WL-TR-91-1042

AD-A243 224
LT

AGSSS: THE AIRBORNE GRAPHICS SOFTWARE SUPPORT
SYSTEM; AN Ada/PHIGS-BASED DISPLAY EDITOR

FOR THE RAPID DEVELOPMENT OF COCKPIT

DISPLAY SOFTWARE SYSTEMS

R. Jorge Montoya, Timothy L. Turner, Donna M. Jewell,

James V, Aanstoos, Ramasubramanian Suresh, and M. Chad Barker
Center for Systems Engineering

Research Triangle Institute

Research Triangle Park, NC 27709

September 1991

Final Report for Period September 1987 - September 1990

Approved for public release; distribution is unlimited

AVIONICS DIRECTORATE

WRIGHT LABORATORY

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

| 91-17399
91 1209 083 LT T

NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely Government-related procurement, the United States
Government incurs no responsibility nor any obligation whatsoever. The fact that the
government may have formulated, or in any way supplied the said drawings,
specifications, or other data, is not to be regarded by implication or otherwise in any
manner construed, as licensing the holder or any other person or corporation, or as
conveying any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS,
it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

T 9A WS el =

DERRYL A. WILLIAMS DAVID A. ZANN

Airborne Graphics S/W Support System Actg-Chief

Program Manager Systems Integration Branch
Systems Group Avionics Directorate

FOR THE COMMANDER

./ _ | j
CHARLES H. KRUEGER
Director
System Avionics Division
Avionics Directorate

If your address has changed, if you wish to be removed from our mailing list, or if the
addressee is no longer employed by your organization, please notify WiL/AAAS, Wright-
Patterson AFB, OH 45433-6543 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a document.

UNCLA
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB8 No. 0704-0188
1a REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified None
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for Public Release:
2b DECL/ASSIFICATION/DOWNGRADING SCHEDULE Distribution is unlimited
N/A ’
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
RT1/3966/00-01F WL-TR-91-1 042
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
. . (If applicabie)
Research Triangle Institute WL/AAAS
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Center for Systems Engineering Avionics Directorate
P.0O. Box 12194 Wright Laboratory
Research Triangle Park NC 27709-2194 Wright-Patterson AFB OH 45433
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9 PROCUREMENT INSTRUMENT 1DENTIFICATION NUMBER
ORGANIZATION (If applicable) F33615-87-C-1531
8c. ADDRESS (City, State, and ZiP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. [NO. NO ACCESSION NO.
63253F 2735 01 02
11 THLE (Include Security Classification) AGSSS: 1he Airborne Graphics Software Support System; An Ada/
Phigs-Based Display Editor For The Rapid Development Of Cockpit Display Software Systems
b\x'~L\\‘
12. PERSONAL AUTHOR(S) n¢
R. J. Montoya, T.L. Turner, D. M. Jewell,J. V. Aanstoos, R. Suresh, M. C. Barker
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
Final FROM Sep 87 TO Sep 90 September 1991 9

16. SUPPLEMENTARY NOTATION

17. COSATI CODES gs PUBJECT TERMS iContinue onTrevim K,ne essary a?;d idegtjiy by block number)
FIELD GROUP SUB.GROUP oftware Development Tool, Airborne Graphics

Graphics Software Development, Dynamic Graphics

ABSTRACT (Continye on teverse if nece nd identi bl number,) .
ver the ;(>ast ecaée, the 6et fmance gfbydxgcftﬂ"gr)aphlcs systems has increased several-fold.

At the same time, the size of the hardware has been reduced and high performance airborne
systems are now feasible. As a result, complex,three-dimensional, pictoral, real-time
display formats can now be supported. Unfortunately, the increase in display complexity
results in a significant increase in the software requirements. Additionally, dynamic
displays, such as used in avionics, have a two part software problem. First, the display
format and all its elements must be explicitly defined. Second, the connection must be

established to the rest of the avionics. Overall, graphics software development is a truly
time and labor intensive task.

The goal of the AGSSS is to provide a graphics software development support environment. The
AGSSS consists of four parts: the Graphics Editor for creating the format program, the
Actions Editor for creating the driver software for the display dynamics, the Display Test
Manager which allows the user to test the new software within the workstation, and the

20_ DISTRIBUTION / AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED [J SamE AS RPT [pTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL
Derryl A. Williams 513-255-4827 WL/AAAS
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

BLOCK 19 continued

Display Program Integrator which creates the final software source modules tuned to the
target system hardware. The AGSSS is a totally interactive system which allows the user

to create the display format by "drawing" the objects on a graphics workstation screen.
The resulting code is shown, as it is produced, in an ad jacent window. The user can
operate in any window. The Actions Editor operates in a similar manner but employs text
rather than graphics editing.

The system produces Ada/PHIGS code for the display file and Ada code for the actions file.
Additionally, the AGSSS is written entirely irn Ada providing a great deal of modularity
and host system independence.

ii

P ———

- NTI3 GRAMIL f

C BP0 Tab i
| oo wad f
listifieatton __

o

- ————

! |

. l;}:xtrlou;ion,,"

e ————

;o AvaLlabts ty "ges
Avg »-oo; er
Dixt | Fraec

TABLE OF CONTENTS . (3 | | |
a3y
' _ -, o B
Section Page
EXECUTIVE SUMMARYiveeeveveccnnes Ceseseseresateeersnneens 1
1.0 INTRODUCTION setesscessens tessesvecessssrensesans 6
1.1 Purpose ..ieeeveeconees teessesesesesesennnenan esssascas 6
1.2 Need ...iviiieinirienencoccnens Cetetssecescsssansans ceees 6
1.3 Approach cesensens ceveeces Cesesttescnsecsnnn 13
2.0 AGSSS SYSTEM DESIGN, IMPLEMENTATION, AND USAGE veees 21
2.1 Detailed DeSTgN tivirieerenererconnoceeoeoeeannasncsnnens 22
2.2 Implementationceoeeeecenss Ceteessessssesssnsseraens 23
2.3 System USAQe ...iieereroeercenssocrecssesccaceoansannons 32
3.0 DISPLAY DEVELOPMENT USING AGSSS .tvveveveceneececnsonannnnes 44
4.0 ANCILLARY RESEARCH RESULTS 4ivvvieereececnseecencnonasnacans 65
4.1 Use of DIANA for an Integrated Ada

Development Systemciceiiecerenenecencecceanscananns 65
4.2 Extensions to the PHIGS Graphics Standard 66
4.3 Development of a Portable File Manager ceesceseanea 70

4.4 Use of Ada Tasking Features to Implement
User Inputs as Concurrent Finite Automataceccv.e 71
5.0 CONCLUSIONS AND RECOMMENDATIONS ...cevevececensananansannns 73
5.1 CONCIUSTONS 4tiuvereeeneoscococcoacsosscncacanancocsannes 73
5.2 Recommendations .ceveeseecescescoscscsssnsssscssncssonss 77
6.0 REFERENCES ...iviieiiiineeencennscossoccsscscnsansconsonnnan 80
BIBLIOGRAPHY 1. iiiiiiteeresosceossenssasssnsasesscsnassnnane 80
GLOSSARY tiieitiinerosneoosossosassssossanssaensosssssannns 82

iii

LIST OF ILLUSTRATIONS

Figure No.

1.1
1.2
1.3

1.4
1.5
1.6

.8
.9

N ~N ~N N ~N
. -

Horizontal Situation Indicator: TACAN Format
Vertical Situation Display (VSD) cevvveeeneeeeannns

Cockpit Displays With Varying
Degrees of Complexityce... Ceeteecsscsensennes

Pathway-in-the-Sky (PITS) Display Format
Block Diagram of Original AGSSS Concept
WRDC Integrated Test Bed (ITB) Facility
Research Cockpit of the ITB Facility ...ccvevveenen
Block Diagram of Proposed AGSSS Concept
Functional Block Diagram of AGSSScvivvevecennne
CSCI 1 AGSSS System Diagram .cceeveceeccnaes ceesaes
CSCI 1 File Level Data FIOW cicevvenennencennannas
CSCI 1 AGSSS Demonstrator Modeceecevveennne
CSCI 1 AGSSS Mission Modecvvveenneennennnennn

CSCI 1 AGSSS Control Flow:
Initialization/Shutdown tesecavesesnevnseasssen

CSCI 1 AGSSS Workspace Control FIOWcevvevenes
CSCI 1 AGSSS Functional Control Flowocvuuenn.
Block Diagram of AGSSS Modular Implementation
CSCI 1 Composition of the AGSSSccciven.

.10 CSCI 1 General Decomposition of the AGSSS

iv

24

26

Figure No.
2.11 CSCI 1 Decomposition Elements cf the AGSSS
2.12 Example of an AGSSS menu: Display Editor Menu
2.13 Example of an AGSSS form: Flight Simulator Form ...
3.1 Use of the Graphics Menu to Invoke the
Color Editor Menu ..ueeievieeeeeceenanacacnnnnnnnns
3.2 Use of the Graphics Editor to Traverse
Displayable PHIGS StOresScieiveececnenncncennns
3.3 Use of Graphics Editor to Add (Draw) a Feature
(Star) to an Existing (Aircraft) Display
3.4 Use of Graphics Editor to Complete (Flat Shade) the
Drawing of the Star ...ieieieieiiireeeccenaneenocnes
3.5 Example of Several Display Formats Instanced
Several PHIGS Workstationsccceeeecenneecenss
3.6 Example of Several Display Formats and Use of the
Color Editor With One of Them .veevevenneenerenenns
3.7 Use of the Display Editor Menu to Invoke the
Actions Editor Menucevuiienencnencecnncnannns
3.8 Example of Additional Menus and Forms Associated
with the Actions Editorviiiviinienncneennenenns
3.9 Portion of the Body of ILS ...vvvvrieneennnrennns
3.10 Example of Changes to the Body of ILS
3.11 AGSSS Onboard Aircraft Simulator Control Form
3.12 Example of Display Test Manager Utilization:
Take-0off Run, Part 1 ..i.eieieereeennenccccnoncnnnns
3.13 txample of Display Test Manager Utilization:
Take-off Run, Part 2ieiriiiinnineeeronnenncnns
3.14 Example of Display Test Manager Utilization:
Take-off Run, Part 3iiiiiiieneecennconanancans
3.15 Use of the Display Editor Menu to Invoke the

Display Program Generator Menucceceveeecenes

47

48

48

51

52
53
54
56

57

57

58

60

Figure No.

3.16

3.17

3.18

Use of the Workspace Manager to Invoke the
File/Directory Managereeveeeeeescscocecananes

Use of the File/Directory Manager to Verify the
Generation of the Appropriate Executable Files

Use of the File/Directory Manager to Verify the
Generation of the Appropriate Run-Time
Command FileS ..voeieeceonseenssscosacsnnsesnnccnnnne

Example of AGSSS-Developed Display Running Outside
the AGSSS environmentccveceeincannsascacocns

Drag Finite State Machineccciviivriniinnennnse

Example of AGSSS-Generated Display Software
System Targeted to a VAXStation 2100cc000e.

Example of AGSSS-Generated Display Software
System Targeted to a SUN/4 SPARCStation 370

Example of Complex Display Format Expected to be
Used in the Cockpit of Future Aircraft

Vi

64
72

75

76

79

EXECUTIVE SUMMARY

This technical report addresses the development of the Airborne
Graphics Software Support System (AGSSS), an integrated software
development environment that aids in the rapid prototyping of cockpit
displays and in the production of the associated display generation
software. This work was sponsored by the Avionics Directorate of the
Wright Laboratory (WL/AAAS) under contract F33615-87-C-1531. It was
conducted by personnel of the Center for Systems Engineering (CSE),
Research Triangle Institute (RTI). Mr. R. Jorge Montoya, manager of the
Avionics Technology Department at RTI, served as the project manager and
Mr. Derryl Williams of WL/AAAS-2 served as the project Engineer for the
U. S. Air Force. He was ably assisted in this task by Mr. William
Koenig. Mr. Jesse L. Blair, group leader, WL/AAAS-2 also helped set
research goals and define AGSSS features. In addition to Mr. Montoya,
the RTI AGSSS project team consisted of Mr. Timothy L. Turner, who led
the technical effort, Mrs. Donna M. Jewell, Messrs. R. Suresh, James V.
Aanstoos, and M. Chad Barker.

Advances in digital computers, computer graphics, and video
technology during the last decade have made complex cockpit displays a
common application in military aircraft. The underlying software system
necessary to convert the data from the aircraft systems into a graphical
representation, i.e., the display, is getting so complex that the
application of traditional software methods to develop it is proving to
be very inefficient. Classical coding methodology results in single
point designs, promotes the development of the indispensable graphics
programmer (Guru), and distances the display designer from the display
implementation process.

To address these problems and encouraged by results from an earlier,
proof-of-concept effort on the Interactive Graphics Editor (IGE)

performed under NASA contract NAS1-17948 and cosponsored by WL, the
Avionics Directorate sponsored the research addressed in this technical
report. The basic goals of the program defined in the PRDA 67-22-PMRB
(CBD, 4/4/87) were: 1) to develop an interactive, pictorial tool which
would bring the display designer closer to the display implementation
process; 2) to make the application environment transparent to the
display designer; and 3) to build in flexibility and avoid absolence in
both the tool and its products.

In response to this PRDA, RTI proposed to develop a modular software
environment that would be implemented in Ada and which would: 1) use the
3D PHIGS standard as the basis for the definition and rendering of the
display formats, 2) use Ada as the basis for the specification of the
actions that animate the resulting display, and 3) use Ada/PHIGS binding
to implement the resulting real-time display software targeted to a
specific application environment.

The result of the work performed under the ensuing contract (USAF
F33615-87-C-1531) was the Computer Software Configuration Item (CSCI)
known as AGSSS. AGSSS is an Ada/PHIGS-based, modular, software
development environment implemented completely in Ada. It supports the
development of display formats, the specification of the actions
associated with the elements of such display formats, and the creation
of a run-time software system to support the generation of the resultant
cockpit display outside the development environment.

The implementation of the CSCI AGSSS consists of two main parts: 1)
the design workstation and 2) the run-time system. The workstation
consists of three Top Level Computer Software Components (TLCSCs), the
AGSSS KERNEL, the DEVICE INTERFACE, and the DISPLAY EDITOR. The run-
time environment is provided by the TLCSC RUN-TIME SUPPORT. A fifth
TLCSC, AGSSS TOOLS, provides software components which are used by all
other components of the system,

Specifically, the AGSSS KERNEL manages the workstation environment;
the DEVICE INTERFACE interfaces AGSSS to all physical input and outputs.

The DISPLAY EDITOR supports the generation of display formats from
pictorial definition through action specifications and testing to
display program integration. The RUN-TIME SUPPORT provides building
blocks for use with display programs generated by AGSSS and targeted to
individual run-time environments. AGSSS TOOLS provides support packages
of a general nature to all component levels of AGSSS.

Sample applications described in this report show that AGSSS has met
or exceeded its design goals. Adherence to the 3D graphics standard
PHIGS (Programmer's Hierarchical Interactive Graphics System) and
implementation in the high-level language Ada insures portability and
longevity of the product. Preliminary results indicate that use of the
AGSSS has led to a significant shortening of the cockpit display design
and development process in the Integrated Test Bed Facility at WL.
Moreover, the AGSSS incremental Ada development environment shows the
potential to improve substantially the efficiency of the display code
development.

Informal measures indicate that by using the AGSSS the productivity
associated with the process of developing cockpit displays and its
enabling software improves tremendously, both in quantity and quality.
The specialized knowledge required heretofore to work in this area has
been reduced. Also, the system generates display programs which are
targetable to other Ada/PHIGS environments. Examples of environments to
which AGSSS outputs have been targeted include DEC VAXstation 3100 and
SUN/4 SPARCStation 370.

Preliminary results indicate that productivity has increased by a
factor of at least 10 over that obtained with the conventional method
(FORTRAN/RAP) of developing display software for the ITB Facility
Display Generation System (DGS). Furthermore, it is estimated that the
integrated environment provided by AGSSS will improve productivity by a
factor of 10 over hand-coding the same application in Ada/PHIGS and that
further increases are possible with additional fine tuning of AGSSS.

The Graphics Editor implementation is very thorough and has the
potential for many more functions. It has certainly proved its worth as

a rapid prototyping tool supporting the iterative development process.
The development of Ada programs has also benefited from the AGSSS
implementation. For example, using the Actions Editor Ada program turn-
around has improved between 10 and 50 times over the standard approach.

In addition to developing the AGSSS, efforts under this contract led
to some promising, ancillary research results. These include the use of
DIANA (the Descriptive Intermediate Attributed Notation for Ada), as the
basis for an integrated Ada development system; the implementation of
various extensions to the 3D graphics PHIGS standard; the development of
a portable file manager; and the use of Ada tasking features to
implement user inputs as concurrent finite automata.

The results of this project lead us to conclude that the potential is
there for substantial quality improvements obtained by expioiting the
iterative development process, the use of PHIGS, and the porting of
AGSSS and its products to newer graphics platforms. Concerning the
amount of specialized knowledge required to produce a cockpit display,
significant reductions have been obtained by supporting the graphics
specifications at a much higher level and implementing AGSSS to act as a
guide with respect to the specifications of the actons in Ada.

Finally, indications are that, with the exception of the generalized
structure elements and the color specifications, the code generated by
AGSSS will be 95% to 100% portable to other compatible platforms.

These results are sufficiently encouraging to lead us to recommend
that AGSSS be ported to one or more of today's high-performance
graphics workstations, especially the one chosen to upgrade the ITB
Facility's DGS with. In addition the products of AGSSS should be
targeted to the workstation of choice and a targeting strategy developed
to exercise the application code produced by AGSSS in as many DGS as
possible. Also subset configurations of AGSSS should be considered for
other avionics applications. Specific enhancements to components of
AGSSS should also be considered. These could include the addition of
high-level primitives and PHIGS+ enhancements to the Graphics Editor;
support for PDL and document generation in the Actions Editor; and
provision of nonaerodynamic motion control in the Display Test Manager.

4

Longer term recommendations are based on exploiting the fact that the
AGSSS has been designed and implemented with a great deal of modularity.
For example, the KERNEL, the DEVICE INTERFACE, and the Ada TOOLS
components of the AGSSS can be viewed as forming the basis for a generic
Ada/PHIGS workstation which may be used to develop software for other,
nongraphical, embedded applications. Furthermore, an implementation
strategy should be followed that merges both the AGSSS windowing
functionalities into those of X Windows, and the AGSSS PHIGS graphics
with those of the emerging PEX (PHIGS Extensions to X) standard. This
approach would promote the widest utilization of this productivity-
enhancement tool.

1.0 INTRODUCTION
1.1 Purpose

This technical report describes the development of the Airborne
Graphics Software Support System (AGSSS), an Ada/PHIGS-based software
development environment for the rapid prototyping of cockpit displays
and the automatic production of their enabling software. The work was
sponsored by the Avionics Directorate of the Wright Laboratory (WL/AAAS-
2) under contract F33615-87-C-1531 and conducted by personnel of the
Center for Systems Engineering (CSE) of the Research Triangle Institute
(RTI).

The purpose of AGSSS is to support advanced airborne display
generation systems efficiently and with sufficient flexibility to
accommodate future display systems requirements. It is intended to give
the cockpit display designer full but transparent access to the display
generation environment by providing interactive interfaces that will
allow the artistic or pictorial design of displays, guide the
specification of the operation or the dynamics of the display, and
automatically create the run-time code that will generate the display
formats in the airborne environment.

1.2 Need

Development of software for cockpit displays poses a tremendous
challenge to display designers and software implementors. Recent
technological advances have produced computers which are smaller, less
power-consuming, and which have higher computational power and memory
capacity than ever before. These advances have made their way into
today's high-performance airborne display systems. These systems are so
complex and their application-support software so intricate that they
require experts to program them. Moreover, in most of these cases,
software development tools have not kept pace with this rapid hardware
evolution.

In addition, the increasing acceptance of color, raster scan display
technology in airborne applications has created both benefits and
problems as display designers seek to exploit its many capabilities for
encoding and integrating information and display implementors seek ways
to program the display systems efficiently to generate these displays in
real time.

Cockpit display formats have evolved from 2D and 3D replicas of
standard cockpit instrumentation to very sophisticated 3D images which
integrate a great deal of information and detail into one display.
Figures 1.1 through 1.4 illustrate the level of complexity found in
today's representative cockpit display. Figure 1.1 shows a replica of a
horizontal situation indicator (HSI) in the TACAN mode. Figure 1.2
illustrates a vertical situation display (VSD). This display is
slightly more complicated than the TACAN display. Figure 1.3 includes
several of today's representative cockpit display formats. Of
particular importance to this discussion are the two formats at the
bottom of the figure. The display on the left illustrates a primary
flight display (PFD) known as the electronic attitude director indicator
(EADI) which has been integrated with a tunnel-in-the-sky display. The
display on the right illustrates the EADI integrated with a synthetic 3D
scene, Figure 1.4 illustrates the Pathway-in-the-Sky (PITS) display, a
follow-me display concept currently under consideration for addition in
the ITBF research cockpit. The displays in the last two figures rank
among the most complex found in today's cockpit. A number of conceptual
cockpit display formats for future applications have been discussed in
the literature. As a rule they seem to be between one and two orders of
magnitude more complex than the ones presented in Figures 1.3 and 1.4,
One example of this is the format associated with the "super cockpit
display" identified in Project Forecast II. This futuristic cockpit
display integrates a great deal of information into one format and
should be representative of displays of the future.

The typical 3D display format consists of a collection of 3D
geometric primitives such as polygons, lines, and points.

Figure 1.1 Horizontal Situation Inaicator: TACAN Format

Figure 1.2 Vertical Situation Display (VSD)

ISOFTWAEE/HARDWARE BASE FOR_ADVANCED FLIGHT DISPLAY

PEROSPECHIVE & FRM ANTALRY NG COFTWARE WINDOW
& CLIPPING FY 8] ALGORITHM Fy 84 QOPERATOR FY 85

ALGORITHMS §1R PLLYGON SHADING PSEUDC 3.0 & STERED
ADVANCED TUNNEL FY 83 COPRQCESSOR FY'BS 3-0 CAPABILTY FY'8b

PSEUDO 3-D SCENE GENERATION

FEATURES MERGED WITH EADI

“TUNNEL IN SKY ™ “REAL-WORLD”TERRAIN
PLUS RUNWAY DATA BASE
AWM lu‘lz
. ’Mrt;- 7::7

ADAGE 3000 WITH ADAGE 3000 WITH

HARDWARE FiLL APEX CO PROCESSOR
e 512 X 512 RESOLUTION e 1024 X 1024 RESOLUTION
e 25 MILLION PIXELS/SECOND e 40 MILLION PIXELS/SECOND

Figure 1.3 Cockpit Displays With Varying Degrees of Complexity

Figure 1.4 Pathway-in-the-sky (PITS) Display Format

10

Fundamentally, any display format can be decomposed into these geometric
primitives. The combination of these primitives with the update rate
required by the application provides a metric with which the display
designer can predict, at least in general terms, the performance
characteristic required of the associated display system. Although
alpha-numeric displays are rather innocuous, text and its associated
attributes (e.g., antialiased and rotatable) add substantially to the
computational load presented by a display format to the display
generator, specially in display systems which are not optimized for
character generation. Furthermore, these displays will have smooth
shading requirements which will introduce an additional level of
complexity in the generation of the formats.

Furthermore, these displays will incorporate a great deal of modality
which will increase the complexity of the software. Additional display
software complexity will result from the management of critica! -ockpit
displays used in a particular aircraft. This will have to be done
increasingly in the future to fully utilize the limited amount of
display real estate which will be available in the cockpit.

In the context of cockpit displays, real-time performance is usually
taken to mean display update rates of 30 Hz or better. This rate
indicates how often an image of a given complexity must be updated to
give the pilot the assurance that the information is indeed coming from
the real world. It should be clear that for a given graphics computer,
the higher the complexity of the display and its associated software,
the slower (longer) the update rate (the execution time) of the display
(the program) will be. Partly because of this, software developers are
constantly searching for efficient ways of accomplishing a given
graphical procedure. This consideration also provides the impetus for
hardware designers to incorporate hardware-assist capabilities in
graphics computers. Sometimes it is possible to implement graphical
procedures more efficiently in hardware resulting in significant
performance increases. For example, the ADAGE 3000, the PDG in the ITB
Facility Display Generation System (DGS) provides several coprocessors
and special hardware features. The hardware fill feature of this PDG,

11

for example, allows for the efficient flat shading of polygons. Copro-
cessors are also available to perform a variety of functions including
text generation and rendering which is a particularly inefficient task
in raster scan PDGs.

Because the enabling software for these display systems is so focused
and their hardware environment is so unique, the application of .
conventional software development techniques in this environment has not
been very productive. This problem is compounded by the inability of
the display designer, typically not an experienced programmer, to
exploit directly the power of these computers. These factors result in
long display development periods during which the designer has no
feedback as to what his or her concept will look like in the
application. Consequently, the development of cockpit displays using

the classical approach has become very costly and time consuming.

Encouraged by results from earlier research on the Interactive
Graphics Editor (IGE) (R 1), the Avionics Directorate of the Wright
Laboratory (WL/AAAS-2) of the U.S. Air Force sponsored the Research
Triangle Institute (RTI) to conduct research into the definition and
implementation of a software system that would make the development of
cockpit displays and its underlying software a more efficient process.

As described in the Program Research and Development Announcement
(PRDA) 67-22-PMRB which appeared in the Commerce Business Daily (CBD)
dated April 4, 1987, "the objective of the Airborne Graphics Software
Support System (AGSSS) is to support advanced airborne display
generation systems and will be designed with sufficient flexibility to
accommodate future display systems requirements without becoming
obsolete. The system will be hardware independent, generating generic
and standard software code which can be targeted to many differing
display systems. The system will support graphics software development
and modification interactively and will automate many of the procedural
aspects of the development process, allowing the designer to concentrate
his/her efforts on the creative aspects of the process.” A block

12

diagram of the AGSSS concept as envisioned at the time the PRDA was
announced is presented in Figure 1.5,

1.3 Approach

In response to this PRDA announcement, the Research Triangle
Institute proposed to the Avionics directorate of WL (WL/AAAS-2) a
research and development program to develop a PHIGS/Ada-based software
system which would provide a pictorial (“"artistic" versus “codable")
interface to display designers in the front end and produce generic
graphics and application code in the back end. The resulting display
code could be targeted to existing and projected suite of airborne
processors (display and host) to support the generation and update of
sophisticated cockpit displays. As part of the program, RTI also
proposed to demonstrate the software system in the hardware and software
environment of the WL/AAAS's ITB facility. This facility provides an
integrated environment in which to evaluate and demonstrate emerging
avionics hardware and software systems. A block diagram of the ITB
Facility (ITBF) is illustrated in Figure 1.6 and a picture of the
research cockpit in the ITBF is included in Figure 1.7. It was also
specified that the resultant software system would be used in the ITBF
as a rapid display prototyping tool and as a software generator tool
after its demonstration phase. As such, the product would be designed
and implemented to adhere to all specified data items (DI) standards
referred to in the PRDA announcement. A block diagram of the AGSSS
concept proposed by RT1 is presented in Figure 1.8.

Based on this response, a contract was awarded to RTI in September
1987 to refine the definition of the system and conduct the necessary
research to develop the Airborne Graphics Software Support System
(AGSSS). The objective of the work described in this report was to
develop a modular software development environment for designing,
modifying, and testing cockpit displays, and automatically creating the
underlying programs in a high-level and interactive manner. A
fundamental goal of the software system was to address the problem of

13

Airborne Graphics Software Support System

== Horkstation mem pome Codec Generoation System e
3
')‘ e b mics
g Code
lmouuhnt Cemerater |
Targetting
Compilers
$tarie 3
trase dynaat aaurmic b Mar. € 1
sale [a".
Tite Teage ma) e earoe avmics ¥ s cen
Tile Code Cenerator 1 (AdasPUICS) 1 Cosptler ; - Lesd

ttatle Jasqe
H :

User Dw\‘n:lu :

toltvare Seurce
Synssics 1)) Conpiler Leud
belinttion ree Sres. Cenerater s

Linking "
1 bunsete Mor. Raet s Y Viep, Meat ada ep. Moat
Varlabte ho-d Code '.—O' P B
p
3

ie 4

Jvnaales | Pynsale) [Rission /W

Risaion Risslon
Ressare jgd
L)' Iatessation b Contrel § tree. tofteare fg.l Toftesre
Partitioning T Tool St tead

I | [
L2
Risgion |

Tellaare

Figure 1.5 Block Diagram of Original AGSSS Concept
14

{ CREWSTATION SYSTEM :

{ VIDEO SYSTEM

Video

Record

Monitor |

i

Rg-232 &= :
- ‘l_% Video

-d

MIL-STD-1553B Avionics Bus
! L1 L :
Harris HBO0Os { {_FLIGHT PROCESSOR SYSTEM | Adage [
‘ : ‘
]
|
....... !
...................... {
i E
DECNET}:
i I
{ NON REALTIME SUPT } |
— T]
1
!
SEEN r.-‘
VAK-11/760s '
SRR :
]
]
...... [
]
Ll

Figure 1.6 WL Integrated Test Bed (ITB) Facility

15

!

v
R

N
0
~
k)
Y
~1

GRAPHICS GRAPHICS
EDITOR LIBRARY POG
4
PHIGS (_7 POG ADA POG POG
- PROGRAM COMPILER IHAGE
FILE
— | FILE N
PHIGS CODE
ARCHIVE TRANSLATOR
FILE :
ACTIONS HOST ADA VAX ADA HOST
£01TOR .| pROGRAM > COMPILER THAGE
FILE
T | FILE
1 ADA/PHIGS
_PROGRAM |
FILE
FLIGHT | PALEFAC PALEFAC HISSION
STHULATOR L. — -] SOURCE SYSTEH THAGE
FILE FILE FILE

Figure 1.8 Block Diagram of Proposed AGSSS Concept
17

developing software for graphics generation across a varied population
of airborne display systems, both current and projected. This required
an implementation strategy based, to the fuilest extent possible, on
standard programming languages and graphics procedures. Functionally,
the AGSSS supports the interactive and artistic creation of cockpit
display formats through a PHIGS-based graphics editor, the interactive
specification of the dynamics of the display symbology through an Ada-
based actions editor, and the incremental testing of the emerging
display through a display test manager. AGSSS uses the resultant object
definitions (in PHIGS) and display actions specifications (in Ada) to
automatically generate properly partitioned display system code (in Ada
and Ada/PHIGS) for a target display system.

PHIGS, the Programmer's Hierarchical Interactive Graphics System, is
a 3D graphics standard (R 2) which defines a graphics support system to
control the definition, modification, storage, and display of
hierarchical graphics data. Associated with PHIGS are language
bindings, which are specifications of the interface between an
application program and the PHIGS impiementation in a given high-level
language. Since the AGSSS is implemented in Ada (R 3) and all high-
level code produced by the AGSSS is in Ada, it was necessary to
implement the PHIGS binding to Ada (R 4) in the display system.

This report describes the implementation of the AGSSS, its integrated
operation, and its use. The report also includes the description of
some significant innovations emanating from the project including the
development of Ada language tools and the impiementation of concurrent
PHIGS. The report also contains a series of conclusions stemming from
the use of AGSSS to date and recommendations about possible extensions
to and additional applications of AGSSS. A Conceptual block diagram of
the implementation of the AGSSS is presented in Figure 1.9,

Major milestones of this project include Preliminary Design Review
(PDR) on July 7-8, 1988, Critical Design Review (CDR) on November 15-17,
1988, AGSSS minimum version delivery and demonstration on October 16-17,
1989, AGSSS final version delivery and demonstration on July 23, 1990,

18

mnomownc

Ada/PHIGS

DESIGN
WORKSTATION

APPLICATIONS

(DISPLAY EDITOR)

GRAPHICS EDITOR
ACTIONS EDITOR
DISP. TEST MNGR.

DISPLAY PROGRAM
GENERATOR

PRODUCTS

PHIGS ARCHIVE FILES
Ada DISPLAY PROGRAMS
COMMAND FILES

Figure 1.9 Functional Block Diagram of AGSSS

19

and AGSSS training session on September 24-28, 1990. Documents
generated and delivered under this contract include Software Top Level
Design Document for the AGSSS (CDRL #6), Software User's Manual for the
AGSSS (CDRL #7), Software Development Plan for the AGSSS (CDRL #8), and
Software Detailed Design Document for the AGSSS (CDRL #9). Two other
documents not identified in the CDRL list were generated and delivered
in draft form. They are: Systems Analysis Document for the AGSSS and
Software Configuration Control and Reporting System (SCCRS) User's
Manual. In addition, a paper entitled "An Ada-Based, Portable Design

v rkstation for Computer-Generated Cockpit Displays" was presented at
the 9th Digital Avionics System Conference (R 5).

20

2.0 AGSSS DESIGN, IMPLEMENTATION, AND USAGE

This section describes the detailed design of the Computer Software
Component Item (CSCI) identified as the Airborne Graphics Software
Support System (AGSSS) of the AGSSS software system. As previously
stated, the purpose of the AGSSS software system is to provide a
PHIGS/Ada-based software development system which will support the
interactive and pictorial development of cockpit displays and their
dynamic specifications; create generic and machine-independent, high-
level language display programs, and compile these programs into target
airborne programmable display generators (PDGs) and host processors.
The specific software modules have been developed in adherence with the
PHIGS graphics standard, the Ada DoD/ANSI standard, and the PHIGS/Ada
binding.

The AGSSS has been developed for and demonstrated in the display
system of the WL's Integrated Test Bed (ITB) Facility. The AGSSS will
be used as a rapid display prototyping tool and as a display system
software generator tool in this facility. The AGSSS hardware
environment in the ITB Facility consists of a front-end PC/AT
workstation (Zenith 248), a MicroVAX III host computer, and an Adage
3000 Programmable Display Generator (PDG) (R 6). The corresponding
software environment consists of the MS-DOS vers. 3.3 operating system
in the PC, VMS vers. 5.3 operating system in the MicroVAX, and Adage
microcode in the PDG. Specific Ada compilers in both the PC and the
MicroVAX support the AGSSS implementation.

As part of this project, several workstations have been identified as
possible platforms to port AGSSS and/or to target its outputs to.
Because these workstations implement the PHIGS rendering model to
various degrees of completeness, the need for a machine-specific, back-
end cross-compiler most likely will disappear in the future. Instead, a
strategy for the targeting of AGSSS graphics outputs will be developed
that will seek to interface to the particular PHIGS implementation
through the specific Ada language binding of each platform.

21

2.1 Detailed Decign

The AGSSS design goals were set to: 1) obtain system flexibility to
accommodate future changes, 2) support interactivity in the development
of displays and the specification of their dynamics, and 3) support the
automatic generation of display programs and their targeting to
different display systems.

AGSSS supports the pictorial definition of display formats through a
PHIGS-based Graphics Editor, the interactive specification of display
format dynamics through an Ada-based Actions Editor, the incremental
testing of the evolving display format with the aid of the Display Test
Manager, and the generation of display code in Ada and Ada/PHIGS through
the Display Program Generator. Use of Ada and adherence to PHIGS allow
AGSSS to import foreign pictorial data and Ada programs. These factors
also promote the portability of the tool and the targetability of its
products.

The AGSSS system consists of two main parts,

1) The AGSSS design workstation, and
2) The run-time systems.

The first part provides the system which the display designer uses to
develop the displays. 1The second part provides the run-time environment
which the displays will run in.

The AGSSS design workstation uses:

The AGSSS KERNEL,
The DEVICE INTERFACE, and
The DISPLAY EDITOR.

The run-time environment is provided by

RUN-TIME SUPPORT.

22

A fifth component,

AGSSS TOOLS,

provides software components which are used by all the other components
of the system.

Figure 2.1 shows an input-output description of the AGSSS design
workstation. It generates a collection of files for use by the run-time
systems. Figure 2.2 shows the workstation decomposed into its component
Top Level Computer Software Components (TLCSCs). Some of the files
generated by the design workstation are used to generate the executable
image for the run-time system. Two run-time modes are supported:

1) A stand-alone simulator, called the Display Demonstrator, and

2) A display generation system which communicates with the airborne
computer system over an avionics bus.

Figure 2.3 shows how the Display Demonstrator is created. Figure 2.4
shows how the Mission Display Generation System is created.

In the AGSSS workstation, three control modes are identified:

1) Initialization/Shutdown,
2) Workspace control, and
3) Functional control flow.

The three types of control flow are illustrated in Figures 2.5, 2.6, and
2.7, respectively.

2.2 Implementation

The AGSSS implementation meets the goal of providing a tool for
designing, modifying, and testing graphics display programs in a high-
level and interactive manner. The user communicates with the AGSSS
through a powerful and flexible graphical user interface (GUI) which
supports a variety of input and output devices. Layered on top of this
interface are the key “"applications” which are highly integrated to meet

23

DISPLAY
DESIGNER

AGSSS
INTERACTIVE
WORKSTATION

DCL

DEMO RUN COMMAND FILE
(DCL)
DEMO BUILD COMMAND FILE
(DCL)
MISSION RUN COMMAND FILE
(DCL)
MISSION BUILD COMMAND FILE
(DCL)
DISPLAY PROGRAM SOURCE FILES
(ADA)
PHIGS ARCHIVE FILE
(PHIGS)

DIGITAL COMMAND LANGUAGE (VMS)
PHIGS PROGRAMMER'S HIERARCHICAL
INTERACTIVE GRAPHICS SYSTEM

Figure 2.1 CSCI 1 AGSSS System Diagram

r

PHIGS
LARCHIVE FILES

ADA/PHIGS

USER

DEVICE
INTERFACE
TLCSC 2

i DISPLAY PROGRAM

AGSSS

-

KERNEL
TLCSC1

DISPLAY
EDITOR
TLCSC 3

OPTIMIZED

] PHIGS ARCHIVE

OPTIMIZED ADA

Figure 2.2 CSCI 1 File Level Data Flow

24

DISPLAY PROGRAM

.

DCL COMMAND

FILES

-

DEMO RUN W

COMMAND
FILE

q
DEMO BUILD

COMMAND
FILE

DISPLAY

PROGRAM
FILES

PHIGS

“RUN
DCL - - - /"
T
!

RUN-TIME
DCL SUPPORT

TLCSC ¢
T]

DEMO

ACS EXECUTABLE

ARCHIVE
FILE

PILOT)

DEMO

ACS Ada Control System (VMS)
DCL Digital Command Language (VMS)

Figure 2.3 CSCI 1 AGSSS Demonstrator Mode

MISSION

COMMAND
FILE

MISSION

DCL

BUILD
FILE

DISPLAY

RUN-TIME
SUPPORT
TLCSC4

PROGRAM
FILE

PHIGS
ARCHIVE

ACS

MISSION

DISPLAY

EXECUTABLE

FILE

Figure 2.4 CSCI 1 AGSSS Mission Mode

MISSION
DISPLAY
MODULE

"RUN AGSSS®

e

WORKSPACE
l MANAGER

— ——

- =

. .

INPUT
ROUTER

P

USER

AGSSS
——‘_‘1 MAIN
PROGRAM
T
’I/W
S/R _J APPLICATION I/8
- - - EXECUTIVE FY— — — — — ™
T l 1/s
II/S)
DISPLAY
I/s AGSSS I/s EDITOR
— = EXECUTIVE F — N MODULES
DEVICE KERNEL
INTERFACE MODULES
MODULES
I Initialization
S Shutdow
W wait for Shutdown to complete
SR Shutdown Request
Figure 2.5 CSCI 1 AGSSS Control Flow:
Initialization/Shutdown
— — |— | workspace| — ——— [—1— T
MARAGER l
T T
| l
- |- J | L__.| |
o . I
DISPLAY
PHIGS PATTI ZDITOR
TUNCTIONS

DEVICE INTERFACE

AGSSS KERNEL

Figure 2.6 CSCI 1 AGSSS Workspace Control Flow

26

DISPLAY EDITOR

DEVICE AGSSS DISPLAY
INTERFACE KZRNEL EDITOR
INPUT MENU DISPLAY
1 ROUTER — 1 —1 7 PATTI [~ — 1 MaMaGer [| — EDITOR
MENUS
1 T
CONF IGURATION _l DISPLAY
MENT -ttt - - - - - - ZDITOR
FUNCTIONS
1
CONFIGURATION
FUNCTIONS

Figure 2.7 CSCI 1 AGSSS Functional Control Flow

27

this goal: The Graphics Editor, the Actions Editor, the Display Test
Manager, and the Display Program Generator. Integrated within the
system are four additional utility applications which support the roles
of the key applications: The Color Editor, the File Manager, the Text
Editor, and the Workspace Manager. At the heart of the system is an RTI
implementation of the 3D graphics standard PHIGS, the Programmer's
Hierarchical Interactive Graphics System, which has been extended to
support concurrent calls from multipie tasks. The system is comprised
of the Device Interface, the AGSSS Kernel, the Editors, and the Ada
tools. The AGSSS Kernel provides generic Ada/PHIGS services to the
applications. Ada tools are used throughout the implementation. These
modules and their interrelations are illustrated in Figure 2.8. User
interactions take place from the left and systems services
(applications) take place from the right. This figure shows a
functional block diagram of the AGSSS as currently implemented.

The AGSSS design has been implemented in five Top-Level Computer
Software Components (TLCSCs). They are identified as follows:

1) AGSSS KERNEL (TLCSC 1),

2) DEVICE INTERFACE (TLCSC 2),

3) DISPLAY EDITOR (TLCSC 3),

4) RUN-TIME SUPPORT (TLCSC 4), and
5) AGSSS TOOLS (TLCSC 5).

The top-level composition of the AGSSS CSCI is presented in Figure 2.9.

The function of the AGSSS KERNEL (TLCSC 1) is to manage the AGSSS
workstation environment. The AGSSS KERNEL consists of 11 Low-Level
Computer Software Components (LLCSCs):

1) Kernel Executive (LLCSC 1.1),
2) Workspace Manager (LLCSC 1.2),
3) PHIGS Module (LLCSC 1.3),

4) PATTI (Programmers Attributed Text Interface) (LLCSC 1.4),
5) Menu Manager (LLCSC 1.5),

6) Forms Manager (LLCSC 1.6),

7) Color Editor (LLCSC 1.7),

8) File Manager (LLCSC 1.8),

9) Message Logger (LLCSC 1.9),
10) Dialog (LLCSC 1.10), and

11) Text Editor (LLCSC 1.11).

28

T00LS

- STRINGS
- LISIS

- Queues
- SLIS

- TRELS

- HASHNG
- R-K INT
= 30 HIRX

DEVICE

INTERFACE

CONFIC,
HANAGER

PC
FRONT
CHD

[mierrace

AGSSS

KERNEL

MESSACE

LOGCER

PIALeC

EDITORS

1429
SUPPORT

(4-14

L INTERFACE

HANAGLR

1 crarsics E

INPUT
ROUTER

Figure 2.8 Block Diagram of AGSSS Modular Implementation

| mrearace

e
ROUTER

TEXT
£biTOR

[2844)
EpITOR
NENUY

=1 CRAPHICS

EQITOR

CoLor
EbsTOR

=] WANACER

DISPLAY

ACTIONS
£oton

1E87

FiLe
HANACIR

29

3 DISPLAY

PROCRAN [
INTECRATOR,

CSCI1

AGSSS
TLCSC1 TLCSC 2 TLCSC 3 TLCSC 4 TLCSC 6
AGSSS DEVICE DISPLAY RUN-TIME AGSSS
KERNEL INTERFACE EDITOR SUPPORT TOOLS

30

Figure 2.9 CSCI 1 Composition of the AGSSS

The function of the DEVICE INTERFACE (TLCSC 2) is to interface the
AGSSS to all physical input and output devices. The DEVICE INTERFACE
consists of 13 Low-Level Computer Software Components (LLCSCs):

1) Device Interface Executive (LLCSC 2.1),
2) Configuration Manager (LLCSC 2.2),

3) PC Front End (LLCSC 2.3),

4) PDG Support (LLCSC 2.4),

5) Terminal Interface (LLCSC 2.5),

6) Tablet Interface (LLCSC 2.6),
7) PC Interface (LLCSC 2.7),

8) PDG Interface (LLCSC 2.8),

9) File Interface (LLCSC 2.9),
10) Text Manager (LLCSC 2.10),
11) Graphics Manager (LLCSC 2.11)
12) File Router (LLCSC 2.12), and
13) Input Router (LLCSC 2.13).

The function of the DISPLAY EDITOR (TLCSC 3) is to support the
generation of display formats from pictorial definition through action
specifications and testing to display program integration. The DISPLAY
EDITOR consists of 6 Low-Level Computer Software Components (LLCSCs):

1) AGSSS Executive (LLCSC 3.1),

2) Display Editor Menu (LLCSC 3.2),

3) Graphics Editor (LLCSC 3.3),

4) Actions Editor (LLCSC 3.4),

5) Display Test Manager (LLCSC 3.5), and
6) Display Program Generator (LLCSC 3.6).

The function of the RUN-TIME SUPPORT module (TLCSC 4) is to provide
building blocks for use with display programs generated by AGSSS, in
either of two modes:

1) In a stand-alone simulation called the Display Demonstrator,
running on the same hardware as the AGSSS workstation, or

2) As part of an airborne software system (simulated or real).

The RUN-TIME SUPPORT module consists of two Low-Level Computer
Software Components (LLCSCs):

1) Display Demonstrator Support (LLCSC 4.1), and
2) Mission Support (LLCSC 4.2).

31

The function of the AGSSS TOOLS (TLCSC 5) is to provide support
packages of a general nature to the other TLCSCs and their corresponding
LLCSCs and Units. The AGSSS TOOLS consists of 13 Low-Level Computer
Software Components (LLCSCs):

1) Strings (LLCSC 5.1),

2) Sets (LLCSC 5.2),

3) Double Lists (LLZSC 5.3),

4) Trees (LLCSC 5.4),

5) Queues (LLCSC 5.5),

6) 1I/0 Instantiations (LLCSC 5.6),
7) Miscellaneous Tools (LLCSC 5.7),
8) Storage Pool (LLCSC 5.8),

9) Generic Scanner I/0 (LLCSC 5.9),
10) Convert PHIGS Archive Format (LLCSC 5.10),
11) DCL Interface (LLCSC 5.11),

12) Vectors (LLCSC 5.12),

13) Simulation Tools (LLCSC 5.13).

The overall decomposition of the AGSSS CSCI is presented in Figure
2.10. Note that the decomposition of the TLCSCs into LLCSCs and Units
are identified only by number. The name of each LLCSC is included in
Figure 2.11. Also note that the number of Units for each LLCSC is
identified by the number inside the LLCSC box. The name of each Unit is
also included in Figure 2.11.

The structure and organization of the AGSSS CSCI 1 of the AGSSS
system is described in the AGSSS Software Detailed Design Dccument
(SDDD) (see Ref. 7). It describes the decomposition of the AGSSS CSCI 1
into five TLCSCs and their corresponding Lower Level Computer Software
Components and Units. In addition, this document defines the interface,
data, and processing characteristics for each TLCSC, LLCSC, and Units in
the AGSSS CSCI 1 design.

2.3 System Usage
The user interacts with the AGSSS system through various input and

output devices. For input, physical devices include a keyboard and a
pointing device, which may be either a mouse or a data tablet. A

32

TCIC T TLCaC s noecs TLOSC ¢
ACES DEVICR DOPFLAY AN T
KIRNTL INTIRFACT EDITON. SUPPORT

{ 1
lhssers] {fnces]
(37" 81 meacts

SIC

)]

(s [imen]

(o) fime) | [Emere] fimer]
o) e | o] o]
[] [hcsou] iam..l

Figure 2.10 CSCI 1 General Decomposition of the AGSSS

i) [ommee] [men] [mna] o]

1 1
1 1
LLCICLl | [Licscay

e frmend]

fimcn] [rmend

33

e [imend)

liamcns]| {Smeed]

o] [

(imcn | [omcee] [rmcnn)] [imend]

TLCSC 1 AGSSS KERNEL

LLCSC 1.1 AGSSS EXECUTIVE
UNIT 1.1.1 AGSSS EXECUTIVE
LLCSC 1.2 WORKSPACE MANAGER
UNIT 1.2.1 WORKSPACE MANAGER INPUT MODULE
UNIT 1.2.2 WORKSPACE MANAGER MENU
UNIT 1.2.3 WORKSPACE MANAGER LIBRARY
UNIT 1.2.4 WORKSPACE MANAGER TASK

LLCSC 1.3 PHIGS MODULE

UNIT 1.3.1 STANDARD PHIGS

UNIT 1.3.2 PHIGS INPUT MODULE

UNIT 1.3.3 PHIGS GUARD TASK

UNIT 1.3.4 WORKSTATION EVENT QUEUE

UNIT 1.3.5 PHIGS NAME EXTENSIONS

UNIT 1.3.6 PHIGS PICK EXTENSIONS

UNIT 1.3.7 PHIGS MISCELLANEOUS EXTENSIONS

UNIT 1.3.8 PHIGS ARCHIVE FILE PARSER

UNIT 1.3.9 PHIGS WORKSTATION DESCRIPTION TABLE PARSER
UNIT 1.3.10 PHIGS EVENT QUEUE MANAGER

LLCSC 1.4 PATTI MODULE
UNIT 1.4.1 PATTI
UNIT 1.4.2 PATTI INPUT MODULE
UNIT 1.4.3 PATTI EVENT QUEUES
LLCSC 1.5 MENU MANAGER
UNIT 1.5.1 MENU MANAGER
LLCSC 1.6 FORMS MANAGER
UNIT 1.6.1 FORMS MANAGER
LLCSC 1.7 COLOR EDITOR
UNIT 1.7.1 COLOR EDITOR LIBRARY
UNIT 1.7.2 COLOR EDITOR MENU
UNIT 1.7.3 COLOR MANIPULATOR
LLCSC 1.8 FILE MANAGER
UNIT 1.8.1 FILE MANAGER LIBRARY
UNIT 1.8.2 FILE MANAGER I/O PACKAGES
UNIT 1.8.3 CUSTOM TEXT IO

LLCSC 1.9 MESSAGE LOGGER .
UNIT 1.9.1 MESSAGE LOGGER

Figure 2.11 CSCI 1 Decompositicn Elements of the AGSSS

34

LLCSC 1.10 DIALOG
UNIT 1.10.1 DIALOG

LLCSC 1.11 TEXT EDITOR
UNIT 1.11.1 INPUT HANDLER
UNIT 1.11.2 EDITOR LIBRARY

TLCSC 2 DEVICE INTERFACE

LLCSC 2.1 DEVICE INTERFACE EXECUTIVE
UNIT 2.1.1 IFACE_EXEC
LLCSC 2.2 CONFIGURATION MANAGER
UNIT 2.2.1 CONFIGURATION MANAGER
LLCSC 2.3 PC FRONT END
UNIT 2.3.1 PC FRONT END MAIN
UNIT 2.3.2 SCHEDULER
UNIT 2.3.3 HOST INTERFACE
UNIT 2.3.4 DISK I1/0 MANAGER
UNIT 2.3.5 DISPLAY MANAGER
UNIT 2.3.6 KEYBOARD MANAGER
UNIT 2.3.7 MOUSE MANAGER
UNIT 2.3.8 VOICE MANAGER
UNIT 2.3.9 LOW LEVEL ROUTINES
LLCSC 2.4 PDG SUPPORT
UNIT 2.4.1 PDG GRAPHICS PROGRAM
UNIT 2.4.2 PDG MESSAGE QUEUE
UNIT 2.4.3 ADAGE LIBRARY
LLCSC 2.5 TERMINAL INTERFACE

UNIT 2.5.1 TERMINAL INTERFACE INPUT TASK
UNIT 2.5.2 DISPLAY_TASK

LLCSC 2.6 TABLET INTERFACE
UNIT 2.6.1 TABLET INTERFACE
LLCSC 2.7 PC INTERFACE

UNIT 2.7.1 PC MONITOR
UNIT 2.7.2 PC SERVICES

LLCSC 2.8 PDG INTERFACE
UNIT 2.8.1 POG OUTPUT TASK

Figure 2.11 (continued)
35

UNIT 2.8.2 PDG PHIGS ECHO TASK
UNIT 2.8.3 PDG SERVER QUEUES
UNIT 2.8.4 PDG SERVER
LLCSC 2.9 FILE INTERFACE
UNIT 2.9.1 FILE TYPES
UNIT 2.9.2 FILE INTERFACE LIBRARY
UNIT 2.9.3 FILE INTERFACE I/0 PACKAGES
UNIT 2.9.4 SEARCH LIBRARY
LLCSC 2.10 TEXT MANAGER
UNIT 2.10.1 PATTI OUTPUT TASK
UNIT 2.10.2 ECHO TASK
UNIT 2.10.3 PICK RETURNS TASK
LLCSC 2.11 GRAPHICS MANAGER
UNIT 2.11.1 GRAPHICS MANAGER
LLCSC 2.12 FILE ROUTER

UNIT 2.12.1 FILE ROUTER LIBRARY
UNIT 2.12.2 FILE ROUTER I/0 PACKAGES

LLCSC 2.13 INPUT ROUTER

UNIT 2.13.1 INPUT ROUTER LOGICAL INPUTS LIBRARY
UNIT 2.13.2 INPUT ROUTER INPUT HANDLER

UNIT 2.13.3 INPUT ROUTER ECHO HANDLER

UNIT 2.13.4 FINITE STATE MACHINES

TLCSC 3 DISPLAY EDITOR
LLCSC 3.1 APPLICATION EXECUTIVE

UNIT 3.1.1 AGSSS MAIN PROGRAM
UNIT 3.1.2 APPLICATION EXECUTIVE TASK

LLCSC 3.2 DISPLAY EDITOR MENU
UNIT 3.2.1 DISPLAY EDITOR MENU
LLCSC 3.3 GRAPHICS EDITOR

UNIT 3.3.1 GRAPHICS EDITOR MENU

UNIT 3.3.2 DISPLAYABLE STORES MENUS

UNIT 3.3.3 DISPLAYABLE STORE MENUS

UNIT 3.3.4 STRUCTURE MENUS

UNIT 3.3.5 ELEMENT CREATION

UNIT 3.3.6 FILE STORES MENUS

UNIT 3.3.7 FILE STORE MENUS

UNIT 3.3.8 PHIGS WORKSTATION MANAGER MENU

Figure 2.11 (continued)
36

UNIT 3.3.9 PHIGS WORKSTATION STATE LIST UTILITIES
UNIT 3.3.10 GRAPHICS EDITOR UTILITIES

LLCSC 3.4 ACTIONS EDITOR

UNIT 3.4.1 ACTIONS EDITOR EXECUTIVE

UNIT 3.4.2 SOFTWARE LIBRARY MANAGER

UNIT 3.4.3 DIANA MANAGER

UNIT 3.4.4 SYNTAX-DIRECTED EDITOR

UNIT 3.4.5 COMPILER FRONT END

UNIT 3.4.6 INTERPRETER

UNIT 3.4.7 LANGUAGE TOOLS

UNIT 3.4.8 ADAGE 3000 CROSS-COMPILER BACK END

LLCSC 3.5 DISPLAY TEST MANAGER

UNIT 3.5.1 DISPLAY TEST EXECUTIVE
UNIT 3.5.2 DISPLAY TEST CONFIGURATION MANAGER

LLCSC 3.6 DISPLAY PROGRAM GENERATOR
UNIT 3.6.1 DISPLAY PROGRAM GENERATOR MENU
UNIT DISPLAY GENERATOR

3.6.2
UNIT 3.6.3 DISPLAY RESTORER
UNIT 3.6.4 COMMAND FILE GENERATOR

TLCSC 4 RUN-TIME SUPPORT

LLCSC 4.1 DISPLAY DEMONSTRATOR SUPPORT MODULE

UNIT 4.1.1 SIMULATOR EXECUTIVE

UNIT 4.1.2 SIMULATOR MONITOR

UNIT 4.1.3 SIMULATOR PRECISION CLOCK
UNIT 4.1.4 SIMULATOR INPUT MODULE

UNIT 4.1.5 SIMULATOR AIRPLANE

UNIT 4.1.6 SIMULATOR FLIGHT RECORDER
UNIT 4.1.7 SIMULATOR DISPLAY SYSTEM
UNIT 4.1.8 SIMULATOR INPUT DATA GUARD
UNIT 4.1.9 SIMULATOR FLIGHT DATA GUARD
UNIT 4.1.10 SIMULATOR DATA GUARD

LLCSC 4.2 MISSION SUPPORT

UNIT 4.2.1 MISSION EXECUTIVE
UNIT 4.2.2 MISSION AVIONICS MODULE

JLCSC 5 AGSSS TOOLS

LLCSC 5.1 STRINGS

UNIT 5.1.1 VAR_STRING LIBRARY
UNIT 5.1.2 VAR_STRING INPUT/OUTPUT LIBRARY
UNIT 5.1.3 STRING SCANNER

Figure 2.11 (continued)

37

LLCSC 5.2 SETS
UNIT 5.2.1 SETS
LLCSC 5.3 LISTS
5.3.1 SINGLE LISTS
UNIT 5.3.2 DOUBLE LISTS
5.3.3 ORDERED LISTS
LLCSC 5.4 TREES
UNIT 5.4.1 BINARY TREES
UNIT 5.4.2 IPR TREES
UNIT 5.4.3 N-ARY TREES
LLCSC 5.5 QUEUES
UNIT 5.5.1 QUEUES
LLCSC 5.6 1/0 INSTANTIATIONS

LLCSC 5.7 MISCELLANEOUS TOOLS

UNIT 5.7.1 BIT-WISE OPERATIONS
UNIT 5.7.2 MATH LIBRARY EXTENSIONS
UNIT 5.7.3 TIME AND DATE ROUTINES

UNIT 5.7.4 IMMEDIATE-IF ROUTINES
LLCSC 5.8 STORAGE POOL
UNIT 5.8.1 STORAGE POOL
LLCSC 5.9 GENERIC SCANNER IO
UNIT 5.9.1 GENERIC SCANNER I0
LLCSC 5.10 CONVERT PHIGS ARCHIVE FORMAT
UNIT 5.10.1 CONVERT PHIGS ARCHIVE FORMAT
LLCSC 5.11 DCL INTERFACE

UNIT 5.11.1 DCL SPAWN
UNIT 5.11.2 COMMAND LINE INTERFACE

LLCSC 5.12 VECTORS
UNIT 5.12.1 VECTORS

LLCSC 5.13 SIMULATION TOOLS
UNIT 5.13.1 SIMULATION TOOLS

Figure 2.11 (concluded)

38

keyboard-based mouse emulator may be used as an option. This may be
supplemented by the voice input module on the PC Front End. The AGSSS
uses one or more display screens for output. One of these screens is
the alphanumeric terminal through which the user has logged onto the
host computer system. Another screen may be that of the PDG which must
be available for the viewing of graphics. In addition, any number of
additional alphanumeric terminals may be used simultaneously including
that of the PC Front End. Text-only workspaces may be located on any of
these, while graphics workspaces may only reside on the PDG. A
combination of microcode running on the PDG and host-based software
implements PHIGS for displaying the graphics.

Each of these output display screens is referred to as a metastation.
A metastation may be one of two types: text-only or text/graphics.
These two types are referred to as PATTI and PHIGS metastations,
respectively, in reference to the text-only and graphics interface
standards used by the AGSSS internal software components. (PATTI is the
Programmable Attributed Text Interface, while PHIGS is the Programmer's
Hierarchical Interactive Graphics System.)

Underlying the AGSSS is a window-based graphical user interface and
higher-level tools such as standard menu and form interaction modules.
The individual components of the AGSSS, such as the Actions Editor,
Graphir.s Editor, etc., are the clients or applications of this
underlyiiny system. The windowing system is two-tiered, consisting of
workspaces and workstations. The workspace is the higher-level window,
or rectangular region of a screen, which an application must first open
to communicate with the user. Within a workspace, one or more
workstations can then be opened. These workstations are windows within
the workspace through which the actual input and output occur. Thus a
workspace can be a region of the screen within which a given application
operates, and binds together a collection of workstations owned by that
application. The boundary of a workspace also serves as a clipping
boundary, keeping the output from multiple applications separate on the

screen.

39

For graphical input/output, the AGSSS workstation concept is mapped
directly onto the PHIGS definition of a workstation. While the PHIGS
standard does not specifically detail the possibility of implementing a
workstation in such a way that more than one application can utilize the
same physical hardware simultaneously, it does not rule out such a
possibility either. Thus some applications within AGSSS open multiple
PHIGS workstations on the PDG. These may be "held together” by a common
workspace, which the user is free to manipulate (size, move, etc.) on
the screen using the Workspace Manager utility. In addition, the PHIGS
workstation concept is extended even farther in AGSSS through RTI's
concurrent PHIGS implementation which allows multiple, independent
applications to control their own workstations on different workspaces
on the same display hardware.

0f all the workstations open at any given time, one is designated as
the listener workstation. The workspace which owns it is called the
listener workspace, and the metastation on which that workspace is
located is called the listener metastation. All input is directed to
the listener workstation or, more precisely, to the application which
owns it. Workstations and workspaces may be moved about and changed in
size by the use of the Workspace Manager. The windows are allowed to
overlap each other, according to a viewing priority which may be
modified either by pushing them from the Workspace manager or by
changing the listener.

Menus are the primary means of communicating choice information to
the system (applications). A standard menu interface which is layered
on top of the lower-level text I/0 capabilities of PATTI is utilized
throughout the AGSSS for such operations. All menus using this
interface thus have a common "look and feel." An application may have
more than one menu displayed simultaneously and, in addition, more than
one of these may be "live" -- that is, ready to accept a choice.
Examples of an AGSSS menu is illustrated in Figure 2.12. The Display
Editor Menu, the Actions Editor Menu, and the Color Editor Menu shown in
this figure is the top-most menu of the system, and it is used to
provide access to all other parts of AGSSS.

40

nuay 4031p3 Ae(ds|g :nuay SSSHY ue jo ajdwex3 21°2 auanb4

ﬁllIlllllllllllllllllllllllllllllll

POZTTRTITUT U9dq da®Yy Ssaynpou uotzesTTddy

103Tpd AeTdsTd DUTZTTRTITUL

uoumum:mo weahoid AetdsTq

161 3sal Aetdstq
I103Tpd SUOT)OV
103T1P3 SsoTydeas
1031pd I0TOD

ANIH YOXLIA3A AVTI4SIA

41

A higher-Tevel method for use by applications to input alphanumeric
data from the user is available through the Forms module, which is
layered on top of PATTI. A form is simply a collection of one or more
data input fields with associated prompt text and data validation rules.
Data may be typed or edited in the separate fields of a form in any
order. (Clicking on a [DONE] button will have the effect of transmitting
all the data to the application as it appears at that time. Some forms
have on-line help available indicated by the presence of a [HELP]
button. In addition, forms which perform validity tests on the data
provide a button labelled "[ERROR]" which will flash if an invalid value
has been entered in a field. Clicking on this button while it is
flashing will bring up an explanation of the error. Figure 2.13 depicts
a form used in conjunction with the flight simulator during display test
procedures.

For simple input of a single data item at a time, some AGSSS
components use a higher-level module similar in many ways to a form, and
also layered on top of PATTI, known as a dialog box. A dialog box is
simply a “pop-up"” query to be responded to by the user of AGSSS. Dialog
boxes allow the user to provide input which may consist of a string or
number, and which is completed by pressing the Return key, or may be
cancelled by clicking on a [CANCEL] button. Another use of dialog boxes
is to display a message and wait until it has been acknowledged. These
boxes only have a single button labelled [0K], and go away when that
button is clicked. Another form of dialog box is the Boolean query, in
which a question is asked and buttons for [YES] and [NO] or for [TRUE]
and [FALSE] are provided.

42

wi04 403e|nwlS 3ybL|4

1WA04 SSSOY ue jo adwex3 g1z a4nbig

000°0
000°0
000°0

000°0
000°0
000°0¥%C

[HOYHT]

es s oo

931e1S 1JRIDITY
T —_——
—

: 19ppny
1973302yl

poZTTRPTITUT uUaaq aary sarnpow uorjzeoT11ddy

Aetdstg HutziTeT3Tu
000°0
000°0

d 000°0 TT0H
M 000°000T~- A
A 000°0 X
n 000°0000T~- D ¢

s33e3s AJTpor
aunsay
asned

doas

m 3Ie3S

[LIXT)
————————

AHIK YOLIAI AV1dSIA

[TADNVD] [9nOa]

: 107eADTT
:SUOIDTTY

43

3.0 DISPLAY DEVELOPMENT USING AGSSS

This section presents a detailed description of the application of
the AGSSS to the cockpit display development process. It also includes
several examples of displays and code developed using the AGSSS.

Application of AGSSS to the development of a display format and its
enabling software consists of the following four steps.

First, static graphics objects or pictures are generated. This is
done through the Graphics Editor, and may utilize graphics imported from
other PHIGS-based systems through the use of the PHIGS standard archive
file format. The Graphics Editor allows the user to interactively
create, edit, combine, delete, and transfer graphical objects described
using the hierarchical structure-based concepts specified by the PHIGS
standard. The Graphics Editor maintains two types of PHIGS structure
stores in system memory: the displayable stores and the file stores.

The displayable stores are created by the user to generate the graphics
seen on the display. The file stores are the internal representation of
the structures in archive files. Multiple stores of each kind are
possible, and are distinguished by user-specifiable names.

Closely associated with the Graphics Editor is the Color Editor which
is a utility application available to allow the user to graphically
specify a color, with immediate feedback as to its appearance, using any
of three different color models: RGB, HSV, or CIE. The selected color
may then be used by the Graphics Editor for specifying a color
attribute.

This portion of the display development process is illustrated in
Figures 3.1 through 3.6. Figure 3.1 shows the main AGSSS menu (Display

Editor Menu) and its use to invoke the Color Editor in a PATTI
workstations. Figure 3.2 shows the Graphics Editor being used to

44

NUaK 4031P3 40{0) 3y} 34OAU] 03 Nudy sotydedy ayj jo asn [°g ad4nbyy

93
a3
913

A
18P

] @3391Rd peOT

39Ted 239T1°qa}
39Ted 93v81d
aTed Ae1dstq
9339Ted 3aes

eTdsT@ I9pI0
ow IOTOD 39S
10700 aweudy
J0T0D 38319Taq

dWvs |LooY 9113 ay3 butuado

Jojeaauan wexboad Aeydst

Jojeaauan weaboxd Aetdstqa
Ibu 3sa1 Aetdstq

J03Tpd SUOTIOY

I03Tpd soTydexsn

103TPIT I0T0D
NH3IK HYOLIAI AVTdSIA

45

S2403S S9IHd @lqeAe(dsiq aSJaAed)] 03 4031p3 sorydedy ay3 jo asn 2°¢ a4nbiy

dtys adotsaprTb :: 50T

dTys I19ZTTEOOT :: FOT

3001 STT :: EOT

swiojsuei] adoTsepTtib :: ZOT

SWIOJSURI] IDZITROOT :: 10T

punoabyoeq :: 00T

poIR~TTTJ MOIA~INOJ :: GL

poIv-TTI7J paddewun :: 66
[TUOISSHIVH

sbeTJ uoT3nNTOSaI 3OTTJUOD AJTpPONW
9TT3 03 (s)sainjonijys j31o0dx3

9TTJ woaJ (s)aanjoniys jiodwl
2103s woxJ (s)9@an3oniys jaodur
aanjoniys Adod

(s)ainionals 239124

9INn30Nn13S sweuay

9In3onI3s ajleaad

8injoniys 3sodufn

2an3oni3s 3sod

nusapW 1031pd sotydean
nuay Iabeuel sa1031s atqedeTdstd
[LIXT)

l

***JYV° STISOTHd | SATdHYS |100¥ ITT3 @y3 buyuado

uMop 3nys usaq sey nual Iojeraauadn weiboad Aetdstq

]

46

Figure 3.3 Use of Graphics Ydirtgr‘ tAO Adc;i.(Dv“&w) ap‘ ‘
Fegture (Star o an Existing (Airvcraft) Oisple.

;i";‘ﬂ"‘ i e o f koS Bditor to (f()mph\tp
fhoiat hdfer rhe pooawing af the st

i1

3.5 Example of Several Display Formats .
Instanced on Several PHIGS Workstations

Figure 3.6 Example of Several Display Formats
and Use of the Color tditor With One of Them

traverse a particular displayable PHIGS stores. Figures 3.3 and 3.4
show the Graphics Editor in action supporting the drawing of the outline
of a star to be added to an existing aircraft display. This sequence
show the rubberbanding of the star in Figure 3.3 and the completion of
the flat-shaded star in Figure 3.4. Figure 3.5 shows the versatility of
the PHIGS structure concept as used by the AGSSS Graphics Editor. In
this figure, the Graphics Editor has been used to bring up multiple
display stores on several PHIGS workstations. Figure 3.6 is similar to
Figure 3.5 except for the inclusion of the Color Editor. This can be
used to edit the color of one of the displays on line.

Second, the rules for animating the graphics in response to specified
system inputs are coded. This is done using the Actions Editor, which
contains a syntax-directed editor and a parser and interpreter for a
subset of Ada known as SOFA (Subset of Ada). The Actions Editor also
contains predefined code modules to facilitate the development of
display programs. The code thus generated refers to the structures in
the PHIGS archive file(s) generated by the Graphics Editor, which are
accessed through the PHIGS calls. During an Actions Editor session,
communication with the Graphics Editor is utilized to obtain and display
information on the graphics structures tnat the AGSSS knows about as a
result of the user interaction with that application.

The Actions Editor allows the display designer to define, execute,
and debug display programs within an integrated programming environment.
The source language for the display action specification is SOFA, a
strict subset of Ada. SOFA is basically Ada minus tasks, generics, and
variant records. All of the components of the Actions Editor make use
of an intermediate Ada representation called DIANA, which provides data
structures for attributed Ada syntax trees.

The display designer can define programs by supplying parameters to
predefined display actions (specified as subprograms in predefined
compilation units), and/or may choose to create or edit source code
directly. Both forms of display definition take place within a syntax-
directed editor (SYNDE), which parses the code to check the syntactic

49

and semantic content of the source program as it is being created or
modified. The predefined SOFA environment also includes the PHIGS
package specification for making calls to PHIGS. In addition to
assisting the display designer to create grammatically correct programs,
the Syntax-Directed Editor uses the parser front end incrementally to
generate an equivalent DIANA representation of the source program.

An interpreter component of the Actions Editor allows the program to
be executed for debugging purposes. By making use of the DIANA internal
form of display programs, the interpreter module allows the display
designer to execute display programs without the traditional
compilation/1link phase. The Actions Editor can also be called upon to
execute the current program by the Display Test Manager when the user
wishes to more thoroughly test the program using that module.

The Actions Editor is integrated with the Graphics Editor for
executing calls to the PHIGS module to interact with the graphics
structures. It can also use the Color Editor to specify a color
attribute.

The Actions Editor generates output in the form of program source
files in the SOFA language. It will also respond to requests from the
Display Program Generator for source code output, and from the Display
Test Manager for interpreting the current display program.

This portion of the display development process is illustrated in
Figures 3.7 through 3.10. Figure 3.7 shows the use of the Display
Editor Menu to invoke the Actions Editor. Figure 3.8 shows additional
menus and forms associated with the Actions Editor. These are shown on
a separate workspace on the foreground of the metastation. The form
shown here is used to create or recail a particular Ada action program
into the editor. In this example the existing program ILS is being
called back for modification/additions to it. The additional menus are
used to specify desired actions on this program. Figure 3.9 shows a
portion of the body of program ILS which has been invoked through the

traversal of several menus and forms. Finally, Figure 3.10 shows the

50

NUap 403LP3 SUOLIDY 3Y3 I40AU] 03

nuay 4031p3 Aeydsiqg 8yl 4o asn ("€ aunbiy

*++Apeax ST I03TPa SUOT}IV

*SaUTT £ET Sey epe’SIOUd~VIVA~LHOITA:eJossbrjuoogbe af1y ay

sjTun ajared

S3TUN BAPS

40 ST 8adell uoT3ndaxy
wexboad ayjz sjnodoaxdg
wexboaxd jusaiando 338
LIQIST |3oaul

JANAS 9)0Aul

3TUn b 3asmolxg

S9TTJ osaed

ANIX HO0LIAd SHOIILDY

[————

L [1IX3)]

Jo03jrI9uag weaboxg AeTdsta
IbW 3sayg Aetdstq

J03TpPd SUOT]OV

J031pg sotydean

103TPp3 IOTOD

NHIK YOLIAd AVTI4SIA

[

51

4031P3 SUOLIDY 3Y} YILM PaILLIOSSY
SWA04 pue SNU3 [PUOLILPPY JO a|dwex3 g°¢ 34nbi4

23n3T3SUI oTbueTIl YdIRAsay —-- Ysains ‘Y ¢
L ——— | 9 ‘dLva -
H -
sgovsn -
H ———
.nH -
B -
$HOXIONNA -=
aTun ayl AJTpon I (IWVH --

HIH sSpueuwuod LINN

3TuUn B asmoid - s1I 3o Apog||lo weaboig Aetdstg

9uUTT 80In0OS IInd 031 09 sosneTo 3X83U0D abu 3s8y Aetdstq
9saeda1 jaels sqI 30 Apog : 3r1un dwop I03Tpd SUOTION

NHIHW SPUBLILOD PIXTJ [LIXT] 103Tp3 sotydern

103Tpd 10TOD
————————————————————————— 4 HOLIA3 AY1dSIA

52

S1I jo Apog ayj jo uotluod 6°¢ d4nbiy

n|
‘HOXLId
‘11704
—|) FANLILLY-DV~139
{Q3IASUYIVOV-IAD =: QIIJSUIV
{FANLILTIV IV~ IAD =: JAANLILTV
1 zoov
e/
‘X—ov
) ZXX—Dv-ias
utbaq
! annod pua
$((INTYA™XVH
‘(INTVA™HIH
‘X
-]
jTun e 3asmoxd S1I 30 Apog ur sjuls wexbHoiad Aetdsig
3UTT 809IN0OS 1INd 03 09 STI Jo Apog||l 1D 3sal Aetdsig
esiedax 3ae3s S1I 3o Apog : 3Tun dwod I03TPd SUOTJOV]
NH3IK SpurwLWOD PIXTJ [LIXT]

I031Tpd sotydean
I103TPT IOTOQ
HOLIAA XVI14dSIQ

53

S11 30 Apog ay3l o3 sabuey) jo ajdwex3 Q¢ aunbi4g

‘HO1Id

‘1104
LIILLV-OV™1d9
0 =t Q3IdSUIV

ﬁ-|-l-ll-l-lll-------ll--------llllllnllulllllnlllllnnllnllJ

54

!(B) XIAHI~¥NOTOD ¥OTYILNI~LIS SOIHd

. N ——#oan1—IANASH--
XIANI~HANOTIOD UT : HAOTOD™UOIBILNI ~--#0INT~IANASH--
) —-#OINI~FANASH~--

XZANI~HYNOTOI"HOTHALNITLIS 21npad01d--H#OANI~IAHASH--

dK YoXIAI AV'IdSIA

mechanism through which the designer can modify an existing statement or
add a statement to the program. This figure shows the use of SYNDE for

this purpose.

Third, the display program and graphical data thus generated may be
tested using the Display Test Manager, which enables the user to
manipulate the inputs to the display program and observe their effects
on the graphics display. This application utilizes the Actions Editor
to run the current display program through its interpreter, and the
Graphics Editor to access and manipulate the corresponding graphics
structures. The Display Test Manager contains a flight simulator, the
outputs of which can be fed as inputs to the display program currently
in the Actions Editor for interpretation.

The Display Test Manager communicates with the Actions Editor
application to initiate interpretation of the current display program,
and communicates aircraft state data to it. In addition, it outputs the
aircraft state data and the latest pilot inputs to the screer in a PATTI
workstation.

This portion of the display development process is illustrated in
Figures 3.11 through 3.14. Figure 3.11 shows a form used to control the
"onboard" (within AGSSS) aircraft simulator that will animate the
display under development through the Graphics Editor according to the
rules outlined by the Actions Editor. This form is invoked through the
Display Test Manager Option of the Display Editor Menu. Figures 3.12
through 3.14 show multiple displays associated with (being animated by)
the aircraft simulation. Of particular interest in these three figures
is the sequence of two views at the bottom. The scene on the left
represent the out-the-window view from the cockpit of the aircraft
whereas the scene on the right represent the view from the tower at the
airport from which the aircraft is taking off. As the aircraft makes
its take-off run, the scenes vary with the tower coming into view and
then disappearing (on left) and the aircraft symbol increasing in size
as it approaches and flies by the tower. These two displays represent
different views of the same "data base" and illustrate the flexibility

55

WA04 |O43UO0)Y JdOJRNWLS JjeADALY paeOqUO SSSIHY

0000°

0°0

(o9s/bap uT)

o

orc

[youyd |

*SOUTT TLT

[TAONVD]

19301 Me}
19301 UYd31d
:93e1 TTOYH

11°¢ a4nbyy

[3ioa]

(soaabap uT)

:s8T3100ToA IeTnbuy :8pN3TIIAV
M 0000 ° 000 T~
IA
:n ' I0000°0000T~

:S9T]TO0TOA IeaUT]

231018 3JRIDITVY

:uoT3edOoT

MHIH HOLIAA AVI4SIA

SeY VaV'STI:vJ0S|SATINYS |00 BTTF ay

“3m>
140314
:TTOY

1JeID1ITY
HY A

A
X

s e

1JRIDITY

56

Figure 3.12 Example of Display Test Manager Utilization:
Take-off Run, Part 1

Figure 3.13 Example of Display Test Manager Utilization:
Take-off Run, Part 2

a/

Figure 3.14 Example of Display Test Manager Utilization:
Take-off Run, Part 3

58

of the PHIGS standard. The other displays in this sequence of figures
are also animated by the aircraft simulator. This is an example of the
possible implementation of the concept of a windowed display system in
future cockpit displays.

Fourth, a Display Program Generator application allows the user to
produce a self-contained set of files which will implement the display
program running outside AGSSS. Two modes of generation are provided:
the generation of a "stand-alone" display program, and the generation of
a display program which will interface to an outside data interface such
as an aircraft data bus or a simulator. This module will access the
generated SOFA code through the Actions Editor and the generated
graphics structures through the Graphics Editor. The Display Program
Generator outputs two types of files: 1) Ada source code files for the
display program and 2) Command files in the host computer's command
language to allow it to build an executable image from the Ada files.

This portion of the display development process is illustrated in
Figures 3.15 through 3.19. Figure 3.15 shows the Display Program
Generator Menu invoked from the Display Editor Menu. Upon selection of
the choice "generate the display program," the module grabs the graphics
description files and the actions description files and generate
automatically the files necessary to for the run-time display system
outside the AGSSS. Next, Figure 3.16 shows the use of the Workspace
Manager menu, one of several auxiliary menus in the system, to invoke
the File/Directory Manager. This utility is used to verify the
generation of the appropriate executable and command files. This
process is illustrated in Figures 3.17 and 3.18. Finally, the software
system created by AGSSS is run in the target display system outside the
AGSSS environment. This is illustrated in Figure 3.19 which shows the
ILS format and an altimeter format connected to an aircraft simulation.

59

NuUal J40jedausy weuaboud Ae|dsig ay3 90AU]
03 nual 4031p3 Ae(dstq ay3 jo asn GI°¢ a4nbiyg

1lllllllllllllllllllllllllllllIllllllIllllllllllllIllIlllllllllllllllllllllllllA

*++XpeaI ST I0ojeiauan wexboad Aetdstq

pPOZITRTITUT U23q aaerYy SaTnpow uor3ledTT1ddy

Iojeviauan weiboag AeydsTd
abu 3sa1 Aetdstg
103Tpd SUOTIOV]

Aetds1p 2Uy3 °103S9Y
wexboxd AeydsTp ayjz ajexauan 1031pq sotydean
nusy Io3piauag wexboxg Aerdsra I031pd I0TO0D

pA gl IIH HOLIAI AVI4SIA

60

dabeuey A4032241Q/3 L4 943 IROAU]
03 Jabeuey aoedsyaoM ayjl o aspn 91°¢ aunbyyg

umop 3JNYs uaaq SeY nuax lojexauan wexboxd Aerdsig

*+*Apeax sT Jojexsusn weiboid Aerdstqg

l

ssonoxdqns 2od
ssoooadqns 3SOH
tnmmm:mz Ax0309xT1Q/9TTd
uoTjejlsejzaw ysaxjay
uoTjeilsejaw Yoj3TMsS
suoT3do uuT3ILISHIOM
suotjdo asedsyao
umop 3nys

Jobruey sdedsiIon

L [1Ixd]

Jojexauan weaboig Aetdstq
aby1 3sel AetdsTta
103Tpd SUOTIOV

J03Tpd sotydean
I — Jo31bd 10700

NH3IH UOLIAI AVTI4SIA

[

61

Sa|l4 91qeIndax3 Ijetudoaddy ayj 40 uopjedaudy ayj
Ay14apn 03 uabeueyy A4032341Q/3 L4 aYy) 40 3asn (1°c a4nbiy4

** *JUV° ST SOINd | SATIHYS | L0OY aTTI 2y3 butuado

umMop 3nys usaq sey nual Iojeisauan weaboiag Aeidsig

J
(I9Vd LXIN
Iav
MAIIA™OML— ITp 3Tneisap 3ashlk
MOGHIM™THL~LOO— 11p Teotsiyd sas||f
MITIATHIMOL—1 aweruay
ILINW— aj9Tad
STI~— ajeaallk
SAVIdSIa—] anowayl ||
VA0S— 310duwit
SOIHd— SAOH] r
540T09— " spuewuod xyallt
SATdWYS— 1abeuew a1t 4|f
100y [LIxd)k
‘uotjdo nusw e 3oat19s
STI|SAvIdsIalLooyd :xtp juaxang jlE

62

Sa|l4 puewwo) awt)-uny ajeluadoaddy ayl j0 uojpjedauan ayj
Kj149p 03 sa3beuey Au032341Q/31t4 3yl Jo asn QI'€ a4nbi4

«++ JYV° STI:SOTH | SATdNVS |100H STTF @Yy3 buruado

umop 3ngs ua9aq Sey nusi I0jrIausg weiboid >mHQmHE

LISII0™AIVASM T™dTIAT0INI™SM

TSM° TTATIA OANI™SM

HOD " DIXT HIAYIS™ LY THNYH
HOJ° OAXd™SIYH ITp 3Tnejap 33s
WOD*ITIdHWCGD™STI 9TT3 TeoTsAyd 9ss
Vav*—S1I 397194
OANITAVIdSIA-STI aAoway
A4V S'TI JI0dwy
vav:-sII aweusay
Vav: —so0dd~ VLVITLHOITA >Q004
¥YaVv - S00Yd~VLYA~LHOITL | Spueuumod aYT4
HOJ " ALVIYI~4IT AVIdSIA Iabreuew 8714
vav: OdXdTAVIdSId [LIXd]

‘uor3do nuaw e 309735 <==
STI|SAVIASIA|LOOY :ITP jualin)d

63

Figure 3.19 Example of AGSSS-Developed Display
Running Outside the AGSSS Environment

64

4.0 ANCILLARY RESEARCH RESULTS

Some aspects of the AGSSS design used techniques which had not yet
been proven. As such, the following are research results derived from
the AGSSS effort:

e Use of DIANA as the basis for an integrated Ada development
system

¢ Various extensions to the PHIGS standard
e Development of a portable file manager.

e Use of Ada tasking features to implement user inputs as
concurrent finite automata.

These results are described in greater detail below.

4.1 Use of DIANA for an Integrated Ada Development System

DIANA, the Descriptive Intermediate Attributed Notation for Ada, is
an abstract representation for Ada programs. It is in use in a number
of commercial Ada compilers, notably Tartan and Intermetrics.
Specifically, DIANA is an abstract data type capable of describing any
correct Ada program.

Because DIANA represents an Ada Program as a data structure, the
DIANA representation reflects the structure of the source program. This
fact makes DIANA potentially useful for a wide variety of programming
tools. In AGSSS, DIANA filled the need for a common internal
representation for use in an integrated Ada development environment.

AGSSS had a requirement that it would be able to accept Ada source
code from sources other than AGSSS itself. The most sensible approach
was to use Ada itself as the specification language for the display
formats. The task of AGSSS was thus to provide an integrated
development environment for display programs in Ada. The Actions Editor
of AGSSS provides

65

e An incremental parser, which translates Ada source programs
into DIANA form

e A source code reconstructor, which translates DIANA back into
Ada source

e Syntax-directed editor, which guides the user in the
construction and modification of Ada programs

e An interpreter, which runs the Ada/DIANA programs directly,
without the conventional compile and link stage

e An interface library, which allows the interpreter to access
object code libraries (for example, the interface library that
provides an emulation of the run-time environment for the
embedded display system)

e A display program generator, which, among other things,
determines the compilation order of Ada modules for the target
display system.

A1l these modules make use of the DIANA representation of the Ada
display program under development. The syntax-directed editor, while
providing a source representation to the user, performs most of its
operations on the internal DIANA representation. The interpreter
executes by traversing the DIANA data structures and performing the
indicated actions. The interface library converts subprogram references
in DIANA to calls to object code routines. The display program
generator makes use of the DIANA list of compilation units to determine
how to build the target display program.

AGSSS uses DIANA revision 4 from Intermetrics. The subset of Ada
supported by AGSSS is quite large; however, it does not support tasks,
generics, or discriminant records.

4,2 Extensions to the PHIGS Graphics Standard

The Programmer's Hierarchical Interactive Graphics System, and ANSI
and IS0 standard, provides a means of define graphics data which are
easily modified and updated. For this reason, PHIGS is suitable both
for interactive display definition, as well as for real-time display

66

generation. To support both of these activities, we wrote an
implementation of PHIGS in Ada. We found it necessary to add features
to PHIGS which were not addressed in the standard. Of course, making
changes to a standard reduces portability, one of the main reasons for
the use of standards in the first place. In some areas, PHIGS provides
approved methods for adding extensions. Our approach, designed to
maximize portability, was as follows:

1. Where possible, confine the PHIGS extensions to a package
surrounding or external to PHIGS rather than to PHIGS itself.

2. Where it is necessary to extend PHIGS itself, use the approved
extension mechanisms if possible.

3. Since display programs will be ported more often than AGSSS
itself, itself, confine the generated display programs to the
PHIGS standard without extensions, as far as possible.
Extensions contained in a package surrounding or external to

PHIGS are permissiblie, since these would not involve any
changes to PHIGS itself.

Extensions to PHIGS carried out according to these rules include:

¢ Ceacurrent PHIGS for parallel access by multiple Ada tasks

* A PHIGS interface package, for use in real-time display
generation

s N.mes for structures, elements
. Priovate Structure stores
. Rcplication element type
+ A ditional input classes.
In obseivation of rule 1) above, we created packages to surround
PHIGS, wher2 we implemented most of our extensions. Because of the

differing v2quirements for PHIGS within the AGSSS tool, and PHIGS as a
real-time display system, there are two such packages.

The package for AGSSS PHIGS is called CONCURRENT_PHIGS. Since AGSSS

has multiple Ada tasks which could potentially access PHIGS, we needed
to insure that each could use PHIGS without interfering with each other.

67

This was accomplished by creating a task with entries for each routine
in the PHIGS library. The entries all have an additional argument
containing information about the context of the calling task. If all
tasks access through the CONCURRENT_PHIGS task, then conflicts are
avoided.

In the generated real-time display, concurrency is not a requirement.
In this case, we provide a package called PHIGS IFACE (PHIGS Interface),
which simply maps standard PHIGS calls to the particular PHIGS
implementation upon which the display is running. This scheme takes
care of the many discrepancies which can be found between different
vendors' versions of PHIGS.

Following rule 2) above, CONCURRENT_PHIGS contains several
enhancements to PHIGS which are implemented outside of PHIGS itself.
The most important of these are private structure stores and names for
structures and elements,

In PHIGS, display Tist commands are organized into groups called
PHIGS structures. Individual commands are called structure elements.
A1l structures reside conceptually in a common area called the
Centralized Structure Store (CSS). This arrangement corresponds roughly
to a large FORTRAN program in which all variables reside within a single
common block. In the concurrent case, there is extreme danger that
competing tasks will corrupt each other's data. For this reason,
CONCURRENT_PHIGS offers each task only a select view of the CSS. That
is, the user can create any number of virtual CSS's, whose contents are
invisible to the others. Such a virtual CSS is called a private store.
This is accomplished by mapping the structure identifiers in the CSS to
unique identifiers in the private store. All entries in the concurrent
PHIGS task require a store identifier in addition to the standard PHIGS

parameters.
Each private store contains a mapping of structure names (Ada STRING

types) to structure identifiers (integers). This allows the interactive
workstation to display structures by name rather than by number.

68

Additionally, AGSSS provides names for structure elements. However,
this is accomplished using a feature of PHIGS itself, namely the PHIGS
Application Data Element. This element contains a character string
which we use to encode the name of the element which follows in the
structure's element list,

PHIGS provides two extensions by which the implementor can add his or
her own structure element types, called Generalized Structure Element
and Generalized Drawing Primitive. Any such extensions, while permitted
by PHIGS, are not, in general, portable to other PHIGS implementations.
Our PHIGS implementation offers one generalized drawing primitive,
called REPLICATE STRUCTURE. This element has the effect of an
EXECUTE_STRUCTURE element followed by a local modelling transformation,
repeated a specified number of times. It i< used to repeat a picture at
regular intervals, such as lines of a pitch grid, or tick marks on a
Tinear or circular scale. The possible rotation, translation, or
scaling of each repeated image is controlled by the specified modelling
transformation. The transformations are cumulative with each iteration.

If the display is targeted to a system which does not support such a
generalized structure element, each REPLICATE_STRUCTURE element in the
display specification can be replaced by a series of EXECUTE_STRUCTURE
and local modelling transformation elements. This can be accomplished
automatically within the DISPLAY PROGRAM GENERATOR of AGSSS.

Ariother extension permitted by PHIGS is in the area of prompt/echo
types. Prompt/echoes are the feedback to the user of the current input
state. Examples include graphical cursors in response to locator inputs
and screen characters in response to text inputs. In addition to the
prompt/echo types defined by PHIGS, implementors are free to define
their own types. Of course, such types will not port across differing
PHIGS implementations. AGSSS PHIGS makes use of some new locator
prompt/echo types, which, according to rule 3) above, are not used in
the generated real-time displays.

69

The new locator prompt echo types are:

* PRIMITIVE_LOCATOR - drags all instances of a particular structure
element. A specified vertex of a specified instance takes the
current locator position.

¢ PATH_LOCATOR - drags a single instance of a particular structure
element. A specified vertex takes the current locator position.

* VERTEX_LOCATOR - drags a vertex of all instances of a particular
structure element.

» PATH_AND VERTEX LOCATOR - drags a vertex of a single instance of
a particular structure element.

In the current implementation, these echoes all use an exclusive-or
cperator on the pixels of the underlying image. When the echo moves,
the old echo is erased by repeating the exclusive-or operation, then the
new echo is drawn.

Drawing the echo in the proper position requires structure
traversal, applying all the modeling and viewing operations, as well as
incorporating the relative translation defined by the Tocator position.
For this reason, these echoes will only be possible under AGSSS PHIGS.

Although these echo types are not portable, it may be possible to
achieve similar effects on other PHIGS implementations through other
means. On a platform with sufficient graphics throughput, for example,
the locator position could be used to edit the structure contents to
update the whole picture continuously. The user would then see the end
result, rather than a "rubberband" image of the changes.

4.3 Development of a Portable File Manager

Since AGSSS is intended to be highly portable, it is desirable to
shield the user from the conventions of the host operating system, as
well as from worries about storage deviées. AGSSS provicdes an abstract
directory tree and a set of operations on files and directories.
Special map files control the mapping of subdirectories and files to

70

subdirectories and files on the host system(s). Users can manipulate
files and directories through a graphical interface which displays the
abstract directory tree.

Each subdirectory in the abstract directory tree corresponds to a
disk directory somewhere in the system. However, the disk directories
need not follow the same hierarchy as the abstract directory tree. The
directories can reside on any disk in the system. They may even reside
on the PC front end. The file manager operations can transfer files to
and from the PC as needed.

4.4 Use of Ada Tasking Features to Implement user Inputs as
Concurrent Finite Automata

The idea of modeling user inputs as concurrent finite automata dates
back to Jacob, (R 8). Thinking of an input as a finite automaton means
that there is a state transition diagram which describes all possible
states for the input. Each state can respond to a number of possible
events. Each event is met by some action, including a possible change
of state. Figure 4.1 shows an example of a PHIGS pick input modelled in
this way. Device inputs are concurrent in two senses. The user may be
using multiple devices simultaneously, e.g., mouse and keyboard.
Second, there may be multiple windows on the screen(s), each with its
own inputs. Their state is maintained even as control passes from one
window to the next.

In AGSSS, the first type of concurrency is handled by Ada tasking.
Each physical input is monitored by a separate Ada task, and all inputs
are event cviven.

The second type of concurrency is handled by assigning a state
transition record to each open input. When an event occurs which might
affect a particular input, a procedure is called which looks up the
current state from the state transition record, then takes the

appropriate action.

71

a b

d £ 1

c e g

Idle Wait Ready In_process

h

k m
J
1
o) n
Finish Resolve

The arcs of the graph are as follows:

Device is initialized in request mode.

Device is initialized in sample or event mode.

A begin request call is made for this device.
Non-"Ready" input is received.

Ready input is received.

Ready input continues to be received.

"Process"™ input is received inside the echo area.

Data is received which cannot be classified in £ or gq.
Process input continues to be received (inside or outside
the echo area). Echo this data.

Finish data is received.

Abort data is received in sample or event mode.

Abort data is received in request mode.

Finish data is received and is sent down to graphics mgr
for resolution (PHIGS locator)

The resolved information is received from graphics mgr
Data is sent to logical device in sample or event mode.
Data is sent to logical device in request mode.

Figure 4.1 Drag Finite State Machine

72

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

At the beginning of the project, there were concerns about the real-
time performance of the display programs to be generated by AGSSS.
These concerns arose mainly from two issues: 1) the comprehensive and
complex nature of the Ada programming language and 2) because PHIGS
graphics rendering is achieved by interpreting its graphics commands.
In the case of Ada, the concern was not whether Ada and Ada/PHIGS could
be used in real-time applications, but whether or not the overhead
penalty associated with its execution would be excessive or the
efficiency of the generated code would be acceptable. In the case of
PHIGS, the concern was that, as a rule, structure traversal (required by
interpretation) takes more time than direct execution of equivalent
code. Concerning Ada, the AGSSS automatic Code Generator was designed
to take advantage of Ada's many general-purpose features and to support
the tailoring of the generacor code for optimal real-time execution in a
target display system. Concerning PHIGS rendering, the AGSSS design
included provisions to implement the PHIGS rendering pipeline in the
machine code of the target display generator and thus enhance the real-
time performance of the graphics rendering process. Also, the emergence
of graphics display generators optimized for execution of PHIGS
procedures may obviate the need for this implementation in the future.

In general, AGSSS has met or exceeded its design goals. Productivity
associated with the process of developing cockpit displays and its
enabling software has improved tremendously both in quantity and
quality. The specialized knowledge required heretofore to work in this
area has been reduced. Also, the system generates display programs
which should be portabile to other Ada/PHIGS environments.

73

Preliminary results indicate that productivity has increased by a
factor of at least 10 over that obtained with the conventional method
(FORTRAN/RAP) of developing display software for the ITB Facility
Display Generation System (DGS). Furthermore, it is estimated that the
integrated environment provided by AGSSS will improve productivity by a
factor of 10 over hand-coding the same application in Ada/PHIGS and that
further increases are possible. The Graphics Editor implementation is
very thorough and has the potential for many more functions. It has
certainly proved its worth as a rapid prototyping tool supporting the
iterative development process. The development of Ada programs has also
benefited from the AGSSS implementation. For example, using the Actions
Editor Ada program turn-around has improved between 10 and 50 times over

the standard approach.

The potential is there for substantial quality improvements obtained
by exploiting the iterative development process, the use of PHIGS, and
the porting of AGSSS and its products to newer graphics platforms.
Concerning the amount of specialized knowladge required to produce a
cockpit display, significant reductions have been obtained by supporting
the graphics specifications at a much higher level and implementing
AGSSS to act as a guide with respect to the specifications of the
actions in Ada. Finally, indic:tions are that, with the exception of
the generalized structure elements and the color specifications, the
code generated by AGSSS will be 95% to 100% portable to other compatible

platforms.

Furthermore, the targetability of the products of AGSSS has been
demonstrated, albeit on a preliminary basis, by the successful target of
code produced by AGSSS to other display system environments. Figures
5.1 and 5.2 illustrate this accomplishment. Figure 5.1 illustrates the
display software generated as described in Section 3.3 running in a
VAXStation 3100. Fiqure 5.2 illustrates the same software running in a
SUN/4 SparcStation 370. In both cases, we have interfaced to the
display generation process through the local (DEC or SUN) implementation

of PHIGS. These preliminary results are very encouraging.

74

001§ Uoi3PISXVYA b 03 pajsbue] woysAg auemijos
Le|ds1g po1Paauay-sssoy 40 oduexy

1°6 adnbiy

§: ootoun Aytoads

SR TIS TR TS B

[Jo0
dovys 0
IR o

HOLVINIS 1RO Tdee 0 0
(11xi] o0

SRR
SUOILT LY
J030AT T

1T 1T andn
d1eat 1o,
TR SN URS Ok BV L

lotjTutjop Aoy o

£ DTOHD A TToeesy

Msay :: 9
asned i 5

Py

1359y

ueIsn)

pRER | spuvuaue

SOtd

3
:
¢
$
£
§
¢
3
¥
3

P I A

0/E UOLI®ISIYVIS /NNS © 03 pajabuael wa3sAS auemljos
fe|dstg paje4auan-ssSoy jo ajduexy 2°G aJ4nbl4

76

5.2 Recommendations

The AGSSS was earmarked for implementation and demonstration in the
display generation system (DGS) of the ITB Facility. This display
system, based on the Adage 3000 PDG, has been in operation since 1985
with current plans calling for its replacement, in the not-too-distant
future, with a DGS based on one of today's high-performance
workstations. This workstation will most likely be one that supports
PHIGS and PHIGS PLUS.

Based on the rosults obtained with AGSSS, near-term recommendations
include the porting of the tool to one or more of today's high-
performance graphics workstations, especially the one chosen to upgrade
the ITB Facility's DGS with. In addition the products of AGSSS should
be targeted to the workstation of choice and the targeting strategy
developed to exercise the application code produced by AGSSS in as many
DGS as possible. Also subset configurations of AGSSS should be
considered for other avionics applications. Specific enhancements to
components of AGSSS should also be considered. These could include the
addition of high-level primitives and PHIGS PLUS (PHIGS Plus Lumiere Und
Surfaces) enhancements to the Graphics Editor; support for PDL and
document generation in the Actions Editor; and provision of non-
aerodynamic motion control in the Display Test Manager.

Longer term recommendations are based on exploiting the fact that the
AGSSS has been designed and implemented with a great deal of modularity.
For example, the Kernel, the Device Interface, and the Ada Tools
components of the AGSSS can be viewed as forming the basis for a generic
Ada/PHIGS workstation which may be used to develop software for other,
nongraphical, embedded applications. Furthermore, an implementation
strategy should be followed that merges both the AGSSS windowing
functionalities into those of X Windows, and the AGSSS PHIGS graphics
with those of the emerging PEX (PHIGS Extensions to X) standard. This
approach would promote the widest utilization of this productivity-

enhancement tool.

77

Cockpit displays will continue to include more and more information
with ever-increasing sophistication as the technology and the display
designer's imagination continue to leap-frog each other. Complex
displays such as the one depicted in Figure 5.3 (Pathway-in-the-Sky
(PITS)) will become common place in the not-too-distant future. We
believe that the Airborne Graphics Software Support System (AGSSS) will
provide an important, robust, absolence-proof, tool for display
designers to work with for many years to come.

78

Figure 5.3 Example of Complex Display Format
Expected to be Used in the Cockpit of Future Aircraft

79

6.0 REFERENCES

1. Montoya, et al, "An Interactive Graphics Editor for Computer-
Generated Cockpit Displays.” Proceedings of the IEEE/AIAA/NASA 9th
Digital Avionics Systems Conference, October 15-18, 1990, Virginia
Beach, Virginia.

2. American National Standards Institute (ANSI). “Computer
Graphics--Programmer's Hierarchical Interactive Graphics System (PHIGS)
Functional Description," September 26, 1988. X3.144-1988.

3. ANSI/MIL-STD-1815A-1983, "Reference Manual for the Ada
Programming Langquage," February 17, 1983.

4, ANSI document X3H3/86-43R1, Working papers for dpANS X3.144.3-
198x, "Computer Graphics--Programmers Hierarchical Interactive Graphics
System (PHIGS) Binding to Ada," May 1987.

5. Montoya, et al, "An Ada-based, Portable Design Workstation for
Computer-Generated Cockpit Displays.” Proceedings of the IEEE/AIAA/NASA
9th Digital Avionics Systems Conference, October 15-18, 1990, Virginia
Beach, Virginia.

6. Anon., RDS 3000 User's Guide. ADAGE, Inc., Document no 10-301-
095-10A, Billerica, Massachusets.

7. “"Software Detailed Design Document for the Airobrne Graphics
Software Support System (AGSSS)." Contract No. F33615-87-C-1531 CDRL
No. 9. Prepared by Research Triangle Institute, RTP, NC, January, 1991.

8. Jacob, Robert J.K., "A specification language for direct-

manipulation user interfaces.” ACM Transactions on Graphics, v. 5 no. 4,
October, 1986,

Bibliography
9. Aho, A. V. and J. D. Ullman, "Principles of Compiler Design,”

Addison-Wesley Publishing Co., London, 1979.

10. Booch, Grady, "Software Engineering with Ada,"” The Benjamin
Cummings Publishing Company, Inc., Menlo Park, California, 1987.

11. Brown, G. P., et al., "Program Visualization: Graphical Support
for Software Development," IEEE Computer 18, no. 8, August 1985

12. Clark, J., Measuring Basic 3-D Graphics Performance, Computer
Graphics Today, pp. 26-27, Volume 5, Number 2, February 1988.

13. Foley, J. D. and A. Van Dam, "Fundamentals of Interactive
Computer Graphics," Addison-Wesley Publishing Co., London, 1983.

80

14. Fuchs, H., J. Poulton, et al., "PIXEL-PLANES, A Parrallel
Architecture for Raster Graphics." Pixel-planes Project Summary,
Department of Computer Science, University of North Carolina at Chape!l
Hi11, August 1986.

15. Hasker, R. W.,.J. S. Edmunson, and M. R. Fritsch, “The Automated
Programming of Electronic Displays.” AFWAL-TR-86-3046.

16. LoPiccolo, P. J., Tools Chart High-End Workstations. Engineering
Tools, pp. 80-95, volume 1, number 1, February 1988.

17. Montoya, R. J., J. N. England, J. J. Hatfield, and S. A. Rajala,
"An Advanced Programmable and Reconfigurable Color Graphics Display
System for Crew Station Technology Research." AIAA/IEEE Fourth Digital
Avionics System Conference, St. Louis, Missouri, November 17-19, 1981.

18. Torborg, J. G., A Parallel Processor Architecture for Graphics
Arithmetic Operations. Computer Graphics, pp. 197-204, Volume 21,
number 4, July 1987.

19. 1ST91398401 Mission Software Controls and Displays Interface
Control Document.

81

GLOSSARY

Ada Programming Language
AGSSS Airborne Graphics Software Support System
ALC Automated Layout Center

ANSI American National Standards Institute
ASCIT American Standard Code for Information Interchange
BIOS Basic Input Output System

BPS Bipolar Processor Set

CDR Critical Design Review

CDRL Contract Data Requirements List
CFG Configuration

CGA Color Graphics Adapter
CISC Complex Instruction Set Computer

€SC Computer Software Component

CSCI Computer Software Configuration Item
CSE Center for Systems Engineering

CIG Computer Image Generation

CRT Cathode Ray Tube

DC Direct Current

DEC Digital Equipment Corporation
DEV Device

DCL Digital Command Language
DIANA Descriptive Intermediate Attributed Notation for Ada
DID Data Item Description

DIR Directory

DMA Direct Memory Access

DoD Department of Defense

DOS Disk Operating System

DRD Data Requirements Document
EGA Enhanced Graphics Adapter
ESC Escape

FORTRAN Formula Translator

GKS Graphical Kernel System
HIRES High resolution

HLL High Level Language

HSD Horizontal Situation Display
HWCI Hardware Configuration Item
Hz Hertz

HWCI Hardware Configuration Item
1DL IKONAS Display Language

IGE Interactive GRAPHICS EDITOR
IKASM IKONAS Assembler

INFO information

INIT Initialize
[TBF Integrated Test Bed Facility

I/0 Input/Output

K8D Keyboard

KW Kilowords

K Kilo-, thousand

LaRC Langley Research Center

LLCSC Low Level Computer Software Component

82

LORES Low Resolution

M Mega-, million

MAX Maximum

NASA National Aeronautics and Space Administration
NDC Normalized Device Coordinates

NOEL Node Oriented Editor Language

NTSC National Television Standards Commission
PATTI Programmers Attributed Text Interface

0S Operating System

PC Personal Computer

PDG Programmable Display Generator

PHIGS Programmer's Hierarchical Interactive Graphics System
PIXEL Picture Element

PRDA Program Research and Development Announcement

RAP Real-Time Animation Package

REC Record

RISC Reduced Instruction Set Computer

RTI Research Triangle Institute

SALC Simplified Automated Layout Center

SCCRS Software Configuration Control and Reporting System
SPEC Specification

STLDD Software Top Level Design Document

STD Standard

SUM Software User's Manual

TI Texas Instruments

TLCSC Top Level Computer Software Component

USAF United States Air Force

USN United States Navy

VAR Variable

VMS Virtual Memory System

WC World Coordinates
WL Wright Research and Development Center
WS Workstation

WSPACE Workspace
XMIT Transmit

83 -~ U.S Government Printing Otfice 1991—-648-127/62057

