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ABSTRACT

The microstructure of solution-treated, quenched and aged AI-2.5 wt.%Li and AI-2.0

wt.%Li-2.76 wt.%Mg- 1.03 wt.%Cu alloys were studied by powder X-ray diffraction. The as-

quenched alloys showed extensive X-ray line broadening due to particle size effects, and the

intensity measurements indicated a significant amount of ordering in the as-quenched state.

These results were interpreted using a 'spinodal ordering' model, which suggests that Al-Li-

based alloys order during quenching and then spinodally decompose into regions of order and

disorder so that the final microstructure comprises small ordered regions (size - 40 nm) in a

disordered matrix. Studies on the aged AI-2.5 wt.%Li alloy indicated that after initial short-

time aging, the v, particle growth follows Ostwald ripening kinetics in agreement with

previous work. Studies on the aged quaternary alloy indicated that T1 and S phases grow at

the expense of s, in this system so that ' precipitates are not a dominant strengthening

mechanism in this alloy.
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I. INTRODUCTION

In the past few years, aluminum-lithium alloys have been studied extensively for

aerospace and military applications because they provide a combination of high strength,

increased elastic modulus, low density, resistance to stress corrosion cracking, thermal

stability, improved performance, and cost efficiency. Al-Li-based alloys are considered to

be superior to graphite-epoxy composite materials for aircraft skin applications since the

composite possesses drawbacks such as fiber anisotropy, low fracture toughness, difficulty in

inspection, susceptibility to environmental degradation, and high cost of manufacture. These

composite materials are used extensively in airframes due to their weight-saving

characteristics, however.

Lithium additions to aluminum greatly increase stiffness and yield strength. However,

these superior properties in AJ-Li alloys are always accompanied by decreasing ductility, low

fracture resistance, and poor toughness in peak-aged and overaged conditions. The major

strengthening mechanism of Al-Li alloys is the precipitation and aging of a hardening phase.

This metastable phase is called S,(Al3Li); the formation mechanism and coarsening behavior

of this phase are not completely understood.

The mechanical properties are strongly dependent on alloy composition and

microstructural properties, including particle size disti lbution of matrix and precipitates,

interactions between microstructure and dislocations, volume fraction of precipitates, and the

deformation mode. The optimum microstructure to improve toughness can be L.ch;zved by

appropriate lithium additions, adding alloy elements, or thermomechanical processing

methods. Thus, many systems more complex than Al-Li (binpry), such as AI-Li-X (ternary)

and AI-Li-Mg-X (quaternary), have been developed and in%



Although many researchers have tried to examine the microstructure of Al-Li-based

alloys via transmission electron microscopy (TEM), the present work will be conducted mainly

by the X-ray diffraction method (XRD). Whitman and Fuller at NPS have used XRD to

analyze AI-2.5 wt.%Li-.15 wt.%Zr (plate samples) and AI-4.1 wt.%Li (plate and powder

samples) alloys respectively and determined the particle size at the as-quenched and early

aging stage using the Scherrer equations [Ref. 1, 2]. Texture effects were observed by

comparing the plate samples with powder samples. This work will aim to characterize the 6,

phase by performing XRD studies on two kinds of Al-Li-based alloys (Al-2.5 wt.%Li-.15

wt.%Zr, Navalite: AI-2.0 wt.%Li-2.76 wt.%Mg-l.03 wt.%Cu-.12 wt.%Zr) using powder

samples filed from the as-quenched and aged alloys.



II. BACKGROUND

A. ALUMINUM-LITHIUM-BASED ALLOYS

1. Development History

The pursuit of competitive age-hardenable alloys with higher strength, better

formability, and improved resi:tance to fatigue and corrosion has been ongoing since the

development of the heat treatable aluminum alloy Duralumin prior to World War I. The

development of Al-Li-based alloys has been underway for more than 65 years. It is

noticeable that Li is one of just eight elements with considerable solubility in aluminum as

a solid solution (exceeding 1 at.%, e.g. 4.2 wt.% in Al-Li binary alloy) [Ref. 3].

The first aluminum alloy containing lithium for structural applications, Sclern,

was introduced in Germany in the early 1920s. However, the consequent developments in A!-

Li-based alloys were surpassed by the improved Duralumin type alloys. A high-strength alloy

was discovered by I. M. LeBaron in 1942 and a patent granted for an AI-Cu-Li-X alloys in

1945. Once again, the merits of Al-Li-based alloys were ignored for about ten years due to

the discovery of high-strength alloy 7075 (Al-Zn-Mg-Cu) in 1943 [Ref. 3].

In 1958, the Alcoa 2020 alloy provided a high strength-to-weight ratio, increased

elastic modulus, and resistance to exfoliation corrosion and stress corrosion cracking. It was

successfully used for skins on the wing and horizontal stabilizer of the U.S. Navy RA-5C

Vigilante aircraft. Unfortunately, major pioblems with the 2020 alloy were its low ductility

and unacceptable fracture toughness, which was lower than tnat of 7075-T6 alloys. t - a

result of these limitations of 2020, use of this alloy was reduced in the late 1960s. [Ref. 3]

At the same time, the Soviet Union made efforts to develop Al-Li-based alloys

(e.g., AL-Mg-Li) with lithium additi,.i in excess of 2 wt.%, resulting in alloy 01420. This

alloy was later applied on the MIG-25 Foxbat [Ref. 4]. The USSR workers also studied Al-
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Zn-Mg-Li alloy systems for weldable applications. The actual mechanism of strengthening

first identified in Al-Li and Al-Cu-J.i alloys by Silcock was not of great importance before

the 1970s.

Since the introduction of TEM techniques, development and research have

emphasized the transformation of precipitate phases and deformation behavior related to

microstructure. Research into developmental Al-Li alloys was rapidly promoted by the

aircraft industry's ever-increasing need for faster speed, high performance, greater payload,

current production skills, and competition with advanced composite materials.

2. Current Status

Commercial aluminum-lithium alloys and two conventional (non-lithium-

containing) aluminum alloys have been developed in recent years. Their compositions are

shown in Table 1.

TABLE 1. ALUMINUM-LITHIUM AND CONVENTIONAL ALLOY
COMPOSITIONS (Nominal Weight %) [Ref. 4]

alloy Li Cu Mg Mn Zr Zn Cr

2090 2.2 2.8 .... 0.1 ....

8091 2.6 2.0 0.9 -- 0.1 ....

2091 2.0 2.2 1.5 -- 0.1 ....

8090 2.5 1.3 1.0 -- 0.1 ....

2024 -- 4.4 1.5 0.6 ......

7075 -- 1.6 2.5 .... 5.6 0.2

The alloying elements Cu, Mg, and Zr are added to modify the Al-Li

microstructure and to provide additional strengthening (solution or dispersion hardening).

These elements modify microstructure either by altering Li solubility in Al, by forming Cu-

rich and Mg-rich phases, or by co-precipitating with 6,(AILi). The replacement of

conventional alloys guides the work on Al-Li alloy design; usually lightness and rigidity are

the major properties concerned. In addition, in Al-Li alloys, design has to satisfy several
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technological requirements:

* casting ability into larger size ingots

* hot and cold work ability

* recycling compatibility

* no abrupt change in production skills and maintenance and repair

Al-Li alloys were developed by Pechiney to satisfy the strength offered by

conventional Al alloys with a density reduction of 8 to 12 percent. The Al-Li-Cu-Mg-Zr

system has become the most promising [Ref. 5]. The major current commercial application

for Al-Li alloy 2090 is extensive usage on Boeing airplanes as well as other Boeing products.

Another example of wide use of Al-Li is the French Airbus body family A310, A320 and

A300-600 [Ref. 5, 6].

Testing for military applications has also been conducted:

* The U.S. Air Force FI5D wing skin, using the 8090 alloy, produced a weight

saving of 24 pounds while increasing the panel's performance.

* F15-E 9g spectra have been increased with 8090 to extend fatigue life. This was

tested for the first time in 1986 [Ref. 7].

The U.S. Naval Air Development Center is also combining its efforts with Alcoa

Inc. to achieve the special goal of replacing 7075 alloys with 8089 or 2090 series alloys. For

maximum strength, 7075-T6 will be compared with 2090-T8E41; for high stress corrosion

resistance, 7075-T73 will be compared with 8092 or 2090.

3. Benefits and Drawbacks of Al-Li Alloys

The introduction of new advanced materials with higher strength, light weight,

and thermal stability contributes to the development of new aerospace transportation vehicles

for higher performance, greater payload, and better fuel economy. Among these materials,

AI-Li alloys are obviously the most attractive candidates for aerospace applications for several

reasons. These are:
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* Formability. Current machinery and skills are well developed. It is not necessary

to spend extra money on establishing new techniques.

* Resource availability. Reserves indicate that the lithium supply is substantial for

the present market and for several decades of development [Ref. 3].

* Design. The inspection methods and test procedures are well established.

Knowledge of Al alloys in engineering design has been systematically recognized.

Several decades of experience and well-balanced response in the overall

engineering of aluminum alloys provide an outstanding advantage [Ref. 8].

* Reliability and Safety. Aluminum alloys have shown their superiority to

composite materials in plane crash performance. The composite materials have

a higher tendency to splinter [Ref. 6].

* Superplasticity. Elongations in Al-Li alloys exceeding one thousand percent can

be achieved by means of thermal mechanical processing. Thus more complicated

shapes can be produced without difficulty with Al-Li alloys [Ref. 9].

* Weldability. An ultra-high-strength, forgeable Al-Cu-Li-Ag-Mg alloy has been

found with good weldability and a strong natural aging response without prior

cold work to stimulate precipitation of the second phase [Ref. 10].

The major shortcoming of Al-Li alloys is low toughness, particularly in the aged

condition, and much research work is being directed at this. The list of disadvantages

includes:

* The low toughness problem. Coarsening phases promote precipitate free zones

near grain boundaries, resulting in intergranular fracture failure on overaged

material, particularly in the short transverse direction.

* Investment. Aluminum-lithium alloys need special techniques to prevent loss of

Li, as it is very reactive and corrosive during production. The cost of

production may be 2-4 times higher than that of conventional alloys, but it is still

6



competitive with regard to other advanced materials such as composites [Ref. I1 ].

Scrap segregation. Al-Li scrap must be kept separated from conventional

aluminum alloys. This can be considered a minor problem [Ref. 5].

B. MICROSTRUCTURE

1. Phase Diagram

For binary Al-Li alloys, the phase diagram was proposed as in Figure 1 [Ref. 12].

' is a metastable phase with an L I, cubic structure. Another intermediate phase is the body-

centered cubic Al-Li s phase.

AL-Li sysern

I100

Liquid

900

700./
1 ..

A1-crnic concentro-zion o4 Li

Figure 1. Al-Li Phase Diagram [Ref. 121.
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2. Phase Description

a. 6 '(Al 3Li)

When a homogeneous a solid solution is quenched into the metastable two-

phase region as shown in Figure 2, the s, precipitate forms in the disordered a matrix,

referred to as a superlattice structure. 6' is a metastable phase with an ordered LI 2 structure

and a lattice parameter of 4.045A, as shown in Figure 3. The spherical precipitates in the aged

alloys are coherent and have a cube/cube orientation, with the matrix showing almost no

misfit (less than 0.1%). The stoichiometric composition of 8' is considered to be AI3Li [Ref.

13].

oo

a 3 1 10 13 14 h is 20 22 2' 26

ATOMIC %U

Figure 2. Miscibility Gap region of Al-Li Phase Diagram: Vertical bars demonstrate
quench for Navalite (left) and Binary (right).
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Q Li

*Al

Figure 3. L12 Ordered Structure of 5 '(Al 3Li).

The increase in strength on aging is attributed to the interaction between

8' precipitates and superlattice dislocations in the parent phase [Ref. 14]. Coherent 8'-

particles are sheared by moving dislocations, resulting in an intense planar slip responsible for

low ductility during plastic deformation [Ref. 15]. The morphology of ' is dependent on Li

content and aging time. For longer aging times or lower Li-content alloys, particles are more

likely to be spherical. The growth of 8' obeys Ostwald ripening kinetics in that the average

radius of particle increases proportionally to (time) 'A while the total particle number reduces

to maintain a constant volume fraction.

Increasing the Li content accelerates the particle coarsening rate. The larger

particles grow at the expense of the smaller ones to reduce the free energy related to the

decreasing surface area of particles as growth proceeds. The particle size distribution (PSD)

can be modeled by the Weibull distribution equation. The PSD in the binary alloys varies with
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the lithium content. Small volume fractions (0.12) show negatively skewed PSDs. However,

increasing the 6, volume fraction to 0.55 leads to a positively skewed PSD [Ref. 16]. The

Lifshitz-Slyozov Encounter Modified (LESM) theory was the only one accurate in modeling

the PSD of ', although the other theories also predict a broadening of PSD with increasing

volume fraction of precipitates. The LESM model assumes coalescence occurring between any

two particles that are close to each other and indicates that anti-phase boundaries (APBs)

would appear in 6, particles when there is a high volume fraction of precipitates. [Ref. 171

b. 6(AlLi)

The coarse equilibrium 6 phase has a lattice parameter of 6.37K It is an

intermetallic compound with a cubic B32 (NaTI) type structure. The formation mechanism

of 5 is not well understood. It is believed that s forms preferentially along high-angle grain

boundaries during the early stages of aging and is nucleated within the parent phase after

longer aging times [Ref. 18]. It has been reported that 6 can be removed from the sample

during electropolishing, making it difficult to observe in the electron microscope [Ref. 19].

Niskanel et al. proposed that 6 nucleates from the preferential coarsening

of 6' [Ref. 20]:

a -6' 6

Although no positive evidence for 6 formation in as-quenched Al-Li alloys

exists in the literature, Whitman has observed the presence of 6 in the as-quenched state for

the AI-2.5 wt./oLi-0.15 wt.%Zr alloy [Ref. 1]. Williams also suggested that 6 forms

independently of s, and nucleates heterogeneously within the matrix and along grain

boundaries [Ref. 211:

The dissolution of the 6, precipitates occurs near grain boundaries and

contributes to the growth of s on aging. It is related to the growth of 6, precipitate free zones

(PFZs) that has been observed adjacent to grain boundaries [Ref. 18]. The coarsening PFZ

leads to poor toughness after longer-time aging.
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c. Co-precipitates

In the Al-Li-Mg system, strengthening is provided by co-precipitates in

addition to the 6, phase. The ternary Al 2 MgLi precipitate forms along grain boundaries

during artificial aging. Its sequence is as follows:

a - 6,(AI3 Li) - Al 2MgLi (equilibrium phase).

The addition of magnesium reduces the solubility of lithium during early

aging and promotes coherent 6, precipitation [Ref. 22]. In the Al-Li-Cu system, copper

additions result in increasing ductility and the T1 phase contributes to increasing yield and

tensile strength of the alloy. Its formation sequence is:

a - 6'(Al3Li) - T1(Al 2CuLi)

For the Al-Li-Mg-Cu system, the precipitation of T1 (AICuLi) and

S(Al 2 CuMg) phases occurs. The S phase has been shown to encourage homogenous

deformation by dispersing slip [Ref. 23]. Magnesium and copper improve the overall strength

of a binary alloy by modifying the microstructure with co-precipitates forming in the matrix

and/or grain boundaries in ternary or more complex systems.

Zr additions are made to retard recrystallization, suppress grain growth,

reduce planar slip on deformation due to shearable precipitates, and promote 6, precipitation.

AI 3 Zr has an f.c.c., LI 2 structure and a small misfit with the a matrix. The AI 3Zr particles

do not dissolve in the Al-Li solid solution at normal solution treatment temperatures. As a

result, they can act as nucleation sites for s, precipitation [Ref. 24].

3. Current Precipitation Theory

Various methods such as thermal analysis, TEM, and small angle X-ray scattering

(SAXS) have verified the existence of v,. TEM work by many researchers has revealed

superlattice reflections in as-quenched alloys. 8, precipitation is inevitable when the alloy

lithium content exceeds 5.5 at.%, if solution heat treatment is followed by a quench to a low

temperature state [Ref. 25]. The ordered phase can also be detected by X-ray diffraction

techniques with analysis of the superlattice reflections. [Ref. 26]
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Williams and Edington investigated s, formation in 1975. There are two ways that

s, can be considered to form: by conventional nucleation and growth, or by spinodal

decomposition. If spinodal decomposition is occurring, the predicted ordered phase should

show X-ray sideband structures and satellites on the diffraction patterns. As no diffraction

satellites were seen, however, the weak intensity of the sideband compared to the fundamental

(only 1/600) indicates that spinodal decomposition is a possible mechanism for the formation

of 6, [Ref. 27]. The most interesting region of the phase diagram is where the metastable and

stable phases coexist, as in Figures 4 and 5, and has been investigated by different workers.

Gayle and Vandersande suggested that the a - 6, transformation is first-order and

a two-phase field is thus thermodynamically required. They suggested the phase diagram in

Figure 4 [Ref. 28]. The Cluster Variation Method has been used by Sigh and Sanchez to study

the stable and metastable phase equilibria in Al-Li alloys via a free energy model. They

concluded a metastable miscibility gap is predicted as shown in Figure 5, by assuming that 6',

is formed from G.P. zones. However, 6, already exists in the as-quenched state so that

evolution of 6, from G.P. zones does not seem to be correct. [Ref. 29]

200

1-'00 - 7 '

0I It /I I

13 OI 5' I

j / '5\
"'200 ,

c_ I

""I .I

I I t

0 5 10
Li ,wt- 0 /o

Figure 4. Metastable Q+6' phase region proposed by Gayle and Vandersande IRef. 281.
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/ 1

/ I
/ I

/I
/ I

/ I
/

II
if. .

0 ~i0

Li, wt-01,

Figure 5. The Miscibility Gap predicted by Sigli and Sanchez [Ref. 291.

Figure 6 shows a different theoretical model, proposed by Khachaturyan in 1986.

The quench process is A - D - E. From an unstable region, that is, a disordered solution of

composition A, congruent ordering to B is unstable with respect to spinodal decomposition.

Consequently, from B - C there is spinodal decomposition and also from C - D (disordered

phase), due to the Li-lean ordered phase. Another way is B - E, a spinodal decomposition

process to a Li-rich ordered phase [Ref. 25]. High-resolution election microscopy (HREM)

can easily reveal the ordered phase regions that are surrounded by disordered matrices, as

Radmilovic, Fox, and Thomas have shown [Ref. 26, 30]. These results suggest that the

spinodal decomposition after congruent ordering is the transformation path during quenching

of Al-Li alloys, as described above. Spooner also studied the radius of ' precipitates during

the early stages of aging and suggested that the formation of 6, is associated with spinodal

decomposition. [Ref. 31]
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A

B

D E

0 1/4

ATOMIC FRACTION LITHIUM

Figure 6. Spinodal Decomposition Model proposed by Khachuturyan et al. [Ref. 251.

4. Strengthening Mechanisms

The intrinsic strengthening mechanism of Al-Li alloys is due to the presence of

lithium in solid solution and also to the presence of fully or partially coherent ordered

precipitates in the matrix. For every I wt.% addition of lithium to aluminum up to 4 wt.%,

the density is reduced by 3% and the elastic modulus increased by 6%. It is not surprising that

Li can offer large density reductions when the atomic mass of Li (6.94) and Al (26.98) are

compared. Lithium also provides the extraordinary feature of increasing the elastic modulus,

as shown in Figure 7 [Ref. 32]. This can be explained as follows. Fox and Fisher suggested

that electronic structure dominates this kind of behavior. They found the nearest-neighbor

14



(n.n.) distance of an Al-Li solution (2.86A) is smaller than that of pure lithium (3.031A). This

implies that there is a higher bonding force between nearest-neighbor Al-Li atoms, i.e., a

higher Debye temperature and higher elastic modulus due to the addition of lithium to

aluminum. Thus, the elastic modulus increases as the Li content increases [Ref. 33, 34].

ANN MANGANESE
100, -
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Figure 7. The effects of elements on the elastic modulus of aluminum alloys IRef. 321.

The interaction of dislocations with precipitates is considered to be the major

contributor to strength increases in Al-Li alloys. For underaged to peak strength Al-Li alloys,

the shear mechanism dominates the behavior for the critical sizes of particles between 300A

and 500A [Ref. 15]. For overaged alloys, the 6, particles are too large for dislocations to cut

through and Orowan loops form, resulting in decreased strength. Noble et al. have suggested

that order hardening (creation of APBs) or the combination of order hardening and elastic

modulus strengthening are the main contributors to maximum strength in the peak aged state

[Ref. 35].

The increased strength of 6' is considered to be responsible for low toughness and

poor ductility. The strength of sheared particles has been increased by dislocations cutting
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through the particles and by the stress field which is built up. This leads to dislocation pile-

up. The poor fracture toughness and low ductility are a result of strain localization by

inhomogeneous planar slip at grain boundaries or in the matrix.

Sanders and Starke found that fracture occurs transgranularly for short-time

aging. However, for longer-time aging, failure occurs intergranularly due to PFZ coarsening

[Ref. 36]. Furukawa et al. also showed that for greater than 11.0 at.% Li, the planar slip that

occurs at low lithium was not found and other mechanisms for low ductility should have been

taken into account [Ref. 15].

5. Methods for Analysis

The microstructure of an Al-Li alloy is often difficult to analyze because Li has

a low atomic number. Chemical analysis is difficult due to toxicity and reactivity. Although

there are various qualitative and quantitative techniques available, the study is still limited by

the fact that v, particles are often too tiny to be detected and Li in 6, is metastable.

Therefore, no universal method can apply to the present study. However, any quantitative

technique should have a spatial resolution of less than 500A and the ability to detect less than

3.0 wt.% lithium [Ref. 37:p. 337].

The following is a summary of some of the qualitative and quantitative methods:

* Atom Probe Field Ion microscopy (APFIM). APFIM is very powerful in many

areas since it can analyze all elements with equal efficiencies. However, since

APFIM can only detect very small volumes of samples (- 10-1 6m3 ), it is better to

combine this with TEM to obtain convincing results [Ref. 38].

* Convergent Beam Election Diffraction (CBED). A small composition change will

result in a change in lattice parameter of 6, during aging. This was found by

Sung et al. using CBED to detect the composition changes in Al-Li alloys.

However, this is an indirect method which limits its data interpretation. [Ref.

37:p. 343]
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Eletron Energy Loss Spectroscopy (EELS). The minimum detectable mass

fraction of Li in Al is estimated to be about 10.3 at.% (2.7 wt.%) in EELS, as

discussed by Chan and Williams 'Ref. 39]. The sensitivity is not sufficient to

examine lower Li concentrations. Plasmon EELS demonstrated an ability to

detect small changes in Li content on a sub-l0nm scale. This requires a high-

resolution, high-dispersion si. ctrometer (e.g., retarding field type), and binary

alloy standard, are hard to generate.

Transmission Electron Microscopy (TEM). TEM can be used to determine

particle size, especially of 6,. The major shortcoming is the limitation of the too-

small sample size for statistical sampling, which cannot be used to obtain all of

the information about precipitation kinetics, volume fractions, or PSD, as

reported by Spooner. TEM combined with small angle X-ray scattering gives

satisfactory results. [Ref. 31]

X-ray Diffraction (XRD). XRD can nrovide information about lithium content.

Determination of the particle size and volume fraction of precipitates and

detection of the different phases in large volumes of sample can be performed by

XRD. This work will focus on XRD analysis.

C. FUNDAMENTAL PRINCIPLES OF X-RAY DIFFRACTION

I. General Basis

Bragg's law provides the basis for X-ray diffraction:

nX - 2dsinO (1)

17



A. Wavelength of incident radiation.

0 The angle of reflection.

d: The interplanar spacing.

For a specific plane (hkl), d is defined as (in cubic materials):

d a0  (2)
/h 2 + k2 + 12

a. : The lattice parameter of cubic crystal.

For any given compound and desired plane, d can be calculated via 0 determined

from the position of diffracted peaks.

Many factors will affect the XRD results, such as the intensity of diffraction and

the broadening of diffraction profiles [Ref. 2]. The intensity of diffracted beams can be

expressed as:

I (hkl) - Kp4 (hkl) [F (hkl) ] 2  (3)

X A constant of proportionality.

p. The multiplicity factor.

0: The Lorentz-polarization factor.

.1 + cos 2 0 (4)

sin20cosO

F: The structure factor, which usually includes the temperature factor.

2. Particle Size Determination

Particle size can be determined by analyzing the diffraction profiles. There are

many complicated methods for analyzing diffraction profiles, such as iterative folding

techniques and Fourier Transform methods. However, the Scherrer equation will be used in

thc present analysis to measure the profile width. The Scherrer equation can be written as:
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L - (5)
Jpcose

L: Particle diameter in A.

K A constant = 1.075.

0 Bragg's reflection angle.

)_ X-ray wavelength in A.

P: Pure diffraction profile in radians.

In order to calculate the particle size L, the pure diffraction profile 0 should be

expressed as below, assuming the line shape to be Gaussian:

B 2 - b 2 + P2 (6)

B: Experimentally measured width from diffraction profile.

b: Instrumental factor obtained from analyzing a suitable standard.

B can be defined as the full width at half maximum, or as the integral breadth

(Area to height ratio).

3. Calculation of Volume Fraction

The volume fraction of .' can be obtained by comparing the intensities of two

peaks that are diffracted by the fundamental and the superlattice structure. The X-ray

structure factors will be introduced first. For a B-rich B3A LI 2 alloy (e.g. v,), a sites will

occupied by A atoms, and b sites are the locations of B atoms in the fully-ordered

stoichiometric alloy. If the alloy is disordered, the atoms and sites could be interchanged.

The structure factors for this situation can be expressed as below:. (7)

F4(8 - f[3exp(-M) + exp(-Ma)] + 0.75AfS[exp(-M) - exp(-Ma)]
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F - f"exp (-M.) - exp(-M)] + 0.25&fS[3exp(-Mb) + exp(-Ma)] (8)

- fundamental of a (8/) fA(B) free atom form factors

8'

Fs - superlattice of 8 f- mAfA+mBf B

Ma(b) - temperature factor ma(b) - atomic fraction of A(B)

Af-fB-fA S - long range order parameter

S must satisfy 0 < S S S.

S1 m IMB for mA 0.25

S,., - 4mA  for mA<0. 2 5

For a B-rich alloy, assuming Ma-Mb-M , equations (7) and (8) can be reduced

to:

Fa) 4 (mc (8') fA + ma) fB) exp (-M) (9)
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8'

F - S. (f B - fA) exp(-M) (10)

X-ray intensities are proportional to the volume fraction Vf and the overall

structure factors:

F S- Vf(Fsa) 2  (11)

- (1- V )(FF-) 2 + Vf(F; )2 (12)

By taking the ratio of the 100 and 200 intensities shown in equation (3) and

substituting equations (11) and (12), the volume fraction can be calculated:

1100 *io___o F,, 0  12 (13)
1200 €o200 F,20o

1100(200) - Measured experimental intensity of 100 (200)

4100 (200) - Loren tz-polari za tion correction factors

D. SCOPE OF PRESENT WORK

The s, precipitates in as-quenched Al-Li alloys and growth characteristics during aging

have been studied with TEM and other techniques by many workers. However, the small

sampling size, combined with lithium electropolishing losses, limit TEM's effectiveness.

Previous work conducted by Whitman [Ref. 1] and Fuller [Ref. 2] has concluded that the 6,

features can be effectively monitored by XRD analysis and that powder samples give better

results without the preferred orientation effects of plate samples. This study will conduct

XRD using two Al-Li based alloys with powder samples to achieve the following objectives:
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To compare the results of powder samples with the plate samples used by

Whitman in order to verify the preferred orientation effect.

To investigate the as-quenched and early aging characteristics using powder

samples filed from plate samples which have been heat-treated in various

conditions.

* To determine the particle size and volume fraction from XRD data.

* To compare the results obtained from two different composition samples:

(1) AI-2.5 wt.%Li binary alloy.

(2) Navalite: AI-2.OLi-1.03Cu-2.76Mg quaternary alloy (in weight percent).
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III. EXPERIMENTAL PROCEDURE

A. SAMPLE PREPARATION

1. Alloy Composition and Heat Treatment

The two Al-Li based alloys samples were:

(1) A hot rolled 0.056 in. thick sheet designated P54. with composition AI-2.5Li-0.I5Zr

(in weight percent).

(2) Navalite, an as-cast aluminum alloy stock number 606172A (N4) with composition

Al-2.0Li-l.03Cu-2.76Mg-0.l2Zr (in weight percent). Samples were cut into small

sheets.

The heat treatments were undertaken in a nitrogen atmosphere to reduce

oxidation attributed to the alloys' reactivity. Samples were solution-treated at 540-C for 25

minutes, after which they were rapidly ice-brine quenched, and then placed in a freezer to

prevent natural aging. The aging heat treatment was conducted using plate samples at 190-C

under nitrogen gas for various times ranging from 2 minutes to 1 hour. The as-quenched and

aged samples' surfaces were ground and carefully polished to remove any natural surface

strain and oxidation layer during heat treatment.

2. Powder Samples

Powder samples were filed from the treated samples. Plate samples were carefully

filed at liquid nitrogen temperatures for about 3 minutes after the samples were submerged

into liquid nitrogen for sufficient time to cool them down, especially for as-quenched

samples. This reduced the effect of heating and cold work during filing and kept the sample

cold, thus preventing natural aging. The powder samples were collected after the filed

samples passed through a U.S. standard #325 sieve (45 microns).
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B. X-RAY DIFFRACTION

The XRD experimental equipment included a Phillips XRG3 100 X-ray generator with

a copper target (wavelength 1.5405A) and a Norelco data control and processor. A 30kV,

35mA power setting and a scan rate of 4 minutes running for I degree was suitable for

collecting all data.

Powder samples were mounted into a sample holder. The powder was mixed with

acetone, pressed into the sample holder, and again wetted with acetone. A razor blade was

used to remove the excess powder on the sample holder. The final step consisted of using a

final layer of acetone to settle and clean the residual powder around the holder.

C. TEM

3mm diameter discs were punched out of the sectioned samples that were cut from the

as-quenched Navalite with a diamond saw. A solution of 35% butoxy ethanol, 3% perchloric

acid, and 62% ethanol was used for electropolishing. The Tenupol method was used with 40V,

30mA and a temperature of -40C.

A JEOL 100 TEM, with voltage setting 120kV, was used to investigate the sample.

Photographs were taken of bright and dark field images and diffraction patterns.
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IV. RESULTS AND DISCUSSION

A. DATA ANALYSIS

1. Particle Size Calculations

The Scherrer equation (eq. (5)) was used to determine particle size. First, the pure

diffraction profile was calculated from equation (6). The experimentally measured breadth

B was then determined by the integral breadth method using the equation:

B(radians) - [ lrchartspee4 degrees )][ 2 (14)
IH J{\ inches 11360

A: Area (in. 2) of the profile measured.

H: The height (in.) of the peak measured from profile after removing

the background.

The area was calculated by weighing the paper cut from the diffraction profile.

The mass of the chart paper was 2.5529x10 - 2 grams per square inch, with a standard deviation

of 4.128x10'- . By assuming the physical strain broadening of the peaks to be zero due to the

very small misfit strain of the 6, in the a matrix, the value of b was determined using

instrumental breadths obtained using a quartz standard. The results are tabulated in Appendix

C [Ref. 2].

2. Volume Fraction

The volume fraction of 8' can be obtained from solving equation (13). The

intensity was calculated as follows:

Intensity (counts) ca Aspe] Full Scale Intensity
en5charspeed verticalscale(inches)
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A: Area of profile measured (in.2 ).

Chartspeed (in./sec).

Full Scale Intensity (counts per sec.).

The following summation was used to determine the free atoms factors:

4 2 0
f - aexp-b, sin2I + C (16)

The value of aj, bi and C were obtained from [Ref. 42]. The f can be calculated

from equation (16). The results were:

Ao 10.6442 fLo _ 2.0422

f20020Alo- 8.5077 fLo 0 1.6314

The alloys contain a small amount of zirconium, which can be ignored in the

calculations and in the as-quenched state. It is reasonable to assume that the disordered a and

ordered 6' have the same composition. The atom fractions are thus:

a'ML - Mn - 0.909

,L- 1,L a - 0.901

The Lorentz-polarization correction can be determined using eq. (4).
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B. AS-QUENCHED RESULTS

Appendices A and B contain tables showing intensity, integral breadth, volume fraction,

and particle size results of all conditions for Al-Li binary and Navalite. The summary of as-

quenched results of these Al-Li based alloys is found in Table 2.

TABLE 2. SUMMARY OF AS-QUENCHED RESULTS (BASED ON 1 00 / I200 )

Al-Li binary Navalite

ordered phase
particle size 43.3 38.58
diameter(A)

Volume fraction 0.51 9

4700 5279I1oo

194721 156716'200

3923 --

1110 
32

144401 120123I220

TEM micrographs were taken from as-quenched Navalite as shown in Figures 8 and 9.

Small precipitates were revealed, but it was very difficult to measure the particle size because

of the large number of them contributing to the image.
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Figure 8. Bright Field TEM micrograph of as-quenched Navalite with g= (200). The 6'

precipitates are very small and difficult to see. Note the dislocation was found

in matrix.(IOOK X)

Figure 9. 100 Dark Field TEM micrograph of as-quenched Navalite. The 6' particles are

hard to distinguish.
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The 100 s, peak was present in both alloys, but it was very broadened due to particle

size effects. It was, however, possible to measure this broadening and the associated particle

size. The 100 6, peak for Navalite was broader than Al-Li binary and so the particle size of

the ordered phase in Navalite was therefore smaller than in binary.

In the binary alloy, the 110 superlattice overlapped extensively with the IIl

fundamental peak. As a result, an underestimation of intensity measurement on both peaks

led to a higher particle size prediction using the Scherrer equation. The comparison of 8'

particle radius based on I10o and 1110 is shown in Figure 8 on the previous page. Therefore,

the 100 results should be considered closer to the real particle size. The 8, particle size found

using the powder sample is 43A, which is greater than the particle size of the plate sample

found by Whitman to be 28A [Ref. 1]. The difference in size was due to the effects of

preferred orientation of the plate samples and experimental error.

The volume fraction of 8, in the binary alloy was found to be 50.5% with a long-range

order parameter of 0.36. This is larger than that of plate sample (25.3%). This suggests that

the plate sample possibly loses lithium at the surface during heat treatment. Also, there is no

texture effect intrinsic in the powder sample. Thus 50.5% of the as-quenched alloy comprises

ordered 6, particles with a 43A particle size. This is surrounded by a disordered matrix with

an average particle size of 680A. This high degree of order, which cannot be quenched out,

suggests that congruent ordering followed by spinodal decomposition is the transformation

path adopted in quenched alloys as proposed by Khachaturyan et al. [Ref. 25].

The ordered phase in as-quenched Navalite has a 38A particle size. The volume fraction

of the ordered phase could not be calculated precisely due the unknown contribution of the

Mg and Cu atoms to F ° ° and F; ° °

Assuming a binary composition, the ordered phase volume fraction was 1.03 in Navalite.

This is probably because higher Z atoms (such as Mg and Cu) are contributing to the structure

factors in an unknown way. [This may be due to the large errors in intensity measurement
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and reduction of F; ° ° due to magnesium atoms.] However, the results (Vf=l.03±0.1), as

well as line broadening of the fundamental peaks, suggest that the alloy is nearly fully ordered

after quenching. The line-breadth comparison based on the fundamental diffraction profile

for these two alloys also indicates that Navalite has a smaller particle size. The Mg and Cu

additions have apparently subdued the dissociation of the fully ordered solution into regions

of order and disorder. Why this is so is not clear.

C. AGING CHARACTERISTICS

Powder samples directly filed from aged samples give excellent XRD results when

compared with either plate samples or aged powder samples from the as-quenched plate

samples. Although the preparation of powder samples filed from the aged samples is time-

consuming, it prevents lithium losses occurring at the surfaces of the samples.

For the I-Li binary alloy, the growth of .' obeys the Ostwald ripening theory. Figures

11 and 12 show good agreement with Ostwald coarsening kinetics. In Figure 11, the line

intercept is not equal to zero, suggesting that perhaps the order-disorder transformation or

spinodal decomposition dominates the growth kinetics instead of the conventional nucleation

and growth mechanism right after quenching. In Figure 10, the 100 6' radius increases as

aging time increases. However, the 110 6, radius in the early aging (5-10 minutes) showed

a small decrease. This may arise because the lithium concentration in the ordered phase has

decreased and, perhaps, a spinodal decomposition in fast coarsening matrix is followed by the

nucleation of more stable 6, with a smaller size, thus reducing the average particle radius [Ref.

31]. However, the I10 6, peaks overlapped with 111 fundamentals, perhaps resulting in

higher particle size results, particularly for the as-quenched alloy. The 11o0 / 12. and I110 /

1220 ratios are plotted against time in Figures 13 and 14. These indicate that the volume

fraction of 6, is decreasing as the particles coarsen.

The Ill radius for Navalite and Al-Li binary versus aging time is plotted in Figure 15.
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The radius of Navalite was smaller than Al-Li binary; the Navalite particle size coarsening

rate was slower than Al-Li also. These results suggest that alloying elements such as

magnesium and copper have retarded diffusion rates in Al-Li alloys.

6 111 peaks were observed in as-quenched and throughout all aging processes for the

Al-Li binary alloy. The volume fraction of s is very small in the as-quenched sample and

does not affect the calculations for volume fraction and particle size of '. Thus it is possible

that the presence of s did not oppose the nucleation of s, in the as-quenched state. However,

the amount of 6 phase increases as the aging time increases.

For Navalite, the 6, peak rapidly disappeared upon aging. The 6, was replaced by other

metastable phases such as T, (AI 2 CiLi) and S(AI 2CuMg). The S phase is considered to be

responsible for the reduction of strain localization and PFZ effects.

31



70-

.0

60-

50

-0--- Radius(1 00)

........ radius(1 10)

20
0 20 40 60 80

Aging Time(minutes)

Figure 10. 6' Radius versus Aging Time (Al-Li binary).
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Figure 11. 6' Radius versus Aging Time (Al-Li binary).
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Figure 12. 6' Radius Cubed versus Aging Time (Al-Li binary).
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Figure 13. 110 1 200 versus Aging Time (Al-Li binary).
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Figure 14. 1110 /1220 versus Aging Time (Al-Li binary).
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D. ERROR ANALYSIS

The accuracy of an XRD analysis is dependent on the method used for measuring

intensity and breadth of the diffraction profile. The major error comes from the

determination of background. As the error in the breadth of the pure profile is directly

proportional to particle size error, the following error expression was used to determine the

particle size error [Ref. 40:p. 361-364]:

A~ - -hN. . + + rN + dh.
N. he N, h.

= pure profile breadth.

Ne= No. of counts under experimental peak.

he= Height of experiment peak.

N,= No. of counts under quartz standard peak.

h,= Height of quartz standard peak.

dh,= .lin (accuracy of measurement).

Appendices 6 ar . B consist of complete error analysis of both alloys for all aging times.

By comparing particle size errors with Whitman's results (plate sample) [Ref. I], it can be seen

that particle size errors in the current powder samples are somewhat smaller.
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TABLE 3. PARTICLE SIZE ERROR (BASED ON I100

Heat FParticle Particle
Treatment Size Error Size Error

Time (%,AI-Li binary) (%,Navaitu,)
(minutes)________________

As-Querached 6.51 6.32

2 4.88 --

5 4.26 -

10 4.23 -

20 4.29 -

30 4.26 -

60 4.23 -
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V. CONCLUSIONS

Powders are superior to plate samples for X-ray diffraction of Al-Li alloys, as

preferred orientation and lithium loss effects are avoided. The powder XRD experiments give

excellent results for determination of the volume fraction and particle size of v' in the as-

quenched condition. For the as-quenched binary alloy, the microstructure can be modeled

as a two-phase region including a 50.5% ordered phase with a 43A particle size and a

disordered phase. The microstructure of as-quenched Navalite appears to be nearly fully

ordered with about 90% 8, particles of size 38A in a matrix of 10% disordered phase.

These two alloys were found to have degrees of order higher than those predicted by

theory. This implies that the congruent order-disorder transformation followed by the

spinodal decomposition transformation path suggested by Khachaturyan et al. is likely.

Another factor contributing to the high volume fraction of the as-quenched alloy is the

addition of Mg and Cu, promoting 8' precipitation upon quenching.

The aging characteristics of 8, in binary Al-Li followed Ostwald ripening kinetics.

However, the ordered phase of as-quenched Navalite rapidly disappeared after aging as s' was

replaced by other phases such as Tj(AI 2CuLi) and S(AI 2CuMg).

The presence of 6 was observed in the as-quenched binary Al-Li and subsequently

coarsened during the aging heat treatment. No s (Al-Li) was found in as-quenched Navalite

or after any of the artificial aging heat treatments. The Navalite results showed the larger line

breadth of fundamental peak profiles, indicating that Navalite has a finer microstructure

compared to binary Al-Li. The above results conclusively show that alloying elements

promote 8, nucleation and refine the microstructure.
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VI. RECOMMENDATIONS

The following recommendations are given for further study in Al-Li based alloys:

The improvement of diffraction profile measurements, if possible, by computer-

assisted intensity calculations. This would be far more accurate than weighing

the plotter paper.

Further research into increased time aging characteristics and into the ordered

phase of as-quenched Navalite in order to observe the effects of alloying element

additions.

The 6 phase could not be avoided ;n the as-quenched binary alloy, whereas it was

not evident in Navalite. This suggests that alloying additions give the additional

benefit of the avoidance of j.

XRD analysis using powder samples gives excellent results. However, this

method should be performed on several samples for greater statistical accuracy.
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APPENDIX A. EXPERIMENTAL RESULTS (AL-LI BINARY)

TABLE 4. AS-QUENCHED DATA

Peak(hkl and Intensity Integral Breadth Particle Size(A) Particle Size

phase) (counts) (rads) Eiror in percent

100(6') 4700 0.039060 43.3 6.51

11I(5) 501 0.0044795 464 9.68

110(S') 3923 0.028503 61 7.25

111 358182 0.005631 359 4.07

220(6) 1389 0.010099 182 7.51

200 194721 0.006426 316 3.60

220 144401 0.008115 265 3.19

311 174673 0.009676 246 2.83

222 50954 0.010004 246 3.13

TABLE 5. 2 MINUTES AGE DATA

Peak(hkl and Intensity Integral Breadth Particle Size(A) Particle Size
phase) (counts) (rads) Error in percent

100(8') 4297 0.037367 59.6 4.88

111(s) 799 0.006640 277 8.41

110(s') 4296 0.027767 62.4 6.75

111 335502 0.005847 342 2.27

220(s) 1549 0.009483 194 6.75

200 184731 0.006612 288 3.8

220 145906 0.008934 236 3.33

311 183322 0.010353 226 2.86

222 52376 0.009989 246 2.91
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TABLE 6. 5 MINUTES AGE DATA

Peak(hkl and Intensity Integral Breadth Particle Size(A) Particle Size
phase) (counts) (rads) Error in percent

100(') 5605 0.028352 65.3 4.63

111(8) 846 0.006152 304 7.75

110(.') 4670 0.029366 59 6.59

111 334092 0.005633 359 2.23

220(s) 1641 0.009088 204 6.36

200 181443 0.006301 324 3.73

220 134812 0.008002 269 3.29

311 163486 0.009323 257 2.88

222 49427 0.009664 257 2.96

TABLE 7. 10 MINUTES AGE DATA

Peak(hkl and Intensity Integral Breadth Particle Size(A) Particle Size

phase) (counts) (rads) Error in percent

100(s,) 5274 0.023598 71.9 4.35

111(5) 987 0.0063797 291 7.05

110(6,) 4465 0.025341 68.4 6.29

111 328569 0.006019 329 2.33

220(s) 1760 0.008904 209 6.01

200 175332 0.006580 306.6 3.93

220 139607 0.008545 497.7 3.34

311 166916 0.009707 244 2.91

222 50414 0.009775 253 2.94
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TABLE 8. 20 MINUTES AGE DATA

Peak(hki and Intensity Integral Breadth Particle Size(A) Particle Size
phase) (counts) (rads) Error in percent

100(6') 4712 0.019862 85.7 4.29

111(s) 794 0.006601 279 8.42

110(6') 3979 0.024363 71 6.62

111 319404 0.005327 387 2.22

220(6) 1908 0.009251 200 5.81

200 169926 0.005901 354 3.74

220 134201 0.007885 274 3.27

311 164660 0.009483 252 2.90

222 47899 0.009525 262 2.99

TABLE 9. 30 MINUTES AGE DATA

Peak(hkl and Intensity Integral Breadth Particle Size(A) Particle Size
phase) (counts) (rads) Error in percent

100(6') 4256.4 0.017074 100 4.26

111(5) 966 0.006145 304 8.09

110(6') 3375 0.018696 93 6.44

111 304713 0.005213 399 2.25

220(6) 1734 0.008407 222 5.92

200 166986 0.006024 344 3.83

220 125928 0.008371 255 3.50

311 162780 0.009375 255 2.90

222 48181 0.009664 257 3.00
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TABLE 10. 1 HOUR AGE DATA

Peak(hkl and Intensity Integral Breadth Particle Size(A) Particle Size
phase) (counts) (rads) Er.-or in percent

100(.5') 4030 0.015630 109.6 4.23

1(s) 1128 0.007720 233 7.05

1(')2696 0.013635 130 6.39

111 284031 0.005025 420 2.30

220(6) 1716 0.088708 209 6.11

200 153942 0.005872 356 3.99

220 120710 0.006884 325 3.24

311 157375 0.009063 267 2.91 j
222 47006 0.009594 259 3.03
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APPENDIX B. EXPERIMENTAL RESULTS (NAVALITE)

TABLE 11. AS-QUENCHED DATA

Peak(hkl and Intensity Integral Breadth Particle Size(A) Particle Size

phase) (counts) (rads) Error in percent

100(6') 5279 0.043864 38.58 6.32

111 250187 0.008141 229.4 2.22

200 156716 0.010185 184.4 3.14

220 120123 0.012704 159.8 3.14

311 137350 0.015145 146.5 2.85

222 44115 0.014663 157.2 3.92

TABLE 12. 2 MINUTES AGE DATA

Peak(hkl and Intensity Integral Breadth Particle Size(A) Particle Size
phase) (counts) (rads) Error in percent

100(,s,) .......

111 338676 0.007296 260 2.55

200 178762 0.008523 225 2.65

220 136340 0.011170 184 2.80

311 153121 0.013195 170 2.50

222 47922 0.012816 183 3.45
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TABLE 13. 5 MINUTES AGE DATA

Peak(hkl and Intensity Integral Breadth Particle Size(A) Particle Size
phase) (counts) (rads) Error in percent

100(6,) ........

111 257709 0.007138 267 3.00

200 138244 0.008376 229 3.04

220 110863 0.011215 183 3.09

311 131615 0.012976 174 2.69

222 41624 0.013451 173 3.87

TABLE 14. 10 MINUTES AGE DATA

Peak(hkl and Intensity Integral Breadth Particle Size(A) Particle Size
phase) (counts) (rads) Error in percent

100(6,) ........

111 258531 0.006332 309 2.78

200 146610 0.008485 226 2.95

220 111591 0.011096 185 3.06

311 144941 0.013382 168 2.59

222 41483 0.012784 183 3.78
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TABLE 15. 20 MINUTES AGE DATA

Peak(hkl and Intensity Integral Breadth Particle Size(A) Particle Size
phase) (counts) (rads) Error in percent

100(6,) ..-.....

111 326220 0.006900 278 2.53

200 181818 0.008393 229 2.60

220 131240 0.010828 190 2.81

311 161135 0.013390 168 2.45

222 46524 0.011515 207 3.55

TABLE 16. 30 MINUTES AGE DATA

Peak(hkl and Intensity Integral Breadth Particle Size(A) Particle Size

phase) (counts) (rads) Error in percent

100(s,) ........

111 310590 0.006982 274 2.62

200 165366 0.008083 239 2.69

220 129313 0.011061 186 2.85

311 156857 0.013517 166 2.50

222 47993 0.0013958 166 3.62
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TABLE 17. 1 HOUR AGE DATA

Peak(hkl and Intensity Integral Breadth Particle Size(A) Particle Size
phase) (counts) (rads) Error in percent

10O(4,)--- -

11305301 0.006896 278 2.63

200 167058 0.008031 241 2.67

220 129806 0.010943 188 2.83

311 157868 0.013454 167 2.49

222 67053 0.018141 125 3.41
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APPENDIX C. INSTRUMENTAL BROADENING (BASED ON QUARTZ STANDARD)

TABLE 18. QUARTZ STANDARD DATA

Position Intensity Integral Total
(2e) (counts) Breadth Fractional

(radians) Error

20.98 20057 0.002745 0.02589

26.6 114642 0.00247 0.01777

31.1 3085 0.0033 0.05436

36.6 11958 0.0028 0.02547

39.6 12766 0.0028 0.02377

42.5 10118 0.0031 0.03113

45.7 7247 0.0030 0.04006

50.4 29210 0.0032 0.02109

60.0 25105 0.0037 0.01644

64.2 4846 0.0032 0.03698

75.7 9614 0.0041 0.02488

83.7 6944 0.0045 0.03422
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