
WL-TR-91-1042

AD-A243 224

III!hll l/!ii l 11111111 11111 111 1i! lll

AGSSS: THE AIRBORNE GRAPHICS SOFTWARE SUPPORT
SYSTEM; AN Ada/PHIGS-BASED DISPLAY EDITOR
FOR THE RAPID DEVELOPMENT OF COCKPIT
DISPLAY SOFTWARE SYSTEMS

R. Jorge Montoya, Timothy L. Turner, Donna M. Jewell,
James V. Aanstoos, Ramasubramanian Suresh, and M. Chad Barker
Center for Systems Engineering
Research Triangle Institute
Research Triangle Park, NC 27709

September 1991

Final Report for Period September 1987 - September 1990

Approved for public release; distribution is unlimited

AVIONICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

21 12(,9 83 91-17399

NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely Government-related procurement, the United States
Government incurs no responsibility nor any obligation whatsoever. The fact that the
government may have formulated, or in any way supplied the said drawings,
specifications, or other data, is not to be regarded by implication or otherwise in any
manner construed, as licensing the holder or any other person or corporation, or as
conveying any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS,
it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

DERRYL A. WILLIAMS DAVID A. ZANN
Airborne Graphics S/W Support System Actg-Chief
Program Manager Systems Integration Branch
Systems Group Avionics Directorate

FOR THE COMMANDER

CHARLES H. KRUEGER
Director
System Avionics Division
Avionics Directorate

If your address has changed, if you wish to be removed from our mailing list, or if the
addressee is no longer employed by your organization, please notify WL/AAAS, Wright-
Patterson AFB, OH 45433-6543 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a document.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

la REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

N/A Approved for Public Release:
2b DECLASSIFICATION /DOWNGRADING SCHEDULE -Distribution is unlimited

N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

RTI/3966/00-01F WL-TR-91-1 0Y2

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONI (If applicable)
Research Triangle Institute (WL/AAAS

6c. ADDRESS (City, State, and ZIPCode) 7b ADDRESS (City, State, and ZIP Code)
Center for Systems Engineering Avionics Directorate
P.O. Box 12194 Wright Laboratory
Research Triangle Park NC 27709-2194 Wright-Patterson AFB OH 45433
Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable) F33615-87-C-1531

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO- NO ACCESSION NO-
63253F 2735 01 02

11 TITLE (Include Security Classification) AGSSS: The Airborne Graphics Software Support System; An Ada/
Phigs-Based Display Editor For The Rapid Development Of Cockpit Display Software Systems

12. PERSONAL AUTHOR(S) . U

R. J. Montoya, T.L. Turner, D. M. Jewell,J. V. Aanstoos, R. Suresh, M. C. Barker
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final FROM, ._Sp8L7 TO SepO September 1991 9
16. SUPPLEMENTARY NOTATION

17. COSATI CODES . .UBJECT TLRMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP ?ottware uevelopment Tool, Airborne Graphics

I IGraphics Software
Development, Dynamic

Graphics

19 ABST.ACT (Continqe on everse if necess4y and identifv.by blo-k number)ver the past aecaAe, the performance odfigital graphics systems has increased several-fold.
At the same time, the size of the hardware has been reduced and high performance airborne
systems are now feasible. As a result, complexthree-dimensional, pictoral, real-time
display formats can now be supported. Unfortunately, the increase in display complexity
results in a significant increase in the software requirements. Additionally, dynamic
displays, such as used in avionics, have a two part software problem. First, the display
format and all its elements must be explicitly defined. Second, the connection must be
established to the rest of the avionics. Overall, graphics software development is a truly
time and labor intensive task.

The goal of the AGSSS is to provide a graphics software development support environment. The
AGSSS consists of four parts: the Graphics Editor for creating the format program, the
Actions Editor for creating the driver software for the display dynamics, the Display Test
Manager which allows the user to test the new software within the workstation, and the

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
Derryl A. Williams 513-255-4827 1WL/AAAS

DO Form 1473, JUN 86 Prewous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

I.

BLOCK 19 continued

Display Program Integrator which creates the final software source modules tuned to the
target system hardware. The AGSSS is a totally interactive system which allows the user

to create the display format by "drawing" the objects on a graphics workstation screen.

The resulting code is shown, as it is produced, in an adjacent window. The user can

operate in any window. The Actions Editor operates in a similar manner but employs test

rather than graphics editing.

The system produces Ada/PHIGS code for the display file and Ada code for the actions file.

Additionally, the AGSSS is written entirely in Ada providing a great deal of modularity

and host system independence.

ii

Awe

TABLE OF CONTENTS D~

Section Page

EXECUTIVE SUMMARY ... 1

1.0 INTRODUCTION... 6

1.1 Purpose .. 6
1.2 Need 6
1.3 Approach 13

2.0 AGSSS SYSTEM DESIGN, IMPLEMENTATION, AND USAGE 21

2.1 Detailed Design .. 22
2.2 Implementation ... 23
2.3 System Usage ... 32

3.0 DISPLAY DEVELOPMENT USING AGSSS 44

4.0 ANCILLARY RESEARCH RESULTS 65

4.1 Use of DIANA for an Integrated Ada
Development System 65

4.2 Extensions to the PHIGS Graphics Standard 66
4.3 Development of a Portable File Manager 70
4.4 Use of Ada Tasking Features to Implement

User Inputs as Concurrent Finite Automata 71

5.0 CONCLUSIONS AND RECOMMENDATIONS 73

5.1 Conclusions .. 73
5.2 Recommendations .. 77

6.0 REFERENCES ... 80

BIBLIOGRAPHY ... 80

GLOSSARY ... 82

fi

LIST OF ILLUSTRATIONS

Figure No. Page

1.1 Horizontal Situation Indicator: TACAN Format 8

1.2 Vertical Situation Display (VSD) 8

1.3 Cockpit Displays With Varying
Degrees of Complexity 9

1.4 Pathway-in-the-Sky (PITS) Display Format 10

1.5 Block Diagram of Original AGSSS Concept 14

1.6 WRDC Integrated Test Bed (ITB) Facility 15

1.7 Research Cockpit of the ITB Facility 16

1.8 Block Diagram of Proposed AGSSS Concept 17

1.9 Functional Block Diagram of AGSSS 19

2.1 CSCI 1 AGSSS System Diagram 24

2.2 CSCI 1 File Level Data Flow 24

2.3 CSCI 1 AGSSS Demonstrator Mode 25

2.4 CSCI 1 AGSSS Mission Mode 25

2.5 CSCI 1 AGSSS Control Flow:
Initialization/Shutdown 26

2.6 CSCI 1 AGSSS Workspace Control Flow 26

2.7 CSCI 1 AGSSS Functional Control Flow 27

2.8 Block Diagram of AGSSS Modular Implementation 29

2.9 CSCI I Composition of the AGSSS 30

2.10 CSCI 1 General Decomposition of the AGSSS 33

iv

Figure No. Page

2.11 CSCI 1 Decomposition Elements of the AGSSS 34

2.12 Example of an AGSSS menu: Display Editor Menu 41

2.13 Example of an AGSSS form: Flight Simulator Form ... 43

3.1 Use of the Graphics Menu to Invoke the
Color Editor Menu 45

3.2 Use of the Graphics Editor to Traverse
Displayable PHIGS Stores 46

3.3 Use of Graphics Editor to Add (Draw) a Feature
(Star) to an Existing (Aircraft) Display 47

3.4 Use of Graphics Editor to Complete (Flat Shade) the
Drawing of the Star 47

3.5 Example of Several Display Formats Instanced
Several PHIGS Workstations 48

3.6 Example of Several Display Formats and Use of the
Color Editor With One of Them 48

3.7 Use of the Display Editor Menu to Invoke the
Actions Editor Menu 51

3.8 Example of Additional Menus and Forms Associated
with the Actions Editor 52

3.9 Portion of the Body of ILS 53

3.10 Example of Changes to the Body of ILS 54

3.11 AGSSS Onboard Aircraft Simulator Control Form 56

3.12 Example of Display Test Manager Utilization:
Take-off Run, Part 1 57

3.13 Example of Display Test Manager Utilization:
Take-off Run, Part 2 57

3.14 Example of Display Test Manager Utilization:
Take-off Run, Part 3 58

3.15 Use of the Display Editor Menu to Invoke the
Display Program Generator Menu 60

V

Figure No. Page

3.16 Use of the Workspace Manager to Invoke the
File/Directory Manager 61

3.17 Use of the File/Directory Manager to Verify the
Generation of the Appropriate Executable Files 62

3.18 Use of the File/Directory Manager to Verify the
Generation of the Appropriate Run-Time
Command Files 63

3.19 Example of AGSSS-Developed Display Running Outside

the AGSSS environment 64

4.1 Drag Finite State Machine 72

5.1 Example of AGSSS-Generated Display Software
System Targeted to a VAXStation 3100 75

5.2 Example of AGSSS-Generated Display Software
System Targeted to a SUN/4 SPARCStation 370 76

5.3 Example of Complex Display Format Expected to be
Used in the Cockpit of Future Aircraft 79

vi

EXECUTIVE SUMMARY

This technical report addresses the development of the Airborne

Graphics Software Support System (AGSSS), an integrated software

development environment that aids in the rapid prototyping of cockpit

displays and in the production of the associated display generation

software. This work was sponsored by the Avionics Directorate of the

Wright Laboratory (WL/AAAS) under contract F33615-87-C-1531. It was

conducted by personnel of the Center for Systems Engineering (CSE),

Research Triangle Institute (RTI). Mr. R. Jorge Montoya, manager of the

Avionics Technology Department at RTI, served as the project manager and

Mr. Derryl Williams of WL/AAAS-2 served as the project Engineer for the

U. S. Air Force. He was ably assisted in this task by Mr. William

Koenig. Mr. Jesse L. Blair, group leader, WL/AAAS-2 also helped set

research goals and define AGSSS features. In addition to Mr. Montoya,

the RTI AGSSS project team consisted of Mr. Timothy L. Turner, who led

the technical effort, Mrs. Donna M. Jewell, Messrs. R. Suresh, James V.

Aanstoos, and M. Chad Barker.

Advances in digital computers, computer graphics, and video

technology during the last decade have made complex cockpit displays a

common application in military aircraft. The underlying software system

necessary to convert the data from the aircraft systems into a graphical

representation, i.e., the display, is getting so complex that the

application of traditional software methods to develop it is proving to

be very inefficient. Classical coding methodology results in single

point designs, promotes the development of the indispensable graphics

programmer (Guru), and distances the display designer from the display

implementation process.

To address these problems and encouraged by results from an earlier,

proof-of-concept effort on the Interactive Graphics Editor (IGE)

performed under NASA contract NASI-17948 and cosponsored by WL, the

Avionics Directorate sponsored the research addressed in this technical

report. The basic goals of the program defined in the PRDA 67-22-PMRB

(CBD, 4/4/87) were: 1) to develop an interactive, pictorial tool which

would bring the display designer closer to the display implementation

process; 2) to make the application environment transparent to the

display designer; and 3) to build in flexibility and avoid absolence in

both the tool and its products.

In response to this PRDA, RTI proposed to develop a modular software

environment that would be implemented in Ada and which would: 1) use the

3D PHIGS standard as the basis for the definition and rendering of the

display formats, 2) use Ada as the basis for the specification of the

actions that animate the resulting display, and 3) use Ada/PHIGS binding

to implement the resulting real-time display software targeted to a

specific application environment.

The result of the work performed under the ensuing contract (USAF

F33615-87-C-1531) was the Computer Software Configuration Item (CSCI)

known as AGSSS. AGSSS is an Ada/PHIGS-based, modular, software

development environment implemented completely in Ada. It supports the

development of display formats, the specification of the actions

associated with the elements of such display formats, and the creation

of a run-time software system to support the generation of the resultant

cockpit display outside the development environment.

The implementation of the CSCI AGSSS consists of two main parts: 1)

the design workstation and 2) the run-time system. The workstation

consists of three Top Level Computer Software Components (TLCSCs), the

AGSSS KERNEL, the DEVICE INTERFACE, and the DISPLAY EDITOR. The run-

time environment is provided by the TLCSC RUN-TIME SUPPORT. A fifth

TLCSC, AGSSS TOOLS, provides software components which are used by all

other components of the system.

Specifically, the AGSSS KERNEL manages the workstation environment;

the DEVICE INTERFACE interfaces AGSSS to all physical input and outputs.

2

The DISPLAY EDITOR supports the generation of display formats from

pictorial definition through action specifications and testing to

display program integration. The RUN-TIME SUPPORT provides building

blocks for use with display programs generated by AGSSS and targeted to

individual run-time environments. AGSSS TOOLS provides support packages

of a general nature to all component levels of AGSSS.

Sample applications described in this report show that AGSSS has met

or exceeded its design goals. Adherence to the 3D graphics standard

PHIGS (Programmer's Hierarchical Interactive Graphics System) and

implementation in the high-level language Ada insures portability and

longevity of the product. Preliminary results indicate that use of the

AGSSS has led to a significant shortening of the cockpit display design

and development process in the Integrated Test Bed Facility at WL.

Moreover, the AGSSS incremental Ada development environment shows the

potential to improve substantially the efficiency of the display code

development.

Informal measures indicate that by using the AGSSS the productivity

associated with the process of developing cockpit displays and its

enabling software improves tremendously, both in quantity and quality.

The specialized knowledge required heretofore to work in this area has

been reduced. Also, the system generates display programs which are

targetable to other Ada/PHIGS environments. Examples of environments to

which AGSSS outputs have been targeted include DEC VAXstation 3100 and

SUN/4 SPARCStation 370.

Preliminary results indicate that productivity has increased by a

factor of at least 10 over that obtained with the conventional method

(FORTRAN/RAP) of developing display software for the iTB Facility

Display Generation System (DGS). Furthermore, it is estimated that the

integrated environment p.ovided by AGSSS will improve productivity by a

factor of 10 over hand-coding the same application in Ada/PHIGS and that

further increases are possible with additional fine tuning of AGSSS.

The Graphics Editor implementation is very thorough and has the

potential for many more functions. It has certainly proved its worth as

3

a rapid prototyping tool supporting the iterative development process.

The development of Ada programs has also benefited from the AGSSS

implementation. For example, using the Actions Editor Ada program turn-

around has improved between 10 and 50 times over the standard approach.

In addition to developing the AGSSS, efforts under this contract led

to some promising, ancillary research results. These include the use of

DIANA (the Descriptive Intermediate Attributed Notation for Ada), as the

basis for an integrated Ada development system; the implementation of

various extensions to the 3D graphics PHIGS standard; the development of

a portable file manager; and the use of Ada tasking features to

implement user inputs as concurrent finite automata.

The results of this project lead us to conclude that the potential is

there for substantial quality improvements obtained by exploiting the

iterative development process, the use of PHIGS, and the porting of

AGSSS and its products to newer graphics platforms. Concerning the

amount of specialized knowledge required to produce a cockpit display,

significant reductions have been obtained by supporting the graphics

specifications at a much higher level and implementing AGSSS to act as a

guide with respect to the specifications of the actions in Ada.

Finally, indications are that, with the exception of the generalized

structure elements and the color specifications, the code generated by

AGSSS will be 95% to 100% portable to other compatible platforms.

These results are sufficiently encouraging to lead us to recommend

that AGSSS be ported to one or more of today's high-performance

graphics workstations, especially the one chosen to upgrade the ITB

Facility's DGS with. In addition the products of AGSSS should be

targeted to the workstation of choice and a targeting strategy developed

to exercise the application code produced by AGSSS in as many DGS as

possible. Also subset configurations of AGSSS should be considered for

other avionics applications. Specific enhancements to components of

AGSSS should also be considered. These could include the addition of

high-level primitives and PHIGS+ enhancements to the Graphics Editor;

support for PDL and document generation in the Actions Editor; and

provision of nonaerodynamic motion control in the Display Test Manager.

4

Longer term recommendations are based on exploiting the fact that the

AGSSS has been designed and implemented with a great deal of modularity.

For example, the KERNEL, the DEVICE INTERFACE, and the Ada TOOLS

components of the AGSSS can be viewed as forming the basis for a generic

Ada/PHIGS workstation which may be used to develop software for other,

nongraphical, embedded applications. Furthermore, an implementation

strategy should be followed that merges both the AGSSS windowing

functionalities into those of X Windows, and the AGSSS PHIGS graphics

with those of the emerging PEX (PHIGS Extensions to X) standard. This

approach would promote the widest utilization of this productivity-

enhancement tool.

5

1.0 INTRODUCTION

1.1 Purpose

This technical report describes the development of the Airborne

Graphics Software Support System (AGSSS), an Ada/PHIGS-based software

development environment for the rapid prototyping of cockpit displays

and the automatic production of their enabling software. The work was

sponsored by the Avionics Directorate of the Wright Laboratory (WL/AAAS-

2) under contract F33615-87-C-1531 and conducted by personnel of the

Center for Systems Engineering (CSE) of the Research Triangle Institute

(RTI).

The purpose of AGSSS is to support advanced airborne display

generation systems efficiently and with sufficient flexibility to

accommodate future display systems requirements. It is intended to give

the cockpit display designer full but transparent access to the display

generation environment by providing interactive interfaces that will

allow the artistic or pictorial design of displays, guide the

specification of the operation or the dynamics of the display, and

automatically create the run-time code that will generate the display

formats in the airborne environment.

1.2 Need

Development of software for cockpit displays poses a tremendous

challenge to display designers and software implementors. Recent

technological advances have produced computers which are smaller, less

power-consuming, and which have higher computational power and memory

capacity than ever before. These advances have made their way into

today's high-performance airborne display systems. These systems are so

complex and their application-support software so intricate that they

require experts to program them. Moreover, in most of these cases,

software development tools have not kept pace with this rapid hardware

evolution.

6

In addition, the increasing acceptance of color, raster scan display

technology in airborne applications has created both benefits and

problems as display designers seek to exploit its many capabilities for

encoding and integrating information and display implementors seek ways

to program the display systems efficiently to generate these displays in

real time.

Cockpit display formats have evolved from 2D and 3D replicas of

standard cockpit instrumentation to very sophisticated 3D images which

integrate a great deal of information and detail into one display.

Figures 1.1 through 1.4 illustrate the level of complexity found in

today's representative cockpit display. Figure 1.1 shows a replica of a

horizontal situation indicator (HSI) in the TACAN mode. Figure 1.2

illustrates a vertical situation display (VSD). This display is

slightly more complicated than the TACAN display. Figure 1.3 includes

several of today's representative cockpit display formats. Of

particular importance to this discussion are the two formats at the

bottom of the figure. The display on the left illustrates a primary

flight display (PFD) known as the electronic attitude director indicator

(EADI) which has been integrated with a tunnel-in-the-sky display. The

display on the right illustrates the EADI integrated with a synthetic 3D

scene. Figure 1.4 illustrates the Pathway-in-the-Sky (PITS) display, a

follow-me display concept currently under consideration for addition in

the ITBF research cockpit. The displays in the last two figures rank

among the most complex found in today's cockpit. A number of conceptual

cockpit display formats for future applications have been discussed in

the literature. As a rule they seem to be between one and two orders of

magnitude more complex than the ones presented in Figures 1.3 and 1.4.

One example of this is the format associated with the "super cockpit

display" identified in Project Forecast II. This futuristic cockpit

display integrates a great deal of information into one format and

should be representative of displays of the future.

The typical 3D display format consists of a collection of 3D

geometric primitives such as polygons, lines, and points.

7

Figure 1.1 Horizontal Situation Indicator: TACAN Format

Mo . 0;2 62 .5 000.

S2 9

FigUre 1.? Vertical Situation Display (VSD)

IOFTWARE/HARDWARE BASE FOR ADVANCED FLIGHT D1IPLA

& CL.IPPING, i AIGOR.IHM f, 81 O)PERATOR FY 85

ALGORITHMfS F)- Kj.YGCN SHADING PSfJOO 3 D£ STEREO
ADVANCED TUNNEL F)8, ~ COPROCESSOR FY 83 . D CAPASIUITY IFY'S.

PSEUDO 3-D SCENE GENERATION

FEATURES MERGED WITH EADI

TUNNEL IN SKY" "REAL-WORLD"~TERRAIN
PLUS RUNWAY DATA BASE

ADAG[3000 WITH ADAGE 3000 WITH
HARDWARF FILI APEX CO PROCESSOR

* 51? X 512 RESOLUTION a 1024 X 1024 RESOLUTION
* 25 MILLION PIXELS/SFCOND * 40 MILLION PIXELS/SECOND

Figure 1.3 Cockpit Displays With Varying Degrees of Complexity

9

Figure 1.4 Pathway-in-the-sky (PITS) Display Format

10

Fundamentally, any display format can be decomposed into these geometric

primitives. The combination of these primitives with the update rate

required by the application provides a metric with which the display

designer can predict, at least in general terms, the performance

characteristic required of the associated display system. Although

alpha-numeric displays are rather innocuous, text and its assbciated

attributes (e.g., antialiased and rotatable) add substantially to the

computational load presented by a display format to the display

generator, specially in display systems which are not optimized for

character generation. Furthermore, these displays will have smooth

shading requirements which will introduce an additional level of

complexity in the generation of the formats.

Furthermore, these displays will incorporate a great deal of modality

which will increase the complexity of the software. Additional display

software complexity will result from the management of critical -ockpit

displays used in a particular aircraft. This will have to be done

increasingly in the future to fully utilize the limited amount of

display real estate which will be available in the cockpit.

In the context of cockpit displays, real-time performance is usually

taken to mean display update rates of 30 Hz or better. This rate

indicates how often an image of a given complexity must be updated to

give the pilot the assurance that the information is indeed coming from

the real world. It should be clear that for a given graphics computer,

the higher the complexity of the display and its associated software,

the slower (longer) the update rate (the execution time) of the display

(the program) will be. Partly because of this, software developers are

constantly searching for efficient ways of accomplishing a given

graphical procedure. This consideration also provides the impetus for

hardware designers to incorporate hardware-assist capabilities in

graphics computers. Sometimes it is possible to implement graphical

procedures more efficiently in hardware resulting in significant

performance increases. For example, the ADAGE 3000, the PDG in the ITB

Facility Display Generation System (DGS) provides several coprocessors

and special hardware features. The hardware fill feature of this PDG,

11

for example, allows for the efficient flat shading of polygons. Copro-

cessors are also available to perform a variety of functions including

text generation and rendering which is a particularly inefficient task

in raster scan PDGs.

Because the enabling software for these display systems is so focused

and their hardware environment is so unique, the application of

conventional software development techniques in this environment has not

been very productive. This problem is compounded by the inability of

the display designer, typically not an experienced programmer, to

exploit directly the power of these computers. These factors result in

long display development periods during which the designer has no

feedback as to what his or her concept will look like in the

application. Consequently, the development of cockpit displays using

the classical approach has become very costly and time consuming.

Encouraged by results from earlier research on the Interactive

Graphics Editor (IGE) (R 1), the Avionics Directorate of the Wright

Laboratory (WL/AAAS-2) of the U.S. Air Force sponsored the Research

Triangle Institute (RTI) to conduct research into the definition and

implementation of a software system that would make the development of

cockpit displays and its underlying software a more efficient process.

As described in the Program Research and Development Announcement

(PRDA) 67-2?-PMRB which appeared in the Commerce Business Daily (CBD)

dated April 4, 1987, "the objective of the Airborne Graphics Software

Support System (AGSSS) is to support advanced airborne display

generation systems and will be designed with sufficient flexibility to

accommodate future display systems requirements without becoming

obsolete. The system will be hardware independent, generating generic

and standard software code which can be targeted to many differing

display systems. The system will support graphics software development

and modification interactively and will automate many of the procedural

aspects of the development process, allowing the designer to concentrate

his/her efforts on the creative aspects of the process." A block

12

diagram of the AGSSS concept as envisioned at the time the PRDA was

announced is presented in Figure 1.5.

1.3 Approach

In response to this PRDA announcement, the Research Triangle

Institute proposed to the Avionics directorate of WL (WL/AAAS-2) a

research and development program to develop a PHIGS/Ada-based software

system which would provide a pictorial ("artistic" versus "codable")

interface to display designers in the front end and produce generic

graphics and application code in the back end. The resulting display

code could be targeted to existing and projected suite of airborne

processors (display and host) to support the generation and update of

sophisticated cockpit displays. As part of the program, RTI also

proposed to demonstrate the software system in the hardware and software

environment of the WL/AAAS's ITB facility. This facility provides an

integrated environment in which to evaluate and demonstrate emerging

avionics hardware and software systems. A block diagram of the ITB

Facility (ITBF) is illustrated in Figure 1.6 and a picture of the

research cockpit in the ITBF is included in Figure 1.7. It was also

specified that the resultant software system would be used in the ITBF

as a rapid display prototyping tool and as a software generator tool

after its demonstration phase. As such, the product would be designed

and implemented to adhere to all specified data items (DI) standards

referred to in the PRDA announcement. A block diagram of the AGSSS

concept proposed by RTI is presented in Figure 1.8.

Based on this response, a contract was awarded to RTI in September

1987 to refine the definition of the system and conduct the necessary

research to develop the Airborne Graphics Software Support System

(AGSSS). The objective of the work described in this report was to

develop a modular software development environment for designing,

modifying, and testing cockpit displays, and automatically creating the

underlying programs in a high-level and interactive manner. A

fundamental goal of the software system was to address the problem of

13

Airborne Graphics Software Support System
Work.station.. Code Gcncrat ion Sjtem

j To rgc ttin g

UaC

mpier

ti.1E LASSCS Ifsj,

.

Us.

....14 Co.ls..-s po.ms

t Po. IPioe os

Figure^41 1.Mlc iga fOiil AISn Cusoncep t-

14, Io

JOTW/SENSOR ZT] NRTN SYS C R .E WSTATION SYSTEM
...... VIDEO SYSTEM

11 /40 11/45 S
000, w

)AVAH Video Video T
.......... C
........

Trilhu H Sp. FH
.......

..... R S -232
CBIS juVAH

.............. C Video

= ALTIME SUPPORT DISPLAY GENRTN SYS
........ ::.:::: r ----------------- I :

MlIrSTD-1553B Avionics BU3 LVAH Adage

Harris H8005 FLIGHT PROCESSOR SYSTEM AdagejuVAH

VD15k Adage
HSB'

MIL-STD-175A
DECNIET E L-j L.J

NON REAL-TIME SUPT
.. IT A R S

M125VAH
J.... .. ITARS

VAX-11/7eos
LExplorer

. pVA)I PG AT jUVAH. EET
.......................

Figure 1.6 WL Integrated Test Bed (ITB) Facility

15

1** >~ ~ ~ I.

GRAPHICS GRAPHICS

EDITOR LIBRARY POG,

PH POG ADA POG POG
PROGRAM COMPILER IMAGE

FILE FILE

ARCHIVYE TRANSLATOR

FIELCPAEACESSO

EDITO PRSOGRE SYST-E IMAGE
FIE FILE FILE

Fiue . Bok igrmofPopsd GSSCncp

PROGRA7

developing software for graphics generation across a varied population

of airborne display systems, both current and projected. This required

an implementation strategy based, to the fullest extent possible, on

standard programming languages and graphics procedures. Functionally,

the AGSSS supports the interactive and artistic creation of cockpit

display formats through a PHIGS-based graphics editor, the interactive

specification of the dynamics of the display symbology through an Ada-

based actions editor, and the incremental testing of the emerging

display through a display test manager. AGSSS uses the resultant object

definitions (in PHIGS) and display actions specifications (in Ada) to

automatically generate properly partitioned display system code (in Ada

and Ada/PHIGS) for a target display system.

PHIGS, the Programmer's Hierarchical Interactive Graphics System, is

a 3D graphics standard (R 2) which defines a graphics support system to

control the definition, modification, storage, and display of

hierarchical graphics data. Associated with PHIGS are language

bindings, which are specifications of the interface between an

application program and the PHIGS implementation in a given high-level

language. Since the AGSSS is implemented in Ada (R 3) and all high-

level code produced by the AGSSS is in Ada, it was necessary to

implement the PHIGS binding to Ada (R 4) in the display system.

This report describes the implementation of the AGSSS, its integrated

operation, and its use. The report also includes the description of

some significant innovations emanating from the project including the

development of Ada language tools and the implementation of concurrent

PHIGS. The report also contains a series of conclusions stemming from

the use of AGSSS to date and recommendations about possible extensions

to and additional applications of AGSSS. A Conceptual block diagram of

the implementation of the AGSSS is presented in Figure 1.9.

Major milestones of this project include Preliminary Design Review

(PDR) on July 7-8, 1988, Critical Design Review (CDR) on November 15-17,

1988, AGSSS minimum version delivery and demonstration on October 16-17,

1989, AGSSS final version delivery and demonstration on July 23, 1990,

18

APPLICATIONS

(DISPLAY EDITOR)

GRAPHICS EDITOR
U Ada/PHIGS
S ACTIONS EDITOR
E -
R DESIGN DISP. TEST MNGR.
S WORKSTATION

DISPLAY PROGRAM
GENERATOR

PRODUCTS

> PHIGS ARCHIVE FILES
Ada DISPLAY PROGRAMS

> COMMAND FILES

Figure 1.9 Functional Block Diagram of AGSSS

19

and AGSSS training session on September 24-28, 1990. Documents

generated and delivered under this contract include Software Top Level

Design Document for the AGSSS (CDRL #6), Software User's Manual for the

AGSSS (CDRL #7), Software Development Plan for the AGSSS (CDRL #8), and

Software Detailed Design Document for the AGSSS (CDRL #9). Two other

documents not identified in the CDRL list were generated and delivered

in draft form. They are: Systems Analysis Document for the AGSSS and

Software Configuration Control and Reporting System (SCCRS) User's

Manual. In addition, a paper entitled "An Ada-Based, Portable Design

V rkstation for Computer-Generated Cockpit Displays" was presented at

the 9th Digital Avionics System Conference (R 5).

20

2.0 AGSSS DESIGN, IMPLEMENTATION, AND USAGE

This section describes the detailed design of the Computer Software

Component Item (CSCI) identified as the Airborne Graphics Software

Support System (AGSSS) of the AGSSS software system. As previously

stated, the purpose of the AGSSS software system is to provide a

PHIGS/Ada-based software development system which will support the

interactive and pictorial development of cockpit displays and their

dynamic specifications; create generic and machine-independent, high-

level language display programs, and compile these programs into target

airborne programmable display generators (PDGs) and host processors.

The specific software modules have been developed in adherence with the

PHIGS graphics standard, the Ada DoD/ANSI standard, and the PHIGS/Ada

binding.

The AGSSS has been developed for and demonstrated in the display

system of the WL's Integrated Test Bed (ITB) Facility. The AGSSS will

be used as a rapid display prototyping tool and as a display system

software generator tool in this facility. The AGSSS hardware

environment in the ITB Facility consists of a front-end PC/AT

workstation (Zenith 248), a MicroVAX III host computer, and an Adage

3000 Programmable Display Generator (PDG) (R 6). The corresponding

software environment consists of the MS-DOS vers. 3.3 operating system

in the PC, VMS vers. 5.3 operating system in the MicroVAX, and Adage

microcode in the PDG. Specific Ada compilers in both the PC and the

MicroVAX support the AGSSS implementation.

As part of this project, several workstations have been identified as

possible platforms to port AGSSS and/or to target its outputs to.

Because these workstations implement the PHIGS rendering model to

various degrees of completeness, the need for a machine-specific, back-

end cross-compiler most likely will disappear in the future. Instead, a

strategy for the targeting of AGSSS graphics outputs will be developed

that will seek to interface to the particular PHIGS implementation

through the specific Ada language binding of each platform.

21

2.1 Detailed Design

The AGSSS design goals were set to: 1) obtain system flexibility to

accommodate future changes, 2) support interactivity in the development

of displays and the specification of their dynamics, and 3) support the

automatic generation. of display programs and their targeting to

different display systems.

AGSSS supports the pictorial definition of display formats through a

PHIGS-based Graphics Editor, the interactive specification of display

format dynamics through an Ada-based Actions Editor, the incremental

testing of the evolving display format with the aid of the Display Test

Manager, and the generation of display code in Ada and Ada/PHIGS through

the Display Program Generator. Use of Ada and adherence to PHIGS allow

AGSSS to import foreign pictorial data and Ada programs. These factors

also promote the portability of the tool and the targetability of its

products.

The AGSSS system consists of two main parts,

1) The AGSSS design workstation, and
2) The run-time systems.

The first part provides the system which the display designer uses to

develop the displays. lhe second part provides the run-time environment

which the displays will run in.

The AGSSS design workstation uses:

The AGSSS KERNEL,
The DEVICE INTERFACE, and
The DISPLAY EDITOR.

The run-time environment is provided by

RUN-TIME SUPPORT.

22

A fifth component,

AGSSS TOOLS,

provides software components which are used by all the other components
of the system.

Figure 2.1 shows an input-output description of the AGSSS design

workstation. It generates a collection of files for use by the run-time

systems. Figure 2.2 shows the workstation decomposed into its component

Top Level Computer Software Components (TLCSCs). Some of the files

generated by the design workstation are used to generate the executable

image for the run-time system. Two run-time modes are supported:

1) A stand-alone simulator, called the Display Demonstrator, and

2) A display generation system which communicates with the airborne
computer system over an avionics bus.

Figure 2.3 shows how the Display Demonstrator is created. Figure 2.4

shows how the Mission Display Generation System is created.

In the AGSSS workstation, three control modes are identified:

1) Initialization/Shutdown,
2) Workspace control, and
3) Functional control flow.

The three types of control flow are illustrated in Figures 2.5, 2.6, and

2.7, respectively.

2.2 Implementation

The AGSSS implementation meets the goal of providing a tool for

designing, modifying, and testing graphics display programs in a high-

level and interactive manner. The user communicates with the AGSSS

through a powerful and flexible graphical user interface (GUI) which

supports a variety of input and output devices. Layered on top of this

interface are the key "applications" which are highly integrated to meet

23

DEMO RUN COMMAND FILE
(DCL)

DEMO BUILD COMMAND FILE
(DCL)

DISPAY ASSSMISSION RUN COMMAND FILE
DESIGER ITERATIVE(DCL)

WORKSTATION MISSION BUILD COMMAND FILE
____ ____ ____ ___(DCL)

DISPLAY PROGRAM SOURCE FILES
(ADA)

PH1IGS ARCHIrVE FILE
WPHIGS)

DCL DIGITAL COMMAND LANGUAGE (VMS)
PHIGS PROGR.AMMER'S HIERARCICAL

INTERACTIVE GRAI'H]CS SYSTEM

Figure 2.1 CSCI 1 AGSSS System Diagram

PHIGS
ARCHIE FUMM

DPA POGRA

DISPLAY PROGRAM

DCL COMMAND

FILE

Figure 2.2 CSCI 1 File Level Data Flow

24

DEMO RUN *RUN'
COMMAND DCL
FILE

DEMO BUILDRNTA
COMMAND CSUPR
FILE TCC

DISPLAY DEMO
PROGRAM ACS [XECUTALE
FILESIAG

PlUGS
ARCIE}

PILOT DEMO

ACS Ada Control System (VMS)
DCL Digital Command Language (VMS)

Figure 2.3 CSCI 1 AGSSS Demonstrator Mode

MISSION
COMM4AND DCL
FILE

MISSION RNTM
BUILD CSUPR
FILE TCC

DISPLAYMISO
PROGRAM ACS DISPLAY
FILE EEUAL

FILE

Figure 2.4 CSCI 1 AGSSS Mission Mode

25

RUN AGSS" AGSS5
F MAIN

PROGRAiI

I/w

WOPRKSPACE SIR APPLICATION I IS

MANAGER EXECUTIVE - - - -

MENU
I 1/5

[S/R II/S SDISPLAY

I I/S AGSSS I/S EDITOR
I- -E EXECUTIO DLEDULES

U I O-R

I Initialization

S Shutdow
W Wait for Shutdown to complete

SR Shutdown Request

Figure 2.5 CSCI 1 AGSSS Control Flow:

Initialization/Shutdown

r [- - - I

I |I --

USE - -- ROUTER PHIGS P I I EDITOR
, t rmNICONS

DEVICE INTERFACE AGSSS KERNEL DISPLAY EDITOR

Figure 2.6 CSCI I AGSSS Workspace Control Flow

26

DEVICE AGSSS DISPT-AY

INTERlACE KERNEL EDITOR

INPUT MENU DISPLAY

USER ROUTER -- PATTI - MANAGER EDITOR

MENDS

CONFIGURATION jD PA
MENUDI

COFGRATION

FUNTIONS

Figure 2.7 CSCI 1 AGSSS Functional Control Flow

27

this goal: The Graphics Editor, the Actions Editor, the Display Test

Manager, and the Display Program Generator. Integrated within the

system are four additional utility applications which support the roles

of the key applications: The Color Editor, the File Manager, the Text

Editor, and the Workspace Manager. At the heart of the system is an RTI

implementation of the 3D graphics standard PHIGS, the Programmer's

Hierarchical Interactive Graphics System, which has been extended to

support concurrent calls from multiple tasks. The system is comprised

of the Device Interface, the AGSSS Kernel, the Editors, and the Ada

tools. The AGSSS Kernel provides generic Ada/PHIGS services to the

applications. Ada tools are used throughout the implementation. These

modules and their interrelations are illustrated in Figure 2.8. User

interactions take place from the left and systems services

(applications) take place from the right. This figure shows a

functional block diagram of the AGSSS as currently implemented.

The AGSSS design has been implemented in five Top-Level Computer

Software Components (TLCSCs). They are identified as follows:

1) AGSSS KERNEL (TLCSC 1),
2) DEVICE INTERFACE (TLCSC 2),
3) DISPLAY EDITOR (TLCSC 3),
4) RUN-TIME SUPPORT (TLCSC 4), and
5) AGSSS TOOLS (TLCSC 5).

The top-level composition of the AGSSS CSCI is presented in Figure 2.9.

The function of the AGSSS KERNEL (TLCSC 1) is to manage the AGSSS

workstation environment. The AGSSS KERNEL consists of 11 Low-Level

Computer Software Components (LLCSCs):

1) Kernel Executive (LLCSC 1.1),
2) Workspace Manager (LLCSC 1.2),
3) PHIGS Module (LLCSC 1.3),
4) PATTI (Programmers Attributed Text Interface) (LLCSC 1.4),
5) Menu Manager (LLCSC 1.5),
6) Forms Manager (LLCSC 1.6),
7) Color Editor (LLCSC 1.7),
8) File Manager (LLCSC 1.8),
9) Message Logger (LLCSC 1.9),
10) Dialog (LLCSC 1.10), and
11) Text Editor (LLCSC 1.11).

28

DEVICED =AGSSS EDITORS...............-EINTERFAI KERNEL......TOOLS : *11 1'1'-" '1*** 1 4.- 11
..................... A SS
......... .. AGISS DISPLAY.........LIST$ Com e. MESSACE

....... ... DIALOG 1101
..................... COORD ED.......... % EXECUTIVEE X E LUTl; 0 E

AC'

SLAY... MANAGER LOGGE....... MENUQUEUES TYPES DIIOR
..............- SETS ::.............

- TREES
- HASHNG TERMINAL TEXT U."THMA

... PATII ... MENUS- R-K INT INTERFACE - EDITOR
- 30 MTRX

..
........................... ----- , t

- - VDATA IEXT.. ACTIONSTAP E r* I............ EDITORw car c
......

EDITOR
.....

......
.......................

...............
...PCPC

.......... INPUT UFRONT 9............................. FORMS.
(No INTERFACE ROUTER

.................... MANAGE
..........

..........

....... TEST
Poc COLOR

......... HAMACER
SUPPORT INTERFACE EDITOR.......

...
.........

...
......

.....................................
..................

...
......: DISPLAYFILE FILE FILE...........................

..
............................. PROGRAMINTERFACE ROUTER HANW R....

... -: -....

Figure 2.8 Block Diagram of AGSSS Modular Implementation

29

oscI 1

AGSSS

KERNEL INTERFACE EDITORSUPRTOL

Figure 2.9 CSCI 1 Composition of the AGSSS

30

The function of the DEVICE INTERFACE (TLCSC 2) is to interface the

AGSSS to all physical input and output devices. The DEVICE INTERFACE

consists of 13 Low-Level Computer Software Components (LLCSCs):

1) Device Interface Executive (LLCSC 2.1),
2) Configuration Manager (LLCSC 2.2),
3) PC Front End (LLCSC 2.3),
4) PDG Support (LLCSC 2.4),
5) Terminal Interface (LLCSC 2.5),
6) Tablet Interface (LLCSC 2.6),
7) PC Interface (LLCSC 2.7),
8) PDG Interface (LLCSC 2.8),
9) File Interface (LLCSC 2.9),
10) Text Manager (LLCSC 2.10),
11) Graphics Manager (LLCSC 2.11),
12) File Router (LLCSC 2.12), and
13) Input Router (LLCSC 2.13).

The function of the DISPLAY EDITOR (TLCSC 3) is to support the

generation of display formats from pictorial definition through action

specifications and testing to display program integration. The DISPLAY

EDITOR consists of 6 Low-Level Computer Software Components (LLCSCs):

1) AGSSS Executive (LLCSC 3.1),
2) Display Editor Menu (LLCSC 3.2),
3) Graphics Editor (LLCSC 3.3),
4) Actions Editor (LLCSC 3.4),
5) Display Test Manager (LLCSC 3.5), and
6) Display Program Generator (LLCSC 3.6).

The function of the RUN-TIME SUPPORT module (TLCSC 4) is to provide

building blocks for use with display programs generated by AGSSS, in

either of two modes:

1) In a stand-alone simulation called the Display Demonstrator,

running on the same hardware as the AGSSS workstation, or

2) As part of an airborne software system (simulated or real).

The RUN-TIME SUPPORT module consists of two Low-Level Computer

Software Components (LLCSCs):

1) Display Demonstrator Support (LLCSC 4.1), and

2) Mission Support (LLCSC 4.2).

31

The function of the AGSSS TOOLS (TLCSC 5) is to provide support

packages of a general nature to the other TLCSCs and their corresponding

LLCSCs and Units. The AGSSS TOOLS consists of 13 Low-Level Computer

Software Components (LLCSCs):

1) Strings (LLCSC 5.1),
2) Sets (LLCSC 5.2),
3) Double Lists (LLCSC 5.3),
4) Trees (LLCSC 5.4),
5) Queues (LLCSC 5.5),
6) I/O Instantiations (LLCSC 5.6),
7) Miscellaneous Tools (LLCSC 5.7),
8) Storage Pool (LLCSC 5.8),
9) Generic Scanner I/O (LLCSC 5.9),
10) Convert PHIGS Archive Format (LLCSC 5.10),
11) DCL Interface (LLCSC 5.11),
12) Vectors (LLCSC 5.12),
13) Simulation Tools (LLCSC 5.13).

The overall decomposition of the AGSSS CSCI is presented in Figure

2.10. Note that the decomposition of the TLCSCs into LLCSCs and Units

are identified only by number. The name of each LLCSC is included in

Figure 2.11. Also note that the number of Units for each LLCSC is

identified by the number inside the LLCSC box. The name of each Unit is

also included in Figure 2.11.

The structure and organization of the AGSSS CSCI I of the AGSSS

system is described in the AGSSS Software Detailed Design Document

(SDDD) (see Ref. 7). It describes the decomposition of the AGSSS CSCI 1

into five TLCSCs and their corresponding Lower Level Computer Software

Components and Units. In addition, this document defines the interface,

data, and processing characteristics for each TLCSC, LLCSC, and Units in

the AGSSS CSCI I design.

2.3 System Usage

The user interacts with the AGSSS system through various input and

output devices. For input, physical devices include a keyboard and a

pointing device, which may be either a mouse or a data tablet. A

32

AOMs IDM MLAM AOMS

LLC4 LLC

Figure 2.10 CSC~~I 1GnrlDeopsto o h GS

t-~i33

TLCSC I AGSSS KERNEL

LLCSC 1.1 AGSSS EXECUTIVE

UNIT 1.1.1 AGSSS EXECUTIVE

LLCSC 1.2 WORKSPACE MANAGER

UNIT 1.2.1 WORKSPACE MANAGER INPUT MODULE
UNIT 1.2.2 WORKSPACE MANAGER MENU
UNIT 1.2.3 WORKSPACE MANAGER LIBRARY
UNIT 1.2.4 WORKSPACE MANAGER TASK

LLCSC 1.3 PHIGS MODULE

UNIT 1.3.1 STANDARD PHIGS
UNIT 1.3.2 PHIGS INPUT MODULE
UNIT 1.3.3 PHIGS GUARD TASK
UNIT 1.3.4 WORKSTATION EVENT QUEUE
UNIT 1.3.5 PHIGS NAME EXTENSIONS
UNIT 1.3.6 PHIGS PICK EXTENSIONS
UNIT 1.3.7 PHIGS MISCELLANEOUS EXTENSIONS
UNIT 1.3.8 PHIGS ARCHIVE FILE PARSER
UNIT 1.3.9 PHIGS WORKSTATION DESCRIPTION TABLE PARSER
UNIT 1.3.10 PHIGS EVENT QUEUE MANAGER

LLCSC 1.4 PATTI MODULE

UNIT 1.4.1 PATTI
UNIT 1.4.2 PATTI INPUT MODULE
UNIT 1.4.3 PATTI EVENT QUEUES

LLCSC 1.5 MENU MANAGER

UNIT 1.5.1 MENU MANAGER

LLCSC 1.6 FORMS MANAGER

UNIT 1.6.1 FORMS MANAGER

LLCSC 1.7 COLOR EDITOR

UNIT 1.7.1 COLOR EDITOR LIBRARY
UNIT 1.7.2 COLOR EDITOR MENU
UNIT 1.7.3 COLOR MANIPULATOR

LLCSC 1.8 FILE MANAGER

UNIT 1.8.1 FILE MANAGER LIBRARY
UNIT 1.8.2 FILE MANAGER I/O PACKAGES
UNIT 1.8.3 CUSTOM TEXT 10

LLCSC 1.9 MESSAGE LOGGER

UNIT 1.9.1 MESSAGE LOGGER

Figure 2.11 CSCI 1 Decomposition Elements of the AGSSS

34

LLCSC 1.10 DIALOG

UNIT 1.10.1 DIALOG

LLCSC 1.11 TEXT EDITOR

UNIT 1.11.1 INPUT HANDLER
UNIT 1.11.2 EDITOR LIBRARY

TLCSC 2 DEVICE INTERFACE

LLCSC 2.1 DEVICE INTERFACE EXECUTIVE

UNIT 2.1.1 IFACEEXEC

LLCSC 2.2 CONFIGURATION MANAGER

UNIT 2.2.1 CONFIGURATION MANAGER

LLCSC 2.3 PC FRONT END

UNIT 2.3.1 PC FRONT END MAIN
UNIT 2.3.2 SCHEDULER
UNIT 2.3.3 HOST INTERFACE
UNIT 2.3.4 DISK I/O MANAGER
UNIT 2.3.5 DISPLAY MANAGER
UNIT 2.3.6 KEYBOARD MANAGER
UNIT 2.3.7 MOUSE MANAGER
UNIT 2.3.8 VOICE MANAGER
UNIT 2.3.9 LOW LEVEL ROUTINES

LLCSC 2.4 POG SUPPORT

UNIT 2.4.1 PDG GRAPHICS PROGRAM
UNIT 2.4.2 PDG MESSAGE QUEUE
UNIT 2.4.3 ADAGE LIBRARY

LLCSC 2.5 TERMINAL INTERFACE

UNIT 2.5.1 TERMINAL INTERFACE INPUT TASK
UNIT 2.5.2 DISPLAYTASK

LLCSC 2.6 TABLET INTERFACE

UNIT 2.6.1 TABLET INTERFACE

LLCSC 2.7 PC INTERFACE

UNIT 2.7.1 PC MONITOR
UNIT 2.7.2 PC SERVICES

LLCSC 2.8 POG INTERFACE

UNIT 2.8.1 PDG OUTPUT TASK

Figure 2.11 (continued)

35

UNIT 2.8.2 PDG PHIGS ECHO TASK
UNIT 2.8.3 PDG SERVER QUEUES
UNIT 2.8.4 POG SERVER

LLCSC 2.9 FILE INTERFACE

UNIT 2.9.1 FILE TYPES
UNIT 2.9.2 FILE INTERFACE LIBRARY
UNIT 2.9.3 FILE INTERFACE I/O PACKAGES
UNIT 2.9.4 SEARCH LIBRARY

LLCSC 2.10 TEXT MANAGER

UNIT 2.10.1 PATTI OUTPUT TASK
UNIT 2.10.2 ECHO TASK
UNIT 2.10.3 PICK RETURNS TASK

LLCSC 2.11 GRAPHICS MANAGER

UNIT 2.11.1 GRAPHICS MANAGER

LLCSC 2.12 FILE ROUTER

UNIT 2.12.1 FILE ROUTER LIBRARY
UNIT 2.12.2 FILE ROUTER I/O PACKAGES

LLCSC 2.13 INPUT ROUTER

UNIT 2.13.1 INPUT ROUTER LOGICAL INPUTS LIBRARY
UNIT 2.13.2 INPUT ROUTER INPUT HANDLER
UNIT 2.13.3 INPUT ROUTER ECHO HANDLER
UNIT 2.13.4 FINITE STATE MACHINES

TLCSC 3 DISPLAY EDITOR

LLCSC 3.1 APPLICATION EXECUTIVE

UNIT 3.1.1 AGSSS MAIN PROGRAM
UNIT 3.1.2 APPLICATION EXECUTIVE TASK

LLCSC 3.2 DISPLAY EDITOR MENU

UNIT 3.2.1 DISPLAY EDITOR MENU

LLCSC 3.3 GRAPHICS EDITOR

UNIT 3.3.1 GRAPHICS EDITOR MENU
UNIT 3.3.2 DISPLAYABLE STORES MENUS
UNIT 3.3.3 DISPLAYABLE STORE MENUS
UNIT 3.3.4 STRUCTURE MENUS
UNIT 3.3.5 ELEMENT CREATION
UNIT 3.3.6 FILE STORES MENUS
UNIT 3.3.7 FILE STORE MENUS
UNIT 3.3.8 PHIGS WORKSTATION MANAGER MENU

Figure 2.11 (continued)

36

UNIT 3.3.9 PHIGS WORKSTATION STATE LIST UTILITIES

UNIT 3.3.10 GRAPHICS EDITOR UTILITIES

LLCSC 3.4 ACTIONS EDITOR

UNIT 3.4.1 ACTIONS EDITOR EXECUTIVE
UNIT 3.4.2 SOFTWARE LIBRARY MANAGER
UNIT 3.4.3 DIANA MANAGER
UNIT 3.4.4 SYNTAX-DIRECTED EDITOR
UNIT 3.4.5 COMPILER FRONT END
UNIT 3.4.6 INTERPRETER
UNIT 3.4.7 LANGUAGE TOOLS
UNIT 3.4.8 ADAGE 3000 CROSS-COMPILER BACK END

LLCSC 3.5 DISPLAY TEST MANAGER

UNIT 3.5.1 DISPLAY TEST EXECUTIVE
UNIT 3.5.2 DISPLAY TEST CONFIGURATION MANAGER

LLCSC 3.6 DISPLAY PROGRAM GENERATOR

UNIT 3.6.1 DISPLAY PROGRAM GENERATOR MENU
UNIT 3.6.2 DISPLAY GENERATOR
UNIT 3.6.3 DISPLAY RESTORER
UNIT 3.6.4 COMMAND FILE GENERATOR

TLCSC 4 RUN-TIME SUPPORT

LLCSC 4.1 DISPLAY DEMONSTRATOR SUPPORT MODULE

UNIT 4.1.1 SIMULATOR EXECUTIVE
UNIT 4.1.2 SIMULATOR MONITOR
UNIT 4.1.3 SIMULATOR PRECISION CLOCK
UNIT 4.1.4 SIMULATOR INPUT MODULE
UNIT 4.1.5 SIMULATOR AIRPLANE
UNIT 4.1.6 SIMULATOR FLIGHT RECORDER
UNIT 4.1.7 SIMULATOR DISPLAY SYSTEM
UNIT 4.1.8 SIMULATOR INPUT DATA GUARD
UNIT 4.1.9 SIMULATOR FLIGHT DATA GUARD
UNIT 4.1.10 SIMULATOR DATA GUARD

LLCSC 4.2 MISSION SUPPORT

UNIT 4.2.1 MISSION EXECUTIVE
UNIT 4.2.2 MISSION AVIONICS MODULE

TLCSC 5 AGSSS TOOLS

LLCSC 5.1 STRINGS

UNIT 5.1.1 VAR STRING LIBRARY
UNIT 5.1.2 VAR-STRING INPUT/OUTPUT LIBRARY
UNIT 5.1.3 STRING SCANNER

Figure 2.11 (continued)

37

LLCSC 5.2 SETS

UNIT 5.2.1 SETS

LLCSC 5.3 LISTS

UNIT 5.3.1 SINGLE LISTS
UNIT 5.3.2 DOUBLE LISTS
UNIT 5.3.3 ORDERED LISTS

LLCSC 5.4 TREES

UNIT 5.4.1 BINARY TREES
UNIT 5.4.2 IPR TREES
UNIT 5.4.3 N-ARY TREES

LLCSC 5.5 QUEUES

UNIT 5.5.1 QUEUES

LLCSC 5.6 I/O INSTANTIATIONS

LLCSC 5.7 MISCELLANEOUS TOOLS

UNIT 5.7.1 BIT-WISE OPERATIONS
UNIT 5.7.2 MATH LIBRARY EXTENSIONS
UNIT 5.7.3 TIME AND DATE ROUTINES
UNIT 5.7.4 IMMEDIATE-IF ROUTINES

LLCSC 5.8 STORAGE POOL

UNIT 5.8.1 STORAGE POOL

LLCSC 5.9 GENERIC SCANNER 10

UNIT 5.9.1 GENERIC SCANNER 10

LLCSC 5.10 CONVERT PHIGS ARCHIVE FORMAT

UNIT 5.10.1 CONVERT PHIGS ARCHIVE FORMAT

LLCSC 5.11 DCL INTERFACE

UNIT 5.11.1 DCL SPAWN
UNIT 5.11.2 COMMAND LINE INTERFACE

LLCSC 5.12 VECTORS

UNIT 5.12.1 VECTORS

LLCSC 5.13 SIMULATION TOOLS

UNIT 5.13.1 SIMULATION TOOLS

Figure 2.11 (concluded)

38

keyboard-based mouse emulator may be used as an option. This may be

supplemented by the voice input module on the PC Front End. The AGSSS

uses one or more display screens for output. One of these screens is

the alphanumeric terminal through which the user has logged onto the

host computer system. Another screen may be that of the PDG which must

be available for the viewing of graphics. In addition, any number of

additional alphanumeric terminals may be used simultaneously including

that of the PC Front End. Text-only workspaces may be located on any of

these, while graphics workspaces may only reside on the PDG. A

combination of microcode running on the PDG and host-based software

implements PHIGS for displaying the graphics.

Each of these output display screens is referred to as a metastation.

A metastation may be one of two types: text-only or text/graphics.

These two types are referred to as PATTI and PHIGS metastations,

respectively, in reference to the text-only and graphics interface

standards used by the AGSSS internal software components. (PATTI is the

Programmable Attributed Text Interface, while PHIGS is the Programmer's

Hierarchical Interactive Graphics System.)

Underlying the AGSSS is a window-based graphical user interface and

higher-level tools such as standard menu and form interaction modules.

The individual components of the AGSSS, such as the Actions Editor,

Graphi.s Lcitor, etc., are the clients or applications of this

underlyig system. The windowing system is two-tiered, consisting of

workspaces and workstations. The workspace is the higher-level window,

or rectangular region of a screen, which an application must first open

to communicate with the user. Within a workspace, one or more

workstations can then be opened. These workstations are windows within

the workspace through which the actual input and output occur. Thus a

workspace can be a region of the screen within which a given application

operates, and binds together a collection of workstations owned by that

application. The boundary of a workspace also serves as a clipping

boundary, keeping the output from multiple applications separate on the

screen.

39

For graphical input/output, the AGSSS workstation concept is mapped

directly onto the PHIGS definition of a workstation. While the PHIGS

standard does not specifically detail the possibility of implementing a

workstation in such a way that more than one application can utilize the

same physical hardware simultaneously, it does not rule out such a

possibility either. Thus some applications within AGSSS open multiple

PHIGS workstations on the PDG. These may be "held together" by a common

workspace, which the user is free to manipulate (size, move, etc.) on

the screen using the Workspace Manager utility. In addition, the PHIGS

workstation concept is extended even farther in AGSSS through RTI's

concurrent PHIGS implementation which allows multiple, independent

applications to control their own workstations on different workspaces

on the same display hardware.

Of all the workstations open at any given time, one is designated as

the listener workstation. The workspace which owns it is called the

listener workspace, and the metastation on which that workspace is

located is called the listener metastation. All input is directed to

the listener ,qorkstation or, more precisely, to the application which

owns it. Workstations and workspaces may be moved about and changed in

size by the use of the Workspace Manager. The windows are allowed to

overlap each other, according to a viewing priority which may be

modified either by pushing them from the Workspace manager or by

changing the listener.

Menus are the primary means of communicating choice information to

the system (applications). A standard menu interface which is layered

on top of the lower-level text I/O capabilities of PATTI is utilized

throughout the AGSSS for such operations. All menus using this

interface thus have a common "look and feel." An application may have

more than one menu displayed simultaneously and, in addition, more than

one of these may be "live" -- that is, ready to accept a choice.

Examples of an AGSSS menu is illustrated in Figure 2.12. The Display

Editor Menu, the Actions Editor Menu, and the Color Editor Menu shown in

this figure is the top-most menu of the system, and it is used to

provide access to all other parts of AGSSS.

40

0

-

Lai

V)

Q)

H

-4 o

-4

• p4 0

]: x
I 1 I 0-0)LA

00.
>-

- 0 - u 0

o- r.o .4 .- 0
>1

wu

--4 -- -

-4 4-) ~0-
o v CO) - *.

u,4 ~ ~ '4 4

'0 U! H41

... ~s

A higher-level method for use by applications to input alphanumeric

data from the user is available through the Forms module, which is

layered on top of PATTI. A form is simply a collection of one or more

data input fields with associated prompt text and data validation rules.

Data may be typed or edited in the separate fields of a form in any

order. Clicking on a [DONE] button will have the effect of transmitting

all the data to the application as it appears at that time. Some forms

have on-line help available indicated by the presence of a [HELP]

button. In addition, forms which perform validity tests on the data

provide a button labelled "[ERROR]" which will flash if an invalid value

has been entered in a field. Clicking on this button while it is

flashing will bring up an explanation of the error. Figure 2.13 depicts

a form used in conjunction with the flight simulator during display test

procedures.

For simple input of a single data item at a time, some AGSSS

components use a higher-level module similar in many ways to a form, and

also layered on top of PATTI, known as a dialog box. A dialog box is

simply a "pop-up" query to be responded to by the user of AGSSS. Dialog

boxes allow the user to provide input which may consist of a string or

number, and which is completed by pressing the Return key, or may be

cancelled by clicking on a [CANCEL] button. Another use of dialog boxes

is to display a message and wait until it has been acknowledged. These

boxes only have a single button labelled [OK], and go away when that

button is clicked. Another form of dialog box is the Boolean query, in

which a question is asked and buttons for [YES] and [NO] or for [TRUE]

and [FALSE] are provided.

42

E
L-
0

E

4J

.4-) .4
4-) a)'4-

4-)-

CZA

U~ 0 00 0 00

o400 0 0
0 0 0)
0 0 r 4
0- c r4)

C,>
4 U

Q))

-4 4-

433

3.0 DISPLAY DEVELOPMENT USING AGSSS

This section presents a detailed description of the application of

the AGSSS to the cockpit display development process. It also includes

several examples of displays and code developed using the AGSSS.

Application of AGSSS to the development of a display format and its

enabling software consists of the following four steps.

First, static graphics objects or pictures are generated. This is

don, through the Graphics Editor, and may utilize graphics imported from

other PHIGS-based systems through the use of the PHIGS standard archive

file format. The Graphics Editor allows the user to interactively

create, edit, combine, delete, and transfer graphical objects described

using the hierarchical structure-based concepts specified by the PHIGS

standard. The Graphics Editor maintains two types of PHIGS structure

stores in system memory: the displayable stores and the file stores.

The displayable stores are created by the user to generate the graphics

seen on the display. The file stores are the internal representation of

the structures in archive files. Multiple stores of each kind are

possible, and are distinguished by user-specifiable names.

Closely associated with the Graphics Editor is the Color Editor which

is a utility application available to allow the user to graphically

specify a color, with immediate feedback as to its appearance, using any

of three different color models: RGB, HSV, or CIE. The selected color

may then be used by the Graphics Editor for specifying a color

attribute.

This portion of the display development process is illustrated in

Figures 3.1 through 3.6. Figure 3.1 shows the main AGSSS menu (Display

Editor Menu) and its use to invoke the Color Editor in a PATTI

workstations. Figure 3.2 shows the Graphics Editor being used to

44

S-

-o
LiJS-

0

0

"J

0.)

c-
)-

mm. m •

0

4-.

o=

'0 CO (D ,-4J -J
0 0 E -4 ,- . a-) -4J - CO 0-) -
-004 0 0 W W 0 0Q M -

0 0 0 -4 -4,-"

E O 4)E 0 W -- 4- 4-) 4-),.-4 0)
H * (D D a) ca~ a) a)0a) D

41 >-
C4 0am0 0- tm P4 0

00

4,

O .14,JC r ' i2o

• "-4

4- 0 -4

.S.-
-- -)4) a)

0"¢-- v 0 0o 0t

0 - -4 .
0 4-- 4 a-

CO 4 C04 p t - -

45

M E o

to 4 4 0-

I-H X~4

HH -4 4- co0 w -
F-4 -4 4J~ =

-4 44J 10 7D
t4 4

3:w 0- w 0
W0 WON H O N H

a) ' -4 w q c 00 --f 0

to p- L) -4 H

E = t0 oH r- 4oH
0 Q --I r4)

41-4

o 4 ~-N m~ V Ino

07 r 4-) .4-

S-

a)) V

p) W H 02 OL
OH -4 -44 H

4J -4 0
EE W4- 4 C

.1-4 0
0 0- 41

-' -'-4 0 0

4-4 4-4-W r-4

0 (V

M ~ 0 C

46 t

F ige o. s f Grcu;h icrs Ed,-itor to Add (Draw) a
(eturje Star) FrasE sti ng (Ai rcraft) Flis

tbt

3.5 Example of Several Display Formats
Instanced on Several PHIGS Workstations

Figure 3.6 Example of Several Display Formats
and Use of the Color Editor With One of Them

traverse a particular displayable PHIGS stores. Figures 3.3 and 3.4

show the Graphics Editor in action supporting the drawing of the outline

of a star to be added to an existing aircraft display. This sequence

show the rubberbanding of the star in Figure 3.3 and the completion of

the flat-shaded star in Figure 3.4. Figure 3.5 shows the versatility of

the PHIGS structure concept as used by the AGSSS Graphics Editor. In

this figure, the Graphics Editor has been used to bring up multiple

display stores on several PHIGS workstations. Figure 3.6 is similar to

Figure 3.5 except for the inclusion of the Color Editor. This can be

used to edit the color of one of the displays on line.

Second, the rules for animating the graphics in response to specified

system inputs are coded. This is done using the Actions Editor, which

contains a syntax-directed editor and a parser and interpreter for a

subset of Ada known as SOFA (Subset of Ada). The Actions Editor also

contains predefined code modules to facilitate the development of

display programs. The code thus generated refers to the structures in

the PHIGS archive file(s) generated by the Graphics Editor, which are

accessed through the PHIGS calls. During an Actions Editor session,

communication with the Graphics Editor is utilized to obtain and display

information on the graphics structures that the AGSSS knows about as a

result of the user interaction with that application.

The Actions Editor allows the display designer to define, execute,

and debug display programs within an integrated programming environment.

The source language for the display action specification is SOFA, a

strict subset of Ada. SOFA is basically Ada minus tasks, generics, and

variant records. All of the components of the Actions Editor make use

of an intermediate Ada representation called DIANA, which provides data

structures for attributed Ada syntax trees.

The display designer can define programs by supplying parameters to

predefined display actions (specified as subprograms in predefined

compilation units), and/or may choose to create or edit source code

directly. Both forms of display definition take place within a syntax-

directed editor (SYNDE), which parses the code to check the syntactic

49

and semantic content of the source program as it is being created or

modified. The predefined SOFA environment also includes the PHIGS

package specification for making calls to PHIGS. In addition to

assisting the display designer to create grammatically correct programs,

the Syntax-Directed Editor uses the parser front end incrementally to

generate an equivalent DIANA representation of the source program.

An interpreter component of the Actions Editor allows the program to

be executed for debugging purposes. By making use of the DIANA internal

form of display programs, the interpreter module allows the display

designer to execute display programs without the traditional

compilation/link phase. The Actions Editor can also be called upon to

execute the current program by the Display Test Manager when the user

wishes to more thoroughly test the program using that module.

The Actions Editor is integrated with the Graphics Editor for

executing calls to the PHIGS module to interact with the graphics

structures. It can also use the Color Editor to specify a color

attribute.

The Actions Editor generates output in the form of program source

files in the SOFA language. It will also respond to requests from the

Display Program Generator for source code output, and from the Display

Test Manager for interpreting the current display program.

This portion of the display development process is illustrated in

Figures 3.7 through 3.10. Figure 3.7 shows the use of the Display

Editor Menu to invoke the Actions Editor. Figure 3.8 shows additional

menus and forms associated with the Actions Editor. These are shown on

a separate workspace on the foreground of the metastation. The form

shown here is used to create or recall a particular Ada action program

into the editor. In this example the existing program ILS is being

called back for modification/additions to it. The additional menus are

used to specify desired actions on this program. Figure 3.9 shows a

portion of the body of program ILS which has been invoked through the

traversal of several menus and forms. Finally, Figure 3.10 shows the

50

fX4

E E

0 0 *0-

-4- f i--

cn 0 0 0Eo 40 0 iJ -0
0. o1-4 ~E-4 4-W)

z w

(a oo 1. 0 -1

0 -0

4-)

40 >- > 0WWW

•~ 4-j o

P4 . 0 ,)

0

I. - ,- - 0

LDA

0 .. .

1-i 0 to

a) tm
.9-44 F4

04 E
0 .4~ 0. 0

o 110 -4 Mf 0 01 *eH
41 w fo~ a) w-

"0W0

-4 to 4-4 0) 4

L) C0 4-) WcO)

51

r-4

a4-

W)0 4-)

.4 C:
E

~40- L.
U- C

4-0 M4-4 (D
44::- .4.)

(a 0 a V(
4)0w0 4J =

4-)

H

54 4-V-

E4 0a

EU0

XLn

- 00

E- a)Dl

~4 54
0 0

H4 E''I-'I

0-~l 0 '*
14-14J4-)O IM z 0 0 E
-'a)~ I Z

E- P4b:

-~ ~ 0 4 0 04

,-.4 C14-)W In W
0 -4 *--1 -14 ti l I 1 1 11 I

L) 111 11 11 1

52

i I

to) 0 ~I,,..-,

0 0)

ca

0

• ,-i i-4 .)

444

0 0S-

4-4' o ,4.--
)

o 1..o

00

4>1 H M

o 0~

E-4

W 0 0 >, -::

0 w5-W 0

0~ -%j -r

w- ~E-4 P4

--I = M (T; A I

= 0 -4 -4 C)

-c* 4-)rn

53

=-J

00

0

E--c

0

.4 I

:3 L 0 cm

L-: L)-
0 -

H 00

H 0 E4

W.. 0)0

Hm Im a

M M W W 0

2-54

mechanism through which the designer can modify an existing statement or

add a statement to the program. This figure shows the use of SYNDE for

this purpose.

Third, the display program and graphical data thus generated may be

tested using the Display Test Manager, which enables the user to

manipulate the inputs to the display program and observe their effects

on the graphics display. This application utilizes the Actions Editor

to run the current display program through its interpreter, and the

Graphics Editor to access and manipulate the corresponding graphics

structures. The Display Test Manager contains a flight simulator, the

outputs of which can be fed as inputs to the display program currently

in the Actions Editor for interpretation.

The Display Test Manager communicates with the Actions Editor

application to initiate interpretation of the current display program,

and communicates aircraft state data to it. In addition, it outputs the

aircraft state data and the latest pilot inputs to the scree. in a PATTI

workstation.

This portion of the display development process is illustrated in

Figures 3.11 through 3.14. Figure 3.11 shows a form used to control the
"onboard" (within AGSSS) aircraft simulator that will animate the

display under development through the Graphics Editor according to the

rules outlined by the Actions Editor. This form is invoked through the

Display Test Manager Option of the Display Editor Menu. Figures 3.12

through 3.14 show multiple displays associated with (being animated by)

the aircraft simulation. Of particular interest in these three figures

is the sequence of two views at the bottom. The scene on the left

represent the out-the-window view from the cockpit of the aircraft

whereas the scene on the right represent the view from the tower at the

airport from which the aircraft is taking off. As the aircraft makes

its take-off run, the scenes vary with the tower coming into view and

then disappearing (on left) and the aircraft symbol increasing in size

as it approaches and flies by the tower. These two displays represent

different views of the same "data base" and illustrate the flexibility

55

- o 0 -0*S.

0 0

om 0 U) a

0

4-) E

E-4 0 -

H) -4 W - o-
X~ E4W4) OQ

;A.() 0 **d) -

o .4 a)S)*
41 to-4 - 4) 3)

4-)

4-))

H r-D

10 0 0

C0) 0) l

0 U)

o 0 A '2a) =

.-4 1 0

4.4

56

Figure 3.12 Example of Display Test Manager Utilization:
Take-off Run, Part 1

Figure 3.13 Example of Display Test Manager Utilization:
Take-off Run, Part 2

Figure 3.14 Example of Display Test Manager Utilization:

Take-off Run, Part 3

58

of the PHIGS standard. The other displays in this sequence of figures

are also animated by the aircraft simulator. This is an example of the

possible implementation of the concept of a windowed display system in

future cockpit displays.

Fourth, a Display Program Generator application allows the user to

produce a self-contained set of files which will implement the display

program running outside AGSSS. Two modes of generation are provided:

the generation of a "stand-alone" display program, and the generation of

a display program which will interface to an outside data interface such

as an aircraft data bus or a simulator. This module will access the

generated SOFA code through the Actions Editor and the generated

graphics structures through the Graphics Editor. The Display Program

Generator outputs two types of files: 1) Ada source code files for the

display program and 2) Command files in the host computer's command

language to allow it to build an executable image from the Ada files.

This portion of the display development process is illustrated in

Figures 3.15 through 3.19. Figure 3.15 shows the Display Program

Generator Menu invoked from the Display Editor Menu. Upon selection of

the choice "generate the display program," the module grabs the graphics

description files and the actions description files and generate

automatically the files necessary to for the run-time display system

outside the AGSSS. Next, Figure 3.16 shows the use of the Workspace

Manager menu, one of several auxiliary menus in the system, to invoke

the File/Directory Manager. This utility is used to verify the

generation of the appropriate executable and command files. This

process is illustrated in Figures 3.17 and 3.18. Finally, the software

system created by AGSSS is run in the target display system outside the

AGSSS environment. This is illustrated in Figure 3.19 which shows the

ILS format and an altimeter format connected to an aircraft simulation.

59

s-0

o ..- '

-S.-

LIJ a

E

5.4 CL S-

1 4 S-

4-)

.4JQ Q 5

.45- (0 0)

E- 5.0 .4'> 4-3

>4 = 5-4O54

- 0) 0 0

'-4
w- --I E V1 E

o w 00 0 0
-isP41 0)- 0 -E

4- ' -4 4-.U).

5- ~0 -%: -q U2 0 0

* 04H 0 4 -

06

0

4-

- -UD)

U2 3 -

00 uS0 0 -14 to tor0

0 4-) t12 s-Lno

*H0 wC4> 0i-_
wJ 0 Q w W 0 .0 = 04-) J 0 004-

o 4- 0-,4 U Ca •)o

cc W S ~ d CU - VL

o.' o4- o-,- O U2 €C- 4-).-.V - U 0 E'fC

• 4 X -
E)

O 0 0 o=

4-)~~4~ -A4d4))- -
44 $41 $4

0)-40L a) V

$44

0 0 04 $

*00 "--4 tn 0 0 0

-4- -) $41 4

uc Id._

61 404 E 4 - CZ O ~

0 $0 14 -4 "4 ..

61

ou

7• OL0 E 0

-A l ll/4 1- 3: E- ="f0
L 0 0

I H~ S-
-E1

z o4
62~1

00

E) O~ E-PaI a)~
0 0 CD

L) -4 w

C1 -4 = 4 .

C. I4 0,I
0)~ C)0 (

0 0 a)

62r-

> u

E

.4- 0

D) f..
EE

o 0 0
EE

mw0 0 P4 u-

u . I I I o

W op 0 >"4 4V

4-

0 0

0. F0 0 0

>4 H U 4P 14 14 1E-4~a z~flU E-4'

633

m ~ 0 D)G.

E- .9- 4J

0 V.r4-4 a .

*UP4P4 ~ 4- -- 4~ I a H0

41i I 0 Q*0

C: 0) t3)
(1 M (1) 4- (1) a) -)'

w E-F w>- -Ir

-4 a = a E -4 W 4-) H m a)
04 W E 4 a

............. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e. .. .0..)..

P4*14 63

Figure 3.19 Example of AGSSS-Developed Display

Running Outside the AGSSS Environment

64

4.0 ANCILLARY RESEARCH RESULTS

Some aspects of the AGSSS design used techniques which had not yet

been proven. As such, the following are research results derived from

the AGSSS effort:

* Use of DIANA as the basis for an integrated Ada development

system

* Various extensions to the PHIGS standard

* Development of a portable file manager.

0 Use of Ada tasking features to implement user inputs as
concurrent finite automata.

These results are described in greater detail below.

4.1 Use of DIANA for an Integrated Ada Development System

DIANA, the Descriptive Intermediate Attributed Notation for Ada, is

an abstract representation for Ada programs. It is in use in a number

of commercial Ada compilers, notably Tartan and Intermetrics.

Specifically, DIANA is an abstract data type capable of describing any

correct Ada program.

Because DIANA represents an Ada Program as a data structure, the

DIANA representation reflects the structure of the source program. This

fact makes DIANA potentially useful for a wide variety of programming

tools. In AGSSS, DIANA filled the need for a common internal

representation for use in an integrated Ada development environment.

AGSSS had a requirement that it would be able to accept Ada source

code from sources other than AGSSS itself. The most sensible approach

was to use Ada itself as the specification language for the display

formats. The task of AGSSS was thus to provide an integrated

development environment for display programs in Ada. The Actions Editor

of AGSSS provides

65

* An incremental parser, which translates Ada source programs
into DIANA form

* A source code reconstructor, which translates DIANA back into
Ada source

" Syntax-directed editor, which guides the user in the
construction and modification of Ada programs

* An interpreter, which runs the Ada/DIANA programs directly,
without the conventional compile and link stage

* An interface library, which allows the interpreter to access
object code libraries (for example, the interface library that
provides an emulation of the run-time environment for the
embedded display system)

* A display program generator, which, among other things,
determines the compilation order of Ada modules for the target
display system.

All these modules make use of the DIANA representation of the Ada

display program under development. The syntax-directed editor, while

providing a source representation to the user, performs most of its

operations on the internal DIANA representation. The interpreter

executes by traversing the DIANA data structures and performing the

indicated actions. The interface library converts subprogram references

in DIANA to calls to object code routines. The display program

generator makes use of the DIANA list of compilation units to determine

how to build the target display program.

AGSSS uses DIANA revision 4 from Intermetrics. The subset of Ada

supported by AGSSS is quite large; however, it does not support tasks,

generics, or discriminant records.

4.2 Extensions to the PHIGS Graphics Standard

The Programmer's Hierarchical Interactive Graphics System, and ANSI

and ISO standard, provides a means of define graphics data which are

easily modified and updated. For this reason, PHIGS is suitable both

for interactive display definition, as well as for real-time display

66

generation. To support both of these activities, we wrote an

implementation of PHIGS in Ada. We found it necessary to add features

to PHIGS which were not addressed in the standard. Of course, making

changes to a standard reduces portability, one of the main reasons for

the use of standards in the first place. In some areas, PHIGS provides

approved methods for adding extensions. Our approach, designed to

maximize portability, was as follows:

1. Where possible, confine the PHIGS extensions to a package
surrounding or external to PHIGS rather than to PHIGS itself.

2. Where it is necessary to extend PHIGS itself, use the approved
extension mechanisms if possible.

3. Since display programs will be ported more often than AGSSS
itself, itself, confine the generated display programs to the
PHIGS standard without extensions, as far as possible.
Extensions contained in a package surrounding or external to
PHIGS are permissible, since these would not involve any
changes to PHIGS itself.

Extensions to PHIGS carried out according to these rules include:

* Coicurrent PHIGS for parallel access by multiple Ada tasks

° A PHIGS interface package, for use in real-time display
generation

* N. nes for structures, elements

• Prvate Structure stores

SR, olication element type

* A ditional input classes.

In obseivation of rule 1) above, we created packages to surround

PHIGS, where we implemented most of our extensions. Because of the

differing v-quirements for PHIGS within the AGSSS too], and PHIGS as a

real-time display system, there are two such packages.

The package for AGSSS PHIGS is called CONCURRENT_ PHIGS. Since AGSSS

has multiple Ada tasks which could potentially access PHIGS, we needed

to insure that each could use PHIGS without interfering with each other.

67

This was accomplished by creating a task with entries for each routine

in the PHIGS library. The entries all have an additional argument

containing information about the context of the calling task. If all

tasks access through the CONCURRENTPHIGS task, then conflicts are

avoided.

In the generated real-time display, concurrency is not a requirement.

In this case, we provide a package called PHIGS IFACE (PHIGS Interface),

which simply maps standard PHIGS calls to the particular PHIGS

implementation upon which the display is running. This scheme takes

care of the many discrepancies which can be found between different

vendors' versions of PHIGS.

Following rule 2) above, CONCURRENT PHIGS contains several

enhancements to PHIGS which are implemented outside of PHIGS itself.

The most important of these are private structure stores and names for

structures and elements.

In PHIGS, display list commands are organized into groups called

PHIGS structures. Individual commands are called structure elements.

All structures reside conceptually in a common area called the

Centralized Structure Store (CSS). This arrangement corresponds roughly

to a large FORTRAN program in which all variables reside within a single

common block. In the concurrent case, there is extreme danger that

competing tasks will corrupt each other's data. For this reason,

CONCURRENT PHIGS offers each task only a select view of the CSS. That

is, the user can create any number of virtual CSS's, whose contents are

invisible to the others. Such a virtual CSS is called a private store.

This is accomplished by mapping the structure identifiers in the CSS to

unique identifiers in thp private store. All entries in the concurrent

PHIGS task require a store identifier in addition to the standard PHIGS

parameters.

Each private store contains a mapping of structure names (Ada STRING

types) to structure identifiers (integers). This allows the interactive

workstation to display structures by name rather than by number.

68

Additionally, AGSSS provides names for structure elements. However,

this is accomplished using a feature of PHIGS itself, namely the PHIGS

Application Data Element. This element contains a character string

which we use to encode the name of the element which follows in the

structure's element list.

PHIGS provides two extensions by which the implementor can add his or

her own structure element types, called Generalized Struct2re Element

and Generalized Drawing Primitive. Any such extensions, while permitted

by PHIGS, are not, in general, portable to other PHIGS implementations.

Our PHIGS implementation offers one generalized drawing primitive,

called REPLICATE STRUCTURE. This element has the effect of an

EXECUTESTRUCTURE element followed by a local modelling transformation,

repeated a specified number of times. It is used to repeat a picture at

regular intervals, such as lines of a pitch grid, or tick marks on a

linear or circular scale. The possible rotation, translation, or

scaling of each repeated image is controlled by the specified modelling

transformation. The transformations are cumulative with each iteration.

If the display is targeted to a system which does not support such a

generalized structure element, each REPLICATE STRUCTURE element in the

display specification can be replaced by a series of EXECUTE STRUCTURE

and local modelling transformation elements. This can be accomplished

automatically within the DISPLAY PROGRAM GENERATOR of AGSSS.

Another extension permitted by PHIGS is in the area of prompt/echo

types. Prompt/echoes are the feedback to the user of the current input

state. Examples include graphical cursors in response to locator inputs

and screen characters in response to text inputs. In addition to the

prompt/echo types defined by PHIGS, implementors are free to define

their own types. Of course, such types will not port across differing

PHIGS implementations. AGSSS PHIGS makes use of some new locator

prompt/echo types, which, according to rule 3) above, are not used in

the generated real-time displays.

69

The new locator prompt echo types are:

" PRIMITIVE LOCATOR - drags all instances of a particular structure
element. A specified vertex of a specified instance takes the
current locator position.

" PATH LOCATOR - drags a single instance of a particular structure
element. A specified vertex takes the current locator position.

" VERTEX LOCATOR - drags a vertex of all instances of a particular
structure element.

" PATH AND VERTEX LOCATOR - drags a vertex of a single instance of
a particular structure element.

In the current implementation, these echoes all use an exclusive-or

operator on the pixels of the underlying image. When the echo moves,

the old echo is erased by repeating the exclusive-or operation, then the

new echo is drawn.

Drawing the echo in the proper position requires structure

traversal, applying all the modeling and viewing operations, as well as

incorporating the relative translation defined by the locator position.

For this reason, these echoes will only be possible under AGSSS PHIGS.

Although these echo types are not portable, it may be possible to

achieve similar effects on other PHIGS implementations through other

means. On a platform with sufficient graphics throughput, for example,

the locator position could be used to edit the structure contents to

update the whole picture continuously. The user would then see the end

result, rather than a "rubberband" image of the changes.

4.3 Development of a Portable File Manager

Since AGSSS is intended to be highly portable, it is desirable to

shield the user from the conventions of the host operating system, as

well as from worries about storage devices. AGSSS provides an abstract

directory tree and a set of operations on files and directories.

Special map files control the mapping of subdirectories and files to

70

subdirectories and files on the host system(s). Users can manipulate

files and directories through a graphical interface which displays the

abstract directory tree.

Each subdirectory in the abstract directory tree corresponds to a

disk directory somewhere in the system. However, the disk directories

need not follow the same hierarchy as the abstract directory tree. The

directories can reside on any disk in the system. They may even reside

on the PC front end. The file manager operations can transfer files to

and from the PC as needed.

4.4 Use of Ada Tasking Features to Implement user Inputs as
Concurrent Finite Automata

The idea of modeling user inputs as concurrent finite automata dates

back to Jacob, (R 8). Thinking of an input as a finite automaton means

that there is a state transition diagram which describes all possible

states for the input. Each state can respond to a number of possible

events. Each event is met by some action, including a possible change

of state. Figure 4.1 shows an example of a PHIGS pick input modelled in

this way. Device inputs are concurrent in two senses. The user may be

using multiple devices simultaneously, e.g., mouse and keyboard.

Second, there may be multiple windows on the screen(s), each with its

own inputs. Their state is maintained even as control passes from one

window to the next.

In AGSSS, the first type of concurrency is handled by Ada tasking.

Each physical input is monitored by a separate Ada task, and all inputs

are event d--ven.

The second type of concurrency is handlel by assigning a state

transition record to each open input. When an event occurs which might

affect a particular input, a procedure is called which looks up the

current state from the state transition record, then takes the

appropriate action.

71

1

The arcs of the graph are as follows:

a: Device is initialized in request mode.
b: Device is initialized in saniple or event mode.
c: A begin request call is made for this device.
d: Non-"Ready" input is received.
e: Ready input is received.
f: Ready input continues to be received.
g: Process" input is received inside the echo area.
h: Data is received which cannot be classified in f or g.
i: Process input continues to be received (inside or outside

the echo area). Echo this data.
j: Finish data is received.
k: Rabort data is received in sample or event mode.
f: Raort data is received in request mode.
m: Finish data is received and is sent down to graphics mgr

for resolution (PHIGS locator)
n: The resolved information is received from graphics r igr
k: Data is sent to logical device in sample or event mode.

p: Data is sent to logical device in request mode. 0

Figure 4.1 Drag Finite State Machine

72

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

At the beginning of the project, there were concerns about the real-

time performance of the display programs to be generated by AGSSS.

These concerns arose mainly from two issues: 1) the comprehensive and

complex nature of the Ada programming language and 2) because PHIGS

graphics rendering is achieved by interpreting its graphics commands.

In the case of Ada, the concern was not whether Ada and Ada/PHIGS could

be used in real-time applications, but whether or not the overhead

penalty associated with its execution would be excessive or the

efficiency of the generated code would be acceptable. In the case of

PHIGS, the concern was that, as a rule, structure traversal (required by

interpretation) takes more time than direct execution of equivalent

code. Concerning Ada, the AGSSS automatic Code Generator was designed

to take advantage of Ada's many general-purpose features and to support

the tailoring of the generaLor code for optimal real-time execution in a

target display system. Concerning PHIGS rendering, the AGSSS design

included provisions to implement the PHIGS rendering pipeline in the

machine code of the target display generator and thus enhance the real-

time performance of the graphics rendering process. Also, the emergence

of graphics display generators optimized for execution of PHIGS

procedures may obviate the need for this implementation in the future.

In general, AGSSS has met or exceeded its design goals. Productivit)

associated with the process of developing cockpit displays and its

enabling software has improved tremendously both in quantity and

quality. The specialized knowledge required heretofore to work in this

area has been reduced. Also, the system generates display programs

which should be portable to other Ada/PHIGS environments.

73

Preliminary results indicate that productivity has increased by a

factor of at least 10 over that obtained with the conventional method

(FORTRAN/RAP) of developing display software for the ITB Facility

Display Generation System (DGS). Furthermore, it is estimated that the

integrated environment provided by AGSSS will improve productivity by a

factor of 10 over hand-coding the same application in Ada/PHIGS and that

further increases are possible. The Graphics Editor implementation iV

very thorough and has the potential for many more functions. It has

certainly proved its worth as a rapid prototyping tool supporting the

iterative development process. The development of Ada programs has also

benefited from the AGSSS implementation. For example, using the Actions

Editor Ada program turn-around has improved between 10 and 50 times over

the standard approach.

The potential is there for substantial quality improvements obtained

by exploiting the iterative development process, the use of PHIGS, and

the porting of AGSSS and its products to newer graphics platforms.

Concerning the amount of specialized knowledge required to produce a

cockpit display, significant reductions have been obtained by supporting

the graphics specifications at a much higher level and implementing

AGSSS to act as a guide with respect to the specifications of the

actions in Ada. Finally, indic'tions are that, with the exception of

the generalized structure elements and the color specifications, the

code generated by AGSSS will be 95% to 100% portable to other compatible

platforms.

Furthermore, the targetability of the products of AGSSS has been

demonstrated, albeit on a preliminary basis, by the successful target of

code produced by AGSSS to other display system environments. Figures

5.1 and 5.2 illustrate this accomplishment. Figure 5.1 illustrates the

display software generated as described in Section 3.3 running in a

VAXStation 3100. Figure 5.2 illustrates the same software running in a

SUN/4 SparcStation 370. In both (a&cs, we have interfaced to the

display generation process through the local (DIC or SUN) implcmont atioi

of PHIGS. These preliminary results are very encouraging.

74

9

0

~ 0

'~ L'1

C) '~
~

C)
C.: '~

'~2 C)

'.- C)
0 0~

--

r~ C)
~

U~ A

LA
C)

C)

4-
0

U-

~

~
- '.'~-.

-
I I

--4 I

*t.~'4. I - -

*~"L.~J ~ I I .- ~- --

o :.z I I

- I ... ' .--~ - A

- ~. ~-4

- - I - S

- I I -~ .. -- C'

.............................OOcS.:.,).>,,,..,X..S-,.,flX..,r..SyX. y.oO.O~.O >* '4

-0

-0

V.) (0

CZ: 0
4-j

'4-

0-0

LU

a.)

a.)

76

5.2 Recommendations

The AGSSS was earmarked for implementation and demonstration in the

display generation system (DGS) of the ITB Facility. This display

system, based on the Adage 3000 PDG, has been in operation since 1985

with current plans calling for its replacement, in the not-too-distant

future, with a DGS based on one of today's high-performance

workstations. This workstation will most likely be one that supports

PHIGS and PHIGS PLUS.

Based on the results obtained with AGSSS, near-term recommendations

include the porting of the tool to one or more of today's high-

performance graphics workstations, especially the one chosen to upgrade

the ITB Facility's DGS with. In addition the products of AGSSS should

be targeted to the workstation of choice and the targeting strategy

developed to exercise the application code produced by AGSSS in as many

DGS as possible. Also subset configurations of AGSSS should be

considered for other avionics applications. Specific enhancements to

components of AGSSS should also be considered. These could include the

addition of high-level primitives and PHIGS PLUS (PHIGS Plus Lumiere Und

Surfaces) enhancements to the Graphics Editor; support for PDL and

document generation in the Actions Editor; and provision of non-

aerodynamic motion control in the Display Test Manager.

Longer term recommendations are based on exploiting the fact that the

AGSSS has been designed and implemented with a great deal of modularity.

For example, the Kernel, the Device Interface, and the Ada Tools
components of the AGSSS can be viewed as forming the basis for a generic

Ada/PHIGS workstation which may be used to develop software for other,

nongraphical, embedded applications. Furthermore, an implementation

strategy should be followed that merges both the AGSSS windowing

functionalities into those of X Windows, and the AGSSS PHIGS graphics

with those of the emerging PEX (PHIGS Extensions to X) standard. This

approach would promote the widest utilization of this productivity-

enhancement tool.

77

Cockpit displays will continue to include more and more information

with ever-increasing sophistication as the technology and the display

designer's imagination continue to leap-frog each other. Complex

displays such as the one depicted in Figure 5.3 (Pathway-in-the-Sky

(PITS)) will become common place in the not-too-distant future. We

believe that the Airborne Graphics Software Support System (AGSSS) will

provide an important, robust, absolence-proof, tool for display

designers to work with for many years to come.

78

4

Figure 5.3 Example of Complex Display Format
Expected to be Used in the Cockpit of Future Aircraft

79

6.0 REFERENCES

1. Montoya, et al, "An Interactive Graphics Editor for Computer-
Generated Cockpit Displays." Proceedings of the IEEE/AIAA/NASA 9th
Digital Avionics Systems Conference, October 15-18, 1990, Virginia
Beach, Virginia.

2. American National Standards Institute (ANSI). "Computer
Graphics--Programmer's Hierarchical Interactive Graphics System (PHIGS)
Functional Description," September 26, 1988. X3.144-1988.

3. ANSI/MIL-STD-1815A-1983, "Reference Manual for the Ada
Programming Language," February 17, 1983.

4. ANSI document X3H3/86-43RI, Working papers for dpANS X3.144.3-
198x, "Computer Graphics--Programmers Hierarchical Interactive Graphics
System (PHIGS) Binding to Ada," May 1987.

5. Montoya, et al, "An Ada-based, Portable Design Workstation for
Computer-Generated Cockpit Displays." Proceedings of the IEEE/AIAA/NASA
9th Digital Avionics Systems Conference, October 15-18, 1990, Virginia
Beach, Virginia.

6. Anon., RDS 3000 User's Guide. ADAGE, Inc., Document no 10-301-
095-1OA, Billerica, Massachusets.

7. "Software Detailed Design Document for the Airobrne Graphics
Software Support System (AGSSS)." Contract No. F33615-87-C-1531 CDRL
No. 9. Prepared by Research Triangle Institute, RTP, NC, January, 1991.

8. Jacob, Robert J.K., "A specification language for direct-
manipulation user interfaces." ACM Transactions on Graphics, v. 5 no. 4,
October, 1986.

Bibliography

9. Aho, A. V. and J. D. Ullman, "Principles of Compiler Design,"
Addison-Wesley Publishing Co., London, 1979.

10. Booch, Grady, "Software Engineering with Ada," The Benjamin
Cummings Publishing Company, Inc., Menlo Park, California, 1987.

11. Brown, G. P., et al., "Program Visualization: Graphical Support
for Software Development," IEEE Computer 18, no. 8, August 1985

12. Clark, J., Measuring Basic 3-D Graphics Performance, Computer
Graphics Today, pp. 26-27, Volume 5, Number 2, February 1988.

13. Foley, J. D. and A. Van Dam, "Fundamentals of Interactive
Computer Graphics," Addison-Wesley Publishing Co., London, 1983.

80

14. Fuchs, H., J. Poulton, et al., "PIXEL-PLANES, A Parrallel
Architecture for Raster Graphics." Pixel-planes Project Summar ,
Department of Computer Science, University of North Carolina at Chapel
Hill, August 1986.

15. Hasker, R. W., J. S. Edmunson, and M. R. Fritsch, "The Automated
Programming of Electronic Displays." AFWAL-TR-86-3046.

l16. LoPiccolo, P. J., Tools Chart High-End Workstations. Engineering
Tools, pp. 80-95, volume 1, number 1, February 1988.

17. Montoya, R. J., J. N. England, J. J. Hatfield, and S. A. Rajala,
"An Advanced Programmable and Reconfigurable Color Graphics Display
System for Crew Station Technology Research." AIAA/IEEE Fourth Digital
Avionics System Conference, St. Louis, Missouri, November 17-19, 1981.

18. Torborg, J. G., A Parallel Processor Architecture for Graphics
Arithmetic Operations. Computer Graphics, pp. 197-204, Volume 21,
number 4, July 1987.

19. IST91398401 Mission Software Controls and Displays Interface
Control Document.

8

81

GLOSSARY

Ada Programming Language
AGSSS Airborne Graphics Software Support System
ALC Automated Layout Center
ANSI American National Standards Institute
ASCII American Standard Code for Information Interchange
BIOS Basic Input Output System
BPS Bipolar Processor Set
CDR Critical Design Review
CDRL Contract Data Requirements List
CFG Configuration
CGA Color Graphics Adapter
CISC Complex Instruction Set Computer
CSC Computer Software Component
CSCI Computer Software Configuration Item
CSE Center for Systems Engineering
CIG Computer Image Generation
CRT Cathode Ray Tube
DC Direct Current
DEC Digital Equipment Corporation
DEV Device
DCL Digital Command Language
DIANA Descriptive Intermediate Attributed Notation for Ada
DID Data Item Description
DIR Directory
DMA Direct Memory Access
DoD Department of Defense
DOS Disk Operating System
DRD Data Requirements Document
EGA Enhanced Graphics Adapter
ESC Escape
FORTRAN Formula Translator
GKS Graphical Kernel System
HIRES High resolution
HLL High Level Language
HSD Horizontal Situation Display
HWCI Hardware Configuration Item
Hz Hertz
HWCI Hardware Configuration Item
IDL IKONAS Display Language
IGE Interactive GRAPHICS EDITOR
IKASM IKONAS Assembler
INFO information
INIT Initialize
ITBF Integrated Test Bed Facility
I/0 Input/Output
KBD Keyboard
KW Kilowords
K Kilo-, thousand
LaRC Langley Research Center

LLCSC Low Level Computer Software Component

82

LORES Low Resolution
M Mega-, million
MAX Maximum
NASA National Aeronautics and Space Administration
NDC Normalized Device Coordinates
NOEL Node Oriented Editor Language
NTSC National Television Standards Commission
PATTI Programmers Attributed Text Interface
OS Operating System
PC Personal Computer
PDG Programmable Display Generator
PHIGS Programmer's Hierarchical Interactive Graphics System
PIXEL Picture Element
PRDA Program Research and Development Announcement
RAP Real-Time Animation Package
REC Record
RISC Reduced Instruction Set Computer
RTI Research Triangle Institute
SALC Simplified Automated Layout Center
SCCRS Software Configuration Control and Reporting System
SPEC Specification
STLDD Software Top Level Design Document
STD Standard
SUM Software User's Manual
TI Texas Instruments
TLCSC Top Level Computer Software Component
USAF United States Air Force
USN United States Navy
VAR Variable
VMS Virtual Memory System
WC World Coordinates
WL Wright Research and Development Center
WS Workstation
WSPACE Workspace
XMIT Transmit

83 U S Government Printing Office 1991-648-127162057

