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ABSTRACT

A triquadratic isoparametric solid element is developed to study the behavior

of thick isotropic and laminated composite plates. The element is a 27 noded La-

grangian element based on three dimensional elasticity. Material characteristics are

accounted by either using laminate plate theory or three-dimensional anisotropic

theory. Element matrices for nonlinear stability analyses are derived based on total

Lagrangian formulation.

Results are presented to compare with analytical solutions to validate the

elements behavior. The effects of various integration schemes on the element per-

formance are presented. Convergence studies for laminated composites for different

fiber orientations are provided to illustrate applications. An analysis of thin plates

is carried out and results for thick plates are compared with available higher order

plate theories. One row of elements in the thickness directions gives satisfactory

results for thick laminates.
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I. INTRODUCTION

A. OVERVIEW

The finite element method pro,, ides a general tool to solve problems of contin ia

such as heat conduction and fluid flow, but it is most widely used in structural

mechanics. In structural mechanics, the methodology is applicable for static and

dynamic response of structures and in predicting the elastic stability limits.

The focus of the present study is to develop tools to analyze thick laminater

composite plates and validate the model by comparing with known solutions. More

specifically, the objective of the present study is to develop a finite element for both

linear and nonlinear analysis using three dimensional elasticity relations.

By adopting such theory for thick plates, both isotropic and composite, the

solutions account for transverse shear stresses, This approach eliminates the limi-

tations imposed by classical plate theory based on Kirchoff-Love hypothesis [Batoz,

19501 or higher order shear deformation theoies [Reddy, 1984, Lo et al., 19771.

B. LITERATURE REVIEW

In this section, some literature pertaining to the analysis of thick composite

plates is reviewed. The finite element method has been increasingly used as a

research tool, as well a& a design analysis tool, and the methodology is rapidly

evolving along with the development of faster and more efficient computers. Basic

concepts of the theory of finite element analysis are well documented [Cook, et ;a.,

1989]. Yang (1987) describes various two dimensional higher order elements as well

as three dimensional solid elements. Bathe (1982) discusses the general formulation

of finite elements in nonlinear analysis for one, two and three dimensional elements.
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based on the total Lagrangian formulation and the principle of virtual displacements.

A good source for continuum formulation may be found in Malvern (1969).

Tsai and Pagano (1968) establish a notation in which composite lamina prop-

erties are invariant with respect to lamina direction. The laminate theory is well

documented by Vinson (1987), where the elasticity solution for "structures com-

posed of composite materials" is given for various cases, such as bending of thin

plates. Based on laminate theory, Hoskin, et al. (1986) outline procedures involved

in manufacturing composite components and presents some of its applications.

A higher order shear deformation theory of laminated composite plates was

developed by Lo, et al. (1977). A higher order nonlinear theory of thick plates was

suggested by Reddy (1984a, 1984b, and 1985) and presented solutions (Reddy, 1987)

and compared numerical results to Pagano's (1969) elasticity solution for the case of

cylindrical bending. Other elasticity solutions are given by Timoshenko (1951 and

1959) and Eisley (1989) who discusses the elasticity solutions. The Heterosis finite

element was suggested by Hughes, et al. (1978) for thick and thin plate bending

problems. "I he effect of reduced integration in isoparametric finite elements was

presented by Zienkiewicz, et al. (1971).

In recent years, much work is concentrated on the analysis of buckling and post-

buckling response of laminated plates and shells using nonlinear analysis. Ramm

(1982) applies degenerate finite elements to solve buckling of thin shells. Arnold,

et al. (1983) presents a theoretical analysis procedure for prediction of buckling

and post-buckling in laminated composite plates and compares the results to exper-

imental results. A combined numerical and experimental study of the post-buckling

behavior of composite panel is performed by Natsiavas, et al. (1987). Gujbir et

al. (1989) use an eight noded biquadratic element to study the effects of transverse

shear on the stability of laminated plates. Some solution algorithms for nonlinear

2



analysis of structures by adapting modified Newton-Raphson and arc-length meth-

ods are given by Kolar et al (1985) and Ford et al (1987). In the literature reviewed,

there appears to be no discussion on the higher-order solid element for the analysis

of thick laminated plates.

This research addresses the problem of using a tri-quadratic displacement field

based finite element based on three-dimensional elasticity equations. A total La-

grangian formulation is used to derive relevant element nonlinear matrices, and

numerical examples are included to validate the linear portion of the development.

Analysis of typical examples include slender bars under traction and bending

loads, thin and thick plates under bending loads and effects of various integration

schemes.

C. THESIS OUTLINE

This section provides an overview of various chapters of the thesis. The total

Lagrangian formulation for analyzing structures composed of three-dimensional el-

ements is presented in Chapter II. Element matrices are derived for both linear and

nonlinear static analysis using the incremental load method. The material charac-

teristics account for both linear isotropic and anisotropic behavior. Formulas are

provided to obtain work-equivalent loads for distributed body and surface forces.

Chapter III addresses aspects of computational implementation of the problem

formulated in Chapter fl. Test cases, example calculations and comparison with

classical solutions and other high order theories are given in Chapter IV. Finally,

Chapter V summarizes the results and reflects some suggestions for future work.
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II. THEORETICAL FORMULATION

A. INTRODUCTION

In this chapter, using the principle of virtual displacements, the stiffness matrix

will be developed for static equilibrium of triquadratic isoparametric solid elements.

In the total formulation presented, both small and large displacements are permis-

sible for linear and nonlinear structural analysis. For both cases, small strains and

linearly elastic material will be assumed.

The element is developed for analysis of both isotropic and composite struc-

tures.

B. GENERAL DERIVATION OF FINITE ELEMENT EQUILIBRIUM

EQUATIONS

The principle of virtual work is invoked for the general formulation of equilib-

rium [Bathe, 1982; Cook, 19891. The principle of virtual work states that a body is

in equilibrium, if and only if, the total virtual work done by the internal forces is

equal to the total virtual work done by the external forces. That is,

6WW.t = W.t (2.1)

This principle is equivalent to the minimum total potential energy principle

[6fl, = 01, and holds at any given time.

Consider a three-dimensional body under arbitrary loads as shown in Figure

2.1. Using a Cartesian system, let the loads be given by

{f 8 = f: f ,IT (2.2)

4



{f 8} = [fB fVB fI] T  (2.3)

1p, = [p jT 24
FV, (2.4)

where {f}, {fB} and {F} are surface tractions, body forces, and concentrated

applied forces respectively.

The displacements of a finite element in the body due to external load is

denoted by {d}, where

{d} = [u v WIT (2.5)

and the corresponding strains are given by,

{ 4 = [rz 6V ex, f. tzz f ]I (2.6)

for which the corresponding stresses are,

{ 0 = [Ozz Opy 47zz O,. ffxs O,]T (2.7)

The total internal virtual work for a finite element in the body is {6e}Tf{}dv and

for the whole body,

6Wt = j{6c}Tfaldt (2.8)

where the virtual strains, (be, are

{b} = [be.,,,btyv e, , . (?,]T (2.9)

The total external virtual work is given by:

6We, = f 6d}T{fB}dv + fj{6dTI{f°}ds + {di}T {F} (2.10)

5
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Figure 2.1: General 3-D Body
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where {d } denotes a surface displacements and {6d' ) represents point (nodal)

displacements corresponding to the applied loads, and the virtual displacements

{6d} are

{6d}T = [6u 6v bw] (2.11)

On substituting equations 2.8 and 2.10 into 2.1, we get,

j6e}Tfojdv = j {6d}T{fB }dv + j{&P} T~fhl)ds + {6d1}jTf P} (2.12)

It may be noted that the principle of complementary virtual work may have been

undertaken, assuming small virtual stresses with true displacements, yielding in an

analogous expression for equation 2.12.

Introducing the generalized Hooke's law for material constitutive relations,

{a = [E] {} + {a} (2.13)

where {a.} denotes the element initial stresses and [E] denotes the elasticity matrix

of the element material.

In general, the strain-displacement relations are given by

(e) = [B]{d} (2.14)

while the virtual strains are given by

I6e = [B] {6d} (2.15)

Substituting equations 2.13 and 2.15 into equation 2.12 and simplifying, we have,

If{6d)T ([BI T [E] (BI) {d}dv If j{d}T~fB}dv + fj{6cP}T{P.ds

fj{6d}T[B] T {a.}dv+ {bd'}{fP} (2.16)

The integrations in equation 2.16 are performed over the element volume and

surface, i.e., we can evaluate every integral using the element local coordinates and

7



assemble tor the global system coordinates. Thus, we define the global displacement

vector and the global virtual displacement vector as follows:

{D} = [uIvIwI u2v 2w2 ... Unvnwn ]T (2.17)

and

{6D} = [buj1 v6vw, ... u,,6v,,,,T (2.18)

where n is the total number of nodal points in the body. Now we define, for m

elements,

[K] = f [BIT [E] [B] dv (2.19)

[k,] = [B]T [E] [B] dv (2.20)

where [K) and [kj] are the global and local stiffness matrices respectively. In addi-

tion, we define,
in

{RB} = , f [NIT {fB}d V  (2.21)

{Bj= jf N]T {fE}dv (2.22)

{R.} = > 21[N']T{l'}da (2.23)j=1 .

{r,}j = j[NIT {f}d (2.24)

{R,) = (2.25)
j=1 .

rl}j = j[BIT {,}dv (2.26)

where {R) and {r} denote the global and local load vectors and [NJ and [N'] are

the displacement interpolation (shape functions) matrices for the volume and surface

where traction is prescribed. Using these definitions, we obtain

{6D}T [KJ(DJ = {6D) T ({R 3 ) + {R.} - {R,) + {fr) (2.27)

{R} = {R 8 } + {R.}- {R) + {P} (2.28)

8



By invoking the principle of virtual displacements and noting that {bD} is

arbitrary, we get the equilibrium equations in the following form:

[K] {D} = {R} (2.29)

Equation 2.29 is the basic equation for static equilibrium, which also gives the

general form for nonlinear analysis with large displacements and strains.

C. INTERPOLATION SCHEME

1. Shape Functions (Displacement Interpolation Functions)

In this section, the interpolation scheme for a triquadratic isoparametric

solid element will be developed.

The one-dimensional Lagrange interpolation function based on parame-

ters is given by
q

P NP = NP,+ N2P2 + ... + NPq (2.30)
i=1

where Ni, also called the shape functions, are given by

M

N,(x) = l __ (2.31)

0*j

A triquadratic solid element is a three dimensional element in which the

displacements u, v, and w are interpolated by quadratic langrangian interpolation

functions with 27 nodes. Figure 2.2 depicts an element in the local non-dimensional

coordinates (r, a, t).

For an isoparametric element, the geometry may be interpolated as,

27

X = Nizi
i-I

27

y =
9al

I I I i9



.- , N

Ln

I H

U., I. . .. I .  0 (fl 0

k C
0 'VI0

0

t_,
- 0

Figure 2.2: Lagrangian Solid Element - 27 nodes
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27

z = j Niz, (2.32)
i=1

or, in a matrix form,

y -[NJ [zjyjzj .... r27y27z2]r  (2.33)
z

where the shape function matrix is given by

N, 0 0 N2  0 0 ... N27 0 01
[Ni 0 NI 0 0 N2  0 ... 0 N27  0 (2.34)

0 0 N 0 0 N2 ... 0 0 N2I

The shape functions and their derivatives in local coordinates are pre-

sented in Appendix A.

2. Jacobian Transformation Matrix

To obtain equilibrium equations in the global coordinate system and con-

struct stiffness matrices, we need the derivatives of the shape functions in cartesian

system. Using the chain rule for differentiation, we obtain,

Nj,, = z,, y,, z, N,,, (2.35)

Nt z., t t N

where [J], the Jacobian matrix is given by,

Z.r Y.r Z,r

[J]= z, y.o z, (2.36)
X't X~t Z.1

A comma denotes differentiation, where for example, Ni,, = etc. Using the

shape function derivatives, the elements of the Jacobian matrix may be calculated

and is given in Appendix B. The global cartesian derivatives may now be obtained

as,
rN' rj~ NI ,, 1
N,,, = [J]- N,., (2.37)
N,.. N,,]

11



where the inverse of the Jacobian,

(2.38)

is given explicitly in Appendix B.

D. STRAIN DISPLACEMENT RELATIONS - (B]

1. Basic Formulation

In this section, the basic formulation for nonlinear analysis of a general

solid body is presented [Refs. Bathe (1982), and Malvern (1969)]. First, some defi-

nitions and notations will be introduced concerning the coordinate system, displace-

ment, stress and strain measures and later on the linearized equilibrium equation

will be developed based on section II/B.

Consider the motion of a body, or an element within, in a fixed cartesian

coordinate system as shown in Figure 2.3. We have the body at time 0, t and t + At

for which the upper left superscript corresponds. The displacements at time t and

t + At are given as

tui =t Z _0 Zi (2.39)

t+Aiu At .F _0 Zi (2.40)

so that the incremental displacements are

% =t+t _ u, (2.41)

where,

U 1 U U2 -V U3 -W

X1 =r z 2 =s z 3 =t (2.42)

12



we use the following notation for derivatives at time, say t + At, with respect to

coordinate at time 0 as,

+atuj = & (2.43)

In the present approach, we use the total Lagrangian formulation, refer-

encing all variables to the undeformed configuration at time 0, [Ref. Bathe, 1982;

Malvern, 1969]. It is assumed that at time 0 and t the equilibrium configuration is

known. Basically, equation 2.12 needs to be solved corresponding to time t + At.

Since we assume large displacements, and nonlinear constitutive relations [equa-

tion 2.14], equation 2.12 may be solved by incremental load methods [Ref. Ford &

Stiemer, 1987].

On introducing the 2nd Piola-Kirchhoff stress, it may be shown that the

2nd Piola-Kirchhoff stress tensor is energentically conjugate to the Green-Lagrange

strain tensor [Ref. Bathe, 1982; Malvern, 1969].

j { _+At}T {t+&S}Odv = j+A, {6e} T {t+at'}t+Atdv (2.44)

where the 2nd Piola-Kirchhoff stress at time t is defined as,

I o,= [,X]T {tS} [,Xi det [X] (2.45)

such that [tX], the deformation-gradient tensor is a tranformation operator from the

coordinates at time 0 to time t. Note that in the equation 2.44, the right hand side

represents internal virtual work at time t + At over the volume at that time while

the left hand side has the virtual work integrated over known configuration at the

reference volume.

Assuming linear material behaviour, we may use the linear stress-strain

relations (Generalized Hooke's Law) for the 2nd Piola-Kirchhoff stress tensor.

[ s] = [E] [] (2.46)

13
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where the Green-Lagrange strain tensor at time t is defined as,

Si 1 (i +' Uj, +' Uk,, 'Uk,) (2.47)

with i, j, k = 1, 2, and 3. On subs Quting 1+u = ui + ui, we obtain at time

t + At,

t+At +t Uj,i + u k,i tUk)

+ (ui, + uji, u k., ukj + Uk,, k,,)1
+ Uks ut,, (2.48)

which may be written as,

t+atfii = f + i (2.49)

where, ti is defined earlier and the incremental strain e,, is given by

4, = 4 J + r/ij (2.50)

In matrix notation,

{e} = {e} + {r/} (2.51)

The linear incremental strain is identified as
1 +t

ei= (, + U,,i + ,, Uk + Uki Ukj) (2.52)

in which tukbj and 'ukj are the known displacement gradients at time t. The non-

linear incremental strains, then, are givtn by

1= uk.i u, (2.53)

Rewriting the equilibrium equation as stated in equation 2.12, using the total La-

grangian approach, we have,

5(2.54)



where t+AR, the external virtual work, is assumed to be deformation independent.

Using the identity form equation 2.44, we may write the equilibrium equation in the

undeformed configuration as

j{At+dte}T{t+&ts}odv _.=+t R (2.55)

Noting that I{l} is displacement invariant,

{b+A'e = {&e} (2.56)

The 2nd Piola-Kirchhoff stress at time t + At may be expressed as

{t+AS} = { 3 } + {1) (2.57)

where {s} is the incremental 2nd Piola-Kirchhoff stress. On substituting Equations

2.56, 2.51, and 2.57 into 2.55 yields,

j{6 eTfs}Odv + I {60{'.1v+f6 17 )T Its)Odv (2.58)

The incremental stresses are expressed using equations 2.47 and 2.57 as

Is} = [E] I +4'e} - [E] {'e} (2.59)

which in view of Equation 2.50 yields

{s} = [El {e} (2.60)

Referring to Equation 2.51 and neglecting the nonlinear strain contribution, we get

the linearized approximation as

I1 - [E] {e} (2.61)

and

{6C}T - {6e}T (2.62)
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On substituting these into Equation 2.58 and rearranging yields the linearized in-

cremental equilibrium equation,

j{Se}T~ [E e 0 v+j{,}{ts}lodv = 4t R -v j6eTftSOdv (2.63)

2. General Nonlinear Discretization

The general nonlinear finite element discretization for the 27-noded ele-

ment is presented based on the total Lagrangian formulation discussed in the pre-

vious section. Equation 2.52 for the linear incremental strain in cartesian form

yields

er= UI 9UI ' tVXVX+ wW W
evy -= U'Y +}t U'Y uY -+-t V'W V' + O

t W IV w .z

eVI - U,1  U 1 UI U~i pl Uw,1 WV

eX = U, U, U. +' V13 V,+ W," W,

2e = v= V, + WV +t UU + U1 'U's +t V,1 V's + V,1 tv,5 +W w,5 + W.V tW.X

2e, = u, + w. +t u,. UV+ u= t .,+t vS v, + VIC t w)1 ' ?+ W tWp

2erv = u.1, + v" +9 ' u'Y + u . Y+tV'. v W + v 'y .t oy WI ' + w" t'Y~

(2.64)

which in matrix form is given by

{c} = {eLa) + {eL,} (2.65)

The first term on the right hand side is displacement independent while the second

term is displacement dependent with the engineering strains {e} represented by

{e} = le evy e.. 2ey, 2e. 2e,,]T (2.66)

We define the incremental displacement gradient in the global coordinates by

{UG} = [uu., U u, v, V,1 v,., w'T w,W Wo.1
T  (2.67)
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Equations 2.64, 2.65, 2.66, and 2.67 result in

eLo) = [ALo] {UG} (2.68)

{eL1} = [ALI] {UG} (2.69)

so that [ALo] and [ALI] are given by,

1 0 0 0 0 000
0 0 0 010 0 0 0
0 0 0 0 00 001

[Au] = (2.70)
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 100
0 1 0 1 0 0 0 0 0

tu, 0 0 tv, 0 0 tw. 0 0
0 tU,. 0 0 tvV 0 0 w 0
0 0 t u., 0 0 tv,, 0 0 Sw,

[ALI] - (2.71)
0 'U,5 tu, 0 tv,5 tv,y 0 tw, 'w,

tu, 0 tu. v., 0 tv, tw, 0 tw,.
tU,y tu., 0 9v,y tv.: 0 1wv tw , 0

It may be noted that the values of t uij are known at the new configuration at time

t + At. With the displacements interpolated by
27

U = Nkuk
k-l
27

v = E Nkv,
k=
27

w = ENwk (2.72)
kal

the local displacement gradients are obtained from
27

U =r = N,,. uk
kni

27
U's = E Ni,,. uk

k-l
27

U's = N,,t uk (2.73)
k=i

18



and similar expressions may be attributed to v and w. These gradients may be

represented as

U!

N,., 0 0 N2 ,. 0 0 N2 7., 0 0 W
U.T N,,. 0 0 N2.. 0 0 N27'. 0 0
U.8 Ni., 0 0 N2.# 0 0 N27 , 0 0 1,2

U's V2

V., 0 N1 . 0 0 N,, 0 0 N27., 0 w2
V = 0 N,., 0 0 N2,. 0 0 N27.. 0
V,, 0 Ns., 0 0 N2, t 0 0 N27,, 0
w.,.
W, 0 0 N1 ., 0 0 N2 ,, 0 0 N27 ,, •
,,,, . 0 0 N., 0 0 N2 .. 0 0 N27,.

0 0 NI,, 0 0 ,, . . 0 0 N27 ,, J 527
P27

(2.74)

or alternatively,

{UL} = [DH] {d} (2.75)

where the nodal displacement vector is given by,

{d} =[u, VI W1 u2 v2 ... w2 7]T (2.76)

and the local incremental displacements gradient are given by

{UL) = [u., us u,t ,V v,,. v,, w,, w. .,lT (2.77)

As previously mentioned, in isoparametric finite elements, the same inter-

polation functions are used for approximating the geometry and the displacements.

Using these definitions, we may transform the displacement in global and local co-

ordinates by similar transformations used for the geometry. Furthermore, we can

define arbitrarily the global and local coordinates to coincide at time 0 configuration,

thereby, the transformation from local coordinates at time 0 to local coordinates at

any other time, say t or t + At is identical to the transformation that relates the

global coordinates to the local coordinates at any configuration. In other words, we
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can use the same jacobian matrix defined previously for all configurations. Writing

the relation in accordance to equations 2.37 and 2.38 we have,

{uG} = [3] {UL} (2.78)

such that,
[(F] [p [0]o

[r3]= [o [r [0] (2.79)
[o0 [o1 [r]

and substituting equation 2.75 into 2.78 yields,

{uG} = [r3l] [DH] {d} (2.80)

The incremental strains, then, may be expressed in terms of nodal dis-

placements, and substituting equation 2.77 in 2.68 and 2.69

{e,} = [An,] [I31 [DHI] {d) (2.81)

{eLll = [ALI] [r 3] [DHI] {d} (2.82)

The strain displacement operator may be identified as

[BLo] = [ALo] [13] [DH] (2.83)

[BLI] = [ALI] (r3 [DHI] (2.84)

such that,

[BL] = [BLA] + [BL1I (2.85)

and,

{e) = [BL {d) (2.86)

It should be underscored that using only the displacement independent strains in

equations 2.63 and 2.64 results in the linearized problem (same as linear small
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displacement - small strain formulation) with

Ni," 0 0 N2.. 0 0 N27, 0 0
0 N,y 0 0 N2,1  0 0 N27 . 0
0 0 Nj,. 0 0 N2 7,. 0 0 N27 ,1

[BLO) =
0 N1,. N,y 0 N2,1  N2,y 0 N27 ,, N27 ,y

N1,, 0 N1 ,= N2,. 0 N2,. N27,, 0 N27 .
N, 1, N. 0 N2, N2 . 0 N2r.y, N27 ,. 0

(2.87)

The displacement dependent contribution to the strain-displacement operator

is given by

'U.. Nt 'U. N, a NW4 'u,, U, MW.. NaT'
'u., N",. tu. Ni, ta. Nil 'U., N, 'i. NW,.

[BL. N1+1 , N,,, ' Nf.,, , 't 1W.. N,,+W, IV ,, V NJ,, NJ, 'u,' N2,, Hr
I I I , N , 4 - u , M . ' u , N ,, + ', ., Ni, I Vi N+, U M wo N l , N , , I .N , , U .N , , a N 4 , N " .

iNI .' N. ,, .N,+' V., N,, 'W, N,, +t W., N,' , in, N +, U. , NU, ** . iNV. W. ~ NW,,

(2.88)

To obtain the incremental nonlinear strain contribution, consider equa-

tion 2.53, which has the cartesian components,

S1(2 2 + W )
'lpv = 2 (uI+*l +

= +22)1 3 2a 2

'I = v (uyiU + V,,v + W )

1
17X= -(u,,u, + V.WV., + w.,w.,)2

77, = -(u.,u, + V.zv, 1 + ww,,)

22

1
77v -- i(u.xu., + Uv.v + WxW.Y) (2.89)
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With the variations at time t given by,

6?7, = 6ul,: tu, + 6v, tv, + 6w,. 'v,

br/ = 6 uLUI 'u. , + 6vb iv,V + bwV tw.,

67,, = bu,, tu,, + 6v., tv., + 6w., 'w.,

2b%. = 6u,, U,, + uV 6u,, + bv., iV, + *'v.6v,, + 6 w'V 'W. + 'w11w

26r7., = ut, tu., + tus6u, + 6v, Iv., + tv.,bv, + 6w,: tw. + tw6w.,

2,"v = 6u. tu,, + CuX6u. + 6,v, tv , + 'v,:v,, + 6xw,: t w, + 'w bw.2.90)

(2.91)

It is worth noting that equations 2.90 are in exactly the same form as the displace-

ment dependent strains {qIt} given in equations 2.64 and 2.65 with the incremensal

displacements derivatives replaced by their variations. Thus, we may write,

(6bq) = [ALI] {6UG} (2.92)

(7) = [ALI] {UG} (2.93)

such that the nonlinear incremental strain variation vector is defined as,

{6b}T = [61,, 6q, 671, 2671,, 26%, 26,~v (2.94)

and [ALI] is as given in 2.71. Observing relation 2.80 for JUG), we have,

{6uG} = [r3] [DH] {6d) (2.95)

and substituting for the global variations into the nonlinear strains in equation 2.90,

we get

{6,7 }T = {6d)T [DHIT [r3lT [ArlIT (2.96)
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Using the strain-displacement relations defined thus far, we formulate the

linearized incremental equilibrium equation, given by 2.63 to take the general form

as stated in 2.29, to give,

[VkL] +{t+A) d"+)= tR} - {t+AtFI(I) (2.97)

where [tkLl, in view of equation 2.85 is seen to be

[tkL] : [BOn [E] [BL] dv (2.98)

which is the linear stiffness matrix, and i is the iteration number. This includes the

displacement dependent and independent contributions.

When small displacements are assumed, the [tkL] reduces to standard lin-

ear stiffness matrix, given by fov[BL oIT [E] [B o]0 dv. In what follows, the derivation

of [kNLI is described.

The 2nd-Piola stress vector at time t is accumulated such that,

{ts} = {+'+s} + [E] {} (2.99)

Using equations 2.51, 2.85, 2.86, and 2.91, the incremental strains take the form

{E} = (2 [ALI] + [ALo]) [IF3 [DHI {d} (2.100)

or alternatively,

{c = (2 [BLI] + [B,] Il){d} (2.101)

Noting that equations 2.99 and 2.100 are valid at any time t, and by using equation

2.46, the 2nd Piola-Kirchhoff stress may be written as

{ s} = [E] (2 [AL)] + [ALo]) IV3] [DH] {d} (2.102)

and the nonlinear part of equation 2.63 becomes, using the relations 2.95 and 2.101,
f{b 71 r {ts} ° dv = f ({6d}T [DH]T ]T [ALIT) [E]

(2 [ALI] + [A,]) [173] [DH] {d}°dv (2.103)
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we define the nonlinear strain contribution, [kNLI, as

[kNL] = jT [DHIT IF31T [ALI]T [E] (2 [ALI] + [ALo]) [173] [DH]° av (2.104)

It may be recognized that [DH] is the strain-displacement relation given by equation

2.74 which corresponds to the linear contribution of the stiffness matrix given in

equation 2.97, and the contribution of the non-linear strains results in the 2nd

Piola-Kirchhoff matrix, [s], as

[S] = [r31T [ALI] T [E] (2 [ALI] + [ALo]) [I3] (2.105)

[r3] is given in equation 2.79. It may be shown that the matrix [s] takes the form,

[ sil 0 101 1
[s] [0] IS [0] (2.106)

[0] [0] [S] I

The expression for the second term in the right hand side of equation

2.63 is evaluated in the same manner as the linear and nonlinear parts. On using

equations 2.100 and 2.101, we obtain,

j{6e}rTts}dv = IT d}T(2 [BLI]T +[BLo]T) [E] (2 [BLII+[BLo)] {d} °dv (2.107)

It may be seen that by defining

{ (t+AF} = jV(2 [BL]r +[BLo]T )[(2[BL1 + [BLo)] {d}°dv (2.108)

the expression {d}T I+A(F} represents the work done by the external loads at time

t + At. Noting that

{6i+At} {6e} (2.109)

We approximate for the second term in the right hand side of equation

2.62 such that

{e T {ts }odv /o j{6 +AtclT{I+ "s}Odv (2.110)
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which represents the internal virtual work, so that the right hand side of the equi-

librium equation 2.63 is the difference between the external and internal virtual

work. On substitution of relations 2.97, 2.102, 2.103, 2.107, and 2.109 into 2.63

and applying the principle of virtual displacement as shown previously, we arrive

at the incremental equilibrium equation 2.96, which may be solved by Newton-type

methods. [Ford and Stieman, 1987]

E. STRESS-STRAIN RELATIONS

In this section, the stress-strain relations for a composite material, to be used in

the three dimensional analysis is developed. Two approaches, one based on classical

laminate theory and the other based on anisotropic material constitutive relations,

are presented.

1. Classical and Higher Order Laminate Theories

Typical structures composed of composite materials are built using sev-

eral number of laminae, forming a laminate. Each lamina consists of, typically,

uniaxial fibers embedded in a matrix, such as epoxy-resin, forming a thin plate.

Figure 2.4 shows principal material axes, labelled 1 and 2 in directions parallel to

and normal to the fibers, respectively. It may be noted that in each lamina, there

exists a state of plane stress, as shown in Figure 2.4.

Assuming elastic orthotropic material, (i.e., the lamina possesses a plane

of elastic symmetry parallel to the x-y plane), the generalized Hooke's law may be

written as

al Q1 Q12 Q13 0 0 0
a2 Q22 Q2 0 0 0 E

a3 _ Q33 0 0 0 f3 (2.111)
a4 2Q4 0 0 f4

as symm 2Qss 0 fs

06 L 2Q66 J c
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Figure 2.4: Lamina coordinate system (2-D)
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where the plane-stress elastic constants are given by:

Q1I = EI - V12 - 21
= 1 2 E2 '

QI -

1 - V12 V21

Q22 = 3 - 1 2 21

Q44 = G 2 3 , Qss = G1 3, Q6 = G12

Q13 = Q23 = 0 (2.112)

The subscripts 1, 2, and 3 correspond to normal stresses or normal strains

while 4, 5, and 6 correspond to shear stresses or tensorial shearing strains in yz, zx,

and zy planes, respectively.

The stresses in the material coordinate axes are transformed to reference

coordinate axes (x, y, z) by the following equation:

axz  m 2  n 2  0 0 0 -2mn a,
r, n2 m 2  0 0 0 2mn Or2

o, 0 0 1 0 0 0 03 (2.113)
Oryz 0 0 0 m n 0 0r4

or. 0 0 0 -n m 0 as
rY1, mn -mn 0 0 0 (m 2 - n 2) '6J

where the direction cosines m and n are given by m = cos 0 and n = sin 0.

The straint, may be transformed in a similar manner. Introducing the

strain transformation, along with equation 2.110 into equation 2.112 results in

oQ Q11 Q12 0 0 0 2Q16 C.

Q12 Q22 0 0 0 2Q26 C

az 0 0 Q33 0 0 0 C2
0 ,z 0 0 0 2Q44 2Q45 0 (2.114)

0 0 0 2Q 45 2Qss 0 fxz
Oz~y k LQi6 Q26 0 0 0 2Q66 J - k

where,

Q11 = Q m4 + 2 (Q 1 2 + 2Q6 6 ) m 2 n 2 + Q 22 n 4
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012 = (Q11 + Q22 - 4Q6) m 2 n2 + Q12 (m4 + n 4)

022 = Qun 4 + 2(Q12 + 2Q 6 )m 2n2 + Q22m4

033 Q33

Q16 Q1 3 n - Q22mn' - (Q12 + 2Q66) mn (M2 _ n2)

Q26 = Qjmn-3 Q22m 3n + (Q12 + 2Q6) mn (m2 - n2)

Q6 = (QI + Q22 - 2Q2) mn 2 + Q6 (m -n2) 2

Q44 = Q4 4m 2 + Qs 5 n 2

Q45 = (Q55 - Q4) mn

Q5 = = Q 4 4n 2 + Q 5 5 Mn2  (2.115)

The stress strain relations presented correspond to kth lamina. Now,

consider a laminate composed of N laminae for which, each lamina has a different

orientation (0), with respect to the laminate x and y axes. For linear elastic plates,

the function!L, form of the displacement may be assumed to be

u(x, Y, z) = Uo(x,y) + zu 1(X,y)

v(X' Y, z) = vo(,y) + zVI(X,y)

w(x, y) = WO(X,y) (2.116)

and, the linear strains are given by,

fi= 1(uij + u,i) (2.117)

so that,

Ezz = UO,x + ZUi,x

fyy -= VO,1, + ZV14y

zz 0
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1
fu 1(Vi + w0,11)2

1= U1 + WO )
2

C' = I(Uo, + vo+ (u, + vI) (2.118)

where uo, vo and w0 are the midplane displacements, ul and v, are related to the

rotations of the normals. It may be noted that the in-plane strains,

1
fo = Uo,X, EO = Vo, , zo = (Uo, + Vo,) (2.119)

and the curvatures are given by

UT¢ = ul., tc = vl,p, Kz 1 = (ul, + vi) (2.120)

We define stress resultants for plate/shell type structures in terms of

stresses and shears (see Figure 2.5) as follows for the kth layer:

h

QX= L ~zdz
2

h

2

/M = azdz (2.121)

Similar expressions are applicable for Ny, Ny, Qy, Mv and M,,y, where h is the

lamina thickness.

By summing all laminae over the laminate thickness in the following man-

ner,

{ y E~i } dzJ~ +~ } f zdz} (2.122)N ..,, k=1 h -, f'YO k_1x

which, in matrix form, may be written as

{N} = [A) {o} + [B] {K} (2.123)
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where,

N

Ai3 = 1: (Q") k hk - hk-I)
k=1

N

Bi = (h2 - h _1 ) (2.124)
k=1

with ij = 1, 2, and 6 and the moment resultants are given by

{M} = [B] {co} + [D] {,} (2.125)

where,

Dj = E - I2.126)

k=1

with i,j = 1, 2, and 6.

The displacement field, as stated in equation 2.105 is linear in the thick-

ness direction, resulting in constant shear stresses. To get better accuracy, a higher

order displacement field may be used [Reddy, 1984].

In order to account for the accurate shear distribution, shape factors are

used in computing shear energies. These factors are typically obtained by equating

the shear energies. The procedure is outlined for linear and cubic variation of

displacement fields. The shear energy due to transverse shear stresses is given by,

Ua = J (ao,, (2,Ez) + oyz (2,,)) dz dA (2.127)

where A is the area bounded by the lamina surface dy. On using Hooke's Law, we

get

U. AL (Gxz (2cz+)2 + (2fy)2) dz (2.128)Uo~~~~ ~~ = d(Gz( = dA

Equating this to the linear displacement field and simplifying,

2= (1A [G.. (u, + Wo,.) 2 + G (v1 +Wo,,)2ldA) h (2.129)
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Introducing a higher order displacement field yields a more realistic stress distribu-

tion, but in doing so, a shape factor is introduced to yield consistent shear energy.

Assuming a displacement field in which the displacements are expanded

as cubic functions of the thickness coordinate, while the transverse displacement is

assumed to be constant through the thickness, yields

U(z,i,Z) = UO(z 1') + ZUI(x,t) + Z2 U 2 (z,y,) + Z3 U3(x,y)

V(-,%,z) = VO(zY) + ZVI(z,Y) + Z2 V2(z,y) + Z3 V3(x,y)

W(Z,Y,Z) = Wo(XY) (2.130)

With u0, vo, and wo being the displacements of the midplane, the tensorial

shearing strains are evaluated as,

2fz, = [u,(Z,,) + 2u 2(r,y)z + 3U3 (,y)z 3 + WO]

= + 2V2(.y)z + 3U3(xy)Z 3 + (2.131)

Using the condition that the transverse shear stresses vanish on the plate

top and bottom surfaces, we have,

OX X(, , + = a1 ,V Y, 0 0 (2.132)

or,

fX (V , ± h = Cy (X, Y1 h) 0 (2.133)

Substituting relations 2.132 into 2.130, we obtain,

U2 = V2 = 0

4
U3 = - 4 (woM + u1 )

4
V3 = - (W, + vI) (2.134)
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The displacement field then becomes

34u = uo+zu 1-z(w,+ )

v = vo + zvI - "Z34(wou + vI) (2.135)
3h 2

W = w0 (2.136)

and the shearing strains are given by

E-z = -(uI +wo,) [1 -42 h
V- = (v+ wO.±) 1-4 (z)] (2.137)

Yielding

Ui. = (1j 1 G (i+w,) 2 + Gy (vI + WO,Y)2] dA ~ [ 2] d
(2.138)

The shear energy ratio of the two displacement field is found to be 1, so that the

correction factor for constant shear stress using cubic displacements is 8.

It is clear from the discussion that the classical plate theory stiffens the

plate by not taking into account the higher order terms. If we use the higher

order theory, we need to introduce a correction factor to the shearing strains of the

magnitude Using equation 2.113, the transverse shearing stresses for the kh

layer are given by

a.xzk = Q~IZ + 2 Q45k'EYZ

a , k = 2Q45 ,C + 2Q 44,f. (2.139)

and the resultants are obtained using equation 2.122 as

QX 2 (As55Ex + A45fyz)

Q= 2 (A 45C. + A 4 4 'y) (2.140)
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Note, that equations 2.139 and 2.140 are applicable for any displacement field.

Hence, for the higher order theory presented,

A,3  15 - I-zj 1~) [-4 (z)2] dz (2.141)
k=1 k

or,

A 15 3 ~ZQJk hk-hkl4-(h 3 h~ 3_)] (2.142)
8k=1 k 3h 2

with i,j = 4, 5.

In the present three dimensional solid element, for which only three translational

degrees of freedom per node are defined, resultants are divided by the corresponding

thicknesses to obtain the stress-strain relations with

All A 12 0 0 0 2A 16

A 12 A22 0 0 0 2A 26

[1E 0 0 0 0 0 0 (2.143)
-E h 0 0 0 2A44 2A 45  0

0 0 0 2A 45 2A55  0
A 1 6 A26 0 0 0 2A 66

For the special case of isotropic material, the material stiffness matrix is given by

A+2G A A 0 0 0
A A+2G A 0 0 0

[E] A A A+2G 0 0 0
0 0 0 G 0 0 (2.144)
0 0 0 0 G 0
0 0 0 0 0 G

where
A =E (2.145)

(I + v) (1 - 2v)

2. Three-dimensional Anisotropic Theory

As an alternative to using laminate theories to obtain [E] matrix, we may

use anisotropic definition of the laminates.

ai = (Qi') E (2.146)
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These relations are approximated by obtaining the Qj in the laminate x-y axes by

suitable transformations and transverse properties (thickness direction) correspond

to the matrix characteristics.

F. CONSISTENT LOADS

In this section, we consider the element nodal loads vector, due to applied

loads. Using the virtual work principle, the distributed loads, such as surface loads

and body forces, are converted into discrete loads applied at the element nodal

points. Discretizing the distributed loads along these lines are referred to as con-

sistent or work-equivalent loads. Consider a case where a uniform distributed load

acts on a prescribed face of the element, as seen in Figure 2.6. The consistent load

vector may be written as

{r,} - j [N'] T {f'}ds (2.147)

For uniform distributed surface loads, we have

{f'} =p{l} (2.148)

It is worth noting that the interpolation functions on a given surface, say t = 1

reduces to that of a plane biquadratic Lagrangian -mparametric element and are

presented in Table 2.1. Invoking symmetry, we observe that the forces at nodes 1,

3, 5, and 7 are equal, and similarly, forces at nodes 2, 4, 6, and 8 are equal. On

using the shape functions for the t = 1 surface, we have,

"l1 1 1 1r, = _ +_ lr) (1 -s)p dr ds -r -- r2 - -r9 p (2.149)
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TABLE 2.1: SHAPE FUNCTIONS FOR 9 NODED BIQUADRATIC
ELEMENT

N l= (1 + r) (I1- s) - 2 N8 - l N2 - 4N9N1 =1

1( + r) (I + s) - I N2 -1N4 - I4N9N3 =

Ns=X (1 -r) (I +s) -2IN4,- 1N6 -1N94 2 2 4N5

N7=X (1 - r)(I1- s) - 1 Ns- 1 N6- 1 N94 2 2 4N2 =1 1 1

1 (- Ir2) ( 1 + S) - 1 N'
2 2

N = 1(1-r)(X-S 2)

2 2
N9 = ( 1 -r2) (1 _ 2)

Note: Node numbering is referred to Figure 2.2 where t = 1, upper plane.

Figure 2.6 gives consistent element nodal loads for a single element. As a check, the

total pressure loading on the surface, 2 x 2 x p = 4p, is seen to be equal to the

sum of all the discz.f'.zed nodal point forces. The procedure may be extended for

more than one element by summing loads at joint nodes, as illustrated in Figure 2.7

for four elements.

G. INTEGRATION

In this section, we summarize the Gauss method for numerical integration,

including a discussion on some aspects of integration schemes.
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1. Gauss Quadrature

The nature of finite element matrices suggests the usage of numerical

quadrature. Gauss's integration scheme is the most commonly used approach and

is adopted in the present analysis.

The method enables exact evaluation integrals, consisting of polynomi-

als of any order, by using appropriate order of integration. In general, the Gauss

quadrature for a function O(r, s, t), has the form

I= 0(r, s, t) dr ds dt _ZZ w ww¢kO(r,s,t) (2.150)

The integration limit reflects the limits of non-dimensional 'master' isoparametric

elements, while O(r, s, t) represents the stiffness contribution.

Figure 2.8 demonstrates the application of the method for a two dimen-

sional biquadratic element. Using the weighting factors as given in Table 2.3, the

element stiffness matrix is evaluated, for example, by using a 3rd order integration

scheme as follows:

55 58 88
[K] = 9 (01 + €3 + €7 + 09) + 99 (02 + 04 + 06 + 08) + 9 05 (2.151)

where

O, = h [B(r, S)]T [E] [B(r, s)] I J(r, s) I (2.152)

as is evaluated at Gauss point i as shown in the Figure.

2. Integration Scheme

The term "full integration" refers to an integration scheme which evalu-

ates the integral exactly as shown in the previous example. In the same manner, a

lower order integration is referred to as 'reduced integration'.

In the present analysis, 'full integration' is used to evaluate the stiffness

matrices. When a crude mesh is used, a stiffer structure is obtained. In geieral, there
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TABLE 2.2: SAMPLING POINTS AND WEIGHTS FOR GAUSS
QUADRATURE OVER THE INTERVAL -1 to 1

Order n Location of Sampling Point Weight Factor W

1 0. 2.

2 ±0.57735 02691 89626 = ± 1 1.

3 ±0.77459 66692 41483 = ±v 6 0.55555 55555 55555 = 9

0. 0.88888 88888 88888 = 9

4 ±0.86113 63115 94053 = ± [ 0.34785 48451 37454 = I -,
L7  2 6r

±0.33998 10435 84856 = ± [3-]2 0.65214 51548 62546 = 1 +

where r = rT. and (2r - 1) is the polinom order

are two ways to soften the structure. One way is to refine the mesh and another by

using 'reduced integration'. Thus, by using a 'reduced integration' scheme, a faster

convergence and more cost-effective, accurate solution may be obtained. However,

the method suffers such drawbacks as mesh instabilities or mechanisms, resulting in

a singular element stiffness matrix.

H. BUCKLING ANALYSIS

1. Introduction

It is well known that thin columns or plates under axial compression tend

to buckle. Elastic buckling occurs when the compressive stress is well below the

material stress limit. A flat plate under axial compression shortens in the direction

of the applied compressive loads. This shortening results in coupling between in-

plane and out-of-plane displacements.
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As the applied compressive load increases, there is a configuration at

which the plate offers no more resistance to deform, resulting in a state of neutral

stability. The load corresponding to this configuration is referred to as the buckling

load and constitutes a limit point on the load response curve.

At this critical value, the deflection becomes very sensitive to any change

in the configuration. For some structures, beyond the limit point, the load-displace-

ment path may take any of multiple paths. The point where the plate can take any

of the different paths is called the Bifurcation point and is illustrated in Figure 2.9.

In analyzing for nonlinear response, the incremental load method is adopted, which

may be summarized as follows: (a) the tangent stiffness matrix is formed, and solved

for displacements for an incremental load. Keeping the stiffness matrix constant,

corrections to the incremental displacements are obtained in an iterative manner

until equilibrium is achieved, (b) total displacements for this load are obtained,

(c) a new tangent stiffness matrix is formed at this new equilibrium position and

steps (a) and (b) are repeated. This procedure is continued until the desired load

is reached or the critical buckling load is reached.

2. Implementation

In this section, the Finite-Element formulation for buckling will be pre-

sented [Bathe, (1982), Kolar, et al., (1985)]. The problem of instability can be

approached either by looking at the equilibrium of the structure in the deflected

position and transforming all quantities to the initial configuration or by solving the

system in the current configuration. The former approach, described earlier as the

total Lagrangian formulation, is adopted here. By performing an incremental load

analysis, using the nonlinear formulation described earlier, we may write

([tKLI + ['KNL]) {d}'+') _= &t A{P - IF)(') (2.153)
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where {P} represents the total load applied and t+AtA is a scalar, referred to as

load parameter. The value A scales the incremental load and may be treated as a

constant or variable during iterations. Buckling load is reached when displacements

become large with no increase in the incremental load, i.e., the global stiffness of the

structure, as illustrated for a single degree of freedom system in Figure 2.9, becomes

small and [K] tend to be singular. Thus, using Newton-Raphson and modified

Newton-Raphson methods, convergence difficulties are encountered as buckling load

is approached. This is overcome by using arc length methods, described in the next

section, where the load parameter is continuously updated to reflect the state of the

structure.

3. Constant Arc Length Method [Kolar and Kamel (1985)]

When using the Newton type iteration schemes, the stiffness matrix "be-

comes singular as limit points are approached. In order to obtain post-buckling

response, a method to overcome this singularity is needed. This is accomplished by

treating the load parameter as a variable and thus have an adaptive load incremen-

tation. This approach differs from the conventional Newton type schemes where the

load level is held constant for all iterations at a given load step. Symbolically, at

load step m and iteration i, equation 2.153 can be rewritten as follows

[KI{d}(+ 1) = (mA + P), + AA) {p} - {F}(') (2.154)

where - [K] is the tangent stiffness matrix at load step m

A'+' = P) + AA (2.155)

The Arc Length Method (ALM) may easily be visualized for a single degree of

freedom as shown in Figure 2.10. The displacements are updated as

{x}(i+i) = {} + {u} ' + Au (2.156)
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such that x('+ ' ) corresponds to the displacement at the (i + 1)th iteration of load

step m.

In the constant ALM, the radius of the arc at each load step is constant.

It is clear from Figure 2.10 that the ALM is used in conjunction with the modified

Newton-Raphson method, and may also be implemented with NR iteration schemes.

The method allows one to obtain postbuckling response but bifurcation problems

require modification that will seek out multiple paths after a limit point.

4. Convergence Criterion

For a given load step, the iterations on displacements are carried out until

a pre-set convergence is achieved. There are three convergence tests most commonly

used, (a) Displacement Convergence, (b) Residual Force Convergence, and (c) Strain

Energy Convergence. These criterion may be summarized as follows:

{mul }T{AUI} - CtDISP

{gi}T{g} < a.F.

(AAI) 2 {p}T{p}

f{Au}T{gi} <  aDJSPCaR.F. (2.157)
A'1Ai{ul}{P} -

It may be noted that {Au'} is the incremental displacement at iZt iter-

ation, {g'} is the residual force at ith iteration, AA'{P} is the incremental load at

the first iteration, {Au'} is the incremental displacement at the first iteration, and

a 's are the prescribed convergence parameters, usually in the order of 10-2 to 10- .

It is further noted that the initial load {P} used to start the analysis is

set arbitrarily and only the load parameter is modified automatically to go from

zero load to the desired load level.
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III. PROGRAM IMPLEMENTATION

A. INTRODUCTION

This chapter presents certain aspects of computer implementation of the ele-

ments matrices developed in the previous chapter. As mentioned in Equation 2.25,

the general problem to be solved is given by

[K]{d} = {r} (3.1)

[K]iDI = {R} (3.2)

where equations 3.1 and 3.2 are the static equilibrium equations for the element

and structural assemblage respectively. If the stiffness matrix, [K], is independent

of displacements, the analysis reduces to solving a set of linear algebraic equations.

In the case of the stiffness matrix being displacement independent, the structural

behavior is nonlinear, and an incremental load analysis together with a suitable

iterative methods has to be adopted.

B. LINEAR ANALYSIS

In the case of linear analysis, we assume small displacements and small strains,

and the resulting force-displacement relations are solved only once. Using the dis-

placement independent part in equation 2.61 to get the strain-displacement rela-

tions [BLo], as given by equation 2.80, equation 2.20 is used to form the element

stiffness matrix. A series of Fortran subroutines was developed incorporating the

element stiffness matrix for this element. The material characteristics may be either

isotropic, laminate theory definitions, or anisotropic description. The subroutines

are implemented in an existing computer program, FEMCOM, which is capable of
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element assembly and subsequently calculation of the displacement solution for both

linear and incremental load methods.

C. NONLINEAR ANALYSIS

In this research effort, geometric nonlinearities, namely, large displacements

but small strains are considered. Consequently, the element consists of a linear

displacement independent stiffness matrix, [KLo], and two other contributions. The

first contribution is due to the linear displacement dependent stiffness matrix, [KLI],

based on [BL1], as given in equation 2.81. The other contribution comes from

nonlinear stiffness matrix, [KNL], as given by equation 2.95.

Note that the stress-strain matrix, [E], may be used both for isotropic as well

as composite materials using relations 2.131 and 2.132.

D. SOLUTION PROCEDURE

1. Composite Material

In order to generalize the procedure of implementing the solid element

with composite materials, the plate built of solid elements may be stacked in all three

directions. Figure 3.1 shows such a stack, where rows of elements are arranged in the

thickness direction. For each finite element, the stress-strain matrix is computed in a

subroutine separately, though it would be more efficient to compute it for the whole

row of elements, taking into account the appropriate layers. In assigning a certain

number of layers in each row, a constraint to be noted is that the total number of

layers of all rows match the number of layers of the structure being modeled.

2. Linear Case

As mentioned earlier, the matrices corresponding to the linear displace-

ment independent part was coded into several subroutines and implemented into a

48



€4-1

~Q) Q

0))

0

U4

-Ir CUJ

CeO

o -.

Figure 3.1: Thick composite plate-element arrangement

49



general purpose finite element program, FEMCOM. The program does automatic

element assembly and yields solutions to prescribed loads. The flow chart shown in

Figure 3.2 shows various steps that may be summarized as follows.

1. The material properties, model geometry, applied loads, integration scheme,

boundary conditions and solution parameters are input. The material proper-

ties needed for isotropic material are Young's modulus and Poisson ratio. For

composites, data needed includes the number of layers, rows of elements, fiber

orientations, Young's moduli, shear modulus in three directions, and Poisson

ratio.

2. Using the shape function derivatives, the coordinates transformation relations,

Jacobian and the strain displacement relations are established.

3. Using the specified Gauss quadrature, the element stiffness matrix is formed

in global coordinates.

4. The element global stiffness matrix is assembled.

5. Using Gauss elimination technique, the displacement vector is computed.

6. Stresses may be computed using equations 2.14 and 2.15.

3. Nonlinear Case

In order to obtain nonlinear response, either for studying the extension-

twist-flexure coupling or nonlinear buckling and post-buckling, the analysis pro-

cedure is termed the incremental load method, and a variation of Newton-type

iteration is used. The element formulation, assembly and equation solving proceed

as before, except that additional element stiffness contributions have to be taken

into account. The assembly and solution to get displacements needs to be done as

50



E INPUTH IR=I,,NHRON=

ko:IDTED °d'.
E

K D:K-" 'k

FIG. :3.2; Flow chart-
linear analysis

Figure 3.2: Flow chart - linear analysis

51



frequently as the load steps increments and iterations continue, depending on the

solution strategy selected. A typical flow chart is given in Figure 3.3.

For a given load step, the incremental displacements are computed it-

eratively until the convergence criterion is satisfied. At that point, equilibrium is

achieved and new incremental load is applied and a new tangent stiffness matrix is

computed. The iterations continue until the new equilibrium position is obtained.

In the modified Newton-Raphson method, the tangent stiffness matrix is kept con-

stant for all iterations for a given load step, while, for the Newton-Raphson method,

the stiffness matrix for the whole structure is formed at every iteration. By tracing

the load-displacement path, critical points, characterizing buckling, and stable and

unstable regions of post-buckling equilibrium states may be identified.
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IV. NUMERICAL EXAMPLES

A. INTRODUCTION AND NOTATIONS

In this chapter, selected numerical examples are used to evaluate element

idiosynchrasies and demonstrate its application in solving critical structural com-

ponents that use thick composites. Solutions obtained here are compared with

available elasticity solutions or other numberical solutions.

1. Material Properties

In all the examples to be discussed, the material characteristics used are

as follows. For isotropic materials,

E = 30 x 106 psi, v = 0.30

and for composite materials used for laminated plates, layer properties are given by

E, = 40x106 psi

E2 = 106 psi

G 12 = G13 =0.6x 106 psi

G23 = 0.5 x 106psi

v = 0.25

An eight-layered symmetric laminate configuration using this material is selected.

All the dimensions presented in this chapter are in inches. In the discussion on

effects of numerical integration rules, L x M x N notation refers to the number of

integration points in x, y, and z directions respectively.

B. COLUMNS AND BARS

Two simple cases have been selected as part of the element validation process.
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1. Bars

A bar clamped at one end and loaded at the other end with uniformly

distributed traction (Figure 4.1a) was studied and compared to the theory of elas-

ticity. In the numerical solution, work-equivalent loads were used. The dimensions

of the bar are 10 in. x 1 in. x 1 in., and it is isotropic. The boundary conditions

are given by

U(0,h h) =V(0,h -h-\ = w 0, -h+) = 0 (4.1)

Figure 4.2 depicts the effects of reduced integration and mesh refinement on the

maximum deflection. It is obvious that when the mesh is refined in the thickness

direction, for instance, one element in each of x and y direction and two in z di-

rection [1 x 1 x 2] mesh, provides a stiffer solution than for the [1 x 1 x 1] mesh.

It may be noted that the full (F) and reduced (R) integration schemes converge

to about 95% of the classical solution (See Appendix C). It may be noted that the

classical elasticity solution does not account for transverse shear stresses. A reduced

integration in the axial direction (2 x 3 x 3) gives the same results as the full inte-

gration. However, when reduced integration in the thickness directions is performed

(3 x 2 x 2), the solution converges slowly. On using (2 x 2 x 3) integration scheme

in the thickness direction for (12 x 1 x 1) mesh, spurious mode is observed. Table

4.1 summarizes the effects of various integration schemes and mesh sizes.

2. Beams

The next example considered is a clamped, cantilever beam loaded at the

free end by a shear load. Using the clamped boundary conditions, dimensions and

material as the previous example, solutions using full and reduced (R) integration

are compared with the elasticity solution in Figure 4.3. The comparisons also include

the solution obtained using eight noded first order solid element of 'GIFTS' software.
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Fig. 4.2; Clamped Bar Under Uniaxial Load
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Figure 4.2: Clamped Bar Under Uniaxial Load

57



TABLE 4.1: EFFECTS OF REDUCED INTEGRATION AND RE-

FINED MESH, ON THE MAXIMUM DEFLECTION OF CLAMPED
ISOTROPIC CANTILEVER BAR UNDER UNIAXIAL LOAD

Mesh # d.o.f. Integration
Rule u-,

5.7 F(3x3x3) 97.49
R (3 x 3 x 3) 98.17
RR (2 x 2 x 3) 129.56

2-2x x 111 F 99.43
R 99.84
RR 115.98

2 = 1 x 1 x2 99 F 90.77
R 91.20
RR 91.83

3 = 3 x I x 1 165 F 100.40
R 100.81
RR 112.64

4 = 4 x I x 1 219 F 101.04
R 101.59
RR 111.39

6 = 6 x 1 x 1 327 F 101.83
R 102.80
RR 110.74

12 = 12 x 1 x 1 651 F 102.74
R 105.00
RR 11,500.00

Umax Uma AE

Uelasticity pl
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The reduced integration shows a better convergence than both the full integration

and the first order solid element. It may be noted that the eight noded solid element

converges more rapidly than the full integration scheme of the present element up

to about 300 degrees of freedom (d.o.f.).

It can be seen from Table 4.2 that mesh refinement in the thickness di-

rection results in reduced performance and one element in the thickness direction

consistently yields good results.

In Figure 4.4, the effect of transverse shear deformation is studied for a

12 x 1 x 1 mesh using reduced integration scheme, and compared to the theory of

elasticity solution (See Appendix C). The results are summarized in Table 4.3 versus

the aspect () ratio.

It is clear that for thin beams where the elasticity solution is adequate,

the present element gives stiff solutions, whereas for thick beams (- < 10), better

solutions are predicted. The reason for these effects may be attributed to the trans-

verse shear stresses. In the case of thin bars, or beams, the element aspect ratio

is very large and the parasitic shear strains appear at Gauss points, resulting in a

phenomena called 'shear locking' [Cook, 1989, and Hughes, 1978]. When the beam

is thick and the aspect ratio is of the order of 1/10, the transverse shear stresses

start to become significant, whereas in the elasticity solution, they are taken into

account only to a limited degree together with the restrictions of Saint-Venant's

principle.

C. CLAMPED PLATES

An isotropic clamped plate of dimensions 20 in. x 20 in. x 1 in. under

a central concentrated load is shown in Figure 4.5a. This problem is studied for

mesh sensitivity and the effects of different integration rules. The present solution

59



Fig. 4.3; End Loaded Beam Bending
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Figure 4.3: End Loaded Beam Bending
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TABLE 4.2: EFFECTS OF REDUCED INTEGRATION AND
MESH CONFIGURATION ON THE MAXIMUM DEFLECTION OF
CLAMPED ISOTROPIC CANTILEVER BEAM LOADED AT THE
END

Mesh * # d.o.f. f -- Wma p1 100

27 solid 8 solid t
(27 solid) F R F

I = 1 x I x 1 57 5.7 26.7 9.4

3 = 3 x I x 1 165 37.0 54.0 47.2

4 = 4 x I x 1 219 56.0 70.3 60.5

9 = 9 x 1 x 1 489 91.3 95.4 85.8

12 = 12 x 1 x 1 651 95.0 97.3 89.8

3 = I x 1 x3 147 5.5

4=2xl xl 135 16.9

6 = 2 x 1 x 3 273 17.0 w~eaotirit = 101.0

6 =3x 1x2 285 36.0

9=3xI x3 399 39.1

F: Full integration

e 3 x 3 x 3 for 27 solid

* 2x2x2for8solid

R: Reduced integration

* 2 x 3 x 3 for 27 solid

f 8 solid is generated in "GIFTS".
* Mesh configuration for 8 solid is twice of 27 solid in each direction, i.e., 2 x 1 x 3
for 27 solid is 4 x 2 x 6 for 8 solid.
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TABLE 4.3: CENTER DEFLECTION VS. ASPECT RATIO (i) OF
AN ISOTROPIC CANTILEVER CLAMPED BEAM LOADED AT ONE
END

___ , We

2 124.38 110.07

.5 103.90 99.49

10 100.98 97.07

50 100.04 53.43

100 100.01 17.85

w w1I, h, lh) 3E1 2

P 12

w w(1, h, jh) Eh10

+e 3 [+(1 +V) h] 102

See Appendix C.
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Fig 4.4; End Loaded Beam Deflection
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Figure 4.4: End Loaded Beam Deflection
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is compared with the elasticity solution (See Appendix C for details on elasticity

solutions).

Invoking symmetry conditions of the problem, a quarter of the plate is modeled

with the following boundary conditions imposed:

* ,Y,±- = V 1Y ) W0 ,±h (4.2)

u (X, , ±) 2 V (X, 0 ± = (X, a, =02 (4.3)

and the symmetry conditions.

u (, y, z) =v (X, a, z) =0 (4.4)

The load was taken as one quarter of the total load. Figure 4.6 shows the comparison

of a mesh composed of elements arranged in one row of elements (N x N x 1) vs.

a mesh of the type (2 x 2 x M), composed of M rows of elements arranged in the

thickness direction with 2 x 2 elements in each row. Full integration is employed

in the computations. Table 4.4 summarizes the resultant deflection and mesh sizes.

It is clea- from this and the previous examples that one row of elements in the

thickness direction is adequate to predict the response of the structures. Figure

4.7 presents the convergence characteristics of three integration schemes. It may be

noted that reduced integration (3 x 3 x 2) in the thickness direction yields very close

results to that of the full integration scheme. Reduced integration produces good

results by compensating for the estimation of finite element approximation. The

in-plane reduced integration scheme (3 x 2 x 2) shows divergence in the computed

response. It may be mentioned that using one element to model quarter plate

resulted in much higher deflection than expected. This implies that a one element

model contains spurious modes and a one-element modeling of plate/shell problem

should be avoided. On examining the convergence plot, with less than 600 d.o.f., the
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TABLE 4.4: MESH COMPARISON OF AN ALL EDGES CLAMPED
RECTANGULAR ISOTROPIC PLATE UNDER CENTRAL LOAD QP
=1000 lb.)

Mesh # d.o.f. w

1 = 1 x 1 x 1 37 13.8529

4 = 2 x 2 x 1 145 4.2230

9 = 3 x 3 x 1 325 5.0690

16 = 4 x 4 x 1 577 5.6592

8 = 2 x 2 x 2 275 4.0133

12 = 2 x 2 x 3 405 3.9955

16 = 2 x 2 x 4 535 3.9597

18 = 3 x 3 x 2 591 5.0647

w h) Eh 3
W 2 2  100p a 2

evaluated deflection is within 90% of the elasticity solution. Table 4.5 summarizes

the effects of various integration schemes and mesh sizes.

D. SIMPLY SUPPORTED PLATES

Bending of a simply supported rectangular plate under uniformly distributed

force is presented herein. (See Figure 4.5b) Both isotropic and laminated plates are

investigated using one quarter of the plate, as discussed previously. The results are
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Fig. 4.6; Clamped Plate Under Central Load
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Figure 4.6: Clamped Plate Under Central Load
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Fig. 4.7; Clamped Plate Integration Rules
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TABLE 4.5: INTEGRATION RULES COMPARISON OF AN ALL

EDGES CLAMPED RECTANGULAR ISOTROPIC PLATE UNDER

CENTRAL LOAD QP = 1000)

w for various integration rules

Mesh #d.o.f. (3x3x3) (3x3x2) (2x2x3)

4 = 2 x 2 x 1 145 4.2230 4.2575 6.9918

9 = 3 x 3 x 1 325 5.0690 5.0853 7.6576

16 = 4 x 4 x 1 577 5.6592 5.6763 8.1128

w(~ S, h) Eh 3
w = 2  100

P a
2
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compared with Classical Plate Theory (CPT) as given in Appendix C and higher

order shear-deformation (HSDT) plate theories [Reddy, 1985, Lo et al., 1977].

The following boundary conditions are imposed,

W (0, Y, ±-. = W (X, 0, )= 0 (4.5)

and the symmetry conditions are as given in equation 4.4. Reduced integration

(3 x 3 x 2) is adapted throughout all the computations presented in this section.

The convergence characteristics of the element and comparison to CPT is depicted in

Figures 4.8 and 4.9 for both isotropic and laminated plates. In the isotropic case, the

present element shows convergence within 90% of the elasticity solution for less than

200 d.o.f. In the case of laminated plates, (Figure 4.9), the classical .;olution [Vinson,

1987] gives a more flexible solution than the present element. Table 4.6 summarizes

the deflections of the isotropic and laminated plates and mesh sizes. It may be

noted that the classical solution uses laminate theory, which neglects the transverse

shear stresses, and hence the contribution of these stresses is not taken into account.

This assumes more significance for thick plates (a < 10 to 15). Furthermore, when

the plate stiffness in the thickness direction is significantly lower than its stiffness

in the in-plane direction and when the shear modulus in the thickness direction

is significant, the classical laminate theory does not predict the response of the

structure accurately. In the present example, a = 20 and - = 40, G13 - G12.

It may be concluded that using laminate theory for bending of thick plates yields

a nonconservative estimate of deflections and special attention should be given to

the stiffness ratio [] and shear modulus ratio [-] in determining the

of such plates. In Figures 4.10 and 4.11, the maximum deflection is presented for

different aspect ratios, (S), of the plate. Both isotropic and laminated plates are

analyzed and compared to CPT. In addition, the solution of the laminated plate is
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also compared -o Higher Order Shear Deformation Theory [Reddy, 1985], as shown

in Table 4.7.

As in the beam bending c; e, shear locking is observed for thin isotropic plates.
For thick plates, (say, = 4), the computed deflections become significantly larger

than predicted by CPT, as expected.

Examining Figure 4.11, it may be deduced that even the HSDT [Reddy, 1985]

underpredicts the deflections. For thin laminated plates, the shear locking effect is

not as significant as observed for isotropic plates. This may be attributed to the

fact the laminated plate has more flexible transverse material stiffness in bending

than the coefficients than the isotrop, i': plate, so that shear locking is expected to

develop only for thin isotropic plates.
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TABLE 4.6: ALL EDGES SIMPLY SUPPORTED RECTANGULAR
PLATE, UNDER UNIFORMLY DISTRIBUTED LOAD

Isotropic Composite
Mesh # d.o.f. w w

4 = 2 x 2 x 1 186 3.2826 0.3871

9 = 3 x 3 x 1 386 3.6335 0.3878

16 = 4 x 4 x 1 658 4.0541 0.4053

CPT 4.4335 *0.3634

* Neglects G1 3 and G23. See Appendix C.

The uniformly distributed load is taken as the total consistent load over the area of

the quarter plate.

F
q = (!2

The maximum deflection is taken at upper surface.

w (z, 2, h) E2h 3
w = 100

q a 4
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TABLE 4.7: CENTER DEFLECTION VS. ASPECT RATIO OF SIM-
PLY SUPPORTED RECTANGULAR PLATE UNDER UNIFORMLY

DISTRIBUTED LOAD

Isotropic Orthotropic Reference*

w w w

4 9.8275 5.1324 1.6340

10 4.9581 0.8221 0.5904

20 4.0541 0.4053 0.4336

100 1.0902 0.2406 0.3769

CPT 4.4335 0.3634

*Reference: Reddy, 1985.
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Figure 4.9: Simply Supported Laminated Plate
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Inii!. 4. 10 s(); ( )I ic Pla~te Delflcclions vs. Aspect Ratio
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Figure 4.10: Isotropic Plate Deflections vs. Aspect Ratio

Fig. 4.11; Laminated H'awc Dclcctions vs. Aspect Ratio
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Figure 4.11: Laminated Plate Deflection vs. Aspect Ratio
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V. CONCLUSIONS AND SCOPE FOR
FUTURE RESEARCH

A. CONCLUSIONS

This study suggests a three-dimensional higher-order finite element to be in-

corporated in the analysis of thick plates composed of both isotropic and laminated

composites. By using a tri-quadratic Lagrangian twenty seven noded solid element,

no assumptions on transverse shear strains are introduced in the formulation. The

formulation, based on the principle of virtual work, is presented for both linear

and nonlinear analysis. The material constitutive relations for linear isotropic and

composite materials are presented. For composites, both laminate theory and three

dimensional anisotropic adaptations are described.

Several numerical examples using linear analysis are given for bars/beams and

plates using both isotropic and composite materials. Three dimensional anisotropic

relations are adapted for composites. The results show that the present element is

effective for analysis of thick beams and plates, but exhibits shear locking for thin

beam and plates.

Spurious modes are revealed for single element usage in plate modeling, as is

the case for some other finite elements.

Reduced Integration in the thickness direction for beams and plates gives sat-

isfactory results. An interesting outcome is that one element is sufficient to capture

transverse deformation for thick laminated structures and mesh refinement in the

other two directions yields convergent solutions.
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B. SCOPE FOR FUTURE RESEARCH

More numerical experiments need to be performed to compare the present

soution to closed-form solutions [Pagano, 1969] to evaluate the efficacy of this ele-

ment.

Implementation of buckling analysis using the nonlinear element matrices pre-

sented herein is another task that may prove useful in predicting buckling response

of thick composite cylinders subject to external pressure. By incorporating the cen-

trifugal force in the external virtual work done by body forces, this element may be

used in modeling rotor blades.
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APPENDIX A
Shape Functions and Derivatives for Solid Element

Shape Functions for Solid Element

Mid-edge nodes: Mid-plane nodes:

N2 = r(1+r)(1-s 2) t (I+t) N9 = .1(1 -r 2 )( 1-- s 2) t(l+t)
N4 = (1 - r 2) s (1 + a) t (1 + t) N2 7 - (1- r 2) (1- 2) t (I- t)
N6 =-I r(1- r) (I1-s 2) t ( I +  t )  Nil= r (1 +r) (1- s 2 ) ( 1 - _t 2 )

N gs -- (1 - r ) s ( 1 -  s) t ( I+ t )  N 15 - (I _r) (1-_8 ) ( 1 - t 2)

N io0= - _r(1+ r) 8(1- ) (1 - t )  N13 - (I- r )  8 ( 1+ ) ( 1 - t )

N12 = r (1 + r) s(1+s) (1- t2 ) N17 r2) s (1- s) (1- t 2 )

N 14 = -- r (1 - r) s (1 + s) (1 - t2 )
Nis = r (1l- r) s(1 -s) (I - t")
N2o=--r(l+r)(1-s 2) t(I - t) Center node:
N2 2 = -1 (1 - r 2 ) 8 (1 + s) t (1- t)

N24 = ,- (I - r) (1 - 2) t (I - t) N 13 r 2 ) (I _ 82) (1 _ t2 )

N26 = r(- r 2 ) s(-s)t(1-t)

Corner nodes:

11  1N, = 8 (1 +,-)(1 -,s) (I+t) - 2(N2 +#Ns+ Nio) - 4 (Nl +.N,7 + N9) - j#1,

N = 1 +1)( ) 1+t (N2 + N4 + N12) - 1 (Nil + N13 + N9) - 1~

N 8 8

N = ( r) ( ) (1 + t)- (+ + )- + 1+ 1
1 111,,

N -= (1 + r) (1 - s) (I - t) - (No + N6 + N1 ) - - (N 5 + N1 7 + N) - NlN7 = (1-r) (1-s) (1 t)- (N16+NsN 4(t+NTN)

N 2 11 1N21 --= (I + r)(1 + s) (1 - t) - (N2o + N22 + N12) - I (Ni I + N13 + N27) - Nis

82 4 8
1 .- ~ I 1 tA'1 1

N23 = I -(I + ) (1- f-- -(N22 + N 24 + N 14 ) - -(N 1 3 +N 1 + N27 )- -NI
8+ 4 8N25 = (-)l (2+2+1) NsNsN - I

N25 = (1- r)(1-a)(-t)-(N24+N26++N16)-1(Ns+N17+N27)- Nis
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Shape Function Derivatives for Solid Element - r direction

Mid-edge nodes: Mid-plane nodes:

N2' t (1 + 2r) (1 -s 2 )(1 +t) Ng,, =-rt (1 -8 2 ) (1 +t)
N4 ,, = -1rst (1 +s8) (1 + t) N27 ,r = (I (- s2) (It)

N8 ,r = _t (- 2r) (I-- s2) (I+t) Nil:: = (+ 2r) (I_ 2) (1 _t2)
Ns 61' ( t (1 - 2r) (1 S2) (I 2

N8, = Ist ( - 2r) (1 + 0) (1 _ t 2)

N2 0,, = - & (I + 2r) (1 - s) (1 - t2) Cntr node:+s)(1_2

N212,, = st a (1 + ar) (1 _ t) ( 2
N20,, = - t (1 + 2r) (1 - 82) (I _ t) Cnte r( de(:-t 2

N22,, = -Irst (1 + s) (1 - t)

N 24, = _I1t a (1 + 2r) -1 _ (2 +1 N_ +) N,,) -( -(Ns, +) 1 7, + t2) )

N 26, = I(1+ a (1 + 3) (1- t)N, 4 ,+N 2 , ~(1 , 1 , 9 ,

Nl,, = (I (- 8) (1 + t) - (N2,, + N8,, + N1 6,,) - 1 (Nil,, + N 1 7,, + N9,,) - sr

N3,r = I(1- a) (1-+i) - (N 2,, + N, + N 1,) -1(Nl,, + N1 ,, + N 7,) - 1,

N 1,, = -(1 + a) (1 + t) - (N4,, + N, + N 1 ,) - j(N3,, + N 1 ,, + N 7,,) - Nr

N7r S ( 1 (N6,, + N,3, + N 1 4 7r) - N1, + N, + N)- N,3.

N2 3,, = -) 1+)( - 20r+N6 +IO)-1 (N1 3 ,, N15,, +27,r) 8 N18,r
1 1

N21,r ~~ = ~ (1+8)( -t (N 2 0,, + N22,, + N 12,,) - (N1 ,r + N1 ,, + N27 ,r) - -Nis,

N25 ,, = 81 (1 '1 )-(2, 2, 1,)-1 N5,+N7,+N7, ,~
24 ,8
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Shape Function Derivatives for Solid Element - 8 direction

Mid-edge nodes: Mid-plane nodes:

N2,. - -Irst (1 + r) (1 + t) Ng,, - -st (1 - r2 ) (1 +t)

N6,. = rsi (1 - r) (1 + t) Nil, -rs (I+ r) (1-_t2 )

N, = - t(1-r2) (1 - 2 s ) (1 + t) Ni 5,, rs (1- r)(1-t 2 )
N l o ,, = - r (1 + r) (1- 2s) (1- t 2 ) N1 3,, = 1(l-r 2 ) ( 1 + 2s ) (1 - t2 )

N 12 ,. = lr(I+r)(1+2s)(I-t2) N 1 7, -2(1 -r 2 )(1-2s)(1-t 2 )
N14 ,, = - r (1 - r) (1 + 2s) (1 - t 2 )

N 16,.- = r (1 -r) (1-2s) (1- t )

N 20,, = t rst (1 + r) (1 - t) Center node:
N 22 . = -It (1 - r2) (1 + 28) (1 - t)

N24 ', = - t rst (I - r) (I - t) Nis,, = -2s(I - r2 ) (1 t 2 )

Ns,t= t(1-r2) (1 - 2s) (1 - t)

Corner nodes:

1 (1 ,(+ _1 1 1
N1 ,, = - (1 + r) (1 + t) - (N 2,. + N,,. + N1o,.) - (N11 ,, + N 17,, + Ng,,) - N,

N3,. = (1 + r) (1 + t) - (N 2,, + N4,. + N 1 2,.) - 4 (Nil,. + N 1 3 ,. + Ng,,) -

1 1 1 1
N5,. = (I - r) (1 + t) - (N4 ,, + N6,. + N 14,.) - I (N 1 3,. + NI5 ,. + N9 ,.) - Nis,

N7 ,, = -I (1- r) ( + t) - (N 6,. + Ns,. + N16,.) - I (Nis, + N 17,. + N 9,) Ns,
11 11

N 9,s = -I(I + r) (1 - t) - (N 2o,, + N 26,. + N 1o,.) - I (Ni,, + N 17 ,. + N2 7,.) - Nls
1 1 11

N 2 1,, = I (I + r) (1 - t) - I (N 20 ,. + N 22 ,. + N 1 2 ,.) (Nil, + N83,. + N27,.) - Nis,

N 23 ,. - r) (I - t) - I (N 22 ,. + N 24 ,. + N 14,.) - (N 13,. + N 1s,. + N 27,,) - NIs,.
1 11r ( - ) 11

N2 5,& = - r) ( - (N24,. + N 26 ,. + N16 .,) - I (N 5 ,. + N1 7 ,. + N 27,,) - Nl,.
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Shape Function Derivatives for Solid Element - t direction

Mid-edge nodes: Mid-plane nodes:

N4,, = 8 (1 -r2) (I+ 8)(1 +2t) N 2 , - 1(1 -r 2 ) (1-_a 2 )(1 -2t)
N6,, = .... r (1 - r) (I - 82) (1+ 2t) N1 , = -ri (I +r) (1 - 82)

Ns ru=I (1 ,-) ) 21 ,=s(- 2 (+)

N 14.9= I rst (lI- r) (1+ 8)
N16 ,t = -Irst (1 - r) (I - s)

N20 ,, = -Ir (I + r) (1 - s2) (1 - 2t) Center node:

N24 ,: = 1 r (I-r) (I- 2 ) (1 -2t) Nlg,t = -2t( - r 2 ) (I - 82 )
N26,s,= fs(l- r 2 ) (I1_ )(-)

Corner nodes:

N1 ,, = I (I1+ r) (1 -8s)- I (N 2,9 + Nt3,, + N1 0 ,t) - 1 (Nil,, + N 17 ,, + N 9 ,,) - N,,

N3.8 = I(1+7r) (1 +8) - I(N 2 ,t + N4,, + N12,,) - I(N 1 1 ,, + N13 ,, + N9 ,,) -I 8t

N5,,t = I (I- r) (I- + ) - I (N4,t + N6,, + N 14,0 - (N 1 3,t + N15,, + N,) - N,

N7. , = - + r) (1 - 8) - I (N2 ,, + N 2 ,, + N1 ,) - (N,, + N 17,, + N 7,) - it

8 2 4 8
Nigt = - 1 + 1)( )-I(~~ 2, i~) Nlt+N7t+N70-1N ,

N1 = -~ (1-+ r) (I1+,a) - I (N 22 ,t + N2 2,, + N12.0) -~ (Nil,, +~ N 13,, + N 2 7,0) - st

N25,9 = - ( (1 - - a) - + N26 ,, +- i6,t) - I (N, 5,, + N17,, + N 27,,) - lt
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APPENDIX B
Jacobian Matrix

Jacobian matrix elements:

27

Jl-=x, "- Ni, xi

27

J y, = E N,,, y
j=1
27

J13--Z,r 'Ni,,z i
j=1
27

J1= x,. = E Ni,. x,
j=1
27

J2 = Y,. = 1: N,,, Y/
j=1
27

J23 = z,s = 1_ Nis zi
j= 1
27

J31 = X,t = E Ni,t x,
j=1
27

J32 = y,t = E Ni,t yi
j=1
27

J3 = Zt = E Ni,t z,
j=1

Elements of the inverse Jacobian matrix:

= (J22 J3 - J2 J32)

r,2 (J13 J32 - J12 J33)

= (J12 J23 - J13 J22)r21 =

8 (23 J31 -2 J2 J33)
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"722 = Pl IJ33 - J 3 J3 1)

r23 = j(J 2 J 3 - J1J23)

r3l = 1 ~(J 2 1 J3 2 -J 2 2 J3 1)

r'32 = j(J 2 J3 -J11J32)

F3= 1(Al J22 -J 21 J12)

Jacobian matrix determinant:

J det [J] J1 J(J 22 J33 -J 23 J32 )

-J 12 (J21 J33 -J 23 J31)
+ J13 (J21 J32 - J22 J131)
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APPENDIX C
Theories

A. THEORY OF ELASTICITY SOLUTIONS
1. Cantilevered bar under traction

PL
AE

" P = Total load

" L = Bar length

* A = Cross section area

" E = Young modulus

2. Cantilevered Beam under end load

PL3 +_____

3EI 21G

- 3[ +(l+V)

Reference: Timoshenko, 1951.

B. CLASSICAL PLATE THEORY (CPT)
1. All edges clamped rectangular isotropic plate under central load

Pa
2

D

D Eh=
12 (1 - V2)

a = 0.00560 for v = 0.3

Reference: Timoshenko, 1959.
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2. All edges simply-supported, rectangular plate under uniformly
distributed load

. -qa
4

a =0 00406 for v =0.3

. omposite

W ,, x = - q a 8  I H r8 .0n

m=1,3,5... n=1,3,5...

D = D m 4 + 2 (D, 2 + 2D 6 ) (ma) 2 + D 22n 4
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TABLE C-i

SAMPLE COMPOSITE MATERIAL DATA

Table C-1; Sam~ple Composite Material Data

INPUT DATA;

LAMINA; THNES ; THETA ; El E 2 ;Viz2 G12

8 ;0.12500 0.0 ; 0.40000E+08 ;0.10000E+07 ;0.25 ;0.60000E+06
7 ;0.12500 ;45.0 ; 0.40000E+08 ;0.10000E+07 ;0.25 ;0.60000E+06
6 ;0.12500 ;-45.0 ;0.40000E+08 ;0.10000E+07 ;0.25 ;0.60000E+06
5 ;0.12500 ;90.0 ;0.40000E+08 ;0.10000E+07 ;0.25 ;0.60000E+06
4 ;0.12500 ;90.0 ;0.40000E+08 ;0.10000E+07 ;0.25 ;0.60000E+06
3 ;0.12500 ;-45.0 ;0.40000E+08 ;0.10000E+07 ;0.25 ;0.60000E+06
2 ;0.12500 ;45.0 ;0.40000E+08 ;0.10000E+07 ;0.25 ;0.60000E+06
1 0.12500 ; 0.0 ;0.40000E+08 ;0.lOOOOE+07 ;0.25 ;0.60000E+06

OUTPUT DATA;

0.12773E+08 0.55940E+07-0.81226E+06
0.55940E+07 0.17603E+08-0.30995E+07

-0.8l226E.06-0.30995E+07 0.59436E+07

0.OOOOOE+00-0.27344E-01 0.OOOOOE+00
-0.27344E-01-0.16406E+00 0.OOOOOE+00
0.OOOOOE+00 0.OOOOOE+00-0.62500E-01

D( i, j )-MATRIX

0.20743E+07 0.28699E+06 0.72461E+05
0.28699E+06 0.81544E+06 0.17998E+06
0.72461E+05 0.17998E+06 0.31612E+06

Note; A,B and D matrices are evaluated ,neglecting Transverse Shear
--- contribution i.e. G13-G23-0

Usinq Navier's solution with n-m-200, i.e. 100 terms for each
direction, as given in the above, we have,

Wmax - 0.052328

3
Wmax*E *h

2 *100 -0.3634

q*a

Where q-90 ; a=20
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