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ABSTRACT

Performance measures are derived for data-adaptive hypothesis testing by sys-
tems trained on stochastic data. The measures consist of the averaged performance
of the systems over an ensemble of training sets. The uncertainties derivable from
training sets represent an irreducible uncertainty inherent in the learning procedure.
Data-adaptive system estimates are contrasted with classical hypothesis testing, in
which optimum tests are based on an assumed data model. In addition, a per-
formance estimate for the maximum a posteriori probability (MAP) N-hypothesis
test is~derived based on a neural-net formulation of the test. The performance of
adaptive systems on a binary test of uniformly distributed data is compared with
the data-adaptive and MAP estimates. The adaptive systems considered are linear
extrapolation from data (LINEXT) and a back-propagation neural net (BPNN).
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1. INTRODUCTION

Hypothesis testing by a data-adaptive system is fundamentally different from classical hy-
pothesis testing. In the former, a representative data set corresponding to known hypotheses is
used to train the system. System parameters are varied until the system training set to hypothesis
space mapping best approximates the known map. Two assumptions, a sufficiently representative
training set and the ability of the system to associate, are required to extend the map to arbitrary
data [1]. In contrast, classical hypothesis testing derives from an assumed model for the data, often
a signal in Gaussian noise, from which optimum tests are defined [2].

In this report, performance measures are derived based only on the procedure by which an
adaptive system is trained. We assume that if a system is perfectly trained on a representative data
set for each hypothesis, an appropriate performance estimate is the averaged performance over the
ensemble of training sets. This averaged performance, which is computed in terms of training-set
size and data distributions, reflects an uncertainty inherent in the learning procedure.

A data-adaptive system of particular interest is the neural net. Relative to the now-convention-
al neural-net taxonomy [1,3], we will consider only the back-propagation mapping network [4-7].
This network adapts internal parameters toward the approximation of a functional mapping, which
for hypothesis testing is the data input to hypothesis space output map. Alternative neural-net
architectures, such as those employing Kohonen learning [81, attempt to store data distributions
internally rather than to approximate a map to the hypothesis space. Neu'al-net classifiers gener-
ally perform as well as conventional techniques on a variety of problems including linear, Gaussian,
and k-nearest-neighbor algorithms [31, 19-12]. Neural nets have also been configured *o perform
maximum a posteriori probability (MAP) [13] and maximum likelihood tests [14] for arbitrary input
distributions.

In Section 3, training-set-based performance measures are derived for a data-adaptive system
on an arbitrary data-based N-hypothesis test. A MAP test is also formulated and represented in
a neural-net structure. A possible neural-net representation of the MAP test contains N output
neurons (processing elements). For a net input x, the ith neuron outputs p(H,1x)6fO, 1], which is the
conditional probability for hypothesis H,, i = 1,... , N. The training-set-based and MAP estimates
are applied in Section 3 to a binary hypothesis test on uniformly distributed data. These measures
are compared to the computed performance of adaptive systems such as a linear extrapolation
from the training set and a back-propagation neural net. Linear extrapolation (LINEXT) simply
chooses the hypothesis of the nearest neighbor to the input, whereas a back-propagation neural net
(BPNN) is trained to minimize the summed difference between net outputs and targets over the
training set [4]. Both tests are data-adaptive in that the algorithms are defined using a training
set. Section 3 shows that systems trained to the exact training-set map most closely match the
training-set-based estimates. These systems are contrasted with systems trained on data biases,
which are better approximated by Bayesian performance.
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2. ADAPTIVE-SYSTEM PERFORMANCE MEASURES

In this section two performance measures are defined for data-adaptive systems: the training-
set-based estimate, in which the statistics of the training set determine the performance, and the
MAP test estimate. The MAP hypothesis test is formulated with an assumed neural-net structure
for the data input to hypothesis space output map.

2.1 Training-Set-Based Measures

In this subsection the performance of an adaptive system is approximated from the statis-
tics of the training set. Consider the training of an adaptive system for the testing of hypotheses
H1,..., HN with prior probabilities p(Hi), i - 1,..., N. The prior probabilities are normalized to
unity by the condition i=lp(Hi) = 1. The input to the system is the data value xetZ, which
is obtained by the observation of stochastic phenomena reflecting the set of possible hypotheses.
We denote the operation of observing the phenomena, OBS, from which the data value x is ob-
tained. The OBS-generated data value x is input to the adaptive system, which has an output
u = (ul,... , UN), with uj nonzero corresponding to hypothesis Hj,j = 1, ... , N. Figure 1 contains
a schematic of the OBS and adaptive system operations.

177104-1

OUTPU'
(j)PHE MENN OB NERAL -P-(0, ..., 0, 1, 0 ..., 0)

FOR HYPOTHESIS
4 i >Hj, j =I1 .... N

HYPOTHESIS DATA VALUE x
H1, i =1, .... N DISTRIBUTION

p (xIHi), i 1, ... , N

Figure 1. Schematic of the OBS and adaptive system operations. Hypotheses H,, i =
1,...,N, OBS output x, neural-net output 1.
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The data value x is assumed to have a conditional probability distribution p(x[Hi),i =

1,..., N, with hypothesis H,. More specifically, the function p(xjHj) is the probability density
that the OBS operation outputs x for phenomena satisfying hypothesis H,. The densities are nor-
malized to unity, fz p(xlHi) dx = 1, where D C IZ is the region of allowed x-values. The adaptive
system is trained on the sets {Xl,..., X }, ... , {xN,...,xN } of OBS data outputs for each hy-
pothesis H1,... , HN. This training set results from Al1 trials of OBS with hypothesis H1 , M 2 trials
of OBS with hypothesis H2, continuing to AIN trials of OBS with hypothesis HN. The system is
trained to exactly perform the mapping

3
Xii (0, ...,10, 1 , 0,..., 0), i 1,.,5/j, j 1 . ,N(1

A measure of system errors due to inherent training-set ambiguities is obtained from the
performance on the training set {Xj, ... xI },. .. ,{xN,. .. This intuitively represents an
upper bound on averaged system performance because added errors generally occur due to incorrect
system association on arbitrary data. To compute the training-set-based measures, it is assumed
that M1 +. + MIN trials of OBS result exactly in the data set {XA,. . }t }u... U{ ... , x N }.

For a given data point xi, i = 1,. .. , Aj,j = 1, ... , N, the probability of having been generated by
hypothesis Hk, k = 1,... , N, is given by

Prob(x ,Hk) = P(Hk)p(xiIHk) , (2)E__ip(Hq)P(x IHq)

where the normalization is over the hypotheses which could have generated xi in the M1  ... - MN
I to hypothesis H, so that the probability in Equation (2) contributes to

the situation of a system declaration for hypothesis H, When the true hypothesis is Hk. Therefore,
over the set of A1 +... + AIN trials of OBS, the number of H, declarations for true hypothesis Hk
is given from Equation (2) by

Mj

NUM(Hj,Hk) = ZProb(x ,Hk)
i=l

A p(HkOP(XiIHk)(3E=I (3)
i=l E"=1 p(Hq)p(x JHq)

The probability of a system declaration of H, for true hypothesis Hk is then given by (j,k =
N),



1 Mi p(Hk)p(X lHk) (4)p(Hjp7 Ak plMp .= ' I P(H,)p(xjlHq)(4

Note that the required normalization for the M1+.• .+ IN trials, k'{=I p(Hj, Hk) = Mp/ =
follows from Equation (4). We now consider the average of p(Hj, Hk) over the ensemble of training
sets obtained by the above procedure. Recall that xi in Equation (4) was obtained by the OBS
operation with a fixed hypothesis Hj, indicating that the appropriate distribution for xi is p(x jH,).

Averaging over the values of x4 in Equation (1), we obtain an averaged probability for hypothesis
Hj declared with the true hypothesis Hk,

(p(Hj, Hk)) = -Yjp(Hk)Pj,k, j, k =,.,N (5)

where

Pjk p(xIHj)p(xIHk) dx (6)
V = =l p(Hq)p(xlHq)

and -ij is the proportion of hypothesis H-generated data in the training set for the adaptive system

S= (7)

The joint probability in Equation (5) has factored into a training-ensemble-dependent parameter -y,
and a statistics-dependent quantity p(Hk)pj,k. An estimate of the conditional probability p(H, JH3),
corresponding to a decision for Hi with true hypothesis H, is obtained from Equation (5) by

p(H~IHj) - (p(Hi, Hj))
J]= I (p( Hq, Hj))

- 7iPi,j , (8)

where -1, and p,j are given in Equations (5) and (6), respectively. Equations (5)-(8) are denoted
the training-set-based measures of system performance in the following sections.

2.2 Neural-Net MAP Test Measures

A more traditional approach to system performance estimation is through the MAP test
121. For an OBS-generated input x, the hypothesis H, is chosen, which maximizes the conditional
probability p(tk"x = 1. N. A neural net trained on sufficiently representative data has been
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shown to converge to the MAP test performance 113]. A mapping network for the N-hypothesis
test consists of a single OBS-generated input x, a series of hidden layers, and an N-neuron output
layer. A stochastic formulation of a MAP test neural net allows a comparison with the training-
set-based estimates in Equations (5)-(8). The N deepest layer neurons are assumed to output

only 0 or 1 in the pattern (0,... , 0, 1 , 0, ... , 0), i = 1,... , N, with probability qi(x) for input x.

The output N-vector (0, ... , 0, 1 , 0,..., 0) corresponds to a decision for hypothesis Hi. The net
output probabilities are normalized by the condition ENI qj(x) = 1, xeD. The joint probability
p(Hj, HkJx) for choosing hypothesis Hj with phc-iomena satisfying Hk, assuming net input x, is
given by the product qj(x)p(Hklx). The average over input values x with a prior distribution p(x)
yields

pMAP(HjHk) = 11 qj(x)p(Hklx)p(x)dx (9)

The MAP test follows on average for

qj(x) = p(HjIx) (10)
,=1 p(HqX)

Substitution of Equation (10) into Equation (9) yields, upon application of Bayes's theorem,

p(Hjlx) = p(xIHj)p(Hj) j= N (11)p(x) 'j = 1..g ,(1

the equation

AIAP1 (Hj,Hk) = p(Hj)p(H)pj,k, j,k= 1,...,N (12)

where PJ,k is defined in Equation (6). Comparison of Equations (5) and (12) suggests that the MAP
test estimate equals the training-set-based estimate if the training set satisfies the equation -y, =
p(H,). This condition reflects the common-sense belief that the training set should be proportioned
according to the prior probabilities of the hypotheses.

A deterministic neural-net model for the MAP N-hypothesis test occurs if the N-deepest
layer neurons output analog values in the range [0,1]. We assume that for net input xeD the
ith, i = 1,...,N, neuron literally outputs the value p(Hljx). The MAP test then results simply
from choosing the hypothesis H, corresponding to the deepest layer neuron with the largest output
value. A schematic of the deterministic MAP test neural net is shown in Figure 2. In order to

6



compute performance probabilities for this net, we must define regions Bj, j = 1,... N, &-.ven

175324-14

OBS- p (H1Ix)
GENERATEDINPUT "

p (Hjlx) N-NEURONI OUTPUT

P (HNIX)

Figure 2. Schematic of deterministic neural-net representation of MAP test. OBS-
generated input x, N-hypothesis neuron output.

by 13, = {xeDlp(HjIx) > p(Hklx), Vk 0 j}. Assuming that the regions of equal conditional
probabilities, Ej,k = {xEVlp(Hjlx) = p(Hklx)}, j,k = 1,...,N, have zero support, we define the
joint performance probability pMAP 2(Hj, H.) by the expression

pMAP 2(Hj, Hk) = p(Hk) j p(xlHk) dx (13)
J

corresponding to the probability that the jth neuron output in Figure 2 is maximum for an Hk-
generated input. The computation of the performance probabilities pM AP2(H,, Hk), j, k = ... , N
follows from the application of Bayes's formula in Equation (11) to the definitions of regions B. and
Ej,k. In Section 3, Equation (13) is applied to the binary hypothesis test on uniformly distributed
data for comparison with the training-set-based estimates in Equations (5)-(8).
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3. BINARY HYPOTHESIS TEST

In this section performance measures derived in Section 2 are applied to a binary hypothesis
test of uniformly distributed data. The averaged probabilities in Equations (8) and (13) ace related
to parameters in the hypothesis probability distributions. This relationship defines a framework
for comparison of the estimates with examples of adaptive system performance.

3.1 Training-Set-Based and MAP Estimates

Consider a training-set-based decision between hypothesis H0 and H, with prior probabilities
PO = p(Ho) and P1 = p(H1), respectively. Assume the output from the OBS operation, x, has
conditional probabilities p(xJH,), i = 0,1, for phenomena satisfying hypothesis H,. The system
performance is defined by the standard conditional probabilities of detection Pd = p(HIHi), false
alarm Pf = p(HlIHo), miss Pm = p(HoIH), and the correct H0 identification PHo = p(HoIHo).
Assuming a training set consisting of N,, i = 0, 1, trials of OBS with hypothesis H,, we have, from
Equation (8),

Pd = 1Pil (14)

1,1i1 + I0,o00,
p$ = ^YPlo , (15)

'1PlO + "ioPo,o
Pm = 10Poi , (16)

'IoPo, + 7YPii

and

PcHo= 70Po,o (17)
toPoo + -1IPlo

where -yi = Ni/(No + N1), i = 0, 1, and

P /k= px jpx~- dx, j, k o, 01 (18)J p(xIHj)p(xIHk)
PJ,k = V pop(xIHo) + pip(xlH1)

with V the region of possible x-values.
A common situation that occurs in the conventional Neyman Pearson test is the existence of a

maximum tolerated joint false alarm probability PF = p(Hi, Ho). From Equation (5), a maximum

joint false alarm probability PF, implies an upper bound on the percentage of H1 trials in the
training set, i.e., the condition 11 < P,/poP,o. There is also a corresponding upper bound on the
joint detection probability PD = p(HI, HI), given by PD < PF0plpl,1/P1P1,O.

9



The MAP test performance measure in Equation (13) can also be applied to the binary
hypothesis test. Assume that for xECol, which is the region of equal a posteriori probability, the
test chooses between hypothesis Ho and H1 with equal probability. In this case the neural net has
equal output values from the two deepest layer neurons in Figure 2. The expression in Equation (13)
is easily generalized to obtain the conditional probabilities

pMAP2 = p(xlH) dx + - p(xIHi)dx (19)
d1 2 (,1

pMAP2 = p(xlHo) dx + p(xHo) dx (20)

pMAP2 = j p(xlH1)dx + p(xH)dx (21)

and

pMAP2 J f p(xPHo)dx + p(xIHo)d . (22)Ho = o('g)d o ,

In order to compare performance measures in Equations (14)-(17) with the MAP estimates
in Equations (19)- (22), consider the case of uniformly distributed conditional probabilities p(xiH,)
of width A,, i = 0, 1. Figure 3 contains uniform distributions p(xIH,), i = 0, 1, normalized to
a peak value of 1/A,, centered at 0 for H0 and at x1 for H1. The distributions are overlapped
under the condition IAo - A, 1/2 < x, _< (Ao + A1)/2. Substitution of the uniform distributions in
Equation (18) results in expressions for Pij, i, j = 0, 1, given by

=(1 AO-Al) A1 (AO+A' - XI)
Poo = POA AO(pOA + pAO) (23)

Po,i = Pi,o = 2 (24)
poA 1 + PiAO

and

pij = + (25)
PiA1 AI(poA + PIAo)

10
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PROBABILITY
DENSITIES 1/A1

p (xl H1)

p (xlIao) 1/A0LI 1 R7AOBS-GENERATED
r ~INPUT x

-(X I- A A (x +

80 BI

Figure 3. Binary hypothesis test on uniformly distributed data. Input probability distri-
butions p(xjHi), i = 0, 1. Width Ai, i = 0, 1; center 0 for Ho and x, for H1.

The adaptive system simulation in Section 3.2 is for uniform probability distributions of
equal width, A0 = A1 = A, separated by x, = KA. The K-factor parameterization of overlapped
distributions is convenient for analysis of system discrimination performance 115]. The overlapped
distributibn condition corresponds to Kc[0, 1], with K of unity for non-overlapped distributions.
The training-set-based measures for uniform distributions are obtained from the substitution of
Equations (23)-(25) into Equations (14)-(18), with the result

Pd = 71(K + (1 - K)pj , (26)
yKIf + (1 - K)pj

'=ipo(1 - K) (27)
P=yoK + (I -K)po

P_ =  yop(1 - K) (28)
-yK + (1 - K)pj

and

11



PcHo = o[K + (1 - K)p] (29)
-yOK + (I - K)po

The MAP test measures in Equations (19)-(22) can be computed for the uniform data dis-
tributions in Figure 3. Note that for the case AO = A, = A, x, = KA, and Po = P, = 0.5, the
region of equal a posteriori probability Eo,i is [A(K - ), A/2]; the dominant hypothesis regions
are given by B0 = [-A/2, A(K - 1)] and B1 = [A/2, A(K + 1)). Substitution of these regions into
Equations (19)-(22) with uniform conditional probabilities p(xlHi), i = 0, 1, yields

pMAP2 pMAP2 = (1 + K)/2 (30)

and

pMAP2 - pMAP2 - (1 - K)12 (31)

Note that for the case -t0 = P0 = 0.5 and -yl = P, = 0.5, Equations (26)-(29) and Equations (30)
and (31) are identical, as expected for a training set proportioned according to prior probabilities.
Note that the condition P0 = pl implies that the MAP test is equivalent to the maximum likelihood
test, which maximizes p(xIHj), j = 1,..., N, to determine the hypothesis.

3.2 Performance Estimate Comparisons

In the analysis of the previous sections, performance measures for an adaptive system were
obtained from the statistics of the training set. We also derived estimates based on the assumption
that an adaptive system, realized as a neural net, performs a MAP N-hypothesis test. Back-
propagation neural nets are adaptive systems consisting of connected layers of processing elements
(neurons) with adjustable connection weights between layers and adjustable thresholds on each
neuron. A training set for decision making is used to adjust net parameters so that the net
performs a map between the input data space and the output hypothesis space. Both the training-
set-based and MAP estimates defined in the previous sections involve particular assumptions about
the adaptive system. The training-set-based estimate assumes that the system power of association,
i.e., the ability to decide on data not trained on, does not affect the system performance. The MAP
estimate for neural nets assumes that regardless of training-set composition the network literally
outputs the conditional probabilities p(Hilx), i = 1,...,N, in the N-neuron deepest layer. In
this section we compare the training-set-based- and MAP-performance measures on the bindry
hypothesis test in Section 3.1. The performance of two adaptive systems, a linear extrapolation
from the data set (LINEXT) and a back-propagation neural net (BPNN), are compared with the
two performance measures.

12



Figure Cotisposo d(K) and Pf (K) for the triigst ae estimate from Equa-

tos(26)-(29) and the MAP estimate from Equations (30) and (31) for the binary test of uni-

formly distributed data described in Section 3.1. We assume equal prior probabilities for Ho, and
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0.2 Y .

0.0

1.0

0.8 Y1 0.9

O 06 AP 1 0.

0.2 7 ,

0.1 0.2 0. 0.4 0.5 K0.6 0,7 0.8 0.9 1.

Figure 4. Detection and false alarm Probability versus K for binary hptej et
Thainingset-based estimate with -YI 0.1, 0.2,040608,0.9an 4esit.ProProbabilities Po 0.o,, p, 0.5 yohsi et

H)PO P, = 0.5, and plot the conditional probabilities for various values of 71. Note that if half
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'the training set is Hi-generated, "y1 = 0.5, the training-set-based probabilities are linear in K and
match the MAP estimates. The results in Figure 4 indicate that a training set proportioned toward
H1, i.e., "y' > -yo, increases Pd (at the expense of Pf) over the MAP test estimate. The reverse
situation occurs for a training set proportioned toward H0 .

A simple adaptive algorithm for hypothesis testing on binary hypotheses is linear extension
(LINEXT) from the training set. Assume a training set of OBS-generated data {x°, ... , XO} U
{xi,.. .,xi,}, where xi is Hi-generated. An input x is mapped by LINEXT to the hypothesis
of the nearest element of the training set. If the adaptive system.is viewed as a map f from
V to {0, 1}, with f(x) = i for hypothesis Hi, then the nearest-training-set-neighbor algorithm is
simply a linear extension of f from the training set. The hypothesis chosen for input x results
from a decision threshold at 0.5, e.g., f(x) greater (less) than 0.5 implies hypothesis H1 (HO). The
performance of the LINEXT algorithm was tested by creating a training set with NO = 100"yo and
N 1 = 100"y, H0 and Hl-generated elements, respectively. We considered the cases of -YO = 0.1
and 0.2 separately and in each case used a training ensemble consisting of 1000 training sets. The
LINEXT algorithm for each training set was tested with an independent performance set of 400
elements. Each performance-set element was generated by first choosing H0 or H1 phenomena
according to P0 and Pl prior probabilities. The chosen hypothesis H, determined the distribution
p(xjH,) (Figure 3) used to generate the data value xeD. The LINEXT algorithm was applied to
xeD and the output hypothesis H, was compared to the originating hypothesis H,. The number of
elements mapped to H, originating from an observation of H,, divided by the number of elements
in the performance set from H,, yielded the conditional probability p(Hj3 H,). Figures 5 and 6
show the average performance of the LINEXT algorithm in which the performance set probability
estimates described above were averaged over the training ensemble of 1000 sets. Figure 5 contains
a plot of Pd, Pf, Pm, and P-xH as a function of K for an ensemble of training sets with -to = 0.2
and "-y = 0.8. Note that the experimental performance of LINEXT was well approximated by
the training-set-based estimate (dashed line), particularly for Pd and P, probabilities. As seen in
Figure 6, similar results were obtained for an ensemble of training sets with -YO = 0.1 and -Y, = 0.9.
Note that the MAP test estimate (dotted line) provided a less successful prediction of LINEXT
performance.

The LINEXT algorithm above performs the decision space mapping on the training-set ele-
ments exactly. For a sufficiently representative training set in the overlap region of Figure 3, this
necessitates a mapping with undulations between the H0 and H1 hypotheses. A three-layer BPNN
has proven sufficient to perform any reasonable functional mapping [16j. A rough estimate of the
required number of neurons is obtained from the BPNN threshold function,

1
To(I) = 1 + exp(-I + 0) (32)

which is applied to the input I of a neuron with threshold value 0. An undulation in the net
input 'output mapping is easily represented as the difference of two neuron threshold functions,

14
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Figure 5. Detection, false alarm, miss, and correct Ho probabilities versus K for
LINEXT algorithm on binary hypothesis test. Averaged over 1000 training sets with
10 = 0.2 and -yj = 0.8. Prior probabilities Po = p, = 0.5. Each trained system
performance- tested with 400 elements.
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To - To,. This suggests that a mapping with p undulations requires at least 2p hidden-layer neurons
in the three-layer net. However, a BPNN trained to exactly perform the hypothesis space map
over a training set most likely approximates the training-set-based performance estimate. A neural
net with performance matching the MAP estimate is trained on data biases rather than on an
exact training-set map. In order to obtain MAP test performance, we considered a BPNN with
a single input, sixteen hidden-layer neurons, and two output neurons. The net was trained to
perform the binary hypothesis test on uniformly distributed data of equal width (AO = A1 =

A) and equal prior probabilities (P0 = P, = 0.5). For each training set of 20 H0- and 80 Hj-
generated inputs (-yo = 0.2,-yj = 0.8), the net was trained to map to (1,0) and (0,1) for Ho and
H1, respectively. To avoid mapping to training-set undulations and to train only on data biases,
the inputs from the overlapped regions in Figure 3 were removed from the training sets. The
performance probabilities for the trained BPNNs a, a function of K are shown in Figure 7. For
each K, ten BPNNs were trained on independent training sets of 20 and 80 H0 - and Hi-generated
inputs. For each trained BPNN, a set of 1000 four-hundred-element performance sets, each with
equal prior probabilities p, of 0.5, was used to compute performance probabilities. The BPNN
output decisions were determined by the larger neuron outputs in the third layer. As with the
LINEXT algorithm, the conditional probabilities p(H4 H3 ) were determined by counting the number
of H, decisions from H3-generated data and dividing by the total number of H3-generated elements
in the performance set. As demonstrated in Figure 7, although the training set was proportioned
toward H, (11 = 0.8) the BPNN performance was best approximated by the MAP estimat, (dotted
line). These results highlight the fundamental difference between training-set-babed- and MAP-test
estimation of adaptive system performance.
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4. CONCLUSION

In this report two distinct performance measures were identified for adaptive systems. Training-
set-based 3stimation of system performance was derived from the statistics of the training set. These
statistics are relevant if system errors reflect uncertainties inherent in the learning procedure. The
measures are independent of a particular adaptive system, although it was argued that systems
which perform training-set map undulations are described by training-set-based estimates. The
training-set-based measures were compared to the performance of a MAP test, which is easily rep-
resented in a neural net. It was suggested that systems trained for data biases rather than an exact
training-set map are best described by the MAP test performance.

Two adaptive systems were considered to emphasize the differences between training-set-
based- and MAP-test performance measures. The LINEXT algorithm, as applied to the binary
hypothesis test, performed the training-set map exactly. It was experimentally determined that
the LINEXT system performance was well approximated by the training-set-based estimate. Al-
ternatively, it was shown that a BPNN trained on data biases had a performance matching the
MAP test estimate.

The desired system performance has implications for neural-net structure. For example, it
was argued that two neurons are required in a three-layer BPNN for each implemented undulation
in the training-set map. An adaptive system matching MAP test performance would not have this
structural condition. However, training-set-based performance may be desirable beci.use perfor-
mance probabilities are dependent on the training set. For example, a training set proportioned
toward particular hypotheses increases the system performance for conditiunal probabilities involv-
ing those hypotheses. In this report a Neyman-Pearson-like bound for the binary hypothesis test
was shown to imply an upper bound on -yi, the proportion of detection data in the training set;
the adaptive system must be described by the training-set-based estimate for such bounds to be
relevant.
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