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1.0 EXECUTIVE SUMMARY

This report presents the results of research carried out by Space Computer Corporation under the

U. S. government's Small Business Innovation Research (SBIR) Program. The work was sponsored by
the Strategic Defense Initiative Organization and managed by the Office of Naval Research under

Contracts N00014-87-C-0801 (Phase I) and N00014-89-C-0015 (Phase II).
The basic purpose of this research was to develop and demonstrate a new approach to the detec-

tion of, and initiation of track on, moving targets using data from a passive IR or visual sensor. The
approach we have developed differs in very significant ways from the traditional approach of dividing the
required processing into time-dependent, object-dependent, and data-dependent processing stages. In
that approach individual targets are first detected in individual image frames, and the detections are then
assembled into tracks. That requires that the signal-to-noise ratio in each image frame be sufficient for
fairly reliable target detection. In contrast, our approach bases detection of targets on multiple image
frames, and, accordingly, requires a smaller signal-to-noise ratio. It is sometimes referred to as "track
before detect," and can lead to a significant reduction in total system cost. For example, it can allow

greater detection range for a single sensor, or it can allow the use of smaller sensor optics. Both the tradi-
tional and the "track before detect" approaches are applicable to systems using scanning sensors, as vell
as those which use staring sensors. The advantages of our approach can be summarized as:

a) It provides better detection for a given false alarm rate, and allows detection of very weak tar-
gets in clutter;

b) It is robust in its ability to handle large numbers of targets simultaneously with no significant
increase in computational resources;

c) It is readily implementable using a parallel processing architecture.

Under this program we have:

a) Developed and demonstrated the required algorithms;
b) Designed and fabricated a programmable real-time processor which can implement these and

other signal and image-processing algorithms;
c) Programmed the algorithms to run in real-time on our processor, and demonstrated real-time

operation using recorded imagery from actual sensors.

This research effort has had two major thrusts. The first is algorithm development, combined with

proof-of-concept computer simulations using real and synthetic sensor data. The approach which we
have developed utilizes the following sequence of operations:

a) Precise frame registration (to an accuracy on the order of 0.01 pixel) of each image in the se-
quence using only the images themselves;



SCC-R-124-1 2 November 1991

b) Suppression of stationary clutter in the registered images (this typically provides a signal-to-
clutter ratio improvement of 30 dB or more);

c) Velocity filtering (or "3-D matched filtering") to improve the signal-to-noise ratio and to
determine target velocity as well as target position.

Real-time operation of these algorithms requires throughputs comparable to that of a supercomputer.
However, the applications which are of interest to us and to SDIO also require compact, light-weight
hardware. Therefore, we were led to the second thrust of our research, which is the design and demonstra-
tion of a programmable, extremely high-performance signal processor which can be implemented with
available components, and which can eventually be packaged using advanced interconnect technology to
achieve the small size and weight required for SDI and other military applications. The processor we
developed, which we call the SCC-100, employs a one-dimensional array of identical processing nodes
implemented (initially) with standard commercial components. The peak throughput per node is
100 MFLOPS. and each node incorporates 2 MBytes of static RAM memory. Therefore, a 20-node sys-
tem (for example) has a peak throughput of 2 GFLOPS and incorporates 40 MBytes of memory. In its
basic form, using conventional printed circuit-board packaging, each node occupies a single board in a
144nch high cabinet, and 20 such boards can be mounted in one 194nch wide rack. When implemented
with hybrid wafer-scale interconnect (HWSI), a 2-GFLOPS processor will be packaged in 35 cubic
inches, including radiation shielding.

Military applications of our work include such programs such as Brilliant Eyes, Brilliant Pebbles,
E21. EndoLEAP, and smart weapons. Commercial applications include video compression, computer
vision, and some robotics applications.

It should be noted that we have already proceeded into Phase III of this program as defined by the
SBIR Act of 1982. For example, we were awarded a contract by General Dynamics Corporation for the

development of a 19-node commercial version of the SCC-100. The first model of this processor, which

has a throughput of over 1 GFLOPS, was delivered to General Dynamics in early 1990. We are currently
marketing the SCC-100 for both government and non-government applications. In addition, in 1990 we
were awarded contract DACA76-90-C-0002 for DARPA (by the U. S. Army Engineer Topographic
Labs) to miniaturize the SCC-100 for space applications. Finally, our work on moving-target detection
has provided the basis for a new algorithm for full-motion video compression. Commercial applications

for this new algorithm include high-definition television (HDTV), interactive video, and multimedia
presentations.
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2.0 BACKGROUND

In current approaches to passive IR sensor signal and data processing for surveillance and fire con-

trol systems. track initiation and scan-to-scan correlation are performed with classical "track-while-scan"

association techniques. These approaches can encounter major difficulties when large numbers of objects

such as booster fragments and kinetic kill debris are present in the field-of-view. The basic difficulty

results from the sensitivity of classical track-association techniques to such conditions as merging or

crossing tracks, temporary loss of input data, poor background rejection, etc. The resulting track mis-

associations cause errors in the estimated position and velocity of targets.

The difficulties caused by track mis-association can be alleviated by the use of velocity filtering, or

"track before detect," techniques. These techniques, pioneered by Space Computer Corporation, provide

for computationally-efficient track association combined with signal-to-noise ratio enhancement. The

algorithms are extremely robust with respect to such conditions as merging or crossing tracks, loss of in-

put data, etc., even with very large numbers of objects, and should reduce discrimination errors due to

track mis-association to a low level. Vclocity filtering also provides background suppression and may per-

mit automatic rejection of debris resulting from kinetic kills.

During Phase I of this program we developed algorithms for object discrimination, background

suppression, track association and kinetic kill debris rejection based upon velocity-filtering concepts. We

also evaluated alternative processor architectures capable of executing these and other required algo-

rithms. Architectures investigated included a wide variety of parallel machines. both special- and general-

purpose in nature, and encompassed both the time-dependent and object-dependent portions of the

overall processing chain. We concluded that a medium- to fine-grained programmable, parallel proces-

sor architecture was the most attractive from the viewpoints of flexibility, long-term reliability and

performance. After further work during Phase II we settled on the medium-grained, pipeline architecture

described in section 5.0 of this report for the design, fabrication, and demonstration carried out under

Phase II of this program.
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3.0 TECHNICAL OBJECTIVES

The technical objectives of this program were:

(a) To develop and evaluate processing algorithms for acquisition, tracking, and discrimina-
tion of targets of interest for strategic defense;

(b) To assemble a demonstration brassboard signal processor capable of executing repre-

sentative algorithms in real-time;
(c) To program the algorithms for execution on the processor and perform a functional

demonstration.

All of these objectives were met and, to a large extent, exceeded. The algorithm work is described in sec-
tion 4.0 of this report; the signal processor hardware is described in section 5.0. and the programming and
functional demonstration are described in section 6.0.
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4.0 ALGORITHM DEVELOPMENT

During Phase II of this effort the emphasis of the SDIO architecture changed in response to evolv-
ing system requirements, and the emphasis of this effort changed accordingly. This change meant that
less emphasis was placed on tracking and discriminating very large numbers of objects (the BSTS/SSTS
problem), and more emphasis was placed on weak object detection (the Brilliant Pebbles/Brilliant Eyes
problem).

4.1 Signal Processing Chain

The basic block diagram for the image processing to be discussed in this report is shown in
Figure 1. Since here the discrimination of targets from background is based on the fact that targets will be
seen to move against the stationary background, in that figure we assume that the background is in fact
stationary in sensor coordinates, i.e., that the sensor output is not corrupted by jitter or other sensor mo-
tion. This can be accomplished by either mechanical or electronic means. Mechanical image
stabilization requires that the actual sensor pointing be controlled to a small fraction of the instantaneous
filed of view (IFOV), and is not usually practical. For example, the IFOV might be as small as 100 prad,
and stabilization should usually be to better than 0.01 pixels, or, in this case, to better than 10 prad, which
is better that the sensor stability that can be reasonably expected for most systems. Thus. we assume that

electronic image stabilization will be required. This means that before the images are processed for target
detection per se, each input image frame is compared to a reference frame, the offsets between the two
frames are measured, and the input image frame is resampled so that its new "pixels" precisely correspond
to those of the reference frame. The details of this process are described in section 4.2 of this report.

The next processing step is the suppression of all stationary clutter in the input images. This is ac-
complished by computing the temporal mean and variance for each pixel. In other words, two new image
frames are computed from a sequence of input image frames. The first new image is the pixel-by-pixel
temporal mean for the sequence of input frames, and the second new image is the pixel-by-pixel temporal
standard deviation (or variance) for the sequence of input image frames. The clutter is then suppressed

by subtracting the mean image from each input image on a pixel-by-pixel basis, and then dividing the dif-
ference by the standard deviation (or variance) on a pixel-by-pixel basis. As will be discussed in the
following sections of this report, it is not always necessary to divide by the standard deviation or variance.
For example, if the output of the imaging sensor is dominated by sensor noise which is the same for each

of its detectors, then the standard deviation is practically the same for each pixel, and the division is not
necessary. On the other hand, if the output is dominated by photon noise from the scene itself, then the

temporal variations in each pixel tend to a Poisson distribution with the standard deviation equal to the
mean intensity, so that pixels which contain bright objects have a higher standard deviation than do pixels

which contain less bright objects. In that case division by the standard deviation (or variance) is desirable.
(The processing and performance differences for division by the standard deviation and division by the
variance are discussed in section 4.3.)
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Once the input images have teen "whitened" by the suppression of stationary clutter, the temporal

variation in each image pixel has uilt variance and zero mean, because even those pixels which contain
targets contain them for only a small fraction of the time. This processing step can improve the
target-to.clutter ratio by up to 30 dB, and for some applications this is adequate to allow targets of interest
to be detected without further processing. However, when that is not the case, even further improvement
in the target-to-clutter ratio can be achieved by velocity filtering.

Velocity filtering is analogous to time delay and integrate (TDI) used with scanning multi-column
sensors, except that it is applied to multiple frames collected many frame intervals apart in time. In the
simplest case it consists of first two-dimensional shifting each frame with respect to its predecessors by an
amount which just compensates for the target motion from frame to frame, so that in the shifted frames
any target remains stationary. Then the shifted frames are added (integrated over time) on a
pixel-by-pixel basis, which produces one new frame which we call the velocity filter output. This process
increases the target-to-clutter ratio by approximately the square root of the number of frames added, and
thus improves the target detectability. Of course, this procedure can not be carried out without a priori
knowledge of the target velocity in sensor coordinates, and this velocity is usually not known before target
detection and tracking. Therefore, in reality it is necessary to use a bank of velocity filters, with one filter
matched to each region of the two-dimensional velocity space in which targets could appear. The design
of such filter banks is described in section 4.4.

The final step in the processing chain is target detection, and this consists of comparing the output
in each pixel of each velocity filter output with a threshold. The value of the threshold can be set accord-
ing to the false-detection probability which can be tolerated, and it determines the probability of detection
of a target with any specified amplitude. When the threshold is exceeded, the pixel which exceeds the
threshold determines the position (in sensor coordinates) of the detected target, and the velocity filter out-
put for which the threshold is exceeded determines the two-dimensional velocity (in sensor coordinates)
of the target. At that point, track initiation is complete.

4.2 Frame Registration

Here we will describe a practical but effective phase correlation approach for measuring the 2-D
translational offset between a pair of discrete image frames. The algorithm computes a 2-D
cross-correlation of "phase-only" (or nonlinearly whitened) images derived from the original frames, and
measures the location of the resulting correlation peak to sub-pixcl accuracy using a simple parabolic in-
terpolation scheme. The resulting jitter estimates are shown to be biased, but the bias is a function of
signal processing parameters which do not depend on the spatial frequency content of the underlying
scene itself. The bias can therefore be predicted in advance and corrected in real-time by means of a
table4ookup.

A phase correlation procedure with peak interpolation and bias correction can provide very ac-
curate sub-pixel frame registration measurements without the use of computationally expensive
interpolation methods or prior knowledge of scene characteristics. The technique can be used to register
frames that are subject to multiple-pixel as well as sub-pixel jitter or drift. Simulation experiments with

I It __
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synthetically shifted frames indicate that the jitter measurement error for a typical clutter-limited IR scene

is on the order of 0.01 pixel or less.
A key real-time implementation issue is whether the required discrete correlations may be per-

formed in a circular fashion (with an FFT size equal to the frame dimensions) in order to save
computation. An experiment performed on an actual sequence of IRMS long-wave IR sensor images

with significant multiple-pixel drift suggests that circular processing is acceptable so long as the frame dis-

placements are not a significant fraction of the total frame dimension.

4.2.1 Discrete Cross-Correlation. We begin by briefly reviewing the indirect (or frequency domain)

method for computing the generalized cross-correlation between two sampled images [1,21. Denote a

pair of discrete 2-D image frames by fl(k,l) and f2 (k,l) for pixel indices k=0,...,M-1 and 1=0,...,M-1. The

N x N discrete Fourier transforms of the frames are defined by

M-1 M-1

Fi(m'n) = fi(k,)e-J27(km+±n)/N (1)

k=O 1=0

for frames i=1,2 and discrete spatial frequency components m=-N/2....(Nt2)-1 and n=-N/2,...,(N/2)-1. We

will allow N M to account for the possibility of frame zerofill prior to the 2-D FFT that implements (1).

Zerofill is often used to avoid circular wraparound when discrete correlations are computed with the FFT

method. The maximum non-circular correlation lag for an FFT size of N is N-M.

The conventional estimate of the cross-correlation between f and f2 is calculated by taking the in-

verse Fourier transform of a weighted cross-spectrum

Gw(mn) = w(m,n)F 1 (m,n)F 2 (mn) (2)

where * denotes the complex conjugate and where w(mn) is a 2-D weighting function that is used t3
prefilter the cross-spectrum and adjust the shape of the correlation peak. The cross-correlation estimate

itself is defined for various 2-D integer lags (pq) by

(N/2)-I (N)2)-l

r(p,q) 2 ZGw(mn)e (pmqn)/N (3)

m=-(Nt2)+1 n=-(N/2)+1

Note that the summations are performed symmetrically about the dc spatial frequency component lo-

cated at (m,n)=(0,0).

The cross-correlation samples in (3) can be found by brute-force calculation or by taking an N x N

inverse FFT of Gw(m,n). The FFT approach is most efficient unless the required number of lags is known
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to be fairly small. It provides circular cross-correlation estimates for pixel lags ranging from -N/2 to
(N2)-4 in either spatial dimension.

4.2.2 Discrete Phase Correlation. The discrete phase correlation is an alternative correlation func-
tion based on a cross-spectrum which is normalized to unit magnitude at all frequency components. With

this approach, (3) is replaced by

(mn) =wm w(mn) Fl(m, n) F2 (m, n) F,(m, n) F2 (m, n)
WF1 (m, n) I IF 2 (m, n) I IF;(m,n)F2 (m, n) I

and the cross-correlation estimate becomes

(N/2)-1 (Nt2)-1
1 

22 (w(mn)e pm+qn)/N

m=-(N/2)+l n=-(N/2)+1

A block diagram of the discrete phase correlation processing is shown in Figure 2. Mean removal
pre-processing is included to eliminate the triangular "pedestal" that results from cross-correlating a pair
of frames with nonzero average levels. Also, since the indices for FF algorithms are conventionally
defined as running from 0,...,(N/2)-1 rather than -N/2)+1 .... (N/2)4 as shown in (5), a final (optional) 2-D
circular shift is included to center the (0,0)4ag in the output cross-correlation array r(p,q).

Phase correlation is best viewed as a weighted cross-correlation of two "whitened" image frames
whose spatial frequency components are defined by F1 (1,,)I Fl(mn) and F2 (mn)/ F2 (m,n) [, respec-

tively. A whitened frame retains just the phase intormation in the original spatial frequency components,
and is often referred to as a phase-only image. Spectral whitening is a nonlinear filtering process which
tends to enhance the high-frequency scene features (such as clutter edges) that contain most of the useful

information for frame registration. Figure 3(a) shows an IRMS sensor frame collected in the longwave
IR band (8-12 pm) which contains a relatively low-contrast desert terrain and sky clutter background. The
phase-only image corresponding to this frame is shown in Figure 3(b). The whitening process em-
phasizes the relatively few significant clutter boundaries that are present in the original scene.

Since many natural scenes in the emissive IR region have a substantial amount of power con-
centrated at the low spatial frequencies, a conventional frame cross-correlation often produces a relatively
broad output peak. The spectral whitening used by the phase correlation procedure tends to sharpen the

peak, leading to more precise measurements of frame displacement. For eamnple, Figure 4(a) shows a
contour plot of the correlation function for a pair of jittered IRMS frames in the vicinity of the peak. A
corresponding phase correlation function is shown in Figure 4(b).

4.2.3 Parabolic Peak Interpolation. The location of the peak in the phase correlation function (5) is
a measure of the relative displacement or misregistration between the frames f, and f2" To estimate the dis-
placement to sub-pixel accuracy, the peak position must be accurately interpolated from the finite set of



SCC-R-124-1 10 November 1991

Stored Stored
Reference Frame Spectral

Transform Weights

Input MenForward Conjugate Nonlinear 2-13
Frame Remova 2-13 FFT Multiply Whitening Weighting

Input Outputs

Phase Correlation Circular
Function Sh4

Figure 2. Block Diagram of Phase-Correlation Processing.
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(a) Before Whitening.

(b) After Whitening.

Figure 3. Long-Wave IRMS IR-Sensor Image: (a) Original Scene, and (b) After Nonlinear Whitening
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samples. The classical solution to this problem involves the application of an appropriate 24) interpola-
tion function on the discrete. cross-correlation estimate. For example, in the case of an unweighted
correlation where w(m,n)=l at all spatial frequencies, the desired interpolation function is
(sinwm/nm)(sin-nnan). Unfortunately, the ideal interpolator can only be approximated on a finite-length
record and is too computationally demanding to consider for most real-time applications.

A more practical approach is to fit a polynomial to the cross-correlation samples in the vicinity of
the highest peak. A separable quadratic polynomial is the simplest choice since it uses only three points
in either dimension: the peak sample and its neighbors to either side. Suppose the largest value of the
phase correlation r(p,q) occurs at lag sample (po,qo). Parabolic estimates of the true pixel misregistration
(p,q) are then given by

p = Po +8, (6a)

q = % + e, (6b)

where a and e denote the estimates of the fractional shift in either frame dimension, and are defined by

F( po + 1, qo) -F( po- 1, qo)

2F[(po, +1q) +2 F(Po, qo)-(p qo- 1) TTb)

For the phase correlation function F(p,q) in (4)-(5). (p,q) correspond to the measured 2-D misregistration
(in pixels) of the second frame f2 with respect to the first frame fl.

4.2.4 Measurement Bias Correction. In general, the misregistration measurements defined by (6)
are biased. We have calculated the bias by assuming that the second frame appears as a translated replica
of the first frame due to jitter and/or drift of the sensor boresight. The actual offset of frame f2 with
respect to frame fI in pixel units is defined as (p0+6,qo+e), where (poqo) and (6,e) represent the integer
and fractional parts of the 2-D shift, respectively. Both 6 and c can take on values in the range [-0.5,+0.51.

Assuming that the highest peak of the phase correlation function occurs at the correct integer lag
(poq o ). the error in measuring the true shift is equivalent to error incurred in measuring its fractional com-
ponents (ac). For circular phase correlation combined with the parabolic peak estimators defined in
(7), an exact analytical relationship between the measurement 6 (or c) and the actual value of 6 (or e) can
be found. This relationship is

I w(m)sinr'2 wMsin 2  1wm
6()LN hI FR (8)

w(m) 2 -2cos g- Cos [RM(8

LN
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where the indicated summations are performed over the spatial frequencies indices m = -N/2+1,..,N/2-1.
The expression for ; (e) has the same form; it is obtained simply by replacing o with e on the right side

of (8).
A key assumption in the derivation of (8) is that the 2-D weighting function w(mn) applied to the

whitened crossspectrum in (4) is real-valued, separable as w(m)w(n), and symmetric about dc spatial fre-
quency. Under these conditions, the measurement ; defined by (7a) depends on 6 but not on e, and
likewise for s. This is convenient since it allows the measurement bias to be calculated independently in
each dimension.

Figure 5 shows curves of 8(8) or ; (e) for N=256; Figure 5(a) for the case of uniform spectral weight-
ing and Figure 5(b) for a heavily tapered weighting function defined by the square of the Hanning
window:

w(m) = [1+cos2m] ] 2  (9)

The difference between the solid curve and the 450 dotted line in each plot is the measurement bias. The
magnitude of the bias is smaller for the narrowband Hanning 2 spectral window because the correspond-
ingly broader correlation peak can be more accurately described by a 2nd-order polynomial.

Figure 5 also shows that an invertible one-to-one relationship exists between the measurement ; and
the true fractional shift 6. This means that it is possible to correct the measurement bias using a
lookup-table containing 6 as a function of 6. Such a table can be pre-calculated and stored for rapid access
in real-time. A complete block diagram of the proposed frame registration algorithm, including 2-D
peak interpolation and a built-in bias correction step, is shown in Figure 6. This processing has been
implemented in VAX-FORTRAN for processing in non-real-time.

It is important to note that the sub-pixel jitter measurements (6 ,c) depend only on the true fractional
shifts (6,e) and the processing parameters N and w(n). They specifically do not depend on the charac-
teristics of the background scene in the two frames. This feature is a direct result of the nonlinear
whitening operation (4), and is an important practical advantage of phase correlation over conventional
correlation. Since the relationships ; (6) and e (e) are invertible, and since we can choose the transform
dimension N and the spectral window functions w(m) and w(n), the registration scheme shown in
Figure 6 can obtain unbiased jitter measurements without prior information about the background.
Accurate measurements are more difficult to achieve with a conventional correlator, where the inherent
bias of a finite-sample interpolator depends explicitly on the unknown spectrum of the scene (see, for ex-
ample, [3]).

4.2.5 Circular vs. Non-Circular Correlation. The measurement equation (8) is exact when the
sample crossGpectrum length N in either dimension is the same as the frame dimension M. This cor-
responds to the case where no zerofill is applied to the frames and the resulting 24) phase correlation is
circular. Circular correlation is the natural approach if the total frame misregistration is known to be less
than a pixel or so in either dimension. It has the advantage of minimizing the required FFT size, and it is
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capable of producing nearly perfect sub-pixel jitter estimates for a pair of frames dominated by back-

ground clutter. However, in cases where extreme jitter or drift over many pixels may be encountered, the

circular wraparound in the periodic correlation may lead to unpredictable measurement results.

The wraparound problem can be avoided by zerofilling each frame to a larger dimension N>M

prior to the forward FFT. In particular, if the maximum frame-to-frame drift is limited to ±K pixels in

either direction, the value of N should be chosen such that N>M+K The obvious cost of doing this is

the increased computation associated with the larger FFT size. However, there is another, more subtle

effect which must also be considered. This has to do with the fact that the discrete Fourier transform of a

bandlimited, sampled image with zerofill is equivalent to an interpolation of its periodic components in

spatial frequency, and such interpolation cannot be implemented exactly with a frame array of finite spa-

tial extent. Interpolation noise in the phase of the whitened cross-spectrum may lead to unpredictable

errors in measuring the location of the correlation peak. Fortunately, it has been found empirically that

this problem can at least be mitigated through the use of appropriate spectral weighting.

Although either method can be designed to work well, it would be desirable to use circular correla-

tion whenever possible to minimize real-time computation. Intuitively, one would think that circular

processing might be acceptable so long as the frame-to-frame displacements are not a significant fraction

of the total frame dimension. This notion has been confirmed by simulation experiments which have

been performed.

4.3 Velocity Filtering

4.3.1 Velocity Filter Concept. Figure 1 shows the algorithm chain for a typical application of velocity

filtering in an electro-optical sensor system. The output of the focal plane array is assumed to have been

pre-processed to provide gain/offset correction, time-delay-and-integration or TDI (in the case of a scan-

ning sensor), and radiation hit suppression. Detection and track initiation functions consisting of frame

registration, clutter suppression and velocity filtering are then performed in a high-performance signal

processor, after which tracking, discrimination, and other higher-level functions are carried out in a con-

ventional general purpose processor. In this section we are concerned exclusively with the velocity

filtering function, which is computationally the most intensive of the operations shown in Figure 1 and

which requires a large amount of hardware using existing processor architectures.

The bank of 3-D velocity filters is employed to detect objects moving against the whitened clutter

background. For sub-pixel or "point" targets, the hypothesis testing technique used in velocity filtering 14]
involves comparisons of integrated pixel intensity along candidate trajectories determined as follows:

a) Shift each frame with respect to its predecessor by a distance equal to an assumed 2-D

velocity times the inter-frame period;

b) Add the shifted frame to a running sum frame.

After all frames in the sequence have been processed, the integrated intensity at each pixel in the output

frame is compared with a fixed threshold. If the intensity exceeds the threshold, the hypothesis that the

corresponding trajectory contains a target is accepted and a target is declared; otherwise, the target
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hypothesis is rejected. The foregoing procedure, repeated for each assumed 2-D target velocity, imple-

ments the velocity filter "bank" shown in Figure 1.

For additive targets moving against a whitened background, the velocity filtering process provides

an effective improvement in the signal-to-noise ratio (SNR) proportional to the square root of the num-

ber of frames integrated. Processing an image sequence of length 10 frames, for example, increases the

SNR by a factor of ZT'- 3.2 or 10dB. The SNR gain leads to improved target detectability relative to that

obtained with single frame thresholding.
Velocity filtering also provides the sensor-apparent 2-D position and velocity information needed

for automatic track initiation. This feature is inherent to the use of a filter bank which partitions the ap-

parent velocity space: the individual filters tend to separate the targets in accordance with their 2-D

velocities. The velocity filter approach is particularly attractive for applications involving multiple targets,

since the basic computations required are independent of the number of targets.

Velocity filter computations have the following general characteristics:

a) They utilize simple operations (primarily fetch, add and store) at very high rates;

b) They require very few data-dependent branching operations (until final thresholding);

c) They employ very large data sets.

Because of these characteristics, it turns out that the processor hardware requirements are dominated by

memory. One reason for this is the fact that for a fixed memory access time, an increase in the required

number of memory accesses per unit time can, beyond a certain point, be accommodated only by an in-

crease in total memory size. For example, in order to meet the processing throughput requirements, the

same data may have to be stored redundantly in duplicate memory banks, each of which is connected to a

separate processor matched in speed to the memory bandwidth. A second reason is that the total

hardware cost measured in terms of number of chips, power consumption, etc., is nearly always

dominated by a processor's memory rather by its computational or communications capabilities. For in-

stance, in the SCC-100 parallel processor. developed by Space Computer Corporation specifically for

image sequence signal processing, memory accounts for 80% of the total number of chips and 75% of the

total power consumption [5].

As a consequence of the above considerations, efforts on velocity filter algorithm design and ar-

chitecture development must emphasize minimizing both the number of memory accesses and the total

memory size.

4.3.2 Velocity Filter-Bank Design. The most obvious way to reduce the amount of hardware needed

to implement a velocity filtering scheme is to minimize the number of filters which must be computed.

This requires a systematic procedure for the design of filter banks to meet specified velocity coverage re-
quirements.

The basis of the velocity filter approach for detecting moving targets in an image sequence is the

matching of hypothesized trajectories to the observed image data. The hypothesized trajectories are as-

sumed to be straight lines originating from the pixels of the initial image (corresponding to constant
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target velocity during the observation time). The number of trajectories per pixel, i.e., the trajectory den-
sity, must be made large enough so that the performance loss due to mismatch between any actual

trajectory and a hypothesized trajectory will be acceptably low. The complete set of candidate trajectories
for any pixel constitutes a "velocity filter bank." System design guidelines leading to good performance

with a computationally-efficient implementation of the filter bank are:

a) Maintain background clutter near zero apparent velocity by frame registration (by either
image shifting or by sensor slewing);

b) If possible, select the frame rate such that the minimum-velocity target moves at least one
resolution cell during the inter-frame period;

c) Choose the focal plane integration time so that all targets remain in their resolution cells
during this period (to prevent target "streaks" from occurring).

The number of velocity filters required for a particular application (i.e., the number of candidate

trajectories per pixel) is determined by the target velocity uncertainty and the velocity filter resolution.

For a given filter, the normalized velocity mismatch magnitude T'is defined by

1v = Av KT/ob (10)

where av is the apparent velocity mismatch magnitude, K is the number of frames filtered, T is the

inter-frame period, and ab is the one-sigma Gaussian blur circle radius. A plot of peak filter response ver-

sus normalized velocity mismatch is shown in Figure 7 with the number of frames filtered as a parameter.

These curves are derived on the basis of a Gaussian-shaped target of "width" ab and the shift-and-add im-

plementation of the velocity filter. The nominal filter passband (half-power width) can be determined

from Figure 7 by locating the point at which the peak filter response is attenuated by a factor of 11/2 =
0.707. As can be seen from the figure, this occurs at the normalized mismatch Tv-= 3, so that from (1) the
two-sided half-power width (in velocity units) is given by

"v3dB = 6 ab/KT. (11)

It is assumed that the sensor is designed so that the optical image is spatially bandlimited by the

resolution of the optics, and is sampled by the focal-plane detector array in accordance with the Nyquist
criterion. This generally requires a pixel size approximately equal to the blur circle radius ab. For such a
sensor the above equation shows that the nominal velocity filter passband for K = 10 frames is 0.6 pixels
per frame.

The velocity filter bank can be designed by close-packing circles with diameter Av3d B to completely

cover the area representing the range of possible target velocities in 2-D velocity space, as illustrated in

Figure & System and filter bank design parameters for this example can be summarized as follows:

a) Blur circle ndius (ab) - I pixel;
b) Number of frames (K)= 10;
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c) Maximum signal-to-noise ratio loss = 0.5 (3 dB);
d) Minimum apparent velocity = 1 pixel per frame;
e) Maximum apparent velocity = 10 pixels per frame.

The total number of filters required for this case is 921.
The use of 3-dB nominal filter spacing is a common practice in the design of filter banks for related

applications such as pulse-Doppler radar signal processing. Adthough the peak signal loss in any one fil-
ter is 3 dB, the effective loss in detectability can be considerably less than this. This is because a target
with velocity midway between several adjacent filters has a chance of being detected in multiple filters. A
detection analysis typically shows that the use of 3-dB filter spacing provides an average loss in sensitivity

of less than 1 dB relative to the perfectly matched case. For example, to achieve a detection probability Pd

of 0.9 at a false alarm probability of 10-6, the SNR at the output of a matched velocity filter must be about

15.5 dB. If this SNR drops to 12.5 dB (i.e., 3 dB down) due to velocity mismatch, the single-filter detec-
tion probability drops to 0.32. However, if the same target has an independent chance of being detected
in four adjacent Liters (at 12.5 dB SNR per filter), then the probability of a detection occurring in at least

one of the filters is 1-(1--0.32)4=0.79. This corresponds to an effective loss in sensitivity of only 0.7 dB

relative to the matched case. Thus, the use of 3-dB nominal velocity filter spacing appears to be a practi-
cal compromise between the conflicting desires for low average mismatch loss and a small number of
filters.

Figure 9 shows the number of velocity filters required as z function of the number of frames and

the radius of the apparent velocity uncertainty region (in pixels per frame) for a sensor with crb = 1 pixel.

For an apparent velocity range between 1 and 10 pixels per frame, with K = 10 frames, it can be seen that
the approximate number of filters required per pixl is bctween 10 and 900. Since the velocity

resolution (11) is inversely proportional to the number of frames, the number of filters grows as the
square of the number of frames processed (for a fixed velocity uncertainty region).

4.3.3 Streak Detection. An alternative approach to the "dwell in cell" filter design (in which the
focal-plane detector integration time is chosen to be short enough so that a maximum-rate target moves

by no more than one detector width during the integration time) is "streak detection," in which the in-
tegration time is set to equal to the full inter-frame period, and faster targets streak over multiple

detectors during the integration time. Filter design for this case has been studied in [6].
The basic difference between the two approaches is that for the dwell-in-cell approach each velocity

filter covers a circular region of the angle-rate uncertainty region, and the filter output increases with the
number K of frames processed as 31 for all target velocities, while for the streak-detection approach each
velocity filter covers a larger oblong region, and the filter output is proportional to 'fVT'where v is the nor-

malized target velocity in pixels/frame. Thus, the streak-detection approach requires fewer filters, but
provides less processing gain for higher-velocity targets. If the higher angular velocities are attributable to
the targets being closer to the sensor, and therefore stronger, then the streak-detection approach is the

appropriate one.
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developing a real-time moving target detection system has shown that the hardware requirements for
velocity filtering are driven primarily by the need for extremely high rates of memory access, particularly

when the number of filters is large. In fact, the velocity filter bank is a computational problem that is
largely memory access limited rather than compute bound. This characteristic has a major impact on
processor cost since memory is an expensive system element in terms of chip count and power consump-

tion.
We have found that the hardware requirements for 3-D velocity filtering can be reduced by several

orders of magnitude by carefully managing the size of the filter bank and by devising algorithms, com-
putational strategies and architectures that minimize the required memory size and the number of

accesses to memory.

4.4.1 Computational Strategies. The maximum4ikelihood hypothesis testing procedure which is the

basis of velocity filtering consists of integrating the intensity along candidate trajectories through the
frame sequence, and comparing the result to a fixed detection threshold. This is equivalent to testing for a
nonzero mean intensity in a sequence of Li.d. Gaussian pixel observations along each assumed path

through the frame sequence (or "stack"). A basic implementation issue is the strategy for carrying out the
pixel integration process for the multiple trajectories that constitute the velocity filter bank. Figure 12 il-

lustrates three distinct alternatives that can be considered. In the first approach shown in Figure 12(a),
the states (or partial sums) for each trial trajectory at every pixel in the current frame are retained in
memory. This is referred to as theframe-first strategy, since all of the velocity filter states at each pixel in a

frame are updated before going on to the next frame in the sequence. Recursive velocity filtering algo-

rithms are a prime example of the frame-first computational approach. Figure 12(b) shows a pixeifuv
strategy, in which the filter trajectories starting at a given pixel in the first frame are traced all the way to

the bottom of the frame stack and thresholded before moving on to the next pixeL Outputs for the "tree"

of trial paths that constitute the entire filter bank are thus computed on a pixel by pixel basis. The third
approach, referred to as the fifrer frst strategy and sketched in Figure 12(c), computes path sums along
trajectories of the same slope (or 2-D velocity) emanating from every pixel of the initial frame. Multiple
filters in a bank are computed back-to-back by repeating the same procedure using different sequences of

2-D frame shifts. The filter-first approach leads to the intuitively-appealing "frame shift-andad" inter-
pretation of velocity filtering. It is also readily implemented on array processors, since each filter can be

computed by applying a sequence of vector shift-accumulate operations to ordered pixel data stored in a

frame buffer.
Although all three methods can be designed to yield the same results, there are major differences

among them from an implementation standpoint. For example, in frame-first processing, the inter-
mediate states of all velocity filters at every pixel must be stored, whereas with pixel-first or filter-first
processing it is necessary to store the input frame stack. In many surveillance applications there are

hundreds or thousands of velocity filters but only a few tens of frames being integrated; thus it is clear that

the amount of memory is minimized by storing the frames rather than the filters. For this reason alone,
the use of filter-first or pixel-first computational strategies will generally lead to more economical
hardware implementations of large4cale filter banks.
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The only disadvantage of the filter-first and pixel-first strategies is that filter computation cannot
begin until the entire frame stack has been collected and stored. In contrast, the frame-first approach al-
lows the input images to be processed on the fly as they are received. This makes the frame-first strategy
attractive for applications where processing latency is critical and the number of filters is relatively small
(e.g., closed4oop single-target tracking). However, in long-range surveillance systems that employ large
filter banks, one would probably be willing to trade a reasonable amount of processing delay in exchange
for a many-fold reduction in processor memory size.

4.4.2 Alternative Algorithms. The velocity filtering concept discussed so far involves space-time
domain integration of word-precision pixel intensities along hypothesized trajectories through a frame
stack. Two important variations of this basic algorithm were examined in detail because of their potential
for simplifying the filter computation and reducing memory access and data storage requirements with
minimal performance loss. These alternative algorithms, the sequential velocity filter and the single-bit

velocity filter, are discussed in turn below.
Sequential Velocity Filter. The basic velocity filter is a "fixed sample size" hypothesis testing proce-

dure in which the integrated intensity along each trajectory is compared with a single detection threshold
after all frames in the sequence have been processed. Since this requires at least one memory access per

pixel per frame per velocity filter, the total number of memory accesses per second can become very large
for typical acquisition scenarios. A modification of the basic velocity filter which reduces the number of
memory accesses and computations has been developed by S.D. Blostein and T.S. Huang [11]. The key
feature of this approach is the use of a truncated sequential hypothesis test in place of the conventional
fixed sample size test. Truncated sequential testing is a recently developed variation of Wald's classical
Sequential Probability Ratio Test (SPRT) [12] in which it is assumed that the test is terminated after a
specified number of stages. The truncated SPRT was originally defined by Tantanatara and Poor [13] in
terms of a "mixture" between a standard fixed sample size hypothesis test and a pure sequential test.

Figure 13 illustrates a truncated sequential testing approach in which the cumulative intensity
along a given trajectory is compared with two thresholds after each new frame pixel is added to the run-
ning sum. If the integrated intensity exceeds the upper threshold, a target is immediately declared. If the
integrated intensity falls below the lower threshold, the hypothesis that the trajectory contains a target is
rejected, ending the test for that pixel and that velocity. Otherwise, the intensity value falls between the
two thresholds and the decision is deferred: the test continues to a later stage and the trajectory state is
stored. If the test reaches the last frame a forced decision is made between the two hypotheses, i.e., the
test sequence is truncated. This procedure permits decisions to be made earlier than the last frame, so
that on average it is necessary to process fewer pixels per trajectory (although it should be noted that the
maximum number of frames in a truncated sequential test must be slightly larger than the length of the
equivalent fixed size test).

Using results given in [13], expressions can be derived for the maximum test length or number of
SPRT stages (K) and the upper and lower thresholds for detecting an additive point target in white
Gausian wise. The specified SPRT design parameters are the single4rame target SNR and the desired
probabilities of false alarm (a) and detection (0). The relevant performance parameters for the truncated

SPRT are as follows:
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ASN 0 = the average sample number under the noise-only hypotheses H0 (the expected num-
ber of stages required to terminate the test under HO);

ASNI = the average sample number under the target-plus-noise hypothesis H1 (the expected
number of stages required to terminate the test under H1);

P fa = the actual false alarm probability of the test,

Pd - the actual probability of detection of the test.

The average sample numbers ASN 0 and ASN 1 are calculated in terms of the discrete probabilities that the
sequential test reaches a given stage or frame k (k=1,...,K) under the hypotheses H o and H1 , respectively.
These so-called stage probabilities can be evaluated analytically since the sequence of partial sums com-
puted along any trajectory in a stack of whitened frames is a correlated Gaussian random process. The
actual detection performance of a truncated SPRT (Pfa and Pd) will differ from the specified design perfor-
mance (a and P), although the design is theoretically conservative in the sense that Pfa~a and Pd P.
However, the exact performance of a test can be predicted by evaluating the Gaussian conditional prob-
abilities that each hypothesis is accepted, given that the test reaches a particular stage.

Figure 14 shows a direct comparison of two test procedures for an acrual probability of detection of
0.9 and a probability of false alarm of 10-8.The plots show the number of frames required to achieve this
detection performance as a function of the input amplitude signal-to-noise ratio (SNR) per frame. In the
case of the fixed sample-size test (solid line), the ordinate corresponds to the total number of frames in-
tegrated. In the case of the truncated SPRT (dashed lines), the ordinate corresponds to the average
number of frames which must be processed. Two curves are shown for this test. The upper one (H1 ) indi-
cates the average number of frames required to declare a target when one is present (ASN 1 ); this value is
slightly below that required for the fixed sample-size test. The lower curve (H) indicates the average num-

ber of frames required to reject the target-present hypothesis (ASN0); this number is considerably below
that for H1 .

For illustration, assume that the input SNR is equal to 2 (6 dB). Figure 14 shows that a fixed
sample-size test requires 12 frames to achieve the assumed detection performance, while the truncated se-

quential test (H0 curve) requires slightly more than 2 frames on the average. Averaged over a large
number of trial trajectories, most all of which contain only noise, the number of memory accesses re-

quired for the truncated sequential test will be about one-sixth the number required for the equivalent

fixed sample-size test. Simulations of sequential velocity filtering on synthetic and real image sequences of
length 10 to 50 frames have confirmed predicted reductions in the number of pixel computations by fac-
tors of 4 to 7 relative to fixed size tests of equivalent performance. These reductions are the main

motivation for considering a sequential velocity filtering approach.
Sequential velocity filtering is most effectively implemented with the pixel-first strategy illustrated

in Figure 12(b). This makes it possible to exploit cases where adjacent trajectories in the filter bank share

the same quantized path for the first several frames before diverging. If the hypothesis test for a given
trajectory is terminated early, a linked list can be used to quickly eliminate other filters which share the
same trajectory segment. However, for small to moderate numbers of frames and a properly designed fil-
ter bank, opportunities for such "tree pruning" will probably occur only on the first or second frames.
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Single-Bit Velocity Filtering. As previously noted, in conventional processor architectures the
amount of hardware required for velocity filtering is dominated by memory. It is therefore natural to con-

sider the possibility of using reduced-precision image data. This can be accomplished by quantizing the

whitened images to only a few levels, and in the limit, to only two levels (i.e., by using single-bit data).

This technique was in fact employed in the binary moving-window detector (also called the M-out-of-N or

coincidence detector) first used in radar systems many years ago when digital processing technology was

relatively primitive [141. More recently, Chu [151 and Preston [16] have considered the use of one-bit data
for moving object detection.

Figure 15 shows a diagram of the single-bit filter concept. The pixel values along a particular trajec-
tory through a stack of K whitened frames are denoted as xk, k=l,...,K Prior to filtering, these data are
hard-limited by a one-bit quantizer with normalized threshold t, which produces binary-valued pixels zk

according to the rule

1k ;xk>tark,

10 ; x0 ta k,

where ak is the rms level of the zero-mean noise background in the pixel containing xk . The single-bit

velocity filter is then equivalent to a binary integrator which sums the K bits along a trajectory to produce

an output count Z, which is compared with a count threshold k0 (l kI K) for detection.

Two thresholds, a quannation threshold t and a count threshold k0 , are chosen to design a single-bit

velocity filter. A reasonable design criterion is to optimize filter sensitivity at a specified level of perfor-

mance. This leads to the following design procedure: for a specified detection performance (PdPfa) and

number of frames integrated (K), minimize the required SNR through proper selection of the thresholds
t and k0 . This approach also minimizes the number of frames required to achieve the specified perfor-

mance at a fixed input SNR.

The performance of the single-bit velocity filter for a nonfiuctuating point target in white Gaussian

noise is found by a straightforward application of Bernoulli probability analysis. Figure 16 shows some

results for the case where the performance is fixed at P d=0.9 and Pfa = 10-6 . The curves show the minimum

target SNR (in dB) required to achieve this performance as a function of the count threshold k0 for

various numbers of frames K. For example, the points on the curve for K=8 show how the minimum

detectable SNR changes as the count threshold k0 is varied from 1 to 8, with the quantization threshold t
adjusted to maintain the desired false alarm probability. Evidently, the detection sensitivity of the 8-frame

binary filter is highest when k0 -5 (i.e., a 5-out-of-8 coincidence detection criterion). In fact, each curve

shown in Figure 16 has an optimum k0 which occurs about midway between the extremes of low

coincidence (e.g., k0 =1) and total coincidence (k0 ,K). The behavior represented by Figure 16 appears to

be broadly applicable in cases where high detection performance (e.g., Pd 0.9 , Pfa 10"6 ) is required. Thus,

as a general rule for single-bit velocity filtering of K frames, one should choose the count threshold to be

k0=K/2+1; then calculate the binary quantization threshold t that achieves the desired false alarm prob-

ability.

The use of one-bit frame data in the velocity filter leads to a loss in detection performance relative

to a full-precision implementation. Figure 17 shows a direct performance comparison for the case where
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Pd=0"9and Pa= 10 -6 . The solid line gives the number of full-precision frames required to achieve this per-

formance vs. the target input SNR, while the dashed line above shows the same relationship for the
optimum single-bit velocity filter. For a fixed number of frames K, the effective SNR loss due to optimum
binary quantization is a factor of about 1.26, or 2 dB. The quantization loss would lead to a degradation

in detection performance if nothing were done to compensate for it. In order to obtain the same perfor-
mance as a full-precision velocity filtering system, it is necessary to integrate enough additional frames to
obtain a further processing gain of 2 dB (a factor of 1.26). This requires an increase in the number of
frames processed by a factor of (1.26) 2 - 1.58. Moreover, since the size of the filter bank grows as the

square of the number of frames (for a fixed velocity coverage), the total number of filters must be in-
creased by a factor of (1.58)2=2.5. Thus, the total number of "operations" required to implement a
single-bit filter bank is (1.58)3.4 times that of a full-precision system with equivalent performance.

However, since these are one-bit operations, major reductions in the amount of computational hardware
and memory can be realized even after accounting for the increased numbers of frames and filters.

Algorithm Comparison and Selection. Through proper design it is possible to achieve essentially
the same detection performance with the basic, sequential or single-bit velocity filtering approaches.

Therefore, the choice of which algorithm to use in real-time applications can be governed by hardware
considerations; primarily, the suitability of the various methods for implementation in high-speed
special-purpose processors dedicated to the velocity filtering function.

On this basis, the sequential algorithm was found to have a key disadvantage, even though it
reduces the average number of computations per filter by an factor of 5 or more relative to the other
methods. The drawback is that the SPRT is inherently a data-dependent procedure which requires an un-

predictable pattern of access to the pixel data in the frame stack. In a single-processor system (e.g., a
minicomputer), this is not a problem since only one pixel can be randomly accessed and processed at a
time. However, the requirement for data-dependent processing along every filter trajectory makes it dif-
ficult to fully exploit the concurrency available in special-purpose processors that can rapidly apply fixed
sequences of operations to vectors of pixels from the frame stack. From this viewpoint, sequential algo-
rithms appear to provide substantially less payoff than fixed sample size algorithms for real-time
applications. Nonetheless, it should be noted that sequential testing provides perhaps the best approach
for implementing large numbers of velccity filters in a general-purpose computer.

The selection of full-precision vs. single-bit data in a fixed size test was examined in detail, and led to
the choice of a filter-first single-bit approach as the best algorithm for real-time implementation. In terms
of data memory reduction, the use of one-bit images for velocity filtering is clearly attractive. In addition,
single-bit processing was found to have important architectural advantages which, in terms of hardware,
are even more significant than the obvious reduction in the amount of memory required for frame
storage. These advantages of single-bit processing hold even though the total number of pixel operations
must be increased by a factor of about 4 to obtain the same performance as the basic full-precision

velocity filter.

4.4.3 Velocity Filter Processor Architecture. Space Computer Corporation has developed a new

special-purpose architecture for single-bit velocity filtering called the Velocity Filter Processor (VFP). The
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design is based on a concurrent bit-serial processing approach which maximizes the filter computation

rate for the following nominal design parameters:

a) Frame size = 256 x 256 pixels (one-bit per pixel);
b) Frame stack size = 16 frames.

The binary frame stack specification of 16 corresponds to an SNR gain of 3.2 (10 dB), which is felt to be a
minimum operationally significant "quantum" of velocity filtering.

Concurrent Bit-Serial Approach. Figure 18 shows a basic block diagram of the bit-serial approach
to velocity filter bank computation. The single-bit image sequence data are broadcast from a single
memory on a bit-serial, pixel-by-pixel basis for all frames in parallel to a bank of special-purpose VFP
nodes. A key feature of this arrangement is th,; use of the memory as an active processing element, rather
than as a passive storage medium for the input frame sequence. This permits a major savings in
hardware, since it is not necessary to provide duplicate frame storage in all of the nodes.

In the filter-first bit-serial approach, 16 bits representing the time-varying binary values for a single
pixel in the frame stack are available at the VFP node inputs on each processing cycle. Each node
processes these inputs concurrent6- to achieve the highest possible filter computation rate. This approach
requires a mechanism for aligning the incoming pixel data in the VFPs to implement the frame shifts re-
quired by the velocity filters.

In the concurrent bit-serial processing scheme, each frame is envisioned as a one-dimensional bit
stream with pixels arranged in lexicographical order. To implement the filter for a particular trajectory
through the frame stack, the input bit streams corresponding to the frames are delayed (or shifted) with
respect to one another in accordance with the filter velocity, as shown in Figure 19. Then the bits along
each vertical column through the skewed frame stack are added and compared against a count threshold.
The output from each node is a set of threshold crossing reports, each consisting of target position index,
velocity filter index and count magnitude.

Operational Description. Figure 20 shows a functional block diagram of the proposed concurrent
VFP architecture with 16-frame bitserial input as described above. The VFP has four basic functional
elements: a sequencer/controller, a group of delay lines (16 total), a bank of decoders, and a FIFO.

The sequencer controls three distinct operations: write into the delay lines, read out of the delay
lines, and add/compare. Each delay line shown in Figure 20 is a memory whose size in bits depends on
the maximum frame shift required for the corresponding frame. One frame in the stack (denoted as bit
16 in the figure) is always designated as the reference and need never be shifted; it requires no delay at all
in principle. Bit 1 represents the frame which must be shifted the most; it requires the longest delay line.
For example, if the maximum frame shift could be as large as half the full frame in either dimension, then
the length of delay line 1 would be approximately equal to half the total number of pixels in the frame.
For the remaining input bits, the delay line length varies linearly between these two extremes as illustrated
in Figure 20.

If the 16 input bits are presented to the VFP in natural frame order, then the delay line system
shown in Figure 20 can shift the incoming bit streams in only one direction (i.e., backward in time). To
cover 2-D velocities in all possible directions, the VFP must have the capability to shift the frames either
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forward or backward. A bit multiplexer (MUX) is therefore included to reverse the order of the input bits

when necessary to implement the actual frame shifts required by the filter being implemented.
The sequencer maintains two pointers (read and write) and a counter for each of the 16 delay lines.

The write pointer (WP) points to the position on the line into which an incoming bit will be written. The
counter is initially set to the number of pixels by which the corresponding frame is to be delayed. After

each input bit is processed, the write pointer is incremented and the counter is decremented. The read
pointer (RP) initially points to a null position at the start of the delay line and remains there until the

counter reaches zero. Thereafter, the read pointer is incremented along with the write pointer after each
incoming bit to maintain the appropriate frame delay. Zeros are read from the line while the read pointer
is in its initial position (i.e., before the counter decrements to zero).

Reading the 16 delay lines simultaneously transfers 16 bits along a particular trajectory to a three
stage table-lookup decoder, which effectively adds the bits and compares the resulting count against a
threshold. The first decoder stage is implemented with a pair of 256 x 4 bit RAMs which perform count
magnitude table-lookups on bits 1-8 and 9-16, respectively. The resulting pair of 4-bit counts are then com-
bined to form an 8-bit address into the second magnitude decoder (another 256 x 4 bit RAM), which
outputs the total count for all 16 bits. The final stage is the threshold decoder, a 16 x 1 bit RAM contain-
ing ones and zeros to indicate "hit" or "miss" as a function of the bit count represented by the input 4-bit
address. When the threshold decoder produces a "one," indicating that the sum of the bits exceeds the

selected count threshold, then the total count (target amplitude) and the current location of the read
pointer (target position) are stored in the FIFO as output detections.

This basic cycle is repeated under the control of the sequencer until all the pixels in the frame have
been processed. Additional velocity filters are implemented on the stored binary frame stack by resetting
the delay line pointers and counter for the new 2-D velocity, and then passing the bit-serialized pixel
stream through the device again. Since the the filter set-up time is negligible compared to the filter
processing time, it is anticipated that multiple filters in a bank can be computed essentially back-to-back
by a single VFP node.

Throughput and Memory. A key feature of the proposed VFP design is its capability to achieve

very high filter computation rates on a single-chip device. The fiter processing rate is determined by the
time required to complete a cycle consisting of a 16-bit delay line write, a 16-bit delay line read, and two

8-bit RAM table-lookups. Ignoring the strong possibility of partial concurrency in these operations, the
basic 1/0 cycle time for the VFP is estimated to be 50 nsec if implemented on a single VLSI chip. The to-
tal time required to compute one velocity filter is therefore bounded by (256 x 256 pixels) x 50 nsec =
3.3 msec. This corresponds to a sustained computation rate of at least 300 velocity filters or 20 million tar-
get path tests per second on a single-chip node!

The amount of memory for the VFP is dominated by the length of the delay lines, which is in turn

established by the maximum frame shift to be implemented. For the proposed design, the maximum shift
is specified as 128 pixels in either frame dimension, or one-half of the 256-pixel frame width. This cor-
responds to a maximum delay of 32K bits. The triangular delay line scheme shown in Figure 20 therefore
requires a memory size of approximately 0.5 x 16 x 32K bits = 256K bits, which is close to the current up-
per limit for on-chip RAM in standard-cell ASICs. The corresponding limit on apparent target velocity is
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obtained by noting that a total translation of 128 pixels over 16 consecutive frames implies a maximum
target speed of 128/(16-1) - &5 pixels/frame in any direction.

Growth Options. The VFP is nominally designed to perform 16-frame single-bit velocity filtering

on 256 x 256 input frames. However, it also constitutes a basic building block for systems which employ
larger numbers of frames for additional integration gain, and it is fully capable of processing frames
larger than 256 x 256 pixels. For example, two VFPs operating in parallel can implement a bank of
32-frame velocity filters. Each VFP performs the frame delay and bit counting functions synchronously
for 16 of the 32 frames in the input stack. The output 4-bit counts from the two devices are subsequently
processed by an external threshold decoder (a 256 x 1 bit RAM) to generate velocity filter detections.
Doubling the number of frames integrated results in a corresponding reduction in normalized velocity
coverage, due to the fixed size of the one-bit delay lines in the VFP (16 kbits/line). For the case of
32-frame processing considered here, the maximum target speed would be reduced to 4.1 pixels/frame,
about half of the 8.5 pixels/frame coverage obtained for the 16-frame case.

Larger frame sizes can be accommodated in a straightforward manner by simply increasing the size
of the input memory which feeds the bit-serialized pixel data to the bank of VFPs. The consequences of
an increase in the frame size are reductions in both the filter computation rate and target velocity
coverage. For the case of 512 x 512 frames, it is estimated that a single VFP would be capable of comput-
ing 75 velocity filters per second. The delay lines would now support a maximum frame shift of 64 pixels
in either direction, corresponding to target speed coverage of 4.3 pixels/frame for 16-frame integration.

4.4.4 Velocity Filter Processor Implementation. Although the VFP can in principle be imple-
mented in conventional components, in a gate array, in standard cell or in full custom ASIC design, the
standard cell approach appears to be most appropriate given the availability of the required building
blocks from chip vendors. For example, LSI Logic's LCB007 series of Cell-Based ASICs, based on a
1-micron HCMOS process technology, appears to be well matched to the VFP requirements.
Preliminary chip sizing studies show that the baseline VFP floorplan, including 256K of static RAM, 10K
of logic, and all routing and I/O circuitry, will fit inside an area of dimensions 15mm by 15mm, which is
within typical design guidelines for standard-cell ASIC technology. For demonstration and ground based
test purposes, the device would be packaged in a 2 in.2 ceramic pin-grid array. For future applications with
stringent size and weight limitations, one or more VFP chips could be packaged together with interface
and support chips in a single multichip module using silicon-on-silicon hybrid wafer-scale integration
(HWSI).

4.5 Examples

Algorithm simulation experiments have been conducted on real and simulated passive sensor im-
agery to validate some of the basic aspects of velocity filter detection, track initiation and discrimination
performance. A variety of target and background image scenes have been processed, including a subset of

the 1995 Centerline MEA-1 Threat, a 112-target midcourse dataset used for scan-to-scan correlation
studies at the MIT Lincoln Laboratory, scenes containing simulated kinetic kill debris, and several sets of
digital imagery recorded by the Lincoln Laboratory 30-inch "Quad-Camera" optical telescope in New
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Mexico. The latter source of imagery was of particular interest since it was collected on an actual CCD
focal plane array. The Quad-Camera datasets which were processed included a sequence of scenes of a
fast-moving satellite; these were used for testing the basic velocity filter. Scenes of the Great Nebula in the
constellation Orion were also used to study background suppression. All of these scenes exhibited the ef-
fects of CCD photodetector noise in addition to a number of other artifacts including image jitter,
clipping due to limited dynamic range, and "holes" caused by dead detector cells. Some of the experiments
which used the various MIT image datasets are described in the next several sections.

4.5.1 Velocity Filter Detection of a Satellite Streak. The application of velocity filtering to detec-
tion of moving objects in passive sensor imagery was investigated by processing a sequence of six staring
telescope scenes which are shown in 16-level gray scale format in Figure 21a. An orbiting rocket case ap-
pears as a streak in each of the images due to the finite frame exposure time. The brightness fluctuations
are caused by tumbling of the rocket case, as shown more clearly in the composite image of Figure 21b.
Note also the presence of a very bright fixed star and several vertical bands caused by the CCD readout
process.

Prior to velocity filtering, we used 5 additional independent images of the same scene background

(taken after the target had moved out of the field-of-view) to degrade the average target SNR to about
3 dB in each frame. These low-SNR images are shown in Figure 22. Figure 23 shows the step-by-step
results of processing on input frame number 6 in Figure 22. Figure 23b is the same image after removal
of the nonstationary median in each pixel, which was estimated from the sequence of 6 images as a sur-
rogate for the pixel mean. The median filtering operation suppressed the fixed star clutter and other
spatially-varying background artifacts, and created a homogeneous background. Figure 23c shows the
composite frame that resulted from shifting-and-adding the six frames of Figure 22 according to the
known target velocity. Note that the target is just visible in that frame (compare to last frame of
Figure 21a). Correlating the data of Figure 23c with a streak template representing the average target sig-
nal on a single frame produced the final output shown in Figure 23d. Comparison of Figure 23d with the
original frame 6 image in Figure 21a shows that the moving streak has been successfully integrated up out
of the background by velocity filter processing. The measured output SNR was about 10 dB, which repre-
sents a 7-dB processing gain due to the 6-frame velocity filtering.

This example demonstrates the potential of the velocity filter to acquire very weak moving objects
that could not be detected using ordinary single-frame thresholding or spatial filtering techniques.

4.5.2 Background Clutter Suppression. As explained in Section 4.1, the first step in optimum
velocity filter processing is the suppression and normalization of non-homogeneous clutter. Clutter sup-
pression experiments were conducted using the 114rame sequence of MIT Quad-Camera 120 x 120 pixel
images of the Great Nebula in Orion, which are plotted in Figure 24. The histogram of the 11th scene in
the sequence is shown in Figure 25 to indicate the typical range of image pixel magnitudes prior to

processing.
For optimum clutter suppression, we would ideally subtract out the nonstationary image mean

from each pixel of every frame. Of course, in practice the true mean values are not known a priori and
must be estimated from the available data. We tested two different methods of mean estimation; one
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Figure 24. Telescope Images of the Great Nebula in Orion.
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based on sliding-window spatial averages in each frame, and another based on time averaging across
like-indexed cells of the different frames. The latter approach was found to be superior for the Orion
dataset due to the extreme spatial variability of the background.

The results of mean removal applied to the raw data frames of Figure 24 are shown in Figure 26
(the dynamic range plotted here was increased by a factor of about 40 felative to the plots of Figure 24 in
order to show sufficient image detail). The uneven results seen in the images of Figure 26 suggest that the
original data frames are not correctly registered. We have empirically found that frame-to-frame jitter of
even a small fraction of a pixel can greatly reduce the effectiveness of background suppression in struc-
tured clutter. Although in an operational system it might be possible to register successive scenes with
measured data from an attitude sensor, in this case we had to self-register the scenes using
cross-correlation techniques.

Figure 27 shows misregistration measurements that were obtained by cross-correlating the first
frame with each of the others and precisely measuring the zero-offset of the correlation peak in both
image dimensions. We then re-registered (or resampled) each original frame by passing it through a spa-
tial interpolation filter having linear phase shifts proportional to the measured registration errors in each
dimension. The results of mean removal on this new sequence of registered scenes are shown in Figure 28
(on the same gray scale used for Figure 26). The registration has eliminated most of the dead cells and
readout artifacts (the vertical bands) seen in Figure 9, and the overall suppression is greatly improved.
The small loss of image detail in Figure 28 was introduced by the low-pass characteristic of the spatial in-
terpolation filter. Figure 29 shows the histogram of frame number 11 after registration and mean
removal. The distribution of image magnitude is now centered on zero and the dynamic range of bright-
ness has been considerably reduced from that shown fi the original histogram of Figure 25.

The next stage of background suppression is a normalization by the estimated standard deviation a
on a pixel-by-pixel basis. The nonstationary a was calculated as the square root of the unbiased sample
variance in each pixel of the 11 frames. Figure 30 shows the 11 scenes after a-normalization, and
Figure 31 shows the modified histogram of the last frame. These figures show that the clutter suppression
processing has transformed the highly structured background of the Orion scenes into an essentially
homogeneous noise background with approximately Gaussian statistics. This operation is analogous to
the "whitening prefilter" of linear matched filtering theory, whose role is to create a homogeneous
Gaussian noise background against which the conventional matched filter detector is optimal.

4.5.3 Optimum and Suboptimum Velocity Filtering. The "optimum" velocity filter for an additive

target moving over a spatially nonhomogeneous background is implemented via the following sequence
of steps:

(a) Background normalization: Subtract the variable background mean from every pixel of each 2-D
image frame, then normalize the result by dividing by the corresponding pixel variance;

(b) Frame integration: Shift the K background-normalized frames according to the target vector
velocity (measured in pixels per frame) to create a set of frames in which the moving target's
responses are superimposed, and add the corresponding pixels of these frames to create the
velocity-filter output frame;
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Figure 26. Orion Images with 11-Frame Mean Removed.
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Figure 30. Registered Orion Images After Mean Removal and Normilazation by Standard Deviation.
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(c) Spatial filtering (for resolved targets which occupy multiple pixels): correlate the velocity-filter
output frame with the target's spatial response;

(d) Threshold the result for detection and position measurement.

One practical disadvantage of this optimum procedure stems from the fact that the variance of the
pixel fluctuations in not the same in each pixel. (This is because in the background normalization step we
divide by the variance rather than by the standard deviation.) The result is that the threshold required to
maintain a given false alarm rate PFA (for non-homogeneous clutter) varies with the signal shape and with

the target's path through the K frames. The need to compute a different threshold for each pixel of the
velocity-filter output frame for every velocity filter doubles the processing required. This has led us to

consider a suboptimum velocity filter in which the normalization by division by the pixel variance is re-

placed by division by the pixel standard deviation. In that case the velocity-filter output variance is the

same in each pixel, even for a non-homogeneous background, and a single threshold can be used for every

pixel of every velocity-filter output frame. However, this simplification is obtained at the expense of a
nominal loss in detection performance. The amount of this loss depends on the degree on non-

homogeneity in the background pixels over which the target moves.

The average input amplitude signal-to-clutter ratio (SCR) for a non-constant background is given

by

SCR in A (14)

where K is the number of frames to be velocity filtered. A is the amplitude of the (assumed additive) tar-
get, and a2 is the background variance in the pixel occupied by the target in frame k. The SCR at the

output of the optimum velocity filter (division by the variance in each pixel) is

K A2

SCRout = TK" SCRin = -' (15)

k=1 k

while the SCR at the output of the sub-optimum velocity filter (division by the standard deviation in each

pixel) is

a2 K
SCR outk= k / SCRin= 1  A (16)

k jk=1
Several experiments were performed on the Orion dataset to evaluate the effectiveness of these two

forms of background suppression and velocity filtering. In one case we injected a set of 10 relatively weak
constantamplitude, blurred point targets in two distinct velocity clusters into the 11 image frames; their
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initial positions and trajectories are shown superimposed on the background in Figure 32. Figure 33

shows the positions of the target responses in each of the 11 frames. Since each target traversed a dif-

ferent portion of the Great Nebula scene, the average input signal-to-clutter ratio (SCR) was different for

each target, as indicated in Table I.

Table I. Measured Performance of 11-Frame Velocity Filters

Velocity Target Average Avg. Output SCR Avg. Output SCR SCR
Clisiti Nllmbei inn~uLS (Optimumn Filter) (Subop~timum Filter) -L=

1 1 6.04 dB 16.46 dB 15.68 dB 0.78 dB
1 2 6.60 17.01 16.63 0.39
1 3 -0.42 10.00 9.48 0.52
1 4 2.30 12.71 11.53 1.18

2 1 7.70 18.12 17.58 0.54
2 2 5.42 15.83 14.94 0.89
2 3 7.20 17.62 17.30 0.32
2 4 6.55 16.96 16.67 0.29
2 5 4.66 15.08 14.79 0.29
2 6 7.29 17.70 17.35 0.35

Figure 34 plots the 11 input frames (after image registration) with the synthetic targets included.

The optimum background suppression (division by the pixel variance) was then carried out on each

frame, and the resulting average output SCR for each target was as shown in the fourth column of

Table I. The optimum filters produced an average SCR gain of 4T"= 10.41 dB for each target. We also

tested the sub-optimum (division by the pixel standard deviation) background suppression. The last

column of Table I shows that in this case the output SNR was 0.3 to 1.2 dB lower than for the optimum,

depending on the particular target.

The output frame for each of the two suboptimum velocity filters is shown in Figures 35a and 35c.

Application of a fixed threshold to these frames (at a false alarm probability of around 10-6) produced five

detections as shown in Figures 35b and 35d. The five detected targets had measured output SNR levels in

the vicinity of 16 to 17 dB, while the undetected targets (with the unlucky exception of target 1 in

cluster 2) had marginal SNRs from 1 to 6 dB lower. To reliably detect the remaining targets, we could in-

tegrate more frames in the velocity filters, or require a higher input SNR for those targets. Figure 36

shows the results of suboptimum velocity filtering and thresholding for a case where the power of each of

the injected objects was 10 dB higher on each frame. In this case, all 10 point targets were easily detected

against the suppressed clutter background.

4.5.4 Multiple-Target Track Initiation. So far, we have emphasized the problem of detecting weak

objects in a severe clutter and noise background. This is the original application for which the velocity

filter was designed. However, we have also found that the velocity filter concept can be applied to the

problem of track initiation from a set of target detections obtained from multiple sensor scans. The

velocity filter appears to be especially well-suited to this function in typical midcourse strategic defense
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Figure 34. Registered Orion Image Frames with Synthetic Targets Injected.
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Figure 36c. Velocity Filter Output for Target Figure 35d. Detection Obtained from the
Cluster 2 (10 dB Higher SNR). Output fo Figure 36c.
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encounters. Moreover, it leads to a novel "signal processing" interpretation of the group track initiation

problem.
Figure 37 illustrates the physical basis for the velocity filter approach as applied to midcourse target

acquisition. These plots show apparent angular position and velocity "truth" for several clusters of objects

viewed by a probe sensor at two different times in a simulated midcourse encounter generated by the U.S.

Army Strategic Defense Command. Each cluster arises from the deployment of multiple objects (reentry

vehicles and decoys) with relatively small differential velocities from a single post-boost vehicle. The

clusters tend to expand slowly and may merge and cross as time progresses due to the cumulative effects

of these initial velocity differences and the non-uniformity of the earth's gravitational field.

The presence of (possibly unresolved) target clusters inposition space has been widely recognized as

an important constraint of the midcourse tracking problem; group tracking approaches that exploit this

clustering have been developed [17,181. The velocity filter suggests an alternative group tracking concept

which exploits the natural clustering of objects in apparent velocity space. When viewed in velocity space,

midcourse objects tend to remain tightly clustered in stable patterns for much longer time periods than

the corresponding position clusters (see Figure 37). This can greatly simplify the central problem of track

initiation: the establishment of a frame-to-frame correspondence between object clusters. If this cor-

respondence problem can be easily solved in velocity space, then the velocity histories of individual

clusters in the field-of-view are immediately available. A velocity history makes it possible to construct a

filter matched to the motion of a given cluster. The thresholded output of the filter reveals the angular

positions within the frame of resolved objects in the cluster, thereby achieving the equivalent of group

track initiation. Since both the velocity measurement and filtering operations can be performed by bulk

signal processing, and since there are typically many objects per cluster, this procedure can be highly effi-

cient from a computational point of view.

Velocity Filter Track Initiation Concept. Figure 38 shows a basic block diagram of the velocity fil-

ter approach to cluster track initiation. The input is a sequence of image frames, each of which consists of

threshold exceedances obtained as a function of apparent azimuth and elevation during a scan period.

These frame are first cross-correlated with one another to obtain measurements of the apparent cluster

velocities at various times. If necessary, the peaks in the cross-correlation functions are used to track the

cluster velocities and thereby obtain initial estimates of higher-order derivatives such as acceleration.

Next, the measured motion characteristics of the clusters in the field-of-view are used to build a bank of

filters matched to the objects in various clusters. Each filter processes the input frame sequence to

produce a single output frame in which the intensities of objects in a given velocity cluster are enhanced

relative to those of all other objects. This output frame is then thresholded to yield position estimates for

all target responses within its passband.

Frame Generation for a Simulated Threat. The specific steps involved in this approach have been

demonstrated by processing a 112-object midcourse data set generated by the M.LT. Lincoln Laboratory.

This threat actually represents a somewhat stressing case since the object clusters are not particularly well

resolved and have significant higher-order apparent motion.
Figure 39 shows four frames generated from this simulated trajectory data for a scanning sensor

with a 10 second scan period. The frames were created by placing a 2-) Gaussian response (with unit

amplitude and a la blur circle radius of 50 urad) at the apparent angular location of each detected thrrjr
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object. Each frame thus represents a set of threshold crossings that might be obtained by a passive sensor

viewing these objects during a single scan period. Note that some of the target responses in each cluster

appear blurred together in Figure 39 because they are too closely-&paced to be resolved by the hypotheti-

cal passive sensor.
Frame Cross-Correlanon. Since apparent velocity cannot be directly observed by a conventional

passive sensor, the frame data must be pre-processed to generate such measurements. This is ac-

complished by computing the cross-correlation functions for all possible pairs of frames, as shown in the

six contour plots of Figure 40. The functions are plotted on a common normalized scale of pixels/frame

in the azimuth and elevation dimensions. The highest peak found in each function is denoted by an ar-

row. The location of this peak gives an estimate of the group velocity averaged over the time separating

the two frames. Note that the location of the highest peak changes from one plot to another, indicating

that the moving objects in these frames have significant apparent acceleration.

Velocity and Acceleration Measurement. Figure 41 shows the measurements of normalized

azimuth and elevation rate obtained from the locations of the peaks indicated in the plots of Figure 40.

The time associated with each group velocity measurement is taken as the midpoint of the two times as-

sociated with the frame pair used to form the corresponding cross-correlation function. Estimates of the

group acceleration in each dimension are then obtained by fitting straight lines through the respective

sets of measurements shown in Figure 41, and measuring their slopes. In this particular example, all of

the velocity measurements are found to lie very close to the least-squares lines, indicating that

higher-order motion components beyond the acceleration term are insignificant.

To proceed with velocity measurement, the 2-4 group acceleration estimate is used to shift the cor-

relation functions of Figure 40 to compensate for the change in group velocity from frame-to-frame.

Contour plots for these shifted correlation functions are shown in Figure 42 on a velocity scale referenced

to the time of the first frame. The final step in velocity estimation is to combine the six cross-correlations

of Figure 42 in what basically amounts to a coincidence detection operation. Specifically, the functions

are combined by limiting all values below a selected threshold to zero and computing the geometric

mean; that is, multiplying them together and taking the sixth-root. This operation effectively eliminates

the "ghost" peaks which result when one cluster partially correlates with a different one in the correlation

function of highest resolution (the one for frames 1 and 4).

The central portion of this combined correlation function is plotted in contour format in Figure 43.

The peak to the left of the plot is well-defined and represents the velocity of one of the object clusters at

the first frame. The larger response to the right has two subsidiary peaks which are fairly close together.

These peaks indicate the velocities of two other clusters, which are marginally resolved in velocity space.

Velocity Filtering. Since three clusters can be detected and measured in velocity space, three dif-

ferent velocity filters are implemented on the input frames shown in Figure 39. For a constant-velocity

target whose frame response can be approximated by a 24) Gaussian function of radius ob , it was shown

in Section 4.3.2 that the half-power velocity passband of a shift-and-add velocity filter is

aV3dB 4i 6 b/KT (11)
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where K is the number of frames filtered and T is the frame interval. In this example we have a blur

radius of ab= 50 urad, N=4 and T=10 sec, so the highest expected velocity resolution for an isolated ob-

ject is av=7.5 orad/sec in either dimension. (This of course assumes that any measured acceleration

components are properly accounted for in the shift-and-add process.) However, the actual resolution
against clustered objects may be somewhat less than this in the present case, since the effective angular

extent of some of the CSO responses exceeds that of the blur circle.

Figure 44 shows the final output of the three velocity filters after thresholding. These filter outputs

are referenced to the time of the last of the four input frames, which is also shown for comparison. The
output of the filter matched to the well-resolved cluster at velocity (-32.5,-599) ,irad/sec is a near replica of

the input frame for that cluster, tracks for these objects would therefore be initiated with the correct

cluster velocity and acceleration. The remaining two filters (Figures 44c and 44d) completely pass the

cluster to which they are matched, but it can be seen that some objects from the other cluster leak through
due to marginal velocity resolution. As a practical matter, this means that the tracks for certain resolved

objects in this threat would have two different velocity histories assigned to them at the initiation stage.

This ambiguity would be resolved later in the track continuation process, or if desired, by processing addi-

tional scan frames in the velocity filters at initiation.

4.5.5 Bulk Discrimination. We have carried out preliminary experiments on the use of velocity filter-
ing for bulk rejection of kinetic kill debris based on motion, using data provided by M.I.T. Lincoln

Laboratory. For example, Figure 45 shows 6 data frames taken at 5 second intervals. Each frame repre-
sents a 120 x 120 wide field-of-view that has been "panned" to maintain the objects within the frame size

shown. There are four main objects representing an RV and its associated decoys plus a debris cloud

which expands rapidly to obscure the main objects in the later frames.

Since the main objects would generally be in track prior to the kinetic kill event, we assumed that
their known track file velocity histories could be used to establish the set of four matched filters needed

for track continuations. The frame sequence of Figure 45 was processed with each of these four filters to

obtain the four output frames shown in Figure 46 (the output frames are referenced to the time of the

sixth frame shown in Figure 45f). In each output frame the intensity of the particular object whose
velocity lies within the passband of the filter is enhanced relative to that of the other main objects and the

debris. Figure 47 compares the sixth input frames with a composite of the output frames in Figure 46
after thresholding. In this case, it is evident that the velocity filters have completely rejected the debris

based on motion discriminants alone.

The motion discrimination capability of the velocity filter could be combined with other dis-
criminants based on object intensity fluctuation or spectral content. One potential advantage of the

motion discriminant is that it can be implemented via bulk signal processing with a bank of velocity filters

operating in parallel. In such a configuration, the velocity filter bank could serve as the pre-processor in

an overall discrimination architecture.

.1 _ _ n tm '-'m u a lmi lm
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Figure 44. Input Frame Four, and Three Velocity Filter Outputs.
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Figure 45. Six Images with Four Primary Objects Plus Debris.
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Figure 46. Output of Four Velocity Filters.
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( a)

Figure 47. Comparison of (a) Sixth Input Frame and (b) Composite Output of Velocity Filters.
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5.0 BRASSBOARD SIGNAL PROCESSOR

5.1 Computational Requirements

Real-time implementation of the generalized velocity-filter process shown in Figure I will chal-

lenge the throughput and memory capacities of the signal and data processing subsystems of IR

surveillance systems. This is due not only to the larger volumes of data associated with multi-frame

processing, but also to the increased computation required for algorithms which can optimally utilize

multi-frame data.
A generic sensor processing chain is shown in Figure 48. Generally, the most stressing processing

requirements occur at the so-called signal processing level, where the critical time-dependent functions

such as clutter suppression, detection processing and early discrimination (based on pre-thresholded

data) take place. Typical throughput requirements for these signal processing functions are well beyond

currently-available general-purpose computers. For example, we have estimated the real-time processing

load for a hypothetical staring sensor which generates data at a rate of one million pixels per second.

Figure 49 shows throughput estimates by function for a digital signal processor which implements the al-

gorithms required to extract weak point targets in clutter. The combined throughput for all algorithms in

the processing chain is on the order of 2.5 GOPS.
Although the processing load for these functions is formidable, it is dominated by operations such

as 2-D FFTs, array multiplications, discrete convolutions, and array shift-and-adds. These operations

have very regular computational structures; i.e., they require little or no data-dependent branching. The

computational problems that arise in IR signal processing therefore lend themselves naturally to

pipelined and/or parallel processing architectures.

5.2 Processor Architectures

There are two fundamental approaches to digital processor design. One approach is based on the

use of special-purpose hardwired circuitry, which is characterized by high speed but low flexibility. This

approach has been adopted in the past for sensor signal processors b:cause of high throughput require-
ments and because the algorithms utilized have been relatively simple and somewhat resistant to change.

The second approach is to employ a programmable processor. This approach has traditionally
been employed for data processors, but in the future it will be increasingly applied to signal processing as

the required algorithms become more complex, and as new semiconductor devices are developed to sup-
port parallel configurations of programmable microprocessors.

A wide variety of parallel processor architectures have been developed over the past decade or so.

At one extreme, "coarse-grained" machines like the Cray X-MP use a small number of very powerful

processors. Each processor has a sophisticated architecture and is built using the fastest available circuit

technology. This approach, however, is unsuitable for most sensor applications because of the large num-

ber of devices, the large size and weight, and the high levels of power required.
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Figure 48. Generic Sensor Processing Configuration.
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Figure 49. Thbroughput Requirements for Hypothetical Sensor.
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At the opposite extreme are the "fine-grained" or massively-parallel machines based on very
simple, bit-serial processing elements. Although any one processor is of little value by itself the ag-
gregate computing power can be very large when many such processors are coupled together. A well-
known example of this approach is the Connection Machine, which uses tens of thousands of one-bit
processors to achieve throughputs in excess of 2,500 MIPS. Other such machines include the DAP 510
Array Processor (developed by Active Memory Technology, Inc.) and the Associative String Processor
(developed by Brunel University and Aspex Microsystems, Ltd.). Although these fine-grained architec-
tures based on bit-serial processors can be extremely fast in terms of raw computaticnal power, the
input/output requirements tend to limit their utility in real-time signal processing applications.

A third approach is based on combining an intermediate number (tens to hundreds) of medium-
grained processors. Among the many possible architectures in this category is the so-called multi-
computer network. Each of the identical nodes in the network contains a microprocessor with local
memory and provisions for communicating with other nodes. In general, there is no central shared
memory; the cooperating tasks of a parallel algorithm execute asynchronously on different nodes.
Current examples of the medium-grained approach include the Caltech Hypercube and its descendants,

and the Carnegie-Mellon/Intel iWarp.
The medium-grained approach is the basis for many of the systolic array architectures which have

proven to be useful for a number of matrix arithmetic and signal processing applications, including
matrix inversion, eigenvector-eigenvalue decomposition, digital filtering and correlation, the FFT, and
sorting and thresholding problems. Such operations will clearly be required in any general-purpose,

multi-spectral IR signal processor. These algorithms share the key attributes of regularity, recursiveness
and local communication. These attributes can be effectively exploited in multicomputer networks, par-
ticularly those which have a pipelined, data-driven configuration, and it seems likely that variations of the
medium-grained approach will be increasingly applied to sensor signal processing tasks. However, for
the shift-and-add part of the velocity filter bank it is still attractive to use special-purpose hardware with

only limited programmability (see section 4.4.3).

5.3 Processor Design

In accordance with the foregoing considerations, Space Computer Corporation has developed a
medium-grained, high-throughput, programmable parallel processor. This processor, called the SCC-
100, is specifically designed for real-time signal processing applications utilizing large data sets such as
those derived from IR sensors. It utilizes a multiple-instruction, multiple-data (MIMD) architecture,
with adjacent processing nodes interconnected tnrough banks of shared memory. Each node has a peak
throughput of 100 MFLOPS using 32-bit IEEE-standard floating-point arithmetic, so that a system of 36

nodes has a peak throughput of 3.6 GFLOPS.

5.3.1 Architecture. The system architecture of the SCC-100, shown in simplified form in Figure 50,
consists of a linear array of high-performance processing elements (labeled PE). Each of these elements
shares dual-banked memory with its adjacent elements in the array. The banks (labeled M) are switched
from one processing element to the next in a single memory cycle, thus providing extremely high-speed
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Figure 50. Simplified SCC-10O Architecture.
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data transfer for large volumes of data. (If this were an actual channel, the equivalent bandwidth between

adjacent nodes would be 4 x 10 MBytes per sccond.) A related benefit of the dual-banked memory is that

it enables data transfers between nodes to be made without program overhead, thereby increasing ef-

ficiency. For problems which map naturally onto the pipeline model (such as almost all signal and image

processing problems), the total throughput for N nodes approaches N times the throughput for a single

node. This is significantly better than the log2 N speedup usually approached with some other architec-

tures.
The block diagram of a single processing node and memory bank is shown in more detail in

Figure 51. As can be seen from that figure, each processing element has four bi-directional, asynchro-

nous, high-speed (20 MBits/second) serial links for data communications and control. Two of these links

are connected to the adjacent elements in the array, while the other two links are connected to a crossbar

switching system which can connect any element to any other element. In this manner arbitrary network

topologies can be established for efficient algorithm mapping. All of the control and switching opera-

tions are implemented in hardware for high speed with low overhead.

Each of the processing elements contains a 20-MIPS (peak), 32-bit RISC microprocessor

(INMOS I'f00 Transputer), and up to three 32-bit vector signal co-processors (Zoran ZR34325), in addi-

tion to one MByte of local memory, and one MByte of dual-banked memory. The TS00 Transputer

incorporates a number of important features which make it ideal for use in real-time parallel computer

systems. These include four high-speed asynchronous serial communications links, 4 KBytes of on-chip

RAM, two 32-bit timers, hardware support for multi-tasking, and a 32-bit IEEE-standard floating-point

co-procc~zor (3 MFLOPS peak throughput), all on a single device.

The ZR34325 Vector Signal Processor, which also performs 32-bit IEEE-standard floating-point

arithmetic, has a peak throughput of 33 MFLOPS (a total of 99 MFLOPS for three units). This powerful

chip has a high-level instruction set optimized for commonly-used signal and image processing opera-

tions. A complex FFT operation, for example, requires only a single instruction. This feature greatly

simplifies the programming required to implement digital signal processing algorithms. With three

ZR34325s, a nodL. can compute a 1024-point complex FFT in 0.72 milliseconds,

Two or more of the nodes can have high-speed input/output interfaces for data acquisition and dis-

play. In addition, the SCC-100 is operated with an AT-compatible PC host computer. The host is used

for software development, program downloading, and performance monitoring. For a production system

a host is not required. In that case the host can be replaced by a set of ROMs.

5.3.2 Input/Output. High-speed data :. mmunications channels are available with the SCC-100 for

connection of the processor to external data sources and destinations. Each of these channels is capable

of transferring data at a rate of 40 MBytes/second. 'n addition, multiple high-speed control channels

(each with a bandwidth of 2.4 MBytes/ second) are provided. Additional 1/0 channels can be furnished

fc r access to specific nodes along the array. Also, custom 1/0 channels to meet special interface require-

ments can be provided.
A critical problem for many real-time processor applications is real-time input data acquisition.

This requires a capability for servicing interrupts at a rapid rate to maintain high-fidelity signal capture.
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Figure 5 1. Block Diagram of Single Processing Element and Memory Bank.
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In the SCC-100, over 400,000 interrupts per second can be serviced in a single input node. If necessary,
this capability can be increased further by utilizing additional processors.

5.3.3 Programming. The fundamental programming task in the SCC-100, as in any parallel processor,
is program partitioning. There are three basic partitioning methods:

(a) Input partitioning (e.g., for low-level image processing);

(b) Output partitioning (e.g., for irregular input-to-output mapping);
(c) Pipelining.

The SCC-100 supports all three of these methods. As previously noted, however, it is particularly effec-
tive for pipelining, which is by far the most important and effective partitioning method for most signal
and image processing algorithm chains. In pipelining, the algorithms rather than the data are parti-
tioned. This greatly eases the programmer's task, since the program for each node can usually be written
and tested independently of the other nodes prior to final software integration.

The SCC-100 processor can be programmed in a variety of commonly-used languages. The T800

Transputers can be programmed in ANSI C and several other languages. The Zoran Vector Signal
Processors can be programmed using a library of routines produced by Space Computer Corporation. In
addition, assembler/simulator software, which uses C syntax and which runs on a PC/AT or VAX/VMS
host computer, is available for the Zoran processors. In addition to this, both processors can be
programmed in ADA using compilers available from Alsys and PSS.

5.4 Advanced Packaging

The standard model of the SCC-100 is packaged with conventional multilayer printed-circuit
boards. Models for applications requiring extremely compact size and ultra-low weight are being fabri-
cated using hybrid wafer-scale integration (HWSI). Figure 52 shows the planned evolution, starting with
the initial model which houses 20 nodes, one node per board, in a 14"-high cabinet which can be mounted
in a standard 19-inch rack. The first step (1990) is replacement of a large number of glue chips by two
application-specific integrated circuits (ASICs) in each node. This reduces the size so that two nodes can
be packaged on a single board, and reduces the chip count so that HWSI packaging can be employed.

The next step (1991) applies 2-D HWSI technology to package each node as a multi-chip module

rather than as a printed-circuit board. The HWSI modules employ bare chips attached to thin-film, mul-
tilayer, polyimide interconnects fabricated on silicon substrates within hermetically-sealed packages. The
size of each module is approximately 3.0 x 3.5 x 0.2 inches. These modules in turn are mounted on

printed-circuit boards. Twenty nodes in this configuration have a volume of approximately 200 cubic
inches and a weight of 8 pounds. The power consumption will be reduced from that of the 1990 con-
figuration by virtue of the shorter dimensions and lower dielectric constant of the HWSI interconnects,
which provide greatly reduced line capacitances.
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The final step (1992) utilizes stacked HWSI substrates in a 3-D configuration corresponding to a

cube 2.5 x 2.8 x 3.5 inches in size. A twenty-node system in this configuration will have a volume of

25 cubic inches and a weight of 2 pounds, including package and connectors.

1989

1900 cu in

80 lbs 1990

Standard parts 950 cu in
50 lbs

K1991
ASICs 200 cu in

8 Ibs

2-D HWSI 4'41992 25 cu in
[ff 2 Ibs

ASIC = Application-Specific Integrated Circuit 3-D HWSI
HWSI = Hybrid Wafer-Sccle Integration

Figure 52. SCC-100 Processor Packaging Evolution for a 2-GFLOPS, 40-MByte System.
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6.0 SOFTWARE FOR REAL-TIME DEMONSTRATION

6.1 General

Real-time operation of the SCC-100 has been demonstrated using input frames of size 128 x 128
16-bit pixels at a rate of 10 frames per second. Thus, the input pixel rate is 164k pixels per second, or 328k
bytes per second, or 2.62 Mbits per second. The functions implemented for real-time processing are

frame registration, temporal clutter suppression, a bank of 80 discrete shift-and-add velocity filters, and
thresholding for target detection. These signal processing functions are performed sequentially on succes-

sive batches of input frames to periodically produce sets of detection reports. The target aquisition signal

processing chain is shown in Figure 53. Each output "detection" consists of the 2-D apparent position
and velocity of an object on the focal plane. The velocity filter detection reports are the primary output of

the real-time signal processor.

The demonstration setup is shown in Figure 54. Input can be taken from either a video camera or

an optical video recorder. The image frames from the selected device are fed to a frame grabber housed in
a PC for digitization into 16-bit samples. Though these devices produce frames at a rate of 30 frames per
second, only every third frame is actually used, so the input frame rate is actually 10 frames per second.

Also, only a selected 128 x 128 subframe from the frame grabber is actually fed to the SCC-100. As indi-

cated in the figure, one PC serves as the SCC-100 host, and handles program downloading and operator
intervention. Finally, a second frame grabber is connected to a 16-bit parallel output from the SCC-100

for the display of images at intermediate points in the process.
When each frame arrives at the first processing node, it is tagged with a number which indicates the

time the frame was collected, and the 16-bit pixel values are converted to 32-bit IEEE floating point for-
mat. All subsequent processing is performed in floating-point format.

Target aquisition processing is performed on consecutive groups of frames called processing
batches. The number of frames in a processing batch is a basic software parameter which specifies

(a) how often the reference frame for frame registration is updated to be the current frame, and (b) the

number of frames that are co-registered, clutter suppressed, and integrated in the velocity filters. It also
determines the time interval at which detections are produced. For the demonstration the batch size was

10 frames. Thus, a total of 10 frames were integrated in each velocity filter, and a new set of output detec-
tions was generated every 10 frames (i.e., once per second).

The frames in each processing batch batch are spatially registered to the first frame of the batch as

they are received. At the beginning of each batch the misregistration between the new reference frame
and the previous reference frame is computed and output along with the velocity filter detections from the
new batch. This allows the detections for the new batch to be spatially referenced to those for previous
batches.
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6.2 Allocation to Nodes

The real-time demonstration processor is a 19-node system, and each of these nodes is populated
with just two Zoran VSPs, rather than the standard three VSPs. Sixteen of the nodes are dedicated to per-

forming calculations, two nodes are used to perform calculations and to handle input/output functions,
and one node is used to control the system and communicate with the host computer. This ailocation was
established empirically by first coding the actual subfunctions to be performed and timing each one of
them. (The Transputer contains hardware which makes it very easy to obtain accurate timing for any
code executing either in itself or in the VSPs.) After the timing was obtained, the subfunctions were as-
signed to nodes in such a way as to avoid bottlenecks, and to keep all nodes working as efficiently as
possible. The effectiveness of this approach to partitioning the software among nodes was verified by the
fact that it was not necessary to reassign the subfunctions to nodes after this initial straightforward assign-
ment procedure was followed.

The first node (node number 0) controls the system, communicates with the host, and reports the
maximum value in the output of each of the velocity filters over a serial port. This node also monitors and
controls the communications through the processor pipeline.

Nine nodes (node numbers 1 through 9) are used for frame input and data formatting, and for car-
rying out the computations required by the two parts of the frame-registration algorithm, viz.,
measurement of the amount of 2-D shift required, and resampling the frame with the measured shift ap-
plied. Figure 55 shows the allocation of nodes to the various frame-registration functions. In that
figure the labels in the blocks refer to subroutine names. The functions of those subroutines are shown
below the blocks.

The next eight nodes are used as two sets of four nodes in a "flip-flop" fashion. While one set of
four nodes gathers a processing batch of 10 frames and calculates the mean and variance for each pixel,
the other set of four nodes applies clutter suppression to each pixel in each frame (mean subtraction and
multiplication by the reciprocal of the standard deviation), and then shifts and adds its set of 10 clutter-
suppressed frames to perform velocity filtering. This shift-and-add algorithm is repeated for 80 different
2-D shifts, thus implementing 80 different velocity filters. After one second of this processing, the first set
of four nodes is ready to clutter suppress and velocity filter its frames, and the second set of four nodes is
ready to start collecting the next 10 frames of data from the frame-registration nodes. It should be noted
here that with this arrangement the four nodes which are computing the means and variances are not
using their full computational capacity, but this utilization of nodes was found to be effective overall.

The last node is dedicated to collecting and formatting data for the output display. This function
would not be required in an operational system, but is very useful for a demonstration system. See section
6.4 for more details on this function.

6.3 Processor Functions

Figure 53 shows the high-level block diagram of the processing sequence. Functional descriptions
for each major processing task are as follows.
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6.3.1 Frame Registration. The frame registration algorithm corrects for 2-D translational jitter or

drift between the frames of a processing batch, and consists of two steps: (1) measurement of the ap-

parent motion of the clutter background with respect to the reference frame, and (2) resampling of the

input frame to produce a new frame in which the background is registered with that in the reference

frame. The objective is to achieve a precise spatial alignment of the background in all frames of the batch.
This ensures that subsequent clutter suppression processing will be fully effective. The frame registration

algorithm employed here utilizes the phase correlation technique described in section 4.2 to measure the

2-D misregistration to subpixel accuracy, and a FIR interpolation filter for high-precision resampling of

the input frame.
A functional block diagram of the complete frame registration process is shown in Figure 56. The

processing data flow is almost entirely pipelined with the single exception of the 2-D transform of the cur-

rent input frame being required at two different points in the chain (for correlation and also for frame

shifting). Every 2-D frame operation shown in the block diagram (i.e., FF1, weighting, and multipli-

cation) is performed on a full 128 x 128 real or complex-valued array. The discrete correlations and frame

shifts are implemented in a circular fashion using the full 128 x 128 frames without zerofill.

For each processing batch, the first frame is used as the reference for registration measurements.

The 2-D FFT of the reference frame, denoted as "Stored Reference Frame Transform" in Figure 56, is

retained for conjugate multiplication with the transforms of subsequent frames as they are computed.

Thus all misregistration measurements are made with respect to this reference frame, and each frame in a

batch is shifted so that it is aligned with its reference frame.
When the first frame of a new processing batch arrives, the reference frame is updated, but only

after the new reference frame is correlated against the previous reference frame to measure the 2-D offset

between successive reference frames. This information is produced for every batch, and is transferred to

the system output node so that the positions of detections made in the new processing batch can be re-

lated to those made in the previous batch. The 2-D FFT of the new reference frame then replaces the old

reference frame transform prior to processing additional frames from the new batch. Since the FIR shift-

ing filter applies spatial filtering in addition to linear phase shifting in each dimension, each reference

frame must be similarly filtered (but with zero shift) to maintain the same spatial frequencies as the other

frames in the batch.

6.3.2 Clutter Suppression. Clutter suppression is a frame whitening process which suppresses the
background in a batch of frames prior to velocity filtering. The input is the sequence of spatially-aligned

frames that emerge from the frame registration process. The cutput is another frame sequence in which

the stationary background is suppressed and normalized on a pixel-by-pixel basis. For every frame, the

suppression process subtracts the spatially-varying mean background from each pixel, then normalizes

the residual clutter in each pixel to unit power by dividing by the pixel standard deviation. (See section

4.5.3 for a discussion of the reasons for using this procedure.)
The estimation of the means and variances is implemented recursively on the registered frames in

the processing batch as they become available. This results in the creation of a pixel mean array and a

pixel variance array, each of size 128 x 128. The recursive filtering scheme that is used to update the pixels

in these two arrays is illustrated in Figure 57. The mean and variance arrays are initialized to all zeros at

m . . .. .. . . . ...... ... ..... ..... ........ ...... ........ ... .. . . . . . . . . . . . . .
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the start of every processing batch. As successive registered frames in the batch are received, the arrays
are updated according to the expressions shown in Figure 57. When all the frames in the batch have been
processed, the arrays contain the final temporal mean and variance estimates for each pixel in the frame.
The scalar filter coefficients an are precomputed and stored in a table. The particular choice of weights
shown in Figure 57 ensures the the final mean and variance estimates for each pixel arc equal to the stan-
dard sample mean and variance for the frames.

The normalization step implements the actual clutter suppression process on each frame in the
batch. This commences immediately after the last registered frame in the batch has arrived and the final
updates of the mean and variance arrays have been completed. A block diagram of clutter suppression
processing is shown in Figure 5& The normalization weights for each pixel are first obtained by convert-
ing the final variance array to reciprocal standard deviation. This requires square root and reciprocal
operations for each variance-array pixel The clutter suppression is performed on each registered frame
in the batch by subtracting the mean frame and multiplying the result by the reciprocal standard deviation
frame. These operations are done in-place on each registered frame in the batch. The output of the clut-
ter suppression process is a sequence of whitened frames ready for velocity filtering.

6.3.3 Velocity Filtering. Velocity filtering is the frame integration process which enhances the SCR of
targets moving through the whitened frame sequence. A specific velocity filter shifts and adds successive
normalized frames in the processing batch to create a single output frame in which the responses of any
targets moving at (or near to) the 2-D velocity of the filter are enhanced relative to the whitened clutter.
Since targets of interest can have any of a wide range of 2-D velocities, it is necessary to implement a
'"bank" of velocity filters. Each filter in the bank is sensitive to a particular 2-D velocity, which is specified
by means of a shift table. The velocity filter bank is illustrated in Figure 59.

Shift-and-add processing for a particular velocity filter is completely specified by the filter velocity
and the number of frames to be integrated. Specifically, the 2-D shift applied by a filter to a given frame
in the batch is a function of the frame number, the total number of frames processed, and the normalized
2-D velocity to which the filter is matched (in units of pixels per frame). Successive frames in the batch
are shifted ahead in time so that target positions in the filter output frame will be time-referenced to the
time of the last frame in the batch. The 2-D shifting is performed in a non-circular fashion; pixels which
would be shifted outside the original frame boundaries are discarded. Note that a positive shift cor-
responds to the direction of increasing pixel index in either frame dimension (i.e., upward or rightward
translation of a frame with pixel (0,0) at the lower left corner).

The shift-and-add integration scheme that implements ,- single velocity filter output is illustrated in
Figure 60. Note that although the 2-D filter velocity can be a fra. .'al number of pixels per frame, the
actual shifts applied to any frame are rounded to the nearest whole pixel in order to simplify the real-time
processing. The sequence of 2-D integer pixel shifts associated with a particular filter are precomputed
off-line and stored in a shift table for downloading at program initialization. Each velocity filter in the
bank has a unique shift table corresponding to its assigned 2-D velocity.

6.3.4 Detection Thresholding. Each pixel in each velocity filter's output frame is compared to a
threshold to determine the positions of targets in the processed frames. The positions and the filter's 2-D
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velocity comprise the output detection reports. In addition, each velocity filter's output is searched to

determine its maximum value, and the velocity filter with the maximum value out of all of the filters in the

bank is output as part of the detection report for each processing batch.

6.4 Output Displays

The output of the SCC-100 required for the demonstration is just the detection reports, ie., the

positions and filter velocities of detected targets. Howe';er, it is much more interesting to see the results at

the outputs of the various processing steps. Therefore, as shown in the demonstration setup of Figure 54,

provision is made for 16-bit parallel transfers of data from the SCC-100 to an output frame grabber. The

frame grabber converts the data received into NTSC video for display on a monitor. For the real-time

demonstration, several different sets of output frames are available. The first of these is the frames which

are produced by the frame registration algorithm. Next is the recursively-computed mean frame used in

the clutter suppression. Following that is the recursively-computed variance frame used in the clutter sup-

pression. And finally, the output of any one of the 80 velocity filters can be displayed.

Before outputting the selected data to the output frame grabber, the internal floating-point num-

bers of the SCC-100 must be converted to bytes which determine the intensity of a given pixel on the

output display. This allows for just 256 possible intensities to be displayed for any pixel. Therefore, there

are many different ways the floating-point values can be mapped onto the final display. The demonstra-

tion software allows this mapping to be specified as the program runs. The 256 intensities can be
assigned linearly to the values between the maximum and minimum of each displayed frame, or fixed
limits can be specified. This latter option allows for hard-limited or other special displays which may be
desired.
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7.0 CONCLUSIONS

The basic purpose of this research was to develop and demonstrate a new approach to the detec-

tion of, and initiation of track on, moving targets using data from a passive IR or visual sensor. The

approach we have developed differs in very significant ways from the traditional approach of dividing the

required processing into time-dependent, object-dependent, and data-dependent processing. Our ap-
proach is sometimes referred to as "track before detect" because the detection of targets is based on
multiple image frames, and, accordingly, requires a smaller signal-to-noise ratio. This can lead to a sig-
nificant reduction in total system cost, because it can allow greater detection range for a single sensor, or
it can allow the use of smaller sensor optics. Both approaches are applicable to systems using scanning
sensors, as well as those which use staring sensors. The advantages of our new approach can be sum-
marized as:

a) It provides better detection for a given false alarm rate, and allows detection of very weak tar-
gets in clutter;

b) It is robust in that it is able to handle large numbers of targets simultaneously with no sig-
nificant increase in computational resources;

c) It is readily implementable using a parallel processing architecture.

Under this program we have:

a) Developed and demonstrated the required algorithms;
b) Designed and fabricated a programmable real-time processor which can implement these and

other signal and image-processing algorithms;
c) Programmed the algorithms to run in real-time on our processor, and demonstrated real-time

operation using recorded imagery.

This research effort has had two major thrusts. The first is algorithm development, combined with

proof-of-concept computer simulations using real and synthetic sensor data. The second is design and
demonstration of a programmable, extremely high-performance signal processor which can be imple-

mented with available components, and which can be packaged using advanced interconnect technology
to achieve the small size and weight required for SDI and other military applications. The processor we
developed employs a one-dimensional array of identical processing nodes. The peak throughput per

node is 100 MFLOPS, and each node incorporates 2 MBytes of static RAM memory. Therefore, a

20-node system has a peak throughput of 2 GFLOPS and incorporates 40 MBytes of memory. In its

basic form, using conventional printed circuit-board packaging, each node occupies a single board in a 14-
inch high cabinet, and 20 such boards can be mounted in one 19-inch wide cabinet. When implemented
with hybrid wafer-scale interconnect (HWSI), a 2-GFLOPS processor can be packaged in 35 cubic inches,

including radiation shielding.
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Military applications of our work include such programs such as Brilliant Eyes, Brilliant Pebbles,

E2 1, EndoLEAP, and smart weapons. Commercial applications include video compression, computer

vision, and some robotics applications.

It should be noted that this program has been very successful, not only from the technology view-

point, but from the viewpoint of the goals of the SBIR program itself For example, we have already

proceeded into Phase III of this program, and were awarded a contract by General Dynamics

Corporation for the delivery of a 19-node model of our processor. That first model was delivered to

General Dynamics in early 1990. We are currently marketing the processor for both government and

non-government applications. In addition, in 1990 we were awarded contract DACA76-90-C-0002 for

DARPA (by the U. S. Army Engineer Topographic Labs) to miniaturize the processor for space applica-

tions. Finally, our work on moving-target detection has provided the basis for a new algorithm for full-

motion video compression. Commercial applications for this new algorithm include high-definition

television (HDTV), interactive video, and multimedia presentations.


