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Abstract

The design of Distributed Sensor Networks has to take into consideration
sensor failures that occur while functioning in the real (physical) world. This
demands a technique of integration of sensor information that is faulttolerant
so that the network is reliable for target recognition and tracking problems. (-I.

In our earlier papertHL -_e- proposed a computational
characterization of fault-tolerant integration of abstract sensors that were 1-
interval estimates.

....-h this paper,.we' propose an abstract framework to address the general
problem of fault-tolerant integration of sensor information in a general
distributed sensor network. The essential ideas of this abstract framework stem
from certain rudimentary notions in the theory of differentiable manifolds.
This framework addresses a very general distributed sensor network both at the
local level of sensor data integration at distributed processors as well as global
exchange and assimilation of information available at various processors in the
network. This paper is a continuation of our earlier work [LIKMI.
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1.0 INTRODUCTION

The distributed sensor processing problem, in the context of dis-
tributed sensor networks, involves both detecting and tracking of multiple
moving objects has been shown to have a wide ranging applications in
areas such as particle physics, medical imaging, radar tracking etc. One of
the features that distinguishes distributed sensor processing is its demand
for the development of a computational framework for sensor integration.
This includes the problem of fault-tolerant integration of information
from multiple sensors, mapping and modeling the environment space and
task level complexity issues of the computational model. Further these
techniques have to be robust in the sense that even if some of the sensors
are faulty, the integrated output should still be reliable. For details on
multi-sensor integration and fusion in intelligent systems, see([Hube 811,
[KaOM 90], [BlBr 901, [LuKa 891, [HAMD 87], [LuLS 88], [Duwh 88], [Zhen 89]
and [GeCh 90]). In this paper, an abstract paradigm for distributed sensing
and fault-tolerant sensor integration is discussed.

1.1 Scope of this paper

This paper's main objective is to propose a new computational
model for distributed sensor network problem at the local level of sensor
data integration at distributed processors as well as global communication
and assimilation of information available at various processors in the
network.

The distinguishing feature of our computational paradigm over the
previous model[LIKM] is in addressing a broad-based computational
framework which can accommodate a wide range of sensors and a variety
of fault-tolerant integration techniques depending upon the phenomenon
being sensed and the method of sensing

The central idea of our abstract framework stem from certain rudi-
mentary notions in the theory of differentiable manifolds.
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The global picture of the integration phenomenon is addressed us-
ing local coordinates of the environment space and the corresponding

transition functions.

1.2 Organization of the Paper

In section 2, we describe earlier work related to this paper. In section 3 an
abstract model for general distributed sensor networks is proposed. In

section 4 a scheme for comparing and patching together the local
information about the behaviour of the parameter being measured, in
order to obtain a global picture of the parameter's variation is put forward.

2.0 RELATED WORK

Marzullo [Marz 891 considers the case of a processor receiving input
from several sensors whose outputs are connected intervals. He gives a
fault-tolerant integration algorithm which takes as input the intervals re-
presenting the sensors and gives as output of the processor a connected in-
terval representing the sensor values. More precisely: Let there be n sen-
sors, each of which yields an interval as its output. these sensors measure a

certain physical value and their intervals contain the physical value unless
they happen to be faulty sensors.

Thus, a correct sensor is one which contains the actual physical
value in its interval. Any two correct sensors must overlap since they both
contain the physical value being measured.

Marzullo considers the case when atmost f sensors are faulty and
gives an algorithm which yields a connected interval as the output of the
processor, containing the physical value.

If atmost f of the n sensors are faulty, then it follows that at least n-f
sensors are correct. Marzullo considers all possible nonempty
(n-f) intersections of the n-sensors. A sensor which does not belong to any
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of the (n-O-cliques is faulty since a correct sensor overlaps with at least (n-f-
1) other correct sensors. One and only one of the (n-f)-intersections con-

tains the physical value. Since it is not possible to decide which intersection

has the physical value (which is as yet unknown to us) and since the pro-

cessor output is required to be a connected interval, the smallest connected

interval containing all the (n-f)-intersections is taken to be the output of

the processor. It is easy to see that it contains the actual physical value. The

wider this interval is, the lesser the accuracy of the processor output.

Marzullo proves the existence of bounds for the width of this interval in

terms of f.

a1  I1 b

a 2  12 b2 a 4  14 b4

a3  13' a5: 1. 5:

a a a 6

Final output

estimate

Figure 1. Integration of Interval estimates

(a 1 < a3< a2< b 3< bj< b 2< a6< a,5< a4< b 6< b 5 < b 4 )

In our earlier work[LIKM 91], we provide a functional characteriza-

tion of fault-tolerant integration of 1-interval estimates considered by

Marzullo and narrow the width of the output estimate in the case when

the sens'or faults are "tame", However, the technique of integration and its

functional characterization did not in anyway depend upon the fact that

the sensor outputs considered have intervals on the real line. Indeed, we

may look at distributed sensor networks and fault-tolerant sensor integra-

tion from a more general point of view, as we shall do shortly.

A distributed sensor network consists of several clusters of sensors

distributed in space. Each cluster of sensors reads the value of a parameter
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in a certain region. All the sensors in a cluster read the same value. This

redundancy is required to ensure fault-tolerance since some of the sensors

in a cluster may be faulty. A fault-tolerant technique of integration is to be

employed to obtain a reliable estimate of the measured parameter's value

from the outputs of the sensors in a cluster. The scope of all the sensors in
a distributed sensor network taken together is the region under observa-

tion. The parameter being measured may be in general a vector(e.g., veloci-

ty, position, etc.) Each sensor typically gives a set of values(e.g., a connected
interval or a connected region) as its output estimate of the parameter in-

stead of a single value, this being due to the uncertainty of the sensor.

Keeping the above remarks in mind, we present an abstract
paradigm for distributed sensing and fault-tolerant sensor integration in

the next section.

3.0 ABSTRACT REPRESENTATION OF A DISTRIBUTED
SENSOR NETWORK

3.1 Notation and Definitions

We Formally introduce here the abstract setup for a general dis-
tributed sensor network:

Definition 1: An abstract distributed sensor network is a 4-tuple (X,

{[E}l m, {sj m, 0, where:i=1 I i=1 P ' we:

i) X is the space under observation by the sensors called the en-

vironment space.

ii) P is the space of all possible values of the parameter being mea-

sured. If the parameter being measured is a k-dimensional vector,

then P is the Euclidean Space of dimension k.

iii) { Ej im is a collection of subsets of the environment space X such

that Ui__E = x. The collection E is called a chart on x.(Fig. 2)
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iv) isl isa collection of m sensor-clusters, each s being assigned

f0 i

to an EZ. Each S is a duster of n. abstract sensors S = t i where
i i I i j l

t
each abstract sensor yi,j is a time-varying measurable function

t
mapping the set E onto a subset pit, of X x P. Thus at any instanti

of time t, we have the collection of subset ,I}i of x x as the

abstract sensor estimates of the sensors jj of the parameter

value observed in E at time t.

X2

D,

O pr)- parameter space

0

..... . ......

X - Environment space

Fig 2. Schematic Representation of an abstract DSN
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3.2 Illustrations and Remarks:

For example:

i) E . may be regions in space and ati may be sensors recording the

position or velocities of moving objects in the region E.
i

ii) The E. may be regions in a terrain being mapped and at may be

sensors recording the altitudes of various points of E.i

iii) The E. may be regions in the interior of a boiler or a nuclear re-

t
actor and aij may be sensors recording the temperature at vari-

ous points of E.

t
It is to be noted that each of the sensors alj in the cluster S. collects

data from the same region in the environment space X, namely E: This re-9

dundancy is required to incorporate fault-tolerance in the distributedt

sensor network. Under ideal fault-free conditions, all the aij in Si have

identical outputs. These sensors are abstract models of physical sensors, and

since physical sensors can have uncertainties or be faulty, we need to
incorporate these features into abstract sensors for realistic modelling. This

is achieved by letting each sensor take a set of values in P at each point in

the region E. instead of a single value in P. Thus if we denote by pi,j(xt) the
t

set of values corresponding to the sensor at,1 's reading at the point x E Ei

then p.,.(x,t) is a subset of [x} x P, where (x} is the singleton subset of X

tcontaining the point x. Of course, pj(x,t) is contained in pi (see Fig. 3).

Thus the outputs of the sensors of a duster S. representing the value of the

parameter being measured at the point x e E at time t are subsets of x} x P.
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These are to be integrated to obtain a single subset which is a fault-tolerant

estimate of the parameter value measured at the point x at time t. The

definition of a correct sensor crucial for this is given in the next section.:

P

xXP
t

P O (x ,t )

(x) X

x

E. Ilo
I x

tt
Fig. 3: The subsets pt and p, (x,t) corresponding to the sensor t

t t
The subsets pi~j and Pi,j(x,t) corresponding to the sensor Oi,j are

shown above in the case when both the spaces x and P are 1-dimensional.
i

The subset pi,j(x,t) is a line segment. If Si is correct at x at time t,

then the point (x, a) lies on the line segment pi,j(x,t) where a is the correct

value of the parameter at x and at time t.

ht general, if P is k-dimensional, then pi, j(x,t) is generally a k-dimen-

sional hypercuboid where the length of each side is a measure of the uncer-

tainty in the corresponding component of the k-dimensional parameter be-

ing measured.
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3.3 Fault -tolerant integration of abstract sensor outputs

We now describe a computational characterization of sensor
integration for general distributed sensor networks. We define correctness
and faultiness in abstract sensors as follows:

t

Definition 2: An abstract sensor Si,j C S i is correct at x C E at time t ifI i

(x, a) e pi,j(xt) where a is the actual value of the parameter

being measured at x at time t (a e 0, else it is faulty..

The method of integration of our ealier paper[LKM 91] can be used
here to obtain a fault-tolerant estimate of the actual physical value being
measured in this general case also as shown blow:

Consider the characteristic function of the set Pij(xt):

1 ifye ptj
xt (y) =I 0 otherwise

If atmost fi of the ni sensors in the cluster Si are known to be faulty,

then following the method of integration employed in our earlier pa-
per[LIKM 91], the correct value of the parameter being measured by the

sensor cluster s. at xe E and at time t is contained in the subset corre-

sponding to the characteristic function x (y) given by

Ji i a

where a,-.)(X) = [a )otherwise
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and Ox,t (y) = J x, (y) is the overlap function for the duster S. at the point
j=1

t
x e E and at time t. i.e. Ox,t (y) gives the number of sensors aij whose

estimates pi,j(xt) at the point x e E and at the time t contain the point (x, y)i

r {x xp, y P.

Consequently, i t (y) is the characteristic function of the set of all

those points of x} x P which lie in the intersection of at least ni-fi intersec-

tions of the sets pi,j(xt).

The correct value of the parameter being measured at x e E at time ti

must lie in the subset Mi(x, t) = fy e P I X t (y) = 1), since the assumption

that atmost fi sensors are faulty implies at least ni-fi sensors are correct and

hence must overlap since their estimates pij(x,t) must all contain the point

(x, a) where a is the actual value of the parameter being measured.

Faulty sensors could have random or "wild" faults, in which event
there is little correlation between the sensor's estimate and the correct
physical value of the parameter being measured. On the other hand, the
fatlt may be "tame", in which case the faulty sensor's estimate although

does not contain the actual physical value of the parameter being mea-

sured, lies sufficiently close to it. It is reasonable to assume that most sen-
sors fail tamely due to perturbations encountered in the physical world, in
which case faulty sensors tend to cluster in the neighbourhood of the cor-

rect value of the parameter. We may make use of this clustering to predict
with reliability the subset with highest chance of containing the actual

i

value of the parameter among those subsets which belong to 1X(x, t). In
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order to do this, we need to make the notion of a tame fault more

rigourous:

Definition3: A faulty sensor is tamely faulty at x at time t if it
intersects with a sensor that is correct at x at time t.

3.4 Reduction of the Output measure when most faults are

tame

It is unlikely that sensors with wild or random faults cluster since by

their very nature, they are uncorrelated and hence distributed more

or less evenly. In the case when most sensor faults are tame, we may
resort to the polling technique introduced in an earlier paper[LIKM

91] to reduce the measure of the subset containing the correct

physical value with high reliability:

Let Ll(x, t), ... , Lk(x, t) be the disjoint maximal connected subsets of
i

P whose union is the subset X(x, t) containing the correct physical value of

the parameter measured at x at time t. (x e E

Define the popularity of the output of the kth sensor(1 _< k < n i) in the

cluster Si to be the nonnegative integer Rik(x, t) given by:

n i

nik(X t)ij ik
ik(xt)(Z IXxt X',t b-i1

j=1
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where Ii f I is the maximum value of the function f. nik(x, t) gives the

number of sensor outputs having nonemply intersection with the output
t

of the sensor Oik at x and time t.

If AXj is the characteristic function of the set L(x, t), (1 < j < ki) then

define the reliability Rik(x, t) of the set L;(x, t) to be the nonnegative integer

given by:

n i

Rik(x, t)= Ax,t Xxt II ik(x, t)

k=1

Rik(x, t) is the sum of the popularities of all those sensors' outputs
i

which contain the set Li(x, t),.

It is clear that the larger the reliability of the connected set L!(x, t),, the
greater the clustering of sensors about L'(x, t), and hence the greater the

likelihood of Lj(x, t), containing the correct value of the parameter. Thus

Rij(x, t) is a good measure of the connected subsets L'(x, t) of y (x, t)

containing the correct value of the parameter. (It is obvious that one and
i

only one of these maximal connected subsets of X(x, t) contains the correct

parameter value). The maximal connected subsets with the highest
reliability may be chosen to represent the estimate of the sensor cluster S.
This analysis greatly reduces the measure of the output subset of S and is

an efficient fault-tolerant integration technique for the cas- when most
sensor faults are tame.Thus, it is seen that the techniques employed by us
in the paper[LIKM 91] though used on 1-dimensional interval estimates,
hold for a much more general class of sensor outputs.

13



4.0 Additional Remarks

If the sensors provide additional information on their outputs (e.g. a
probability distribution or a weight function on their output values), then
we may replace the characteristic function of the output sets by these func-
tion and look for an appropriate integration method which combines these
functions (in such a way that the "correctness" of the output is not sensi-
tive to a small number of faults in the sensor cluster) to give a function
whose domain contains the correct value of the parameter measured by the
cluster, and the correct value lies in a high weighted or high probability
region of this new function/distribution. Depending on the kind of extra
information provided by the sensors and the functions involved, the
method of integration of these functions varies, and it is our future goal to
make an in-depth study of certain useful integration techniques for various
kinds of sensor outputs with probability or weight-functions attached.

All of the above analysis is local to each subset E of the chart on thei

environment space X.

The integration of the sensor outputs in each cluster is done by the
processor allocated to that cluster. Thus the parameter measured in each

subset of the chart on X is measured and estimated by the sensor cluster-
processor unit of that subset. The subsets of the chart on x form a tiling of
the space X. If the sensors are probes capable of measuring a parameter's
value only at a given point then X will be the collection of all these points.
If the sensors are capable of sampling a region, then the space X is the
union of all these regions. The sampling of the sensor outputs are done ei-
ther periodically in time or randomly. But they are all sampled at the same
instant of time, for otherwise integration of the sensor values would not
make sense. We may then proceed to get an over-all picture of the be-
haviour of the parameter over X by studying the outputs of all the sensor
clusters. This is done by appropriately juxtaposing the sensor values accord-
ing to the actual geometric layout of the chart and obtaining the profile of

the parameter over the space over which the sensor clusters are distributed.
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It is also possible that the processors allocated to the sensor clusters may

have to communicate among themselves for efficient over-all perfor-

mance. For example, in the case when the sensors are tracking a moving

object, the object moves from one set in the chart to another, the sensor

cluster currently observing the object activates the neighbouring sensor

cluster which prepares to track the object from an indicated position on the

boundary of the chart set it is allocated to. Here, one may take advantage of

this kind of inter-processor communication to check for faults by compar-

ing common values. It is therefore often fruitful to over lap the sets in the

chart to obtain extra redundancy and greater fault-tolerance.

5.0 A SCHEME FOR PATCHING TOGETHER LOCAL
PROCESSOR INFORMATION TO OBTAIN A GLOBAL
PICTURE OF THE PARAMETER MEASURED.

We now look at the problem of addressing the global behaviour of a
parameter over the space x. This involves the interaction of the processors

allocated to the subsets of the chart and comparison of common informa-

tion for smooth patching of local information to obtain a global picture of

the phenomenon being observed over X.

Each of the subsets of the subsets E (1 < i < m, Ui 1 E = X) covers a
i i

region of the environment space X, and is equipped with a sensor-cluster
n n

S = i. j, where each sensor oij monitors all of E and sends data to a

common processor allocated to E. Each E is equipped with a coordinate

system of its own, and all the sensors in the cluster S measure with

reference to this coordinate system. Thus all points x in E have local
i

coordinates and if two of the region E. overlap then the coordinates of a
I

point in the intersection will be different in the different regions
containing it. The relative arrangement of the subsets E of the chart on X

depends upon the specific needs of a distributed sensor network. However,

it is desirable to have them overlapping since this helps in patching up the

local scenes to form a global picture as well as in increasing fault-tolerant

15



and aiding fault-detection in sensors by comparison of data at common

points.

If E and E are two sets in the chart on X that overlap and a point x
in the intersection has local coordinates (x,.. x ) and (xj,.., x) in the sets

E and E. respectively then we can obtain one set of local coordinates from
i J

the other by coordinate transformation.

That is, if x r E n E with local coordinates in E and E and as above,
i i i J

then we have a transformation Tij defined on E n E which transforms the
i I

local coordinates of x w.r.t E to the local coordinates of x w.r.t E:i j

Tij (x k) (xil,..,xk

It is clear that the transformation Tij and Tji are inverses of each

other on E n E.

i i

For instance, the E. may be k-dimensional hypercuboids of identical
t

dimensions overlapping in some manner, and with cartesian local coordi-

nates. Then the Tij are affine linear transformation involving a rotation

and a translation.(see Fig. 4).

effected by " .

Rij

tij (anslaion)

Fig 4. Linear transformation involving a rotation and a translation
for Tii



i.e, there exists a k x k matrix R.. and a k-dimensional column

vector ti , such that

(x). = R.W. (x)+ t..j 1J 1 1J

where (x) and (x) i are column vector representations of the local

coordinates of x in E and E. respectively.
j t

i.e. Tij(x)i = Rij (xW, + tij

It is also possible that the E are not rigidly fixed but move in time
i

and space as is the case with tracking sensor systems. In this case, the trans-

formations Tij are time-varying. In the case when there is only one chart set

and it is in motion, then the time-varying transformation which allows for

the movement of the sensor system corresponds to an inertial navigation
system. A chart equipped with local coordinates is called a coordinate chart

on x, and the transformation that effect local coordinate changes are called

transition functions.

The transition functions are known beforehand if the chart sets are
fixed. If the chart sets move in a predictable or prescribed way then again

the time-varying transition function can be computed.

Examples:

The following two figures are simple examples of overlapping

chartsets of 2-dimensional environment spaces and the transition
functions are simple translations or rotations:
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Rectangular
chart sets

Overlap __

Region

iE

Fig. 5. A 2-Dimensional rectangular region X tiled by partially overlapping rectangular
chart sets. The transition functions here are just horizontal or vertical translations.

Sectors as EChart sets

Overlap
region

Fig 6. A 2-dimensional circular region X tiled by partially
overlapping sectors. The transition functions here
are clockwise and counter-clockwise rotations.
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Further analysis in this direction can be done in specific distributed

sensor network situation, but the general interprocessor interaction and

communication must involve the use of transition function for meaning-

ful comparison of data. The coordinated changes are effected by local pro-

cessors and only those processors that are connected have transition func-

tions defined. In the case of moving chart sets it is possible that two sets

whose processors are not connected directly may overlap for some time. It

is possible to perform local coordinate changes by routing data through

other intermediate processors since the transition functions are transitive

and hence may be composed to obtain transformations between uncon-

nected processors.

6.0 CONCLUDING REMARKS

The paradigm discussed above is very general, and subsumes a wide

range of distributed sensor networks. Study of fluid flow and fluid thermo-

dynamics in conduits, temperature monitoring in nuclear reactors, detect-

ing and tracking targets in air, sonar tracking of submarines, sensing and

detecting in meteorology, atmospheric studies and Oceanography are a few

of the many applications which would find the above paradigm not only

useful but also natural for formulating and designing a distributed sensor

network. We intend to explore further the application and implementa-

tion of the paradigm with emphasis on the algorithmic aspects of sensor

integration.
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