
inal probability measure P is equivalent on [0,T7] to the
reference probability measure P! with Radon-Nikodym
derivative Zr, so that under P! {Y;, ¢t > 0} is a stan-
dard Wiener process, independent of {X,, t > 0}.

By the Bayes formula

B ($(X:)Z: | Vo)

E(¢(Xe) | ) = ENZ: |y




(e, 9) £ BN(X)Z: | 1) -

0} is the unique solution of the Zakai equation
dpe = L*pedt + h*pdY; .

steps will be considered herc.

sample—path
Throughout the paper, an infinite partition

0=t <t < "<ty <---

increments §; 3 tip: — ¢t

ized in the following

o -algebras which satisfy, for alli> 0

random variables,
i
(i) Y,,,, C y:;“ .

In addition, the following notations are used

m-1
V2V, V2.

so that it is enough to compute {p,, ¢ > 0} defined by

In the particular case where the signal {X,,t > 0}isa
diffusion process with infinitesimal generator L, {p, t >

It is readily seen on this equation that p, depends on the
a priori law of {X¢, t > 0} represented by the partial dif-
ferential operator L, and on the observation sample-path
{Y:,t > 0}. However, equation (3) is not computable
and should be approximated. The approach presented
here, is to rather approximate the original filtering prob-
lem by a simpler problem, and to consider the resulting
equation for the conditional law in this new filtering prob-
lem as an approximation to equation (3). In Section 5,
the rate of convergence for such approximations will be
provided, by direct numerical analysis of equation (3).
The presentation adopted follows Korezlioglu-Maz-
ziotto [2]. There is indeed three successive steps in the
global approximation procedure. In the first step, sam-
pling and data compression of the observation sample-
path {Y;, t > 0} is performed. Then, the signal {X,.t >
0} is approximated by some pi- .+ . constant process
{X¢,t 2 0}. In the last step. t: 2 a priori law of the
process {X,,t > 0} is ap> vy - .ted. Ouly the first two

3 Sampling of the observation

of [0,+020) is introduced, to be denoted by 7, with time

Sampling a- 4 data compression is the pre-processing
procedure by which the new information contained in
the continuous measurements received in the time inter-
val t; <t < iy and represented by Y} '+ 18 summarized
into a finite number of random variables. This ie formal-

Definition 3.1 An admissible sampling procedure rel-
ative to the partition 7 is a family {372;“ ,8 2 0} of

(i) Vi.,, is generated by a finite number of

Here are two examples of admissible sampling proce-
dures, to be considered throughout the paper.

Example 1. Define
tit1
6% Y= [Taa, @
t

which is the mean value of the actual measurements (2)
on the time interval t; < s < ¢,;,. In this example, 37:;‘
is generated by the random variable ¢;. Note that, under
the reference probability measure P!, {£;,i > 0} are
mutually independent d-dimensional Gaussian random
variables with zero mean and covariance matrix ;1.

Example 2. Define

tist tis1 ptiva
f!é}/ (e-tyar,= ¢ [ / yrdrds
i Je, s Jt, .

1 tiga 1 ti¢r pe
@2z [Twm-nan=g [ [y ara,
1 Je,  Je T

which are two other different ways of computing some
mean value of the actual measurements (2) on the time
interval t; < s < t;1;. In this example, i::“ is gen-
erated by the random variables 5" and £!. Note that
&4 4+€* = ¢ and that, under the reference probability mea-
sure Pt, {(£},£"), i > 0} are mutually independent 2d-
dimensional Gaussian random variables with zero mean
and covariance matrix §;, where

LU Y
= .
L
In particular, the characteristic function of ({,' L&) satis-
fies

>

x(a.b) £ Et(exp {a"e + bt })

5
exp {3(|a]* +a"b+ [b]?)5} . ®)

The problem is now to estimate X,, from_?,_. ie. to
compute the conditional law of X;, given ),,. By the
Bayes formula

= Hé(Xe)Ze, | Y
E(¢(X:,) | Ve,) = ———E (;i(z'.) |§| ,))’;_) R
Ve,

so that it is enough to compute {p;, § > 0} defined by
#i.9) E EN$(X.,)Z,, | Ts,) -

The first step is provided by the following
Proposition 3.2 Introduce

,, SENE, | R, VL)
Uing 2 E'(¢(X¢,“)E::“ | Fe, Vi::,,) .

Then _
Pis1.8) = EY([Uis10)Z,, 1 Yeas) - (6)




B s

PURSS Y

PROOF.

(Pi+1.4)
= B"(¢(Xt.,1) 20 Z;,, | V1)
= E'(¢(X,.“)Z,,
ENZE, | Fup VYL VI [ Pe)
E7(¢(X,.+,)Z,i3::+‘ |Tt.*,)
E'(Ze, EN¢(Xen )L, | Fo VY VI, ) [ )
EN({Uis19]2e, | Ve.,,) - o

Going back to the examples introduced above, the ex-
pression for E::“ will be derived, and it will be checked
whether or not the additional hypothesis that the signal
{X:, t > 0} is a diffusion process can lead to computable
expressions.

Example 1 (Continued). For the sampling procedure
defined by &, it i8 proved in [2] that

28, = exp {hi& - JmPa} (1)
where

tis
h.é%/ h(X.)ds .
i Jt,

However, replacing this expression into (6) does not pro-
vide a computable expression, even if the additional hy-
pothesia that the signal {X,, t > 0} is a diffusion process
is introduced.

Example 2 (Continued). For the sampling procedure
defined by (£},£?). it can be proved that

zi,, = exp {4 Bi1E

3R + (MR + 1R7)5. )
exp {[f]"¢! - diple,}
cexp {[BI)°€! - 16} - exp {0t - WP}

(8)

where
1 tita 8~ i
WME— [ w(——)h(X,)ds
61 t; tH»l -t

tis1
w2z [Te s,
t: tisr — 8

and the weight function W is defined for all 0 < 8 < 1 by
w(o) 2602

Here again, replacing this expression into (6) does not
provide a computable expression, even if the additional
hypothesis that the signal { X, t > 0} is a diffusion pro-
cess is introduced.

4 Piecewise constant approxima-
tion of the signal process

The purpose of this section is to investigate the effect
of replacing the signal process {X,, t > 0} by a piecewise
constant process {X,,t > 0} whosee values on “pieces”
are related in some way to the values taken by the orig-
inal signal process at some particular instants. This is
formalized in the following

Definition 4.1 A process {X;,t > 0} is subordinate to
the process {X,,t > 0} relatively to the partition n if,
foralli >0

X: is F,,, -measurable, t; <t < tiyy.

The following example provide a particular class of
subordinate process, to be used throughout the paper.

Example. For all i > 0 are given

- a partition {A{, 1 < j £ k(3)} of the time interval
[tistiva)

- an increasing sequence
. »
tisrl< <Yty

Then the piecewise constant process {X;, t > 0} defined
by
X=X, ifteal,

is subordinate to {X,, ¢t > 0} relatively to the partition
#. There is a similar class of subordinate processes, where
the time interval to be partitioned is rather (¢;,¢,41] .

The problem is to chose {X..t > 0} in such a way
that the conditional law of X, given 7;_ is more simple
to handle than the conditional law of X,, given ¥,,. and
is even computable in the particular case where the signal
{X¢, t 2 0} is a diffusion process.

Introduce

7' L exp {/' h(X,)dY, - g/' |h(7,)|=df} ©)

and Z, = 7:’ Under the reference probability measure
P, the processes {X,,t > 0} and {Y;,t > 0} are in-
dependent, so that the stochastic integral in (9) is well
defined, although {X,, t > 0} is not necessarily adapted.
Therefore, it is possible for all T > 0 to define a new
probability measure P equivalent on [0,T] to P! with
Radon-Nikodym derivative Z7, so that under P

dY, = h(X,)dt +dV, ,
where {V,. t 2> 0} is a standard Wiener process, inde-
pendent of {X,,t > 0}. _
The problem is now to estimate X, from Y, , i.e. to

compute the conditional law of X,, given ¥,,. By the
Bayes formula

BoX ¥ =—gz 3,




so that it is enough to compute {5, , i > 0} defined by

#:.6) SE'GX)Z0, | ) -
1t follows from the proof of Proposition 3.2 that

(ii+11¢) = E'([ﬁi+l¢]7¢- ly'-‘n) ' (10)
where, for alli1 >0

B AENZL, | Fu, VL)

=ty
= A ' =t Tt
Uinip = E'(‘f’(xt.ﬂ);t.“ | e, v Vo) -

Going back to the examples introduced above, some
particular piecewise constant subordinate processes will
be considered, the corresponding expression for §::+1 will
be derived, and it will be checked whether or not the

additional hypothesis that the signal {X,,t > 0} is a
diffusion process can lead to computable expressions.

Example 1 (Continued). For the sampling procedure
defined by &, f::“ has the same form than (7) where

now

tiga _
hiél/ R(X, ) ds .
& Jb,

Two different piecewise constant subordinate processes
will be considered.
[1a| Define
X=X, . fti<t<tiy.

Then ki = h(X.,) and ?::“ = ¥i(X,,) , where for all
zeR™

¥i(z) & exp{h'(:){.- - §|h(x)|26‘} .y
Therefore
Uing = ¥i(X:,) BN (¢(Xe,,,) | Fu) -

Under the additional hypothesis that the signal {X,.t >
0} is a diffusion process with semi-group {P;,t > 0}

Vinr¢ = ¥i(Xy,) [Psd)(Xe,)

and
(Bir1.9) = ENWi(X.,) [Ps,8](X0) 2, | Fe.,,)
= 7 ¥ilPsd))
so that {p,, i > 0} satisfies the following recurrence
B = P [¥ipi] {12)

which is a computable expression, and can be considered
as a time discretization scheme for the Zakai equation
(3). The rate of convergence of this approximation will
be copsidered in Section 5.
m Define
—X—g =X

ey« i<t Sty .

Then h, = h(X.,,,) and Z, | = ¥,(X.,,,) . Therefore

Uind = EN($(Xe,,) VilXe,, ) | Fe, VL) -

Under the additional hypothesis that the signal {X;,t >
0} is a diffusion process with semi-group {P;. t > 0}

Uip1¢ = Py, [Vid)(Xy,)
and

E'(.Pg_[‘l’.‘¢](X¢')7t' | y‘--fl)
®;, Ps,[¥ig)) -

This results in the following recurrence
Pis1 = WilP5R)) (13)

which gives another time discretization scheme for the
Zakai equation (3).

(’Tl+lv¢)

fl

Remark 4.2 In the numerical scheme (12) (resp. (13))
the transition from §; to p;,, reflects the following sit-
uation: A new measurement §; is available, whicb is a
compression of the information provided by {z,.¢; £t <
ti+1} according to (4). This measurement is interpreted
as a noisy nonlinear observation of X, (resp. X,,,). and
i8 combined with the current estimate ; of X, to pro-
duce an estimate p,, of X, ,.

Example 2 (Continued). For the sampling procedure
defined by (€1.€?), E,. | has the same form than (8)
where now

1 i st o
£ 6—/ B( VR(X,)ds .
1 Je

+1 — i

tirt = —
h:él/ BT LX) ds
1,

tiv1 — ¢,

The following family, parametrized by 0 < a < 3. of

piecewise constant subordinate processes will be consid-

ered
Xe,
X 2
Xhu

where for all 1 > 0. A? denotes the following subset of
the time interval [¢,.ti41)

ifte A®

ift € {ti,tis1) \ A7

t, + aé, tiyr - ad,

¢, t, + %6. tig1

It is then possible to find a particular value ag for
which

A= hX.,). K=hX).

Therefore (8) becomes

=t
~ti41

= ‘I’!(X‘-u) \P:(X,.)
-exp { I1h(Xe.,,) = B(Xy, )76}




where for all z € R™
#a) S exp (W (216! - JIh2IS) -

Vi(2) & exp {*(@)¢} - §In2)P8)
and
Uinrd = ¥(Xe,) E'($(Xe,,,) 'I'§(X¢.+‘)
cexp { FIh(Xe,,,) = H(X P8} | Fu VL) -

Under the additional hypothesis that the signal {X,, ¢t >
0} is a diffusion process with semi-group {P;, t > 0}

Tiprd = ¥2(X.,) Qs [WI8)(Xe,) .

and

(.F.+1~,¢)

E'(¥1(Xe,) Qs [¥1¢)(X0)Z1, | Priss)

(P, WiQs,[¥14]) -

so that {B, ., > O} satisfies the following recurrence
Binr = ¥Q3[W15] - (14)

where the family of operators {Qs, 6 > 0} is defined by

Qs¢ 2 EY($(Xess) exp { 5 1h(Xews) = h(X,)[26} | Fo) .

Note that \Ilf(z) ¥¥(z) = ¥i(z) , and that the opera-
tor Qs, can be seen as a perturbation of the semi-group
Ps,. However, it is not obvious that (14} is a computable
expression and can be considered as a time discretization
of the Zakai equation (3). The relevant analysis and the
rate of convergence of this approximation will be consid-
ered elsewhere.

5 A product formula and its rate
of convergence

The purpose of this section is to study, from the point
of view of numerical analysis. the following recurrence

Punr = P5, 105 , (15)

derived in the previous section, as a time discretization
scheme for the Zakai equation

dp; = L*pedt + h'p,dY; . (16)
Recall that
(Pe.,8) = EN@(Xe)Ze, | V1))

®:.¢) = EY$(X:) 20, | Fe)

so that p; should be “close™ to p,,. Indeed it will be
proved below that

{E'B: - p P} < 08,

where § is the mesh of the partition # up to time ¢,, and
| - | denotes the norm in the Sobolev space L*(R™).

Remark 5.1 Similar rate of convergence has already
been obtained for approximation of nonlinear filtering
problems, in Picard {6] and Newton [4]. The proof in [6]
uses only probabilistic arguments and does not consider
the Zakai equation, but rather the underlying nonlinear
filtering problem. In [4], the Zakai equation is consid-
ered for pure-jump Markov processes rather than diffu-
sion processes, and the approximation procedure relies
on the stochastic Taylor formula of Wagner-Platen (7,8].

Define, for all z € R™

¥(2) 2 exp {h*(2) (Ve - Vo) - ih(@)P (¢ - 9)} -

Note that two operators are involved in (16)

- the unbounded operator L™ which generates the ad-
joint semi—group {F;, t > 0} ,

- the multiplication operator B which generates the
two-parameter stochastic semi-group {¥{,0<s <
t},
so that the time discretization scheme (15) is a Trotter-
like product formula for the Zakai equation (16). See
Bensoussan-Glowinski-Rascanu [1] for a related work in
this direction.

The main assumption of this section is that the signal
{X:.t > 0} is a diffusion process

dXe =b(Xe)dt + 0(X:)dW, ,  Xo ~ polz}dz
observed in continuous time through measurements
dY, = h(X,)dt +dV, .
mon
a . P A Oa*’
Define a = oo a.ndﬁ'—z T

= 9
isfy the following hypotheses

The coefficients sat-

(i) po is a density on R™,

(i) o is a continuous ond bounded function on
R™ and @ 15 @ uniformly elliptic m xm
matniz, i.e. a(z) > al ,

(3ii) b and @ are bounded and measurable func-
tions from R™ to R™ ,

(iv) h is ¢ measurable and bounded function
fromR™ to R? .

The infinitesimal generator of the semi-group {P:.t >
0} is defined by

-3 “ 1,5 82 “ i a
=3 [ S —_
L 2 igln 8::,-3:, +§b al,' !

and satisfies, under the hypotheses, the following coer-
civity property: for all u € H}(R™)

2(Lu,u) + pllull® < Muf®, an
where || - || denotes the norm in the Sobolev space
H'(R™). Existence and uniqueness of a solution to equa-
tion (16) is proved in Pardoux (5] and Krylov-Rozovskii
(3).




Theorem 5.2 Suppose that, in addition to (i)-(iv)

(v) a,b and @ have bounded first derivative,
(vi) h has bounded dersvatives up to order 2 .

Then, if po € H*(R™)

t _= 2)!/?
22 (Bl —pil'} " < C6. (18)

ProoF. Under the hypotheses, it follows from Theo-
rem 2.1 of [5] that p € L*(Q; C([0,T]; H(R™))). Also,
foralli >0 ,p € L?(Q2; H*(R™)) and io addition

max B[, |? < C .

0<k<i

For t > t,. define v, = P,‘_“[\Il:“ﬁ,‘] , 80 that By = v,
and Py, = v¢,,,. Differentiating with resp -t to t gives
dv, = L v dt + {P[_,, [BY{*5,]}" dY;

L*v, dt + [Bp,|" dY; + 3; dY, ,

where the perturbation term is defined by
A pe - -
Be= [Pz—t.B - BP:—:..] [W:‘Pk] .
Note that 8 € L*(R: C([tx. T): H(R™))). The identity

of energy of [5] applied to the difference € = v — p. and
the coercivity property (17) give

t t
E'|5t|2$E'ls,,}’+C/ E*|e,|2ds+c'/ E'|.[ ds .
ty te

Assume the following estimate holds
E'|8,[* < Cls — tu[* exp{Cls - ti)} E'|Bcll” . (19)
Applying Gronwall's lemma and setting ¢ = i), yields

E?lﬁk+l _p““|2
< [B'Bx — puf® + Cltasr = tal’] exp {Cltisa — to)} .

and the rate of convergence (18) follows from the discrete
Gronwall lemma. The end of the proof is devoted to
proving estimate (19).

First. the following perturbation result holds
(Pi,B— BP_,]u

t
= / Pr,|L"B - BL") P;_, uds ,
t
provided u is smooth enough. Under the bypotheses,
[L*B — BL"] is a bounded operator from H'(R™) to

L*(R™) , so that it is enough that u € H'(R™) for (20)
to hold. Now, {¥{*5,] € H'(R™) a.s. s0 that

13
8 = / P.,(L"B - BL) P}, [(¥*Filds .
ta

Therefore
{Be* < Clt — ta* |1 Bull®
and

E'g® < Clt - tif? MU B’
< Cit - tal* exp {C(t - tx)} E'|IBeli” ,

which proves (19). a

Remark 5.3 The same rate of convergence holds for the
approximation scheme (13).

The next step is to approximate the adjoint semi-
group {P; .t > 0} itself, i.e. to approximate the asso-
ciated Fokker-Planck equation. For instance, using an
implicit Euler scheme results in the following approxi-
mation scheme

(I —8L)pi1 = ¥, -
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TIME-DISCRETIZATION OF THE ZAKAI
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A time discretization scheme is provided for the Zakai ecuaation, a stochastic PDE which gives the
conditional density of a diffusion process observed in white-noise. The case where the observation noise
and the state noise are correlated, is considered. The numerical scheme is based on a Trotter-like
product formula, whirh exhibits prediction and correction steps, and for which an error estimate of
order & is proved, where & is the time discretization step. The correction step is associated with a
degenerate second-order stochastic PDE, for which a representation result in terms of stochastic
characteristics has been proved by Krylov—Rozovskii [13] and Kunita [15,17]. A discretization scheme
is then provided to approximate these stochastic characteristics. Under the additional assumption that
the correlation coeflicient is constant, an error estimate of order \/3 is proved for the overall numerical
scheme. This has been proved to be the best possible error estimate by Elliott—Glowinski [7].

KEY WORDS: Diffusion processes, correlated noises, nonlinear filtering, Zakai equation, stochastic
PDE, stochastic characteristics, time discretization.

1. INTRODUCTION

The purpose of this paper is to present a computable time discretization scheme for
the Zakai equation of nonlinear filtering with correlated noises, and to provide an
estimate of the rate of convergence.

In the case of independent noises, the problem has been studied by Kushner
[18], Newton [21], Korezlioglu-Mazziotto [11], Bennaton [1], DiMasi-Pratelli-
Runggaldier [6], Picard [22], Bensoussan—-Glowinski-Rascanu [2] and Le Gland
[20]. Some of these authors have actually considered the associated Zakai
equation. Time discretization schemes have been provided with a rate of conver-
gence of order &, where § is the time discretization step.

In the case of correlated noises, the problem has been studied by Elliott—
Glowinski [7]. The best approximation of the continuous filter based on the

*Research partially supported by USACCE under Contract DAJA45-90-C-0008.
tAlso: INRIA Lorraine, CESCOM, Technopole de Metz 2000, 4 rue Marconi, F-57070 Metz, France.
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234 P. FLORCHINGER AND F. LE GLAND

values of the observation process at a regular partition (with mesh &) has been
considered, and it has been proved that the rate of convergence is of order \/3
However, no algorithm is provided to actually compute this approximation.

The paper is organized as follows. In Section 2, the nonlinear filtering problem
is presented. Some results on the Zakai ecquation, and on a related degenerate
second-order stochastic PDE, are recalled in Section 3. A Trotter-like product
formula is then considered, with an error estimate of order 6. However, this
numerical scheme is not computable. In Section 4, a representation result in terms
of stochastic characteristics is presented for the degenerate second-order stochastic
PDE. This part follows mainly the work of Krylov—-Rozovskii [13]—see also
Kunita [15,17]. A time discretization scheme is presented in Section 5, based on
an approximation of the stochastic characteristics. Under the additional assump-
tion that the correlation coefficient is constant, an error estimate of order \/—5 can
be proved. In addition, this numerical scheme is actually computable, as far as time
discretization is concerned, i.e. up to space discretization.

2. THE FILTERING PROBLEM

Consider the following stochastic differential system, defined on the probability
space (L, %, P)

dX,=b(X,)dt+0o(X,)dW,+p(X,)dV,
dY,=h(X,)dt+dV,

where the non observed component {X,1>0} takes values in R™, and the
observation {Y,,t20} takes values in R%. {W,,t20} and {V,,t>0} are independent
Wiener processes of appropriate dimension, with covariance matrix I (identity) and
r respectively. For the clarity of exposition, it is assumed throughout the paper
that r=1. In addition, the random variable X, is independent of the Wiener
processes, with probability distribution py(x) dx.

Throughout the paper, it is assumed that the coefficients, b, ¢, p and h are
globally Lipschitz continuous functions defined on R™, so that the stochastic
differential system has a unique strong solution. The following definitions are used:
afgc* and c2 pp*. In particular, it is not assumed that either a or ¢ is uniformly
elliptic.

With the diffusion process {X,,t20} are associated the two partial differential
operators

Lél i [ai.j+cl,j] 8% . » ii’
L= Ox;0x; =7 Ox;
m 2 L]
Lol ¥ ot 4 bl

2‘_1.1 ax,-ax1+‘.1 5x"
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Another family of partial differential operators to be considered is

BAh+Y AL, 1sksd
=1 ox

Introducing
t
Zi8exp {I h*(X.)dY, - énh(x,)lwz}, zA2?,

it is standard that, for all T >0 the original probability measure P is equivalent on
[0, T] to the reference probability measure Pt with Radon~Nikodym derivative Z,
so that under P}

dX,=b(X,)dt+0(X,)dW,+p(X)[dY,— h(X,)dt], 2
where {W,,120} and {Y,,:20} are independent Wiener processes, with covariance
matrix I (identity), and the random variable X, is independent of the Wiener

processes, with probability distribution pg(x)dx.
The Bayes formula gives

E(f (X,)]qy‘)=ET(f (X)2,|%,)

EH(Z, | %) ’
and in addition

ET(f(X.)Z, l @/t) = ,( f(x)Pr(x) dx,

where the unnormalized conditional density {p,,t=0} satisfies the Zakai equation

[25]

4
dp,=L*pdt+ Y BfpdY:. (2.2)

k=1

Consider then the following decomposition of the Zakai equation (2.2)

d
dp,=L3p,dt+A*p,dt+ Y Bfp,dY:,

k=]

where
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On one hand, the partial differential operator L, generates a strongly continuous
semigroup {P,t20}. On the other hand, it is possible to associate a stochastic
semigroup {Q5,0<s<t} with the following degenerate second-order stochastic
PDE

d
dp,=A*p,dt+ Y Bgp,dY}, (2.3)

k=1

which is studied below. Therefore, it is worth studying the following Trotter-like
product formulas for approximating the original Zakai equation (2.2)

ﬁi*l =P:.Q:‘n xﬁi’
(2.4)
Piv1= Q::. .P:ﬁi,

where 6;8¢;,,—t;, and O=t,<t; < <t;<

The main interest of such product formulas is that the original equation has been
split into a second-order deterministic PDE (prediction step), and a degenerate
second-order stochastic PDE (correction step). In the case of independent noises,
this stochastic PDE reduces to a zero-order equation, for which there exists a
straightforward explicit solution. In the case of correlated noises, a representation
result is available by the method of stochastic characteristics (i.e. involving the
stochastic flow of diffeomorphism associated with a SDE driven by the obser-
vation process), see Krylov—Rozovskii [13] and Section 4 below.

Remark 2.1 A similar prediction-correction numerical scheme was obtained by
Kushner [18] in the case of independent noises.

Remark 2.2 Written in Stratonovici form, equation (2.3) is a first-order
stochastic PDE. For such an equation, one can usc the representation result of
Kunita [15,17], and translate the stochastic characteristics equations from Strato-
novich form back to It6 form, to recover the representation result of [13].

As a consequence of the above discussion, there will be two steps in designing
the approximation to the original Zakai equation (2.2)
o first use a Trotter-like product formula,

o then approximate the solution of the degenerate second-order stochastic PDE,
by approximating the stochastic flow of diffeomorphisms involved in the
stochastic characteristics method of [13].

It will be proved that the first step can be achieved with a rate of convergence of
order §, whereas the rate of convergence for the second step (and a fortiori for the
global approximation procedure) is of order \/3 only, where 62 max;; o 4.

3. TROTTER-LIKE PRODUCT FORMULA

For all n20, let H" denote the space of real-valued Lebesgue-measurable functions
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on R™ whose generalized derivatives up to order n are square-integrable, with
norm ||,

22 Y [|D%u(x)|*dx < .
Osglalsn

In addition, the following shorthand notations will be used throughout the paper:

¥ IAII Ilo and ||-[|2]|].

beginning of this section is devoted to recall existence, uniqueness and
regulanty results for the Zakai equation

d
dp,=L*p,dt+ Y, BfpdY:, 3.1

k=1

and the degenerate second-order stochastic PDE
d
dp,=A*p,dt+ ), Bp,dYt, 3.2
k=1

with semigroup {Q},0<s<t}.
Although no coercivity hypothesis is satisfied, the following result is proved in
Krylov-Rozovskii [13].

THEOREM 3.1 Let n21 be fixed. Assume that

e a and ¢ have bounded derivatives up to order max(n, 2),
o b, p and h have bounded derivatives up to order n,
o the initial condition satisfies p,e H".

Then both Egs. (3.1) and (3.2) have a unique solution pe M*(0, T; H"). In addition
pe LA C([0, T]; H™),

and the following estimate holds

m[ sup np.uz]snpouse".
OS:sT

Similarly, for the Fokker-Planck equation
pi=L3p,, (33)
and the following deterministic PDE associated with (3.2)

p=A*p, (34
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with semigroup {P?,t20} and {T?,t20} respectively, it holds
THEOREM 3.2 Let n21 be fixed. Assume that

e a and ¢ have bounded derivatives up to order max(n,2),
o b has bounded derivatives up to order n,
o the initial condition satisfies poe H".
Then both Egs. (3.3) and (3.4) have a unique solution pe L*(0, T; H"). In addition

peC, ([0, T];H"),

and the following estimate holds

sup_[pi[lz = [lpofl3 e
OSIsT

Remark 3.3 In the case where the coefficients a and ¢ are uniformly elliptic, a
slightly stronger theorem holds, see Krylov-Rozovskii [12] and Pardoux [23].
O Error Estimate
The purpose here is to study one of the Trotter-like product formulas (2.4).

THEOREM 3.4  Consider the following approximation scheme
Piv1=P3Qi. i (3.5)

Assume that

e a ¢, b, p, and h have bounded derivatives up to order 3,
o the initial condition satisfies py e H>.

Then p; approximates the solution p,, of the original Zakai equation (3.1) with a rate
of convergence of order 8. Indeed

{Eﬂﬁi‘Pull}m s C‘S“Po":i-

Proof The idea is to get an equation for v,& P* 0%¢ with ¢ smooth enough,
that is similar to the original Zakai equation for p,, except for some perturbation
terms which have to be estimated. This gives an estimate of the one-step erro:, and
the global estimate is obtained using the Gronwall lemma.

Differentiating with respect to ¢

d
dv,=L3v,dt+P,‘_,[A‘Q:¢ dt+ Y BrQio dY:‘]

k=1
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4
=L8v,dt+A*v,dt+ Y BPvdY;

k=1

d
+[Pr A*—A*P_1Qt¢dr+ Y [P B —BEP! ,]Qi¢dY}
k=1
4 d
=L*%,dt+ Y Bfv,dY'+fdt+ ) gidY},
k=1 k=1
where the perturbation terms are defined by
fA[Pr A*—A*P:1Qi¢ and gi&[Pr_Bf—BP 100,

respectively. The difference ¢,2 v, — p, satisfies
d d
de,=L*c,di+ Y, BledYi+ fidt+ Y gidYy.
k=1 k=1

Using estimates of [13]

t d 1
E'rle.l’é[Eﬂs,|2+CEf fIflPdt+CEt ¥ j“gf”zdt]ec“"’.
s k=1gs

Assume that the following estimates hold
Et|f* SC(z—9)Et|| |3 77, (3.6)
Et|ge]| < Clz—5)"Et]| |3 €77 3.7
Then the Gronwall lemma would yield
Etle|’ S (Ete)* +C(t—s)°Et|¢]31 7,

provided ¢ e L*(Q; H*). Now, it follows from the assumptions and from Theorem
3.1, that p,e L¥(Q; H?) for all i, so that setting s=¢,, t=t,,, and ¢=p;

Eﬂﬁu 1= Py ‘lz s [Eﬂp.i_ P-.P +C(tyhy— ‘i)aEfuﬁi“g] eCtier ),

and the result follows from the discrete Gronwall lemma. The end of the proof is
devoted to proving estimates (3.6) and (3.7).

O Estimate (3.6)

The following perturbation result
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[P A*—A*Pr_Ju=[Pr  [L§A*—A*L3]IPE_udr,
3

holds for u smooth enough. It follows from the assumptions, that the partial
differential operator DA [L$A* —A*L3] is bounded from H? to H®. In addition, it
follows from Theorem 3.2 that {P?,:20} is a strongly continuous semigroup in
both H® and H>. Therefore

£ <[|PL . DP%_ 00| de' < Cle — s)| Q2] €.

Then
Et|f|* £ C(r—s)’E||@i9|3 e 2 < C(1—5)’Et}|¢]|3 c 2.

(O Estimate (3.7)

Similarly, the following perturbation result
[Py B! —BrP! Ju=[P: .[L{B}—-BIL§]P?_udr,

holds for u smooth enough. It follows from the assumptions, that the partial
differential operator D, 2 [LEB} — BL?] is bounded from H? to H'. In addition, it
follows from Theorem 3.2 that {P¥, 120} is a strongly continuous semigroup in
both H! and H3. Therefore

lletl| < f|IP2- . DPE_ Qi ldr < Cl~5)||Qid|s €<~

Then
Etljg}|* S C(r—5)’EH||@¢|l} ec* " s C(r—s)’Et]|¢|i3 ™. O

Remark 3.5 In the case where the coefficient a is uniformly elliptic, the same
error estimate can be proved under weaker regularity assumptions on the
coefficients and the initial condition, see Florchinger-LeGland [8].

Remark 3.6 1t is possible to approximate the stochastic differential equation
(2.1), in such a way that the approximation j; given by (2.4), is actually the
conditional density of the approximate process at time ¢;, given the observations
%,,. This problem will be addressed elsewhere.

The approximation scheme (3.5) is not yet computable. First, the Fokker—Planck
equation (3.3) with semigroup {Pf#,t20}, has to be approximated: this is a rather
standard problem, for which one can usec e.g. the backward Euler scheme, or some
other approximation scheme. On the other hand, some representation results are

I
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presented in the next section, which can be used for the approximation of the
degenerate second-order stochastic PDE (3.2), with semigroup {Q?, 0<s<t}.

© v s ety

4. STOCHASTIC CHARACTERISTICS

Parallel to the decomposition of the stochastic PDE (2.2), there is a similar
decomposition for the stochastic differential equation (2.1). With the first
component

dX,=b(X,) dt +a(X,)dW,

is associated the partial differential operator L, and the Fokker—Planck equation
(3.3). It is proved below that the second component

dX,=p(X)[dY,—h(X,)d1], (4.1)

is associated with the degenerate second-order stochastic PDE (3.2) and the
corresponding deterministic PDE (3.4).

The beginning of this section is devoted to recall results concerning the
stochastic flow of difffomorphisms associated with the stochastic differential
equation (4.1).

THEOREM 4.1 Ler £, () be the stochastic flow associated with the forward stochas-
tic differential equation

¢, =p(Z)dY,—h({,) dr]. (4.2)

Assume that the coefficients h and p have bounded derivatives up to order (n+1).
Then &, (-) is a C™-diffeomorphism in R™.

Under the assumption that the coefficient p has bounded derivatives up to order 2,
the inverse map & }(°) is given explicitly as the (backward) stochastic flow n, (-)
associated with the backward stochastic differential equation

dn, = p(n)B[dY,— h(n,) d1] - po(n,) dt, (4.3)

with

The regularity of £, ,(-) was first proved by Blagoveschenskii-Freidlin [3], whereas
the rest of the theorem is proved in Kunita [16].

ProposiTiON 4.2 The Jacobian J, () (i.e. the determinant of the Jacobian matrix)
of the diffeomorphism &, (°) satisfies

JOREw—
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Jo(9)8exp {i &%, LAY, ~ h(E, (x)) ]

— [, ) de— [ &(C, () dz} (4.4)

i=3 a ’

cal & & dpi ool : oh
aa:s and h,2 tpi.
2121 I.jzl axj ox; 0 tzx 121 pi

Proof Transform first the stochastic differential equation (4.2) into Stratono-
vich form

dé,= p(&) o [dY,— (&) dt] —4po(&,) dt.

Similarly to the Liouville formula for ordinary differential equations, see Hartman
{101, it holds

d10g J, (x) =a*(, (x)) o [, ~ h(E, {x)) i1 — ho(&, () dt —§ div pof&,. () dt.
Transforming back to It3 form
d10gJ,, (x) =a*(E, (X)[AY, —h(E, (x)) di] = ho(, (x)) i
—1div po(&, (x)) dt +baol&, () dt.

Now it holds

d m
divpo=Y ¥ a(f;ﬁ*pt)

k=1 l'.J“l

o oo épl
way § -3 F o

K=1ij=10%; 6x_,

which finishes the proof. ]

Remark 4.3 Note that [J, (n, ())]! is actually the Jacobian of the inverse
diffeomorphism 7, (-).

Define
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E,.(x)8exp {I h*(¢,.«(x)) dY,— % [ (AE) df}, 4.5)

and

0, (x)2E, (N)[J,.(x)] ' =exp {! h*(, (x) dY,— %i h(,, N dx

[ ONIAY, — h(E, ) e+  hol£, () de+ [, ) dz},

Introduce the following definition

Qla(x) 2 q(n, (x))©, (7, (x)), (4.6)

or equivalently

0:9(8s.{x)) =q(x)®, (x).

where the same notation has becn used as in the previous section. This will be
justified by the Theorem 4.8 to be proved below.

Remark 44 Under the additional assumption that the coefficient p has
bounded derivatives up to order 2, the Lemma 6.2 of [16, Chapter 2] gives the
following explicit expressions in terms of backward It stochastic integrals

Es.r(”r.:(x)) =¢exp {5 h‘(n!.t(x))ed}’t - %j |h(’7:. ‘(x))ll dr— j ho(']r.t(x)) d‘t},
T, k) =exp {J 201, LN@LAY,— b, ) de]

- I hO(”t,r(x)) d‘[ —-I&('],,(X)) dt - I aO("t.t(x)) d‘[},

where the coefficients h, and «, have already been defined as

Therefore

iy i e
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T,.{x)26, 1. 4x) =cxp {Jh‘(n._,(x»edx = 3 F bt =) d

—fa*(n,, {x)D[dY.— h(n, {x)) dr] + [ &(n, x)) d + [ ag(m,. {x)) df}- 4.7

Remark 4.5 1If p=0, then §, (x)=x so that

Qiq(x)=g(x) exp {h*(x)(Y,— ;) - §|n(x)|*(t —5)},
which is actually the explicit solution of the equation

d

dg,= Z h,,q,de,

k=1

with initial condition ¢ at time s. In this case, (2.4) reduces to the discretization
schemes considered in [2, 18,20].
First, the following stability result holds

PrOPOSITION 4.6 Let n20 be fixed. Assume that

e ¢, p and h have bounded derivatives up to order (n+1),
e the initial condition satisfies g€ H".

Then Q%q is a square integrable random variable with values in H". In addition, the
following estimate holds

{Et|0:qli23 > < ||q|, €.

Proof It is enough to prove the result for n=0.

Using the change of variable x=1, (y) i.e. y=¢, (x)

Et|Qiq|* =Et [ [lg(n, {»)|©,.dn. ()]1* dy= [ |a(x)|’E{0©, (x)} dx,
and the result follows from the estimate

sup E{©, (x)} e 0. O

xeR™

Another property of the two-parameter stochastic semigroup {Q;,0Ss<t} is
provided by the following
ProrosiTion 4.7 Let {T;,t 20} be the semigroup generated by

az
Ox; 0x;

l m
A=z Y M
2uz=1
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Then
EtQi=T,.

Proof Using the same change of variable as in the proof of Proposition 4.5, it
holds

(EX(Q:9)./)=Et [ a(n, (1)©s.{n. () S ) dy= [ qX)EL[f (&, {x)] dx,
for any test-function f. Now, under the original probability measure P
dg,=p(5)dv,
where {V,,t20} is a Wiener process with covariance matrix I. Therefore
(EY(Qi9).N) = T-.N)=(Tr /). O
The following representation result of the solution of Eq. (3.2) in terms of the
stochastic characteristics n, {°), is the stochastic counterpart of the usual method of

characteristics for linear first-order PDE. It has been proved by Krylov-Rozovskii
[13] and Kunita [15,17].

THEOREM 4.8 Let {Q},s<t} be defined by (4.6). Then, the unique solution of
equation (3.2) satisfies

g{(x) = Qiq4(x). (4.8)
Proof The proof given below is essentially that of [13]. Introduce
t 1 t
oexp{forar - fjoac)
3 3

where {¢,,s< 1=t} is deterministic.
It follows from the Ito formula that §, 2 Et({3-q,) satisfies
d
d.=A*q.+ ) Bii¢:. 4.9
k=1

with the initial condition §,=E{(q,). On the other hand, define

wxx)év[f(é._,(x» exp {i SEH(E, () dr'}],

where undei the probability P*
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d¢.=p(E)[dVE+ ¢, dr],
and {V¥,t20} is a Wiener process with covariance matrix I. By the Feynman-
Kac formula, {W,s<t<t} satisfies a PDE which is dual to (4.9), so that

(4..f)=(4,, w,). Consider now the right-hand side in the representation result (4.8).
Then

(2 024,0) = e J)E2 (7, ) exp {i (. () dr}u,_m..xx»]-*,
with

22 (x) 2exp {; [HE. ) + 9.1 ¥, ~ 3 [ h(E, ) + ¢,|=dr}.

Define next 7,2 Et({:- Qiq,). The Fubini theorem, the change of variable x=7#, (y)
and the Lemma 6.2 of [ 16, Chapter 2] give

(50 /)=t | £()am ONES e ) exp {5 $2h(n, () dr}[.r,.,(n..,(y»] ~14y
—Et [ f(E ()ax)Z2 () exp {j $2h(Z, () dr} dx
— [4(xE+ [f(és‘,(X))E;’.,(X) exp {J 6*h(E, () dr}] dx

=[g(xE? [f (&s.(x)) exp {f é7h(Z,.(x) dr}:l dx=(gs, ).

It follows that (g, f)=(5,, f) for arbitrary test-function f and arbitrary {¢,,s<1<
t}, which finishes the proof. [

5. APPROXIMATION OF THE STOCHASTIC CHARACTERISTICS

It has been proved in Section 4 that the stochastic semigroup {Qf, 0<s<t}
associated with the degenerate second-order stochastic PDE (3.2) satisfies

Qid(x) = (n, ()T, [x), (5.1

where 7, (-) is the inverse of the stochastic flow of diffeomorphisms ¢, (-)
associated with the stochastic differential equation (4.2), and I, (x) has been
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defined in (4.7). The purpose of this section is to investigate approximations of
(5.1).

Considering that #, (-) is also the stochastic flow of diffeomorphisms associated
with the backward stochastic differential equation (4.3), it is natural to consider
the following approximation

016(x) & (7., LN, (), (52)

where

i, (x) & x— p(X)[ Y, — Y~ h(x)(t — $)] + po(x)(t —5),
and
T, {x)Rexp {R*(x)(Y,— Y,) — }|h(x)|*(t — 5) — a* () [ ¥; - Y, ~ h(x)(t —5)]

+&(x)(t ~ ) +ag(x)(t—5)},

are computable approximations of #n, {x) and I, (x) respectively, both depending
only on the increments (Y, — Y;).

Remark 5.1 One possible approach would be to approximate 7, (-) by the
stochastic flow of diffeomorphisms associated with the ordinary differential
equation obtained from (4.3) by replacing the observation sample-path {¥,0=<:<
T} with some regular approximation, such as the Euler stepwise approximation or
the polygonal interpolation. The numerical analysis of such an approximation
should not be very difficult. However, the resulting approximation would not be
explicitly computable.

The remainder of this section is devoted to studying the rate of convergence of
this approximation. First, a stability result similar to Proposition 4.6 is needed.

ConpiTion A Let n20 be fixed. Assume that the initial condition satisfies ge H".
Then Qiq is a square integrable random variable with values in H". In addition,
the following estimate holds

{EtlIQzalla} < lafln e .

Remark 5.2 Because 1, (-) is not a diffecomorphism, this stabiiity result can not
be proved in the same way as in the proof of Proposition 4.6. The following
proposition, which is proved in the Appendix, shows that Condition (A) holds in
the simple case where the correlation coefficient p is constant. Whether this
remains true in the general case—or how to modify the approximation scheme in
such a way that Condition (A) holds without any additional assumption on the
correlation coefficient—is still an open problem (however, see Remark A.1 below).

ProrosiTioN 5.3 Let n20 be fixed. Assume that

® p is constant,
o h has bounded derivatives up to order n.
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Then Condition ( A) holds.

Remark 5.4 The approximations #, (x) and I, (x) are based on the explicit
expressions for 7, (x) and I', (x), given in (4.3) and (4.7) respectively. This explains
why the regularity assumptions on the coefficient h are different in Proposition 4.6
and Proposition 5.3.

Remark 5.5 In the case where the correlation coefficient p is constant, the
approximations of n, (x} and T, (x) take the simple form
7 {x) 2 x—p[¥,— Y, h(x)(t—s)],
and
. (x) & exp {h*(x)(Y,— ) —4h(x)|*(t - 9)},

respectively.

Next, the following proposition provides an error estimate for commuting the
operator (? and spatial derivatives.

PROPOSITION 5.6 Let n20 and o a multi-index, be fixed. Assume that

o p has bounded derivatives up to order (n+ [azl +2),
o h has bounded derivatives up to order (n+|a]),
e the initial condition satisfies ge H"*'*!.

Then, under Condition (A)

{E1||0:D%q — D*0zq[2} 2 < C/t—slln+ a1

Here again, the proof of this proposition is given in the Appendix.

0O Overall Error Estimate
The main result of the paper is provided by the following

THEOREM 5.7 Consider the following approximation scheme
Divr =P:‘ ::. ,5&-

Assume that

o a and ¢ have bounded derivatives up to order 4,
o b and p have bounded derivatives up to order 3,
o h has bounded derivatives up to order 2,

o the initial condition satisfies p, € H>.

Then, under Condition (A), P, approximates the solution p,, of the original equation
(3.1) with a rate of convergence of order ﬁ Indeed
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{EtlPi—p.|*}2 < C/8]|pol -

Proof In view of Theorem 3.4, it is enough to prove that

{Et{5:— 5> < C/d||po -

Similarly to the proof of Theorem 3.4, the idea is to get an equation for Ji¢ with
¢ smooth enough, that is similar to the original Eq. (3.2) for O}y, except for the
initial condition and for some perturbation terms which have to be estimated. This
gives an estimate of the one-step error, and the global estimate is obtained using
the Gronwall lemma. Throughout the proof, the summation convention over
repeated indices i, j, is used.

Differentiating both sides of (5.2) with respect to ¢

4
a0 =2 (ﬁ,_,(X))[—k; ALY — hy(x)de] + p(x) dz] Tl

e ) 3 O AT, 00

a

d
#0079 3 ¥t~ S0 = 5 a4V~ 4
k=1

k=

+a(x) dt +og(x) dt + % h(x) = a(x)]? dt:l [,(x)

6¢ 4 .
('l. {x)) [ .z Pi(x)[A(x) — ay(x)] dt] [..{x)
=1

1 PP
=53¢0 5 (T o de

[po<x)+ 5 m(x)a.(x)]—"i(n, LT (9 de

k=1

+ [&(x) + ag(x) + $a(x)| 2@ (77, XN (x) de

d
+ .};‘ Chx) — ()1, LN T LX) d Y
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_% s "’(n. ()T, () dY™.

k=1

Now, it can be checked that

1 3%t octd
z —
d+ag+s |a| =3 9x9%, and pf +.§l phay= o
Therefore, it holds
409 = [— i 28 )

a¢ 1 &%
+ 22 225,409 + 3 22 100700 | ko

d

+Y [h.(x)qs(n, ) —pi0 2 ‘7"’<n. () - ap"(x)¢(rl. xx))]r (x)dY?*

k=1

Tl on 8 20 10 .
—[Ec 0L a 209+ 5 = (x)é ¢(x)]dr

k=1

+ [hk(x)Q’¢(X) Pix)0; —(x) a”'f(x)Q:«ﬁ(x)]dY:‘

so that

i0=AGibdt+ S BROIdY!
k=1

1 $ a ¢ 3 —_— = 0)?
J[Q ' dx; ax, 6x‘ 6x o2 ¢:| [Q' ox; 5x, ¢]
Lot - Fow]an
The difference g2 03¢ — Q3 satisfies

de,=A*¢, dt+ Z BPe, dY!+ fidt+ Z ghdyr,

k=]




ZAKAJI EQUATION 251

where the perturbation terms are defined by

A c‘ I[Q‘ ox; ('bcj 6x, Ox; Q:¢] [Q'R T ox, ’4,]

and

se -0t 022 - Tow|

respectively. Using estimates of [13]

L4 d 1
ET|€,|2§[ETIE,|2+CETj|f'|2d1:+CE1- Y [l d‘r:lec""’.
s k=1s

Moreover, it follows from Proposition 5.6 that
Etlf.? < Cx—s)Et]|]3 €,
P < Cle—9Efol3
and therefore the Gronwall lemma yields
Etle,|* S[Ete)* + C(t - 5)’Et|[¢l[3] 77,

provided ¢ € H2. Now, it follows from the assumptions and in particular Condition
(A), that p;e L%(; H?) for all i, so that setting s=t,, t=t;,,, ¢=p; and Yy =p,

ETIQ:: PO, .F_’i|2 = [Eﬂﬁi—ﬁilz +C(li4y -ti)zET”ﬁi”ﬂ gCtermh),
Next
ETIPI*I pl+ll2—ET|P‘|[Ql.ox llolpl]'z

STEHP—Ff* + Cltie s — ) ER|[BI[F] 171,

and the result follows from the discrete Gronwall lemma. a

A further step in the time-discretization would consist in approximating the
Fokker—Planck semigroup {P?,t20}, using some classical approximation scheme.
For instance, using the backward Euler scheme would result in the following
global approximation scheme

(I 6IL )pl#! =Qho|ph

with the same error estimate.
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O Particle Approximation

Another possible approach to approximate the degenerate second-order stochastic
PDE (3.2)—based also on the representation (5.1) in terms of stochastic character-
istics—would be to use particle methods, adapting the results presented in Raviart
[24] for deterministic first-order PDE. The basic idea is to solve exactly Eq. (3.2)
for an approximation of the initial condition, rather than approximate the
stochastic characteristics as was done before.

Suppose that, at time ¢; an approximation of the conditional probability
distribution g(x)dx is available, in terms of a convex linear combination of Dirac
masses sitting at some particle locations {x} ke K} with corresponding weights
{a},keK} ie.

g(x)dx~ T até(x—xb). (53)

kek

Solving exactly Eq. (3.2) in weak sense, with the approximation (5.3) as initial
condition, gives the following approximation

Q::.‘Q(x)dx“‘ z a‘."+15()‘—x?+ 1)

keK

for the solution at time t;,,. The new particle locations {x!,,,ke K} and the
corresponding weights {at, ,,k€ K} are computed according to

X,*...x = 5(;.1‘. 1(xf) and af-b 1 =afsr..l.. l(xf),

where ¢, ,(-) is the diffeomorphism associated with Eq. (4.2), and Z, (-) has bezn
defined in (4.5).

The error estimate associated with this particle approximation will be studied
elsewhere.

6. CONCLUSION

A time-discretization scheme of the Zakai equation for diffusion processes
observed in correlated noise has been proposed, based on the stochastic character-
istics introduced in [13,15,17]). Under the additional assumption that the correla-
tion coefficient is constant, it has been shown that the rate of convergence of this
approximation is of order JS, where J is the time discretization step.

The same rate of convergence has been obtained in Elliott-Glowinski [7] for a
different approximation

e on onc hand, the approximation considered in [7] has a probabilistic
interpretation, which is not the case so far for the time discretization scheme
presented here (however, see Remark 3.6 above),
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e on the other hand, the latter is actually computable, whereas no numerical
algorithm is provide to compute the approximation considered in [7].

Another point of interest would be to study some particle approximation for the
degenerate second-order stochastic PDE, adapting the results presented in Raviart
[24] for deterministic first-order PDE.

As was pointed out to the authors by Harold Kushner and the anonymous
referee, one would have to discretize the space variable and to bound the state
space, in order to get a completely computable numerical scheme. This is a
different problem, for which several approaches have already been used: finite
difference approximation, by Kushner [18] and DiMasi-Runggaldier [5], finite
element method, by Bennaton [1] and Germani-Piccioni [9], with error estimate.
The reference [9] also provides error estimate for bounding the state space, using
weighted Sobolev spaces introduced by Krylov—-Rozovskii [14]. Therefore, the time
discretization scheme presented in the paper should be combined with such space
discretization techniques, in order to be completely computable. To some extent,
the choice of the space discretization scheme is dependent on the application: for
instance, the method of characteristics (also called particle approximation in [24])
is well-adapted to first-order PDE arising in the filtering of noise-free processes,
and has been recently used in target tracking applications, see Campillo-Le Gland
(4] and Lasdas-Davis [19].
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APPENDIX

Proof of Stability and Commutation Estimates

The purpose of this appendix is to prove the stability and commutation estimates
for the approximation introduced in Section 5.

Proof of Proposition 5.3 It is enough to prove the result for n=0.

Since 7, {-) is not a diffeomorphism, one can not use a change of variable as in the
proof of Proposition 4.6. Instead, one uses the fact that #, (x) and I, (x) are very
simple functions of the Gaussian random variable (Y, - Y,). First

Et|@q|* =Et { [|a(i. LT, £x)]* dx

“2a0 1 9] § §latx = p(x)[w — h(x)(t — )] + po(x)(t — )2

x exp {2h*(x)w — |h(x)|*(t — 5) - 2a*(x)[w — h(x)(t~5)]
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+ 26(x)(t — 5) + 2ao(x)(t —5)} exp { - Jv_v]’_} dwdx.
2(t—s)
Next

| Iz =2[h{x)— — <2
2[h(x) —a(x)])*w —~ 2(:”_3)=2|h(x)—a(x)lz(t—s)— w2 (’;)(t_aS‘)](t ul ,

so that, using the new variables (x, v} with v=w—2[h(x) —a(x)}(t—s)

1
Tyl la(x—p(x)o

+7(x)(t—9))|* exp { - -Mz—} dvdx,

Ef|0iql* s e

2(t—s)

where 3(x) 2 po(x) — p(x)[h(x) — 2a(x)].

In the particular case where p(x)=p, the application F(x)@ x—pv+y(x)(t—s) is
a diffeomorphism provided 0<(t—s5) < 1/C, and moreover the Jacobian is bounded
below by [1 — C(t—s)]. Therefore, using the new variables (y, z) with y= F(x)

C(t~3) 42
B0 s Ll ee{ - ey

1-C(t—s) [2n(t— 2(t—s)

Cit-s)

s—* - [laol? dy,

1-C(t—s

provided 0<(t—5) <8< 1/C, which finishes the proof. O

Remark A.1 According to the detail of the proof above, it is enough for the
Condition (A) to hold, that

l 2
WI fla(x—p(x)v + y(x)(t —5)|* exp { - ﬂltﬂ__s)} dvdx e §|g(3}? dy,

for any bounded function 7.

Proof of Proposition 5.6 Here again, it is enough to prove the result for n=0
and |a|=1. Throughout the proof, the summation convention over repeated indices
Jj is used.

For q smooth enough, it holds
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Abstract

A class of degenerate second order stochastic PDE is considered, for which a rep-
resentation result in terms of stochastic characteristics has been proved by Krylov-
Rozovskii [2] and Kunita {3,4]. An example of a stochastic PDE in this class has
been exhibited in Florchinger-LeGland [1] as the result of a Trotter-like product
formula for the Zakai equation of diffusion processes observed in correlated noise.
Particle approximations are introduced for this class of stochastic PDE, and er-
ror estimates are provided which extend the results of Raviart [6] on first order
deterministic PDE.

1 Introduction

Consider the following stochastic differential equation

dXi = b(X,)dt + o(X,) [dW, — e(X}) dt] , (1.1)
where {W,, t > 0} is a d-dimensional standard Wiener process, and the associated sto-
chastic flow of diffeomorphisms {£,(:), 0 < s < t}, and define

Zode) £ exp{ [ e*(foa(e)) W,

1 [ lelboute)ds + [ eltoae)ds}

*Research partially supported by USACCE under Contract DAJA45-90-C-0008.
talso : INRIA Lorraine, CESCOM, Technopole de Metz 2000, 4 rue Marconi, F-57070 METZ.
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Introduce the following partial differential operators

>

L2l i a‘4i+ib‘i+c
2 Frd 6.’1:.'31_,' i=1 31.» !
g

A = i
Bk=€k+20k£,

i=1

with a = ¢ ¢°, and the stochastic PDE

1<k<d,

d
dg = L"q.dt + Y Brg dW} . (1.2)
k=1

Because of the relation a = o o* between coefficients of higher order partial derivatives
in operators L and By, equation (1.2} is a degenerate second order stochastic PDE or
equivalently, after transformation into Stratonovich form, a first order stochastic PDE.
Existence and representation results have been obtained by Kunita [4] for (generally
nonlinear) first order stochastic PDE, based on the notion of stochastic characteristics.

In a previous work [1], the Zakai equation for the nonlinear filtering of diffusion pro-
cesses observed in correlated noise has been considered. A decomposition of the Zakai
equation has been introduced, exhibiting a degenerate second order stochastic PDE sim-
ilar to (1.2) in the correction step. In addition, a time discretization scheme has been
proposed for this degenerate second order stochastic PDE, with rate of convergence of
order /6, where § is the time step.

The purpose of this paper is to provide a discretization scheme of the degenerate second
order stochastic PDE (1.2) with respect to the space variable z € R™. This approximation
relies on the representation of the solution in terms of stochastic characteristics. and
approximation of the initial condition by a convex linear combination of Dirac masses.
This kind of aproximation is called a particle approzimation, see Raviart [6].

More specifically, for any probability measure p(dz) on R™, define the transformed
measure @, u(dz) by

Qi 8) = [ 96os(=)) Zoulc) ulda) , (1)

for any test function ¢, or equivalently

Quu(A) = [, Zoda)uldr).

§5.0(4)

Note that, if ¢ is regular enough, then the It6 formula gives

d
d[ ¢(€o.(7) Zos(2) ] = Lo(£ou()) - Zoelz) dt + 3 Bid(bos(z)) - Soulz) dWY .
k=1




Therefore u,(dz) = Q; p(dz) solves equation (1.2) in weak form, i.e.

d
duy = L pedt + Y Bip dWS o =pt . (1.4)

k=1

Consider next the following two different assumptions on the original m~asure yo(dr) :

D Assume that the original measure p(dz) has a density q(z) with respect to the
Lebesgue measure on R™, i.e. p(dz) = g(z)dr. Then, the transformed measure @ u(dz)
has itself a density g:(z) which satisfies

q:(fo,t(l')) : Jo.e(l‘) = Zo(z) - q(2),

or in integrated form
dr= [ Zo(e) gla)ds .
Joa@dz = [, Zodla) - gla)dz
Here, Jo.(+) is the Jacobian (i.e. the determinant of the Jacobian matrix) of the sto-
chastic flow £o,(). In addition, the density q.z) solves the degenerate second order
stochastic PDE P
dg = L q.dt + Y_ Brg:dWy , G=2gq. (1.5)
k=1
O Assume that the original measure p(dr) is a convex linear combination of Dirac
masses, also called particles

u(dz) = Za‘&(z —1'),

€l

where {a',i € I} are the particle weights, and {z*,¢ € I} are the particle locations.
Then, the transformed measure @, u(dz) has a similar representation

Quu(dr) = Y} ajé(z ~ 1),

i€l

where the particles have been transported by the flow i.e. zi = &u(a'), and the weights
have been updated according to a! = a' Zp,(z").

The idea behind particle approximation for equation (1.2) is the following :

. given an initial condition uo(dz) with density go(z), #nd an approximation u(dr)
in terms of a linear convex combination of Dirac masses,

- use the exact solution of equation (1.4) with the approximation uf(dz) as initial
condition, as an approximation for the solution of the original equation (1.5), and
get error estimate if possible.




This can be illustrated by the following diagram

go(z)dzr = po(dr) —————— pb(dr)

Q: Q:

q(r)dr = p(dr) ————s p(dr)

The remaining of this section is devoted to recalling standard results concerning sto-
chastic flows of diffeomorphisms and stochastic PDE.

Proposition 1.1 Let n > 0 be fized. Assume that

- b, 0 and € have bounded dcrivatives up to order (n + 1).

- ¢ has bounded derivatives up to order n.
Then €,4(-) is a C"~diffcomorphism in R™. In addition, the following estimates hold for
allp>1

sup E [ID"&,:(I)I”J < o0, 1<lal<n,
reRm™

sup E [|D"Es‘((z)|p} < oo, 0<al<n.
z€R™

Restricting to compact sets of R™, it is possible to invert the supremum and the
mathematical expectation in the estimates above, see the Corollary 4.6.7 of Kunita {3]

Proposition 1.2 Under the assumptions of the Proposition 1.1, there exists a constant
C > 0, such that for any compact set B C R™ and € > 0 the following uniform estimates
hold for all p > 1

E [SUPID"&.s(z)!”}
T€B

IA

C 1+ 67, 1<|al<n,

E [suplD"’E,',(r)P’] < C 14677, 0<lal<n,
r€B

where 6 = 6(B) denotes the diameter of B.




e

For alln >0, p > 1, let WP = W™P(R™) denote the space of real-valued Lebesgue-
measurable functions on R™ whose generalized derivatives up to order n are integrable in

p-mean, and define the corresponding norm || - |, and semi-norm |- |, , by
iz, 2 X [IDu@Pdz  ad 2 T [iDu(@)Pds,
o<lo|<n lal=n
respectively.

Consider the following degenerate second order stochastic PDE
d
d(h = L‘qt dt + Z B;ql thk B go=4q . (16)
k=1
Although no coercivity hypothesis is satisfied, the following existence, uniqueness and
regularity result is proved in Krylov-Rozovskii [2].

Theorem 1.3 Let n > 1 be fized. Assume that

- a has bounded derivatives up to order max(n,2),
- b, o, c and e have bounded derivatives up to order n,
- the initial condition satisfies go € W™P.

Then equation (1.6) has a unique solution g € M?(0,T ; W™F). In addition
g € LP(Q; C ([0, T); W™P)),

and the following estimate holds
Blsup lodz,) < ol €7

2 Quadrature-based particle approximation

With the quadrature formula (A.1)
/g(z) dr ~ Zw g(z
el

is associated the following particle approximation for the initial density go(r)

go(z) dz = po(dr) ~ ph(dr) = Zw go(x') 8(z — 1%) . (2.1)
€l
This induces the following particle approximation for the solution ¢,(x) of equation (1.6)

q(z)dz = p,(dr) ~ I‘g (dz) = ZW Zoulz )5(1 = EO.!(Ii)) .

el

The following error estimate holds in Sobolev space with negative exponent, which
extends the result of Raviart to the case of first order <tochastic PDE.




Theorem 2.1 Let n > m be fized. Assume that

- b, o, ¢ and e have bounded derivatives up to order (n + 1),

- the initial condition satisfies go € W™P,
Then there ezists a constant C > 0 independent of h, such that
Ellse ~ #ll-ns < C 5™ |igollnp -
PROOF. Let ¢ € W™ be an arbitrary test function. Since

{ue, @ /¢€o¢ ) Zo04(T) golz) dz , (1, 8) = 3w d(oulz')) Zolz’) go(')

i€l

it follows from Theorem A.2 that

ier8) — (uf, o) S C R gl
with ¢ = ¢ o £, - Zos go , provided g € W™ n > m.

Under the assumptions on the coefficients, ¢ o £, € W™ and Zg, - g0 € WP, for
conjugate p and p’. Moreover, the generalized Leibniz formula yields

gha € ¥ [ IXesle) D"$(6ou(x)) Dgolo)] dz ,

(o.0)€1n

where I,, denotes the set of pairs (o, 8) of multi-indices such that ja|+|8] < n, and xa.5(-)
are random fields involving the derivatives of £,(-) and Zg(-) up to order n. Using back
and forth the changes of variable induced by the differomorphisms £.(-) and &5} (-). and
the Holder inequality, gives

oha £ 5 [ Ixasl&}(2) D°¢(x) DaolE} (2))] Vosls) ()] de

(a.8)€]n
< {/|D°¢(1‘ I” d:l‘} {/IXaﬂ ‘501 Dﬁ(I()({o,( ))l
{o.8)€]n
1/p
[Joelo (2))]™ pdl’}
1/p
< Holny Z | [ Iesta) DPaal)P [ou(2)) 0 dz
(a.8)€ln
Therefore
ok
pe, @) = {uf, O] <Ch" {/|XaB (z) Daqo(t)l” [Joul(2)]” (p- l)dl_} /» ’
¢l (. a)el..
6




——pan - -

o At

o

and

Bluc— llons < C8 T { [B{ixas@)l Wade))*}
(a,8)€ln

5 1/p
|D%gofa)P d |
From estimates in Proposition 1.1, it holds

sup B {[xo.(2)P o(2)] "} < o0,
TeER™
so that

Ellu = p¢ll-np < C b ligollny - o
Regularization

Let ((x) be a continuous cut—off function defined on R™, which satisfies

) [ee)de=

(ii) /:r"((z)d:r:l), 1<jal<k-1,

(i) [leF lG@)lda < o0,
for some k > 2. For any € > 0, {,(z) is defined by the following scaling

2

G0 2 ¢y

With the particle approximation
ph(dz) = Ew Zou(x') go(=') 8(z — z})

i€l

is associated the regularized measure
pe(dz) = pp *o(dz) = g (2) dz
where the density q,"“(:t) is given by
= YW Zoula) aola’) Gelz = 23) -

el

The main result of this section is the following theorem, which is an extension of the
Theorem 4.2 in [6], to the case of first order stochastic PDE.
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Theorem 2.2 Let n > m be fized. Assume that

- the cut-off function ( satisfies (i)-(iii) for some k > 2, and ( € W™!,
- b, o, ¢ and e have bounded derivatives up to order (£+ 1),

- the initial condition satisfies go € W42,

where £ = max(k,n).

Then, there ezists a constant C independent of both h and £, such that

e 1/p n
{Ellg. — a1} " < € {* Naollks + (B/E)" llgoliny} -
PROOF. Obviously
g =g =g —qC)+g*—q].
First, it follows from Lemma 4.4 in [6] that
”qt — g * CzHO.p <C e Iq:'k,p

provided ¢; € W*?_ Under the assumptions, Theorem 1.3 gives
1/p - 1/p
{Ellg— g = ¢l } 7 < C e {Zlali,} 7 < C ¥ ligolles -

On the other hand, using the change of variable induced by the diffeomorphism &5 (-).
it holds for all z € R™

@0t (@) = g(@) = [ Zadl2) aol2) Gl = oulz)) 2

- 2w Zoda) go(z") Gz ~ bou(a")) = Elglz. "))
i€l
with g(z,') = Zo: qo - (.(x — &o). Therefore, it follows from Theorem A.1 that for all
z€R™
Jge+ Ce(2) — ¢"(2)) < C k™ Jg(z, )|n.

provided g(z,-) € W™! n > m. Moreover, the generalized Leibniz formula yields
192, )ha € T [ Ioal2) D2a(2)D%(z = boul))lda
(o.B)€ln

where I, denotes the set of pairs (a, 3, of multi-indices such that [a]+ |8} < n, and x}, 4(-)
are random fields involving the derivatives of £g.(-) and Zg¢(-) up to order n. From the
technical lemma below, it follows that

[satids < & {[ipe@ld} {[xista) DPaotalr

(a.B)Eln

[Jo_.(:t)}'(”‘”dx} .

8
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Making use of
D6(a) = i Do),

taking mathematical expectation on both sides, and raising to the power 1/p gives

(£ [loe, ade} " <€ Zlchs  {[B{XesleIP Wodtal o)

(a ﬁ)el
IDqu(x)[’dz}l/p
From estimates in Proposition 1.1, it holds
Iselng{lx;,,,(x)P o))"} < 0o .
Therefore
{Blacs ¢ ,) " < 0 b {E [ lo(a, Iade}
< C (h/e)" [¢llna ligollnp - o
Lemma 2.3 Let f € L? and g € L', and define
12) = [ £(2) glz =~ boul2)) d= -

Then I € L? and in addition

{[irepas)” < { [ 150 Voo de} " [lgtalar

PROOF. Using back and forth the changes of variable induced by the differomorphisms

€o.(-) and &5 (-), and the Lemma 4.3 in 6], gives

Iz) = [ £(&2(2)) Dol () gla ~ 2)ds

and

{Juepas)” < { 1€ 0P ot e} [1gtlds

< {J P botanevaz) " [l o




3 Adapted particle approximation

Consider the particle approximation (A.3) for the initial condition po(dz)

po(dz) ~ pg(dz) = Y a' 6(z - =) ,

€l

where the particle weights {a', i € I} and the particle locations {z*, i € I} are defined
in the following way

, ial
L ualB) = [ mode), 22~ [ cpolds),

depending on the measure po(dr). This induces the following particle approximation for
the solution u,(z) of equation (1.4)

pe(dz) ~ ph(dr) za Zo.lz') bz — Loulz')) -
i€l

Parallel to the Theorem 2.1 above, the following error estimate holds in Sobolev space
with negative exponent.

Theorem 3.1 Assume that

- b, 0, ¢ and € have bounded derivatives up to order 3,

- for alli € I, the set B* C R™ is compact.

Then qere ezists a constant C > 0, such that

Ellue— pfll-2a £C Y 81 d',
el

where «* = uo(B') and 6, = §(B') denotes the diameter of the set B,

PROG: . Let ¢ € W?™ be an arbitrary test function. Since

i,8) = [ MEodz) Zode) aldr) . (b 0) = T a* o(boule”) Zoula) |

el

it follc vs from estimate (A.6) that

ier8) — (ut &) < 33 lgly o5 67 @'

[t3)
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with g = ¢ o £o, - Zo,r, where B denotes the convez hull of B*. The generalized Leibniz
formula yields

l9l2008 < 3 suplxa(z) D*¢(&ou(2))|

loj<2 *€
<3 sulea(r)l] [SUP ID°¢(1)I]
lal<z L7€B {zerm
< ”¢”2'oo Z 5“P|X0(I)l s
lols2 *€B

where x,(-) are random fields involving the derivatives of £ ,(-) and Zg(-) up to order 2.
Therefore

l(utsé) (/‘t»(ﬁ)l < %Z Z sup IXO(-T)l 63 a,

li¢ll2,00 i€l |a|<2 z€B*
and
Elu —utll-21<3Y 2 E [SUQ Ixo(r)!} 6l a".
i€l Joi<2 | reBr

From estimates in Proposition 1.2, it holds

E | sup |.\o(1)ll <C [1 + 6‘2_1 ’
IGE'

for some p, where &; = §( B') denotes the diameter of both B' and its convex hull B*, so
that
Elu - ptll-n <CY. 1467 820, O
el
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A Particle approximation of functions

Consider the following quadrature formula on R™
/g(r)dr ~Y W' g(z'), (A.1)
i€l

where {z°, i € I} is a coordinate grid of size h > 0. I = Z™ and ' = h™ is the Lebesgue
measure of the m-dimensional cube B' with center z* and edge size h. For all g € C(R™),
the quadrature error associated with the quadrature formula (A.1) is defined by

E()2 [ ox)dr-wigl),  E@EYElo).

i€l
The following estimate is proved in Raviart [6]
Theorem A.1 There is a constant C > 0 independent of h such that

|E(g)l < C R |glns ,
Jorallge W™ n>m.
Let p(dr) be a probability measure on R™ having a continuous density g(r) with

respect to the Lebesgue measure, i.e. u(dr) = g(z)dr. With the quadrature formula (A.1)
is associated the following particle approximation for the density g(z}

q(z) dz = p(dz) ~ pM(dz) = 3w’ g(a") é(z - =), (A.2)
€l

so that, for any test function ¢

,0) = [#)a@)dr,  (h6) = Lot ola)gle")

i€l
The following result is proved in Raviart [6]
Theorem A.2 There is a constant C > 0 independent of h such that
e - l‘h”-n.p SCR gy ,

forallge Wn? n>m.

12
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PRrOOF. From Theorem A.1, it holds

(s 8) = (1", 8| = |E(9)] < C h™ |glns

with ¢ = ¢- ¢, provided g € W™!, n > m. The generalized Leibniz formula and the
Hoélder inequality yield
|glna £ C | llnp ligling »

for conjugate p and p’, and therefore

— h
"# ‘llh“—n,p = sup I(/‘7¢') (/‘ 7¢)|

< C R |gllnp - o
pcWn.p ”45”'!.9’ - “q” ?

Another possible approximation is to consider a partition {B*,7 € 7} of R™, and to
define the following particle approximation for the probability measure y(dr)

p(dz) ~ ph(dzr) =3 ' §(z — 2%, (A.3)
i€l

where the particle weights {a‘, 7 € I} and the particle locations {z*, ¢ € I} are defined
in the following way

o 2 u(B) =/Blu(d:) . g al /B‘;rp(dr) . (A.4)

depending on the measure p(dz) so that, for any test function ¢

(W)= [S@ uide) . (uh0) = Ta'o(a) .

i€l

For all ¢ € C(R™), the quadrature error associated with the formula (A.3). is defined by

E(#)2 [ ¢(@)uldr) ~a' ¢(=') . E(8)2 L Eil0).

iel
Parallel to the Theorem A.2 above, the following result holds
Theorem A.3 For any partition {B*,: € I}

o= ot ll-an 3 D 870", (A.5)
i€l

where @' = p(B*) and §; = §(B*) denotes the diameter of the set B'.
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PROOF. Let ¢ € W2 be an arbitrary test-function. Using Taylor expansion around
the point z = z* yields

#(z) = ¢(z') + (z — =) Dg(z")
+(z -2 {/01(1 —u) D*@[uz + (1 — u)z] du} (z -1,
and the definition (A.4) gives

E(¢) = /B'(z — 'y {/01(1 - u) D*fuz + (1 — u)') du} (z —2')dz .

Therefore _ ,
BN < 1ly e [ lle = 21 () < 4 16, 5. € o

where B’ denotes the conver hull of B'. Then

(0 8) = (64, 1 = IO <3 Dol & (A6)
1€
and (. 8) — (i, 8)]
— M, = NLO) — LN 82 4at . 's)
L S A

Remark A.4 If the partition {B;, i € I} is given, with §, < C h for all 7 € I, then
le — utl|—20 < C A2

On the other hand, if the partition {B,,¢ € I} has to be chosen so as to make the
quadrature error as small as possible, then estimate (A.5) can be used to derive the
following criterion

2d=c forallze .

This criterion based on equidistribution of the local quadrature error, has the following
interesting property

- a set with a large mass, will be split into some smaller subsets,

- conversely, neighbouring sets with small masses, will be packed together into one
single set.
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I Models of Partially Observed Systems

We consider partially observed systems of the form
{ dX; = b(X,)dt + o(X,;)dW,
(1)

dY, = h(X.)dt + dV;

where {W;, ¢ > 0} and {V;, t > 0} are independent Wiener processes of appropriate dimensions.
with covariance matrices I and R respectively. We are interested in the state estimation probleni.
under various hypotheses concerning a = ¢ ¢ and R.

Consider first the two extreme cases : If a = 0 and R = 0, we are dealing with an observer
problem for the deterministic system

X, = b(X:)
|
2 = h(Xy)

At the other extreme, if R is non-singular, we are dealing with a nonlinear filtering problem for the
diffusion process (1). We can also easily handle the following intermediate case : If R is non-singular
and a = 0, we are again dealing with a nonlinear filtering problem but the state equation is now an

ODE .
{ X, = b(X,)

dY; = h(X)dt + dV,

Let us point out that the solution of the state estimation problem is radically different, depeiding
on whether R is non-singular or identically zero. On the other hand, whether a is non-singular.
singular or identically zero only affects the algorithms to be used.

Our purpose is to present, for each of the three main cases described above, a solution to the state
estimation problem, and to suggest some numcrical approximation procedures. The general idea is
to study the asymptotics R — 0. As a by-product, we expect to obtain some numerical algorithms
for the nonlinear filtering problem, that are robust when the non-singular matrix R is small.

1




II Solutions to State Estimation Problems

We assumne for simplicity that b € C}(R™,R™) and h € C}(R™, R”), unless otherwise stated.
Let us begin with the nonlinear fillering (NLF) problem.

O When R is non-singular, the Bayesian approach to the state estimation problem is to compute the
unnormalized conditional probability distribution u.(dz) of the state X, given the past observations
Y. =o(Y,, 0 <s <t). By definition

(l‘hf) = Et[f(X,) Zy | yt] ’

for any test function f, where
t t
Z° = exp { [ wxoray, - [ hX - dr} and Z,=2°,

and P! is the reference probability measure. The probability distribution u,(dz) satisfies a stochastic
PDE in weak sense. Usually, this p.d.f. has a density w.r.t. the Lebesgue measure, i.e. y,{dz) =
p(z)dz. A sufficient condition for this to hold, is that the probability distribution po(dz) of the
initial condition X, has already a density w.r.t. the Lebesgue measure, i.e. po(dr) = po(z)dr. We
will assume that po(z) > 0 for all z € R™. The unnormalized conditional density p,{z) is the unique

solution of the Zakai equation
dp, = L*p.dt + p:h"R™' dY, , (3)

with initial condition pp(z), where L* is the formal adjoint of the second-order partial differential
operator
o a

+b-

=1 —_— —_
L_’tr{aa.ﬂ] 8z’

associated with the SDE
dX; = b(X;)dt + o(X,)dW, . (1)
O Ifin addition = = 0, then the Zakai equation (3) becomes a first order stochastic PDE. for which

a representation result is available in terms of the flow ®,(x) associated with the ODE

X = b(X.) . (:

o

Actually, define P
t—s _ t .
T2 (2) = exp {/ div b(‘b,-,(r))dr} :

Zaule) = exp { [ W@ ,s@)RT Y, = § [ 0@, (@)hordr}

In this case, the unique solution of the Zakai equation (3) satisfies

Jeoo(z) = det]

P ®:-4(z)) - Ji-s(z) = Zu(z) - Pu(2) (6)
or equivalently, introducing the logarithmic transform Wy(z) = — log pi(x)
Wi(®:-,(z)) — log Ji-s(z) = W,(z) ~ log Z,¢(+) . {7)
2




We turn now to the observer problem.

Let {z;,0 < t < T} denote the true state trajectory producing the available observation tra-
jectory {z:, 0 <t € T}. The idea is to build an observer by considering the limit of a sequence of
nonlinear filtering problems with noise covariances going to zero. Two different cases are possible

- Introduce small noises of similar intensities in both the state equation and the observation, i.e.
set a =l and R=¢l,

- Introduce a small noise in the observation only, i.e. set a =0 and R =¢].

O In the first case, it is proved in James [2] that

—¢ log pf(z) < mi(z)
in probability uniformly on compact subsets of z € R™, where up to an additive constant independent
of z, mi(z) is the unique solution of the Hamilton-Jacobi equation

2

!
om; +h

ar

dm;

oz

[
om;

a9t 2

-V=0, (8)

with initial condition mg(z) = 0, in the viscosity sense, where
Vi(z) = §lae = k()] .

In addition, mi(z) is the value function associated with the following control problem. Introduce
first the action functional

LI
16 =3 [ 16 - bl ds
if £ € C([0,T]; R™) is absolutely continuous, and I,({) = +oc otherwise. Define also

FiE) = [Vl ds =} [[lea— ki) ds

Then
mi(z) = inf {1(€) + Fi(€) : & =1z} .

Clearly mi(z) > 0 and m}(z}) = 0 for the true state trajectory, and we define our observer as the set

%, = argmin my(z) = {:c €R™ : my(z) = 0} . (9
zeR™
Obviously z; € % for all t > 0. It is proved in James (3] that, provided the deterministic system (2)
is observable on [0,T] (i.e. the map zo + {z,,0 < s < t} is injective), the set-valued ohserver (9)
is actually a finite-time observer (FTO) on [0, [} (meaning that Z; is defined in terms of a recursive
systen. with the property that Z} = {z{} for all t > T').




O In the second case, it follows from equation (7) that
3 € ¢lo
—elog pi(z) = eWi(z) — my(z),

in probability uniformly on compact subsets of z € R™, where up to an additive constant independent
of x, m,(z) is given by

m@(2)) = [ Vi(@2ds or mi(z)= [ V(@ (x))ds ,

ie. m(z) = Fi(€4F), where £'F is the unique solution of the ODE (3) ending in = at time t. In
addition, m,{z) is the unique solution of the linear first-order PDE
om, am,
—+4b —-V,=0,
ot % e
satisfying the initial condition mg = 0. Just as above, it is clear that m,(z) > 0 and m,(z]) = 0 for
the true state trajectory, and we define our observer as the set

Z, = argmin my(z) = {r €R™ : my(z) = 0} . (10)
zeR™
Here again, it 15 obvious that z} € Z, for all t > 0, and in addition the set-valued observer defined
by (10) is actually a FTO on [0, T}, provided the deterministic system (2) is observable on {0.T].
Note that m(z) = F,(£'%) where L,(£"F) = 0 (i.e. £ solves the ODE (5) exactly) and &7 = .
whereas in the definition of m}(z), a penalty I,(€) is put on those trajectories £ that do not solve
the ODE (5). This is a less severe requirement, and is reflected in the relation m;(z) < m,(z). Note
however that F, = ;. This is the set of those points that are indistinguishable from the true state r;].
In conclusion, the observer (10) is more precise than the observer (9), whereas the latter is expected
to be more robust w.r.t. modeling errors.

III Numerical Approximation

In this section, we restrict ourselves to the situation where the state satisfies an ODE, in which case
the solution to the NLF problem is given by (6), where R is non-singular, and the corresponding
FTO is given by (10), where R = 0.

Concerning the approximation of the NLF (6), we wish to compute an approximate normal-
ized conditional density ps¥(z) (where A and 6 denote the time discretization step and the space
discretization step respectively) with the following property
() as A, 610

AS
E/Rm Pieja)(z) = cpi(z)ldz — 0 forallz >0,

where ¢, is a normalization constant.

Concerning the approximation of the FTO (10), our approach is to build a family 72 with the
following property




Ja——

(++) if the deterministic system (2) is observable on [0,T],then as A6} 0
dist(Zf7ap {z7}) — 0 forall 12T .
A necessary and sufficient condition for (x+) to hold is dist(fﬁ/";],i',) — 0 as A,& ] 0. The approxi-
mate observer fEf'6 will be defined in terms of an approximate value function mkA‘E(:r), ie.
el {z eR™ : mi¥(z) < cA'é} ,

and a sufficient condition for (%) to hold is 2% | 0 and m[e/'fs](z) — m,(z) uniformly on coripact
subsets of R™, as 4,6 | 0.

Time Discretization
Consider a uniform partition 0 = f5 < -+ < ¢ < -+~ of the time interval [0, 00), with time step
A =ty — ty_;. The first step is to sample the available observation trajectory.

The nonlinear filtering problem. If noisy observations {Y;, t > 0} are available, we first build the
following sequence of compressed observations

N 1o 1.,
Ye = Z[}lk - Ylk—l] = z o h()&,)ds + Z["u - ik-z]
-1
and we use the approximate model

X, = b(X))

il

(1)
ykA = h(‘X!k) + va
where {vf, k = 1,2,---} is a Gaussian white noise sequence with covariance matrix /A,

The solution of the NLI* problem for the approximate model (11) is given in terms of the a priori
and a posteriori conditional probability densities defined by

piy(x)dz = P(Xi, € dz [Y2) and pix)dr= P(X, €dr|}¢

respectively, where Y2 = o y2,--- yB). The transition from A (r) to p2(r) is divided into two
p 3 k 1 L Pi-1 Pk
steps

. prediction step : Transport by the flow gives po(z)=Ta p2 (z) where {T;. ¢ > 0} is the
2
semigroup associated with the linear first-order PDE

ope . 9
Y Lp. . {(12)
An explicit solution is available for tms equation
pi-1(®a(2) - Jal(z) = Pia(a) (13)
or equivalently
AP?.%(z)dx = ‘/°21(A)pkA—1(I)d1' . (141
for all Borel set A C R™.
5




- correction step : According to the Bayes formula
P(e) = e WE(2) 4 () (15)
where
VP (z) =exp{—1A [yt — k()3 }

is the likelihood function for the estimation of Xy, in the approximate model (11), based on the
observation y2 alone, and ¢; is a normalization constant.

Introducing the logarithmic transform W2(z) = —log p2(z), it follows from from (13) and (15)
that
Wi (z) ~ log Ja(®3' () = —log ci + Wi, (83" (2)) + 34 [y — h(z)[R- - (16)

The observer problem. If perfect observations {z;, ¢ > 0} are available, i.e. R = 0, we can simply
use zx = zy,, and our model becomes

{ X, = b(Xy) )
(7

2 = h(th)

Introducing the asymptotics R = ¢/ in the NLF problem and sending ¢ to zero, it follows from
equation (16) that )
—clogpe(z) = eWP" () 1o, me(x),

in probability uniformly on compact subsets of r € R™, where m®(z) satisfies the following relation

mi () = mp_ (®3'(z)) + A VA (x) .

where
A 1.4 2 a_ L [ 1.
V2 (z) = iz ~ k()] and 2z = — z,ds = — h(X,)ds # z .
A ti—1 A e
It is clear that m®(z) > 0. However, because the averaged observation z£ used in the definition of
mg(z) is different from the actual observation zx, we have V2 (x} ) # 0 in general for the truc state
trajectory. Therefore, we decide to use the actual observation z; in the definition of m{ (r). instead

of the averaged observation z2, i.e.
mP(z) = m& (93 (7)) + A Vi(z) . (18)

where
Vi(z) = %lzk - h(z){?.

This relation can be divided into two steps

- prediction step : Transport by the flow gives m2 , (z) = Sa m{_,(z) where {S;, t > 0} is the
semigroup associated with the linear first~order PDE

om, om,
— —=0. 19
ot Yo e =0 (19)
An explicit solution is available for this equation
mi_3(Pa()) = mi_y(z) - (20)




PO

- correction step : The contribution of the new observation z; to the approximate value function
is given by
m2(z) = m2_, (2) + A Ve(a) .

We note that
md y(2) = F2,(6*%) and m(z) = FA(Eh7),

where £ is the unique solution of the ODE (5) ending in z at time ¢, and the functional F(¢)
satisfies for all £ € C({0,T]; R™)

FAE) = FRL(6) + AVi(6) = & {Va(&u) + -+ Val&n)]} -

Now it is clear that mg(z) > 0 and m§(z},) = 0 for the true state trajectory, and we define our
observer as the set
28 = argmin m2(z) = {I eR™ : mB(z) = 0} . (21)
zeRm™
Obviously zj, € z§ for all k, and one can verify using the explicit formulas that mﬁ/A](r) — my(r)
uniformly on compact subsets as A | 0, with the consequence that property (=} holds for this
discrete-time approximation.

Model Approximation and PDE Discretization

To obtain computable algorithms, it is necessary to discretize the linear first—order PDE (12) or (19)
involved in the prediction step. Generally speaking, two classes of methods can be used : in the finite
difference approximation (FD) a fixed bounded grid is used, and partial differential operators are
approximated by finite differences on grid points, whereas in the flow-based approximat.on (FLOW)
the explicit representation (13) or (20) is used to move grid points (or alternatively cells) along the
flow of the ODE (5).

A Finite Difference

A finite difference nonlinear filter. To derive a finite difference algorithm, we must first constrain
the nonlinear filtering problem to a bounded domain. Let D C R™ be a m-dimensional open cube.
After Dupuis-Ishii [1], we constrain the ODE (5) to the convex set D as follows. For = € 8D, let
vizy={veR™: |v|=1,(vz—2) <0forall z € D} denote the set of inward unit normals.
For z € D, v € R™, the projection x(x,v) of the velocity vector v at z is given by v if z € D.
or v + {(v, —v*(z,v)) V 0] v*(z,v) if 2 € OD, where v*(z,v) is an element of v(z) which maximizes
{v,—v), v € v(z). Define then b(z) = n(z,b(z)), ¢ € D. By Theorem 5.1 of Dupuis-Ishii [1]. there
exists a unique absolutely continuous solution of the constrained ODE

L=bE) ae0<s<t (.

(3]
[V

satisfying & =z € D.

A finite difference algorithm is obtained using a Markov chain scheme similar to those described
in Kushner [5]. Let R} denote a coordinate grid of size § > 0. We define a system of neighborhoods

-
i




Ns(z) ={z€RP : z=zorz=2x+be forsomei =1,...,m } for z € RY, where ¢; € R™
denotes the i-th unit vector. We define next D = D n R, D* = { z € D* . Ns(z) c D},
and D% = D® \ D°. We define the jump intensity matrix Ls(z,z) of a pure jump Markov process
{X? t >0} taking values in D® by

—B(z)h/6 Hz=z,

Ls(z,z) = { b¥(z)/6 ifz=zt6e;andi=1,...,m (23)
0 if z ¢ Ns(z),
with the notation fuly = |ui| + -« + |um| for any u = (uj,---,uy). If we use an implicit time
discretization scheme, we obtain the finite difference equation
A5 . . .
P = A 30 Li(3,2) o (e) = o UE(2) BRI () (24)
2ENs(7)
for € D% and k = 1,---, where ¢; is a normalization constant, and the initial condition ps'ﬁ(r) is

a suitable approximation of the density po(z). This relation can be divided into two steps

- prediction step : Transport by the flow gives

= A L) ps (=) = B (o) -

- correction step : According to the Bayes formula
A6 A A6
D) = o WP () B ()
where ¢, is a normalization constant.

The following result is proved in Kushner [5] using weak convergence TA = X asé |0
Theorem 1 Property (*) holds for the finite difference nonlinear filtering algorithm.

A finite difference observer. To derive a finite difference algorithm, we still need to constrain the
observer problem to a bounded domain. However, because we are going to approximate (18). we
must consider the ODE (5) as running backward in time, before we constrain it to the convex
set D. We use the same definition as above for the set v(z) of inward unit normals. For r €
D, v € R™, the projection 7(x,v) of the velocity vector v at z is now given by v if z € D. or
v+ [(v,v*(z,v)) VO] v*(z,v) if z € 8D, where v*(z,v) is an element of ¥{z) which maximizes {v.v).
v € v(z). Define then b(z) = —x(z, ~b(z)), € D. By Theorem 5.1 of Dupuis-Ishii [1] again, there
exists a unique absolutely continuous solution £ = £** of the constrained ODE

£ =be) ae0<s<t, (251

satisfying £ =z € D.




Select 8 € C(R™) non-negative, 3=0o0n D' C D, with D’N8D =8, and 8 > 0 on dD. Now
define the value function for x € D, ¢ > 0 by

mi(z) = B(E) + [ Vi(€) + A& ds (26)

where £ is the solution of the constrained ODE (25). Then m,(z) is the unique viscosity solution of
the Hamilton-Jacobi equation, see Lions [6]

om, om, .
-‘7+b-E_Vt'ﬂ =0 in Dx(0,5],
(27)
a
-u-% =0 ondDx(0,5],
satisfying the initial condition mgo(z) = B(z) for z € D. In addition, m satisfies in the viscosity sense
Omy -~ Omy
bl R v_g= 2
5 +b o Vi—B=0 ondD x(0,5]. (28)
Define the corresponding observer as the set
Fy = argmin my(z) = {:r €ER™ : my(z) = 0} . (29)
zeR™

Let T ={z0 €D : P,(z0) €D, 0<s<S}). fzy €T, thenz; € F,forall0 <t <S5, and
the observer (29) defines a FTO provided the deterministic system (2) is observable on [0.T). see
James [4).

We again use a Markov chain finite difference scheme. However, we discretize the boundary
equation (28) rather than the boundary condition in (27). We use the same definition as above for
the grid R, the system »f neighborhoods Nj(z), and the subsets D¢, D® and 8D° = D*\ D' of
the grid R}*. Assume that v = §/A is a fixed real number, indicating the “speed” of the algorithm.
satisfying

v > max |b(z)}; . (30)
zeD

We define the transition probabilities 78%(x,z) = P(¢é0f = z | €8° = 1) for a backward Markov
chain {62, k = [S/A],...,0} by

1-|b(a)h/v ifz=1z,

88(z,2) = { BF(a)/v fz=z+6c,andi=1,...,m (31)

0 if 2 ¢ Ny(z) .
Note that E[¢&% — 62 | 8% = 2] = - A b(z).
§

If we replace ®2'(z) in (18) by the state ka_'B, of the backward Markov chain starting at £ = r
and take expectations, we obtain the finite difference equation

met(z)= 3 w88z, ) mph(z) + A [Vi(2) + B(z)] (32)
2€EN, (1)

for z € D? and k = 1,...,[5/A], with initial condition m&-*(z) = 8(z). This relation can be divided
into two steps




- prediction step : Transport by the flow gives

A

AS Y
mk_%(:c) =" my(r) .

- correction step : The contribution of the new observation 2z, to the approximate value function
is given by
mp(2) = ml () + A Va(z) + B(x)]

The finite difference observer set is defined by
724 = argmin mf‘é(a‘) . (33)
zeD?

Obviously, there is no reason for this approximate observer to satisfy the non-asymptotic consistency
property : in general we can not guarantee that x;, € 5,?'6.

The following result is proved in James [4].
Theorem 2 If 25 € T, then property (=) holds for the finite difference observer algorithm.

Remark 3 It is also shown in [4] that under additional regularity assumptions dist(i[?/‘i].:r;) =

O(Vé) as 6 | 0.

Remark 4 The speed constraint (30) which appears in the finite difference observer algorithm is
actually a stability condition for the ezplicit time-discretization scheme used in (32). From the
probabilistic point of view, it ensures that (31) defines transition probabilities. We do not need a
similar constraint for the finite difference NLF algorithm, because we are using there an implicit
time-discretization scheme.

B Flow-Based Approximation

Let us first describe the approximate model we are going to use.

We assume that at each time t;, a partition { B}, i € I{} of the state space R™ is given. and we
define the discrete I{-valued state nf by the relation

{ni=i}={xu€B} . (34)

The idea behind our approximation is to suppose that, at each step of the algorithm, any information
(e.g. probability distribution, likelihood function, value function) about the continuous state X,, is
immediately compressed into some information about the discrete state n{. We can think of memory
constraint as a justification for this compression mechanism. As a consequence, whenever information
is needed about the continuous state X, , it has to be deduced from the corresponding information
about the discrete state nf, resulting in compression error.

Making explicit use of the flow associated with (5), we have

{eneBi}={t.coBD}= U {tu..€Bl,nez (B} . (35)

sell_
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where . )
Lol ={j e, : B ,nez(B) #0} .
provided ¢ solves the ODE (5). Notice that in general the set I{_,[i] has finite cardinality.

Various possible choices are available for the partitions, e.g.

- If=1I{_, = I° and B = ®5(Bj_,) for all i € I°. In this case n{ = nf_,. i.e. the discrete state
process is constant over time, but the sets B} can become very complicated after some steps.

< If=1I{_,=1I°and B} = B}_, for all i € I°. In this case, the partition is constant over time.
but updating the discrete state can be cumbersome.

Between these two extreme cases, a trade—off has to be found in order to reduce the computational
burden of updating both the partition and the discrete probability distribution : B! should both be
“close™ to ®a(B;_,) and have a simple geometry.

A flow-based nonlinear filter. According to our approximation approach, we introduce the discrete
a priori and a posteriori conditional probability distributions

iy =P(X € BLIY2,) and = P(Xy € By [)}P),
respectively, where again Y2 = o(y?, -, yP). Making use of (35) transport by the flow gives

By = X P(Xu €BL,003(B) |

Jert_.1
= ¥ ABLNOBY) —m—e— [ P () dr
J€I}_, i A(Bi_y N931(B})) B ineg'By)
. . 1
> ¥ MBL OB —— [ pf(x)dz
selt_ i 1 NBi_y) JB,

~ T & A(Bj_, N 23" (BL)
~ . : .
Je]‘_‘m A(B/‘Z—l)

Next, according to the Bayes formula

Bi= o [ WB() ply(a)de

J, V@ r g e

Ck ‘/B;Pf.§(1)df / Pk-

1(1‘ Ydz

~ ¢ iy, -max¥(z),
1 zr€B;

where ¢, is a normalization constant. This approximation can be justified in the small noise case,
using the Laplace asymptotic formula.
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To obtain a computable algorithm, we introduce new discrete probability distributions 4} _, and
. 2
i, and the corresponding densities

P = wy/MBY)  and  pG)=u/MBY)  fize By
We then define the transition from {u}_,, i € If_,} to {u}, i € I{}, by the following two steps
- prediction step : Transport by the flow gives

: ; A(BL, N 93'(BL)
poa= 3w : )
ko seif_ [ ' (Bi—l)

- correction step : The contribution of the new observation y2 is given by

pi=ce Riopyy s (36)

where ¢; is 2 normalization constant, and
R = max ¥2(z) .
r€B;,
is the generalized likelihood function for the estimation of n§ based on the observation y5* alone.
Theorem 5 In the case I} = I} | = I°, let {B;,1 € I’} denote a finite partition of a bounded
domain D with diam(Bj) < 6. Then property (*) holds for this flow-based nonlinear filtcring algo-

rithm.

A flow-based observer. According to our approximation approach, we introduce the a priori and a
posteriori discrete value functions

My = inf {FA,(6%7) 1z € Bj} and 7= inf {FA(£") - 7€ By} . (37)
respectively. Making use of (35) transport by the flow gives

Moy = el {Fei(e*#) - r € BL, 93 (B} 2 et R

Next, by definition of the functional F2(¢),

iy = inf {F2,(6*") + A Vi(2) : 1€ Bi} 2 7y, + A inf Vi(x) .

Thus the discrete value functions satisfy difference inequalities. Unfortunately, this does not give
a recursive mechanism for computation. Instead, we introduce new discrete value functions m _,
. 2

and my}, and the corresponding value functions
As
m(

mf_“;(r) =m|_; and r)=m) iff z € B .

We then define the transition from {m}_,.i € If_;} to {m} .1 € I{} by the following two steps

12
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- prediction step : Transpcrt by the flow gives

- 3
m = k-1 -

1 inf m
i jerl_\h
- correction step : The contribution of the new observation z is given by

mi = m! A inf V, .
k=m_gt z?a; (7)

By construction, it is clear that me*(x) > 0 and mkA'J(:r,'k) = 0 for the true state trajectory, and we
define our observer as the set

0% = argmin mp¥(z) = {I €R™ : mp(z) = 0} ’ (38)
zeR™

or equivalently . .
#t=UB, with F={ielf:mi=0}.
€l?
By an inductive comparison argument, it is easy to show that mf“s(z) < mg(z), with the consequence
that 28 C i‘kA's. Therefore, z3, € Ef"s

Theorem 6 In the case If = I{_, = I® and B, = ®a(Bj_,) for alli € I°, let {B},1i € I‘} dcnote
a finite partition of a bounded domain D with diam(Bg) < 6. If z5 € D, then property (»x} will hold
for this flow-based observer algorithm.

As noticed in James [3], the only thing that matters is the argmin set, not the value function
itself. This remark can be used to design a simplified algorithm for the construction of the set-
valued observer (38). We introduce the piccewise-constant logical value functions " (z) taking
values TRUE or FALSE, and defined iteratively by the following relations

. =
my_y = V Mi_1 s
Jerl_\ 11
R — A A
m, = mk_% A koo

where i
TRUE  if inf Vi(z) =0
— z€B,

Ve, =

FALSE otherwise
It is clear that i = TRUE iff m{ = 0, so that an equivalent expression for the set-valued observer (38)
is given by . .
#lt= B with If={iel]:m =TRUE}.
il

Corollary 7 Under the assumptions of Theorem 6, property (»+) will hold for the simplified algo-
rithm.

13




Remark 8 In the particular case where If = If_, = I and B = ®,(B._,) for all i € I, the
algorithms exhibit a parallel structure explicitly. On the other hand, these algorithius assume that
certain calculations can be made exactly. This is not always possible, in which case one would have
e.g. to discretize the ODE (5) or use the following approximations

1

—_— ~ i A ~ PO (!

3Bi) B;P(z)‘h > p(z}) féz’:‘l’k (z) = (i) .
inf m(z) ~ m(z}) inf Vi(z) ~ Vi(z}),
z€B; z€B,

where z} is some point in Bj.

14




IV Numerical Experiments

A A One Dimensional Example

We consider a one dimensional model with
b(z,t) = —0.2z + 0.8 cos(2.5¢t) h(z) = sgn(z) .

Even though the observation function is discontinuous, the convergence results are still valid, ser
James [4]. The location of the trajectory is determined at the first time ¢* it crosses the origin, sv
the system is observable.

Figure 1 (below) shows results for the simplified (logical) fl.w-based observer algorithm, wi:h
the choice If = If_; = I° and B} = ®,(B}_,) for all i € I®, * = 0.05, § = 0.02, and noisefrre
observations. The estimate Z; is a one-dimensional set for tim- - t before ¢*, and zero-dimensioral
after this time.

Figure 2 illustrates the numerical results obtained from the ¢ ite difference nonlinear filter algo-
1ithm. Here, A = 0.05, § = 0.005, R = 1074, and the observation path was noise—free. Notice the
jumps in the conditional mean trajectory and the peaking of the conditional density function each
time the origin is crossed. Numerical viscosity causes the density to spread between these times.

Figure 3 shows results for the finite difference observer algorithm, with é = 0.02, A = 0.0198.
v = 1.01, and noise-free observations. The plot of the value function clearly shows the valley
containing the state trajectory.

Figure 4 shows results for the flow~based nonlinear filtering algorithm, with the choice I{ = If_, =
I’ and B = ®5(Bj_,) for all i € I, A = 0.05, § = 0.02, R = 10™*, and noise-free observations.
Marginals for the conditional density are shown for times before and after time t=,

-+

Figure 1. Flow-based observer, simplified algorithm.
State z, and estimate I trajectories.
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Figure 2. Finite difference nonlinear filter.
(a) State z, and conditional mean E[z]}}] trajectories; {b) Conditional density function.
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(a) State z; and estimate I, trajec
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tims = 0.20

(a)

time = 0.50

(b}

f

Figure 4. Flow-based nonlinear filter.
(a) State z, trajectory, 90% confidence region, density at ¢ = 0.2;
(b) State z, trajectory, 90% confidence region, density at t = 0.5.

18




N R . o, i e .

Cranas

i
v

B A Four Dimensional Example

We consider here the problem of target motion analysis, which is to estimate the trajectory (positios
and velocity) of a target moving at constant speed along a straight line at the surface of the sea.
We suppose that bearings-only measurements are available in discrete time, taken from a moving
observation platform. If the observation platform itself moves at constant speed along a straight line,
the problem is non—observable. However, as soon as the observation platform changes its course, the
problem becomes observable. Assuming that the direction of motion of the target is known, which is
true in the case of perfect observations, we can reduce the problem to three dimensions. The state
vector is X = (z,y,v) and the state equation

it'—'vt !}t=0 v =0.

The observation function is
z —zF
k(z,y,v,t) = arctan| £,
y—yF

where (zF,yF) is the (known) position of the observation platform at time ¢.

For this problem, the flow is known explicitly, and the flow-based algorithms (for both the
nonlinear filtering and the observer case) are explicitly parallelizable. A variant of the flow-based
NLF algorithm has been implemented at INRIA on a 16K Connection Machine from Thinking
Machines Corporation. Numerical experiments have been carried out, using noisy observations with
standard deviations ranging between one and five degrees. The goal is to find better maneuvers, and
to investigate them off-line. The filter is not intended to be run in real-time on the ship.

Acknowledgment: Research supported by NSF Grant “USA-France (INRIA) Collaborative Re-
search in Stochastic Control” NSF-INT-89-06965.
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Finite Dimensional
Approximate Filters in the
case of High Signal-to—Noise
Ratio

E. Pardoux, M.C. Roubaud
Université de Provence and INRIA

Abstract

We present some recent results on nonlinear filtering problems
with high signal-to-noise ratio. We concentrate mainly on the scalar
case, where the observation function is not one to one. We describe
two situations where a good suboptimal filter is provided by a bunch
of one dimensional filters, together with statistical tests for choosing
which filter should be followed.

1 Introduction

It is by now well known (see e.g. Pardoux [9]) that the nonlinear
filtering problem is a difficult one, whose optimal solution is in most
cases given only by the solution of an infinite dimensional equation,
the Zakai equation.

On the other hand, up to now all pratical filtering problems are
solved by approximate linear filters, in particular the well-known
extended Kalman filter (see e.g. [9]). However, the extended Kalman
filter does not rely on any mathematical foundation, it is known both
from theory (see [9], Picard {14] and section 2 below) and experience
that it sometimes behaves very poorly, while it gives very satisfactory
results in many situations.

A good framework for a mathematical analysis of approximate
filters, including the extended Kalman filter, is the situation of a
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2 E. Pardoux, M.C. Roubaud

high signal-to-noise ratio, i.e. we consider the following non linear
filtering problem :

dX,
dY;

where {X,} is the unobserved process to be filtered, {¥;} is the ob-
servation process, {V;} and {W;} are mutually independent standard
Wiener processes, all processes being scalar for simplicity. The goal
is to obtain asymptotic results as ¢ — 0 (with € > 0).

In the case where A is one to one, this problem has first been
analysed by Bobrovsky, Zakai [2] and Katzur, Bobrovsky, Schuss [6)].
Jean Picard has then given a very complete mathematical analysis
of this problem, see [10], [11], [12], [13], and Bensoussan {1] has
given another proof of most of Picard’s results. Those results can be
very roughly summarized as follows : for small ¢ > 0, the variance
of the conditional law is of order £, the optimal and suboptimal
filters have a short memory (old observations are quickly “forgotten”
by the filter), and there exist various finite dimensional suboptimal
filters whose output is close to the conditional expectation of X,
given {Y,,0 < s < t} (including the extended Kalman filter and a
one dimensional filter whose “error” is of the order of ). Let us
note that analogous results have been established for discrete-time
problems by Milheiro (7].

A second class of problems concerns the case where # is not one
to one. Two cases of such an h are as follows. Case A is where A
is locally one to one ; in the situation dimX = dimY = 1 which
we shall consider below, this means that h is piecewise monotone.
Case B is where dim X > dimY (say dim X = 2,dimY = 1); and %
is a function of say X} only, h being either monotone or piecewise
monotone.

The aim of this paper is to present some recent results for the
two above problems. We ghall mainly be concerned with case A, and
give some hints concerning case B.

The organisation of the paper is as follows. In section 2, we shall
present case A, discuss the problem in case ¢ = 0 (no observation
noise), introduce two “detectability assumptions” and compare them.

F(Xe)dt + g(Xe)dVe
h(X,) dt + edW,
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In section 3, we shall treat in some detail case A under one of the
two detectability assumptions. In section 4, we shall comment on
some recent results concerning case B.

Let us insist upon the fact that we shall not try in this paper
to formulate the most general known results, but rather to present
some of the main ideas on simple examples. More general results can
be found in the references which we shall give below.

2 Case A : Piecewise Monotone Observation
Function.

In this section, we want to formulate the nonlinear filtering problem
with small observation noise

dY, = h(X,)dt +edW,

where all processes are scalar and h is piecewise monotone.
To be more specific, let us assume that g = 1; f,k € C'(IR) with
bounded derivatives ; h has a unique minimum at z = 0, such that
h(0) = RH'(0) =0

and h'(z) < 0 for z < 0,h'(z) > 0 for z > 0.

Remark 2.1 : Inefficiency of the extended Kalman filter. The ex-
tended Kalman filter for the above situation is :
dX, = f(Xi)dt+ e RHA(X)(dY: - h(X:)d1)
dR,/dt = 2f'(X,)R.+1- e 2K (X’ R?
Note that (except possibly near t = 0) R, is of the order of

€, hence e=2R,h'(X,) is of the order of £~!. Replacing dY; by its
expression in the first equation above yields :

dX; = [f(Xe) + €2 RB(X)(R(Xe) — h(XL))) dt + e 2 R (X,) dW,

We note that, thanks to the leading term in the drift, the ex-
tended Kalman filter is such that A(X,) tends to follow closely A(X,).
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However this effect of the drift is counterbalanced by the noise term,
which is also of the order of e~!. But the main point is that the ex-
tended Kalman filter has no tendency whatsoever to correct a wrong
sign : if X, and X, have the same sign, the drift tends to get then
closer, and if X; and X; have opposite signs, X; and X; tend to stay
for away one from the other (while the drift tends to get h(X;) and
h(X;) doser). In fact, if f(0) =0, then X, never changes sign, since
K'(0) = 0, while X, changes sign after arbitrarily large times with
positive probability.{

Our aim is to present an efficient finite dimensional filter for the
above problem in two particular cases. In order to simplify the sequel,
we shall from now on assume that 4 is piecewise linear, i.e. :

_ ) hyz ,z20
h(z)_{h-z , <0

with Ay > 0,h_ < 0. Of course, h is no longer C.

We want to consider cases where the variance of the conditional
law of X, given {Y,;0 < s < t} is small (at least “most” of the time).
In order to see what kind of condition is needed, let us now consider
the (simpler) case where ¢ =0 :

dX,
v, /dt

Since h(X}) is completely observed, it suffices, in order to recover
X, to recover its sign. We first note that we know exactly when
X reaches 0, and when it does not change sign. Hence the problem
is : given a time interval [a,b] such that X; # 0, t € [a,}}, can one
recover the sign of X;, from the observation of A(X¢),t € [a,b] ?

This is clearly impossible in the case f = 0 and k- = -hy,
since there is no way to recover the sign of a Wiener process from its
absolute value. Therefore we need to introduce what we call a “de-
tectability assumption”. There are two such possible assumptions.
The first one is :

f(Xy)dt + dV;
h(X:)

(DA1) |hy| # |h]




e —"

SN P ey

Finite Dimensional Approximate Filters 5

In this case, we have that :

Edi <h(X-)>=hL, tea,b)if X; >0, t€[a,b
d
a d

5 < X)) >e= K%, te[a,b)if X: <0, t€[a,b

In other words, under (D A1), the quadratic variation of the process
{h{Xy)} tells us instantaneously the sign of X;.

If (D A1) does not hold (say hy = —h_ = 1,ie. h(z) = |z|), we
can still do something, provided the drift helps us. We now formulate

the second detectability assumption, assuming for simplicity that
h(z) = |z|.

(DA2) f(z)+ f(-2)# 0,2 € R
Let Z1 = h(Xg). If X{ > 0, te [a,b], then

dZ, = f(Z;)dt + dVi, t € [a,b).
If X; <0,1tE€ [a,}], then

dZ, = —f(~2Z,)dt — dV,, t € [a,b]

i.e. we observe a Wiener process plus a drift, which differs depending
on the sign of X;, thanks to (DA2). The log-likelihood ratio is given
to us in this case by the Girsanov theorem : fora <t < b,

ety = [[102) + 1(-2014z, - § [ 17(2) - F-2)ds
Note that if X; > 0,1 € [a,b),
1 rt 1
L) = 3 [ U2+ f-Z)Pds + [ (1(Z0) + 1=V,
and if X; <0, t € [a,}],

La,t) = -3 [Z) + S(-20Fds - [ 152+ S(-2)1av,
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Hence L(a,t) is likely to be positive in case X; > 0,a <t < b
and to be negative in case X; < 0. The quality of the test (i.e. the
probability of making the right decision) depends on the value of

v=[ (2 + f(~2.)ds,

which of course depends on t — a. The larger U, is, the smaller the
probability of making a wrong decision is, since from the strong law
of large numbers :

A(Z"—t)—oéast—*oo, a.s. on {Uy = +00}
if Xy >0, t > a, and the limit is -1 if X; < 0, ¢ > a. However, in
most cases X; changes sign after some time, and we don’t want to
wait too long before making a decision.

Clearly, the situation is very different under (DA1) and under
(DA2). Under (DA1l), the sign of X; is detected instantaneously,
while under (D A2) some time is needed for the probability of a wrong
decision to be small.

Let us now describe the stragegy for a finite dimensional subop-
timal filter in the case ¢ > 0. We expect that most of the time the
conditional law of X;, given {Y,,0 < s < t} will be almost completely
concentrated on one side of 0. Hence a good estimate of X; should be
given by an approximate filter for problem (2.1) with A(z) replaced
by hyz (resp. h_z)if X; > 0 (resp. < 0). Therefore we consider the
two auxiliary filtering problems :

(2.14) dX: = f(Xy)dt+g(X:)dV;
B dY; = hyXdt+edW,
and
2.1.) dX, = f(X))dt+ g(X:)dV;
e dY, = h_X,di +edW,

to which we associate, following Picard [13} the two filters :

(2.24) dX;} = f(X})dt + €71 (dY, - hy X} dt)
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(2.2_) dX; = f(X7)dt — €7 (dY: - h_ X[ dt)

The filtering procedure which we propose consists in following
alternatively the filter (2.2, ) and the filter (2.2_). Note that since
these two filters are given by stifl equations, the way they are initial-
ized at the time where we start to follow them is irrelevant. In order
to choose which filter to follow, we need :

a) to isolate time-intervals on which {X;} is very unlikely to
change sign.

b) to decide which is the sign of {X;} o a time interval on which
we believe that this sign is fixed.

We then follow the corresponding filter until a possible zero cross-
ing by X, is detected.

When X, is close to zero and/or we cannot decide its sign, we
estimate it by 0.

This program has been rigorously developped under (DA1) by
Fleming, Ji, Pardoux [3] and Roubaud [15] in the piecewise linear
case ([15] allows noise correlation and a piecewise constant diffusion
coefficient) and by Fleming, Pardoux [5] in the nonlinear case with
a piecewise monotone observation function. Numerical experiments
are reported in Fleming, Ji, Salame, Zhang [4].

The same program has been developped under ( D A2) by Roubaud
[15] in the piecewise linear case, and numerical experiments are re-
ported in Milheiro, Roubaud [8]. In the next section, we shall present
some of the ideas in Roubaud [15], on the above example.

3 Case A : Piecewise Monotone Observa-
tion Function under the Detectability As-
sumption (DA2)

We consider again the filtering problem (2.1) under the condition

(DA2) :
(3.1) { :;‘,if f(Xy)dt +dV;

| X:| dt + edW,
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with the assumption
(3.2) 3k st. |f(z)] S k(1+[z]), z € R,

and the initial condition Xpo = zo. We associate to (3.1) the two
“filters™ (see section 2) :

(3.34) dX; = f(X})dt + e~V (dY, - X} dt
t

(3.3-) dX; = f(X;7)dt ~ e~} (dY: + X[ dt)
with the initial condition X}t = 23, X[ = 25 .
3.1 Detection of the zero crossing by {X,}

We first need to detect when X, might cross zero. For that sake, we
shall make use of the :

Lemma 3.1 Forany0<a<bd, ¢c>0,0<a<1/2and0< <
1 - 2a, there ezist k > 0, g0 > 0 s.t. for any 0 < € < &9,

P(sup || X¢} — X} > ce®) < exp(—k/eP)
[a.b)
Proof : It follows readily from (3.1), (3.24) and the It6-Tanaka
formula ({L¢,t > 0} denotes the local time at 0 of {X,}):
d(1Xe| - X}) = (1 Xe| - X )dt
+(sign(Xe) f(Xe) = f(X{))dt + sign(X,)dV; — dW, + 2dL,
X - X = e':/‘(l)'fol - X$)
+ [ et ateqaign(x,)£(X,) - £ ds
2+ t
+ / e~ egign(X,)dV, - / e tt-/eqw,
[ (]

1
+2 /o e-t-legp,

It suffices to establish the result for each of the terms in the above
right side. The four first terms are treated as in [5, Lemma 3.1} with
the help of Lemma 3.2 below. The last term is analysed as in [15,
Proposition 1.3.1].%
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Lemma 3.2 For any 0 < a < b, there ezists ¢ > ) s.1.

E{ sup exp[cX,Z]} < 0o
agt<h

supE{ sup exp[c(i{")z]} <o
>0 agt<h

Proof : The first result is well-known (see e.g. [15, Lemma 1.2.7)).
The second one can be established as follows :

dX; = f(X})dt+ e (|Xi| - X} )dt + dW,

For z € R and {Z,} a bounded variation process, let Ui(z,z)
denote the solution of :

Ulz,2) = 2 + /0' f(Us(2,2)) ds + Wy + 2,

Let UM = Uy(z0,2M), where {ZM} is the smallest increasing process
s.t.

Ui(zo, Z2M) > 1Xy), t 2 0,

and U™ = Uy(zo,Z™), where {Z[*} is the largest decreasing process
s.t.

Ug(.‘to,Zm) S IX;I, t Z 0.
1t follows from a comparison theorems for one dimensional SDEs that
U(20,Z™) < X} < Us(0,2M)

and

E( sup exp[cU}(z0,Z™)] + su;: exp[cU¥(z0, ZM)]) <
t€fa,b) t€fa b]

follows from the same result for {|X|}. Note that another proof of
the second part of this Lemma, which carries over to higher dimen-
sion, is given in (15, Lemma 1.2.8].
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With the help of Lemma 3.1, we can easily huild a procedure
which detects the possible zero crossings by {X,}.

We choose € > 0 and 0 < a < 1/2. Whenever X} < &°, we
conclude that X; might be zero, and we choose 0 as the estimate
of X;. Whenever f(f > &7, we decide that X; # 0 and we try to
estimate its sign. For any 0 < @ < b, we define

C(a,b) = {X;f > &*,a<t< b}

The next and last step consistsin a test for deciding, conditionned
upon the observatior. to belong to C(a,b), upon the sign of X;,1 €
[a,8]).

There are two possible tests for this problem. The frst one is
an extrapolation of the test used in the case ¢ = 0, and the second
one is a likelihood ratio test based on the ou‘puts of the two filters
(3.34) and (3.32).

Before presenting those two tests, let us formulate a stronger
version of (DA2), which will be supposed to hold throughout the
rest of this section :

(DA28) 3 c,d>0 st inf [f(z)+ ()2 d
z—-y|<c

3.2 Deciding the Sign of X; : a Test based on the In-
crements of {Y;}.

Define -
F@) = [+ f(-vliy

L(a,b), which was defined in section 2, can be rewritten as :
, 1t ,
Lab) = FiZ)-F(Z)+3 [ 1/(-2) - f(Z)at
1 b
+ 5 [ 1120 - (@

Of course, in the case ¢ > 0, Z; = h(X,) is not observed, and
L(a,b) is no longer a statistics. We note that :
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E-I(YI+¢ -Y)

t+e

e / Zyds + Wipe — W,
t

Zl + "VH-e - th

12

Let m = [¢7(b—a)] (['] denotes the integer part of its argument),
h=a+ke, k=0,1,...,m,

Zy=e"Ya,, - Yu) k=0,1,....m—1
We can then define the statistics :
Lf(a,b) = F(Zm-1)- F(Z)
+ 5/2?:[!"(—21:) = F(Z)+ F(=2Z) - F(2)

Assuming in addition to the above hypotheses that f’ is Lipschitz,
itis not hard to show that for small e > 0 L*(a,b) is close to L(a,b).
Hence, if L°(a,b) > 0 (resp. < 0), and provided the observation
belongs to C(a,b) and [*[f(Z.) + f(—Z.)]?dt is large enough, there
is a high probability that X; > 0 (resp. < 0), ¢ € [a,b].

Again, the details can be found in [15]. We note that the exten-
sion of this method to higher dimension requises that f be a gradient.

3.3 A Likelihood Ratio Test based on the Outputs of
the two Approximate Linear Filters.

We consider again the filtering problem (3.1), to which we associate
the two approximate linear filters (3.34) and (3.3-). Note that, if
Ve =0a{Y,;0< s <t}

dY, = E(|1Xy|/),)dt + edu,
where {1}, the innovation process, is a standard Wiener process (see

e.g.[9]). We expect that if X¢ > 0 (vesp. < 0), ¢ € [a,b], then Xt
(resp. X; ) is very close to E(|X;|/)), at least after some time.




12 E. Pardoux, M.C. Roubaud

Therefore we introduce the following quantity, which we interpret
as being an approximate log-likelihood ratio. Let @ < e < b. Define

o LI . b N
fr=e? / (R + X7)dYs - 22 / (XFP - | X7 Pt
e e
We shall now show that, provided e —a is not too small and b—¢
is large enough, the conditional probability
P(LF > 0/A4(a,b)),

where A, (a,b) = {:X" > 0,a < t < b}, is very close to one. A similar
result holds for P(L® < 0/A_(a,b)). let

M = exple™t [0 - 1w - 22 [ (X, - Xl as)

and P* be a new probability measure given by :

dpPt +
ap =M
From Girsanov’s theorem,

dY; = Xydt + edW},0<t<b

where {W;*,0 < t < b} is a standard Wiener process under P*.
Hence, again from well-known results from nonlinear filtering, if

X} = EX(X/¥), 0<t<b
then
dY, = X}dt +edv,0<t<b
We have
o= e [ RO+ [ (R + RV

LI . _ N
+ 2 / (RF + XD X = X)ae
e
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We shall show that on A, (a,b) the third term above is negligible,
compared to the second term. Hence the sign of L? is given by that
of

. b . LI .
fet = e / (X + X7)dvd + 722 / (XF + X7 Pt
e e
Ny +1/2< N >

where {N,} is a P+ martingale. Hence P*(I¢+ > 0/ < N >> 1)
is close to one when r is large. We now establish :

Lemma 3.3 Forany0< A< 1,7 < (b—e)d?, there exists k, g9 > 0
s.t. for any ¢ € [0,¢),

P [ (4 X7t < ) S exp(-k/e)

Proof : From lemma 3.1 (and its analogue with X}t replaced by
—X;"), for any 3 < 1, there exists k, ¢ s.t. :

P({sup || X:| - X | > 2} U {sup[|Xd + X7 | > £}) < ezp(~k/e")
{a.b] 2 [a,8) 2
However,
d . o_ 1 oo - -
X+ X7) = -7 N (XF + X7) + S(XE) + F(X7)
hence
Y -~ - - ‘ - -
Rt R = 0K 4 D)+ [ euole g7y 4 0K s

The first term in the above right side is very small for ¢ > e. The
second term is bounded below by :

(1= e-<¢_a)/e)ni<,‘l£b[f(x;r) + f(X7)

Provided | Xt + X{ | < ¢, we deduce from (DA 2s) that :
SR+ (X7 2 d
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The result now follows. &
The fact that the term

b
2 / (RF + X7 )X} - Xt

is negligible on A*(a,b) follows from Lemma 3.3, the obvious remark
that P* and P coincide on A*(a,b) (since M, =1 on this set) and
Theorem 3 from Picard [13] which states that for any p > 1,

(B IXF ~ X} = 0(e¥?)
We can easily conclude from the above :

Proposition 3.1 There ezists a continuous decreasing function p :
R, - Ry, withlim,_ .. p(z) = 0, and for any p > 1, there ezist
k,eo>0s.t. :

P({L* < 0} N A4(a,b) N C(a,b)) < ke® + p(b — a)
forany e € (0,e0). ¢

We note that the difference with the results under (DA 1) is the
appearance of the term p(b—a) : for a fixed interval [a,b], under (DA
2) the probability of making a wrong decision does not tend to zero
as € | 0. This is consistent with the results is the ¢ = 0 case.

4 Remarks on the problems with dimX >
dimY

Suppose that dim X =2 and dimY =1, and that
dY, = h(X})dt + edW,

Assume first that k is monotone. Then one can show (see Yaesh,
Bobrovsky, Schuss [16], Picard [14]) that there exist efficient lin-
earized filters, provided that the variance of the conditional law of
X, given {Y,,0 < s < t} is small. But now this need not be the case
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in general. It is the case for the following model, which has been
rigorously analysed by Milheiro [7).

dX,‘ = fl(X,‘,X,’)dt
dX? = f(X{,X})dt + g(X},X2)dV,
dY, = h(X})dt + edW,

where f is C2, for each z;,z3 — f1(21,22) is one to one and its in-
verse is Lipschitz, and some further regularity assumptions are satis-
fied. Milheiro [7] gives a two dimensional filter with output X; which
is such that,for t 2 t, > 0,

E(IX} - X1y = 0(e¥?), E(X? - XI1*) = o(¢'/?)

It is also possible to derive approximate finite dimensional filters,
even when the covariance of the conditional law is not small with
€, provided the problem has a special structure. Let us describe a
problem which has been successfuly treated in Roubaud [15]. Again,
dim X =2 and dimY = 1. We assume that :

dX, = (f(X})+bX?)dt + GdV,
dY: = h(X})dt + edW,

where f :IR — R?>and h : IR — IR are piecewise-linear (with
say two pieces), h being non monotone, b € IR?, G is a 2 X 2 matrix,
and {V;} is two-dimensional standard Wiener process. As in the
preceding section, we associate to this problem two (linear) filters,
and test procedures to decide which filter to follow. The conditional
variance in the z! direction is small, but it is in general of order
one in the z? direction. The fact that the system is linear in X7? is
crucial here. Note that one major difference with the situation of the
preceding section is that the filter (or at least its second component)
does not have a short memory.
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Abstract

The purpose of this paper is to study some statis-
tical problems : parameter estimation, binary detec-
tion, change detection (disorder problem), etc. for
partially observed diffusion processes, using the like-
lihood approach.

It is shown that the stochastic PDE related to the
state estimation problem, provides also a way to com-
pute the likelihood function/ratio.

A recent result on consistency of the MLE, in the
small noise asymptotics, is also presented.

1 Introduction

Consider the following partially observed stochastic
differential system, defined on some probability space

dX: = b(X,)dt + o(X;)dW,

(1)
dY, = h(X,)dt +dV,

where the non observed process {X;,t > 0} and
the observation {Y;,? > 0} takes values in R™ and
R respectively. {W,,¢ > 0} and {V;,{ > 0} are
independent Wiener processes of appropriate dimen-
sion, with covariance matrix I, and the random vari.
able X, is independent of the Wiener processes, with
probability distribution po(z)dz. The available in-
formation at time t is contained in the a-algebra
Vi=eo(Y,, 0<8<1)

The first problem one is faced with, is state esti-
mation : to estimate recursively the state X, given
obeervations )y up to time t. The solution to this
first problem is given by the Zakai equation, a sto-
chastic partial differential equation which computes
recursively the conditional density of X; given ).
This assumes that the partially observed dynamical
system (1) is completely identified, which usually is
not the case.

*Kesearch partially supported by USACCE under Contract
DAJA45-90-C-0008, and by CNRS-GR Automatique.

Therefore, a second problem is to assume that the
model (1) is parametrized by some unknown param-
eter 6 in © C RP”, and to estimate 4 on the basis of
observations V;. Several statistical problems are in-
troduced in Section 2 for the parametrized model (1).
Off-line statistical procedures based on likelihood are
presented in Section 3. It is shown in Section 4 that
the Zakai equation provides also a way to compute
these likelihood statistics.

Another issue is to prove that the statistical algo-
rithms based on the likelihood approach, actually pro-
vide good estimates, in some asymptotic sense. A re-
cent result in this direction has been obtained for the
consistency of the MLE, in the small noise asymp-
totics, see James-LeGland {4).

2 Statistical problems

Let © C R? denote the parameter space. Assume
that observations {Y;, 0 < t < T} are available from
the following model

dX: = by(Xe)dt + o(X,)dW!

dY; = ho(X)dt + dV?

The statistical problems to be considered in this
paper are

(a) parameter estimation : estimate § € ©.
(b) binary detection : decide between the two simple
hypotheses
Bo : 8= 90 N
H, : é=6¢6,.

Another related problem is the sequential binary
detection problem.

(c) change detection (disorder problem) : decide be-




tween the two composite hypotheses
Hq H = 00 y

H;, : there exists 0 < r < T, such that
#=6) on 0<t<r,
=6, on r<t<T.

In case H; has been decided, another problem of
interest is to estimate the change time r.

A variant of this problem, is when only 6, is
known : the alternate hypothesis H, is compos-
ite with respect to both r and ;. In case H; has
been decided, both r and 6; are to be estimated.

(d) Bayesian change detection (jump Markov param-
eter) : recursively estimate 8; given ), assuming
that {6;,¢ > 0} is a finite state Markov pro-
cess, independent of the Wiener processes, with
jump intensity matrix Q. This problem is closely
related to state estimation, see Loparo—~Roth-
Eckert [7].

For each of the problems listed above, the first step
is to provide an expression, in terms of conditional
expectation, for the likelihood function (LF), the like-
lihood ratio (LR), or the generalized likelihood ratio
(GLR), depending on the problem.

3 Likelihood based off-line
statistics

Statistical model On the canonical space Q =
C([0,T); R™+9) are given
- a pair of stochastic processes {X;,0 <t < T}
and {Y;,0 < t < T} taking values in R™ and
R4 respectively,

- a family M = {P;, # € ©)} of probability mea-
sures,

such that under Py

dX;

be(X,) dt + o(X,)dWY

2)
ay,

]

ho(X¢)dt +dvy?

where {Wf , 0 <t < T} and {Vf,0<t<T} are
independent Wiener processes of appropriate dimen-
sion, with covariance matrix I, and the random vari-
able X is independent of the Wiener processes, with
probability distribution p§(z) dz. Throughout the pa-
per, the coefficients are assumed to be continuous and
bounded functions on R™.

The main assumption is that all the available infor-
mation is contained in Yr = o(Y;, 0< t < 7).

Introduce
1 1
20012 exp {/ 3(X,)dY, - ;/ {he (X, dr}

and Z,[4] £ Z%(6] . Provided the probability mea-
sures on R™ with densities {p} , 6 € ©} are mutually
absolutely continuous, the statistical model defined
above is dominated by some probability measure P1.
Indeed, it is proved in [2] that

Proposition 3.1 The probability measures in M are
mutually absolutely continuous. In addition

dP' +

prl., = Eel2rlf]1r),
dPtiy,

where P} is the reference probability measure.

Parameter estimation

The likelihood function for the estimation of 8,
based on observations in Yr, is given by

e dPo _ 1
Lig) = 5 N Ey(Zri6l | Vr) . (3)
and the maximum likelihood estimate (MLE) is de-
fined as R
6 € argmax L[6] .

3]

To find 8, one can use an iterative optimization al-
gorithm for the maximization of the likelihood func-
tion L[#]. An alternative approach is to use the EM al-
gorithm, as proposed by Dembo-Zeitouni [3]. This
algorithm is based on the following immediate con-
sequence of the Jensen inequality, where £[f] denotes
the log-likelihood function

Zr[6
log EL(F7Ck 1 37)
Zr[f)
Zr(9]

The idea of the EM algorithm is to replace the direct
maximization of L[§], by the iterative maximization
of the auxiliary function, i.e.

"+ € argmax QJY, 8" .
)

€8] - €[6')

El(log 1 ¥r) £ Q.01 .

v

Under mild hypotheses, the sequence {8, n > 0}
converges to a stationary point of the original likeli-
hood function L[f]. See Campillo-LeGland [2] for a
comparison between the two approaches.

Binary detection

The likelihood ratio for deciding between hypothe-
ses Ho and H;, based on observations in Yr, is given
by

o gﬁ _ L|9,[

= ly, ~ Lo’ )




A

]

§ v

where P, = Py, for i = 0,1. The likelihood ratio
test is defined by the following reject region for the
null hypothesis Hg

R>c,

where ¢ > 1 is the threshold.

Sequential binary detection

In this problem, the horizon is not fixed. Let R
denote the likelihood ratio for deciding between hy-
potheses Hy and H,, based on observations in ;. An
admissible decision policy for the sequential binary de-
tection problem, is defined by a stopping time r and
a Y,—measurable {0, 1}-valued decision random vari-
able 8 : if § = 0 (resp. § = 1) the null hypothesis Ho
is accepted (resp. rejected). In other words, 6 defines
a reject region for the null hypothesis Ho. A threshold
decision policy is defined by a stopping time of the
form

r2inf{t>0: R ¢ (A B)}

and a reject region for the null hypothesis Ho of the

form
1,
6=
0, ifR, <A

where 0 < 4 < 1 < B < oo are the constant
thresholds. This problem has been studied by Baras-
LaVigna [1], following Liptser-Shiryayev [6].

ifR, > B,

Change detection (disorder)

The statistical model for this problem can be de-
scribed through the introduction of time dependent
coefficients : for 0 < r < T, let P, denote the proba-
bility measure on the canonical space 2, under which

dX, = b.(t, Xs)dt 4+ o(X,)dWT
(5)
dYy = h.(t,X,)dt +dVy
where {W; , 0< ¢t < T}and {V7,0< ¢t < T} are
independent Wiener processes of appropriate dimen-
sion, with covariance matrix I, and

be(t,2) 2 bo(2) + [b1(2) — bo(@)) L < < 7 »

he(t,2) £ ho(e) + [ha(2) = ho(2) Lp < t < T} »

where b;(z) = by (z) and hi(z) = hy(z) for i =
0,1
Introducing for 0 <r < T

t t
Z}[r] 2 exp {/ hi (7, X,)dY, - %/ lhe(T, X )| dr}
’ &
and Zi[r] £ Z9(r] , it holds that the probability mea-

sures {P!,0 < r < T} are mutually absolutely con-
tinuous. Moreover

dP,
—=rl.. =ElZrir] | Vr).
dpt Vr

Note that, with this definition, the probability asso-
ciated with the null hypothesis Hg is Pyr.

The generalized likelihood ratio for deciding be-
tween hypotheses Hy and H,, based on observations
in Yr, is given by

2 Ll - Llr] 6
fowE|, cenne ©
where
a dPr
Lir}= P v = El(Zrlr] | ¥r).

is the likelihood function for the estimation of the
change time r, based on observations in Yr. The gen-
eralized likelihood ratio test is defined by the following
reject region for the null hypothesis Hy

R>c,

where ¢ > 1 is the threshold.
Moreover, in case H; has been decided. the maximum
likelihood estimate of the change time r, based on
observations in Yr, is given by
¥ € argmax L[r] .
0gr&T

Introducing the o-algebras F; = o(X,,0 < s <
t) and Y} = o(Y; - Y,, 8 < 7 < t), the following
decomposition holds for the likelihood function L{r]

Llr] = ENZr[r) | Yr) = ENZ.[0] - 2701} } ¥r)

E! (BNZ.[0] - Z:[1} | F+ v ¥, VI | Y1)

E! (Z.[0)-EN(Z7(1) | . v )7) | V1)

1]

E! (2.0 Bl(Z5001 7. v 5) 1 97) |

where Z[i] = Z2![6;] for i = 0,1. Defining
vi(z) S ENZE I VE v (X, = 2)) .

it holds

L)

EI(Zr[O] : v:(‘\,r) I yT)
(7)

ENZ.[0] - v}(X,) | Vr) .

The purpose of the next section is to provide some
computational procedure, that would allow to numer-
ically compute the likelihood based statistics intro-
duced so far.

4 Computational likelihood
statistics

In this section, the link between the likelihood
based statistical problems introduced above, and the




state estimation problem, will be investigated. At this
point, it is necessary to introduce some notations and
definitions related to nonlinear filtering and smooth-
ing.

For the sake of simplicity, any reference to the pa-
rameter  will be dropped for the time being.

Q Filtering: Let p; denote the unnormalized condi-
tional density of the random variable X, given ),
defined by

(1, 6) £ EN$(X)Z0 | 31) ®
for any test—function ¢. The unnormalized condi-
tional density {p;,t > 0} satisfies the Zakai equa-
tion [8]

dpy = L’pdi + K pi dY; 9)
where L is the following partial differential operator,
associated with the stochastic differential system (1)

' m - 82 m F:)
£21 I (. $()—
L-2 za ()3:,Bz,+§b()az‘ ’

ig=1

O Smoothing (fized-interval): Let T > 0 denote the
fixed end-time, and g¢; denote the unnormalized con-
ditional density of the random variable X, given Vr,
defined by

(4, 4) S EN@(X)Zr | ¥r) -
Introducing the backward Zakai equation
dv, + Loy dt + A*vdYy =0, =1, (10)

it is proved in Pardoux [8,9] that (p;,v;) is indepen-
dent of ¢ and g; = p; - v . In addition

v(z) = ENZL | Vh VX, =2}).

Existence, uniqueness and regularity results for sto-
chastic PDE can be found in Pardoux (8].

Let now Ly and L, () denote the partial differential
operators

1 — i 8 <L 8
L= o (')—_aziax,- +§b,(.)a—zi .

$,j=1

>

L(t)21 i a-‘,i(.)_‘i_ + ib-’(g .)i
" 2.‘:‘—1 Ozi0z; ~ " omi”

associated with the stochastic differential equation (2)
and (5) respectively.
Parameter estimation
The following expression holds for the likelihood
function (3)
Le} = (p1. 1),

where the unnormalized conditional density {pf,t >
0} solves the Zakai equation

dp! = Lyp! dt + hyp! dY, .

Binary detection

A similar expression holds for the likelihood ra-
tio (4)

1
R= (ng., 1) .
(r7.1)

Here the unnormalized conditional density {p},t >
0} solves the Zakai equation

dpi = Lipi dt + k}p} dY; , (1)

where L; =Ly and h; = hy, fori=0,1.

Change detection (disorder)

Let {p}, t > 0} and {v] , t > 0} denote the solution
of

dpf = Ly(t)p] dt + h;(1)p] dY1 |
and
dv; + L (t)vydt + hi(t)vyydY; =0, vr=1,

respectively, where h.(t) is shorthand for A.(¢, ).
The generalized likelihhod ratio (6) is given by

~—~

s
R= o o)

(12)

However, a much more efficient expression can be ob-
tained. Indeed, forall 0 <t <T

Lirl=(p7. 1) = (P, %7)
and in particular for ¢t = r
Lir] = (2}, o) = (2. 97) (13)

where
dp? = Lypldt + hyp dY; , (14)

and

dv! 4+ Lyvldt+hjv}dY; =0, v=1. (15)
Therefore, it is enough to solve two stochastic PDE,
the forward equation (14) with parameter fg, and the
backward equation (15) with parameter 8. This gives
the following expression for the generalized likelihood
ratio
= max (Pr%)
0<r<T (p,lfF 1)

which is much more efficient than the original expres-

sion (12), which would require to solve an infinite
number of stochastic PDE (see Figure 1).

Remark 4.1 The expression (13) for the likelihood
ratio could also be obtained from the previous expres-
sion (7) obtained by decomposition.




0 r T
Figure 1: Stochastic PDE for the disorder problem.

It can also be proved that the likelihood function
r w L[r] is smooth, provided the change can only
occur in the drift coefficient, i.e. hg = h;. Actually,
using the two-sided stochastic calculus developped in
Pardoux [10]

d(pf,vi) = (Lop?,ui)dt + (hgph, vi) dY,

— (P, Lyv})dt — (pf, hgv) ) dYe

(p?, [Lo - L1] v,l)dt .

Bayesian change detection

The unnormalized conditional distribution of the
compound state (Xq,8) given observations in )i, is
defined by

(P’;,‘ﬁ) = E"(d)(X,) 1{9‘ = ,'} Zt[0] AR

for i=1,2,...,N , where in this section the process
{Z:[6]), 0 < t £ T} is defined by

2162 exp { / by (Xr)dYs — / ' |ho,(x,)|’dr}

and Z[8] £ 20(0] . In addition {p}, 0 <t < T} sat-
isfies the following system of coupled Zakai equations

N
dpi = Lipidt + hipidY: + ) _qispldt,  (16)
i=1

where Q = {¢;;} is the jump intensity matrix for
the Markov process {#;,0 < t < T}. Note that in
system (16) the coupling occurs only through zero-
order state~-independent coefficients.

The unnormalized marginal conditional distribu-
tion )

(Fe.1)=c - P(6 =i |1},

can be used to compute the maximum a posteriori
(MAP) estimate

BYMAP € argmax (p},1) .
1SN

Assuming that the jump intensity matrix is of the
form € - Q where £ > 0 is a small parameter — which

means that the frequency of the jumps is small - it
is possible to obtain an asymptotic expansion of the
unnormalized conditional distribution in powers of €.

5 Asymptotic statistics

Some off-line statistical procedures based on likeli-
hood, have been presented. Whether these statistical
procedures actually provide good results, has to be
investigated in some asymptotic sense. Two kind of
asymptotics are generally considered in the statistics
of random processes, see Kutoyants [5]

- the small noise asymptotics, where the noise co-
variances are of order /€, and ¢ is sent to zeto,

- the long-time asymptotics, where the observa-
tion horizon T is sent to infinity.

This section is devoted to presenting a recent result on
the consistency of the MLE in the small noise asymp-
totics, see James-LeGland [4].

Statistical model On the canonical space =
C([0,T]; R™*9) are given

- a pair of stochastic processes {X;,0 <t < T}
and {¥;,0 < t < T} taking values in R™ and
R respectively,

- for each € > 0, a family M = {Ps., 8 € ©} of
probability measures,

such that under Py,

]

dX, = bg(X,)dt + JedW*
(17)
ay

n

he(X,)dt + EdV*

where (W8 0 <t < T)and {V/*,0<t < T}
are independent Wiener processes of appropriate di-
mension, with covariance matrix I, and the random
variable Xg is independent of the Wiener processes,
with probability distribution pj*(z)dz. It is assumed
that the initial density is of the form

1
P (2) = Co-exp{-=S0(2)} ,
where the function S§ has an unique minimizer ¥3.

Limiting deterministic system For any § € ©,
consider the following deterministic differential sys-
tem

) { & = bo(z)), =17
# = ho(z}), w=20

which is obtained from (17) by sending ¢ to zero. This
defines a family M® = {(Z*), 8 € 6} of deterministic
differential systems.




Actually, the following convergence in probability
of the experiments holds

0
Poc( sup [Y;—yf|>6) Z20.
0<I<T

Deterministic parameter estimation Assume
that a trajectory {y,t > 0} is observed, which is
actually the output of some deterministic differential
system (X°) in the model MP?, for some unknown
a. The problem is to estimate the parameter 8 € ©,
based on observations {y&, t > 0}.

The model M is said identifiable on [O,T]', if for
all & # 8, there exists ¢ € [0, 7] such that yf # y?,
i.e. different values of the parameter give different
output trajectories. In other words, the mapping
6 — {y?,0 <t < T} is injective. The determinis-
tic parameter estimation problem consists of invert-
ing this mapping. This can be expressed in terms of
the following variational problem.

Introduce the cost functional

JAE2) = SE) + /0 I, — bo(€,) 12 ds

1 1
+2/ |y:’—h.(e.)|2ds—§/o 5P ds ,

for absolutely continuous £ € C([0,T]; R™), and the
following least-squares functional

£[8] = inf{J3(€,T) : £ € C([0,T}; R™)} .

The deterministic parameter estimate (DPE) is de-
fined by

M, = argmin £,(6) .
6€©

The following consistency result can be proved,
which relies on PDE techniques for large deviations
(vanishing viscosily theorem) and on the convergence
in probability of the experiments.

Theorem 5.1 For all a € O, if the deterministic
model M? is identifiable, then any MLE sequence
{6, ¢ > 0} converges in P, ,-probability to the
“true” parameter : for all§ > 0

Po.(lf - o] >6) 250

Another issue is the rate of convergence of the MLE
sequence to the true value of the parameter. The so-
lution to this question relies on proving a local asymp-
totic normality (LAN) result. This is currently under
investigation.

Other problems should also be considered, includ-
ing : large time asymptotics, recursive (on-line) esti-
mation, and adaptive filtering.

'ﬁ_—_'%
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Abstract

In this paper we provide a consistency result for the MLE for partially observed diffu-
sion processes with small noise intensities. We prove that if the underlying deterministic
system enjoys an identifiability property, then any MLE is close to the true parameter
if the noise intensities are small enough. The proof uses large deviations limits obtained
by PDE vanishing viscosity methods. A deterministic method of parameter estimation is
formulated. We also specialize our results to a binary detection problem, and compare
deterministic and stochastic notions of identifiability.

Key words: Parameter estimation, nonlinear filtering, large deviations.

1980 subject classifications: 62F12, 93E10, 93E11, 60F10
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Résumé

On démontre la consistance du maximum de vraisemblance pour I'estimation de para-
métres dans les processus de diffusion partiellement observés, dans le cas de petits bruits.
Si le systéme déterministe sous—jacent est identifiable, alors tout estimateur du maximum
de vraisemblance est proche de la vraie valeur du paramétre inconnu, pourvu que les bruits
soient assez petits. La démonstration utilise des résultats de grandes déviations, qui sont
obtenus par des techniques d’EDP (vanishing viscosity). On applique ce résultat & un
probléme de détection séquentielle, et on compare les notions déterministe et stochastique
d’identifiabilité.

Mots—Clés: Estimation de parametres, filtrage non-linéaire, grandes déviations.
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1 Introduction

In this paper we provide a consistency result for the Maximum Likelihood Estimator
(MLE) for partially observed diffusions with small noise.

The problem of computing the MLE for partially observed diffusions has received re-
cent attention. Dembo and Zeitouni |7} have investigated the EM algorithm, and Campillo
and Le Gland [2] have compared this algorithm with a direct maximization approach. Of
course, the goal of such efforts is to compute a good estimate of the unknown parameter.
The success or otherwise of such algorithms depends on whether the MLE itself is a good
approximation to the unknown parameter. The purpose of this paper is to address this
question of consistency when the diffusion and observation noise intensities are “small”.

Our result was in part inspired by some large deviations limit results for nonlinear
filtering in Hijab [11], James and Baras [12], James {13]. The theory of large deviations
for diffusions with small noise is presented in Freidlin and Wentzell [10]. We exploit the
fact that, on finite time intervals, the diffusion X with observations Y are “close” to a
deterministic process ® with observations y*. We formulate a deterministic method of
parameter estimation for this deterministic process.

We prove that if the underlying deterministic system is identifiable and if « is the true
parameter, then any MLE #° is close to a if £ > 0 is small enough. Our proof uses PDE
vanishing viscosity methods and Laplace’s asymptotic method.

As an application of our results, we study a binary sequential detection problem,
discussed in Baras and La Vigna [1], when the noise intensities are small. Deterministic
and stochastic notions of identifiability are compared in the context of threshold decision
policies.




2 Maximum Likelihood Estimation

On a measurable space (§2, F) we consider

- for each ¢ > 0, a family M* = { Py, 6 € B} of probability measures,

- a vair of stochastic processes X = {X;,0 <t < T}andY = {¥;,0<t < T}
taking values in R™ and R respectively,

such that under Py,

dX; = bo(X,)dt + dW,* ,  Xo ~ py*(z)dz,

dY; = he(X)dt +dV?*, Yo=0,
where {W/*,0 <t < T} and {V}**, 0 < t < T} are independent Wiener processes, with

covariance matrices €l,,, and ¢l respectively, and X, is a random variable independent
of the Wiener processes, with density of the form

() £ Co. exp{—ésg(z)} . 2.1)

The set of parameters @ C RP is compact, and the coefficients satisfy the following
hypotheses

(i) for all 6 € ©, by € CL(R™,R™), and hy € CZR™,RY),

(1) for all 8 € ©, S is convez, locally Lipschitz continuous, and for some
e R™, S§(z%) =0, Si(z) > 0 if x # ). Assume also

G+ Cxll‘lz > Sg(z) > Glz| - Gy,
forallze R ,6€ 0.

Further, the functions bg, kg and S? depend continuously on the parameter 6 in the sense
that

(13} for each § > 0, R > 0, there exists v > 0 such that [¢' — 8] < v implies

sup |bg(z) — be(x)] <6, sup lhe(z) - he(z)} <6,
zeR™ zeR™

sup_|S8(z) - Se) < 6.
z€B(0,R)
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There is no loss in generality in assuming that {2 is the canonical space C([0, T]; R™*9),
in which case X and Y are the canonical processes on C(|0,T]; R™) and C([0,T]; R?)
respectively, and P;, is the probability law of (X,Y’).

It is assumed that only Y is observed. Let Yr denote the o-algebra generated by
the process Y on C([0,T]; RY). The probability measures in M* are mutually absolutely
continuous, and the log—likelihood function for estimating the parameter 8 in the statistical
model M¢ given Yr, can be expressed (note the minus sign) as

~£:(6) = elog E} (2% | Jr) .
Here P, is a probability measure equivalent to Py, with Radon-Nikodym derivative

9,:9&5_ 1 T _1 T 2
zte 2 dp,;_je"*’e{ﬁ WX aY,~ 3 [ Ih(Xo)Pds)

so that under P;‘e
dX, = be(X,)dt + AWS* | Xo ~pi¥(z)dz ,
where {W/*, t > 0} and {Y;, t > 0} are independent Wiener processes, with covariance

matrices ¢/, and €/ respectively, and the random variable X, is independent of the
Wiener processes, see [2].

The mazimum likelihood estimate (MLE) of the parameter @ in the statistical model
M¢, is defined on the canonical space C([0,T}; R¢) by

¢ € argmin #(6) .
(13-]
The likelihood function can be computed through the solution of the Zakai equation
45 (1) = L3.p%](2, 0 dt + S h3(a)p*(z, 1) ¥, (22)

where L;, is the adjoint operator of the infinitesimal generator Ly of the diffusion process
X under the probability measure Py,

a e & 8
Loa =3¢ Zl 82,0z, ;b‘ax. '
= 3
Indeed
£(8) = ¢ log /Rm p**(z,T)dz . (2.3)

The filtering problem is discussed in detail in Liptser and Shiryayev [15]. The following
lemma is proved in the Appendix.
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Lemma 2.1 The log-likelihood function —£*(8) depends continuously on the parameter
6€0 as.

Let now @ be fixed. When ¢ | 0, the following weak convergence result holds on
C([0,T]; R™*):
Po'g ¢=10> 6(“»”') ’

where (z?,3°) is given by the deterministic differential system
#f = bo(zf), 2f= H
(%)

ho(If) y Y =0

9
In particular, forall 6 € © ,8 >0

€l0

Po (sup |Y: —9f|>6) =0, (2.4)
0gt<T
see Freidlin and Wentzell [10].

Remark 2.2 As long as ¢ > 0, the probability measures in M* are mutually abeolutely
continuous, which allows us to define the log-likelihood function —#(6). On the other
hand, asymptotically when £ | 0, these probability measures look more and more mutually
singular, which, together with an identifiability property of the underlying deterministic
system, indicates that the MLE may be consistent. Actually, this result will be proved
below.

The purpose of the next Section is to consider the problem of estimating the unknown
parameter  in the deterministic model M°® = {(£?), 6 € ©}.




3 Deterministic Parameter Estimation

Consider the family M° = {(Z°), 8 € ©} of deterministic differential systems
i'ta = ba(zto) , o= ’7'3
(=)

yts = ho(I‘a) y ¥ =0

(3.1)

Note that for all # € ©, (£°) describes the weak limit as ¢ | 0 of the family of probability
measures {F., ¢ > 0}.

The problem is to estimate the unknown parameter 8 on the basis of an observation
record, which is supposed to be the output of some deterministic differential systems in
M?O. Introduce the following definition:

Definition 3.1 The model M° is identifiable on [0, T] if for all @ # 8 in ©, there exists
t € [0, T] such that

v #y -
In other words, the mapping 8 — {y?,0 < t < T} is injective. The deterministic

parameter estimation problem consists of inverting this mapping. This can be expressed
in terms of the following variational problem.

Define the following functional on C([0,T]; R™)

e 2 &) + 3 [ 1~ bo(6)P de

(3.2)
+4 [ lig - e as - 4 [ ligpas,
if € is absolutely continuous, J2(¢,t) = +o00 otherwise. For all z € R™ set
Wi(z,t) Sinf {J2E 1) : & =2} . (3.3)

The value function W2(z,t) is continuous in (z,t) and is the unique wscosity solution of
the Hamilton-Jacobi equation [12]

2 Waa,0) + Bz t, W2 ) =0, Wi(2,0) = SU(s) , (3.4)
where the Hamiltonian H(z,t, ) is defined by

Hi(z,t,3) £ max {\(bs(z) +u) - 3[ul?} — 315 — ho(2) + 31322

veRm™

6(2)A + 3P + hi(2)ig — dlhe(z)? .

(3.5)

—
[
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For definitions and an introduction to viscosity solutions of Hamilton-Jacobi equations,
the reader is refered to Crandall and Lions [3], Crandall, Evans and Lions [5].

Consider the following functional, defined on © by
ta(6) £ inf Wi(z,T)=inf {JU&T) : €€ C(0,T]; R™)} . (3.6)

A deterministic estimate (DPE) of the unknown parameter ¢ in the model M? on the
basis of the observation record {y&, 0 < t < T} is defined by

e M, 2 a.rog:;in £,(6) . (3.7)

The main result of this section is the following:

Theorem 3.2 If the model M° is identifiable, then for alla € ©
M, ={a} .
Thus, under the identifiability hypothesis, the DPE is uniquely defined and the unknown

parameter can, in principle, be computed exactly from (3.4), (3.6), (3.7). Before proving
Theorem 3.2, we give a lemma which ensures that argmin ,(8) # 0, and also provides
see

useful estimates.

Lemma 3.3 Foralla € ©
(i) there are constants C > 0, C' > 0 such that, for allz € R™, 6 € ©
Cilz)? + C > Wiz, T) > Clz| - C',

(1i) for all R > 0, § > 0 there exists 4 > 0 such that |¢' — 8] < vy implies

sup |WE&(z,T)- Wi(z,T)| <6,
z€B(0,R)

(#i) the mapping 6 — £,(f) is continuous.
PROOF. In the sequel, every constant independent of #,a € © and (z,t) € R™ x {0, 7]

will be denoted by C or C'. For any absolutely continuous function ¢ € C([0,7]; R™)
and any A > 0, we have

2 21'2 fge
6 <l + 5 [ lefar+a [ Erar,




e .

T

. . oy

and by Gronwall's lemma,

617 < (& + & [ 16-Pdr) exp{(¢ - 5)/A} . (38)

Since sup sup |hs(z)| < C it follows that, for all « € ©
8€9 zeR™

T
1 a2 <
ZA lg:1°ds < C,
and hence for all a,6 € ©
Wi(z,t) > -C, (z,t) e R™ x [0,T] .

Let Lf,(é ,€,t) denote the Lagrangian in (3.2). It is easy to prove the following estimates
1 [ WART; 2 L [ 2 t e
[ 1ePar <3 [ 16 -bole)Pdr+4 [ ool ar < [ Lo érmiar+C,

t . t . t t .
L[ 16—t ar < [[16Fdr+ [ eIl ar < 16 12ar+C.
In particular

t . -
L[ erds-C < et < Sle) + [ P ds+C.

Proof of (i): Setting £ =z on [0,T)], givesfor0<t < T
Wa(zt) S L6, t) S S3(@) + C < Cifa + C .
Choose A > 0 such that N = T'/A is an integer and 4eC;A < % Forn=1,...,N the
Dynamic Programming principle implies
nd

n—1)A

Wi(z,nA) = ilflf {W(f(n-x)m (n—-1)A)+ ( LE(&s, 6, 8)ds : €nn = Z} .

Given 6 > 0, recursively select & € C([0,T]; R™) for n = N,...,1 as follows: {§, =z,
n—-1
nA = Sna and

s
N

IA

nA .
WeEh-nar (n=1)A)+ [ LA, &5 5)ds < WE(ERa,m0) +
(3.9)

é
n 12 I
CIIEnAl +C+ N~

IA

Then

nd - 6
L[ el salgaror L,

7

o e tp———— =




[ P

aad from (3.8)
n |2 n 2 " a2 n 2,1 2,1 [
[nal® < (IE(.._mI + A/(n_m 3 dT) e<elinal’ +3l&aal? +3(C+ —ﬁ)/C, )
which implies

» é
[€nal® < 2e [ yyal® + (C + N)/Cl . (3.10)

Define ¢° € C([0,T]; R™) by ¢/ = £p for t € {(n — 1)A,nA], n=1,..., N. Then =2
and by iterating (3.10) we obtain

lz2 < ¥ |82 + CV .
Now also, by iterating (3.9)
JUE,T) S We(z,T) + 6, (3.11)
and consequently
Wa(z,T) 2 J2(€',T) - 6 2 S§(6) = C 2 Claf - €',
which proves (i).

Proof of (1i): Let R > 0,6 > 0 and z € B(0, R). Choose £ as in (3.11). Thea, from the
above estimates,

T .
[ iérds <ca.

Using (3.8) we deduce that if z € B(0, R), then there exists R’ > 0 such that £ € B(0, R')
for all 6 € ©. Therefore

W (z,T) - Wiz, T)

IA

Jo(€,T) = J3(E,T) + s

SN - U+ [ 162 - bole)Pds— 3 [T 18 ~ ba(eds

T T
+ [ 105 = he(€Pds =3 [ 1ig — holE)Pds + 36
Now, if |§' — 8| is small enough
13'(62) - Sa(&0)l < 3¢

1
2

T
f 1 - hoe)ds = [t ~ ha(€iras| < 36

8




i
|

Also
/ |£s bg (Es)l ds / | b ( )I ds
6‘ 0 él

1
2

<{[eral ([ wien-soras)”

T
+3 [ 10 (€)= Ba(€D)] lbwr(€2) + bo(€D)] ds < 16,
if |8’ — 6] is small enough. Hence, there exists ¥ > 0 such that |[#' — 6| < v implies
W& (z,T) - Wi(z,T) < 6.

2

Reversing the role of 6’ and 8 proves (ii).
Finally, (iii) follows from (i)-(ii) and Lemma A.2. o

PROOF OF THEOREM 3.2. From (3.2), (3.3) and (3.6) we have

T
a ca
BET) 2 ea & -4 [ lisfds,
for all 6 € © and £ € C([0,T]; R™), so that £,(8) > c,. From (3.1) we have
J2(z*,T) = ca ,
so that for all # € ©, £,(a) = ca < £4(6). Therefore a € M,.

Assume that § € M,. Then £,(8) = £,(a) and
ta(0) = inf{J2(€,T) : € € C(I0,T); R™)} = SAET)
for some £ € C([0,T]; R™), since J¥(-, T) is lower semi-continuous. Then from (3.2)
(i) SiE) =0,
@) & =bE), 0<s<T,
(i) g2 =he€,), 0<s<T.

From (i) & = :i:g , and therefore by (ii) and (3.1) £ = J:? ,0< s <T. Then (iii) and
(3.1) imply _ ~

U=hy{ed) =47, 0<s<T.
Now since the model M? is identifiable, this equality forces 8 = a, which proves the
theorem. o




Remark 3.4 The notion of identifiability is reminiscent of a notion of observability for
nonlinear systems, which also has a variational characterization, see James [13] [14].

10
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4 Consistency Result for MLE

The main result of this paper is the following:
Theorem 4.1 Foralla € ©

(i) any MLE sequence {5’ , € > 0} converges in P, ,-probability to the deterministic set
My: forall6 >0

Pa(d(B5, M) > 6) <%0,

(i) if the deterministic model M° is identifiable, then any MLE sequence {§°, ¢ > 0}
converges in P, . —probability to the “true” parameter: for all§ > 0

Par(|fF —a| > 6) 0.
The proof of this theorem depends on a technical extension of large deviations limit
results for nonlinear filtering contained in James and Baras {12], James [13]. We need to

show that certain limits are uniform in the parameter § € ©. The key technical lemma is
the following:

Lemma 4.2 The sequence {{(8),& > 0} converges in P, . —probability uniformly in
0 €0 toly(f): foralls >0

Po(sup |€5(8) — £,(8) > 6) <50 .
8€®

We next prove Theorem 4.1 using Lemma 4.2; the remainder of this section is con-
cerned with proving Lemma 4.2.

PROOF OF THEOREM 4.1. By Lemma A.1 for all § > 0 there exists v > 0 such that
{sup |¢(8) = €a(®)| < 7} C {d(F*, Ma) < 8} .
Therefore, by Lemma 4.2
Po(d(6°, M,) > 6) < P“"(i'éé’ [€(8) — £.(8)] > v) 2> 0,

which proves (i).

The proof of (ii) follows at once from (i) and Theorem 3.2. C

11




As in James and Baras [12], James [13], we employ the vanishing viscosity method of
Evans and Ishii [8]. We proceed by a logarithmic change of variables used by Fleming

and Mitter [9]. Define
W (z,t) & logp®*(z,t) .

(4.1)

The ),~measurable random variable W%¢(z,t) + h}(z)Y: can be extended to a continuous
function defined on the whole canonical space Qo = {n € C([0,7]; R?) : 7o = 0}, which

we denote by u®[n](z,t), see [9] and [12]. For any fized n € £
u**[n] € C*'(R™ x [0,T]; R)

is the unique solution of the Hamilton-Jacobi-Bellman equation

2 lnl(@, 1) ~ Jetu[ri(z, ) + H*[nl(z, &, Do, 1)) = 0

u®¢[n](z,0) = Si(z) — elog Cy,

where the Hamiltonian H%¢[n)(z,t, ) is defined by

Ho“[n)(z,1,3) 2 g5z, 7)) + §? = Vo<(z,m) ,
Vo*(z,m) £ V¥(z,n) + Jen" Aho(2) + edivga(z,7) ,
V(z,1) £ }Iho(z)? + B3n* Dho(z) — §(Dhs(2))* n7" Dhe(2) ,

9o(z,7) £ bo(x) = 1" Dha(z)

Next, for 7 €  let
«’[] € C(R™ x [0,T]; R)

denote the unique viscosity solution of the Hamilton-Jacobi equation
2 (e 0) + Hlnl(e.t. De’lrl(@ ) = 0, w[nlz,0) = S¥(a)
where the Hamiltonian H®[n|(z,¢, ) is defined by
Hnl(z,t,3) £ gi(z, m)A + 3 = V(. m) -

Lemma 4.3 We have
li{g uo"['r]](:c,t) = u’[r;](a:,t) )

(4.2)

(4.3)

(4.4)

(4.5)

uniformly in 0 € © and t € [0,T] and uniformly on compact subsets of n € Qo and

z € R™,

12




PrOOF. The following estimates are obtained as in James and Baras [12], James (13],
using methods introduced in Evans and Ishii [8], Crandall and Lions [4]. Let R > 0 and
K C Qg be compact. Then if ¢ > 0 is sufficiently small, we have

[u* (=, 1) < ©
|Du*[rl(z, )| < €

[u**[nl(z,t) - u**[n](=, )| < C(VE|t — 5|2 + |t — s])

for some constant C > 0 and for all 6 €0, t € [0,T], 7 € K and = € B(0,R). By
the Arzela-Ascoli theorem, there is a subsequence ex | 0 such that u®*x[7] converges
uniformly on B(0, R) x [0,T] to a continuous function w. This function satisfies the
Hamilton-Jacobi equation (4.4), and by uniqueness, w = u®[5] (Crandall and Lions [3D).
Hence u®¢[n] — v®[n] as ¢ | 0.

Now ®[n] is a continuous function of 5 € K, 6 € © (see the proof of Lemma 3.3 (ii)).
Using this fact and the uniform estimate above we conclude that the convergence is
uniform. o

Now
WO (2,) = w[Y(a,t) — hi(2)Y,

and
Wg(z’t) = uo{ya}(zvt) - h;(z‘)y;’ .

Lemma 4.4 We have
113’1 W (z,t) = Wi(z,t)

in P, —probability uniformly in # €O, t € [0,T] and uniformly on compact subsets of
reR™.

PROOF. Let p denote a metric on C(R™ x [0,T], R) corresponding to uniform conver-
gence on compact subsets. By (2.4), it is enough to show that for each 6 > 0

Pac(sup p(u®*[Y],u'[y")) > 6) S0
98
Choose § > 0 such that ||p — y°|| < 8 implies
sup p(u’[n], ’[y°]) < 26 .
co
From Lemma 4.3, if || — y®|| < 8 and 0 < £ < ¢, then

sup p(u®*[n], w’[n]) < 46 .
#€O

13




Therefore, if 0 < € < g¢ then
P .(sup p(u**[Y],w’[y*]) > )
9co
< Paclsup Y] 4I¥]) > 35 1Y - 3%l < §)
+Pac(sup p(w Y], w°ly%)) > 365 IY — 47| < B)
+Pae([IY = 71 > 8) < Pac(llY - 4%l > B) 50,
by (2.4).
PROOF OF LEMMA 4.2. Recall from (2.3) and (3.6) that
£9) = —elog/ exp{—lwo"(a: T)} dz as.
R € ’
= 1 (2, T) .
ta(0) = inf W(z,T)
From the proof of Lemma 2.1 we see that
W (z,T) > Clzg| - C', as.
for all e > 0, 8 € ©, where C’ is random and satisfies the following estimate
C' S CollY -y + C,, .
From Lemma A.3, there exists € > 0, 8 > 0 and ¢ > 0 such that 0 < ¢ < ¢g

supp(W*,W))< 8 and ||Y -y°||l<c
6€6

implies
sup [€°(8) — £,(8) < 6 .
0€©

Therefore, for 0 < ¢ < g

Pac(sup|£/(9) = La(6)| > 6)
(1]

S Pac(supp(W*,W3) > 8) + Pas(llY =4 > ¢) <0,
€

by (2.4) and Lemma 4.4.
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5 Binary Sequential Detection

In this section we discuss some aspects of a binary detection problem studied by Baras
and LaVigna (1], when the noise intensities are small.

Let © = {0,1} and let X and Y be the signal and the observation processes described
in Section 2. Fore¢ > 0 fixed, we consider the two hypotheses Hg and H,. Under Hg the law
of (X,Y) is Py, whilst under H; the law of (X,Y) is P;,. The problem is to determine
which hypothesis is true, that is to detect the signal. In this section, 2 = C([0, 00), R™+4).

A key technical assumption, essentially an identifiability condition, used in Baras and
LaVigna {1] is the following

/O  Hhoe(t) = hue(t)Pdt = 00 as. (5.1)

where N A
R o(t) = Eg(ho(X:) | W),

and N
YBo(Y, 0<s<1).

The deterministic analogue of (5.1) is
/ |50 — 12 dt = oo . (5.2)
)
Clearly, (5.2) implies that the model MP defined by (3.1) is identifiable. In fact, if
A, T .0 -112
oc=inf{T >0: /(; 9 — 41 dt > 0},

then M? is identifiable on each interval {0, T] with T > o.

The following result is a consequence of Theorem 4.1.

Theorem 5.1 Assume (5.2) holds and T > o. Define the MLE 6° for the interval [0, T].
Then, for a = 0,1
P =a) 251,

In (1], Baras and LaVigna use a threshold decision policy to decide which of the
hypotheses is valid. Define the likelihood ratio

£ exp { [ thuctt) = hac(o @ = § [l e - thou(e)P) dt} :

15
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Note that as ¢ | 0,

T
—;L|¢—£Pm under Hq ,
elog AT <
T
+%/0 |9 — 9 )*dt under H; .

A threshold policy u® = (7¢,6%) consists of a {)),t > 0}-stopping time 7° and a
YV,«—measurable {0, 1}-valued random variable §° defined by

2 inf{T >0 : Ay & (e, e)} ,

6(

1 if As =ebe,

0 if AL =e%c,
for some constants a < 0 < . If 6 = 1 we decide that hypothesis H; is valid (i.e. that
6 = 1), whilst if §° = 0 we decide Hq (i.e. 8 = 0). Of course, our decision may be in error.

Define an error probability for the policy u*
e(u?) £ Po (6= 1) + P (5 = 0) .
Theorem 5.2 If (5.1) holds, then
e(ut) 250 .

PROOF. Under assumption (5.1), Baras and LaVigna [1] prove that

TF <00 as

and y Je(et! )
1— e et/c(e’e — 1
Po_c(él = ].) = —eblc eals Pl‘t(é‘ = 0) = ——eb/e mpry>
Since a < 0 < b, the conclusion follows. m]

Thus, assuming (5.1), the probability of making an incorrect decision converges to
zero as € | 0, and so (5.1) can be viewed as an identifiability criterion for the statistical

model M* = (P, , Pi.}.
We can define a deterministic threshold policy u = (7, §) as follows. Define
T T
Fr=4 [l - wlde =4 [ il - ilar.

16




Let a < 0 < b and set

-
I

inf(T >0 : Fr ¢ (a,b)},

1 if F,=b,
0 if F,=a.

Theorem 5.3 Assume that (5.2) holds. Then for any threshold policy u = (7,6) with
a<0<b, we have 7 < 00 and

§=1 if and only if H, is valid ,
§=0 if and only if Hy s valid .
PROOF. Under H, , y, =y} and for T > 0
T
Fr=4 [l -gPa>0.

By (5.2), there exists Ty > 0 such that Fr, = b. Consequently 7 <Tj and § = 1.
Similarly, under Ho , 3 = 3? and for T > 0

T
Fr=—4 [ il -itfa<o

We conclude again 7 < o0 and § = 0. a

Thus a deterministic threshold policy always makes the correct decision under the
(stronger) identifiability condition (5.2).

‘To « >mpute u® (approximately), Baras and LaVigna (1} use a numerical solution of
th: 7:.ai equation. The above suggests an approximation when ¢ | 0 is small. Now

Fr=Fr(y% %)

Compute approximations 7°, §' to 3% y* by numerically integrating the differential system
(3:1). Set N

Fi = Fr(3°,3Y),
where Y is the noisy observation record. Now define, fora < 0 < b

# = nf{T >0 : £} ¢ (a,0)},
) 1 if Fa=0b,
& = N

0 if Fu=a.

17




If the integration is sufficiently accurate, then we expect for a = 0,1
Pa.((s' = 6‘) '_10’ O .

Note that |a|, b can be increased to increase the level of confidence.

Remark 5.4 In practice, the initial condition z, is not known, so that one would have
to estimate zy also, for instance using an observer.

18
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A Appendix

This Appendix contains some technical results used in the paper, and a proof of Lemma
2.1.

Lemma A.1 Let A C R? be compact. For any ¢ € C(A,R) define the set
M() £ argmin ¢()) .
AeA
Let f,g € C(A,R). Then for all a > O there exists § > 0 such that

i\ég“‘(/\) —g(A)| < B wmplies YY)z M(g), dAM(f))<a.

PROOF. If not, there exists & > 0 and a sequence {g;, i > 0} such that
sup|f(A) —gi(})| — 0 asi— o0,
AeA

and R
d(Mi, M(f)) > o for some X € M(g:) .

Since A is compact, we can assume that X = A* € A as i — oco. Consequently
dA, M(f)) 2 a. (A1)
Let A(f) € M(f). Then
FR) = LU + [ = FAN + [9:A) = e R + [F) = a(B)]
< SR + 8 = FOON + £ = au(A)]
< S + 2sup{£(X) = gu(M)]
A€A

Sending i — oo we obtain f(A*) < f(A(f)). That is A* € M(f) which contradicts (A.1).
a

Lemma A.2 Let A C R? be compact, and F* € C(R™ R) be such that

(a) there are constants C > 0, C' > 0 such that, forallz € R™, A€ A

FM2)> Clz| - C',




(b) for all R > 0, § > O there exists v > 0 such that |X — A| < v implies

sup |FAz)- F¥(2)| <6 .
€ B(0O,R)

2

PR-N A
Define m xglllfmF (2). Then

(i) there exists a constant R > 0 such that, forall A € A

argmin F*(z) ¢ B(0,R) ,
zeRm™

A

(ii) the mapping A — m> is continuous.

PROOF. For any A € A let 2* € a.rgglin F*{z). The existence of 2* follows from the
ER™
continuity of F* and the coercivity hypothesis (a). Moreover
m* = FM2*) > ¢l - ¢,
and thus for all A € A
< 2
— C -
Fix Ag € A. By (b) for each § > 0 there exists 4 > 0 such that {A — X| < v implies
m* < FAz%) = m* 4+ [FMh) — Fr(z) <mb 46
Then |A — Ag| < v implies

Ag ]
e B(0,R), with R2 %ﬁf—c— ,

which proves (i).

By (b) again, this implies

m < F2(2*) = m* + [FY(2*) — FA(2Y)]

IN

mh+ sup |FR(z) - FA(2)| < m 46,
:€B(0,R)
and the proof of the lemma is now complete. O

The next lemma is a variant of Laplace’s asymptotic method.
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Lemma A.3 Let A C R be compact, and F*,G* € C(R™,R) %e such that

(a) there are constants C > 0, C' > 0 such that, for allz ¢ R™, A€ A

FN2)>Clz|-C", GMNz)2Cle|-C',
(b) for all R > 0, 6§ > O there ezists v > 0 such that |\ — A\| < vy implies

sup |FM2)- F¥(2)] <6, sup |GMz)-G¥(2)|<56.
:€B(0,R) z€B(0,R)

Let p denote a metric on C(R™, R) corresponding to uniform convergence on compact
sets.

Then, for all § > 0 there exists § > 0, €9 > 0 (depending on G) such that 0 < ¢ < ¢

and
supp(F'\,G’\) <R,
A€A

implies

1 .
sup |e log ./Rm exp{—;FA(z)} dz + ,;‘,‘{m GMz)| < 6.

A€A

PROOF. Define
&

Ay 8 A A : A
m(P)—xérng(z), m*(G) ,é[xllfmc(z)'

Lower bound: It follows from Lemma A.2 that the mappin: : A — m*(F) and A — m*(G)
are continuous. Further, there is a constant R > 0 such that

R
argmin G*(z) C B(0, -),
TCR™ 2

for all A € A. Thus we can choose 0 < 8 < §/12 such that sup p(F*, G*) < 3 implies
2eh
sup|m*(F) - mN(G)| < 16,
Aeh

and
argmin F*(z) C B(0, R)
eR™
for all A € A. Set
B} £ {zeR™: FM\z) - m(F) < 1§} .

Increasing R if necessary, B} C B(0, R) for all A € A by the uniform coercivity hypothesis

(a).
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Now (z,A) = G*(2) is uniformly continuous on B(0, R) x A, so there exists r > 0 such
that
lz=Z|+]A =X} <r implies |G*z)-G¥() <35,

and also, since 0 < 8 < 16

IF*2) - F¥()| S 2556 + 48 = 45,
for any 2,2’ € B(0, R) and any A, X € A.
Let z* € argmin F*(z). Then 2* € B(0, R) and

s€Rm
|z —z*| < » implies |FX(z) — mM(F)| < 36,
for all A € A. That is B(z*,7) C B for all A € A. Therefore
0 >vp > p(B})> v >0,
where 1 denotes the Lebesgue measure in R™, and v, (resp. vg) denotes the Lebesgue

measure of a ball of radius r (resp. R) in R™.

Now

a*e) E /n-v- exp{-éF"(z)}dz

-—1 A i A _l A 15
Z/B;exp{ SFA@)}dz 2 w(BY) exp{-=(m(F) + 10} ,
and

A A
¢loga’(e) > elogv, —m*F) - 15

v

elogv, — m*(G) - 26 > —m*(G) -

provided 0 < € < &, for some ¢, independent of A € A,

Upper bound: Let 0 < v < 1. The uniform coercivity hypothesis (a) implies

e < [l exp{—l;—fF*(zn exp{-2FX(2)} =

IA

F)} [ oxp{-2F2)) e

< exp{—l—';lm*(F)} L} | mexp{—iglzndz

IA

exp{--—m (F)} exI>{—-}(
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for all ¢ > 0. Therefore
eloga*(e) < —(1 ~v)m*(F) + vC' + me(loge — log vC)

IN

-m*G) + (1 - v)é + vm*(G) + vC' + me(loge — logvC) .

Choose v so small that ¥m*(G) + vC' < 16. Next, choose 0 < g5 < ¢ such that
me(loge — log vC) < 16 for 0 < € < go. Then we have:

eloga*(e) < —-mMG) + 6

provided 0 < ¢ < €. o

We turn now to the

PROOF OF LEMMA 2.1. From Sections 2 and 4 we have
£ 1 »
£(9) = ~¢log /Rm ¢**(z,7T) exp{;h,(z)YT}dx a.s.,
where for a.e. w € , ¢*¢ € Cp*(R™ x [0, T]) and solves the “robust” Zakai equation
1-
2 (2,t) ~ BeAG(2,0) + 55(2,0)DG (2, 1) + TV (2,0)¢" (2,1) = 0,
¢’“(2,0) = po*(z) ,
with N o -
Vo<(z,t) = V(a,t) + 1Y,* Ahg(z) + ediviy(z, t) ,
7%(z,1) Z Llho(2)? + 3" Dho(z) — 1(Dho(2))" Y. Y, Dha(a)
Go(®,t) £ bo(z) — ;" Dho(a) ;
see Davis {6]. Fix ¢ > 0 and w € € such that the above holds. Now |gs(z,t)| < C and
[Ver(z,t)} < Cin R™ x [0,T]. Then
1
%q"‘(i» t) - 38" (2,t) + §5(,t) D" “(2,t) - ~C¢**(3,t) <0,
and by the maximum principle, for all (z,t) € R™ x [0,T)
CcT 1
0% ¢"(2,) < exp{ == }pi(2) < exp{—(Cule] - G - CT)}

i.e.

WP (z,t) > Cylz| - C, - CT ,
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where C is random and satisfies the following estimate

CSCO sup |},t‘y;1|2+Ca .
0gt<T

Therefore, by the Lebesgue dominated convergence theorem, it is enough to show that if
6 — B in © as k — oo, then ¢*(z,T) — g%+<(z,T) for each € R™. The difference
z a Bre _ boe isfi

=gq q’°* satisfies

g;z(:z:,t) - %eAz(z,t) + 35, (2, t)D2(z,t) + %V“"‘(z,t)z(z, t)

- - . € 1 - € 760, '3
= —{go.(2,1) — Juo(2,1)]" Dg** (=, 1) — E[Va“ (z,t) = Vo< (z, 1)) g"*(z, 1) ,
and hence
8 1 A ~* D 1 1
Ez(z,t) — 3edz(z,t) + gs, (z,t)Dz(a,t) - ;Cz(z,t) < Cogop(Be,00)(1 + E) ,
where p(6;,6,) — 0 as k — co. Then by the maximum principle
CcT CcT 1
z(:z:,t) < exp{—e—} 2(3,0) +T exp{T} Cgop(ek,ao)(l + ;) .

Now
2(2,0) < < exp{~1(Calel - G})} [S(z) - St (2)]

Consequently, sending k — co we obtain

limsup {¢"(z,T) - ¢*(2,T)} < 0.
k—oc

Similarly, we obtain the reverse inequality and conclude. a
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