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Abstract. Error bounds are developed for a class of quadratic

programming problems. The absolute error between an approximate

feasible solution, generated via a dual formulation, and the true

optimal solution is measured. Furthermore, these error bounds

involve considerably less work computationally than existing

estimates.
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1. Introduction. Quadratic programming has long been the corner-

stone for many numerical techniques in nonlinear programming. Typically,

these methods use a quadratic function to approximate the objective func-

tion and linear equalities and (or) inequalities to approximate the

constraint functions, all in some neighborhood of a specified feasible

point. The resulting quadratic programming problem is solved and the

optimal solution (or approximation thereof) becomes the point from which

a new round of approximations is made and a new quadratic programming

problem is formulated. In addition, quadratic programming merits

attention in its own right as it arises naturally in such fields as engi-

neering, economics, and game the3ry.

Increasingly, though, the topic has been treated as a special case

of the linearly constrained variational inequality problem:

Find u* such that

(u-u-)T f(u*) 5 0 for all u in K (1)

where K is a polyhedral set

K = {u: Cu R d, Au = b} (2)

and C, A, d, and b are specified matrices and vectors of appropriate

dimensions. Of special interest has been the development of error

bounds for approximate solutions, x, to the true optimal solution,

x*, of (1). Particular attention has been paid to the case where f(x)

is a linear function

f(x) = Mx+c

with M a positive definite (p.d.) matrix. Recently, Pang [8] provided
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a survey of known error estimates along with a number of extensions.

These follow the general format

II x-x* i pr(x)

where p is a constant independent of x (but dependent on the data) and

r(x) is the generalized residual, a quantity depending on the value of

x and the type of measure employed. A common drawback to these bounds

is that at least one of the two quantities is difficult to calculate

(and any simplification in one seems to make the other more difficult).

The purpose of this paper is to derive a set of error estimates

for a special case of the quadratic programming problem:

min xTHx + v Tx (3)
st. Ax b

x 0

where H is positive definite, and A E Rm x n is of full row rank. We will

sometimes refer to this as the primal (quadratic programming) problem.

In relationship to Pang's work we remark that the results presented

here are a hybrid of those termed linear programming measures (of error)

and dual measures (of error) in [8]. A Corollary to our Theorem 3.3

results in one similar to Pang's theorem 4.1. However, our bounds are

relatively easy to compute and thus can be employed not only for a poster-

iori error analysis but also as a test for termination of the particular

quadratic programming algorithm being used.

We have divided the remainder of the paper into two sections. In

section 2 we develop a dual formulation to (3) using conjugate func-

tions. This approach allows us to estimate the current duality gap

(denoted by A) and consequently bounds the improvement we can expect in
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our dual objective functional. As the dual formulation is solved it

generates approximate optimal solutions to the primal problem (given by

the gradient of the dual objective functional). In section 3 we bound

the error between these generated solutions (denoted by x) and the true

optimal solution to the primal problem (denoted by x*) as a function

of the estimated duality gap (A).

2. The Dual Formulation. In this section we derive the dual for-

mulation to system (3). The theory of duality in quadratic programming

is not particularly new. Dorn [2] and Lemke [51 are among the first to

address this topic. Both formulations in these works are different from

the dual in this section, yet both can be used to derive it. Lost in the

derivation, however, is the notion of the duality gap which is essential to

our analysis. Therefore, we will use the general theory of duality as set

forth in Avriel Il]. To employ this theory we introduce perturbation vari-

ables w, w2 and v and define

xTHx + vT  if Ax-b=wI
-Ax+b w

O(x,wl,w 2,v) = x_?v

+ 00 otherwise.

The conjugate function, p*, becomes

suP[ x+ T(Ax-b) T2(-Ax+b)-uT-(xx THx+v T) for AlA 2,uO1 + 2 -
{x

+  otherwise.

Letting y = XI-A 2 and substituting 0 (in anticipation of the Weak

Duality Theorem), we get
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- sup[y T(Ax-b)+u Tx-(x THx+v Tx) for u O
x

0*(O,y,u)=

+ { otherwise.

The supremum over x can now be removed by performing the necessary

maximization and inserting the optimal solution, yielding

S yTAH-IAy-yTb+yTAH'1(u-v)+ yTAH-IATy for u 2 0

0*(o,y,u) = J

j + O otherwise.

By the Weak Duality Theorem we have

inf O(x,O,O,O) 2 sup -0* (o,y,u).

x (y,u)

Since y is free, it too can be eliminated by performing the required

maximization of -0*; one can easily show that the correct (optimal)

choice of y (in terms of u 0) is

y- = (AH-1A T) -  (b-AH- (u-v)).

Substituting this result and acknowledging the dependence of 0* on u

yields

(u T Pu+cTu + k for u 0 (4A)

0* (u)

I + otherwise

where P = H- I - H-I AT(AH-AT I-AH) (4B)

c = -Pv + H-I AT(AH-IAT) -b (4C)

T T -1T -1 -1 T -1 T-1k = kv pv - bT(AH AT) AHv - bT(AH AT) b. (4D)



The weak duality inequality becomes

inf [ x THx+vTx] 4 sup -[u TPu + c Tu + k]
Ax=b u o
x0

and by virtue of this inequality, any x satisfying the primal constraints

[Ax=b, x20] and any uO provides a "working duality gap" - or an upper bound

on the possible improvement in either minimizing the left hand side (start-

ing from x) or maximizing the right hand side (starting from u). As such,

we define

A(x,u) = x THx + v Tx + u Tpu + c Tu + k (5)

for each (x,u) satisfying Ax=b, x20, and uO. Moreover, we define the dual

quadratic program to (3) as

inf uTpu + cTu + k (6)

s.t. u2O

Clearly, A(x,u) = 0 means x and u are optimal to the primal and dual

problems, respectively.

The next proposition is an elementary exercise in linear algebra

whose proof is left to the reader.

Proposition 2.1. The following relationships hold

1. AP=O

2. 1P 1 II H 1  l

3. PHP=P

4. A (Pu+c) = b

5. cTHP = -vTP

cTHc T6. c +vc=-k
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If we assume that the primal problem (3) has a feasible solution, then

the dual problem (6) is bounded below and it is not hard to show that

there exists an optimal solution u*. This u* also solves the (equivalent)

linear complementarity problem: Find u such that

Pu+c ! 0 u O uT (Pu+c) = 0.

By virtue of proposition 2.1 (part 4.), x* = Pu*+c is a feasible point to

the primal problem and a direct calculation shows A(x*,u*) = 0 demonstra-

ting the optimality of x* as well. As a consequence of the same proposition

(part 1), we observe that the function Pu+c is not strongly monotone over the

nonnegative orthant, as evidenced by the nontrivial nullspace of P.

For the remainder of the paper we will make the following assumption:

(A) There exists an interior point i to (3): Ak=b, k>0.

We remark that assumption (A) is equivalent to either of the following

assumptions

(A') The set of optimal solutions to the dual problem (6) is

bounded or

(A") There exists a uO such that Pu+c>O.

The details can be found in 1101. Observe that (A") implies (A') as

previously shown by Mangasarian and McLinden in [6].

3. Error Estimates. A number of reasons warrant computing solutions

to (3) via the dual formulation (6). The constraint set consists only of

nonnegativity constraints allowing for a considerable reduction in the compu-

tational work load. Moreover, the dual problem preserves the number of var-

iables, unlike many existing dualities, and has accessible feasible points.
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Recall from section 2 that an optimal dual solution u* induces the

corresponding (unique) optimal solution to the primal via the formula

x*=Pu*+c. As such, we want to know how close the estimate x=Pu+c is to

the primal optimal solution. Observe that the estimate satisfies Ax=b by

Proposition 2.1 (part 4) but not necessarily the nonnegativity condition,

x O. A number of quadratic programming algorithms applied to (6) force

the nonnegativity of Pu+c, particularly those based on adding a logarithmic

barrier function (see Kojima et al. [4] or Monteiro and Adler 17]). Others

based on projecting (or truncating components of) the gradient do not. Of

the former type, the two cited references actually enforce positivity which,

as remarked in section 2, requires that assumption (A) hold. Error esti-

mates in this case are handled easily by Corollary 3.4.

To start, we will derive a bound on JIx-x*JH (again, x=Pu+c) based on

the true duality gap, i.e., the difference

1 T T T Tu Pu+c u - [ (u*) Pu*+c u*].

Lemma 3.1. Let u* denote an optimal solution to (6), namely

min uT Pu+c Tu subject to uO,

with P and c defined as in (4b,4c). At u suppose an upper bound 6 has been

acquired such that

T T T T
u Pu+c u - [ (u*) Pu*+c u*] 5 6 (7)

(as for example, when one has an upper bound on the duality gap). Then

IIP(u*-u)II 5 2 X 6

where X is the largest eigenvalue of the (p.s.d.) matrix P.m
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Proof. It is easy to show that

T TT ,T ,,T )T_ T

uT Pu+c Tu-[ (u*) Pu*+c u]=-I(u-u*) P(u-u*) T(u*-u)T (Pu+c). (8)

Define F(t) on [0,1] by

F(t)= (u+t[u*-u]) T p(u+tfu*-u)+cT (utu-u])

Observe that u+t[u*-u] is nonnegative for tz[0,1] and F(t) is monotone

decreasing on [0,1]. Thus F'(t) 0 on [0,11 which, for t=1, yields the

inequality

(u*-u)T p(u*-u)-(u*-u)T(Pu+c). (9)

The two inequalities (8) and (9) imply

(u*-u) Tp(u*-u) 2 6 . (10)

Finally, since P is p.s.d. (and symmetric) we have

(u*-u)T P TP(u*-u) m(U*-u)T P(u*-u)

from which we conclude

IIP(u*-u)l 2 526X •

Taking the square root of both sides of the inequality completes the proof.

Corollary 3.2. If x=Pu+c is an approximate optimal solution to (3)

(not necessarily nonnegative), then

Ilx-x*lIS12X m6

where x* is the (unique) optimal solution to (3) and 6 satisfies (7).
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Our focus now turns to obtaining good estimates of the 6 in (7).

The working duality gap A(x,u) is one such bound, but it requires that x

be feasible to Ax=b, x40. If x is not nonnegative (but satisfies Ax=b),

then we can use a perturbation technique analogous to that in [3, Thm. 29]

or [9] to create a nearby point which is. More precisely, suppose that an

interior point k has been generated (or as is the case in some problems,

known in advance). Then for x=Pu+c, the perturbed point z given by

z=tx+(l-t)x

is both feasible and nonnegative provided 05t!5 where

JJ

Taking t=e to define a particular z, and then using it to evaluate A(z,u)

is the basis for the following theorem.

Theorem 3.3. Suppose assumption (A) holds and that an interior

point x has been specified. Let x be defined by x=Pu+c and let x* be

the (unique) optimal solution to the primal quadratic programming problem

(3). Then there exists a constant vector C and constants p and T, all

depending on x, such that

IIx-x*1 2A m{xTu+(1 -) [ExT +(l+E)k+(l-E)P+TI}

where e is given by equation (11), k is the constant defined in (4d), and

A is the largest eigenvalue of P.m

Proof. In light of Lemma 3.1 it suffices to show that the quantity

in brackets {- is an upper bound similar to 6 in (7). Define z=Ex+(1-e)i

where e is given (depending on x and x) by (11). Then A(z,u), as given
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in (5), becomes

A(zu)= 2 u TPHPu+E2 c THPu+ 2 cTHc+O(-O)iT H(Pu+c)+ (1-) 2xT H+OvT (Pu+c)

T^ T- T .
+(1-O)v x+ u Pu+c u+k.

Using the identities PHP=P, cT HP=-vT P, and c Tc=-k-v Tc from proposition

2.1 and regrouping:

A(z,u)=( 0 2+ )uTPu+c Tu+(1-0)[[e(Pu+c) T(H+v)+(1+0)k+ (1-o)T Hk+T v].

Finally, using the positive semi-definiteness of P and the definition of

x, we obtain

A(z'u)!u T x+(T-T)[xTE+v)+(l+O)k+(1-O)( iTHk)+ Tv],

the constants in brackets {'} now being evident if we take

C=Hi+v p xT Hk T=x v. (12)

Corollary 3.4. Suppose for a given u0 Pu+c60. Then for x=Pu+c

IIx-x*1 x2A Tum

Proof: -1 if Pu+c O, and the term under the root in Theorem 3.3

reduces accordingly.

Observe that no attempt has been made to fit the interior point x to a

particular value of Pu+c, nor have we tried to optimize our choice of e

for a given i. For example, given k and Pu+c one might minimize

the function

g(s)=(1-s)[s x T(H+v)+(1+s)k+(1-s)(T Hk)+ Tvi

subject to the constraint 0s$O, possibly improving the error bound.

Additionally, in response to a candidate Pu+c, one might attempt to
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generate an interior point with larger positive components correspondilg

to (and in scale with) the negative components of Pu+c, thus reducing the

factor 1-0. However, without additional a priori knowledge of the parti-

cular approximate solutions (Pu+c) to be encountered, it seems wise to

find a "good" interior point (i.e., one with uniformly large positive

entries) in an attempt to keep the factor 1-0 small. Such an interior

point can be found by solving (either exactly or approximately) the

linear program

Max t

s.t. Ax = b (13)

x-te O

x,t 0.

T

where e is the vector of l's: e (1,1,...,1). Observe that any feasible

point (x,t) to (13) with t>O yields a set of constants via (12) which may

bc used to estimate the absolute error between our current candidate

(Pu+c) and the true n-timal solution (x*).

Observe that Theorem 3.3 (and Corollary 3.4) can be extended to incor-

porate the notion of the residual, i.e., the portion of Pu+c which violates

the nonnegativity condition. To measure the violation consider the 2 norm
P

II (Pu+c) 11p

where (Pu+c) denotes the vector obtained by inserting O's in the positive

components of Pu+c. In particular, if the 0-norm is chosen, and (i,t) is a

feasible solution to (13) with t>O then

a!
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0 min)
i it+ (Pu+c)IKJ

thus the factor (1-0) in Theorem 3.3 becomes

1-EO <1P ~ ) 10 < -I !(Pu+c)-1100
+ Ii(Pu+c) - t

Various extensions and alternate formulations of Theorem 3.3 and Corollary

3.4 are now obvious. We will not pursue these here.

We conclude with a remark about the computational efficiency of these

error estimates. As previously mentioned, once an interior point to

Ax=b x O has been found, it may be used to bound the error between any

candidate (Pu+c) and x*. The error bounds are, of course, more relevant

to those approximate solutions which are nearly nonnegative (thus I-@

T
will be small) and nearly complementary (hence x u will be small). Each

of the constants in Theorem 3.3 can be computed (or bounded) with a

minimal amount of work.

In contrast, error estimates which rely on the gap function (see

section 4 of [81) require the complete solution to a linear programming

problem for each approximate optimal solution considered. The dual

measures (see section 5 of [8]) again require a substantial amount of

work. Here, one needs a constant defined by the maximum norm of a vector

constrained to the surface of an ellipsoid (characterized by the data).

The potential of the error bounds in Theorem 3.3 can be realized with

minimal computational work. They should be considered, as our title sug-

gests, practical.
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