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Control Algorithms for Aerobraking in the Martian Atmosphere. (December 1991)

Buford Wiley Shipley, Jr., B.S. Texas A&M University;

M.S., Northrop University

Chair of Advisory Committee: Dr. Donald T. Ward

The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric

guidance concepts have been adapted to control an interplanetary vehicle aerobraking in

the Martian atmosphere. Modifications are made to the APC to improve its robustness to

density variations. These modifications include adaptation of a new exit phase algorithm,

an adaptive transition velocity to initiate the exit phase, refinement of the reference dy-

namic pressure calculation and two improved density estimation techniques. The modi-

fied controller with the hybrid density estimation technique is called the Mars Hybrid

Predictor Corrector (MHPC), while the modified controller with a polynomial density esti-

mator is called the Mars Predictor Corrector (MPC).

A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle.

The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to

guide the vehicle along a reference trajectory. The equilibrium glide entry phase is em-

ployed for the first part of the trajectory. This algorithm, when using the hybrid density es-

timation technique to define the reference path, is called the Lyapunov Hybrid Tracking

Controller (LHTC). With the polynomial density estimator used to define the reference

trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC).

These four new controllers are tested using a six degree of freedom computer simu-

lation to evaluate their robustness. MARS-GRAM is used to develop realistic atmo-
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spheres for the study. The atmospheres are then perturbed using square wave density

pulses. The MHPC, MPC, LHTC and LTC show dramatic improvements in robustness

over the APC and EC. The MHPC, MPC, LHTC and LTC all complete the initial phase of

testing (using square wave density pulses) with no failures. The second phase tests the

MHPC, MPC, LHTC and LTC against atmospheres where the inbound and outbound den-

sity functions are different. Square wave density pulses are again used, but only for the

outbound leg of the trajectory. Additionally, sine waves, in both altitude and range, are

used to perturb the density function. All four new controllers are able to compensate for

the outbound leg density pulses with no hard failures, but the algorithms are sensitive to

large amplitude density pulses. Additionally, these control algorithms are sensitive to

large amplitude sine waves, particularly sine waves in range. The hybrid density estimator

responds poorly to sine waves in range with wavelength between twenty and two hundred

nautical miles. The polynomial density estimator is sensitive to wavelengths between five

hundred and two thousand nautical miles. Overall, the polynomial density estimator per-

forms better than the hybrid density estimator. The Lyapunov tracking phase performs

better than the predictor correctors and the LTC is the most robust control algorithm exam-

ined.
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CHAPTER I

INTRODUCTION

When orbital transfer is required near a celestial body with an atmosphere of suffi-

cient altitude and density, it is often advantageous to utilize aerodynamic forces to aid in

the transfer1 11. Aerodynamic drag forces are used to reduce the kinetic energy, while

aerodynamic lift forces are used to control the trajectory during the maneuver. The result

is a vehicle weight savings equivalent to the propellant necessary to perform the maneuver.

The critical factor for success in the aerobraking maneuver is the performance of the guid-

ance control system. The National Aeronautics and Space Administration plans a 1992

launch of the Aeroassisted Flight Experiment (AFE) to serve as a proof-of-concept and

test vehicle for aerobraking orbital maneuvers12 . Meanwhile, an aeroassisted orbital

transfer maneuver is planned for the Mars Rover/Sample Return (MRSR) Mission to re-

duce the orbit energy from the hyperbolic Martian approach orbit to capture into a low

Mars orbit with a commensurate AV savings of over 8000 ft/s when compared with an all

propulsive mission13 .

Fig. 1 shows the proposed interplanetary mission concept. The vehicle will be

launched from Earth into an elliptical heliocentric orbit. The vehicle will travel almost

eight months in this interplanetary orbit making mid-course corrections as necessary to in-

tercept Mars. When the vehicle reaches Mars there will be 6 km/sec difference between

the velocity of the vehicle and Mars orbital velocity. Without some method of changing

the vehicle's velocity it would swing by Mars without capturing into a Martian orbit. The

proposed method for imparting this velocity change is to use the aerodynamic forces im-

parted by the Martian atmosphere. The final mid-course correction to the interplanetary

orbit will allow the vehicle to enter the Martian atmosphere as shown in Fig. 2. The typi-

Journal model is AIAA Journal of Aircraft.
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cal sequence of events for an aerobraking maneuver call for the vehicle to plunge into the

atmosphere and fly deep in the atmosphere until the velocity is appropriately reduced.

Then the vehicle executes a pullout maneuver exiting the atmosphere in a low Mars orbit.

Finally a series of propulsive maneuvers are performed to transition the vehicle into the

desired final orbit.

APOCENTER

EXITOR
RAISE

4 PERICENE

" MARS

ENTRY l P
H1IGHl ENERGY

APPROAClH ORBIT

Fig. 2 Aerobraking Maneuver Sequence of Events
(Adapted from Reference 14)
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In the past, for space missions reentering the Earth's atmosphere, only the destina-

tion coordinates have been specified. In targeting to the correct orbit following the aero-

braking maneuver the guidance system must accurately control the final position of the

vehicle as well as the final velocity vector. The atmospheric lift and drag forces affecting

the vehicle are proportional to the atmospheric density, but atmospheric density is highly

variable 15"22. The guidance algorithm must be robust enough to control to the final state

even with these uncertainties. The focus of this dissertation is to study the relative merits

of several existing and novel guidance algorithms, with particular emphasis upon the ex-

tent to which the algorithms tolerate our ignorance of the Martian atmosphere.

Although robustness with respect to density variations was a prime factor in develop-

ing and choosing the guidance scheme for the AFE3'10"1 1'23"25it becomes even more criti-

cal for the Mars mission. Scientists have worked for many years to characterize the

Earth's atmosphere. Accelerometer data gathered during space shuttle returns have al-

lowed us to characterize not only the average density values but also the expected magni-

tude and frequency of the random density variations 15 "17 . In designing the AFE guidance

system the Earth's upper atmosphere in the region 250000-400000 feet, was assumed to

have density variations of ±25% from standard values over small altitude intervals 15 . The

Martian atmosphere goes through global atmospheric expansions and contractions equiva-

lent to an atmospheric shift of 10 kin 22. Additionally, data gathered from the Viking I and

Viking 11 landers show density variations of 20 to 30% over small altitude intervals in the

aerobraking region 18"!9 . Since we have only two sets of density measurements from the

Martian aerobraking region, we must expect even larger density variations to occur. It is

conjectured that density shears of 60% or greater may be encountered. Development of a

robust controller capable of acceptable performance given the large, unpredictable density

variations in the Martian atmosphere is, therefore, vital to the success of the MRSR mis-

sion.
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Background

The basic technology required to perform hypersonic flight in an atmosphere was de-

veloped in the 1950s to support the development of intercontinental ballistic missiles26 .

Technology was extended to allow the Mercury and Gemini projects to dissipate kinetic

energy by entering the atmosphere with low ballistic coefficient vehicles. Major advances

in entry technology were made during the Apollo program, especially in the areas of navi-

gation, guidance and control during atmospheric maneuvering. With the Space Transpor-

tation System (STS) came a reusable capability to deploy and retrieve satellites from Low

Earth Orbit (LEO). Deployment of the Space Station will provide a permanent base in

LEO capable of performing maintenance and repair of satellites. However, with a large

percentage of satellites in Geosynchronous Earth Orbit (GEO)an economical system of

deploying satellites to GEO and then returning them to LEO is required. The National

Aeronautics and Space Administration (NASA) has developed an aerobraking vehicle, the

AFE, to meet the return requirement 12. In designing the Mars Rover/Sample Return mis-

sion an aerobraking phase similar to that of the AFE is envisioned to dissipate kinetic en-

ergy from the hyperbolic Martian approach orbit leaving the satellite in a Low Mars

Orbit
13.

The AFE, scheduled for launch in 1992 will serve as a proof of concept and test ve-

hicle for aerobraking. AFE will enter the atmosphere with the same velocity as a vehicle

returning from GEO. The vehicle will fly trimmed at a constant angle of attack, and there-

fore, at near a constant lift to drag (L/D) ratio. AFE will roll about the velocity vector to

modulate the in plane portion of the lift to control the trajectory while drag dissipates ki-

netic energy. The vehicle will exit the atmosphere, after an appropriate energy reduction,

with exit velocity and flight path angk such that the final orbit will rendezvous, at apogee,
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with the desired LEO. The mission concept for the Mars aerobrake is expected to be quite

similar, but of course, for the MRSR objectives.

The complexity of the competing inequality and equality constraints placed on an

aerobraking maneuver make definition of an optimal, robust control algorithm extremely

difficult. The simplest controllers are open loop controllers designed to optimize the tra-

jectory for a specific atmosphere, entry conditions and vehicle design. Talay, et al, 3 opti-

mized a bank angle history for a nominal 1962 atmosphere using a trajectory optimization

code. When this bank angle history was used in trajectory simulations with off-nominal

atmospheres in several cases the vehicle either exited the atmosphere early or failed to exit

at all. Vinh 4 first formulated an optimal, minimum fuel, control problem using a com-

bined propulsive and aerodynamic transfer. He shows that an optimal combined propul-

sive/aerodynamic orbit transfer will require only 32% of the total AV required for an all

propulsive maneuver for an orbit transfer from GEO to LEO. Then Vinh, et al, 27 produce

an explicit guidance scheme for the aerobraking phase of a drag modulated aeroassisted

transfer between elliptical orbits. They find the optimal strategy consists of bang-bang

control but then point out that the strategy is difficult to realize because the switching time

must be very accurate, "within a fraction of a second to avoid crashing." They propose an

alternative strategy whereby the drag is controlled between minimum and maximum val-

ues as a function of the current state. Kechichian, et al,2 8 also acknowledge that for a drag

modulated vehicle bang-bang control is optimum for minimizing the total AV required to

achieve the desired orbit, but in an effort to reduce the sensitivity to switch point timing a

new CDmax-CDmin-CDmax controller is developed to add an additional degree of control.

Sensitivity analysis shows that this control scheme has essentially zero sensitivity to an at-

mospheric density profile of ±15% of nominal but an entry corridor width of ±0.10

should be maintained to avoid excessive AV requirements.
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Much work has been performed in the area of optimal aero. ssisted plane changes.

Hull, t al,29 derives an optimal guidance scheme for performing an aeroassisted plane

change between circular orbits. They assume a parabolic drag polar for the vehicle and

use Loh's con. tant 30 to include grav Iational terms and apparent lift terms in the analysis.

They find bank angle and angle of attack time histories which minimize the total AV re-

quired to perform the maneuver by maximizing the exit velocity following the aero phase.

Plane changes of 10 to 40 degrees are demonstrated. Later the problem is reformulated 3 1

using heading as the independent variable and assuming that Loh's term may be either

positive or negative. They show that only one solution exists and that it may be found by

solving a fourth order polynomial. Hull, McClendon, and Speyer 32 then reform the prob-

lem assuming an elliptic drag polar and obtain similar results. They show that near aie

end of the atmospheric turn Loh's term is not constant which may cause extremely high

angles of attack. Finally, Hull and co-workers3 3 assume Loh's term is piecewise constant

during the turn and reformulate the problem. Using the method of successive approxima-

tions they construct a control law which results in a final velocity within 1% of the true op-

timal final velocity for a 40* plane change and results in a very reasonable maximum

angle of attack of 30'. Johannesen, et al,5 formulate an approximate control hw for lift

and bank angle to maximize orbit plane change using an aeroassist maneuver. The control

law is tested for a wide range of speed ratios Ve /V. They observe that the maximum turn

angle for any speed ratio is proportional to the maximum lift-to-drag ratio.

Two unique methods of determining atmospheric guidance control iaws have been

developed. Mease and McCreary6 propose using an approximate closed form solution of

the equations of motion. Their solution divides the trajectory into three regions. During

the beginning and end of the trajectory the gravitational terms are assumed to dominate,

while in the mid-portion of the trajectory aerodynamic terms are assumed to dominate.

The solutions for each of these regions is combined using the method of matched asymp-
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totic expansion. Final apocenter values within 9% of the targeted values are demonstrated

for a wide range of entry flight path angles for a simulated Mars aerocapture mission. The

other unique method developed by Lee and Grantham 7 uses Lyapunov optimal feedback

control to minimize the AV required to raise perigee following an aerobrak*ng maneuver.

This method calculates a descent function and then seeks to move the system in a pre-

ferred direction, opposite the gradient of the descent function. The Lyapunov feedback

controller is compared with an optimal open loop controller derived using calculus of vari-

ations for the nominal 1962 standard atmosphere. Superior, robust performance for the

Lyapunov controller is demonstrated for both the standard atmosphere and a shuttle-de-

rived atmosphere.

Control laws developed using optimal control theory offer excellent performance in

numerical simulations, but those methods which require extensive computation for each

control update have been at a distinct disadvantage due to limitations of onboard comput-

ing capability. For this reason several simplified guidance schemes have been developed.

Letts and Pelekanos 8 developed a control law using bank-angle modulation of the lift vec-

tor to establish a constant axial deceleration level until the required exit velocity is

reached, when full lift up is commanded. They show that AV required to circularize fol-

lowing the aerobrake maneuver increases approximately 35 m/s for each percent change

from the nominal value for an atmosphere that is multiplied by a constant density bias.

Gamble, et al, 23 develop a control scheme similar to that of Letts and Pelakanos except

Gamble's method commands to an equilibrium glide rather than a constant axial decelera-

tion until the desired velocity is achieved. After the desired velocity is achieved, full lift

up is again commanded for atmospheric exit. Gamble finds that a 50% increase in density

has little effect on the total AV required but a 50% decrease in density increased AV re-

quired by about 35% due to problems in establishing the equilibrium glide. Cerimele, et

al, 24 use Gamble's equilibrium glide phase during the entry portion of the trajectory, but
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then switch to a reference drag profile like Letts and Pelekanos for the exit portion of the

trajectory. Density shears in the atmosphere are simulated and the A V required following

the aerobraking maneuver is found to be very sensitive to density ratios exceeding ±30%

occurring over altitude ranges of 1,000 to 10,000 ft. Cerimele and Gamble 9 produce an

analytic predictor corrector guidance algorithm, again using the equilibrium glide entry

phase but with a predictor corrector exit phase designed to target apogee more accurately.

The predictor corrector algorithm assumes a constant altitude rate and an exponential at-

mosphere to predict apogee. The predictor algorithm iterates altitude rate until a value is

found which produces the desired apogee. The vehicle is then commanded to this altitude

rate. An interesting feature added to this algorithm is a low pass density filter. Density is

computed on-board based on accelerometer data. Calculated density is then compared

against predicted density values and future predicted values are adjusted accordingly. This

guidance algorithm was tested numerically using combined dispersions of ±0.2" in entry

flight path angle, ±20% density variations and ±33% LID. The final apogee value was

within 2 nm of the target value in all cases. Gamble, et al,34 present three atmospheric

guidance concepts for aeroassist orbit transfer vehicles. The first method presented is the

Analytic Predictor Corrector, already discussed. The second is a Numerical Predictor

Corrector algorithm which numerically integrates a trajectory assuming constant bank an-

gle magnitude and an assumed density profile. The bank angle is iterated until the desired

apogee is computed and the vehicle is commanded to this bank angle. The final control al-

gorithm presented is the Energy Controller which guides the vehicle to a desired energy

state at atmospheric exit. The energy gain, defined as the ratio of energy rate to energy er-

ror, is controlled so that energy error exponentially goes to zero at atmospheric exit. The

energy gain command is converted to an altitude rate command which in turn is converted

to a bank angle command. Their results show that all three algorithms are capable of

maintaining the final apogee within 10 nm and AV within 50 ft/sec of the nominal values
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for test cases with dispersions of ±4 nm in perigee, ±50% in density, ±50% in W/CDA

and +50% in ID. The analytic predictor corrector and Energy Controller show slightly

worse results for the -50% L/D case.

Fitzgerald and Ward 1 0 -11 investigate the sensitivity to density shears of the Analytic

Predictor Corrector and Energy Controller algorithms while guiding the AFE vehicle.

They consider spike and step shaped density dispersions of ±10 and ±20% magnitude

with durations of 5,000 and 10,000 feet, starting at altitudes between 260K and 295K ft.

AV increases up to 60% for the Energy Controller and 41% for the APC are demonstrated.

Fitzgerald"1 then formulates a Hybrid Predictor Corrector algorithm which uses the atmo-

spheric density profile determined during the entry phase in the predictor corrector of the

exit phase. This significantly reduces the sensitivity to density shears for atmospheres

where the exit atmosphere matches the entry profile.

Meyerson and Cerimele 13 review the aeroassist vehicle requirements for the Mars

Rover/Sample Return Mission. They use a modified analytic predictor corrector algorithm

referred to as HYPAS as the controller for vehicles with ID ranging from 0.3 to 1.5. Ad-

ditionally, entry velocities from 5.79 to 9.20 km/sec were investigated. A recommenda-

tion of this study is, "to refine the HYPAS guidance algorithm to control the trajectory

more accurately in the exit phase." They recommend using two exponential atmosphere

models in the guidance predictor.

"The Mars atmosphere is highly variable on a daily, seasonal and annual basis18."

The thin atmosphere and solar heating produce a large daily temperature range which

translates to a large daily density fluctuation 18-2 1. Fig. 3 shows that at the surface the

Martian atmospheric density is approximately two orders of magnitude less than that of

the Earth's atmosphere and at aerobraking altitudes there is still more than an order of

magnitude difference between the density of Earth and that of Mars. "On an annual basis,
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spheric pressure at the surface changes by ±15% due to condensation and sublimation of

the C0 2
17,"' which produces a global expansion and contraction of the atmosphere of

roughly 10km. Fig. 4 presents the density deviations of the COSPAR high density model

and the COSPAR low density model relative to the COSPAR Northern Hemisphere Mean

Model. Global dust storms absorb radiation high in the atmosphere, thereby increasing

the upper atmosphere temperature and causing a large scale expansion of the atmosphere.

The density is then substantially increased at orbital and entry altitudes. Additionally,

density of the Martian atmosphere varies widely on a daily basis. Fig. 5 shows the expect-

ed morning and afternoon density profiles calculated for summer at the Viking 1 lander lo-

cation while Fig. 6 shows the calculated density profiles for winter at the Viking I lander

location. These figures show that at aerobraking altitudes the density may vary by as

much as 100 to 150% on a daily basis. The Viking I and 2 landers measured atmospheric

properties during their descent and recorded peak to peak density variations in the aero-
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tions in the aerobraking region of 30% over a 15 km altitude band and 20% over a 10 km

region 18.2 . Fig. 7 and Fig. 8 present the density variations measured by Viking I and Vi-

king 2 respectively during their descent to Mars. The Mars Global Reference Atmosphere

Model (MARS-GRAM) 35 characterizes Mars atmospheric properties, density, tempera-

ture, pressure and wind speed and direction, as functions of date, time, latitude, longitude,

altitude, solar activity and dust storm activity.

This dissertation will characterize the sensitivity of selected aerobraking guidance

algorithms with respect to density variations of the type and magnitude expected in the

Martian atmosphere to determine their suitability to perform the MRSR Mission. A guid-

ance algorithm capable of acceptable performance in spite of the uncertainty in Martian

atmospheric density or methods of reducing the uncertainty will be developed. To attain

this goal the following research objectives are proposed.
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Research Objectives

When designing a control law for an aeroassist maneuver an exponential variation of

atmosphere density with altitude is an extremely attractive computational simplification.

However, given the large density biases and density shears of the Martian atmosphere 18-

21, a guidance algorithm optimized for the MRSR aerobrake flying in the assumed expo-

nential atmosphere may demonstrate poor performance and potentially catastrophic fail-

ures if realistically off-nominal conditions are encountered 13. Especially, when errors in

navigation accuracy and/or vehicle LD are also considered, the results of using any fixed

density model may be catastrophic with the vehicle either failing to be captured into a

Martian orbit or failing to exit the Martian atmosphere. As a result, the sensitivity of

MRSR atmospheric guidance to perturbations in density as well as to navigation errors

and LID errors is critical to the success of the mission.

A systematic method of evaluating the effects of density biases and density shears in

combination with navigation errors and IUD errors on an MRSR atmospheric guidance al-

gorithm is sought. The methods established will be used to evaluate candidate guidance

algorithms, including algorithms developed in this dissertation. Toward these objectives,

the first task is to determine the expected extremes in Martian density. MARS-GRAM 35

will be utilized for this task. The highest and lowest density atmospheres expected are de-

termined as a function of season, time of day, solar activity and dust storm activity. Since

there have only been two space probes which have measured density through the Martian

aerobraking region, the nature and magnitude of expected worst case density shears is not

known precisely and must be estimated. These atmosphere extremes are checked against

the Mars standard atmospheres 18 and the Viking data 18 "19 . There is a proposal for the

Mars Aeronomy Observer (MAO) 20"2 1 to send additional probes to the Martian surface to
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gather more data quantifying these shears; but, this mission is still years away. The ex-

pected navigational accuracy and probable L/D errors are also be determined.

Secondly, the Analytic Predictor Corrector algorithm,9 the algorithm chosen for the

AFE mission, and the Energy Controller 34 are fine tuned for the MRSR mission. Then the

sensitivity of these algorithms when faced with these density biases, density shears, navi-

gation and UD errors are determined. The six degree-of-freedom Program to Optimize

Simulated Trajectories (POST) 36 is used in this analysis. The sensitivity of these algo-

rithms is visually presented by plotting three dimensional sensitivity surfaces with the

qualitative objective of finding the worst combinations of dispersions and defining the per-

formance bounds of these two controllers. Methods of improving the performance of

these algorithms, especially methods of using information derived early in the trajectory,

to improve the performance in the latter portions of the trajectory (similar to the methods

proposed by Fitzgerald in his Hybrid Predictor Corrector algorithm) are evaluated. Two

new algorithms called the Mars Hybrid Predictor Corrector (MHPC) and the Mars Predic-

tor Corrector (MPC) are developed. These two algorithms differ only in their density esti-

mation techniques. This task, along with developing the new algorithm proposed below,

are crucial to the research and secondary only to the task of defining absolute robustness

limits.

The third order of business is to explore more elegant ways to optimize the control-

ler, especially ways of improving the robustness. A potential candidate Lyapunov Steep-

est Descent Controller 7 (LSDC) similar to the one suggested by Lee and Grantham is

coded and its performance tested against the same perturbations as the others. Two new

algorithms are developed, again differing only in their density estimation techniques.

They are called the Lyapunov Tracking Controller (LTC) and the Lyapunov Hybrid Track-

ing Controller (LHTC).
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Finally, and most importantly, the robustness limits of the improved MPC, MHPC,

LTC and LHTC controllers are characterized. The guidance performance is thoroughly

tested to find the tolerable limits on density bias and density shear given the probable er-

rors in navigation and LID. POST is used to test the guidance algorithms, using the Viking

atmosphere profiles18-19. The limits on atmosphere dispersions, considering the inherent

navigation and probable L/D errors, under which acceptable controller performance will

occur is clearly defined from the results of these simulations.

These limits are checked against the worst case perturbations expected for the mis-

sion18-19' ,35. Conclusions are drawn regarding the performance of these algorithms when

faced with the expected density variations, as well as possible variations in vehicle lift to

drag ratio and entry flight path angle. Recommendations for future study are then presented.

Organization of Dissertation

Improvements made to the Analytic Predictor Corrector and Hybrid Predictor Cor-

rector control algorithms are presented in Chapter II. Derivation of the LSDC and a LTA

are presented in Chapter Il1. Chapter IV details the model used for the trajectory simula-

tions and the atmospheric models. Vehicle mass and aerodynamic data are presented

along with atmospheric entry conditions. The controller test program is outlined and the

perturbations in atmospheric density, vehicle lift and drag, and entry conditions which

were used in the test program are presented. Finally the performance of the various con-

trollers is presented. In Chapter V the four best performing controllers, the MPC, MHPC,

LTA and the LHTA algorithms, are tested against each other in a head to head fashion.

The perturbation limits which define the edge of the envelope where acceptable perfor-

mance is attainable are determined. Conclusions and recommendations are presented in

Chapter VI.
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CHAPTER II

IMPROVEMENTS TO THE PREDICTOR CORRECTOR

ALGORITHM

The Analytic Predictor Corrector controller (derived in Appendix B) is the control

algorithm selected for the AFE12. This controller was adapted to the MRSR problem and

tested against expected perturbations in the Martian atmosphere as well as perturbations in

entry conditions and vehicle lift and drag characteristics. While testing the Analytic Pre-

dictor Corrector controller, several areas were found where improvements could be made.

The constant multiplier used to determine the reference dynamic pressure was changed in

an effort to gain robustness and prevent premature exit from the atmosphere. Borrowing a

technique first employed by Fitzgerald 1 1, an improved atmospheric model used by the pre-

dictor step to determine velocity loss during the exit phase was also incorporated. Then a

new method of estimating density incorporating a polynomial to fit the normalized density

function was developed 42 . A modified exit phase, first developed at the Charles Stark

Draper Laboratory 4 3'", was incorporated and tested, first without and then with the im-

proved atmospheric models. The new exit phase also assumes a constant altitude rate to

compute the velocity loss due to aerodynamic drag. However, instead of predicting the

exit state and iterating altitude rate to target the desired apocenter, the velocity required to

attain the desired apocenter altitude is computed based on the current state and an estimate

of the remaining velocity loss due to aerodynamic drag. The iteration is simplified to a

single step altitude rate correction. With the large density shifts present in the Martian at-

mosphere and the uncertainties in vehicle and entry conditions the velocity at which the

controller transitions from the equilibrium glide phase to the exit phase (incorporated as a

controller constant for the APC controller operating in the Earth atmosphere) was changed

to an adaptive parameter.
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The predictor corrector algorithm developed here which uses a variation of Fitzger-

ald's density estimation scheme will be referred to as the Mars MHPC. The algorithm

which incorporates the polynomial density estimator is referred to simply as the MPC al-

gorithm. The modifications presented here convert the predictor corrector algorithm from

a good controller for guiding the aerobraking phase of a space vehicle returning from Geo-

synchronous Earth Orbit (GEO) into a robust control algorithm capable of accurately

guiding an interplanetary probe through an aerobraking maneuver in the Martian atmo-

sphere.

Reference Dynamic Pressure Calculation

The equilibrium glide phase of the APC controller seeks an equilibrium condition

with the vehicle following a reference dynamic pressure path. The reference dynamic

pressure is calculated as a multiple, K4 , of the dynamic pressure required to maintain

equilibrium with the lift vector oriented down. Gamble, et al34, recommend that this mul-

tiplier be 1.33 for the AFE which aerobrakes in the Earth's atmosphere.

Ideally, to have the minimum AV required after the aerobraking maneuver the veloc-

ity of the vehicle should be decreased as high in the atmosphere as possible. Some studies

have considered, as a minimum AV aeromaneuver, the case of a vehicle with infinite lift

skimming the edge of the atmosphere until the velocity has decreased by the appropriate

amount so the vehicle can be released into a Hohman Transfer orbit from the circular orbit

at the edge of the atmosphere to the desired orbit 7. However, decreasing the velocity high

in the atmosphere means flying in a region of lower density and consequently lower dy-

namic pressure. Flying higher requires the in-plane component of the lift vector to be ori-
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ented more downward to maintain equilibrium. This idealization is satisfactory only with

a smooth exponential density profile; density shears are not allowed. If the vehicle is fly-

ing in equilibrium using 50% of the lift down capability ((D = ±1200) and a density shear

is encountered which decreases the density by 50% suddenly, full lift down will be re-

quired to maintain equilibrium. In actuality, because of time lags between the encounter

of a density shear and the vehicle's response, coupled with the potential necessity of re-

ducing a positive alti ide rate, the minimum acceptable reference dynamic pressure to

maintain control, if the density suddenly decreases by 50%, is considerably more than

twice that required to maintain equilibrium in a full lift down configuration.

One potential drawback to increasing K- is that the trajectory loads are increased

over a portion of the flight. Heat rates and vehicle acceleration loads are increased for the

portion of the portion of the trajectory after the minimum altitude point until the transition

to the exit phase, however, for the range of K- between 1.33 and 4.5 the maximum heat

rates, g loading, the minimum altitude, and even the maximum dynamic pressure do not

change. 4.5 was the largest value which would not adversely affect the peak trajectory

lo,js. Furthe:more, it has been found that the total heat inte ;rated heat i,ad calculated is

lower for a higher value of K- because the vehicle's deceleration is greater and less iiie, is

required to reduce the vehicle's velocity.

Fig. 9 presents the altitude time histories and Fig. 10 presents the velocity time histo-

ries for trajectories flown through a nominal Martian atmosphere perturbed with a square

wave pulse of 20,000ft duration located between 140,000ft and 160,000ft altitude. This

pulse multiplies the nominal density function by 0.5 in this altitude region. The three

curves presented in each figure represent K- values of 1.33, 2.2 and 4.5. Notice that the

trajectories where K4 equals 1.33 and 4.5 perform well. The final apocenter is within

three nautical miles of the targeted 270 nm for both cases. However, the trajectory flown
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with K4 equal to 2.2 skips out, or exits the atmosphere early while the velocity is still too

high. Skip outs are difficult to predict because they are caused by a sudden negative densi-

ty shear which reduces the vehicle's available lift and drag force. If this negative density

shear occurs when the vehicle is in a relatively safe regime where the sudden decrease in

density will not place the vehicle in a critical situation a skip out may not occur. However,

if the vehicle has positive altitude rate, or is performing a bank reversal and the lift vector

is oriented up, or the control scheme allows the vehicle to overshoot the reference dynamic

pressure trajectory, thereby temporarily flying at a dynamic pressure lower than the refer-

ence value, or worst yet, combinations of these factors are present when a sudden negative

density shear is encountered a skip out is very likely to occur. Increasing Kq will not al-

ways prevent a skip out, but increasing K- does tend to reduce the probability of a skip
q

out. Indeed, with K- set to 4.5 (the largest value possible without adversely affecting peak

trajectory loads) no skip outs were encountered during the test program.

With the uncertainties in the Martian atmosphere the slight penalty in AV required to

increase this multiplier to 4.5 (less than 10 ft/sec), when compared to the 1.33 value rec-

ommended for the Earth atmosphere, seems to be a small penalty to gain additional ro-

bustness and limit the possibility of a premature skip out. qref is therefore calculated

qref 4.5w- V2  (2)
, = CLS]j[I _. 2

Improved Exit Phase Density Models

The second area of improvement is the density estimation technique. Good density

estimation is critical for the success of the Martian aerobrake. With the wide density

swings possible in the Martian atmosphere the correct path given an estimate of future

density may prove disai.ous if that estimate is wrong. Given that the MRSR vehicle will
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traverse over 1000 nautical miles during the aerobraking maneuver it is entirely conceiv-

able that the density function encountered may vary as much as the 100 to 150% variation

in density between morning and afternoon presented in Fig. 5 and Fig. 6. The density es-

timation technique must not only develop a profile of density versus altitude, but must

continue to update this estimate throughout the trajectory based on the latest accelerome-

ter based density measurement. Two methods for performing this task are presented here.

lybrid Density Estimator

A method similar to that employed by Fitzgerald 1 to model the atmosphere is em-

ployed here. During the entry phase accelerometer-derived density is recorded near each

1000 ft altitude interval along with the altitude for each density measurement. Then, dur-

ing the exit phase the predictor step uses these measurements to predict the velocity loss

due to atmospheric drag. A difference between this approach and that of Fitzgerald is the

inclusion of a density multiplier derived from accelerometer-generated density measure-

ments which continue to update the density estimated throughout the trajectory.

The accelerometer-generated density measurements taken during the entry phase of

the aerobraking maneuver is, quite likely, the best estimate of the atmospheric density

function available for the exit phase of the trajectory. These measurements will be close,

in both space and time, to the density for the remainder of the flight. They will indicate

the general state of the atmosphere, that is whether the CO2 is in a condensed or sublimat-

ed state, and they will provide an indication of the vertical wave structure of the atmo-

sphere. They will not provide any information on horizontal waves which may affect

density on the outbound leg. To compensate for this latter shortcoming a density multipli-

er and a low pass filter like the one presented for the APC9' 34 were used. However, in-
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stead of dividing derived density by the density predicted by an exponential function, the

divisor is the density predicted from the measurements taken during the entry phase.

Pmodel = pje(hhI)/hS (3)

where p1 is the density which was measured at the lower edge of the current altitude band,

h, is the altitude at which this measurement was taken, and hS is the scale height for the

atmosphere computed between this density measurement and the next measurement ap-

proximately 1000 ft higher.

hS = [loh(P2/Pl~y' (4)

The density multiplier is then computed by dividing the accelerometer derived densi-

ty by the density predicted for the current altitude using the density model derived during

entry. The result is filtered using a low pass filter to remove high frequency density devia-

tions which would have minimal effect on the post-aerobraking apocenter.

K = (I -K) Kp +K(Pd/Pmoe) (5)

To use this modified atmosphere in the predictor step, rewrite Eq. (148) from Appen-

dix B

dVr - (h - h) /hS A

2= -Cpte --. (6)
Vr h

This equation may be integrated assuming a constant altitude rate to give the velocity

loss due to atmospheric drag between two arbitrary altitudes h and h 2 .

Vr2 = II/VrI ((CPIhS)/i) {e - ( h 2 - h )/ hS e-(hI - )/hSI 7

and, with the scale height as previously calculated
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1r I Cp/(hi-/h2)( P2 (8)
Vr2 - /og(P 2 /P1 ) (8)

This equation gives the relative velocity at h2 as a function of the relative velocity at

h 1 and the densities and altitudes at the two locations. The method for employing this fea-

ture in the predictor step of the control algorithm is to first use the velocity, density and al-

titude at the current satellite location as the subscript I variables and to predict the velocity

at the next interval where density measurements were stored during the entry using that al-

titude and that density multiplied by the density multiplier discussed earlier as the sub-

script 2 variables. Then that velocity may be used to compute the velocity at the next

altitude band using the lower stored density and altitude values as subscript 1 variables and

the next higher density and altitude measurements as subscript two variables. Notice that

the density multiplier, when multiplied by each of the stored density measurements, will

cancel in all but one location.

Vr2 = h-- P-- 2  M( P -1 (9)

This procedure is repeated until the exit relative velocity is computed. The velocity

change expected between the current location and atmospheric exit may be calculated by

subtracting the current relative velocity from the predicted exit relative velocity.

AV = Vr- v (10)

Polynomial Density Estimator

The second method of density estimation curve fits a sixth order polynomial in alti-

tude to the normalized density function. This technique uses accelerometer derived densi-

ty measurements at three trajectory locations to define a two phase exponential function.

Derived density is recorded at one second intervals and then normalized by the exponen-
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tial function in an effort to remove the underlying predominant exponential component.

As the satellite reaches the bottom of the trajectory a batch estimate42 is used to perform a

weighted least squares fit of the polynomial coefficients to the resulting normalized func-

tion. After that, a sequential estimate42 is used to continue updating the coefficients of the

polynomial for the remainder of the trajectory.

Based on MARS-GRAM 35 generated data a two phase exponential function was

chosen to normalize the density data. The underlying exponential component is assumed

to be two exponential functions divided at 250,000 ft altitude such that the normalizing

function 0 is expressed

.P(h)= [pje-(h-25000)/hS2 (h>250, OOOft).

Lpe-(h- 250000)/hSIt (h < 250, 000ft)J

hSl and hS2 are the scale heights below and above 250,000 ft. p, is the density at

250,000 ft, determined using accelerometer derived density which is filtered using a low

pass filter like the one presented in Eq. (5). The scale height hS I is found by using the fil-

tered density measurement when the vehicle's altitude rate first becomes positive and that

at 250,000 ft in Eq. (4). similarly, hS2 is found using the measured density at 400,000 ft

and the measured filtered value from 250,000 ft. The density value chosen at 400,000 ft is

not the filtered version because at this early point in the trajectory the density filter has not

had sufficient data to converge to a reliable estimate.

After the altitude rate first becomes positive and the constants of Eq. (I1) have been

determined, the density values which were saved at one second intervals during the de-

scent into the atmosphere may be normalized. The resulting data is fit with a sixth order

polynomial in normalized altitude using a weighted least squares (batch) criterion to select

the coefficients for the polynomial. A ninth order polynomial was originally chosen be-
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cause the Viking 1 and Viking 2 atmospheric descent data (Fig. 7 and Fig. 8) shows six

and five major density extremes respectively in the aerobraking region and the Viking 1

data shows four additional local extremes. This would require at least a seventh order

polynomial to model even the major extremes accurately. Because computational require-

ments for the density filter increase approximately as the square of the order of the polyno-

mial is was desired to use as low order as practical. After some testing the ninth order

polynomial was found to be numerically ill-conditioned. A sixth order polynomial was

found to be much better behaved and adequate for modeling the expected density function.

The density function is approximated by

p(h) - 0(h) [c I + c2x + c3x 2 + c 4x 3 + c5x 4 + c6 x 5 + c 7x 6] (12)

where x is normalized altitude, x = h
he

The coefficients c1 through c7 are initially determined by a weighted least squares

batch estimate presented by Junkins42 . The procedure is to begin with the batch of in nor-

malized density measurements

- ) (13)

taken at the m known altitude locations (h-) at m one second intervals until the altitude

rate becomes positive. The altitudes are normalized by the atmospheric interface altitude

to determine the xis. The batch estimator must select the coefficients c, through c7 so

that

'j = C I + C2Xj + C3xj +C4x3 +C5X4+c 6x5 +c 7 x6 + ej (14)

where ej is the residual errors after selection of the coefficients. This equation may be

written in matrix form

Y = A +E (15)
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where t is the estimate of the coefficients c through c7 and A is the matrix

1 X X 32 X3 X4 X5 X6
I xl I I

1 2 2 X3 X4 X5 X6
x 2  2  x2  2  x2

A =(16)

2 3 4 5" 61 xm xm xm Xm Xni xm

The batch estimator is tasked with selecting i to minimize the weighted quadratic

function of residual errors

pO= WE (17)

where the weighting matrix selected is a diagonal matrix of weights applied to the residual

error of each measurement.

w1 0 01

= 0 W2 0 (18)

0 0 WVm_

Because the vehicle is traveling into the region of higher density which has greater

impact on the sitelFe trajectory than does the thinner atmosphere near entry and exit and

because more recent data was deemed to be more representative of future density than was

older data, the weights were chosen to increase with time. An exponentially increasing

weighting function was chosen which would double the weight after 1000 seconds. This

weighting function was selected through experimentation which showed that a slower in-

creasing weighting function did not respond quickly enough to abrupt density shears to

produce adequate controller performance, while faster increasing weighting functions

tended to ignore data gathered early in the trajectory and produced a poor estimate of den-

sity in the upper altitude regions which also had a negative impact on controller perfor-

mance. The weights selected were
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6.9314x iO-4tl,w = e (19)

Equation (15) is solved for E and the result substituted into Eq. (17). After some ma-

nipulation 4 is expressed

Sp = WY-2 T WAe7+t6 (AT WA e. (20)

To minimize 4 it is necessary that

Vp = -2ATwY+2ATWA = 0. (21)

This equation is solved to obtain the weighted least squares normal equation for t"

e7 = (AT WA)-IATW ". (22)

After the satellite altitude rate becomes positive the estimator switches to a linear se-

quential estimator 42. To facilitate this switch, the covariance matrix P is recorded from

the batch estimate

Pk = (AT WT Ak) (23)

where for the first sequential estimation step the k subscripts are simply the matrix values

from the batch estimate. For subsequent steps the k subscripts will indicate values from

the previous step while k+l will indicate updated values. A linear Kalmnan filter is then

employed to update the estimates of e7. As new density measurements are made available

at one second intervals the estimate of t is updated using
--PA Y ) - tY-A k. (24)

Ikk+l = k+PkA kk+i +Ak+l PkAT+ ) k+'k+I-ak+i(

For the sequential estimator Wis just the scalar value of w, calculated using Eq. (19). A is

only the new row of the A matrix shown in Eq. (16) calculated using the current value of h.

Y is the current normalized density measurement. To prepare for the next iteration the co-

variance matrix is updated using
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= P T lpT (25)
Pk+I Pk-k + (  +k+k k k+ +APk(5

This process of updating the polynomials of the density estimate and then updating

the covariance matrix in preparation for the next step is repeated at one second intervals

until atmospheric exit. With the density estimate now in place, an estimate of the velocity

loss to occur in the exit phase due to aerodynamic drag may be computed by integrating

the drag equation. Begin by writing the drag equation.

dVr _ 2 
2 SCD pVr

- PVr = - (26)

where MD is the vehicle ballistic coefficient

MD - __S .  (27)

dh

Replace dt with - in Eq. (26) and substitute the expression given in Eq. (12) for p
h

and rearrange terms to obtain

dVr 0.50(h) x 2 + ... + c x 6 ) dh. (28)
= - .(c 1 +cx+c 3 x )d+(8

Vr MDa

Since x = h/he, if i is a function of h, this expression can be integrated analytical-

ly between any two altitudes to determine the change in velocity due to aerodynamic drag.

Again, as was done in the APC algorithm and in Eq. (7), i is chosen to be a constant. If i

is less than 250,000 ft, 0 has a discontinuity at hI = 250, 000 ft; so, the integration must

be performed in two steps, one from the current altitude to 250,000 ft and a second from

250,000 to the exit altitude. If we change the variable of integration from h to x we get

- - 05p [ -(x-x I (c+c2x+c3x2 +-cx6)dX (29)
-Vr xl=---- '
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+ e-x Ih21 (cCI +c2X+C 3X2+ ... + c7x6) dx

where x, = hi/he and the current altitude is expressed xi = h/he. When h is greater

than 250,000 ft this integration may be carried out in a single integration step.

-. .~:[exxI[S (c 1 +c 2x+c 3x 2 +-.. + c7 x6 )dxj (0

To integrate this expression, repeatedly integrate the expression for density by parts

to obtain

b he hb
e uhS -]d6u

fpdx = -pne XI) ej+* he+[ JU,+..+h, dx6j[
S= -p hS h 2+.. I (31)

a a

where

u = c 1 + c 2 x + c 3 x 2 + c 4x 3 + c5 x 4 + c 6x 5 + c 7 x 6  (32)

and the primes indicate a derivative with respect to x so that

u' = c 2 + 2c 3 x + 3c 4x
2 + 4cx 3 + 5c 6x4 + 6c 7x5  (33)

V = 2c 3 + 6c4x+ 12c 5 x2 + 20c 6x3 + 30c 7x 4  (34)

This process is continued until all six of the required derivatives are formed using the val-

ues of c which were most recently estimated. u and all six of its derivatives are calculated

for the current altitude, and the atmospheric exit altitude. Additionally, u and the six de-

rivatives must be calculated at 250,000 ft altitude if the current altitude is below 250,000

ft. These values are inserted into Eq. (31), which is in turn inserted into Eq. (29) or (30) as

required. The predicted velocity loss due to aerodynamic drag is then found by solving

Eq. (29) or (30) for the predicted exit relative velocity and then subtracting the current rel-

ative velocity
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AV = Vrx- Vr. (35)

If the current altitude is below 250,000 ft

1 
he

Vrx= I + -e(XX)ihSlU+ hs]2U, "+... + [hs kJ6 (36)

((3h
rXe "r MDAhe he]-'T6

0.5p, -xx)iFhS2 FhS212  , Lhs2 7d
+ . e--- --+ - u + ... + I ]
Moh Lh- +  he Th -x6

x
1

or if the current altitude is above 250,000 ft

0.5p (X XI)he

Vx [~+°-2 C- -,hr U+hs2 2 u,+... +[ hS2 37d6u .37

Improved Exit Phase

This improved exit phase, first published by the Charles Stark Draper Laborato-

ry4 4 , is a simplified method of calculating the required altitude rate 4 for the APC con-

troller. It is intended to replace the exit phase presented in Appendix B. To begin the

derivation, the velocity loss due to aerodynamic drag is calculated starting with the differ-

ential equation for drag:

dV q (38)
dit MD

Rearrange terms in Eq. (38) to obtain

dV q dt. (39)
M D

Replace di with ! and expand q.
dA



33

dV 0.5 p
- MD h dh (40)

With the assumptions of a constant altitude rate and an exponential atmosphere of

known scale height the above equation may be integrated analytically to obtain the change

in velocity AV which will occur due to aerodynamic drag. This result is slightly different

from the original APC exit phase derivation which uses this equation to predict the veloci-

ty at exit instead of computing the change in velocity which will occur due to drag. The

preferred form for the drag equation is

(hdesMD 1
AV = l/ hS1

To use the hybrid density estimator replace the expression for AV given in Eq. (41)

with the expression given in Eq. (10). Likewise, to use the polynomial density estimator

replace the results of Eq. (41) with those of Eq. (35).

The desired velocity for a vehicle in a purely Keplerian (no aerodynamic forces) or-

bit at the current radius with the desired altitude rate A to attain the targeted apocenter ra-

dius may be computed

2).Rtarget - hdes
Vdes =R (-R+ t) +tRg)t 2 (42)

R ~-

The first term under the radical is the velocity at pericenter for an elliptical orbit with peri-

center radius R and apocenter at Riarget
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2J~target (43)
Vper  R(R+Rtget).

A new variable /factor was introduced

0.5
/factor =  R ) 2 " (44)

Therefore Vdes may be written

Vdes = Vper 1 or .2 (45)

To avoid the square root in Eq. (45) a small term is added under the radical to complete the

square

(r~\ 2
'factor +.2 F (factor .2 142Vdes- VPer l+2 - r) br p- r des .

Vdes may now be approximated

I +rrfactor i2 J 0 (+,2 ) 2 +0(E 2  (47)Vdes-Vper V per )rdes )  = Vper+rfactorrdes+

The corrector step to update altitude rate is a single step Newton iteration. The dif-

ference between the current inertial velocity minus the velocity loss expected from aero-

dynamic drag and the desired velocity computed above is called the velocity miss or

Vmiss•

2 (48)
Vmniss V -( V )1 ''Vper + 'factor *des)
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The negative of Vmiss is then divided by Miss to produce an update for /desdildes

( r .2

V r -.rraordes) - (V! -AV)
'ides update = hdes + (49)

MDA V2

hs j 2q'factor 'des

Equilibrium Glide to Ejit Phase Transition Velocity

To minimize total AV required to transition from the intermediate orbit to the desired

orbit it is sufficient to minimize the exit flight path angle provided the vehicle exits in the

desired orbit plane and the apocenter of the intermediate orbit equals the desired apocenter.

This approach will maximize the pericenter of the post-aero braking orbit. If the controller

is able to properly target the apocenter altitude, then minimizing yX will produce a maxi-

mum exit velocity, a maximum pericenter for the intermediate orbit and a minimum AV

Fig. 11 shows how selecting a higher transition veloity for the APC controller to switch to

the exit phase control algorithm will tend to minimize ' and the AV required to attain the

desired final orbit provided the vehicle can properly target the desired apocenter. When the

transition velocity is increased the predictor/corrector step will calculate a lower 1i to target

the desired apocenter. The drawback to minimizing ' by increasing the transition velocity

and using a shallower flight path for the exit p'ase is that by doing so the exit phase will be

flown using a higher percentage of the available lift to follow the desired trajectory. In the

limit the minimum A V path flies the entire exit trajectory with a bank angle of 1800. When

the transition velocity becomes too great the vehicle can no longer maintain the required

shallow flight path, even in a relatively smooth atmosphere, and may overshoot the desired

apocenter altitude, as seen in Fig. 12. Following this type of shallow flight path angle tra-

jectory severely limits the robustness to density dispersions. If in the initial phases of the

exit phase, the control system calculates a shallow exit trajectory, one whi,'h requires al-
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Fig. 11 Exit Flight Path Angle and AV Required vs. Transition Velocity

most full lift down to maintain, any decrease in atmospheric density from that modeled in

the predictor step will result in less control authority and an inability to fly the shallow tra-

jectory, less velocity loss than predicted resulting in a faster exit speed than desired and a

post-aerobraking apocenter higher than desired. An increase in AV results. On the other

hand, transitioning to the exit phase at a velocity which is too slow guarantees an increase

in AV by requiring a steep 1i to target apocenter which produces large exit flight path an-

gles. The best trajectory is one which strikes a desirable balance between minimizing AV

while retaining enough control to be robust under the influence of off-nominal density vari-

ations. It would seem to be a simple matter to pick a transition velocity which produces the

desired balance, but the "correct" transition velocity varies with the state of the atmosphere,

the initial conditions, and the vehicle configuration.
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When selecting the appropriate transition velocity, the important criteria are the drag

coefficient of the vehicle and the atmosphere yet to be traversed. These two parameters

and h define the velocity loss that will occur. After considerable testing a desired altitude

rate, hc, of 450 ft/sec was found to yield a good trade off between minimizing AV and

producing robustness. The simulations depicted in Fig. 11 and Fig. 12 require a transition

velocity of 14,922 ft/sec to produce an exit phase altitude rate of 450 ft/sec. As seen in

Fig. 11 this transition velocity, and hence this altitude rate are removed somewhat from the

region where exit flight path angle and AV increase dramatically. Yet this altitude rate was

still steep enough to provide a measure of robustness against density variations. Armed

with this choice for altitude rate, a better way to calculate transition velocity may be for-

mulated.
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The desired velocity Vdes for a vehicle in a purely Keplerian (no aerodynamic

forces) orbit at the current radius with the desired altitude rate h to attain the targeted apo-

center radius was computed in Eq. (47). By adding the velocity loss expected due to aero-

dynamic drag the current velocity required to target the desired apocenter altitude by

following a 450 ft/sec path may be computed. The chosen method of density estimation

may be used to compute the velocity loss due to aerodynamic drag, by inserting the de-

sired 450 ft/sec altitude rate into the appropriate derivation. Equation (10) is used if the

hybrid density estimator is the selected method of density estimation, whereas, Eq. (35) is

used for the polynomial density estimator or Eq. (41) for the simple estimate of a constant

scale height exponential atmosphere. One additional term is added to allow for the veloc-

ity loss between initiation of the exit phase and achievement of the desired altitude rate.

The appropriate velocity to transition from the equilibrium glide phase to the exit phase

may now be expressed

Vtrig I = Vdes + AV(drag) + V/St (50)

8t in this equation is the time required from initiation of the exit phase until the de-

sired altitude rate is attained. The vehicle modeled in this study has a limit of 5°/sec2 on

roll acceleration and 200/sec on roll rate. A value of 20 seconds was selected for St be-

cause with these current limits on roll rate and roll acceleration the vehicle requires thir-

teen seconds to perform a 180' rest to rest maneuver. After rolling to the lift up

configuration there is still an additional delay of five to ten seconds before the vehicle's al-

titude rate matches the desired value. With 8t set to 20 seconds the transition velocity cal-

culation performed extremely well. The methodology for employing a variable transition

velocity is to compute Vtrigi using eq. (50). When the inertial velocity decreases below

the calculated VrigI the controller initiates the exit phase.
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CHAPTER III

LYAPUNOV CONTROLLERS

Lee and Grantham present a Lyapunov Steepest Descent controller7 which they

claim is robust to atmospheric perturbations. Their controller is for a vehicle which mod-

ulates angle of attack while the MRSR vehicle under study flies at a constant angle of at-

tack and varies the bank angle to control the trajectory. A similar controller is developed

to control the MRSR vehicle. A desired target state is defined for the vehicle at atmospher-

ic exit which will minimize the AV required to transition to the desired final orbit. A pos-

itive definite Lyapunov function is defined such that the vehicle's state is at the target when

the Lyapunov function is zero. The control variable is then selected so that the Lyapunov

function is driven, in a steepest descent fashion, toward the origin. When this method

failed to be as robust as hoped, a new Lyapunov Tracking controller was developed.

The Lyapunov Tracking controller permits the introduction of a preferred path lead-

ing the vehicle to an exit state which gives an acceptable AV to transition to the desired fi-

nal orbit. In the particular case studied here, the preferred path is recomputed for each

trajectory based on accelerometer data fed back to the controller early in the flight and a

"best guess" of the density function for the remainder of the trajectory. Again, a positive

definite Lyapunov function is defined such that, if the vehicle is on the preferred path, the

Lyapunov function is zero. The control variable is again selected in a "Lyapunov Opti-

mal" fashion to drive the Lyapunov function toward the origin as quickly as possible. A

gain scheduling scheme defines an optimal descent function for each phase of the trajecto-

ry. Finally, because of high trajectory loads generated by this control scheme and difficul-

ty in acquiring the desired path, this Lyapunov tracking controller was employed only

during the exit phase following the modified equilibrium glide9' 34 phase of the MPC con-
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troller presented in Chapter 2. The equilibrium glide phase was developed to minimize

trajectory loads and is very good at doing just that. With the modifications suggested in

Chapter 2 the equilibrium glide phase control algorithm is very robust to perturbations in

atmospheric density. The transition velocity from the equilibrium glide phase to this exit

phase is chosen using the methods presented in Chapter 2 so the trajectory is at the base of

the preferred path when transition occurs. The Lyapunov Tracking exit phase then follows

the computed path to exit the atmosphere with exit state very near the minimum AV exit

state.

Lyapunov Steepest Descent Controller

Equations of Motion

Derivation of the Lyapunov Steepest Descent control algorithm begins with the

equations of motion for planar flight

dr _dhi(1

- = - Vsiny (51)

12
dV -CDPSVr (52
i- 2m 2 siny (52)

d -CLpSV r _ v
d = 2mV cos ( 2  -) cosy (53)

Eq. (51) is simply the radial velocity in terms of the inertial velocity and flight path

angle. Eq. (52) gives the time rate of change in velocity composed of two parts: i) the ve-

locity loss due to aerodynamic drag and 2) the change in velocity due to gravitational ac-

celeration, often referred to as the inertial component. Similarly, Eq. (53) is the time rate
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of change in the flight path angle, also composed of two parts: 1) the change in flight path

angle due to the component of aerodynamic lift in the vertical plane and 2) the change in

flight path angle due to gravitational acceleration (the inertial component). The control

variable 4), the bank angle, determines the amount of lift exerted in the vertical plane to

bend the trajectory and change the flight path angle.

Nondimensional State Variables

Dimensionless state variables are introduced:

[1 /5/l e 15 
4

x = x2 = V1 j (54)

along with a dimensionless time variable t

t = (t/he) -/R. (55)

The equations of motion may now be written:

.1 = x2 sinx 3  (56)

12  B -Bx 2 
=  sinx (57)

S (c-I + 3

r Cos (D+ 1Ox3 - (58)3 x2  Cl-1 +X ILx (C -lI+ xdx2 J

where a = p/p 0 = exp (-(h-h ) /hS] ,A = (PoSheCL) / (2m),

B = (PoSheCD) / (2m) and c = R/he. It has been found that a good approximation is

to assume that the relative and inertial velocity differ by a constant, so that
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Vr = V-'SV (59)

and similarly

X2r = X2 -X 2 .  (60)

For this controller it is more convenient to replace cosO in Eq. (58) with the control

variable u where u = cos4 and is thus bounded between ±1. Eq. (58) is therefore re-

placed with

A ax 2 u cos
2rU x 3 r

X3_ x + 1x 2 _ c I. (61)-- c-]+x I  (c-l+xl)x2 ]
2 ITXILd~l

Target State

The minimum AV aerobraking maneuver is one which exits the atmosphere on a tra-

jectory with the correct apocenter altitude and a maximum vacuum pericenter altitude.

This goal is attained by exiting the atmosphere with the minimum possible flight path an-

gle and the correct velocity to attain the desired apocenter. The goal, therefore, is to guide

the vehicle along an aerobraking trajectory which reaches the atmospheric interface alti-

tude with the correct velocity to attain the desired apocenter altitude while maintaining a

minimum positive flight path angle at exit. The flight path angle must remain positive for

the vehicle to exit the atmosphere. This design objective is established by setting the tar-

geted flight path angle at atmospheric exit to zero and establishing a target exit velocity.

The target state may be presented in non-dimensional form as7

. = 2. (62)

The target exit velocity, and hence 22 may be derived assuming a Keplerian orbit

from atmospheric exit to apocenter. This desired exit velocity is a function of the exit
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flight path angle, and several constants for the problem including the atmospheric interface

radius (R) and target apocenter radius (ra). The desired exit velocity is

22 (2 ra I ra] ( ra) 2)).(3
2 ~ " k (2(l /(coSX3x) 2  (_)k(3

Descent Function

A function is a descent function if, and only if, it is a positive definite differentiable

function. That is:4 5

W (x) > 0 for all x #. (64)

W(2) = 0 (65)

aWlx) 0 for all x #2 (66)
ax

Any candidate Lyapunov function may be chosen as the descent function W [x (t) ].

However, the most logical choice, and the one recommended by Lee and Grantham7 , is a

weighted quadratic measure of distance to the target. This function is expressed

Pit1 OP12 ~X1-l
W(x) [X [ x 2  - 2 x 32P] O 1 0 x2 - t 2  (67)

2p 2 2J x 3 J

where the constant weighting terms Px are chosen to define a preferred direction toward

the target in the x I - x 3 state space. The preferred direction for the states is presented in

Fig. 13. An ellipsoid is chosen, oriented so that, while the vehicle is deep in the atmo-

sphere, the preferred direction (opposite the descent function gradient) in the x! - x3 state

space gives positive lift to climb out of the atmosphere, but as the vehicle approaches at-

mospheric exit the preferred direction uses negative lift to minimize the exit flight path an-

gle. The weights must be scaled so the velocity reaches the target velocity as the vehicle
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b

Fig. 13 Preferred x -x 3 Direction of Motion

(Adapted from Reference 7)

reaches the atmospheric interface altitude. For the elliptical descent function shown in

Fig. 13, pxx may be calculated as follows7.

pit = a 2 sin 2 O+b 2cos 2  (68)

P 12 = sin coso(a 2 -b 2 ) (69)

P22 = b2 sin 2 o+a 2cos 2 0 (70)

The angle between the gradient of the descent function and the state space velocity

vector f(x, u) is expressed

(H) W(x)) / (Ox) f(x,i) (
H(x, u) = II(aW(x)) / (ax)II If(x,u)II - cosD (71)

where P is the angle between the gradient of the descent function and f(x, u).
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Lyapunov Steepest Descent Optimal Control

For the control to be Lyapunov steepest descent optimal, u* (x) must make 7

H [x, u* (x) ] 5g H [x, u (x) ] (72)

for all u E U where U is the allowable set of controls bounded by ±1. Furthermore, for

the control to be Lyapunov steepest descent optimal, f[x, u* (x) I * 0. If it were possible

to make H [x, u* (x) ] < 0 everywhere, then global stability with respect to the target

could be guaranteed. Even if H (x, u* (x) ] - 0, asymptotic stability with respect to the

target could be guaranteed. Unfortunately, with u bounded between ±1 neither of these is

always possible. Even so, u* (x) tries to move the system state variables as nearly oppo-

site the gradient of the descent function as possible, given the dynamics of the system and

the limits on the control.

iJH
To determine u* (x) set DH = 0 and solve for u. If this value of u lies between ±1

then u* (x) is either this value or ±1, whichever minimizes H. If the value of u which

solves a = 0 is not between ±1, then u* (x) is selected from ±1 to minimize H47.

Performance Results

The Lyapunov Steepest Descent feedback control algorithm will guide the vehicle

to very near the minimum AV exit state provided the p.. weights, and hence, W(x) is

properly selected. Unfortunately, those pxx weights must be readjusted to attain accept-

able performance for each perturbed entry condition, vehicle lift and drag perturbation, or

atmospheric density perturbation. No acceptable method, other than a manual search, was

found to determine the appropriate weighting for each perturbed run. Clearly, this lack of

asymptotic stability is not compatible with the objectives of this research.
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An appropriate descent function was found for this controller to perform acceptably

for the nominal case of a vehicle targeting a 270 nm circular orbit after entering the Mar-

tian standard atmosphere with 6.0 km/sec velocity relative to the planet, -12' entry flight

path angle, and a lift to drag ratio of I and for the same vehicle and entry conditions en-

countering a high or low density Martian atmosphere. The ellipse which determines the

descent function was chosen to have a semimajor axis of 1.65, a semiminor axis of 0.41,

and a rotation angle of 4.20, measured as shown in Fig. 13. A few perturbations from

the nominal case are then simulated and the somewhat disastrous results are presented in

Table 1 along with the optimal results for the same perturbations generated using the

method of Appendix A.

This controller was not as robust as hoped, given the density, navigation or vehicle

perturbations expected for the Martian aerobraking problem. The controller may be fine

tuned for one rate of energy depletion, but if anything alters the rate of energy loss the con-

troller must be readjusted, by altering the relative weights between the states, to bring the

velocity to the targeted velocity just as the vehicle passes through the atmospheric inter-

face altitude. A steeper entry flight path angle will thrust the vehicle deeper into the atmo-

sphere, thereby increasing the rate of energy loss. Likewise an atmosphere which is more

dense than expected, or a drag coefficient higher than expected, will cause the vehicle to

lose energy at a higher rate than planned, resulting in exit conditions which are too slow

and an apocenter altitude which is too low. In the worst instances the vehicle fails to exit

the atmosphere at all. Similarly, a shallower entry flight path angle, less dense atmosphere

or lower drag coefficient will result in less velocity loss than needed and apocenter alti-

tudes higher than desired. To reduce the sensitivities to perturbations which change the

rate of energy loss the Lyapunov controller was reformulated as a tracking controller de-

signed to follow a chosen path to atmospheric exit.
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Lyapunov Tracking Controller

In an effort to gain acceptable robustness for this controller the methodology was

changed from a steepest descent controller which targets the optimal terminal state to a

steepest descent controller which targets a preferred path. That path then is selected to

lead the vehicle to a desirable exit state with enough robustness to prevent minor density

upsets from being catastrophic.

The Preferred Path

Derivation of this controller begins with definition of the preferred path. As with the

predictor corrector algorithms a constant altitude rate path leading to the desired atmo-

spheric exit state was selected. The difference between this Lyapunov Tracking Controller

(LTC) and the predictor correctors is in how the controller computes the constant altitude

rate path. The predictor corrector algorithms use various methods to select a constant alti-

tude rate which will give the desired apocenter altitude and then use altitude rate error to

select the appropriate bank angle. The LTC, on the other hand, assumes that it is desirable

to always fly the same altitude rate to atmospheric exit and arrive there with the appropri-

ate velocity to achieve the proper apocenter altitude. The LTC then selects the in plane

portion of lift to approach the path in a steepest descent fashion. The chosen altitude rate

is selected to produce the desired trade-off between robustness to density perturbations

and minimum AV.

A constant altitude rate of 450 ft/sec was again selected (as on page 37) to define the

desired path leading to atmospheric exit with the appropriate velocity to target the desired

apocenter altitude. This altitude rate produces trajectories which require within 20 to 30

ft/sec of the minimum AV values for the various expected perturbations without short pe-

riod density upsets, yet is still robust to density variations of ±50% over small altitude in-
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tervals. The equations used to derive thc !.,proved exit phase for the Mars Predictor

Corrector are employed again here to define this path. The velocity required at a given al-

titude flying a specified altitude rate assuming a Keplerian orbit (no aerodynamic drag ef-

fects) was given in Eq. (47) but is repeated here for completeness.

Vdes = Vper I+ 2es =pe r +factor. (73)

(per) ) pe

The velocity loss expected due to aerodynamic drag must be added to this velocity to

determine the current, docity for the desired path. Note that this desired velocity is a

function of the dynamics of the Martian orbit, the current altitude, the selected altitude rate

(450 ft/sec) and the expected velocity loss (which is a function of the expected atmospher-

ic density function and the vehicle coefficient of drag). The velocity loss expected due to

aerodynamic drag is calculated assuming the 450 ft/sec altitude rate path will be flown us-

ing Eq. (10) of the hybrid density estimator, or with Eq. (35) of the polynomial density es-

timator, or with Eq. (41) using the simplification of a constant scale height exponential

atmosphere. The desired current velocity defining the preferred path is

V = Vdes +AV. (74)

This velocity may be converted to non-dimensional form

= 9/( p /R) (75)

The desired flight path angle 13 is computed

13 = asin (ldes/V). (76)

Together, 12 and t3 define the preferred path which will lead the vehicle along a ro-

bust corridor to a desirable exit state. Now, a Lyapunov function must be formulated and a

control found which will drive the vehicle onto and then down the chosen path.
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The Lyapunov Descent Function

The selected positive definite Lyapunov function is

W (x) = iI 1' 1P2[2 ] (77)
IP12 P22 x3 -J

This function is analogous to distance from the target path and is zero whenever the vehi-

cle is on the target path and positive otherwise. Again, the Pxx values are chosen to form

an ellipsoid, the negative gradient of which defines the preferred approach to the target

path. This ellipsoid is shown in Fig. 14. The Pxx values are computed from the semima-

X -X3

Fig. 14 Lyapunov Tracking Controller x2 -x3 Descent Function
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jor axis a, the semiminor axis b, and the angle of rotation 4 of the ellipse defining the pre-

ferred gradient 7 onto the chosen path as in Eqs. (68) through (70). They are repeated here

for completeness

p!1 = a 2 sin 2 + b2cos2  (78)

P12 = sinocos4)(a 2- b ) (79)

P22 = b2sin 2 + a2 cos 2  (80)

Again, the angle between the gradient of the descent function and f(x, u) is ex-

pressed

(OW(x))/(x) f(x,u) (

H(x, u) --=I (aW(x)/(ax)II If(x,u)II -- cos (81)

where P3 is the angle between the gradient of the descent function and the state space ve-

locity vector f (x, u) .

Selection of the Control

As was done for the Lyapunov Steepest Descent Controller, a control u* (x) is

sought which will move the system state variables as nearly opposite the gradient of the

descent function as possible, given the dynamics of the system and the limits on the con-

trol.

As before, to determine u* (x) set a- = 0 and solve for u. Note however, that H in

this discussion is not the same function as H in the LSDC discussion. If the value of u lies

between ±1 then u* (x) is either this value or ±1, whichever minimizes H. If the value of

u which solves a = 0 is not between ±1 then u* (x) is selected from ±1 to minimize H.
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Performance Results

An acceptable descent function for this algorithm was not found. Fig. 15 shows the

x2 and -C2 time histories while Fig. 16 shows the x 3 and .t3 time histories for a trajectory

guided by this LTC. The elliptical descent function was chosen to have a semimajor axis

of 40, a semiminor axis of 1, and a rotation angle € of 19', measured as shown in Fig. 14.

This descent function produced an apocenter altitude following the aerobraking maneuver

of 356 nautical miles which was as close to the 270 nm target as possible while exiting

with a flight path angle near the optimal. But as Fig. 15 shows, once the velocity neared

the target path it failed to close in and make the final correction necessary. A second de-

scent function was found which would guide the vehicle closer to the target apocenter alti-

tude. This descent function used an elliptical function with the same semi-major axis of

40, semi-minor axis of 1, but the rotation angle was changed to 55 ° . As Fig. 17 and

Fig. 18 plainly show, the desired apocenter altitude was not achieved by following the de-

sired path to exit but rather by reducing the velocity (x2 ) more than desired and then

climbing with a steeper flight path angle (x3 ) than preferred. Almost by accident, the de-

sired apocenter altitude was attained. No fixed configuration for the elliptical descent

function was found which would allow the algorithm to acquire the target path and follow

it to an acceptable exit state.

Intuitively, it is easy to see that, if the velocity is slower than V and the flight path

angle is less than 23, the logical choice is to use positive lift to get closer to the path. Like-

wise, if V is greater than V' and the flight path angle is greater than 13 a lift down

orientation is required to approach the path. The ambiguous areas are in the other two

quadrants where either the velocity is too fast yet (he flight path angle is too shallow, or

where the velocity is too slow but the flight path angle is greater than desired. It is desir-

able to define a line passing through the target state at each instant in time separating the
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selected was the line drawn in the x2 - x3 plane through (;?2, -t3) by solving for the de-

sired x2 and x 3 states using a slightly different altitude rate. Though the chosen 450 ft/sec

altitude rate works very well, it should still be acceptable to fly a 425 or a 475 ft/sec alti-

tude rate path which would lead the vehicle to the desired apocenter orbit.

To define this switching line the angle of rotation, , of the descent function shown

in Fig. 14 was varied during the trajectory such that

-=atan j--2 (82)

A J

In effect this defines a switching line formed by linearizing about the current target state

and varying altitude rate. Though

__Wxt)_ dW
S(f(x, u) ) (83)

because of the missing a w component. But, since a is small compared to the ele-

ments of F and 0 varies slowly, increasing monotomically from about 15' to about 75'

during the exit phase, this component was assumed to be insignificant. The commanded

bank angle was still determined as before by selecting the value of u which minimizes

H(x,u) with H(xu) defined as before in Eq.(81).

Though this method of varying the weighting matrix showed improvement, the algo-

rithm still had problems acquiring the target path. The vehicle still used lift down too ear-

ly and plunged deeply into the atmosphere, creating extremely high vehicle accelerations

and heat rates in the process. To cure this problem the Lyapunov Tracking Algorithm

(LTA) developed here was incorporated as an exit phase following the equilibrium glide

phase of the MPC algorithm presented in Chapter 2.
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Lyapunov Tracking Controller Exit Phase

The equilibrium glide phase was developed to guide the vehicle into the atmosphere

and hold the vehicle in equilibrium until the velocity has been appropriately reduced. It

was designed to perform this task while keeping the maximum trajectory loads and peak

heat rates to a minimum. It performs this task very well. On the other hand the LTC just

described performs well in holding the desired path to exit if somehow it could be started

near that path. The marriage of the LTA as an exit phase with the equilibrium glide phase

was implemented next. The method of computing transition velocity from the equilibrium

glide phase to the exit phase presented in Chapter 2 placed the vehicle very near the de-

sired path. This combination of equilibrium glide phase and LTA proved to be the best

controller examined.

The two density estimation techniques presented in Chapter 2 were also tested. The

complete control algorithm with the hybrid density estimator included will be referred to

as the Hybrid Lyapunov Tracking Controller (HLTC) while this controller with the poly-

nomial density estimator will be called the Lyapunov Tracking Controller (LTC).
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CHAPTER IV

CONTROLLER SENSITIVITY ANALYSIS

The performance of the MPC and MHPC control algorithms developed in Chapter !1

and of the LTC and LHTC control algorithms developed Chapter III was determined along

with the performance of the APC and Energy Controllers presented in Appendix B and

Appendix C respectively. The algorithms were tested using the six degree of freedom

computer simulation based on the Program to Optimize Simulated Trajectories3 6 (POST),

which uses a fourth order Runge-Kutta numerical integration scheme to continuously inte-

grate both the force and moment equations of the vehicle. The control algorithms were

tested to determine the effect of large scale density variations such as those caused by the

seasonal sublimation and condensation of the Martian atmosphere or by a global dust

storm. They were also tested to determine the effect of short period atmospheric varia-

tions by injecting square wave density pulses, similar to those used by Fitzgerald 10' 11, of

various magnitudes and durations into the density function at various altitudes. Entry

flight path angles were varied within the current predicted error band4 6 . Perturbations in

the vehicle lift and drag characteristics were also simulated. Finally, combinations of

these perturbations in the atmospheric density function, entry flight path angle and vehicle

lift and drag characteristics were simulated and the performance of each controller was de-

termined.

Following a brief description of the vehicle and trajectory simulation program used,

the data from this test program are presented graphically utilizing three dimensional mesh

plots. The primary thrust of this test program was to select the best controllers from those

studied. A full performance evaluation of the selected controllers, aimed at determining

the robustness limits of the selected controllers, is presented in Chapter V.
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Vehicle and Trajectory Simulation Inputs

The vehicle used in the study is a biconic aeroshell design with a fifteen foot base di-

ameter and a weight of 11,023 lbs. The base surface area of 176.1 ft2 is used as the refer-

ence surface area. The vehicle is designed with a five foot cg offset resulting in a trim

angle-of-attack of 270 which is maintained throughout the maneuver via a simple propor-

tional feedback controller. Control is via bank maneuvers which reorient the direction of

the lift vector. These bank maneuvers are commanded as body axis rolls with coordinat-

ing body axis yaw maneuvers. The nominal lift coefficient is 0.68892 while the drag coef-

ficient is 0.69819, producing a nominal L/D of 0.99.

The Mars Global Reference Atmosphere Model 35 (MARS-GRAM) was used to pro-

duce realistic atmospheres for the study. Three different atmospheres representing a nom-

inal, a low density and a high density Martian atmosphere were used (Fig. 19). The

nominal atmosphere is the COSPARV Model Atmosphere For Mars l &, while the high den-

sity and low density atmospheres were derived using MARS-GRAM. The low density at-

mosphere is a MARS-GRAM simulation of the lowest density Martian atmosphere

predicted for April 10, 1999 assuming no dust storms and a 10.7 cm solar flux of 50 (nom-

inal value = 150). The high density atmosphere represents the highest density atmosphere

predicted on December 27, 1997, again with no dust storms but this time with a 10.7 cm

solar flux of 300. Although MARS-GRAM was incorporated as a subroutine to POST

which can be called to generate atmospheric data on line, MARS-GRAM was not utilized

in this manner because of the added computational time. MARS-GRAM was used to gen-

erate atmospheric data which were stored in tabular form. These tables of atmospheric

data were then included in the POST input namelist.

In addition to the large scale density variations introduced by using the low, nominal

or high density atmosphere models described above, short period variations in the atmo-
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spheric density function were investigated by introducing square wave density pulses, sim-

ilar to those used by Fitzgeraldt 0' ". These pulses perturb the local atmosphere within a

10,000 or 20,000 ft altitude band by multiplying the expected density by a constant mag-

nitude density multiplier. The magnitudes of the density multipliers used include 0.5,

0.75, 1.25, 1.5, 1.75 and 2.0. The lower edge of the density pulses were varied in 10,000 ft

steps from 100,000 to 290,000 ft

The atmospheric interface attitude was selected to be 125 km (410,105 fi) and the

initial conditions are defined at this altitude. The entry velocity is 6 km/sec (19,685 ftlsec)

and the nominal entry flight path angle is -12*. The targeted orbit is a 270 nm circular or-

bit. In addition to the atmospheric perturbations mentioned above, perturbations were in-

troduced in the vehicle lift and drag coefficients representing variations of ±33% from the
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nominal LID ratio of 0.99. The +33% L/D perturbation was introduced by multiplying the

nominal lift coefficient by 1.14, while the drag coefficient was multiplied by 0.86. The

-33% LID perturbation was introduced by multiplying the nominal lift coefficient by 0.8,

while the drag coefficient was multiplied by 1.2. This method of varying LID also per-

turbed the ballistic coefficient of the vehicle. Navigation errors in the form of variations in

the entry flight-path-angle of +0.25' and +0.5' from the nominal -12* were considered.

The performance for each perturbed run is presented as total AV required to achieve the

desired final orbit. AV is a measure of the controllers overall success in meeting the de-

sired exit conditions. The AV was calculated assuming one burn at atmospheric exit ori-

ented along the velocity vector to correct any apocenter error, a second at apocenter to

raise pericenter, and a final burn to correct any orbit plane error.

Analytic Predictor Corrector Performance Pesults

The original APC controller presented in Appendix B did not fare very well when

challenged with the possible perturbations used in this study. Fig. 20, Fig. 21, Fig. 22 and

Fig. 23 present the performance of this controller when faced with these perturbations.

Fig. 20, Fig. 21 and Fig. 22 show the performance of a nominal vehicle which enters the

atmosphere with an ye = -12o and then encounters a square wave density pulse. AV re-

quired to circularize is plotted on the vertical axis. Fig. 20 presents the results of encoun-

tering square wave density pulses in a nominal Martian atmosphere, while Fig. 21 presents

the results for a low density atmosphere and Fig. 22 presents the results for a high density

atmosphere. In the first diagram of each figure the density pulse perturbs a 10,000 ft alti-

tude band while in the second diagram the pulse affects a 20,000 ft band. Magnitudes for

these pulses range from -50% to +100% in 25% increments. The location of the lower

edge of the pulse was moved from 100,000 ft to 290,000 ft in 10,000 ft increments. The
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magnitude of the pulse and the altitude of the lower edge are shown on the diagrams. Fig.

23 presents AV required to circularize as L/D and ye are varied. Fig. 23a shows the results

of these variations in a nominal atmosphere while Fig. 23b presents the same perturbations

in a low density atmosphere and Fig. 23c is in a high density atmosphere.

Fig. 23 shows that the APC controller exhibits a considerable sensitivity to off nom-

inal vehicle design and to navigation errors. The controller also shows a marked decrease

in performance in the high density atmosphere with no density steps when compared to its

performance in the low density and nominal atmospheres. The AV required to circularize

following the aerobraking maneuver in a high density atmosphere even with no density

step (0% magnitude density step) is over 400 ft/sec while the optimal results presented in

Table I show that it should require less AV to circularize after aerobraking in a high densi-

ty atmosphere (optimally about 316 ft/sec) than in a nominal or low density atmosphere.

Additionally, the variations in AV shown in Fig. 23c are considerably worse than those in

Fig. 23a or b. Part of this sensitivity comes from using a specified transition velocity to

switch to the exit phase, ignoring the actual energy loss to occur during the exit phase.

The other reason for this sensitivity is the rather simplistic density model. However, the

controller is less sensitive to density steps in the high density atmosphere than in the low

or nominal atmosphere. This sensitivity can again be explained by the choice of a speci-

fied transition velocity for the switch from entry to exit phase.

The transition velocity selected for this controller was 14,922 ft/sec. This transition

velocity is appropriate for a nominal vehicle which enters the nominal atmosphere with a

flight path angle of -12'. However, if the initial flight path angle is steeper than -12° or

the atmosphere is more dense than expected, the vehicle will plunge into the atmosphere

deeper than expected, and consequently, will have more atmosphere to traverse during the

exit phase and will loose more energy to aerodynamic drag. Similarly, if the vehicle's
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drag coefficient is higher than planned for, the vehicle will loose more energy during exit

than planned for. Forcing the vehicle to decelerate to a predetermined velocity before ini-

tiating the exit phase requires the exit phase to be flown at a steeper altitude rate than de-

sired to target the desired apocenter altitude resulting in higher AV values and tends to

amplify the effect of off nominal entry condition or drag coefficient. The steeper exit path

flown by this controller in the high density atmospheres however, is more robust to density

variations as may be seen in Fig. 22. This result is due to the fact that a trajectory which

flies a steeper exit phase has reduced more of the velocity deep in the atmosphere and is

not requiring as much velocity loss during the exit phase. Density variations which per-

turb the amount of velocity loss which actually occur during the exit phase have less effect

when more of the velocity is reduced deep in the atmosphere. Later, the effect of making

this transition velocity an adaptive parameter will be shown.

The second area of concern with this controller is the density estimation technique.

The density estimator built into this algorithm assumes the density function is a fixed scale

height exponential function. The density derived onboard from accelerometer measure-

ments is filtered using a low pass filter to remove high frequency noise. The result is then

used to bias the exponential function used to estimate density. This technique works well

as long as the density function does not vary much from a smooth exponential function

and, more critically, the scale height of the atmosphere is fairly constant and doesn't vary

much from the assumed scale height. Unfortunately, the scale height oi the Martian atmo-

sphere does vary considerably. Fig. 19 shows the range in the density function predicted

by MARS-GRAM. This figure presents altitude versus log density. The scale height may

be determined by taking the negative of the slope of the density function from this graph.

The scale height does not vary considerably below 250,000 ft, but above 250,000 ft there

is considerable variation. This variation does not affect the trajectories flown in the low

density atmosphere very much because, in a low density atmosphere above 250,000 ft,
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aerodynamic forces have negligible effect on the vehicle. But for those trajectories flown

in the high density atmosphere failure to properly model the atmosphere has considerable

effect. The estimated density falls short of the actual values above 250,000 ft. Conse-

quently, there is more aerodynamic drag than predicted. This typically manifest itself as a

final apocenter altitude ten to twenty nautical miles lower than targeted. This problem

compounded by the steep altitude rate in the exit phase, brought on by the constant transi-

tion velocity, lowered the ability of the control system to correct for density upsets which

occur after the exit phase is initiated causing the sensitivities shown in the square wave

density pulse data of Fig. 20, Fig. 21 and Fig. 22.

Overall, the APC is still a good controller. It guides the vehicle through the aero-

braking maneuver with minimal heat, acceleration, and dynamic pressure loads, exiting

with an exit state near optimal when the density function encountered is near the nominal

value, when navigation is good enough to allow precise control over the entry state, and

when the hypersonic lift and drag characteristics of the vehicle are close to the design val-

ues. As part of the modification of this controller to meet the Martian requirements the

value of K- was changed to 4.5 as recommended in Chapter 2. This kept the vehicle from
q

exiting the atmosphere before slowing enough to transition to the exit phase (skipping out)

for all of the test cases examined. However, the APC just is not quite robust enough to ad-

equately handle the expected perturbations in the Martian atmosphere, vehicle entry con-

ditions, or vehicle lift and drag variations.

Energy Controller Performance Results

Fig. 24, Fig. 25, Fig. 26 and Fig. 27 show the performance of the Energy Controller.

Again, the results are presented in the same format as before with Fig. 24 showing results

for density steps in a nominal atmosphere while Fig. 25 shows the results for a low density
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atmosphere and Fig. 26 shows the performance results in a high density Martian atmo-

sphere. Fig. 27 shows the effect of varying Lift and Drag and entry flight path angle with

Fig. 27a being in a nominal atmosphere while Fig. 27b show these results in a low density

atmosphere and Fig. 27c shows the results if a high density atmosphere is encountered.

The Energy Controller is substantially more robust than the APC controller with re-

spect to vehicle lift and drag perturbations, and to navigation errors. Fig. 27a, b and c all

show practically no variation in AV required to circularize. Furthermore, these results all

fall below 400 ft/sec to circularize. This insensitivity may be attributed to the fact that the

Energy Controller does not assume a density function, though an exponential function is

expected; instead, it relies on the current energy rate and energy error to determine which

path should be pursued. Variations in the vehicle's drag coefficient simply changes the en-

ergy rate and the controller compensates for this. Likewise, variations in the overall state

of the atmosphere (low, nominal, or high density atmosphere), or variations in the entry

flight path anple which force the vehicle deeper or shallower into the atmosphere are seen

by the controller as changes in the energy rate. Since the controller seeks to make energy

rate approach zero as energy error approaches zero, variations of this type are handled

well.

This method works well as long as the density function is a smooth exponential but,

as the 10,000 and 20,000 ft density pulse diagrams illustrate, the Energy Conroller shows

definite sensitivity to density functions which are not smooth. The large magnitude

20,000 ft duration density steps prove to be more than this controller can tolerate. Fig. 25b

shows that in a low density atmosphere 20,000 ft duration density steps of +75 and +100%

magnitude with lower edges between 100,000 ft and 120,000 ft are sufficient to cause a

catastrophic failure requiring more than 1000 ft/sec of propulsive maneuvering to circular-

ize in the desired orbit. These failures are caused because the vehicle enters the high den-
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sity region near the bottom of the trajectory. When the onboard accelerometers measure

the rapid deceleration caused by the high density pocket and feed this to the control sys-

tem the control system responds by applying lift up to decrease the energy rate. As the ve-

hicle exits the high density pocket the control system responds by commanding a lift down

configuration. But the vehicle's response time is too slow, requiring thirteen seconds to

perform a 1800 rest to rest roll maneuver. By the time the maneuver is complete the vehi-

cle has moved higher in the atmosphere and no longer is able to control the trajectory us-

ing aerodynamic forces. The vehicle exits the atmosphere without properly depleting the

kinetic energy. This behavior could also be called a skipout. The same phenomena is ob-

served for the high magnitude density pulses in the nominal and high density atmospheres,

though the effect is less disastrous.

The locations of the density pulses which cause the problems are higher in the nomi-

nal atmosphere than in the low density atmosphere, and even higher still in the high densi-

ty atmosphere than in the nominal atmosphere. These higher locations are because the

vehicle's initial configuration is lift up. The higher density atmospheres exert more aero-

dynamic force at higher altitudes, tending to decrease the vehicle's negative altitude rate

earlier and increase the altitude at which the vehicle bottoms out. A density pulse which

perturbs the trajectory near its minimum altitude must be located higher in a high density

atmosphere than in a low density atmosphere.

One additional drawback to the Energy Controller is higher trajectory loads than the

algorithms which use the equilibrium glide phase. The equilibrium glide phase holds the

lift up configuration until the trajectory bottoms out in almost all cases. The Energy Con-

troller will roll the vehicle from lift up before the vehicle bottoms out, allowing the vehicle

to sink to a lower minimum altitude, producing higher peak aerodynamic heating loads,

higher maximum dynamic pressures, and higher maximum acceleration loads. These
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higher trajectory loads may reduce somewhat the advantages of aerobraking, especially if

they require the vehicle to be built heavier to withstand the acceleration forces, or if they

require additional heat shields or ablative materials. Though this study is concerned with

control system robustness, the effect of a control system on trajectory loads must be con-

sidered.

The Energy Controller shows some shortcomings, especially with respect to short

period density variations and trajectory loads which make it unsatisfactory for controlling

a vehicle aerobraking in the Martian atmosphere.

Mars hlybrid Predictor Corrector Performance Results

The Mars Hybrid Predictor Corrector (MHPC) was one of the two best performing

algorithms tested for this series of perturbations. As discussed in Chapter I1 this control

algorithm employs a variable transition velocity for the switch from the equilibrium glide

phase to the predictor corrector exit phase. Equally important is the density estimation

technique which measures and records density at discrete altitude locations during the en-

try into the atmosphere. Density during the exit from the atmosphere is measured and

compared against that predicted using the stored entry data. The result is filtered to re-

move high frequency noise and used to bias the density estimate developed during entry.

The biased estimate is then used to predict velocity loss for the remainder of the trajectory.

As may be suspected, this method is extremely effective whenever the density profiles for

the inbound and outbound legs of the trajectory are the same.

The performance of this controller is presented in Fig. 28, Fig. 29, Fig. 30 and Fig.

31. Again the first three figures summarize the performance when the density function is

perturbed with 10,000 and 20,000 ft duration square wave density steps. Again, the first,

Fig. 28, presents these results when perturbing waves are injected into a nominal atmo-
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sphere. Fig. 29 shows the results in a low density atmosphere and Fig. 30 in a high density

atmosphere. In all of these cases the controller was able to guide the vehicle to the target-

ed exit state almost perfectly. With this controller the required AV following a maneuver

in a high density atmosphere is slightly less than that in a nominal atmosphere, which is

again slightly less than that in a low density atmosphere. These results are in agreement

with those found using the Conjugate Gradient optimization technique of Appendix A.

The performance when the vehicle lift and drag characteristics are varied, and when

the entry flight path angle are varied (Fig. 31) are equally promising. The reader is cau-

tioned that the results presented here were all generated with density functions which are

simply functions of altitude. The density function for the outbound leg of the trajectory is

identical to the density on the inbound leg. The density estimator in this control algorithm

gives excellent results when the outbound density function matches that measured while

inbound, and the control algorithm is able to guide the vehicle to near perfect exit state

whenever it is supplied with a good density function estimate. Later, in Chapter 5 the per-

fornance will be evaluated whenever the inbound and outbound density functions differ.

Mars Predictor Corrector Performance Results

The Mars Predictor Corrector (MPC) Control Algorithm differs from the MHPC of

the previous section only in the density estimation technique employed. The MPC mea-

sures and stores density every second during the descent into the atmosphere. These den-

sity measurements are then normalized using a two stage exponential function. The

resulting normalized data are fit with a sixth order polynomial in altitude. This polynomi-

al is continually updated throughout the trajectory after each density measurement is tak-

en. Again, the resulting density estimate is used to compute the velocity loss yet to occur

due to aerodynamic drag.
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The data generated during the testing phase for the MPC were not as good as those

from the MHPC. This density estimation technique might be expected to perform slightly

worse, certainly no better, than the hybrid density estimation technique whenever the in-

bound and outbound density functions are the same. The strength of this density estima-

tion technique is expected to be those cases when the inbound and outbound density

functions are different (again, to be investigated in Chapter V).

The performance of this algorithm is presented in Fig. 32, Fig. 33, Fig. 34 and Fig.

35. The first three figures present the results of square wave density pulses, while the last

figure shows the results of varying the lift and drag coefficients and the entry flight path

angle.

The performance of this algorithm shown in Fig. 32, Fig. 33, Fig. 34 and Fig. 35, though

not as good as that of the MHPC, is still acceptable. The worst performance noted here,

caused by a 20,000 ft duration +75% density pulse in the high density atmosphere located

between 1 80,000 and 200,000 ft, required 457 ft/sec to attain the desired orbit. This algo-

rithm, when faced with variations in entry flight path angle and LID, produces practically

flat performance maps that are very near the idealized optimal values calculated using the

method of Appendix A.
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Lyapunov Hybrid Tracking Controller Performance Results

The Lyapunov Hybrid Tracking Controller (LHPC), derived in Chapter II, tied with

the MHPC as the two best control algorithms for this test sequence. This controller em-

ploys the equilibrium glide phase for the first part of the trajectory and a Lyapunov Track-

ing exit phase using Lyapunov steepest descent techniques to steer the trajectory onto a

target path. The target path selected is a 450 ft/sec constant altitude rate path which will

lead the vehicle to the desired apocenter altitude.The transition velocity for switching

from the equilibrium glide phase to the LHTC exit phase is varied using the technique of

Chapter I. The hybrid density estimation technique presented in Chapter II is used to de-

fine the desired path and to select the appropriate transition velocity.

Testing this controller against the same perturbations considered earlier in this chap-

ter produced excellent results. The results of injecting square wave density pulses into the

nominal atmosphere, low density atmosphere and high density atmosphere are summa-

rized in Fig. 36, Fig. 37 and Fig. 38 respectively. The results of varying L/D and entry

flight path angle are presented in Fig. 39.

This controller showed outstanding results to this test program with practically no

sensitivity to any of these perturbations. Again, however, the same caution presented in

the MHPC performance results section should be repeated here: this simulated density is

simply a function of altitude. The density function for the outbound leg of the trajectory is

identical to the density on the inbound leg. The density estimation technique employed in

this controller should excel under this condition. The robustness with respect to horizontal

density variations must be evaluated to fairly generalize the evaluation of this (or any oth-

er) guidance scheme.
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Lyapunov Tracking Controller Performance Results

The LTC differs from the LHTC algorithm only in the density estimation technique.

The LHTC employs the polynomial density estimator described in Chapter II, while the

LHTC uses the hybrid density estimation technique. The performance of this controller

appears to be slightly degraded from the performance of the LHTC at about the same level

that the performance of the MPC was worse than that of the MHPC. The performance is

still acceptable and, as was stated in the analysis of the MPC's performance, the strength

of this density estimation technique is expected to surface when the outbound and inbound

density functions differ.

Fig. 40, Fig. 41 and Fig. 42 illustrate the results of the square wave density pules

which perturb the nominal, low and high density atmosphere, respectively. Varying UD

and entry flight path angle is depicted in Fig. 43. The worst performance noted during

these simulations using the LTC required 464 ft/sec to attain the desired orbit. This peak

was caused by a +75% density pulse perturbing the high density atmosphere between

180,000 and 200,000 ft. But again, even this worst case is considered to be acceptable.

Selection of Controllers to Proceed

The next stage of simulation was very intensive, requiring approximately sixty hours

of computer time to fully test each controller. In an effort to limit this test matrix, only

those controllers which showed promise of being able to handle the perturbations used in

this chapter were to proceed to the next phase. The original plan was to select the two

most promising controllers, and validate them. But, after analyzing the data presented in

this chapter four controllers were selected for the next phase of testing. The four selected

were the MHPC, the MPC, the LHTC and the LTC. The four selected are actually two
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control techniques, each employing two different methods of density estimation. All four

of these controllers were able to handle the full range of testing performed during this

phase without requiring more than 500 ft/sec to attain the desired orbit for any perturba-

tion. The limitation of this test sequence was that the inbound and outbound density func-

tions were always the same. In the next chapter the performance of these four control

algorithms will be determined when the inbound and outbound density functions differ.
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CHAPTER V

DETERMINATION OF ROBUSTNESS LIMITS

Determination of the robustness limits of the MHPC, MPC, LHTC and LTC, and se-

lection of the most robust algorithm of these four is the goal of this chapter. Chapter IV

showed that these four algorithms are all capable of handling extreme variations in the ve-

hicle LID, entry flight path angle and in the density function, provided the density function

is a simple function of altitude. This chapter will examine the effect of more realistic den-

sity functions which differ for the inbound and outbound legs of the trajectory. This will

be accomplished by again injecting square wave density pulses into the density function,

but this time the pulses will only perturb the outbound leg of the trajectory. In addition si-

nusoidal variations in altitude and in vehicle range will be used to perturb the density func-

tion. The control algorithms will also be tested using the actual density profiles measured

by the Viking I and Viking 2 landers.

To determine the robustness limits success and failure must first be defined. Because

the vehicle has not been designed yet, the fuel budget for maneuvering the vehicle has not

been defined. The definition of success and failure used here is somewhat arbitrary,

though it is believed to be close to the actual definition. Success is defined as any aero-

braking trajectory which requires 500 ft/sec or less of propulsive maneuvering (AV) to at-

tain the desired final orbit. As in Chapter IV AV is computed with three components, one

propulsive maneuver applied at the atmospheric interface in the direction of the velocity

vector to correct the apocenter altitude, a second at apocenter to raise pericenter and a

third to correct any plane error. Because of the lack of a firm definition of vehicle charac-

teristics a grey area has been defined. The grey area is any trajectory which requires be-

tween 500 and 1,000 ft/sec. Any trajectory which requires between 500 and 1000 ft/sec to
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attain the desired orbit will be referred to as a soft failure. Any vehicle design should cer-

tainly carry enough fuel to perform 500 ft/sec of maneuvering to attain the desired orbit.

Carrying additional fuel, however, to correct for a soft failure of the aerobraking control

system reduces the advantage of aerobraking. The trajectories which terminate with soft

failures would still be able to attain orbit, just not the desired orbit, using 500 ft/sec of pro-

pulsive maneuvering. This anomaly may result in some mission degradation, but not a

complete mission failure. A hard failure is defined to be any trajectory which requires

1,000 ft/sec or more of AV to attain the desired orbit. It includes any trajectories which fail

to exit the atmosphere. By this definition, all four controllers considered in this chapter

succeeded in all of the simulations performed in Chapter IV.

Outbound Leg Square Wave Density Pulses

The robustness test procedure begins by using square wave density pulses which per-

turb the density function of the outbound leg only. The density during the descent into the

atmosphere is either the nominal or a MARS-GRAM generated low or high density atmo-

sphere model. After the altitude rate becomes positive, a square wave density pulse, simi-

lar to those employed in Chapter IV is used to perturb either a 10,000 or a 20,000 ft

altitude band of the atmosphere. These pulses multiply the density predicted by the atmo-

sphere model by 0.5, 0.75, 1.25, 1.5, 1.75 or 2.0 within the perturbed altitude band. The

pulses are again referred to as -50%, -25%, +25%, +50%, +75% and +100% magnitude

density pulses respectively. As in Chapter IV the pulses are moved in 10,000 ft altitude in-

tervals, with the lower edge of the density pulse located between 100,000 and 290,000 ft.

The performance is presented in Fig. 44 through Fig. 55 with AV plotted along the vertical

axis while the magnitude of the pulse and the location of the lower edge are plotted on the

other two axis.
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MIIPC Perfonnance

Performance of the MHPC in the nominal, low and high density atmospheres when

the density of the outbound leg of the trajectory is perturbed by square wave density pulses

is presented in Fig. 44, Fig. 45 and Fig. 46 respectively. In the first plot of each figure the

pulse perturbs a 10,000 ft altitude band, while in the second plot the pulse perturbs a

20,000 ft altitude band.

The MHPC produced many soft failures during this test sequence but no hard fail-

ures were recorded. The 20,000 ft duration pulses produce worse performance than the

10,000 ft duration pulses in almost all cases. The MHPC is very sensitive to large magni-

tude (+50% and +75%) density pulses located below 180,000 ft in the nominal atmo-

sphere, and 150,000 or 200,000 ft in the low or high density atmosphere respectively.

There is also a region of sensitivity caused by the -50% 20,000 ft density pulses. These,

though, are located at slightly higher altitudes and are not as severe as those caused by the

large magnitude pulses. In all of these plots there is a region at extremely low altitudes,

where the pulses have minimal or no effect. This robust region occurs because these puls-

es are either located below the minimum altitude of the trajectory and the satellite never

flies in the perturbed atmosphere, or they are very near the minimum altitude of the trajec-

tory and the satellite does not spend much time in the perturbed atmosphere.

There are two primary failure modes for these trajectories. When the large magni-

tude density pulse perturbs the atmosphere in the altitude region where the satellite is in

the equilibrium glide phase, the density filter is fooled into believing the entire atmosphere

has higher density than that measured during the descent. The effect is to initiate the exit

phase early, and predict a relatively high altitude rate for the exit phase. When the vehicle

moves out of the high density region there is a time lag before the density filter records the

change. By the time the controller responds the vehicle has moved even higher, and the
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vehicle has less control authority. The result is the vehicle leaves the atmosphere with too

much energy, and overshoots the desired apocenter altitude. The second failure mode is

caused by higher altitude density pulses. All of the failures caused by the -50% pulses ex-

hibited this failure mode. The vehicle flies the equilibrium glide phase in the unperturbed

atmosphere. After the vehicle initiates the exit phase it encounters the perturbed atmo-

sphere. The large magnitude density pulses dissipate more energy than predicted resulting

in a steeper exit phase than desired, and in some cases a lower apocenter than desired.

Conversely, the small magnitude density pulses cause the vehicle to lose less energy than

predicted and result in an apocenter altitude higher than desired.

MPC Performance

The MPC definitely has better performance than the MHPC under these conditions.

Again, the performance is presented in three figures, Fig. 47, Fig. 48 and Fig. 49 with the

first figure showing results from the nominal atmosphere, the second from the low density

atmosphere and the third from the high density atmosphere.

The 10,000 ft density pulses had almost no effect on the performance of this control

algorithm. Even the 20,000 ft pulses produced reasonably good results. There was only

one soft failure noted during this test sequence and two very near failures for the MPC.

All three of these events were caused by 20,000 ft +100% density pulses perturbing the

low density atmosphere. The pulse between 120,000 and 140,000 ft required a AVof 584

ft/sec, while the pulse 10,000 ft higher (between 130,000 and 150,000 f!) required 498ft/

sec. The pulse between 140,000 and 160,000 ft required just 458 ft/sec, but the one be-

tween 150,000 and 170,000 ft required 492 ft/sec. These high AVs were caused by the

same failure modes as described above with the pulses with lower edges at 120,000 and

130,000 ft causing the density estimator to overreact and force the vehicle to exit with too
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much energy, while the pulse at 150,000 ft causes the vehicle to lose more energy than

planned. Overall, though, the polynomial density estimator used in the MPC showed im-

provement over the l-,brid density estimator of the MHPC. As suggested in chapter IV,

the promise of this density estimation technique is realized when the inbound and out-

bound density functions are different.

LHTC Performance

Performance of the LHTC was mixed. For the majority of density perturbations cal-

culated here this controller performed better than either the MHPC or the MPC. Yet there

were a few isolated instances where the controller performed extremely poorly. The con-

troller even produced two hard failures. Presentation of this controller's performance fol-

lows the same format as before with the nominal atmosphere results in Fig. 50, the low

density atmosphere results in Fig. 51 and the high density atmosphere results in Fig. 52.

One noteworthy aspect of the Lyapunov Tracking exit phase is that it almost always

commands either full lift up, or full lift down. When the vehicle is right on the desired

path the commanded bank angle will chatter between ±15' and ±1650 (commanded bank

angles less than 150 or greater than 165' are allowed only when the orbit plane error is less

than .03'). Of course, the vehicle roll rate and roll acceleration limits prevent the vehicle

from oscillating too wildly. But, when the vehicle is not on the desired path the control

system will command near full lift up, or full lift down to approach the trajectory. This

feature allows the vehicle to respond more quickly than it does for the predictor corrector

algorithms to pull the vehicle back onto the desired path. However, when the desiied path

is computed poorly because of a poor density estimate, the control system still responds by

commanding full lift to approach the computed path as rapidly as possible. This controller

suffers from the same problems with the density estimator as the MHPC. This phenomena
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caused the two hard failures seen in Fig. 50b and Fig. 52b. The onboard accelerometer

measurements had been recording high drag measurements while the vehicle was deceler-

ating in the region of high density caused by the density pulse. The density filter had pre-

dicted that, because of the high drag inferred density measurements, the remainder of the

atmosphere would also be higher density than that recorded during the descent. The effect

is to predict higher energy loss due to drag than will actually occur. This prediction causes

the control system to initiate the exit phase earlier than desired and to plot a path which

climbs out of the atmosphere at relatively high speed. The Lyapunov optimal control solu-

tion is to pull onto this path as rapidly as possible. By the time the satellite has moved out

of the high density region, and the density filter has recovered, the satellite has moved too

high, at a velocity which is too high too allow recovery. The result was a post aerobraking

apocenter altitude of 836 nm for the hard failure in Fig. 50b and 1,165 nm in Fig. 52b.

Again, the target apocenter is 270 nm.

The Lyapunov Tracking exit phase, however, seems be able to cope with these densi-

ty estimation problems better, in most instances, than the predictor corrector algorithms.

The rapid response of the vehicle, due to the nature of the Lyapunov control system,

though it caused the two hard failures discussed above, was usually advantageous. As ac-

celerometer measurements are taken, and the density filter is continually updated, the de-

sired path varies. The rapid response of the Lyapunov control law helps track this moving

path as long as the vehicle has enough aerodynamic control authority to respond. In the

LTC controller results which follow, the effect of combining the polynomial density esti-

mation technique with the fast response of the Lyapunov control scheme is investigated.
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LTC Performance

The LTC performance is presented in Fig. 53, Fig. 54 and Fig. 55. The 10,000 ft

density pulses had almost negligible effect on the performance of this control algorithm as

was the case with the MPC. Also, the 20,000 ft pulses produced reasonably good results.

There were only three soft failures noted during this test sequence for the LTC. All three

of the failures were caused by the same 20,000 ft +100%76 density pulses perturbing the low

density atmosphere which caused the soft failure and the two other near failures in the

MPC performance. For the LTC the pulse between 120,000 and 140,000 ft required a AV

of 542 ft/sec, while the pulse 10,000 ft higher (between 130,000 and 150,000 ft) required

505 ft/sec. The pulse between 140,000 and 160,000 ft did not result in a failure requiring

493 ft/sec, but the one between 150,000 and 170,000 ft did, requiring 533 ft/sec. These

failures were caused by the same failure modes as described earlier with the pulses locat-

ed at 120,000 and 130,000 ft causing the density estimator to overreact forcing the vehicle

to exit with too much energy, while the pulse at 150,000 ft causes the vehicle to lose more

energy than planned.

Overall, though, the polynomial density estimator used in combination with the Ly-

apunov control scheme shows excellent performance. The performance of this control al-

gorithm during this test sequence very nearly paralleled that of the MPC.

Sinusoidal Density Variations

The next testing sequence involves perturbing the density function with sine waves.

Sine waves in altitude and sine waves in range were used. These sine waves were varied in

amplitude (Ka), wavelength (k) and phase angle (0). The sine wave perturbations in alti-

tude took the form
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p=Pmoei1 +Kasin ( 2h +4)J (84)

while those in range took the form

I [ i 2ntRange + 85
P = PmodelI+Kasi n ( g +4)] (85)

The range of amplitudes used included 0.1, 0.25 and 0.5 for both forms of perturba-

tions. The wavelengths selected for the altitude variations included 1000, 2000, 5000,

10,000, 20,000, 50,000, 100,000, 200,000 and 500,000 feet. For the variations in range

the wavelengths selected included 1, 5, 10, 20, 50, 100, 200, 500, 1000, 2000 and 5000
7t. x .

nautical miles. In both cases, the phase angles included zero through T in 4 increments.

The sinusoidal variations with amplitude of 0.1 appears to be very much in line with

the actual density profiles measured by Viking 1 and Viking 2 landers during their descent

through the Martian atmosphere (Fig. 7 and Fig. 8). All of the results with an amplitude of

0.1 for both forms of the sinusoidal variations and all four controllers examined in this

chapter were successful. The highest AV required 490 ft/sec, but the vast majority of the

trajectories (over 99%) required less than 400 ft/sec. Only 13 of the 1920 trajectories test-

ed with a 0.1 amplitude sine wave density variation required more than 400 ft/sec of AV

Likewise, the results generated using 25% and 50% amplitude sine waves in altitude are

almost as benign as the 10% results. All of the trajectories which used 25% amplitude

sine waves in altitude were successful. Of the 864 trajectories checked using 50% ampli-

tude sine waves in altitude none resulted in hard failures and only 8 produced soft failures.

Of these, only three required more than 600 ft/sec with the worst requiring 732 ft/sec. A

complete breakdown of these failures is presented in Table 2. Because these results gener-

ated using 10% sine waves in altitude and range and 25% sine waves in altitude were all

successful, and the eight soft failures generated using 50% sine waves in altitude are ade-

quately described in Table 2 they will not be presented graphically. It is interesting to note



116

C))

00 0 0 0

0) 00Cl 0%

ON N 0% cn

er~e0

00a N tn m-
m 01 ON l

Cl~~~ ClNCl c 0

0o 0 Z

u u



117

that three of the four soft failures which occurred with controllers using the hybrid density

estimation technique had wavelengths of 1000 ft, while the fourth had a wavelength of

5000 ft. The 1000 ft wavelength sine waves in altitude seem to be corrupting the stored

density data used in the density estimation process. This data is stored at 1000 ft altitude

intervals. Though the density filter should be able to compensate for this, it does not ap-

pear to do so well enough to prevent these failures. Three of the four failures which oc-

curred with controllers employing the polynomial density estimation technique had

wavelengths of 20,000 and 50,000 ft. Shorter wavelengths tend to have a cancelling ef-

fect, with the additional drag of high density regions being offset by the lower drag of low

density regions. Longer wavelengths are easy for the sixth order polynomial to follow,

provided there are no more than five extremes in the density function. The problem with

the 20,000 and 50,000 ft wavelength sine waves is they do not oscillate fast enough to can-

cel high density regions against low density regions, yet they still have six to fifteen com-

plete sine waves, with twelve to thirty density extremes in the aerobraking region; more

than a sixth order polynomial can follow. The final failure was caused by an excessive or-

bit plane error (wedge angle) at exit.

25% and 50% Sine Waves in Range

The 25% amplitude sine wave density perturbations, which use vehicle range from

entry as the argument to the sine function, are probably the truest measure used here to test

controller robustness in the presence of a realistic worst case Martian atmosphere. These

perturbations are of somewhat higher magnitude than the perturbations measured by the

Viking I and Viking 2 landers, but, most probably, the Viking I and Viking 2 landers did

not sample the worst case atmospheric perturbations. Though the amplitude of the per-

turbing sine wave is increased to 50% for the test sequence, the probability is extremely
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low that the Martian atmosphere would ever experience high frequency oscillations in

density with this large of amplitude.

The performance of the MHPC when tested against the 25% amplitude perturbations

is presented in Fig. 56a, Fig. 57a and Fig. 58a for the nominal, low density and 'ligh densi-

ty atmospheres respectively. Fig. 56b, Fig. 57b, and Fig. 58b present the results when the

amplitude of the perturbing sine wave is increased to 50%. Similarly, Fig. 59, Fig. 60 and

Fig. 61 present the results for the MPC, while the results for the LHTC is presented in

Fig. 62, Fig. 63 and Fig. 64 and the LTC results are presented in Fig. 65, Fig. 66 and Fig.

67.

The 25% amplitude perturbations were significant enough to cause problems for

some of the trajectories. Though they did not induce any hard failures, there were many

soft failures. The 50% amplitude perturbations were severe enough to cause several hard

failures for all of the controllers except the LTC. The 25% and the 50% amplitude sine

waves were each used to simulate 264 perturbed atmospheres for each controller (I I

wavelengths x 8 phase angles x 3 base atmospheres). Of these 264 trajectories tested with

the MHPC with the 25% amplitude variation six trajectories resulted in soft failures. Six

trajectories also resulted in soft failures when the MPC controller was used, though they

were not the same six perturbations. The LHTC had four soft failures while the LTC only

had two. When the amplitude of the perturbing sine wave was increased to 50% the

MHPC had fourteen hard failures, the MPC had ten and the LHTC had fourteen. These

three controllers also experienced many soft failures during these simulations. The LTC

did not result in any hard failures, but it did produce twenty nine soft failures.

All of these failures were the result of exit phase failures, which are in turn attribut-

able to density estimation problems. The equilibrium glide phase was robust enough to

!,feep the vehicle in the atmosphere and prevent a skip out for all of these trajectories.
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121

1000.0-

a) a) 80 .

500.00

2~ 50.0

a)200 dg

-1'50.0 -

250-0

2700 10-0 9.0

b) . ~~ (deg)

Fig. 58 MHPC Sensitivity to Sinusoidal Density Variations in High Density
Atmosphere. a) 25% Amplitude; b) 50% Amplitude



122

1000.

500

250.0

90.0
a) 260 .
a) ~ (deg)

1000.0-

2500

b) 9, 2700 (deg)

Fig. 59 MPC Sensitivity to Sinusoidal Density Variations in Nominal Atmosphere.
a) 25% Amplitude; b) 50% Amplitude



123

1000.0-

'159.00

0oo.0-

!-' 500

250-0

90.0 0.0

(deg)

Fi. 0 0CSnitvt oSiuodlDest0aiain nLo st

Atoper.a75%Apitd;b)5%Amltd



124

1000.0-

25000

25)0.0

a) 270- 0- (peg)

1000.0-

750 00

500.0 90

Fig. 61 MPC Sensitivity to Sinusoidal Density Variations In High Density
Atmosphere. a) 25% Amplitude; b) 50% Amplitude



125

5000.0

__ 
2 .0 160-0 900 0.

a)

7±'500-

56000

900
160 0

b) (cIg)

Fig. 62 LIITC Sensitivity to Sinusoidal Density Variations in Nominal
Atmosphere. a) 25% Amplitude; b) 50% Amplitude



126

1000.0

'U750.0

-7,-

250.00.

a) 270. 1BO

1000.0 
C -

,1750.0-

~' 500.

250.0-

b) 200 Do90(Jeg)

Fig. 63 LIITC Sensitivity to Sinusoidal Density Variations in Low Density
Atmosphere. a) 25% Amplitude; b) 50% Amplitude



127

1000.0-

-~60.0

a) .- ~-, 270-0~ 0S(deg)

1000.0-

.090.0 
0.0

b)27.0 
6 0 0

(deg)

Fig. 64 LHTC Sensitivity to Sinusoidal Density Variations in High Density
Atmosphere. a) 25% Amplitude; b) 50% Amplitude



128

1000.0

-750.0-

a) 27 0.0 IL 9.
S(deg)

1000.0

5-

1800 '-

b) 270 0 (cleg)

Fig. 65 LTC Sensitivity to Sinusoidal D)ensity Variations In Nominal Atmosphere.
a) 25% Amplitude; b) 50% Amplitude



129

1000.0

'750.0

500.0-

2 5 0207 

0 .
,9 

0 .

a) ,'ceg)

1000.0-

'750.0

250.0"

27000
b) .o )

Fig. 66 LTC Sensitivity to Sinusoidal Density Variations In Low Density
Atmosphere. a) 25% Amplitude; b) 50% Amplitude



130

1000.0-

'1 50.0-

030

1005.0-

250

600.00

a) ~~70.0100
b) (deg)

Fig. 67 LTC Sensitivty to Sinusoidal DenityVrainOnHg est

1000.0 .a 2%Apitd;b)5%Amltd



131

None of the trajectories failed to exit the atmosphere, although some of them barely did.

The problem with all of the failures centered around the inability of the density estimation

technique to adequately predict the density function and the amount ui drag thus expected

by the controller for the duration of the trajectory. Both density estimation techniques ap-

propriately ignored the high frequency density variations (those '-1% wavelength less than

10 nm). These oscillations occur so quickly that the high and low density regions have a

cancelling effect.

The hybrid density estimator shows increased sensitivity to wavelengths of 20 to 200

nm. The polynomial density estimator, on the other hand handles these wavelengths very

well. It is the 500 to 2000 nm wavelengths which produce problems for this estimator.

These sensitivities to different wavelengths are easy to understand. The hybrid density es-

timation technique uses the density filter to adjust it's estimate for the entire atmosphere

based on the current density measurements. The long wavelength sine waves have the

same effect as a slowly increasing or decreasing density bias during the trajectory. The

density filter of the hybrid density estimator is able to sense this slow drift and appropri-

ately adjust the measurements taken during descent to compensate for the drift. The wave-

lengths which gives the hybrid density estimator trouble are those which perturb a portion

of the atmosphere and then reverse that perturbation fast enough to confuse the density fil-

ter but not fast enough to have a cancelling effect. The polynomial density estimator, on

the other hand, fits the sixth order polynomial in altitude to the normalized density func-

tion. This density estimation technique remembers the density which was measured at the

various altitude intervals. It takes the most recent density measurement and adds this to

the knowledge base and fits a smooth polynomial curve through the data. When the local

density is biased, but then that bias reverses later in the trajectory, as it does when the in-

termediate wavelength sine waves perturb the atmosphere, this density estimation tech-

nique excels. But, when the density function is monotonically increasing or decreasing
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during the trajectory, as is the case for the longer wavelength sine waves, this estimation

technique does not respond fast enough. An attempt to place more weight on the most re-

cent data would seem to help this process, but attempts to do so made the oldest data obso-

lete; that is, the higher altitude densities, with the density estimator sometimes missing the

density at exit by an order of magnitude or more. Clearly, this area deserves further study.

Overall, the Lyapunov control scheme performed better than the predictor corrector.

The rapid response of the Lyapunov tracking exit phase was able to compensate for the

slowly developing density estimates. The polynomial density estimator also performed

better than the hybrid density estimator, as can be seen in the LTC results. The LTC kept

AV below 500 ft/sec for all but two of the 25% amplitude sine wave perturbed atmo-

spheres, and those two only required 509 and 577 ft/sec. Additionally, the 50% amplitude

trajectories were all completed with AV below 1000 ft/sec. The LTC was also able to cope

with the square wave density pulses, both those presented in Chapter IV which perturbed

the entire atmosphere and those of this chapter which only effect the outbound leg of the

trajectory. Since the LTC required less than 500 ft/sec for all of the trajectories tested in

Chapter IV, and responded better than any of the other controllers to all the robustness

tests of this chapter the LTC is selected as the most robust aerobraking controller exam-

ined.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The Analytic Predictor Corrector algorithm selected as the control algorithm for the

AFE is generally a robust control algorithm, especially with respect to large scale density

variations. The algorithm is fairly robust to short period density variations, but does dem-

onstrate a definite sensitivity to variations in the entry flight path angle and vehicle lift and

drag coefficients. These sensitivities are due, in large part, to the fixed transition velocity

employed to switch the control algorithm from the entry phase to the exit phase and the

rather simplistic density estimation scheme used. It is necessary to increase the K- term

in the equilibrium glide phase to prevent rapid large scale density variations from causing

a premature exit from the Martian atmosphere.

The Energy Controller was slightly more robust than the APC to variations in the en-

try flight path angle, and vehicle lift and drag coefficients. It was also robust to large scale

density variations. However, short period density variations were murderous to this con-

trol algorithm and the increased trajectory loads caused by the EC led to its early dismissal

from the list of potential control algorithms.

The Numerical Gradient technique, and then the Conjugate Gradient technique were

used to compute idealized optimal (minimum AV) trajectories. It was hoped that these

methods could be adapted as an on-board control algorithm. But, these algorithms require

about two orders of magnitude more computational time than the APC or EC to generate a

solution. Additionally, the optimization technique assumes all pertinent density and vehi-

cle lift and drag characteristics are known precisely. The trajectories produced by these
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optimization techniques fly the exit phase using the full lift available to remain in the at-

mosphere. Any decrease in density from that modeled in the optimization process allows

the vehicle to exit early with too much velocity. These algorithms, with the current perfor-

mance index, would not produce robust trajectories even if they were able to compute a so-

lution fast enough to be used in real time to control the satellite. A more general

performance index which seeks to minimize AV while retaining robustness and also reduc-

ing control activity should be sought if these techniques are to become practical.

The modifications proposed to the APC to produce the MHPC and MPC convert that

algorithm into a robust control algorithm capable of guiding the aerobraking trajectory to

near minimum AV exit state for most of the perturbations considered. As mentioned be-

fore, it was necessary to increase K- for the equilibrium glide phase to prevent a prema-
q

ture exit from the atmosphere. But in addition, the change to the more computationally

straight forward and efficient exit phase combined with the better density estimation tech-

niques and the variable transition velocity made significant headway in improving the ro-

bustness of the control algorithms. Between the MHPC and the MPC, the MPC responded

better overall to the perturbations examined here. There were two areas where the MHPC

did slightly better than the MPC. The first was the situations when density is simply a

function of altitude and the entry and exit density functions were identical. This situation

is probably rather unrealistic and the MPC was still able to handle these situations well

(though not as well as the MUIPC), without producing any failures. The second area was

when the large amplitude sinusoidal variations, which used range from entry as the argu-

ment to the sine function, and had wavelengths between 500 and 2000 nm. This area is

still a concern and leads to several of the recommendations below. Overall, however, the

MPC reacted more appropriately to realistic perturbations than did the MHPC.
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The Lyapunov Steepest Descent Control algorithm was implemented, but its inabili-

ty to compensate for varied energy depletion rates due to density variations, variations in

entry flight path angle or vehicle drag coefficient made this algorithm unusable. However,

when the Lyapunov control algorithm was recast as a tracking controller designed to fol-

low a reference trajectory, it showed much more promise. The algorithm still had trouble

exiting with just the right amount of energy to target the desired apocenter altitude and

produced peak trajectory loads higher than those of the predictor corrector algorithms. To

cure the first ailment a scheme to vary the gain values in the Lyapunov function was devel-

oped, while the second was fixed by employing the equilibrium glide entry phase and us-

ing the Lyapunov Tracking Algorithm as an exit phase.

With the two density estimation techniques developed for the MHPC and the MPC

used to define the reference trajectory, and the transition velocity from entry to exit phase

computed as for the predictor correctors, the LHTC and LTC performed extremely well.

The performance of the LHTC and LTC essentially mirrored that of the MHPC and MPC

respectively. Generally, the strengths of the MHPC turned out to be the strong points of

the LHTC, while they shared common weaknesses as well. Likewise, perturbations which

caused problems for the MPC were also likely to cause problems for the LTC. In most

cases, the problems were initiated because the density estimation technique was unable to

follow a specific perturbation. The Lyapunov tracking algorithm, with it's more rapid re-

sponse, was able to compensate better and produce exit states which required less AV than

the predictor correctors. There were a few notable exceptions where the rapid response

moved the vehicle into a less dense region too rapidly resulting in loss of control authority

and an exit state with too much energy. But, predominantly, the Lyapunov trackers per-

formed better than the predictor correctors. As in the predictor corrector analysis the poly-

nomial density estimation technique worked better than the hybrid density estimation

technique. Overall, the LTC performed better than the LHTC, MPC or MHPC and is the
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recommended control algorithm for performing an interpl'inetary aerobraking maneuver at

Mars.

Recommendations

Based on these conclusions, the following recommendations are made:

1) Robustness to density variations should be a prime issue in selecting the control al-

gorithm for the aerobraking phase of the MRSR. This characteristic must be consid-

ered along with decisions such as entry velocity, vehicle lift requirements, ballistic

coefficient, or navigational accuracy requirements.

2) The expected wavelengths and maximum amplitude of the short period density oscil-

lations in the Martian atmosphere should be characterized. The nature of these short

period oscillations should be determined. It would be beneficial in designing a den-

sity estimation technique to know if the short period density wave structure is prima-

rily horizontal or vertical in nature, or a predominantly time varying function.

3) Once the frequency of the expected density variations is determined, the density esti-

mation technique employed in the aerobraking control system should be tuned to re-

spond to the most likely frequencies which may perturb the trajectory, while

ignoring those which have minimal effect on the trajectory.

4) A higher order density estimator, perhaps using Tschebechev polynomials or Leg-

endre polynomials to bypass the numerical difficulties of a higher order polynomial

in altitude should be examined. It may also be desirable to fit a second function, in

terms of arc length, or time, or range to the density function, especially if a monoton-

ically increasing or decreasing density function is predicted.
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5) The density estimation technique should be adjusted to use all available knowledge

of the Martian atmosphere, including any knowledge of dust storms, solar flares or

knowledge of the solar heating of the atmosphere along the intended trajectory.

6) The LTC should be tested using higher entry velocities, different vehicle lift and drag

characteristics or ballistic coefficient as well as different target orbits to determine its

suitability for controlling some of the other mission scenarios proposed for MRSR,

including the fast trip manned precursor mission. Also, trading off nominal perfor-

mance for robustness by varying the exit phase altitude rate should be studied.

7) A statistical method of evaluating controller performance should be developed based

on the probability of various atmospheric perturbations occurring. This method may

extend further to include the probability of variations in entry conditions or vehicle

aerodynamic characteristics.

8) A new performance index should be developed which will minimize AV while re-

taining a level of robustness. With this new performance index, the calculus of vari-

ations optimization techniques should be revisited in an attempt to construct a

controller which computes a truly optimal solution.
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APPENDIX A

IDEALIZED MINIMUM AV OPTIMAL SOLUTION

A numerical gradient technique was employed to determine the minimum AV solu-

tion for a nominal Martian aerobraking maneuver 40 . The MRSR mission scenario calls

for the aerobraking maneuver to reduce the vehicle's velocity relative to the planet using

aerodynamic drag and then exit the atmosphere on an elliptical intermediate orbit. A se-

ries of propulsive maneuvers are then performed to transfer the vehicle from the interme-

diate orbit to the desired final orbit. The total AV required to transition from the

intermediate orbit to the desired orbit is determined by the vehicle's atmospheric exit ve-

locity vector and is a good measure of control system performance. The open loop solu-

tion presented here assumes that initial conditions as well as all pertinent vehicle and

atmospheric properties are known precisely. Limits are not placed on trajectory loads.

Robustness to atmospheric dispersions is not considered in computing this optimal solu-

tion. This solution produces the minimum AV attainable to transition from the post aero-

braking intermediate orbit to the desired final orbit for a given atmosphere, vehicle and

entry condition and is used as a benchmark to evaluate the performance of the feedback

controllers.

Equations of Motion

The formulation begins with the equations of motion. The equations of motion were

presented in Chapter III but are repeated again here for completeness.

dr _dh~-= Vsiny (86)dt dt
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dV _-CDPSV2 -8
dit 2m (87)

dy _LP~ 2 r
= Ci9SV-[,L _-cosy (88)

dt 2MnV COS V2r

Equation (86) is simply the radial velocity in terms of the inertial velocity and flight

path angle. Equation (87) gives the time rate of change of velocity in two parts: 1) the ve-

locity loss rate due to aerodynamic drag and 2) the change in velocity due to gravitational

acceleration (the inertial component). Similarly, Eq. (88) is the time rate of change in the

flight path angle also composed of two parts: 1) the change in flight path angle due to the

component of aerodynamic lift in the vertical plane and 2) the change in flight path angle

due to gravitational acceleration (the inertial component). The control variable 0, the

bank angle, determines the amount of lift exerted in the vertical plane to bend the trajecto-

ry and change the flight path angle.

Nondimensional State Variables

Dimensionless state variables are introduced:

x = = [h/he] (89)

along with a dimensionless time variable t

T = (t/h e) Fg-/R. (90)

The equations of motion may now be written:
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!= x2 sinx 3  (91)

i 2 c 2 sinx3 (92)- 2r_ (c- I +x,)

Aax 2
3 - CoSq+ c-l+x X2-(c-l+x)x 2

where a = p/pO = exp [(-(h -/ho))/hS], A = (poSheCL)/( 2 m),

B = (poSheCD)/(2m) and c = R/he.

The Performance Index

To minimize total AV required to transition to the desired orbit it is sufficient to min-

imize the exit flight path angle provided the apocenter of the intermediate orbit equals the

desired apocenter. This procedure maximizes the pericenter of the post-aero orbit. Two

terminal constraints are employed. The first requires the final altitude to be the atmospher-

ic interface altitude and the second fixes the intermediate orbit apocenter. The cost func-

tion is therefore the exit flight path angle (J = yx) and the goal is to minimize the cost

function subject to

1 , = X-I = 0 (94)

and

- raa + c-lI+X] 2 (cosx3)2 = 0. (95)
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To derive Eq. (95), set the orbital angular momentum at exit equal to the angular mo-

mentum at apocenter.

h = rx Vx cosyx = raVa. (96)

From this equation solve for the velocity at apocenter in terms of the terminal radius,

velocity, flight path angle and the radius of apocenter.

rx Vx cosy(9V a  - (97)
a = ra

Equate the orbital energy at exit to that at apocenter, using the expression for veloci-

ty at apocenter from above

(rxVxCosyx) 2 XV-_ (98)
2r 2  ra 2 rxa

Obtain Eq. (95) after some algebra and after replacing the physical state variables

with the nondimensional variables given in Eqs. (89) and (90).

The Numerical Gradient Technique

This problem was solved using a first order numerical gradient procedure. To for-

mulate the optimal control problem begin with the performance index. In general terms

this index may be written

1 (xf) + { L (x*, u* )dt (99)J = +to
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The performance index is then augmented with penalty functions to impose the ter-

minal constraints and the equations of motion.

[V] Wf{L(x,u,)+ [X]T[f(x*,u*) -. * ]ld t (100)
J, =  (xd+ Iv +Vx) +f 'o * u - d 10

For this problem [v] is a 2 x 1 column matrix of constants, { W (xf) } is a 2 x 1

column matrix of terminal constraints given by Eqs. (94) and (95) and [X] is a 3 x 1 time

varying matrix of Lagrange multipliers or influence functions. {I} = {f(x, u) } are the

3 first order differential equations of motion Eqs. (91), (92) and (93). {u} is the control

variable 4. To customize this general augmented cost function for the problem at hand

delete L (x*, u*) since there is not an integral term in our performance measure, and sub-

stitute y for 0) (xf) to obtain

Ja = yf+ [v]T {(xf) } + f { [X] T Lf (x*,u*) -X* }dt (101)

The numerical solution process begins with a guess of the control time history. The

values for the state variables are computed from initial conditions and then integrated for-

ward in time using this postulated control time history. Differential equations for the

Lagrange multipliers, which are developed later, are used to integrate [X] backward in

time beginning with the value of [X] computed at tj. A new control time history is de-

rived by setting the first variation in the augmented cost function to zero. The process is

repeated until the terminal constraints are satisfied to within an acceptable tolerance.

The first variation in Ja is formed

1 a = f/x + [v]T-8X +f'f { ( [X] T f ) 8X+ ( [X) Tf)f) 8u _ [X] TU " dt. (102)
a Ix-f x toaxV
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Integrate [X] T. by parts to obtain

[X U)d IIj fT+rj+Jf([X]"8x) dt (103)

Substitute Eq. (103) into Eq. (102) to Abtain

Ja (a+ [VI 4 [X TSxf

+T'[f[xI F 4 xIT) -) u]dt (104)

Define a new Lagrange multiplier

[X-] T = [X-J] T + IV] T [X-i] T (105)

[-1] is the 3 x I column of Lagrange multipliers normally used to impose the

equations of motion while [X'] is dimensioned 3 x 2 and contains additions to the

Lagrange multipliers which arise from the terminal constraints. The first variation in Ja

may now be written

ij f+ IV] [Xj]IT [vIV ] T Xi xf

+f[(([Xjj]T+ [vIT[Xi]T) f+ T T T

o

+ W( ([Jlr + IV] 1, [xi] T)__fgt 814dt (106)
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The performance index is minimized by setting the first variation in Ja equal to zero.

Choose differential equations for the Lagrange multipliers so that the coefficient of 8x

goes to zero to obtain the two equations

.J] T -[ JTfj T 
(107)

and

[i] =(108)

The gradient of f is

0 sinx 3 x2 sinx3

f2 Of2  f2
'f ax. ax2  ax (109)of

af3 af3  )f3

ax! ax2  ax3

where

h:a + 2csinx342- Bax-2r + (110)
ax1  hS x2  (c- 1 +X) 3 (

af2
42= -2BcX 2r (11)

Of2  ccosx 3  (112)
ax3 (c- 1 +X,) 2
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lf3 Ie X2r 2CCOSX3 X2C OS3
= -Aa- cosO + - (113)

xi hS (C +- 1 +Xl)3 2  (C- 1 +X) 2 (1

af 3 COSX 3  C COSX 3Acrcos + + (114)
D2 (c- I +xl) (c-I +x ) 2X2

and

f sinx 3  C

Wx_3 =  (c-I+xl) LX2 (c_ 1 +Xl)X2]. (115)

Integrate the costates backwards in time using Eqs. (107) and (108) with the bound-

ary conditions obtained by requiring the coefficient of 8xf in Eq. (106) to be zero

[xjT= f = [0 0 1] (116)
f axf

3 7V 2  o-- W 2  ( 1 1 7 )

where

____r 2c

-- 2 - a)  c+X 2 +2(c-I+xlf)c s (118)

DW/2 2f ra 2 (c-l+Xl)C°SX 3f)2]

;jT&= (2x2f)[-R)+( c (119)

and
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-2 , c-1+~ l 2 j
LY 2[( I l j cosx3 fsinx 31 . (120)ax3/

Since the coefficients of 5x and 8Xy have been set to zero, the first variation of Ja re-

duces to

&a bujdt = BJ+ [VI] " {SV} (121)

to

where

8J= f[([J] Taf)8u]dt (122)

to

and

18W = f[([X'iTF)Su]dt (123)
to

Defining two new variables

A [0JT f (124)

A u[XiIT (125)
'au,

A is a scalar, while AW is a 2 x I column matrix and

af- 0 -Aax 2 sinl]. (126)

Du =0
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To make Ja as small as possibe, choose the variation in the control Su to be

8u = -K[A + [v]TA.] T (127)

K is a scalar weight which fixes the relative importance placed on minimizing the

cost function versus satisfying the terminal constraints. A value of 200 for K places suffi-

cient weight on the cost function and still allows the terminal constraints to be satisfied

within an acceptable tolerance. By substituting Eqs. (127) and (125) into Eq. (123) obtain

W} = -KI f [A [A TA d t.  (128)

Again, introduce two additional variables

{g} =J,'o [A,] [A ] Tdt (129)

Q tP [ Af! IA Tdt (130)

Substitute these variables into Eq. (128) to obtain

{6 W =-K[g+Q[v]]. (131)

To drive { W} to zero, choose { W} = - { , where (tv.} is the value of the

terminal constraints, computed after integrating the state equations forward, solving Eq.

(131) for {v}

{v} =-[Ql-[g-1lK,]. (132)

...L ...
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Use this value for {v} in Eq. (127) to obtain {Su} . The control update is then

computed

{Unew} = {Uold} + {U} . (133)

Since the final time is free, we must also minimize

aj T+V ] f'f. (134)
a atf If=[L

Now let

b- [ Tf14] (135)

-f

Replace with 7f and V with the expressions given in Eqs. (94) and (95) to obtain

- 3 f +V-fIf+ V2 -( f f 2 f-- F 3  (136)

Usc the new control time history (Eq. (133)), along with the change in tf (Eq.

(136)1, to again integrate the state equations forward. Compute the terminal value of the

Lagrangc multipliers and integrate these backwards in time, then recompute the control

time his. )ry. This process is repeated until the terminal constraints are satisfied within an

acceptable error bound. The final apocenter altitude was required to be within 5 nm of the

target va:ue while the terminal altitude was required to be within 25,000 ft of the defined

atmospheric interface altitude. Apocenter errors of 5 nm require very little AV to correct

and are attainable using this optimization method although thirty or more iterations may

be required to converge this closely. The 25,000 ft terminal altitude error band was chosen

because the aerodynamic effects decrease exponentially with altitude and are almost negli-
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gible at altitudes above 300,000 ft. To converge closer than 25,000 ft to the selected atmo-

spheric interface altitude of 410,105 ft (125 kin) requires many more iterations.

Furthermore, the terminal altitude generally converges toward the target altitude from

above.

Conjugate Gradient Projection Method

The conjugate gradient projection method was employed to speed convergence of

this problem 40' 41. The gradient obtained in Eq. (127) was again used in this method to

compute the search direction for correcting the control variable. However, after the first

control update the previous search direction is used in conjunction with the computed gra-

dient to give the problem near second-order convergence characteristics. The procedure

follows. First, compute the gradient direction using Eq. (127)

gi = -Su (137)

where the i subscript denotes the ith iteration of control updates. Next, compute the search

direction

Si = -gi (138)

for the first iteration, while for subsequent iterations

Si = g9i+ ____ (gi, gi) (139)Si = -gi + (gi - 1 gi - I s i - l 19

where (a, b) is the inner product of a and b.

Once the search direction is determined, it is necessary to properly scale the magni-

tude of the correction.



154

{Unewl = {Uold} +ks, (140)

A line search employing a Newton iterative scheme is used to scale k so that V2 is

minimized. A value for k is chosen (k,) and the equations of motion are integrated for-

ward and the values of the terminal constraints are determined. Then, a larger value of k is

chosen (k2 ) and the equations of motion are again integrated forward and the terminal

constraint is determined. A new value for k is selected using

kj+1 :k,- i j (141)

This iteration is repeated until the terminal constraint 42 is within an acceptable tol-

erance of zero. This tolerance is again computed by requiring the terminal apocenter error

to be within 5 nm of the target. A new gradient is then computed and a new search direc-

tion is found. The line search is then repeated.

The conjugate gradient procedure requires computation of the gradient as before,

then computation of the search direction using Eqs. (138) or (139). Finally, a line search is

employed to determine the desired magnitude of the correction. This procedure is repeat-

ed until the inner product of the computed gradient is sufficiently small (less than 10-6).

Both the conjugate gradient technique and the numerical gradient technique pro-

duced acceptable results for determining optimum (minimum AV) performance, though

the conjugate gradient procedure converged somewhat faster than the numerical gradient

technique. The conjugate gradient method required computation of the gradient generally

only four or five times. The line search, however, was a slow expensive process requiring

as many as ten iterations for each search direction. Overall, the conjugate gradient tech-

nique did converge faster than the numerical gradient technique but only by about 50%.

To be used to compute optimal control time histories onboard the satellite in real time, a
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solution must be obtained at least two orders of magnitude faster than either the numerical

gradient or conjugate gradient techniques currently achieve.
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APPENDIX B

ANALYTIC PREDICTOR CORRECTOR DERIVATIONS

An Analytic Predictor/Corrector (APC) algorithm for the MRSR was adapted from

the Aeroassist Flight Experiment (AFE) controller 9' 34. This controller has two phases.

There is an equilibrium glide phase during the first part of the trajectory, where aerody-

namic loads are the primary concern. At a predetermined velocity the controller switches

to a predictor/corrector algorithm for the exit phase. The predictor step assumes constant

altitude rate and analytically integrates the trajectory forward. Then, it corrects for the fi-

nal phases of the trajectory where constant altitude rate cannot be maintained. The correc-

tor step adjusts altitude rate to target the desired apoapsis, thereby minimizing AV required

for insertion into the desired low Mars orbit. Also included in this Appendix is the devel-

opment of Fitzgerald's Hybrid Predictor Corrector ! I exit phase which uses density values

derived from accelerometer measurements during entry to obtain a better estimate of the

velocity loss due to aerodynamic drag during the exit phase.

Equilibrium Glide Phase

The equilibrium glide phase of the APC controller seeks an equilibrium condition

with the vehicle following a reference dynamic pressure path. Equilibrium is established

by requiring the in-plane portion of lift to balance inertial and gravitational forces.

CLCOS = wcosT-R-- (142)
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For small flight path angles, the radius of curvature Rc approximates the vehicle's

orbital radius. Using this approximation, the bank angle required to maintain equilibrium

is

cos - ]. (143)

The reference dynamic pressure is calculated as a multiple K- of the dynamic pres-

sure required to maintain equilibrium with the lift vector oriented down. Previous

works9, 34 have recommended K 4 = 1.33 for an Earth aerobraking vehicle. However, a

value of 4.5 for K- provides additional robustness for the MPC. Additional discussion of
q

this choice may be found in Chapter II on page 32.

[ W][ - VI(144
ref= LCLS ' J

To prevent overshoot, an altitude damper is included in the control equation giving

the following commanded bank angle:

DC =c acos [(I ) (w[ - V2 /( gR) ]C L
S  -Gh+G -qre (145)

Exit Phase

After the vehicle slows to a predetermined velocity, the controller transitions to a

predictor/corrector algorithm which targets the desired apocenter following atmospheric

exit. The analytical relationship used to compute velocity loss during the remainder of the

aerodynamic phase is developed by considering only the aerodynamic drag
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dVr 0.5 p V2S CDd--- =  m(146)

0.dSCi

Lumping constants C = -- and assuming an exponential atmosphere,
m

dVr ._CV 2poe- (h - ho) / hS (17dt- (147)

dh
Rearranging terms and replacing dt with __ we geth

dVr - (h - ho)/hS dh

2  -Cp~e -- (148)
Vr

The open loop optimal minimum AV solutions computed using the methods of Ap-

pendix A show that after passing the pericenter, A is very nearly a constant. By assuming

i is constant, Vr may be determined at any future altitude.

Vrx= F- (CPohS) (e (h, ho)AS -e -(h - /hS)] (149)

A correction must be added to account for the kinetic-potential energy interchange.

AVx(k/p) = V+ 2(gh-gxh.) -V 1  (150)

Since orbital calculations rely on inertial velocity rather than relative velocity, it is

desirable to compute the exit inertial velocity. A good approximation is that the inertial

and relative velocity differ by a constant throughout the trajectory and the correction is

simply

AVx(l1r) = VI- Vr. (151)
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The inertial exit velocity can be expressed as

Vx = Vrx + AVx(k/p) + aVx(J/r). (152)

As altitude increases and density decreases aerodynamics become less dominant and

the trajectory becomes more an inertial orbital trajectory following a Keplerian elliptical

orbit. Soon, it becomes impossible to maintain a constant altitude rate; A will increase

even with full lift down. The APC algorithm assumes that at some predetermined switch

altitude i begins increasing linearly until atmospheric exit. The altitude acceleration at

exit can be computed by summing forces in the vertical direction at exit assuming the lift

vector is oriented down.

"ix = V 2/Rx-9- (0.5pxV2SCL)/m (153)

Assuming h increases linearly with time after the switch altitude, a quadratic in At is

written for the altitude during the final segment of the trajectory as the vehicle nears atmo-

spheric exit.

hx = hswitch + /At + 0.5h (At) 2  (154)

Solving for At and multiplying by hi we get the change in altitude rate.

Af = hcons t +0.5hswitch h, -Cflg (155)

The altitude rate at exit is the constant altitude rate plus the change in altitude rate.

4x = hiconst + Af (156)
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With this altitude rate and the exit velocity calculated in Eq. (152) the apocenter of

the orbit following exit may be calculated. By iterating / and predicting the apocenter, an

apnropriate Ii may be found which should yield the desired post-aerobraking orbit apo-

center.

To gain a measure of robustness for both density deviations and deviations in CD, a

density filter is incorporated which uses density derived from measured drag deceleration

2V2m

P CDSV2  (157)

This derived density is divided by the density predicted for the current altitude using

a standard exponential atmosphere. The result is filtered using a low pass filter to remove

high frequency density deviations which would have minimal effect on the post-aerobrak-

ing apocenter.

K p = (I - K) Kp+ K(Pd/Pniode) (158)

The resulting filtered density multiplier is multiplied by p0 during the predictor step.

As noted by Gamble, et a134 , "K will compensate for uncertainties in the aerodynamic

drag coefficient CD as well as density uncertainties."

The control equation for the exit phase is very similar to the equilibrium glide con-

trol equation. The major differences are the inclusion of a desired altitude rate instead of

simply an altitude damper and the elimination of the reference dynamic pressure term.

cD = acos[(/ l) (w L V 2 /(gR)] -G(h - ef) (159)
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Hybrid Predictor Corrector

Hybrid Predictor Corrector is a name first coined by Fitzgerald 1 to describe an im-

provement introduced in the exit phase of the original APC algorithm. Fitzgerald's ap-

proach is to derive density from accelerometer measurements at discrete intervals during

the descent into the atmosphere. The exit phase then fits an exponential density curve to

each altitude band between the discrete points. The velocity loss through the atmosphere

due to aerodynamic drag is then calculated as the summation of the velocity loss through

each altitude band.

The rationale for this improvement is that accelerometer-generated density measure-

ments taken during the entry phase of the aerobraking maneuver are, quite likely, a reason-

able estimate of the atmospheric density function available for the exit phase of the

trajectory. These measurements will be close, in both space and time, to the exit phase of

the flight and will hopefully produce a good estimate of the density to be encountered dur-

ing the exit phase. In this development p , is the density which was measured at the lower

edge of the current altitude band, h I is the altitude at which this measurement was taken.

P2 is the density which was measured at the upper edge of this altitude band at altitude h2 .

hS is the scale height for the atmosphere band computed between the two density mea-

surements.

= log (P2/P) (160)hS~ h = _--h2(10

To use this modified atmosphere in the predictor step, rewrite Eq. (148)

dVr = - ( h - ho) /hS dhV2 - CPOeh -dI, (161)

r

This equation may be integrated assuming a constant altitude rate to give the velocity

loss due to atmospheric drag between two arbitrary altitudes h and h2.
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Vr2 = (rl '- ) (e- (h2 - -(h,- 0)] (162)

The velocity at altitude h2 in terms of the velocity at h I and the density at each loca-

tion is defined by

Vr2 = I _ -j )(e - (h2 - h)/hS - e - (h' - h  ) (163)

and, with the scale height as previously calculated

Vr2 = LI Cp(h-h 2 ) P2 _ (164)
/ij log(P 2 /P1 ) P1

This equation gives the relative velocity at h2 as a function of the relative velocity at

h ! and the densities and altitudes at the two locations. The method for employing this fea-

ture in the predictor step of the control algorithm is to first use the velocity, density and al-

titude at the current satellite location as the subscript I variables and to predict the velocity

at the next interval where density measurements were stored during the entry using that al-

titude and that density as the subscript 2 variables. Then, that velocity may be used to

compute the velocity at the next altitude band using the lower stored density and altitude

values as subscript 1 variables and the next higher density and altitude measurements as

subscript two variables. This procedure is repeated until the exit relative velocity is com-

puted; that exit velocity is then handled exactly as it was for the APC.
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APPENDIX C

ENERGY CONTROLLER DERIVATION

The Energy Controller 34 was also adapted to control the MRSR vehicle. The Energy

Controller defines a new variable, the energy gain, as the ratio of energy rate to energy er-

ror. The energy gain is controlled so that Keplerian energy approaches the commanded

value as energy rate goes to zero at atmospheric exit, directing the vehicle orbit to the de-

sired apocenter. An analytic relationship is used to convert energy gain into an altitude

rate command. The altitude rate error is used to compute a desired altitude acceleration

which leads to a desired bank angle.

Development of this controller begins with the energy to mass ratio.

V2  g1
E - - - - (165)

2 r Ra +R p 2a

To calculate the conunanded energy at exit the conical equivalent is substituted for

Rp.

Rp = a(l-e) (166)

so that the desired energy at exit may be computed from

Rac+a(l-e) (167)
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Energy Gain

The main control variable, energy gain Eg, is defined as the ratio of E to energy er-

ror.

E - Ec E (168)

The energy gain is controlled so that E approaches the commanded value exponen-

tially as the energy rate approaches zero.

Egc = Egco + Egcxt (169)

Egco is the initial energy gain command and Fgcx is the desired energy gain rate at

atmospheric exit. Egcx will be derived later. During the atmospheric entry phase a first-

order controller is used for the commanded energy gain rate.

Egc = Egcx + kg(Egc-Eg) (170)

Later the proportional term is dropped so that

Egc = Egcx" (171)

DV 2p CD SPV12

Differentiating Eq. (168), - D V = 2E- r , D 2 ,and

Ah(-p)
p= poe results in the fallowing:

+Eg = (172)
Eg 

g
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(173)

v _ _ ~(174)

2 V (175)b V P

P = - (176)

which can be solved for h

zS[3 (E/V 2 ) +E, -E (177

h ~ ~ + 3phS(17

(ri')2

Since 3ghS is small compared to 1, drop this term and substitute kg, for Eg to ob-
(ri) 2

tamn the altitude rate command.

lc= IiS 3 It+ E- L). (178)

Altitude Acceleration Command

The commanded altitude acceleration is a first-order control on the altitude rate error

plus a lead term.

)4 + 0z+.08 (hc- h) (179)
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The lead term is obtained by differentiating Eq. (178) obtaining

d =i k-h + [gcF'gd !g

dic (EE gc/Eg (180)
dt~ E 2  dt 8E8

Using Eq. (172), assuming PE = E, differentiating Eq. (170) with EgCx = 0, and

assuming Eic = gcx gives the lead term for the commanded acceleration equation.

hS 3t (gc -  ) + kg c +8)CE 0.02 2(Egc-Eg)(

1 Eg)E
hi hS (V2Eg) +8C) + 11

Differentiating A gives E8 cx

h = [3$+kg+ k9 )J- -] (182)

At exit P and t9 approach zero; so Eq. (182) gives the exit altitude acceleration,

which also equates to the orbital dynamics expression for altitude acceleration at exit

hS[ Egc )2 2x x r2
exJ +Eg g J r r2'(183)

By solving eq. (165) for Vex

V2 = 2E c +-p (184)
Ve r

and substituting this result into the previous equation to obtain

- + - (185)rr 2"
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Now, equating hcx from above and Eq. (183) and solving for kscx

hS+ (hS)2+4hS-')

PEgcx = 2hS (186)

Eg

The total vertical acceleration may be written as

(Vcosy) 2  g Lcos(lcosy Dsin, (187)
r r 2 + _Mmrr

Bank Angle Command

Solve for the commanded bank angle by substituting the commanded altitude accel-

eration in Eq. (187).

+ R (Vcosy) 2 )
cos( r L (188)

c Lcos
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VITA

Buford Wiley Shipley, Jr.

Captain Buford Wiley Shipley, Jr. was born September 17, 1961, in Vernon, Texas.

He and his family moved to Lone Star, Texas in 1969, and to Longview, Texas in 1973.

During his high school years, Buford was a member of the Junior Engineering Technical

Society and the high school Math Team. He lettered in Slide Rule. He graduated from

Longview High School in 1979. He joined the A r Force under the College Senior Engi-

neering Program in December 1982. In May 1983 he graduated from Texas A&M Univer-

sity with a Bachelor of Science in Mechanical Engineering. While at Texas A&M, Buford

was Bonfire Coordinator (Yellow Pot) from Moore Hall. After attending Officer Training

School at Lackland Air Force Base, Texas he received a commission in the United States

Air Force. He was assigned to Headquarters, Space Division in Los Angeles, California,

where he spent five years as a manager of sensor systems acquisition with the Defense

Meteorological Satellite Program. He graduated with a Master of Science in Aerospace

Engineering from Northrop University in April 1987. In August 1988, he entered gradu-

ate school at Texas A&M University to pursue a Doctor of Philosophy in Aerospace Engi-

neering. After completing all requirements for a Doctor of Philosophy Degree, Buford

and his family are moving to Dayton, Ohio, where Buford will be assigned to the Arm-

strong Aerospace Medical Research Laboratory, at Wright-Patterson Air Force Base,

Ohio.

Captain Shipley is married to the former Virginia Marie Brightwell, and they have

one son, Justin Michael. His military decorations include the Air Force Achievement

Medal with two Oak Leaf Clusters, and the Senior Space Badge. Captain Shipley can be

reached through his parents at Rt. 2, Box 155-S, Kilgore, Texas 75662.


