
i i lID Ii ii "

L2ibT OF PIT FO MVE CATCHtY DISTRIBUTION BASED

O N TIlE EWPI e. I, DISTRIIBUTION FUNCTION

BY

M. A. STEPHENS

TECHNICAL PEPORT NO. 449

DECEMBER 2, 1991

PREPARED UNDER CONTRACT

N0O014- g-.J-1627 (NR-042-267)

FOR THE i, ICE OF NAVAL RESEARCH

Reproduction i-i Whole cr in Part is Permitted
or any purpose c,( the United States Government

Approved for putlic release; distribution unlimited.

DEPARTMENT OF STATISTICS

TANFOPR NIVERSITY

S LAFORD, CALIFORNIA

-1- 11505



TESTS OF FIT FOR THE CAUCHY DISTRIBUTION BASED

ON THE EMPIRICAL DISTRIBUTION FUNCTION

BY

M. A. STEPHENS

TECHNICAL REPORT NO. 449

DECEGMER 2, 1991

Prepared Under Contract

N00014-89-J-1627 (NR-042-267)

For the Office of Naval Research

Herbert Solompn, Project Director

Reproduction in Whole or in Part is Permitted

for any purpose of the United States Government

Approved for public release; distribution unlimited.

ACOU4 Ter J
Vt,,: TLIb

DEPARTtfENT OF STATISTICS

STANFORD UNIVERSITY

STANFORD, CALIFORNIA .. _

.. . . . . ..

I i %A in 1



Tests of fit for the Cauchy distribution based

on the mpirical distribution function

by

N.A. Stephens

Department of Mathematics and Statistics

Simon Fraser University

Burnaby# D.C., V5A 1S6

Abstract

Points are given for testing goodness-of-fit to the Cauchy

distribution, with unknown location and/or scale parameters. The tests are

based on the empirical distribution function, and the asymptotic"

points round off work begun by Darling (1955) on the asymptotic

theory of test statistics. Monte Carlo points are given for

finite n and some discussion of power is included.

Key words: Goodness-of-fit Tests.



' -1-

1. INTRODUCrION.

In a pioneering paper, Darling (1955) discussed the asymptotic

theory of the empirical process and of certain goodness-of-fit statistics

based on this process, when parameters must be estimated from the sample

used in testing fit. The estimated parameters were location and scale

parameters, and the theory was illustrated by a test for the Cauchy

distribution. The statistics discussed were the Cramer-von Mises W2 and the

2Anderson-Darling A , statistics based on the empirical distribution

function (EDF) of the given sample.

In this article we develop the tests for the Cauchy distribution,

when either or both of the location and sclae parameters are estimated by

efficient estimators given below. The tests are set out in Section 2.

2 2Asymptotic percentage points are given for W and A , and also for the

EDF statistic U2 introduced by Watson (1961); they involve calculating

weights in sums of weighted chi-square variables. This is done by techniques

drawn from Darling (1955) and the details are given in Section 3. For finite

samples, points for the three statistics have been found from Monte Carlo samples.

Points for the well-known Kolmogorov statistic D, and for the related V were found at th,

same time, and a table for Case 3 is given for reference; the asymptotic theory

used for the Cramer-von Mises statistics cannot be applied to these statistics.

2 2
D is usually not as powerful as W or A , although V is sometimes

2competitive with U . A brief discussion of alternative statistics, and

power, is given in Section 4.
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2. TESTS FOR THE CAUCHY DISTRIBUTION.

Suppose a given random sample is X1 ,X2 ,.. ,Xn , with order

statistics X(1 ) < X(2 ) < ... < X(n )  The test discussed is a test of

H0 : the X-sample comes from the distribution

1 1 ta-1 (-
F(x;a,8) = +- tan(-), - < x < (1)

with density function

1
f(x;a,8) = , - < x < . (2)

n{i + (x-a)/8} 2

We can distinguish 4 cases, following Stephens (1974):

Case 0: parameters a and 6 in (1) are both known.

Case 1: parameter a is not known, B is known.

Case 2: parameter a is known, B is not known.

Case 3: parameters a, 6 are both unknown.

In Cases 1, 2 and 3 estimates of a, a are obtained from the formulas

= a7.. x ( and g = E d. X , wherei X(i,) 1 x i)

sin[4{i/(n+l) - 0.5}]
c n tanfN{i/(n+l) -0.5}

and

d. = 8 sin(r{i/(n+l) - 0.51]cos 3[Tr{i/(n+l) - 0.5}1/n (4)

Here, and in later formulas, sums run for i from 1 to n
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These are not maximum likelihood estimators (MLEs) but are asymptotically

efficient, an important requisite for the asymptotic theory of Section 3

to be valid. These estimators are used because MLEs are known to be

difficult to work with; the likelihood can have local maxima and it is

sometimes difficult to decide on the global maximum. When the estimates

are obtained, the test continues with the following steps:

(1) Calculate z(i) = F(X ;c,8), replacing a and/or by estimates where

necessary;

(2) Calculate the three test statistics from

2 2W = i - (2i-l)/(2n)} + 1/(12n) (5)

2 2 _ 2
U= - n(z- 0.5) ,where z=Ez /n (6)

A2 -1
A -n -n 1 (2i-l){log(z W ) + log(l - z(n+l-i))}. (7)

Here log refers to natural logarithm.

(3) Refer the value of the statistic used to Table 1, for the appropriate

Case: H0  is rejected at significance level a if the test statistic

exceeds the value given for the sample size n and the desired level a

The present Table for Case 0 is a more accurate update of a

previously published table, (Stephens, 1974, 1976) although the changes

2 2
are trivial in practice. For other Cases, the distributions of W , U and

2
A do not depend on the true a, 6 . The asymptotic points are calculated

from the theory in the next section, and points for finite n are based on
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Monte Carlo studies using 10,000 samples for each n . It can be seen that

for this very heavy-tailed distribution , and with these estimators the

points vary with n somewhat surprisingly; for other..distributions

(see, e.g., Stephens, 1974, 1977, 1979), and with MLES, they converge

much more rapidly to the asymptotic points.

The statistics D and V are obtained from the z W by

+ max{(i/n) - z D- = max.{z - (i-l)/n};1 (ii ' (i)

D= max(D,D) and V= D + D

Monte Carlo points for Din and for V/n are given in

2 2Table 2, based on the same 10,000 samples as for the statistics W2 , U

2
and A
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3. THEORY OF THE TESTS.

The asymptotic distribution of any one of the three statistics

is that of

S = )i ui/Ai ' i = 1,2.... (8)

2

where u. are independent _X variables and A. are weights. The weights
1 1

are found from the now-classical asymptotic theory of the empirical process

of the z-values. Darling (1955) gave this theory for tests for absolutely

continuous distributions and illustrated it for W2 with the Cauchy

distribution, although details of how the X. are calculated were omitted1

except for Case 2. We now complete the calculations, following the steps

and notation given in Stephens (1976, 1977). The empirical process, for

all cases,becomes asymptotically a Gaussian process Z(s), with E(Z(s)) 0,

Z(0) = Z(1) = 0, and with the covariance p(s,t) E E(Z(s)Z(t)) varying with

the Case. In Case 0 p(s,t) = p0 (s,t) = min s,t - st . For the other three cases

p(s,t) takes the following form:

Case 1: p(s,t) = p 0(s,t) - 1lWO)1l(t)

Case 2: p(s,t) = po(s,t) - 2 (s) 2 (t)

Case 3: p(s,t) = p0 (s,t) - 1 (s) 1 (t) - 42 (s) 2 (t) with

l (S= - (sin2  s)/T and 02(s) = (sin 2rTu)/(vr2).

These results for Cases 1 and 2 were given by Darling: the simple

result for Case 3 follows because the estimates of OL and 6 are asymptotically

independent and the Fisher information matrix is diagonal (see Stephens, 1976,

1977). For Cases 1 and 2 the weights A. are found as follows. First zlv!culateI
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1

aj = *l (s) sin 1Tjs ds

0

and

1

b. = *2 (s) sin 7Tjs ds j = 1,2,...

0

and define

2 2

Sa M + X E i2 2 S b+ E 22a -1- X j ) j=l 1-A/(r2j)

Let dO (A) be the Fredholm determinant associated with

P0(s,t): d() = ( _ 2 j2 ). For Case 1, the Fredholm determinant
J

is D( 1 ) =do () Sa () and for Case 2 it is D2 (A) = d 0 (A) Sb C). The

weights for these Cases are found by solving Dl(A) = 0 for Case 1 and

D (A) for Case 2.

Case 1. It is easily shown that a. := 0 for j even, and
3

a. = 8/{ 2 j (j 2 _ 4)} for j odd. Setting D (A) = 0 gives a set of
soutos .1 9

solutions , I 2 2,4,6,... another set is found by solving S (A) = 01 a

(the solutions A 2 j2  of d0 () for j odd, are not solutions of D (A) = 0301

because of cancellation with the denominators in S (M)). To solve S (X) = 0 it is
a a

00

best to write K = 1/X and solve S*(K) = 1 + E a2/{- /(2j2)} =2 0;
a j=l 3

2 2 2 2,2 2 2a solution K. exists in each interval (1/(30 T) 1/ 2 ), (1/(5 2T 1) /(3 2T))

etc. and these are easily found numerically.

Case 2. For Case 2, b. = 0 except b2 = 1/2T . The solutions of D2 (A) = 0
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are then = j 2  except for j = 2. This rather curious result is

remarked on by Darling as losing a "degree of freedom" by the estimation

of 8.

Case 3. For Case 3, the Fredholm determinant becomes

D3 (X) = d0 (M)Sa()Sb(A), (Stephens, 1976) and setting D 3(A) = 0 gives two sets of X

the set A* of S (a) = 0 already found as part of the solution for
a

Case 1, and the set /= 1/nj 2 , for all j except j = 2 , found for Case 2.)

Cumulants of asymptotic distributions. The cumulants of the distributions

can be found by direct calculations The mean for Case j is
1

1/6 2 (s)ds, j = 1,2 ; the values are PI = 1/6 - 3/(472 ) = 0.0907

0

(note a misprint in Darling, 1955, Section 8A) and P2 = 1/6 - i/(4T2 ) = 0.1413.

2
For Case 3, V43 = 1/6 - 1/iT = 0.0653 Other cumulants may be calculated

as described in Stephens (1976). The values are given for reference in

Table 3. They may be used to provide checks on the calculations of the A.J

since they may also be calculated from the distributional form

S = -ui/X i . The r-th cumulant is K2 = 2 r-l (r-l)' i /(;i)r ; these

converge sufficiently fast, for r 2- 2 , to give excellent checks on the A.1

values by matching with the direct calculations.

When the X. were found, for the different cases, Imhof's (1961)1

method was used to give the percentage points for S . The points were

checked, with excellent agreement, by fitting Pearson curves to the

distribution, using the first four cumulants. The slight changes from

earlier tables, for Case 0 points in Table 1 are due to replacing

Pearson curve fits by points found from the Imhof method.
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2 2Statistic U The asymptotic distribution of U is that of
1 1

Zl(t)dt where Zl(t) = Z(t) - Z(t)dt. (Watson, 1961). The solutions

0 0

for Xi  are somewhat more complicated in principle (see Stephens, 1976)

but in fact, for the Cauchy distribution, they work out easily; details

will be omitted. For Case 1, the weights are the set 4 = 4r j 2 , j = 1,2,...3

and a second set A. which are identical to AL except that X* is omitted.
3 31

For Case 2, the weights work out to be the same as those for Case 1, a

surprising result which means that the asymptotic distribution of U2  is

the same in both Cases. This occurs also for the logistic distribution;

see Stephens (1979). For Case 3 the weights are two sets of A. The)

calculations for cumulants give the values in Table 3.

Statistic A 2  For A2 the process Q(t) = Z(t)/w(t) must be examined,

where w(t) = {t(l-t)}. The details parallel those given in Stephens (1976)

for the normal distribution. For Case 0, the weights, solutions of the

corresponding Fredholm determinant d 0(A), are A. = j (j + 1), j = 1,2,....

For Case 1, the a. work out to be zero for j even and must be found3

numerically for j odd . The weights A. are then the set A = j(j + 1),3 3

j = 2,4,6.... and a second set A. which are solutions of S (a) = 0) a

For Case 2, b = 0, for j ndd,and the weights are the set A* = j(j + 1)

** S
j = 1,3,5,... and th; second set . , solutions of S ) = 0 . For

3b

Case 3 the weights are the two sets A. for Cases 1 and 2. The

calculations for cumulants give the values in Table 3.
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4. FINAL REMARKS.

There are not many tests available for testing fit to the Cauchy

distribution. In this article we have given points for EDF tests, tests

which are consistent and unbiased and which for other distributions, are

very effective in terms of power.

Possible alternative tests might be made using the correlation

coefficient of the X(i), against mi. ' where m . is the expected value

of the ith order statistic of a sample of size n from (1), with a = 0

and a = 1. The values of m. are not easily obtained, and m . might1 1

therefore be replaced by H. = F- (r;0,l) with r = i/(n+l). H. is a1 1

well known approximation for m. for most distributions; the approximation1

is less good in the tails, and of course for the Cauchy distribution

the tails will be important. However, H. is easily calculated and

tables based on the correlation coefficient between X and H. , calledCi) 1

R(X,H), have been given by Stephens (1986). The tables are for

Z(X,H) = n(l-R 2(X,H)), and are given for complete and also for right-

censored samples. Other possible approaches to testing fit include

tests based on spacings and tests based on the empirical characteristic

function. It is hoped to develop such tests for practical use, and to

include them, with EDF and correlation statistics, in an extensive

power study. Preliminary work suggests that EDF statistics are much

2
better than correlation statistics, at least, with U and V best

overall.

The author expresses thanks to the Natural Sciences and Engineering

Research Council of Canada, and to the U.S. Office of Naval Research, for support

for this work.
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Table 1

Upper tail percentage points for W2 2 A2Uppr tilperenagepoitsforW U and A

Significance level a .

n .25 .15 .10 .05 .025 .01

Case 1. Statistic Wz

5 .208 .382 .667 1.26 1.51 1.61
8 .227 .480 .870 1.68 2.30 2.55

10 .227 .460 .840 1.80 2.60 3.10

12 .220 .430 .770 1.76 2.85 3.65
15 .205 .372 .670 1.59 2.88 4.23
20 .189 .315 .520 1.25 2.65 4.80
25 .175 .275 .420 .870 2.10 4.70
30 .166 .250 .360 .710 1.60 4.10

40 .153 .220 .290 .510 1.50 3.05
50 .145 .200 .260 .400 .70 2.05

100 .130 .170 .210 .270 .35 .60
-0 .115 .146 .173 .216 .260 .319

Case 2. Statistic W2

5 .199 .2Z6 .261 .338 .437 .590
8 .211 .273 .321 .389 .463 .564

10 .212 .279 .332 .414 .501 .626
12 .212 .281 .337 .433 .525 .661
15 .206 .279 .339 .444 .537 .684
20 .199 .273 .333 .442 .547 .698

25 .194 .268 .328 .437 .551 .704
30 .189 .265 .326 .435 .553 .708
40 .185 .260 .323 .434 .555 .712

50 .183 .258 .321 .433 .557 .714
100 .179 .254 .319 .432 .559 .715

go .176 .250 .316 .431 .560 .714

Case 3. Statistic W2

5 .167 .242 .305 .393 .445 .481
8 .192 .315 .441 .703 .940 1.13

10 .197 .331 .481 .833 1.201 1.571

12 .194 .329 .487 .896 1.391 1.901
15 .185 .317 .472 .904 1.54 2.33

20 .169 .281 .419 .835 1.63 2.96

25 .154 .253 .366 .726 1.47 3.08
30 .143 .225 .319 .615 1.25 2.90
40 .126 .195 .263 .460 .850 2.17
50 .117 .175 .235 .381 .642 1.56
60 .1097 .160 .211 .330 .508 1.07
100 .098 .135 .174 .2378 .331 .544

.080 .108 .130 .170 .212 .270



CASE I. STATISTIC U2

5 .122 .173 .227 .315 .387 .407

8 .121 .185 .270 .470 .600 .650

IQ .119 .180 .260 .500 .720 .800

12 .114 .172 .240 .505 .780 .960

15 .109 .158 .220 .480 .813 1.160

20 .100 .141 .190 .380 .780 1.340

25 .095 .128 .170 .280 .650 1.340

30 .090 .121 .150 .235 .480 1.230

40 .084 .110 .140 .195 .330 .970

50 .080 .104 .130 .170 .250 .600

100 .074 .095 .110 .145 .180 .250

0- .071 .088 .105 .133 .163 .204

2
CASE 2. STATISTIC U

5 .120 .140 .156 .183 .202 .217

8 .122 .154 .177 .221 .280 .358

10 .119 .149 .175 .226 .296 .400

12 .115 .144 .169 .225 .294 .430

15 .109 .137 .161 .210 .276 .403

20 .101 .126 .148 .190 .247 .355

25 .095 .118 .137 .176 .220 .305

30 .091 .113 .131 .166 .202 .270

40 .086 .105 .123 .154 .187 .240

50 .082 .102 .117 .148 .180 .230

100 .076 .096 .111 .138 .169 .210

.011 .088 .105 .133 .163 .204

CASE 3. STATISTIC U

5 .105 .133 .160 .202 .226 .243

8 .107 .151 .198 .293 .386 .466

10 .104 .150 .203 .324 .461 .597

12 .100 .144 .200 .339 .504 .712

15 .093 .132 .183 .330 .542 .844

20 .083 .116 .159 .295 .548 .974

25 .075 .101 .134 .242 .486 .999

30 .069 .091 .117 .202 .402 .940

40 .062 .079 .096 .147 .274 .697

50 .057 .070 .085 .121 .197 .505

60 .054 .066 .078 .104 .149 .344

100 .047 .057 .065 .080 .098 .154

.047 .047 .052 .060 .070 .081



Case 1. Statistic Az

5 1.19 2.22 3.83 8.00 12.75 17•980
8 1.33 2.62 4.7 10.0 17.4 25.0

10 1.34 2.52 4.5 10.6 18.2 29.0
12 1.31 2.42 4.1 9.9 18.8 32.0
15 1.30 2.15 3.5 8.2 17.2 31.2
20 1.17 1.86 2.8 6.5 14.4 27.5
25 1.12 1.68 2.3 4.7 10.8 23.0
30 1.08 1.55 2.1 3.8 8.2 20.0
40 1.02 1.38 1.8 2.9 5.2 15.5
50 .970 1.29 1.6 2.4 3.8 10

100 .890 1.16 1.4 1.8 2.2 3.5
-0 .834 1.02 1.219 1.519 1.812 2.212

Case 2. Statistic Az

5 .974 1.131 1.239 1.59 2.08 2.84
8 1.085 1.360 1.560 1.88 2.18 2.55

10 1.110 1.414 1.653 2.04 2.38 2.89
12 1.117 1.443 1.710 2.14 2.55 3.15
15 1.117 1.449 1.728 2.22 2.65 3.31
20 1.101 1.444 1.728 2.24 2.73 3.44
25 1.083 1.432 1.727 2.25 2.77 3.50
30 1.064 1.422 1.724 2.25 2.80 3.53
40 1.051 1.41 1.723 2.26 2.82 3.56
50 1.045 1.405 1.722 2.27 2.83 3.59

100 1.038 1.40 1.718 2.28 2.86 3.64
-0 1.034 1.409 1.716 2.283 2.872 3.677

Case 3. Statistic Az

5 .835 1.14 1.40 1.77 2.00 2.16
8 .992 1.52 2.06 3.20 4.27 5.24

10 1.04 1.63 2.27 3.77 5.58 7.50
12 1.04 1.65 2.33 4.14 6.43 9.51
15 1.02 1.61 2.28 4.25 7.20 11.50
20 .975 1.51 2.13 4.05 7.58 14.57
25 .914 1.40 1.94 3.57 6.91 14.96
30 .875 1.30 1.76 3.09 5.86 13.80
40 .812 1.16 1.53 2.48 4.23 10.20
50 .774 1.08 1.41 2.14 3.37 7.49
60 .743 1.02 1.30 1.92 2.76 5.32

100 .689 .927 1.14 1.52 2.05 3.30
so .615 .780 .949 1.225 1.52 1.90



Table 2

Upper tail percentage points for D and V , Case 3.

Statistic D Significance level a

n .25 .15 .10 .05 .025 .01

10 1.05 1.22 1.42 1.75 2.06 2.37

12 1.00 1.22 1.42 1.83 2.22 2.62

20 .946 1.14 1.32 1.73 2.25 3.05

30 0.889 1.05 1.21 1.54 2.06 2.98

40 0.850 0.993 1.12 1.37 1.77 2.61

50 0.822 0.949 1.06 1.28 1.58 2.29

60 0.802 0.921 1.02 1.21 1.42 1.95

100 .755 .755 .925 1.07 1.23 1.49

Statistic- V

n .25 .15 .10 .05 .025 .01

10 1.30 1.48 1.65 1.96 2.27 2.57

12 1.31 1.48 1.65 2.01 2.39 2.79

20 1.24 1.39 1.53 1.89 2.36 3.15

30 1.18 1.30 1.42 1.69 2.20 3.09

40 1.15 1.25 1.34 1.53 1.91 2.74

50 1.12 1.21 1.30 1.46 1.72 2.40

60 1.10 1.19 1.26 1.40 1.47 2.10

100 1.06 1.14 1.20 1.30 1.41 1.64



Table 3

Cumulants of asymptotic distributions

lopi G2 x10 2 K 3 x 103  K 0

W2 Case 0: 1.666 2.222 8.466 50.79

Case 1: .9068 .4052 .5099 .1015

Case 2: 1.413 2.094 8.336 .5060

Case 3: .6585 .2769 .3799 .8187

U2 Case 0: .8333 .2777 .2645 .3968

Cases 1,2: .5800 .1495 .1345 .1992

-3 -3
Case 3: .327 .0211 4.51 x 10 1.58 x 10

p- a0 K3  K4

A 2Case 0: 1 .5797 1.043 3.040

Case 1: .6638 .1872 .1579 .2137

Case 2: .8422 .5249 1.006 3.003

Case 3: .5060 .1324 .1211 .1768
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