
AD-A243 181 _-_

I llIII!IIIII!IllI(!II!IIig R
TECHNICAL REPORT BRL-TR-3292

THE SUSTAINED COMBAT MODEL:
TANK WARS II PROGRAMMERS' MANUAL

FRED L. BUNN

NOVEMBER 1991

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION IS UNLIMITED. -

-)

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

91 1 2 r O0fi

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position,
unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement
of any commercial product.

UNCLASSIFIED
Form Approved

REPORT DOCUMENTATION PAGE OMB No. 070-p-o08
PU'lgC reporting ouren for this cofection of infOrmatiOn ,s estimated to average , hour oer tesi lse. icluding the time for reviewing n:rtructons. searching existing data ~o'aln.

gatherinn and maintaining the data needed, and completing and reviewin the collection of Information Send comments regardlng this bujedefn etllate or any Other aspect of this
collect on of intormatiOn. including suggestions for reducing this Ourden to Washington Headduarterl Sfttces. Directorate for information Operations and Reports. 1215 Jeffenion
Davis Highway, Suite 1204. Arlington. VA 22202-4302. and tO the Office of Management and Budget. Paperwork Radution Project (07040183). Washilngton. DC 20-03

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
November 1991 Final, January 1965 - September 1991

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
The Sustained Combat Model: Tank Wars II
Programmers' Manual PR: 1L162618AH80

6. AUTHOR(S)

Fred L. Bunn

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING IMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
U.S. Army Ballistic Research Laboratory AGENCY REPORT NUMBER

ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-5066 BRL-TR-3292

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION 'AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)
This report describes a stochastic simulation of combat between armored combat

systems and is oriented toward those who are interested in modifying, debugging, or
correcting the model.

The model is routinely used at the Ballistic Research Laboratory, other military
installations, and by contractors to evaluate trade-offs in the characteristics of
weapon systems candidates. It was specifically designed to evaluate the combat effec-
tiveness of tanks and other armored fighting vehicles but has been adapted to evaluate
other weapons systems. The model treats fighting vehicles in meeting engagements, in
attack scenarios and in defensive scenarios. It treats multiple systems on each side
and has the following features: multiple waves of Red attackers without Blue resupply,
Blue attack on multiple Red positions without resupply, individual round or burst
fire, kills at four kill levels. The model simulates stationary or moving attackers,
and plays guns and missiles but not a mix on a single side. It is written in Fortran
77 for portability and is based on the old TANK WARS model which is still running at
over a dozen installations.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Tanks (Combat Vehicles), Warfare, Simulation, Armored Vehicles, 163
Materiel 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

UNCLASSIFIED .o ,

INTENTIONALLY LEFT BLANK

11

TABLE OF CONTENTS

Page

LIST OF FIGU RES .. vii

LIST OF TAB LES .. ix

ACKNOW LEDGEM ENTS ... i

1. INTRODU CTION .. 1

1.1 Hierarchy of Routines ... 3
1.2 One Line Descriptions of Routines ... 4
1.3 Data Structure .. 6

2. TOP LEVEL ROUTINES ... 11

2.1 M ain: Simulate Armored Combat ... 12
2.2 W aves: Loop Through W aves of Red Tanks .. 13
2.3 Events: Call Each Event in Sequence ... 15
2.4 Input: Read Game Control File .. 16
2.5 Rdmisc: Read M iscellaneous Tank Characteristics .. 17
2.6 Prmisc: Print M iscellaneous Tank Characteristics ... 18
2.7 Init: Initialize for a Single Engagem ent ... 19
2.8 Statsl: Print Summary Statistics .. 21
2.9 Stats2: Print Statistics for a Single W ave .. 23
2.10 Stats3: Print Statistics for a Single Engagement ... 24

3. SEARCH AND DETECTION ROUTINES .. 27

3.1 Initnv: Generate Detection Probability Tables .. 28
3.2 Nvl: Find Probability of Ever Detecting and of Detecting in Next Second 29
3.3 Eye: Find the Probability the Eye Detects in the Next Second .. 31
3.4 Detrg: Find M axim um Range to W hich Each Firer Can Detect ... 33
3.5 SearcO: Schedule Initial Search Event .. 34
3.6 Search: Find Targets Detected in Next Second .. 36
3.7 Searc2: Find if One Searcher Detects One Target in the Next Second-
3.8 Detect: Find if Target is Detected and Schedule Subsequent Events 40
3.9 Pinpnt: Simulate Firing Signature Detection .. 41

4. TARGET SELECTION ROUTINES ... 43

4.1 Select: Gunner Chooses M ost Dangerous Target it Sees .. 44
4.2 Selecs: Start Target Selection if Appropriate ... 46
4.3 Priorn: Select Target with H ighest Priority ... 47
4.4 Priort: Find Priority of a Single Target .. 49
4.5 Engage: Begin Engagement of a New Target by This Firer 52

5. FIRING ROUTINES .. 53

5.1 Firing Cycles ... 54
5.2 Fire: Simulate Firing of a Round and Schedule Effects ... 56
5.3 Frdssg: Results of Firing a Single Shot Gun .. 58
5.4 Frdbst: Results of Firing a Round of a Burst .. 60

iii

TABLE OF CONTENTS (contd)

Page

5.5 Frdmsl: Results of Firing a M issile ... 61
5.6 Reload: Bring up Another Pod of M issiles ... 62

6. HIT PROBABILITY AND IM PLICATIONS .. 63

6.1 Impact: Find W hat Bullet aad Firer Do at Impact ... 64
6.2 M ayhit: Find W hether the Round Hits .. 66
6.3 Izhit: Find if the Target is Hit ... 68
6.4 Bounds: Find the Horizontal Bounds of the H ull or Turret ... 69

7. ACCURACY ROUTINES ... 71

7.1 RdEror: Read Accuracy Data for One Side ... 72
7.2 AccErr: Find the Linear Error for a Single Round .. 73
7.3 AccSs: Find Angular Accuracy for Stationary Firer Vs Stationary Target 74
7.4 AccSm: Find Angular Accuracy for Stationary Firer Vs Moving Target 77
7.5 AccMs: Find Angular Accuracy for Moving Firer Vs Stationary Target 79

8. DAM AGE ROUTINES ... 81

8.1 Damage: Simulate Damage to the Target .. 82
8.2 DamagF: Simulate Firepower Damage ... 84
8.3 DamagM : Simulate M obility Dam age ... 85
8.4 Deaths: Tally Deaths .. 86
8.5 LateKI: Simulate Discard of Inactive M &F-Killed Target .. 87

9. LETHALITY ROUTINES .. 89

9.1 RdPkhl: Read Standard Lethality Data .. 91
9.2 M kThl: M ake Table of Head-on Lethality Data ... 94
9.3 RdPkh2: Read HEAT and M issile Lethality Data ... 95
9.4 RdPkhS: Read Top Attack Lethality Data .. 96
9.5 Kill: Find Type of Damage Caused .. 98
9.6 KillS: Find Type of Damage Caused by Top Attack Round ... 99

10. DISENGAGEM ENT ROUTINES ... 101

10.1 Disengagement Tactics .. 102
10.2 Single-Shot Ballistic Projectiles ... 103
10.3 M issile Systems ... 104
10.4 Key Disengagement Variables .. 106
10.5 Diseng: Attempt to Disengage 1 Firer from 1 Target .. 109
10.6 Newtgt: Redirect All Foe to a New Target .. 111
10.7 Abort: Abort a M issile in Flight .. 113

11. M OTION ROUTINES ... 115

11.1 Deploy- Place Combatants at Start of Engagement .. 116
11.2 SlowUp: Begin Deceleration .. 118
11.3 Halt: Simulate a Tank Halting ... 119
11.4 Accel: Begin Acceleration .. 121

iv

TABLE OF CONTENTS (contd)

Page

11.5 MaxVel: Simulate Tank Reaching Combat Cruise Speed ... 122
11.6 Path: Find Position and Velocity of Combatant .. 123
11.7 Rgf: Find Range to Target, Relative Position, and Velocities ... 125
11.8 CanGo: Find if Tank is Stopped by Mobile ... 126

12. OBSCURATION ROUTINES ... 127

12.1 RdSmk: Read Intervisibility Data for Smoke .. 128
12.2 Smoke: Find When Smoke Will Stop Blocking LOS Between Searchers and Targets 130
12.3 Appear: Simulate or Reschedule an Appear Event .. 131
12.4 Aprsmk: Simulate Target Appearing from Behind Smoke .. 133
12.5 Aprter: Simulate Target Appearing from Behind Terrain ... 134
12.6 Terain: Find Path Lengths Where Attacker is Masked by Terrain 135
12.7 Vanish: Simulate or Reschedule Vanish Event ... 136
12.8 Vansmk: Simulate Target Vanishing Behind Smoke .. 137
12.9 Vanter: Treat Target Vanishing Behind Terrain ... 138
12.10 Hide: Simulate Tank Hiding .. 139
12.11 PopDn: Simulate Defender Popping Down to Reload Missile Pods .. 140

13. TIME ADVANCE ROUTINES ... 141

13.1 Event Handling Using Linked Lists ... 142
13.2 Reset: Re-initialize the Event List ... 143
13.3 Skedul: Schedule an Event ... 144
13.4 Event: Find Next Event ... 146
13.5 Cancel: Cancel and Event ... 147

14. OTHER UTILITY ROUTINES ... 149

14.1 Create: Find Space to Store Bullet Data .. 150
14.2 Anglef: Find the Angle Between Two Vectors .. 152
14.3 Confb: Find the 90% Confidence Interval On a Binomial Outcome ... 153
14.4 Indexx: Find the Index j, Where ao) < = < aj + 1) ... 154
14.5 Ranu: Draw a Random Number from the Standard Uniform Distribution 155
14.6 Rann: Draw a Random Number from a Normal Distribution .. 157
14.7 RndAng: Draw a Random Angle from a Cardioid or Other Distribution 158

R E FE R E N C E S ... 161

D IST R IB U T IO N LIST .. 163
40A A

' t y.

(2 <...

V"' . '

-I\

INTENTIONALLY LEFT BLANK

vi

LIST OF FIGURES

Page

1. The Probability of Detecting a Target ... 29

2. Linear Interpolation .. 32

3. Probability of Detection in the Next Second. 3

4. Selection of Highest Priority Target.. 47

5. Bias and Dispersion Errors.. 74

6. Attack Angle Bands Around the Target ... 82..

7. Raw and Specific Probabilities of Kill...9

8. Lethality Fan Above Target ... 99

9. Probability LOS exidsts for t Seconds or More... 129

10. Overlap of Visibility Segments for Disparate Viewers .. 132

11. Alternating in View and Out-of-View Segments ... 135

12. Contents of a Link.. 142

13. The Initial Linked Lists .. 143

14. Scheduling an Event... 144

15. Selecting the Next Event... 146

16. Cancelling an Event... 147

17. Ten Pairs of Numbers Drawn from a Uniform Distribution ... 155

18. Draw of 20 Random Shots ... 157

19. Cardioid Density and Distribution Functions...158

vii.

INTENTIONALLY LEFT BLANK

viii

LIST OF TABLES

Page

1. Counting Tank Statuses ... 24

2. Factors in Target Selection ... 49

3. Selection Priorities ... 50

4. Tim es From Target Selection to Launch .. 54

5. H orizontal Boundaries .. 69

6. First R ound A ccuracy .. 74

7. Stationary-Firer vs M oving-Target A ccuracy ... 77

8. Stationary Firer vs M oving Target .. 78

9. A dd-on D ispersions for M oving Firers .. 79

10. M oving Stationary Input D ata (as a function of velocity) ... 79

11. M oving Stationary Input D ata (as a function of range) .. 79

12. C um ulative D am age .. 83

13. Lethality D ata Stored in Table(4,12) ... 91

14. Table G enerated by M kThl .. 94

15. Sam ple Lethality File .. 96

16. Switching Logic for B ullets ... 103

17. Switching Logic for Sim ple M issiles .. 104

18. Switching Logic for M ulti-T arget M issile System ... 105

19. R ange Bands .. 125

20. T im e In-V iew for a V isual Band Sensor .. 128

21. Find an Index ... 154

ix

INTENTIONALLY LEFT BLANK

ACKNOWLEDGEMENTS

I would like to thank Ute Abbott and Ingo Rucker, U.S. Army Ballistic Research Laboratory for their
careful review of this report. Their suggestions for improving it were most helpful, and their assistance was
thoroughly appreciated.

xi

INTENTIONALLY LEFT BLANK

xii

1. INTRODUCTION

This report describes in detail the construction of the Sustained Combat Model: Tank Wars I. It
assumes you are familiar with the Users' Manual for Tank Wars.

Tank Wars II: The Sustained Combat Model is a computer simulation of sequential engagements
between mechanized combatants; one side of which is not re-supplied. It is routinely used at various
military installations and by government contractors for evaluating the combat effectiveness of tanks and
other fighting vehicles. The systems being evaluated (usually US systems) defend against one or more
waves of attackers without resupply, or on the attack, engage one or more defended positions without
being resupplied.

Each engagement is simulated in detail. The critical events in such an engagement include search,
detection, selection, acquisition, firing, impact, damage, target disengagement, and re-engagement.
Interwoven with these events are motion events and intervisibility events. If desired, the program will
print an event history for detailed study.

The model includes three types of engagements, two generic armaments, three categories of
functional losses, and two types of false targets. Below is an extensive list of model features. The three
scenarios are attack, defense, and a meeting engagement. Guns fire kinetic energy (KE), or high-explosive
anti-tank (HEAT) rounds while missiles may be guided-to-impact or fire-and-forget systems. Systems may
fire while moving or halt to fire. In either case they may suffer loss of mobility, firepower, or both and
may be catastrophically killed. In addition to the weapons systems being evaluated, there may be a
number of active or passive decoys and there are generally some false targets in the scenario.

MODEL FEATURES
Armament/accuracy

round reliability
KE, HEAT, missiles (incl STAFF) Miscellaneous characteristics
time of flight multiple kill levels
probability of sensing miss pinpoint and non-firing detection
S-S accuracy depends on prev round various target disengagement policies

Driver routines loop through model widely used
scenarios 21 levels of tgt priority
opening ranges simple terrain
force ratios Program design
multiple replications event sequenced
waves of threat systems time stepping for detection
re-grouping stochastic

Fire cycle characteristics modeled Fortran 77
ammo consumption modular
burst fire structured
first round time indented code
subsequent round times 3900 lines of code
manual loading, load assist, Scenario characteristics modeled
automatic loading multiple waves of Red threat systems

Intermediate output multiple combatants
event histories false targets
logic tracing passive and active decoys
event tracing Vehicle characteristics modeled
as scheduled, canceled, and retrieved disjointed turret & hull

Measures of effectiveness cardioid or other aspects
ammo consumption moving targets
blue tanks killed fire on the move
red tanks killed halt to fire
blue win probabilities gross motion
red win probabilities full defilade, hull defilade, fully exposed
exchange ratios red tanks killed

blue win probabilities
red win probabilities
exchange ratios

Conventions. All units are meters, seconds, radians, or a combination of these unless oth-
erwise noted.

The program uses a right handed cartesian coordinate system which is standard for test
ranges and navigation systems. The x-axis is positive Eastward, the y-axis is positive Northward,
and the z-axis is positive upward. Angles in the ground plane are measured clockwise from North.

A second coordinate system is target based, with its origin at the center of the turret ring or
what passes for the turret ring. In this coordinate system, the x-axis is positive to the right of the
firer, the y-axis is positive upward, and the z-axis is positive going from the target toward the
firer.

Some conventions used in the program are:
A two space indentation is used to display organization
Constants are in upper case
Changes in the flow of execution are in upper case
Error messages begin with the routine name

2

1.1 Hierarchy of Routines. The diagram below shows the organization of the program.
The routines in the first three columns are arranged in a hierarchy with called routines indented
slightly beneath the calling routines. The routines in the last three columns are utility routines
which may be called by many routines. They do not fit well into a hierarchy.

Top Level Events (cont) Events (cont) Model Utility Time Adv. Utility

Main Event Impact Abort Reset Anglef
Input Finish May hit Diseng Skedul Angsum

Rd misc Finsh2 Ace err Newtgt Event Cango
Pr misc Search Ace ssb Selecs Cancel Create

Rd eror Searc2 Ace ass Interp
Rd pkh Detect Ace sm Intrp2
Rd pkh2 Select Ace ms Nrgf
Rd pkh5 Priorn Is hit Ranu

Waves Priort Bounds Rann
Reset Engage Damage
Init Fire Kill

Deploy Pinpnt Kill5
Det rg Frd sag Damagm
Terain Frd bat Damagf
Smoke Frd msl Late ki
SearcO Reload Hide

Events Slow up Appear
Statsl Halt Vanish
Stats2 Accel
Stats3 Max vel

The routines in column one are highest in the calling hierarchy and considered together con-
trol the execution of individual engagements. The number of times each is called varies. A few
are called only once each time the program is run. At most, some are called twice per simulated
engagement; once for each side in the engagement.

The routines in the second and third columns are called by the events routine. They are
called many times during a single engagement to simulate the events which occur during a single
engagement.

The routines in column four are model utility routines. They are special purpose routines
which are called to provide information to other routines but which call no other routines and
may be thought of as trig functions or other utility functions.

Column five lists the time advance routines. They or something similar must be included in
any event stepped simulation.

Finally, column six lists general utility routines. They can be treated like trig or other
library functions and are useful in non-simulation programs.

3

1.2 One Line Descriptions of Routines. Here is an alphabetical listing of the routines
and one line descriptions of what they do.

Abort: Abort a missile in flight.
Acc err: Find the linear error for a single round.
Acc ms: Find angular accuracy for moving firer vs stationary target.
Acc sm: Find angular accuracy for stationary firer vs moving target.
Acc ss: Find angular accuracy for stationary firer vs stationary target.
Accel: Begin acceleration,
Anglef: Find the angle between two vectors.
Appear: Simulate or reschedule an appear event.
Aprsmk: Simulate target appearing from behind smoke.
Aprter: Simulate target appearing from behind terrain.
Bounds: Find the horizontal bounds of the hull or turret.
Can go: Find if tank is stopped but mobile.
Cancel: Cancel an event.
Confb: Find the confidence interval on a binomial outcome.
Create: Find space to store bullet data.
Creset: Clear stored bullet data.
Damag f: Simulate firepower damage.
Damag m: Simulate mobility damage.
Damage: Simulate damage to the target.
Deaths: Tallys deaths.
Deploy: Place combatants at start of engagement.
Det rg: Find maximum range to which each firer can detect.
Detect: Find if target is detected and schedule subsequent events.
Devic2: Find the probability device 2 detects in the next second.
Diseng: Attempt to disengage I firer from 1 target.
Engage: Begin engagement of new target, by this firer.
Event: Find next event.
Events: Call each event in sequence.
Eye: Find the probability the eye detects in the next second.
Fire: Simulate firing of a round and schedule effects.
Frdbst: Results of firing a round of a burst.
Frdmsl: Results of firing a missile.
Frdssg: Results of firing a single shot, gun.
Halt: Simulate a tank halting.
Hide: Simulate tank hiding.
Impact: Find what bullet and firer do at impact.
Indexx: Find the index j, where a(j) < = x < a(j+1).
Init: Initialize for a single engagement.
Initnv: Generate detection probability tables.
Input: Read game control file.
lz hit: Find if the target is hit.
Kill5: Find type of damage caused by top attack round.
Kill: Find type of damage caused.
Late k: Simulate discard of inactive m&f-killed target.
Main: Simulate armored combat.
Max vel: Simulate tank reaching combat cruise speed.
Mayhit: Find whether the round hits.
Mk tbl: Make table of head-on lethality data.
Newtgt: Redirect all foe to a new target.
Nvl: Find probability of ever detecting and of detecting in next second.

4

Path: Find position and velocity of cnmbatant.
Pinpnt: Simulate firing signature detection.
Pop dn: Simulate defender popping down to reload missile pods.
Pr misc: Print miscellaneous tank characteristics.
Priorn: Select target with highest priority.
Priort: Find priority of a single target.
Ran Ang: Draw a random angle from a cardioid or other distribution.
Rann: Draw a random number from a normal distribution.
Ranu: Draw a random number from the standard uniform distribution.
Rd eror: Read accuracy data for one side.
Rd misc: Read miscellaneous tank characteristics.
Rd pkh2: Read HEAT and missile lethality data.
Rd pkh5: Read top attack lethality data.
Rd pkh: Read standard lethality data.
Rd sink: Read intervisibility data for smoke.
Reload: Bring up another pod of missiles.
Reset: Re-initialize the event list.
Rgf: Find range to target, relative position, and velocities.
Schedule: Schedule an event.
SearcO: Schedule initial search event.
Searc2: Find if one searcher detects one target in the next second.
Search: Find targets detected in next second.
Selecs: Start target selection if appropriate.
Select: Gunner chooses most dangerous target it sees.
Slow up: Begin deceleration.
Smoke: Find when smoke will stop blocking LOS between searchers and targets.
Statsl: Print summary statistics.
Stats2: Print statistics for a single wave.
Stats3: Print statistics for a single engagement.
TDIntp: Interpolate in a two dimensional matrix.
Terain: Find path lengths where attacker is masked by terrain.
Vanish: Simulate or reschedule vanish event.
Vansmk: Simulate target vanishing behind smoke.
Vanter: Treat target vanishing behind terrain.
Waves: Loop through waves of red tanks.

5

1.3 Data Structure. The files: common.h and clock.h and the blkdat routine contain
code defining global variables. This section discusses common.h and blkdat. The clock.h file is
discussed in a later section with the other clock routines.

The following values are communicated to routines via block common statements which are
in the common.h file. Constants are all upper case. Normally integers begin with the letters i..n,
and reals begin with the remaining letters. If this is not the case, the definitions below tell whether
the variable takes an integer, real, logical, or character value.

ACCELG = 3 Identifies tank that is accelerating. integer
ALIVE = 1 Implies fully functional. integer
ALL = 0 Used to schedule or cancel an event for all firers or targets. integer
BATTAK = 3 Blue attack scenario, integer
BLU = 1 # of blue side. integer
PEG = 57.29577951 Degrees/radian.
FD = 1 Full defilade. integer
FE = 3 Fully exposed. integer
FKILL = 3 Firepower kill. integer
FLSTGT =-1 ID # for false targets. integer
HD = 2 Hull defilade. integer
HULL = 2 Identifies hull box. integer
[KILL = 5 M&F kill & recognized to be inactive.
KKILL = 6 Catastrophic kill.
MAXVL = 4 Identifies tank moving at maximum combat velocity.
MEETNG = 1 Meeting scenario.
MFKILL = 4 Mobility & firepower kill.
MKILL = 2 Mobility only kill.
NN = Maximum number of tanks playable.
NULL = 0 No specific target associated with firer event.
P = 3.141592654 (7r).
RATTAK = 2 Red attack scenario, integer
RED = 2 # of red side. integer
SLOWNG = I Identifies tank that is slowing up. integer
STATNY = 2 Identifies tank that is stationary (halted). integer
TURRET = 1 Turret, of tank. integer
TWOPI = 6.283185308 (2r).
a(1000) See routine create. Storage for temporary entities.
accel(2) Acceleration of ith side (m/s**2).
accmax(2) Maximum lateral acceleration (m/s**2).
ampl(2) Amplitude of sinusoidal path (i).
angle No longer used. Used to input crossing angle of attacker.
army(NN) Army(i) is I if ith tank is Blue and 2 if it is Red. integer
busy(NN) busy(i)=T iff ith tank is too busy to select a new tgt. logical
chanel(2,NN.5) chanel(i,j,k) contains ID of missile for ith side, jth tank, kth guidance channel.
color(2) color(n) is the color of the nth army. character'4
decel(2) Deceleration of ith side (m/s**2).
empty(NN) empty(i)=T iff out of ammo or empty missile pod. logical
fot(NN) fot(i)=T iff ith tank is occupied firing on a target. logical
histry =T iff event history will be printed, logical

6

iangd =1 if using cardioid distribution of aspect angles, 2 if frontal distribution.
idecoy(NN) idecoy(i)=T iff ith tank is a decoy.
iflash(NN) iflash(i)=T iff ith tank is a flashing decoy.
iholy See create. Index of storage space being examined.
invisb =1 for terrain. 2 for smoke. Cannot use both smoke terrain.
irandm Random number seed.
irginc Range increment for detection, time of flight, tfirst, pkh tables. Usually 500 meters.
ishtfs(2) Side is halt to fire. logical
keym(20) =T iff print statement should be executed.
kindrd(2) Side's kind of round.
knceal(NN) knceal(i) is I if full defilade, 2 if hull defilade, 3 if fully exposed.
kshot(2,20) Count of shot results.
kview(2) kview(i)=l for visual detection, 2 for thermal viewer.
life(NN) life(i) is 1 if ALIVE, 2 if MKILL, 3 if FKILL, 4 if M&FKILL, 5 if IKILL, 6 if KKILL.
loader(2) loader(i)=1 for manual loader, 2 for load assist, 3 for autoloader.
los(NN,NN) los(ij) = T iff firer i has line-of-sight to target j. logical
methsm 1 iff interpolation for crossing angle desired.
mot(NN) mot(i)=T iff ith tank is guiding missile to tgt. logical
motion(NN) motion(i) is 1 if slowing, 2 if stationary, 3 if accelerating, 4 if max combat speed.
nblu # blue tanks.
nbrst(NN) nbrst(i) is # rounds fired by ith tank during current burst.
nbump(2) # of rounds to fire at MF killed tgt before discarding it.
nchan((NN)) # guidance channels for ith side.
nchans(2) # guidance channels for ith side.
ndecoy(2) # decoys on ith side.
ndet(NN) # tgts ith tank has detected.
ndets(2) # tgts tank on ith side can detect.
neval # surviving blue tanks with ammo.
nflash(2) # flashing decoys on ith side.
nhot(NN) nhot(i) is # hits on ith tank after it's M&F killed.
nipod(NN) # rounds in missile pod for ith side.
nipods(2) # rounds in missile pod for ith side.
nprior(2) nprior(i) 1 if ith side using priority scheme 1, 2 if using scheme 2.
nrd(NN) # rounds fired by ith tank.
nrds(2) # rounds on system for ith side.
nred # red tanks.
nreps # replications.
nrg # of range band. if irginc=500, nrg I for data at 500 meters, 2 at 1000 meters, etc.
nrib(2) # rounds in a burst, for ith side.
nrot(NN) # rounds on target for ith tank.
nrpb(2) # rounds per burst for ith side.
nrpt(2) # rounds per target for ith side.
nrtgt,(NN) ID # of ith tank's target.
nused(3000) # rounds fired by tank.
nwaves # waves.
pdet(2,3,10) pdet(i,j,k) is probability of detecting in next second for ith side vs tgt in condition j,

at kth range.
pfalse(2,2) pfalse(il) is prob ith side selects false lID tgt. pfalse(i,2) is for FE tgt.
pinfin(2,3,10) Prob tank on ith side detects tgt in cond j at, range band k.
pinp(2) Probability of pinpoint detection for ith side.

prevrd(NN) I if 1st rd on tgt, 2 if previous was a hit, 3 if previous was sensed miss, 4 if previous
was lost miss.

psense(2,8) Probability of sensing miss for tank.
recknz(2) recknz(i) is range cutoff for target selection routine.
reliab(2) Probability round is reliable for ith side.
repeat Repeat search code for all tanks.
rex Random error.
rey Random error.
rg Range from firer to target (in).
rg0 Opening range for engagement (in).
rgincr Range increment in tables (in). Usually 500 meters.
rgvis(3,NN) rgvis(i,j) is range to which jth tank can detect target in ith condition.
rof(2) Rate of fire for ith side.
scene =1 for meeting, 2 for Red attack, 3 for Blue attack.
see(NN,NN) Tank i has seen target j.
share(2) share(i)=T iff side i shares info re targets & spreads fire evenly, logical
speed(2) Combat speed of ith side (m/s).
sysdim(2,8) Dimensions of tanks on side.
to(NN) Last time position and velocity were updated (see).
tactic(2) Disengagement tactic for ith side. integer
tbump(2) Time for ith side to bump MF killed tgt to inactive.
tcon(2) Constant time for loaders - for time between rds.
tfire(NN) Time tank fired last.
tfire2(NN,NN) Time tank fired at target last.
tfirst(2,8) Median time to fire first round for ith side.
thide(2) Time to hide for ith side (see).
tini(21,5) Table of in view segment lengths for infrared sensors.
tiny(21,5) Table of in view segment lengths for visible band sensors.
tlook(2) Time tank will look before re-engaging old target.
tmax Maximum time (sec). Used to cut off a replication.
tof(2) Time of flight for ith side.
touti(21,5) Table of out-of-view segment lengths for infrared sensors.
toutil(21,5) Table of out-of-view segment lengths for infrared sensors.
toutv(21,5) Table of out-of-view segment, lengths for visible band sensors.
toutvl(21,5) Table of first out-of-view segment lengths for visible band sensors.
trace Prints entry to and exit from routines iff true. logical
trelod(2) Time to reload (next missile pod) for ith side.
tvar(2) Median variable time for loaders - for time between rds.
vxO(NN) vxO(i) is the last computed speed of the ith tank. (m/s).
vyO(NN) Velocity of tank.
wvlth(2) Wave length of sinusoidal path (m).
xO(NN) xO(i) is the last computed Easting coordinate of ith tank. (in).
yo(NN) Position of tank.

The common.h file and the blkdat routine are listed below. The data statements in the
blkdat routine set values for the constants in labeled common. While many compilers do not
require these data statements to be placed in a separate block data routine, the Fortran 77 stan-
dard and the current Microsoft Fortran compiler do.

c common.new common /charc ' color(2)
c VI.3 common /consts/ P1. TWOPI, DEG
c cornmon.h file integer ALL, NMILL, FLS TGT,

parameter (NN-20) I FD, RD, FE, TURRET, HULL, BLU, RED, MEETNG, RATTAK,
c Much used: 2 BATTAK, ALIVE, MKILL, FKILL, MFKILL, [KILL. KKILL,

character*4 color 3 SLOWNG, STATNY, ACCELG, MAXVL

common I const2/ ALL, NULL, FLS TGT,
1 FD, HD1, FE, TURRET, HULL, BLU, RED, MEETNG, RATTAK,
2 BATTAK, ALIVE, MKILL, FKILL, MFKILL, WKILL, KKILL,
3 SLOWNG,STATNY,ACCELG,MAXVL

integer scene, army
common /contrl/ nreps, keym(20), scene, tmax, meth sm
common /cshot/ kshot(2,20)
logical trace, histry

common /ctracej trace, histry
common /n sys/ niblu, nred

common /states/ army(NN), lite(NN), nrtgt(NN)
c Less used:

common /aspekt/ iangd
common /tstore/ a(1000), iholy
common /vars6/ irginc, rgincr

c Vehicle:
common /endgarn/ sysdim(2 8)
common /state2/ idecoy(NN , ifiash(NN), ndecoy(2), nfiash(2)

c Round:
common /round/ kindrd(2), nrds(2), nrd(NN), reliab(2),

1 iiipods(2), nipod(NN), trelod(2). nrpb(2), nrib(NN), tof(2,8)
c Detection:

logical los, see, repeat
integer prevrd
common /xx/ invisb, kview(2), ndets(2), ndet(NN),

1 pinp(2). tlook(2). los(NN,NN) NNN
2 kneal(NN), prevrd(NN), rgvi s(3,NN), see(NNN

common /sensor/ psense(2,8). pinin(2,3,10), pdet(2,310),
I repeat

c Selection:
logical busy lot, mot, share
common / choose/ busy!(NN), fot(NN,NN), mot(NN,NN),

1 nprior(2),pfalse(2,2),rec knz(2),share(2),tfire(NN.NN),tfire2(NN)(2)
c Fire cycle:

integer chanel
logical empty
common /fcycle/ ishtfs(2), loader(2), tfirst(2 .8),

1 ror(2), tvar(2), tczon(2), n brst(NN), empty(N N),
2 chanel(2,NN,5), nehans(2), nchan (NN)

c Target discard:
integer tactic
common /policy/ tactic(2). nrpt(2), nrot(NN). nhot(NN),

I tbump(2).nbump(2)
c Motion:

common /cpath / accel(2),decel(2),
1 speed(2), angle(2) accmax(2), wvlthr(2), ampl(2),
2 motion(NN), O(NN), x0(N N), yO(NN), vxO(NN), vyO(NN)

common /w here2/ nrg, rgO, rg., s(3)
common /yy/ thide(2)

c V7.4
BLOCK DATA BLKDAT
include 'common.h'
data color, pi, twopi, deg

I /'Blue', 'Red ',3.141.592654, 6.283185308, 57.29577951/
data ALL, NULL, FLS TOT /0, 0, -1/
data FD, HD, FE /1,2, 3/
data TURRET, HULL /1, 2/
data BLU, RED /1, 2/
data MIEETNO, RATTAK, BATTAK /1, 2, 3/
data ALIVE, MRILL, FRILL, MFKILL, IKILL, KKILL /l.2.3,4.5,6/
dataSLOWNO, STATNY, ACCELG,MAXVL

1 /1,2,3,4/
data keym /20*0/
END

INTENTIONALLY LEFT BLANK

10

2. TOP LEVEL ROUTINES

The Tank Wars routines are in a hierarchy. The routines discussed in this section are at the top of
the hierarchy. They read input, loop through parameters, and produce summary statistics, rather than
dealing with the specifics of a single engagement. Main, and waves take the burden of changing parame-
ters off the user. They simply read the input and vary parameters. Then with the parameters set, execute
the combat model proper. The parameters varied are the scenario, the number of tanks on each side, the
opening range, the number of threat units (Red) met, and the number of replications.

The diagram below shows the relationship between the driver routines discussed in this section.
Each routine is called by the one directly above it.

Input calls several routines not shown in the diagram which read lethality and accuracy data. They
are discussed in the sections describing the lethality and accuracy routines.

Init also calls several routines not shown in the diagram. They initialize event routines and since
they are conceptually linked with those routines they are discussed with them.

Events is called once for each engagement. It is at the top of the hierarchy for all remaining rou-
tines. They will be discussed in later sections.

main

input waves

rdmisc init events statsl stats3

prmisc stats2

11

2.1 Main: Simulate Armored Combat. Main is where the simulation starts; it is the main pro-
gram at the top of the routine hierarchy. It prints the version header, and calls the input routines, exe-
cuting perhaps 1,000 replications for each scenario and opening raitge. Then it loops through the scenarios
and the set of opening ranges. Main is small so that -,de controlling other interesting parameters can be
added for parametric studies.

The end of the Game file controls the opening ranges and the scenarios to be played. Suppose the
game file ends with the following data:

Game file Comment

1000, 3000, 500 min range, max range, range increment
1, 5, 5 scene, #blue, #red
2, 4, 12 scene, #blue, #red
3, 12, 4 scene, #blue, #red

The first line shown controls the opening range for the battle. It contains a minimum range, max-
imum range, and a range increment. If, for example, the line contains these values: 1000,3000,500, then
Tank Wars would simulate combat at 1000, 1500, 2000, 2500, and 3000 meters opening lange.

The lines following this (three in the example) describe three scenarios to be played. Each of these
lines contain the scene, the number of Blue combatants, and the number of Red combatants. The codes
for the scene are as follows:

Scene = 1 A meeting engagement
Scene = 2 A Red attack (the threat system)
Scene = 3 A Blue attack (the system being evaluated)

For our example, Tank Wars would simulate a meeting engagement between 5 Blue and 5 Red tanks
at each of the opening ranges. It would simulate perhaps 1000 replications for each opening range. Then
it would repeat the process for a 12 Red tanks attacking 4 Blue attacks. Finally, it would repeat the pro-
cess for 12 Blue tanks attacking 4 Red tanks. It then runs out of scenario data and quits.

Code.

c V7.10 30 'ON fANUE
c MAIN ROUTINE COT() 20
c 9 Main: read input and simulate scenarios. END

character string(3)*11
include 'common. h'

3 format(' #Blues-',j3,' #Reds-',i3,2x,a)
data string /'Meeting','Red attack ','Blue? attack'/

print*,'The Sustained Combat Model: Tank Wars II'
print*,'by Fred Bunn, ph (301) 278-6676. autovon 298-6676'
print*,'Ballistic Research Laboratory'
print*,'Aberdeen Proving Ground, MD 21005'
print*,'Version 7.10 Created 4/2/89'
call input
read*, minrg, maxrg incrg

20 CONTINUE
read(5,*,IOSTAT-io) scene, nblu. nred
if (io.lt.0) print*,'End of run.'
if (io.gt.0) print*,'Can"t read data.'
IF (io.ne.0) STOP
print 3, nblu, nred, string(scene)
DO 30 irg - minrg maxrg, incrg

rgO - irg
call waves

12

2.2 Waves: Loop Through Waves of Red Tanks. Waves initializes and computes summary
statistics and loops through one or more sets of replications. The summary statistics are generated by the
subsidiary subroutines; statal, stata2, and stata3. Later sections discuss these routines and the sum-
mary statistics. Normally, waves loops through a single set of engagements each time it is called. This set
may be 1,000 replications of a case, where a case is a single scenario with a single opening range. However,
the user may specify multiple sets where each set of engagements represents unresupplied Blue tanks in
combat against a 'wave' of fresh Red tanks.

The waves routine was developed to analyze ammo consumption. If you aren't interested in that,
just set the number of waves to one. The routine initially pits N blue against M red and does this for
perhaps 1000 replications. This completes the simulation of the first wave of Reds. It then regroups all
survivors with ammo in groups of N blues and pits them against M reds and does this say 500 times. This
regrouping continues until not enough Blues are left to form a group or the routine completes nwaves of
waves.

Normally, Blue tanks with many cannon rounds will win or lose before hardly any of them run out
of ammo. This, of course, would not be the case if the Blue systems are armed with just a few missiles;
many of them might run out of ammo before the engagement ends.

Waves checks to see if multiple waves of Red tanks are being simulated and if there will be
sufficient space to record the ammo expended by the Blue tanks. If there's not enough space and multiple
waves are being simulated, waves prints a message and skips the current case. Otherwise, it runs the
current case. For example, if nwaves > 1, multiple waves are being simulated. If the number of replica-
tions for the first wave is nreps=1000, and if the number of blue combatants in an engagement is nblu=4,
waves will skip this case because only 3,000 ammo consumption values can be saved but there may be as
many as 4,000 survivors whose ammo consumption must be recorded.

If there's no problem recording ammo consumption, the code proceeds to run the current case. It ini-
tializes scenario statistics, executes multiple replications of the engagement and generates summary statis-
tics.

Key variables and relations are:

CODE COMMENT

nreps # replications (engagements) to simulate during the first wave.
nblu # of Blue tanks in an engagement.
nwaves Maximum # of waves of Red units Blue systems will combat.
kshot(2,20) Table of shot outcome statistics.
kount(2,20) Table of survivor statistics.
nused(3000) Array of ammo consumption for fully functional Blue survivors.
nreps3 Total # replications fought in all waves.
nreps2 # replications fought, in current wave.
nsurv # fully functional Blue survivors in current wave.
nwave # of current wave.
iseed2 Saves starting random number seed to print with summary statistics.
nrg Range band. =1 for opening range near 500 meters, 4 near 2000 meters, etc.
iseed3 Saves starting random number seed of wave.
keyd(5).gt.0 Implies events scheduled, canceled, and executed should be printed

when scheduled, canceled, or executed.
nsurv.lt.nblu True when not enough fully functional survivors to send nblu tanks into the

next engagement.
nwave.eq.nwaves True when the current wave equals the maximum # of waves desired.
iuse # of survivors available for regrouping during later replications of

the current wave.

13

Code.

c V7.14
SUBROUTINE WAVES

c 7 Waves: loop thru waves of red tanks.
include 'common.h'
common /crandm/ irandm
common /inpwav/' keyd(S), nwaves, neval, nused(3000)
integer kount(2,20)
logical done

c
if (trace) trint *,'>waves'

I(nrep nblu.gt.3000 .and. nwaves.gt.1) THEN
print t 'WAVES: Too many reps or blues. ',nreps,nblu

ELSE
c Initialize scenario statistics

DO 10 i.-1,20
kso(1i -0

ksh o(2,i) 0
kount 1I) =0
kount(2,i) 0

10 CONTINU
DO 30 i-1,3000

30 CONT NUE
print*'Starting seed=',irandm
nreps3 - 0
nreps2 - nreps
nsurv - 0
nwave - 0

40 CONTINUE
c Loop thru up to n waves of red tanks

nwave - nwave+1
iseed2 = irandm
nrg = rgO/irginc
DO 50 i-16,20

kount(2,i) = 0
s0 CONTINUE

DO 60 nrep - 1,nreps2
c Simulate a single engagement (replication).

iseed3 - irandm
call reset(keyd(5).gt.0)
call creset
call init
call events
call stats3 (keyd(l1),nrep,kount,iseed3,nsurv,nused)

60 CONTINUE
c Update statistics and see if all waves are done.

nreps3 - nreps3+nreps2
call stats,2(nwave,nwaves,nreps2,kount)
done - nsurv.lt.nblu or. nwave.eq.nwaves

IF (done) GOTO 80
c Find #reps, #Blue tanks, #unused Blues for next wave.

nreps2 m nsurv/nblu
iuse = nreps2*nblu
kount(1,1) = kount(l,1)-iuse
nsurv - nsurv-iuse

GOTO 40
80 call statsl (nwave,nreps3,kount)

ENDIF
if (tace) print *,'<waves'

14

2.3 Events: Call Each Event in Sequence. Events is the heart of the program because it con-
trols the simulation of single engagements. It loops until it finds a finish event. Until then, it finds the
most imminent event on the event list and branches to the appropriate event routine. The event routine
then simulates the event. The process of finding the next event and executing it continues until a finish
event occurs.

Events is a simple loop which calls event to return the next event and branch to one of the many
events.

Key variables are:

CODE COMMENT

what The event name. character*6
who The ID of the tank (or bullet), integer
whom The ID of the target (if any). integer
t Simulated time (sec).

Code.

e V7.5 END
SUBROUTINE EVENTS

c 8 Events: call each event in sequence.
include 'common.h'
character*6 what
integer who, whom

c
if (rc)pit*,'>events'

10 COMN M~~U
call event (who, what, whom, t)
IF (what..eq.'search') THEN

call search (t)
ELSEIF (what.eq.'vanish') THEN

call vanish (t:who wom
ELSEIF (wha(t-eq.'appear') THEN

call appear (t,who,whom)
ELSEIF (what.eq.'detect') THEN

call detect (t,who,whorn)
ELSEIF (what.eq. 'select) THEN

call select (twho)
ELSEIF (whateq. fire ')THEN

call fire (t,who,whom)
ELSEIF (w hat.eq.'impact') THEN

call impact (t,who)
ELSEIF (what. eq. 'damage') THEN

call damage (t,who,whom)
ELSEIF (what.eq.'slowup') THEN

call slowup (t,who)
ELSEIF (what.eq.'halt 'THEN

call halt (t who
ELSEIF (whateqt'acel 'THEN

call accelf (t,who)
ELSEIF (what. eq.'maxvel') THEN

call maxvel (t,who)
ELSEIF (what.eq.'ikill ')THEN

call latekl (t, who,wnom
ELSEIF (what.eq.'hi-ie ') THEN

call hide (t,who)
ELSEIF (what. eq.'reload') THEN

call reload (t,who)
ELSEIF (what.eq.'popdn ') THEN

call pop dn (t,who)
ELSELF (what. eq. 'fi nish') THEN

GOTO 9
ELSE

print*,'EVENTS: what-'what,' who-'
, who,' whom-'whom,' time-',t
print* 'Contact Fred Bunn'
STOP

END [F
GOTO 10

89 if (trace) print *,'< events'

15

2.4 Input: Read Game Control File. This routine reads game control information from what we
call the Game File which is assumed to be the standard input (Fortran unit 5). The Game File lists other
files that contain accuracy, lethality, and miscellaneous data for the Blue and Red tanks. When the input
routine reads these file names, it calls lower level routines to read these files.

For the most part the values read here are described in the earlier section entitled: Data Structure.
They are further described in the The Suatained Combat Model: Tank Wara II Usere' Manual.

Code.

cV7.9
SUBROUTINE INPUT

c 0 Input: read game control file.
include 'common.h'
cbaracter*32 fname
integer indx(S)
common /crandm/ irandm
common /inpwav/ keyd(S), nwayes, neval, nused(3000)

I format(i,lx,a32)
2 format(2x,,fG.2)
c

read(5,.)(ke(yd(i),i- 1.5)

histry - keyd(I).ge.2
iecho-keyd(2)
read(5,*)IaD
DO 20 i-1,5

it indx(i).gt.1 and. indx(i).le.20) keym(indx(i))-1
20 CONTINU

read(S,*) irginc
rgincr - irginc
read(5,*) nreps, nwayes, iangd, METHSM, irandm
read(5 ,) tmax

read sun
read(5 k, fname
inyisb-k
IF (iecho.gt.O) THEN

print* 'ENVIRONMENT:'
print 2,'lllumination is ',sun,' ft-candles.'

if iangd.eq.1) print* 'Using cardioid distribution.'
if~ian~d.eq.2) print* 'Using frontal distribution.'
print*,'Rg increment for all tables is'.irginc,'metras.'

ENDIF
IF (k.ec.1) THEN

print ,' Terrain parameters are hardwired now'
ELSE

print*,' Playing smoke'
call rdsmk(rname)

ENDIF
read(5,1) k, fname
call rd misc(f name,BLU~su njiecho)

read(.5,1) k fname
callI r deror (fname,BLUiecho)

c Read pkh data for Blue.
read I, k fname
if (k.eq.1 call rdlpkhl (fname,BLU,iecho)
if (k.eq.2) cal rdpkh2(fname,BLUiecho)
if (k.eq.5) cal rdpkh5(fname.BLU,iecho1

read(5jl k, fname
call 'd misc(fnameRED,su n, iecho)
read(5,11 fname
call rderor (fname,REDiecho)

c Read pkh data for Red.
read 1, k rname

I (k:eq, call rdpkhl (fname,RED,iecho)
if (q2) call rdpkh2(fnameREDjieclo)

i(k~e .5 call rd p kh5(rnameREDjiecho)
if jtacellprint *,'<input'

16

2.5 Rdmisc: Read Miscellaneous Tank Characteristics. This routine simply reads data values
and if an echo is desired, calls the prmiac routine. It then prints the name of the miscellaneous data file
used.

An earlier section entitled: Data Structure, and the Users' Manual describes the variables read by
rdmisc.

c V7.7
SUBROUTINE RD MISC (fname,n,sun,iecho)

c 9 Rd misc: read miscellaneous tank characteristics.
c foame - file name.
c n - # of side. Blue-i, Red-2

include 'common.h'
character fname*32
real high(2)

c
if (trace) print *,' >Rdmisc'
open(4, file-fniame, status-'old')
rewind 4

c Read vehicle characteristics.

rad4) ndecoy(n), nflash(n)
c Read round characteristics.

read(4,*) kindrd~n), nrds(n), reliab(n)

c Read acouisition characteristics.
read(4,) kview(n), ndets(n)
read(4,~ pfalse n,l), pfalse(n,2), pinp(n)
read(4,) share(n)

c Read tar et selection criteria.
read(4,) nprior(n), recknz(n)

c Read fire cycle characteristics.
read(4,: ishtfs(n), loader(n), tcon(n), tvar(n)
read(4, nchans(n)
read(4,* (tftrst(ni) ,i-I,8)
read (4,* nrpb n) rof(n)
read(4,* nipods n), trelod(n)

c Read disengagement policy
read(4,*) ibump, nbump(n)
tbump(~) - ibump
read(4,) tactic(n), nrpt(n), tlook(n)

c Read motion characteristics.
read (4,*) accel(n), decel(n), speed(n), thide(n)

close (4)
high~i) - sysdim(3-n,l)
high(2 - high(l) + sysdim(3-n,5)
call initnv(n,kview(n),sun,high)
if (iecho.gt.O) call prmisc(n)
print *, 'Misc file is:',fname
if(trace) print ','<~rdmisc'

17

2.6 Prmisc: Print Miscellaneous Tank Characteristics. This routine simply prints the miscel-
laneous data with labels. It documents the values read in and allows the user to verify that the input was
correctly prepared.

c V7.9 if (keqi) print 4,'Selects old, hit tgts over new tgts.'
SUBROUTINE PR MISC(n) if (k.eq.2) print 4.'Selects new tgts over old hit tgts.'

c 3 Pr misc: print misc tank characteristics, print 3, recknz(n),'Recognition rg. (for tgt priorities.Xm)'
include 'common.h' print*
integer ir 8 print*'FIRE CYCLE CHARACTERISTICS:'

charater 26 br if~sbtf~n) gt.%~rint 4,'Systoem halts to fire.'databar'-------------------------7 i~istfsn) eq.0 print 4,'System fires on the move'
I format i,Ix k-odr (n)

2 format(I'8.2,lx~a) if,(keqi) print 2, tvar(n),
3 format f8.O,Ix a 1 'Median time between rounds for manual loader (sec).'
4 format gx,a) if (k.eq.2) print 2, tcon(n)
6 format(/ 1 'Minimum time for load assist (sec).'

I ' TAR ET DIMENSIONS:', 28x,'MOTION CHARACTERISTICS:',/, if (k.eq.2) print 2, tvar(n),
I'Distance (in) from center of', 1 'Median additional time for load assist (see).'

1 IfAclrto Jf6.2,' m /s**2'./, if (k.eq.3) print 2, tcon(n),
I'turret ring to:',31x,'Decel eration',f6.2,' m/s**2',/, 1 'Minimum time for autoloader (sec).'
I Turret top ',f6.2,' Ground %1 f5.2,9x, if (k.eq.3) print 2, tvar(n),
I Time to hide',f6.2,' sec',/, 1 'Median time for autoloader (see).'

1I Turret Side ',f6.2,' Hull side ',f6.2,9x, print 1, nchans(n),'gui dance channels.'
1I Combat speed',f6.2,' m/s',/, k - nrpb(n)
1 ' Turret front',6.2,' Hull front',fG.2,/, if (k.gt.1I print I nrpb(n),'Rounds,/burst.'

I'Turret back ',fB.2,' Hull back ',r6.2,/) if (k.gt.1) print 2,rof(n),'between rds in a burst (sec).'
7 formnat(/, k, ;kindrd(n)

1 9x- --- ----- DETECTION CAPABILITY .'------ if (k.eq.4) print 1, ni pods(n),'missiles/ pod-'
2 '---FIRING CYCLE ----- ' if (k.eq.4) print 2, trelod(n),'Time to change pods (sec).'
1I/ Rg P-det (ever) Pdet (1 sec) ',print*

I Tfirst Tfixed Tfly',/, print*,'TARGET SWITCHING CRITERIA:'
I (in) lID FE FE-M HD FE FE-M', print, 'Permanently discard:'

1I (sec) (sec) (sec)',/, print ,'1. K-killed targets.'
I 8(i7,f7.2,2f6.2,f8.2,2f7.2,r7.1if8.1I,f8.2,/)) print 9, tbump(n), nbump(n)

8 format(Temporarily discard after firing'.i2,' shots.') k - tactic(n)
9 format(' 2. M&F kill and',f4.O,' sec elapse or tank fires', if 'k.eq.2) print 0, 'Temporarily discard after scoring a hit'

I i2,' rds at it.') if (k 'eq.3) print 8, nrpt(n)
if (k.gt.1 print 2, tlook(n),

c Write header 1 'S earch time until re-engaging an old tgt (see).'
print* print *
if (neq.1) print :, bar//'BLUE SYSTEM CHARACTERISTICS// baif (trace) print 'Kprmisc'
if (n.eq.2) print, bar//'RED SYSTEM CHARACTERISTICS// bar END

c Write target dimensions and motion characteristics
print 6, accel(n),de cel(n),

1 sysdlim(3-n,1), sysdim(3-n.5), thiden
1 sysdim(3-n,2), sysdlim (3-n,G), speed n)
1 (sysdim(3-n,i), sysdlim(3-n,it44),i-3,4),

k-ndecoy(n)
if (k.gt.O) print I.ndecoy(n),'decoys.'
if (k.gt.O) print l,nfiash(n),'flashing decoys.'

c Write range dependent values
DO 60 i-1,8

irg(i) - i~irginc
50 CONTINUE

print 7,
1 (irg(i)' (pinfin(njji)J-1,3), (pdet(njji)j-1.3).

1 frt ~ 9.gg, tofrni)ji18
print 'OND CHARACTERISTICS:'

k-kindrd(n).
if Iktql print 1, nrds n),'KE rounds/tank.'
i f (k 2'eq.) print 1, nrds n),HEAT rounds/tank.'
if (keq.4) print 1, nris n) 'missiles/system.'
if (k.eq.&) print 1, nris n),'top attack rounds/tank.'
print 2, reliab(n) ,'Reliab ility of round.'
print*

print*,'ACQUISITION CHARACTERISTICS:'
if (kview n)eq.l1) print 4,'Visual sensor'
if (kvi n).eq.2) print4,'Thermal sensor'
print 1, ndets n),'detections at a time.'
print 2, pfalse(n,l),'Probability of selecting false HD tgt.'
print 2, pfalse(n,2),'Probability of selecting false FE tgt.'
print 2, pinlp(n),'Probability of pinpoint detection.'
if (sharei) print 4,'Systems communicate tgt locations.'
if(.not.share(n))

1 print 4,'Systems DO NOT communicate tgt locations.'
print'

print*,'TARGET SELECTION CRITERIA:'
k-nprior(n)

2.7 Init: Initialise for a Single Engagement. Init initializes many variables to the values
appropriate to the beginning of an engagement. It then calls specialized initialization routines. These
lower level routines are tightly coupled to other routines and will be discussed in the appropriate sections.

The diagram below shows the relationship of the various initialization routines. Those in dashed
boxes are discussed elsewhere.

init

r - --" - I - - --- - i r- - - - -i r "- - - -n r- -"1-- -
Il II I I I I II

II II I I I I!

deploy , detrg terain , , smoke , , searcO
i! i I I I I I t
!i ! i I I I ! I

L - LJ LI L--------- J L -- - - - - ---

First, the code schedules a finish event to make sure the engagement ends in a reasonable time.
Then values are set for each tank and tank/target pair as shown in the table below.

CODE INITIAL COMMENT
VALUE

FOR EACH TANK I
busy F Tank is not busy. (busy inhibits selecting a new target)
empty F Tank has ammo.
idecoy 0 Tank is not a decoy.
iflash 0 Tank is not a flashing decoy.
life ALIVE Tank is mobile and lethal
ndet 0 Tank has detected zero targets.
nhot 0 Tank has achieved no hits on a target.
nrd 0 Tank has fired zero rounds.
nrtgt 0 ID of target is NULL.
nchan 0 Tank has no guidance channels busy.
nrot 0 Tank has achieved no rounds on target vet.
tfire2 0 Time tank last fired is NULL.

CLEAR NN by NN MATRICES
los F Line-of-sight does not exist.
missed F Tank has not missed target.
mot F Firer has no missile assigned to target.
fot F Firer is not engaging target.
see F Firer doesn't see target.
tfire F Time tank last fired at tgt is NULL.

19

CODE INITIAL COMMENT
VALUE _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

FOR EACH TANK'S GUIDANCE CHANNEL
chanel 0 Channel assigned to guide NULL missile.

FOR EACH BLUE-RED PAIR
los T Line-of-sight exists between foes.

Next, the code calls deploy to define the initial position velocity, side, and cover for each tank.
Then it calls detrg to find how far each tank can see. After that, it calls terain and smoke to set up ter-
rain and smoke conditions. Next, it resets some values if some of the systems are decoys. Finally, it calls
searcO so that each tank will begin searching for targets.

c V7.5 I - nblu+j
SUBROUTINE INIT idecoy(l) - 1

c 4 mnit: Initialize scenario & schedule search at time zero. it (j.Ie.nflash(RED) iflash (I) -I
include 'common.h' ir (J.gt.nflash (RED)) nrd(l)-ggg
logical missed, ok 60 CONTINUE
common /MayPri/ missed(NN,NN) call searcO
save /MayPri/ if (tace) print In<it'

CEN
if (trace) print *,' >Init'
call sked ul(tmax,0,'finish',NULL)

c Set state variables for both red and blue systems.
DO 40 I-1,nblu+nred

busy(I) -. false.
empty (I) -. false.
idecoy I)- 0
iflash(I) 0
life(I) - ALIVE
ndetI)- 0
nhot(I -O0
nrd()- 0
nrtgt(I) - 0
nchan(I) - 0
nrot(I) - 0
tfire2p) - 0.0
DO 20 it-1,nblu+nred

los(I,it) -. false.
missed(I,it) -. false.
mot(I,it) -. false.
fot(I,it) - .false.
see(l'it) -. fle

coNfirN~t)- .
20 CNIU

DO 30 k-1,5
chanel(ilIk) - 0
chanel (2,1,k) - 0

30 CONTINUE
40 CONTINUE

DO 45 i-I,nblu
DO 42 k-I,nred

j - nblu+k
los(ij) - tue.
Ios(j,i) true.

42 CONTINUE
45 CONTINUE

call deploy
call detrg(BLIU,1,nblu)
call detrg(RED,nblu+1, nblu+nred)
ok - scene.eqI.BATTAK and. invisb.eq.I
it (ok) call terain(Inblu)
ok -scene. eq.RATTAK and. invisb.eq.1
if (oh) call terain(n blu+],nblu+nred)
if (invisb.ne.I) call smoke

c Initialize some as decoys.
DO 50 1-1,ndecoy(BLU)

idecoy(I) - 1
if (I.le.nfiashkflLU),) iflash(I) - I
if (I t.nflah(BLU)) nrd(I)-ggg

s0 COUN INUE
DO 60 j-1,ndecoy(RED)

20

2.8 Statal: Print Summary Statistics. Statal generates and prints the final statistics for a
case. Its output summarizes the results of combat for hundreds of engagements at a single opening range
for a single scenario. The combat summarized here may include many engagements for multiple waves of
Red systems.

Statel generates and prints summary results as shown below:

RESULTS # 90% CONFIDENCE
Blue won 54 or 0.540 0.454 0.625
Red won 46 or 0.460 0.376 0.547
Draw 0 or 0.000
All dead 0 or 0.000
TOTAL REPS 100 or 1.000
(Red k-killed)/(Blue k-killed) - 3.112

ROUNDS FIRED BY Blue Red SYSTEM STATUS Blue Red
Fired 809 709 Alive 103 134
Wasted 0 0 M-killed only 0 0

Aborted 0 0 F-killed only 4 6
False Tgts 0 0 M&F-killed only 23 31
Hidden tgts 6 0 K-killed 170 529

Impacting 803 709 TOTAL 300 700
Misses 4 393 damaged 197 566
Hits 799 316 Alive 1-5 rds 0 0

Duds 6 4 Alive no rds 0 0
No damage 65 41 *future 0 0
M-kill only 2 0 *future 0 0
F-kill only 29 8 *future 0 0
M&F-kill only 163 90 *future 0 0
K-kill 534 173 *future 0 0

First, statsl generates and prints the 6 upper lines summarizing the outcomes of the engagements.
Then it generates a few final numbers including the tank total and damage total under SYSTEM
STATUS. Finally, the code prints these numbers, along with the summary of shot results.

After printing some header lines, statsl generates and prints the four possible outcomes; Blue won,
Red won, draw with survivors on both sides, and draw with no survivors. For each of these outcomes, it
gives the number of engagements with that outcome, the fraction of engagements with that outcome, and
perhaps the confidence interval. In the table above, statal is 90% confident that the probability of blue
winning is between the confidence interval .454 to .625. If the sample size is too small, statsl cannot gen-
erate a confidence interval.

All this is done in the DO 50 loop. The tally of outcomes is stored in kount(1,i), i=15,18. Frac is
the fraction of engagments with each outcome. Conf is called to find the biromai confidence interval.
Near the end of the loop, the result line is printed.

If any Blue tanks were k-killed, statsl finds the exchange ratio. The exchange ratio is the number
of Red tanks k-killed per Blue k-killed. If Blue tanks were k-killed, the exchange ratio is printed, other-
wise a zero is printed.

The DO 30 loop adds all tanks on each side that are alive, m-killed only, f-killed only, m&f-killed
only, and k-killed to get the TOTAL line. The number of damaged tanks is the total number of tanks less
the number alive. The number of Blue alive with 1-5 rounds is then copied from kount(l,19) to kount(I,8)
and the number of Blue alive with no rounds is copied from kount(1,20) to kount(l,9).

Finally, statal prints the results of the rounds and the status of the tanks (or other weapon system).

21

CODE MATH COMMIENT
nwave number of current wave
nreps3 total number of replications executed
kount(i,j) k,, table of tank status at end of combat

hi upper limit of confidence interval
lo lower limit of confidence interval
fail True if there is not enough data to find confidence interval

k16S, k2,6 # Blue & Red K-killed
k1,6>0 Test to avoid divide by zero

exch e = k2,6/k, exchange ratio

c V1.2
SUBROUTINE STATSI (nwave,nreps3,kount)

c 0 Statsl: Update and print statistics tar 1 wave.
include 'common.h'
integer kount(2,20)
character str (3)*4, str2(4)*g
character str3(14) 20, str4(14)*20
logical rail
real lo
data str /'Mtg ','Ratk','Batk'/
data str2/'Blue won ','Red won ','Draw ','All dead/
data str3/'Fired',' Wasted',' Aborted',' False Tgts',

I Hidden tgts',' Impacting',' Misses',' Hits',
2 ' Duds',' No damage',' M-kill only',
3 ' F-kill only',' M&F-kill only',' K-kill'!

data str4/'Alive','M-killed only','F-killed only',
1 'M&F-killed only ,'K- killed ','TOTAL','damaged',
2 'Alive 1-5 rds','Alive no rds','future','future',
3 -future,, future', 'future'/
I format(2x a~14,i5,' or',3r7.3)

2 format(2x :at7,t3)
3 format(2x,a,t23,2i6,t42,a,t62,2i6)
4 format(' ROUNDS FIRED BY',8x,'Blue Red',

1 7x,'SYSTEM STATUS',gx,'Blue Red')

if (trace) print "'statsl'
c Print summary of outcomes.

print*
print*,'SUMMARY'
print *,'RESULTS # 90% CONFIDENCE'
DO 50 i-1,4

n - kount(Ii+14)
frac = float(n) /nreps3 + 0.000489
call confb(fracnreps3,hi,lofail)
if (fail) print 1, str2(i),nfrac
if (notfail) print 1, str2(i),n,frac,lo,hi

&0 CONTINUE
print 1, 'TOTAL REPS',nreps3, 1.00
exch - 0.0
if (kount(1,5).gt.0) exchfloat(kount(2,S))/kount(1,5)
print 2 ,'(ed k-killed)/(Blue k-killed) -',exch

c Print round results and weapon system status
c Find system status totals (6th line of numbers)

DO 30 i-1,5

kount(2,6) kou nt 2 6 +kount t2:i
30 CONTINUE
c Fill lines 7-.9

kount(I1,7)-kount(1,6kount(1,1)I
kount(2,7)kount(2,6) kount(2,1)
kount(1,8)-kount(1 191kount(1,9)koun t(1120)

c Print results
print*
print 4
print 3, (str3(j),(kshot(ij),i-I,2),

1 str4(j),(kount(i,j),i-1,2),j-1,14)
if (trace) print I,'< statsl'
END

22

2.9 Stats2: Print Statistics for a Single Wave. If several waves of Reds are simulated utat&2
prints the results of the current wave. Then it adds the results of the current wave to any previous waves.

CODE COMMENT

nwave number of current wave
nw maximum number of waves
nreps2 number of replications in current wave
kount(ij) table of systems status

If there is more than one wave statsl prints them as shown below:

Wave 1: Blue, Red won 53 46 Draws, all dead- 1 0 Low, no anmo= 0 0
Wave 2: Blue, Red won 18 13 Draws, all dead- 0 0 Low, no ammo= 0 0
Wave 3: Blue, Red won 7 6 Draws, all dead- 0 0 Low, no ammo= 0 0

Wave 4: Blue, Red won 2 4 Draws, all dead- 0 0 Low, no amno= 0 0
Wave 5: Blue, Red won 0 2 Draws, all dead= 0 0 Low, no amno= 0 0

The DO 70 loop sums the results by adding the results for this wave to the results of previous waves.
kount(1,15) is the number of times Blue won in all engagements, kount(1,16) is the number of times Red
won in all engagements, and so on. The first column tends to act as a final counter of all waves performed,
while the second column acts as a counter for one wave.

c Vl.2
SUBROUTINE STATS2 (nwave,nw,nreps2,kount)

c 0 Wave2: Update and print statistics for 1 wave.
include 'common.h'
integer kount(2,20), n(4)

I format(' Wave',i2,': Blue, Red won',2i4,' Draws, all dead-',
1 2i3,' Low, no ammo-',2i3)

if (trace) print *,'>stats2'
if (nw.gt.1) print 1, nwave,(kount(2,i),i-15,20)

c Add results of current wave to results from previous waves.
DO 70 i-15,20

kount(1,i) - kount(l,i) + kount(2,i)
70 CONTINUE

if (trace) print *. '<stats2'
END

23

2.10 Stats3: Print Statistics for a Single Engageaent. Stats3 summarizes the results of a
single engagement. It counts the number of blue and red tanks in each of 5 states, and finds which side
won the engagement. If the user wishes, it prints a one line summary of the engagement. Then it adds the
single engagement results to the results for previous engagements. Finally, it decides which blue tanks sur-
vived with enough ammunition to fight again.

The first three loops count the number of tanks in each damage state. The DO 5 loop clears the ni
array which will be used for counting. The DO 10 array count the blues in each state and the DO 20 loop
counts the reds.

The 6 possible tank states are counted into 5 'buckets' in the array nk as shown in table 1 below.
The tanks in state 4 and 5 are both M&F killed but not K-killed. The only difference is that the foe knows
the tanks i state 5 can't shoot or move. But they are unaware that the tanks in state 4 can't shoot or
move (so they're still considered threats.) At the end of combat, we're not interested in the distinction, so
the two tank states are counted together.

Table 1. Counting Tank Statuses

life(j) Status Result
1 Alive n(1,k) = n(1,k)+l
2 M-only killed n(2,k) = n(2,k)+l
3 F-only killed n(3,k) = n(3,k)+l
4 M&F-only killed n(4,k) = n(4,k)+l
5 M&F-only killed n(4,k) = n(4,k)+l
6 K-killed n(5,k) = n(5,k)+l

The next section of code finds which side won (if any). To do this, it checks to see if there are tanks
on each side that have received no firepower damage. The conditions and results are:

1 Draw if all blue and red tanks are firepower killed.
2 Red win if all blue but not all red tanks are firepower killed.
3 Blue win if all red but not all blue tanks are firepower killed.
4 Draw if not all blue and not all red tanks are firepower killed.

This win criteria can be modified to consider tanks with no ammunition and crews abandoning
mobility killed tanks. However, it leads to many complications and should not be done until the model is
thoroughly understood.

Next, if the user desires, the code prints a one line summary of the engagement. The following shows
the first five and the last one line summary from a set of 1,000 engagements.

#Blues= 3 #Reds= 7 Red attack
Starting seed= 1111111

Rep Result AL MO FO MF K AL MO FO MF K seed
1 Red won 0 0 0 0 3 3 0 0 1 3 1111111
2 Red won 0 0 0 0 3 3 0 0 1 3 32219259
3 Red won 0 0 0 0 3 2 0 0 0 5 20450295
4 Red won 0 0 0 0 3 2 0 0 1 4 45588611
5 Red won 0 0 0 0 3 1 0 0 2 4 54179171

1000 Blue won 2 0 1 0 0 0 0 0 0 7 36495111

The DO 30 loop adds the results of the current engagement to the results of previous engagements so
that a summary of all replications can be printed out later.

24

Finally, the DO 40 loop finds which blue tanks are available to fight a subsequent wave of red
attackers. If a tank is fully functional and has at least 5 rounds left, it can play in a subsequent engage-
ment. If fewer than 5 rounds are left, these tanks are tallyed as having no or low ammo.

CODE MATH COMMENT
key Prints history iff key > 0.
nrep Number of the replication just completed.
kount(i~j) Count of tanks in status i for side j for all replications completed in this set.
iseed Random number seed at start of engagement.
nsurv Number of fully functional tanks with > 4 rounds remaining.
nused Number of rounds remaining for each blue tank in the next wave.

n(i,k) Number of tanks in status i for side k.
nblu Number of tanks in blue army
i, life()Status of tank
nred Number of tanks in red army
balive Number of blue tanks not F-killed.
ralive Number of red tanks not F-killed.
result 1=draw w/ all F-killed, 2=Red win, 3'=Blue win,

4=draw w/ F-alive on both sides.
nrds noMagazine capacity.
nrd(j) nNumber of rounds fired by tank
ammo a = n-n, Number of rounds available for fire

c V1.3 if (nreD.eq.1 or. trace) print 1
SUBROUTINE STATS3 (key, nrep, kount, iseed, nsurv, nused) print 2, nrep, str(result). n, iseed

c 0 Stats3: update statistics at end of a single engagement. ENDIF
character str(4)'8 c Update statistics for all replicatioi~s at 1 opening range.
integer ammo, n(5,2), kount(2,20), balive, ralive, result DO 30 j-1,5
integer nused(3000) kount(1,J) :kount(1j+ n~j,1)include 'common.h' kount(2J) -kount(2,j) + n j 2)
data str /'Blue won','Red won ','Draw ','All dead'/ 30 CONTINUE

1 format(' Rep Result ',2(' ALMO FO M K'),2x,'seed') kount(2,14-sresult) - kou nt(2,14 +result)+)
2 format i6,1x,a10,2(Si3),ig) c Find which Blues can fight a subsequent wave of Red tanks.
c DO 40 j-1,nblu

if (trace) print *,'>stats3' IF 0lifeJ),.eq. IV) THEN
c Count tanks in each damage status at the end of an engagement c Count fully functional Blue tanks by ammo remaining.
c Zero the counter array. ammo - nrds(BLU)-nrd(j)

DOS* 1,6 if (am mo.ge.5) nsurv - nsurv+1

n j1) -0 if (ammoge.5) nused(nsurv) - nrd(j)
n~j2 =0 if ammo.lt.S.and.nr (j).gt.0)kount(2, 19)-kount(2, lg)+I

5 CONlNU i (mmoeqO0) kount(2,20) - kount(2,20)+1
c Count blue tanks by status. E I F

DO 10 j-l,nblu 40 CONTINUE
c Trally by damage status if (trace) print *S'<stats3'

i -life s) END
if (gS --

10 CONTINU
c Count- red tanks by status.

DO 20 j-1,nred
- life(j+nblu)

if (ie.5) i-i-i
n(i,2- n(i 2)+ 1

20 CONTINUE'
c Find who won engagement, if anybody.

balive - n(i I1J +n(2.1J
ralive - n12)(2,2)
ifbaiet..ad raliveeqO) result -I1
if (bal.1 q and. ralive.gt.0) result - 2
if (balive.gt.0 and. ralive.gt.0) result - 3
if (balive.eq.O .and. raliveeq.0) result - 4

IF (key.ge.1) THEN
c Print results of 1 engagement.

25

INTENTIONALLY LEFT BLANK

26

3. SEARCH AND DETECTION ROUTINES

The search and detection routines simulate acquisition of non-firing targets. When undetected,
unmasked targets are within detection range, the search routine is called once for each second of simu-
lated time to find if a searcher detects a target in the next second.

Originally, all the search routines were called once per second of simulated time and search was tak-
ing 90% of the run time. They have been re-written so that the code runs five times faster.

Now, the initnv routine and it's subordinate routines are called twice per run, once for Blue and
Red. They generate tables containing the probability of ever detecting a target and the probability of
detecting the target in the next second - given that it can be d-t'!t --. These tables give the probabilities
as a f- inction of range, target exposure, and target motion. Tins . great deal of run time by avoiding
repeated calculation of exponentials later.

Further, the det rg and searcO routines are callec .6 the beginning of each engagement. The
former is called once for each side. It finds the range within which each tank can acquire moving or sta-
tionary targets in hull defilade or fully exposed. These maximum acquisition ranges are stored for later
use.

SearcO generates a table containing the range between each searcher-target pair. If the scenario is
stationary, this table will not have to be updated so the computation of many square roots will be avoided.
If the scenario has moving tanks, the table avoids the calculation of some square roots. The routine then
finds the first time when targets are within detection range and schedules search to begin at that time.
This avoids repeated calls to search when no targets can be detected.

r----------r - - - - -- - - ---- - --
I I l I I lI

rd misc I init I (many*) , fire
III II I II

Ii I I I I I

L - ------- J L -.- L --.--------... J L ----------

init nv det rg searcO search pinpnt

nvl searc2

eye detect

* Scheduled by: aprsrrik, aprter, diseng, newtgt, searcO, search, and select.

27

3.1 Initnv: Generate Detection Probability Tables.

Initnv simply calls the nvl routine with the appropriate arguments for detection level, illumination,
target size, and sensor type.

The variables are:

CODE COMMENT

n =1 for Blue searchers, 2 for Red searchers.
kind =1 for visual detection, 2 for device 2.
alumin Illumination (ft-candles).
high(2) Heights of the hull-defilade and fully-exposed target (meters).
job Acquisition level required for sensor.

c V7.3
SUBROUTINE INITNV (n,kind,alumin,high)
real high(2), job

if (kind.eq.1) job-3.0
if (kind.eq.2) job=4.0

c Find values for HD stationary target.
call nvl (n, 1, alumin, high(l), job, kind)

c Find values for FE stationary target.
call nvl (n, 2, alumin, high(2), job, kind)

c Find values for FE moving target.
call nvl (n, 3, alumin, high(2), 0.667*job, kind)

END

28

3.2 Nvl: Find Probability of Ever Detecting and of Detecting in Next Second. Nvl uses
the Night Vision code for visual detection to generate a table of probabilities. The table contains probabil-
ities that the target will ever be detected as a function of range and condition. The other table contains
the probabilities that the target will be detected in a given second. This is also a function of range and
condition.

Nvl is code that was stripped from a much larger program developed by the Electro-Optical and
Night Vision Laboratory. The code is considered correct, however details are unavailable.

Assumptions. It has the following built-in assumptions:

1. Acquisition is divided into the following categories:
Detection - there's something there.
Classification - it's tracked.
Recognition - it's a tank.
Identification - it's a T80.

The program assumes acquisition at the recognition level.
2. The size of the search field is 225 degrees squared, e.g. 5 degrees high and 45 degrees wide.
3. The visibility range is 7 kilometers.

Input. As an example, suppose the ambient light level is 300 ft-candles, the tank turret is 0.8
meters high, and the total tank is 2.2 meters high. The single input line would then be: '1 300. 0.8 2.2'.
The 1 means that the sensor is the human eye. If you are interested in other targets, just input the
appropriate heights. Typical light levels are:

Ft-candles Typical Day

1000 Clear day
100 Overcast day

10 Heavy overcast day
I Sunset overcast day

Output. Figure 1 illustrates the output. It shows the probability of ever detecting as a function of
range, and the median time to detect given detection is possible.

1 1

p0.5 T 500

0 2 4 0 2 4
Range (km) Range (km)

Figure 1. The Probability of Detecting a Target.

The output consists of 12 lines of input echo, then 7 lines of output proper. Line 13 is ranges in
kilometers. Lines 14-16 are median (7) times to detect given that detection is possible. The 14th line is for
a stationary, hull-defilade target; the 15th for a stationary, fully-exposed target; and the 16th for a mov-
ing, fully-exposed target. Lines 17-19 are the corresponding probabilities that the target will ever be
detected. The probability of detecting in a time t is then:

-t/r
P, = Poo e

29

c V7.2
SUBROUTINE NYL (n,j,alumnc, dim, ajob, kind)

c Nvl: find p-infinity , pdetect in I sec.
c n -#of army
c j - range band.
c alumnc - illumination in ft-candles. (sun?)
c dim - target height (in)
c ajob - acquisition level
c kind - kind of sensor. (1-eye

common /sensor] psense(2,8 , pinfin(2,3,10), pdet(2,3,lO)
1 ndets(2), tlook (2), pinp(2), repeat, recknz(2), pfalse(2,2)1

save rinfd, zone, visrg
data zone, rinrd /225., A1/
data vlsrg /7./

c
DO 20 i-1,10

c Find probabilities and median times for 8 ranges.
rc - 0.
pinr - 0.
tbarr - ggg.
range - O.5*i
attn - 3.912 / isrIF (kind.eq.1 THEN

rc - eye (a umnc, attn, range, visrg)
foy - 24.5

ELSEEF (kind.eq.2) THEN
rc - devic2 (attn, range)
fov - 11.98

END IF
rc - rcdim/range
IF (rc.ge.rinfd) THEN

z **

pinT - z/(z+1.0)
pinf - amini (pinf,.99)
tau - zon (fovaminl(.,ov))
tbarr - 3.4*tau/IpinT
if (pinf.gt.0.9) t barr - tauajob*6.8/rc

ENDIF
if (tbarr.gt.99.0) tbarr-999.0
pinfin(n,j,i) - pinT
pdetin,j~i 1 .O-exp(-1.0/tbarr)

20 CONTINU
END

30

3.3 Eye: Find the Probability the Eye Detects in the Next Second. Eye can be used to find
detection probabilities for various types of targets; however, we generally use it for tank targets. The cal-
ling routine, nvl, finds the actual probabilities after eye finds the resolvable cycles. Resolvable cycles are
akin to scan lines used to paint an object on a TV screen.

CODE MATH COMMENT

alumnc f Illumination (ft-candles).
attn a Attenuation (?).
range r Range to target (km).
visrg v Visibility range (km).
sog a = (v+1 /3 Sky over ground ratio. (1 < s < 3)

cntrst e = Target to background contrast ratio.

i i Lower column for interpolation. 1<i<4
j i Upper column for interpolation. 2<j J<4
k k Row index.
clog C = Inc Natural logarithm of contrast ratio.

7
rio rl = Za,kC Resolvable cycles for lower power of 10.

k-l

rhi r. = 6j.k C -1 Resolvable cycles for higher power of 10.
k-I

eye r, = rL+(rA-r)(f-i0'/10)/(.9X10') Resolvable cycles interpolated for intermediate illumination.

It's not obvious that the equations for r, and r. above correspond to the calculation of rlo and rhi.
The summation:

7

r, = Ea,,, Ck
- 1

k-1may be expanded as: r, = a,1 +a,, 2C+a,3C +a, 4 C 3+a, 6 C4 + a,,, C+ ai,7C

and re-written for efficiency as:
ri = a, + C(a, 2+ C(a, 3+ C(a,4+ C(a;,+ C(a;,+ Ca, 7)))))

The code uses the DO 20 loop to evaluate the equation above. The first iteration finds the value of
the innermost parenthesis. and each following iteration finds the value of the next innermost parenthesis,
until it finds the entire value on the sixth iteration. Since the calculation of rA is similar to the calculation
of r,, the code finds it at the same time. The relevant portion of the code is:

clog = alog(cntrst)
rio = a(i,7)
rhi = a(j,7)
DO 20 k=6,1,-l

rIo = rlo*clog + a(i,k)
rhi = rhi*clog + a(j,k)

20 CONTINUE

It is also, not obvious that the equation for r, above yields an interpolated value between r,, and rh.
To understand how r, is interpolated, we'll have to do some backtracking. The equation used is:

r, = r,+(r,-r,)(/-l/13)/(.1Xm')

r,-r , = (rA-r)(f - lO'/lO)/(.g X lOi)

31

TAJ .9x10'

T 10T1 1 10

This is simply the relationship for similar triangles used to perform linear interpolation in figure 2
below.

r,-

r. - - - - - - -

10 f 10

Figure 2. Linear Interpolation

c V7.1
FUNCTION EYE (alumnc, attn, range, visrg)

c Eye: find resolvable cycles for the human eye. (Device 1)
real &(4,7)
save a, acon

c sunset o'cast heavy o'cast overcast day clear day
data a/

1 1.2378091942, 1.7176916034, 1.9909928015, 2.0892716525,
2 0.4694720809, .4739084812, .4484981232, .2813866389,
3 .0493317078, -. 2102695514, -. 4084256747,- 1.0084578626,
4 -. 0601756751, -. 4161055149, -. 6856409935,. 1.4323484287,
5 -. 0558327470, -. 2696921300, -. 4318233767, - .8450225947,
6 -. 0174190671, -. 0756229822, -. 1197712507, -. 2235482536,
7 -. 0018530403, -. 0077222394, -. 012172-9428...0218136690/

data acon /A//
c
c Find sky-to-ground ratio

sog - (visrg+1.0)/3.
sog - aminl(3.,amaxl(1.,sog))

eye - 0.0
cntrst - acon/(1.0+sog (exp(attnrange-1.0))
IF (cntrst.ge.0.02) THE

c Target/Background contrast is sufficient to detect
i- minO(4,1-iint(alogIO(alumnc)))

ack - 10,.*i
j - minO(4,i+l)
clog - alog(cntrst)
rlo -ai,7
rhi -a ,

rio - rlo : clog + ati,k)
rhi - rhi *clog + a(j,k)

20 CONTINUE
c Interpolate & compute cycles across target

eye - rlo-i(rhi-rlo)*(alumnc-ack/10.)If~ck*.9)
ENDIF
E ND

32

3.4 Detrg: Find Maximum Range to Which Each Firer Can Detect. Det rg is called for
each side at the beginning of each engagement to generate detection ring-, For each tank on the side, it
finds the ranges within which the tank is able to detect 1) stationary, hull defilade targets, 2) stationary,
fully exposed targets, and 3) moving, fully exposed targets.

The DO 80 loop loops through all the tanks on the side. For each tank it draws a random number
from a uniform distribution. Then for each of the three types of targets, it interpolates on the appropriate
curve to find the range within which the firer is able to detect that type of target. The figure below illus-
trates the procedure.

1

Prob 0.5

I I I I I

0 1000 2000 3000 4000
Range (m)

The DO 70 loop chooses the curve for each of the three types of targets: moving fully-exposed, sta-
tionary fully-exposed, and stationary hull-defilade.

The DO 60 loop finds the appropriate interval to interpolate in.

CODE MATH COMMENT
narmy n 1 if Blue, 2 if Red
first ID of first tank on the side
lab! ID of last tank on the side
p p ranu Random draw from a uniform distribution.
cond c 1 if stationary HD, 2 if stationary FE, 3 if moving FE.
krg k Index such that P..,.k P < Px,e,k+l
p1 P1 Lower bound of interpolation interval
p2 P1 =P,,k Higher bound of interpolation interval.
rl r i Range at lower bound (m).
incrg Ar Range increment in table (m).

PI-P
r r = Ar - Range chosen.

Pt-P2

c V7.5 IF (p2 .It. p) GOTO 65
SUBROUTINE DET RG (narmy,first,lastl pl - p2c Det rg: Find the max ranges at which each firer in 'narmy' detects0 CONTINUE

include 'common.h' p2 - 0.0
integer narmy, first, l 4st, tank, cond, krg 6.5 CONTINUE
real pl, p2, r, rl, p c Interpolate on p-infinity to find range.

I format (' Range to which tank can see',/, rl=- irginc*(krg-1)
I 'Tank HDFE-SFE-Mranu') r rl + irginc*(pl-p)/(pl-p2)

2 format (iS,3f8.1,fg.4) rgvis(cond.tank) - r
c 70 CONTINUE

if (trace) print ','>detrg' if (histry) print 2,tank,(rgvis(cond,tank),cond- 1,3),p
if (histry) print 1 80 CONTINUE

c Loop thru all tanks on the side it (trace) print *,'<detrg'
DO 80 tank - first,,ast END
p - ranu(0.0)
DO 70 cond-1,3

p] - 1.0
c Search for P-infinity values bounding x

DO 60 krg-1,8
p2 - pinfin(narmy,condkrg)

33

3.5 SearcO: Schedule Initial Search Event. The model executes the searcO routine once at the
beginning of each engagement. SearcO initializes a table containing the ranges between Red and Blue
tanks, selects the appropriate detection ranges for each tank, and then finds the first possible time that
detection can occur. It schedules search to begin at that time. This eliminates the repeated simulation of
search before detections are possible.

SearcO initializes the table containing ranges between combatants as follows:
rgtbl(i,j) = =/((z-..z)

2+(YiY.)
2

Where,
xj, y, are the coordinates of the ith system.

Combatants are not ignored until they are killed to some level. So initially, ignore(i) is set to .false.

The range to which each tank can see is copied from the rgvis table into the rgvs vector. The
appropriate column copied depends on whether the target is stationary or moving, or whether the searcher
is moving or stationary.

SearcO finds the longest detection range of all the tanks and uses this plus the speed of any attacker
to determine when the first target can be detected by an observer. If the sides are within detection range
at the start of the game, search begins immediately (at t = 0). If they are beyond detection range and nei-
ther side is moving they will never detect each other, so searcO schedules a finish event immediately. If
they are beyond detection range and one side is moving, searcO finds when the sides are within detection
range and schedules a search event at that time.

CODE MATH COMMENT

i ID of Blue tank.
n n ID of Red tank.
x0(i), yO(i) Zi , 8i Coordinates of Blue tank (in).
x0(j), yO(j) zX, s. Coordinates of Red tank (m).
x, y X, Y Coordinate of Blue tank W.R.T. to Red tank (in).
r r = V +y Distance between tanks (m).
rgtbl(i,n) Cell in table storing distance from tank i to tank n (in).
kred(scene) Initial exposure of Red tanks in scenario 'scene'.
ni Initial exposure of Blue tanks.
ignore(i) True IFF tank i is no longer a threat.
rgvs(i) Range to which tank i can detect (m).
dmax d Farthest distance any tank can detect a target (in)
nj Initial exposure of Red tanks.
rg0 r0 Opening range (i).
dist d = d-r 0 Farthest distance a tank can detect beyond opening range (m).

r0 < d Implies at least 1 tgt in detection range at time zero.
time First possible detect time (see).
scene =1 for Meeting, 2 for Red attack, 3 for Blue attack

34

cV1.1
SUBROUTINE SEARCO

c SearcO: schedule initial search event.
c ni, nj 1 if H-D, 2 if FE & stationary, 3 if FE & moving.
c dist - distance to travel before entering detection range.
c dmaxc - maximum distance any combatant can detect.
c time - time to travel before entering detection range.

integer kred(3) kblu(3)
logical igro E
include 'common. h
common /cserch/ rgtbl(NN,NN), ignore(NN), rgvs(NN), time, ni, nj
save /cserch/
data kred /2,3,1/, kblu /2,1,3/

if (trace) print *,' >searc0'
c Set up tables.

DO 30 i=1,nblu
DO 20 j-I,nred

n - j+nblu
x - X0 i)-xt ny - yO~i)y10 n)
r - sqrt x**2+y**2)
rgtbl (in) - r
rgtbl i) - r

20 CONTINU
30 CONTINUE
c Find maximum distance combatants can detect.

ni - kred(scene)
dmax - -leIO
DO 50 i-l,nblu

ignore(i) - false.
rgvs(i) - rgvis(ni,i)
dmax - &maxl(dmax,rgvs(i))

s0 CONTINUE
nj - kblu(scene)
DO 60 i-I,nred

ignore(i+nblu) - false.
rgvs(i-snblu) - rgvis(nj.i+nblu)
dmax - amaxl(drnax,rgvs(i+n biu))

60 CONTINUE
c Find when search should begin.

dist - rg0.- dmax
IF (rgO.It.dmax) TH-EN

c In detection range at time 0.0
time - 0.0

ELSEIF (scene.eq.EETNG) THEN
c Outside &never enters detection range.

time - 1.0elo
call skedul (0.0,NULL,'fin ish', NULL)

ELSEIF (scene. eq.RATTAK) THEN
c Outside and red enters

time - dist/speed(RED)
ELSE

c Outside and blue enters.
time - dist/sieed(BLU)

END IF
if (time.lt.tmax) call skedul(time,ALL,'search ',ALL)

if (trace) print *, <searcO*
END

35

3.6 Search: Find Targets Detected in Next Second. Search makes sure the positions of the
tanks are up-to-date. Then it checks all searchers to see which targets are within detection range. When a
target is within range, it calls searc2 to find whether detection will occur.

To update the tank positions, search first updates the ignore array. All K-killed tanks and perhaps
some MF killed tanks are ignored. This depends on user input. Then it updates the positions of any mov-
ing tanks except those that are to be ignored. (This seems redundant. But maybe some K-killed tanks
haven't halted quite yet.) Finally, the distance between each Blue and Red tank is stored in the rgtbl
array.

The next step is to loop through all the Blue and Red searchers to see which foe are within detection
range. This is done in the DO 40 loop. The DO 40 loop loops through the Blue tanks. If the ith Blue tank
is not to be ignored, we find the range (rgi) to which it can detect. We then check the Blue tank against
each Red tank. This is done in the DO 30 loop. If the jth Red tank is not to be ignored, we find the range
(rgj) to which it can detect. If the range between the two tanks is less than either of the detection ranges
then we consider the pair further. The next step is to find if they are in line-of-sight of each other. If so,
we treat Blue as the searcher and then Red as the searcher.

If the Red tank is in detection range of the Blue searcher and the Blue searcher has not already
detected the Red tank and the Blue searcher can handle another detection, detection is possible. If detec-
tion is possible, searc2 is called to find whether it occurs and if so, when. If detection does not occur on
the Red tank in the next second, the repeat flag is set so that search will be rescheduled in the next
second. Identical logic determines whether the Red tank detects the Blue one.

CODE MATH COMMENT

t t Current time (sec).
repeat True IFF search should reschedule itself.
time First time any target can be detected (sec).
i iID of tank.
ignore(i) True IFF tank i is no longer a threat. (logical)
life(k) Status of ith tank (>= [KILL implies it's known dead.)
x0(i), yO(i) Coordinates of ith tank (in).
rgtbl(i,j) Distance between ith & jth tanks (in).
ndeti Maximum detections for a Blue tank.
ndetj Maximum detections for a Red tank.
rgi Distance Blue can detect Red target (in).
rgj Distance Red can detect Blue target (m).
ok Implies tgt is in detection range and not yet seen, and

searcher is not loaded with detects.

36

c V7.8
SUBROUTINE SEARCH (t)

c 3 Search: see if any targets are detected in the next second.
include 'common.h'
logical ignore, ok
common /cserch/ rgtbl(NN,NN), ignore(NN), rgvs(NN), time, ni, nj

s ave /cserch/
rss(x,y) - sqrt(x*x+yY)

c
if (trace) print *,'>search'
repeat - .false.
IF (tlt-tine) RETURN

-c Update status of tanks.
DO 5 i-1,nblu+nred

c (Next line shud eventually be updated in damagef, ltkill.)
ignore(i) = ignore(i).or.life(i).Sege[KILL
if (.not.ignore(i) .and. motion (i). ne. STATNY)

1 call path(i,t,motion(i),0.0,dml,dm2,dm3,dm4)
5 CONTINUE

DO 20 i-l,nblu
IF (.not.ignore(i)) THEN

DO 10 j-nblu+1,nblu+nred
rgtbli (ij) - rssxo(i)-xO(j),Yo(i)yo(j))
rgtb (i) - rgt b (ij)

10 CONTINUE
ENDIF

20 CONTINUE
ndeti - ndets(BLU)
ndetj = ndets(RED)
DO 40 i-1,nbl u

c Loop thru Blue tanks.
IF (.not.ignore(i)) THEN

c Consider tank i(it is alive and can detect or be detected.)
rgi - rgvs(i)
DO 30 j-nblu+l,nblu+nred
IF (.not.ignore(j)) THEN

c Consider tank J (Also alive and can detect or be detected.)
rgj - rgvs(j)
rgmax = amaxl(rgi,rgj)
rg - rgtbl(i,j)
IF (rg.lt.rgmax) THEN

c At Ieast one is in detection rg of the other.
IF (los(ij)) THEN

C Treat Blue tank as searcher
ok-rg. .t.rgi. and.. not.see ij). and. ndet(i).lIt. ndeti
if (ok) call sear c2(tjij,BLU, ni, dt)
if (.notok) repeat = true.

c Treat Red as searcher
ok rI~t rgj -and..ot -seet; i) -and ndet(j).lt.ndetj
if (ok). earc2t, j,R~b,nj,dtJ
if (notok) repeat = true.

ELSE
repeat = true.

END IF
ENDIF

ENDIF
30 CONTINUE

END IF
40 CONTINUE

if (rpeat) call skedul(t+1.0,0,'search'. NULL)
if (trace) print *,'<search'
ED

37

3.7 Searc2: Find if One Searcher Detects One Target in the Next Second. Searc2 finds
whether a specific observer detects a specific target in the next second, and if so when during that second.
If the observer doesn't detect the target in the next second, searc2 sets the repeat flag so that search will
re-occur in one second.

The probability of detecting in the next second is a function of range, target motion, and target
exposure. This data is stored in the array pdet(2,3,8), where pdet(1,i,j) is the detection probability for
Blue searchers against targets in condition i, at range j. A sample of pdet(1,i,j) might look as follows:

index 1 2 3 4 5 6 7 8
Rg (m) 100 200 300 400 500 600 700 800

1 Stationary, Hull defilade
2 Stationary, Fully exposed .775 .514 .372 .286 .230 .190 .160 .138
3 Moving, Fully exposed

The first half of searc2 simply interpolates in the appropriate row of this matrix to find the detec-
tion probability. Searc2 then draws a random number; if it's less than the probability of detection
searc2 schedules a detection randomly in the next second.

0.8

0.6
Probability

of
Detectioi

4

0.2

I I |

200 400 600 800
Range (meters)

Figure 3. Probability of Detection in the Next Second

CODE MATH COMMENT

t Simulation time (sec)
firer ID of firer (integer)
tgt ID of target (integer)
narmy I if firer is Blue, 2 if Red.
cond c 1 if tgt is stationary HD, 2 if stationary FE, 3 if moving FE. (integer)
dt Delay for rescheduling search (sec).
rg r Range from searcher to target (i).
rgincr AR Range increment in table (m).
temp z = r/AR
indx i = int(z) Index of lower bound of range interval.
tlo t, Probability of detecting at lower bound of range interval.
thi th Probability of detecting at upper bound of range interval.
frac f = z-int(z) Fraction of distance into range interval.
pdetct p = ti+f(th-t) Probability of detection in current 1 second interval.
repeat Flag to reschedule search. Set to .true. if detection does not occur. (logical)

38

Code.

c V7.4
SUBROUTINE SEARC2 (t,firer,tgt,narmy,cond,dt)

c ? Searc2: see if a tank detects a target during this second.
include 'common.h'
integer firer, tgt, cond

c Find where to interpolate.
temp -rg/rgincr

indx -int(temp)

IF (indx .lt. 1) THEN
tlo - 1.0
thi - pdet(narmy,cond,1)

ELSEIF indx .lt. 8) THEN
tio .pet(narmy,cond,indx)
thi - pdet(narmy,cond,indx+I)

ELSE
tlo = pdet(narmy,cond,8)
thi = 0.0

ENDIF
c Interpolate in interval.

frac - temp-aint(temp)
pdetct - tic + frac*(thi-tio)

IF (ranu(0.0).gt.p detct) TH&F
c Set flag to repeat search. (At least one searcher didn't detect tgt.)

repeat - .trUe.
dt - 1.0

ELSE
c Schedule search randomly in next second. (Searcher may detect.)

call skedul(t+ranu(0.0),firer, 'detect', tgt)
ENDIF
if (trace) print *,.'<searc2'
END

39

3.8 Detect: Find if Target Is Detected and Schedule Subsequent Events. Detect simulates
detection if a) line-of-sight still exists, b) the observer hasn't aetected the target, and c) the observer is not
loaded with detections. (The user specifies how many targets each tank can detect simultan, o tsly.) If all
these conditions hold, detect increments the number of taegets the observer knows about, marks that this
observer has detected this target, and schedules the obs-rver to select a target. (The select event controls
whether a selection actually happens.)

CODE COMMENT

t Simulation time (sec)
I ID of observer.
it ID of target.
m 1 if observer is Blue. 2 if Red.
n 1 if target is Blue, 2 if Red.
los(I,it) True iff line of sight exists between observer & target (logical).
see(I,it) True iff observer already sees target (logical).
ndet(I) Number of targets observer is aware of.
ndets(m) Maximum number of targets bserver on side m can remain aware of.
thuman Randomly chosen time required for human to select a target (sec).

Detect contains two assumptions. The first is that the observer has a fixed limit (ndets(m)) on the
number of targets it can maintain cognizance of. The second is that the observer requires a lognormally
distributed time to select a t.,rget. The author has chosen to make the mediaa time of this distribution to
be 2 seconds and the standard dviation of the underlying normal distribution to one-half.

c V7.3
SUBROUTINE DETECT (t, I, it)

c 3 Detect: find if tgt detected and schedule subsequent events.
include 'common.h'

1 format (f8.2,1x,a4,i3,' detects ,lx,a4,i3)
c

if (trace) print *,'>detect'
m - army(I)
n 3 3-m
IFlos(lit) .and. .not.see(I,it) .and.

ndet(l).lt.ndets(m)) THEN
if(histry)print l,t,color(m),I,color(n),it
ndet(I) - ndet(I)+1
see(l,it) - true.
t human - 2.0*exp(rann(O.5))
call selecs(*,I,thuman)

ENDIF
if(ace) print *,' <detect'

40

3.9 Pinpnt: Simulate Firing Signature Detection. Pinpnt simulates detection of a tank due to
its firing signature. The program executes this routine every time a tank fires. For each foe, the routine
draws a random number and schedules detection if a) the random draw was less than the pinpoint detec-
tion probability, b) the foe can still shoot, c) line-of-sight exists, and d) the foe hasn't already detected the
firer.

CODE MATH COMMENT

t Simulation time (see).
I ID of firer.
first ID of first foe.
last ID of last foe.
k ID of foe.
pinpxx Probability of pinpoint detection.
wilsee True IFF foe detects muzzle flash or smoke (logical).
life(k) Status of foe k. Foe doesn't detect if it is firepower killed.
ndet(k) Number of targets foe k is cognizant of.
ndets() Maximum number of targets foe k can maintain cognizance of.
los(k,I) True IFF line of sight exists between k and I (logical).
see(k,I) N(O.5) True IFF k already sees I (logical).
thuman t h = 2e Time required for k to select a target (see).

N(O.5) Random draw from a normal distribution with mean zero and
standard deviation of one-half.

c V7.4
SUBROUTINE PINPNT (ti)

c 8 Pinpnt: Simulate firing signature (pinpoint) detection by some foes.
include 'common.h'
integer first
logical wilsee

I format (f8.2,1x,a4,i3,' sees ',a4,i3,' muzzle flash')
c

it (trace) print *,'> pinpnt'
first - 1
if (l.le.nblu) first - nblu+I
last - nblu
if (l.le.nblu) last - nblu+nred
pinpxx - pinp(army(first))
DO 20 k-first, last

wilsee - pinpxx.gt.ranu(0.0)
IF (life(k).lt.FKILL and. wilsee .and.

ndet(k).lt.ndets(army (k)) and.
Ilos(k,1) and..not.see(kI)) THEN
if (histry) print 1,

t, color(army(k)), k, color(army(l)), I
see(k,l) - true.
ndet(k) - ndet(k) + 1
thuman - 2.0*exp(rann(0.5))
call selecs(t,k,thuman)

ENDIF
20 CONTINUE

if (trace) print *,'< pinpnt'
END

41

INTENTIONALLY LEFT BLANK

42

4. TARGET SELECTION ROUTINES

The target selection routines decide which of any targets in an area has the highest priority. The
subroutine priort assigns each target a priority number. The integer function priorn then decides which
target has the highest priority, and breaks any ties that may occur. The subroutine select uses priorn to
decide which target will be selected. The subroutine selecs determines when the program will begin selec-
tion, and the subroutine engage sets up the gunner to aim and fire at the target that has been chosen.

The diagram below shows the relationship between the routines discussed in this section. The many
routines calling selecs, the selection start event, will be discussed in other sections.

r - -"1 -- -
I I

(many) select
I I

selecs priorn engage

priort

43

4.1 Select: Gunner Chooses Most Dangerous Target It Sees. In the subroutine select the
gunner chooses the most dangerous target it sees. If the firer cannot select a target because it cannot see
any, the subroutine moves the gunner. When it is possible for the firer to shoot, the subroutine begins to
select a target. After a target is chosen, select finds whether the target has previously been fired on by the
gunner. If the target is new, it may be made into a false target. When the target has been classified as old
or new, the target is engaged.

The subroutine select first calculates if the level of damage to the firer is less than FKILL.. If the
code determines that the gunner still has firepower, then it calls priorn to choose a target. If priorn cannot
select a target because there are none in view, the code moves the gunner to another position.

If the target that is selected is a new target, the code may make it into a false target. This is done to
better simulate the actual conditions of combat, because gunners will often mistake land formations as tar-
gets. The code restarts the search for targets if the search has been turned off.

If the target that is selected has been fired on previously, the code will print the target's history.
Finally, select calls engage.

CODE COMMENT

t Time (sec).
I ID of firer.
m Side of firer. 1 if Blue, 2 if Red
kind Kind of round. I if KE, 2 if HEAT, 4 if missile, 5 if top attack.
falive True if firer is not firepower killed (logical).
level Priority level (1..22).
it ID of target with highest priority.
busy(I) If firer is busy, new tgt selection is inhibited (logical).
colort Color of target is 'Blue' or 'Red ' (character*4).
k Concealment. 1 if FD, 2 if HID, 3 if FE.
pf Draw from uniform random distribution.
tgtfls True IFF this is a false target (logical).
see(I,it) True 1FF firer sees target (logical).
flstgt ID of false target is always -1 (integer).
repeat True IFF search is to be rescheduled in I second (logical).
fot(I,it) True IFF firer is on (servicing) target (logical).
nrtgt(I) ID of firer I's target.

c V7.5 IF (can go(l,t) and. (kind.le.2 or.
SUBROUTINE SELECT (t, 1) 1 kind.eq.5 or. nchan(l).eq.0)) THEN

c 6 Select: gunner chooses most dangerous target it sees. call cancel(I,'halt NULL)
include 'common.h' call cancel(f,'accel ', NULL)
character*4 colort call skedul(t,l,'accel ',NULL)
logical tgt fls, f alive, can go ENDIF
integer I, it, priorn, m ELSE

I format(f8.2,1x,a4,i3,' selects ',a4,i3,' with priority',i4, c Tgt has been selected
1 #tgts-',i2) colort - color(army (it))

2 1ormat(r8.2,1x,a4,i3,' selects ',a4,' -1', IF (tfire(I,it).le.0.) THEN
I & discards ',a4,i3, ' #tgts-',i2) c Tgt is new; replace with false tgt randomly.

3 format(rS.2,lx,a4,i3,' selects',8x,'- (empty target set)') k - knceal(it)-1
4 format(' SELECT: ',a4,i3,' selects ,a4,i3,' with priority',i4) pf - ranu(O)
c tgt fs - pf .lt. pfalse(m,k)

if (trace) print *,' >select' IF (tgt 11s) THEN
m - army(l) see(iit) I ralse.
kind - kindrd(m) if (histry) print 2, t, color(m),
f alive - life(I).lt.FKILL 1 I, colort, colort, it, nchan(I)
IF (r alive) THEN it - fis tgt

c Firer can shoot, so have him select. c Restart search if it is turned off
it - priorn(t,l,lev el) IF (.not.repeat) THEN
IF (it.eq.NULL) THEN repeat - true.

c Firer has no targets to select so he moves if possible call skedul(t,O,'search',NULL)
if (histry) print 3, t,color(m), I ENDIF
busy(J) - false. ELSE
if (kind.eq.4) nchan(l) - nchan(l)-I fot(l,it) - .true.

44

if (histry) print 1, t, color(m),
I,colort,it,level,nchan(l)

ENDIF
ELSE

c Firer has previously serviced this target.
fot(I,it) - .true.
if (histry) print 1, t, color(m),

I I,colort,it,level,nchan(l)
END IF
call engage (t, t, 1, it)

ENDIF

Enrtg 1 - it

if_(trace) print *,'<select'
END

45

4.2 Selecs: Start Target Selection if Appropriate. The subroutine selecs determines whether
the program will start the selection of a target immediately or wait. The program will pause if the gunner
is already selecting, if the channels are full, or if the pod is empty.

The subroutine selecs is the subroutine which calculates whether or not the target selection routines
will be called. When selecs is called by other routines in the Tank Wars II program, it first checks to see if
the firer is busy, the firer has no missiles, or the channels are full. If any of the previous situations exist,
then selecs prints out a message stating that the selection routines will not start and gives the reason for
the delay. If the firer is free and ready to start selection, then selecs changes the status of the firer to busy
and calls the subroutine select to start choosing a target.

CODE COMMENT

t Time (sec).
I ID of firer (integer).
dt Time required to select a target (sec).
m Side of firer. 1 if Blue, 2 if Red. (Integer)
kind Kind of round.
busy() True IFF firer is too busy selecting a target already (logical).
empty() True if raised missile pod is empty (logical).

ALSO True if entirely out of ammo??
loaded True IFF all missile guidance channels are loaded (logical).
nchan(firer) Number of busy missile guidance channels.

c V7.2
SUBROUTINE SELECS (t,l,dt)
include 'common.h'
logical loaded

I format t8.2,1x,a4,i3,' does not select; selecting already.')
2 format f8.2,1x,a4,i3,' does not select; channels full.')
3 format f8.2,lx,a4,i3,' does not select; pod empty.')
4 format (fS.2,1x,a4,i3,' begins selection.')
C

if (trace) print *,'>selecs'
m - army(I)
kind - kindrd(m)
if (kind.eq.4) loaded - nchan(l).ge.nchans(m)
if (kind.ne.4) loaded - nrtgt(l).ne.0
IF (busy(l) .or. empty(l) .or. loaded) THEN

c Wait cause busy selecting, pod empty, or channels full.
IF histry) THEN

(busy(l)) THEN
print 1, t, color(m), I

ELSEIF (loaded) THEN
print 2, t, color m), I

ELSEIF (empty(I)) THEN
print 3, t, color(m), I

ENDIF
ENDIF

ELSE
c Start selection: none in progress and a channel is free.

busy(l) - true.
if (kind.eq.4) nchan(l) - nchan(1)+1
call skedul(t+dt,l,'seiect', NULL)
if histry) print 4, t, color(m), I

if-gace) print ".'<seecs'

46

4.3 Priorn: Select Target With Highest Priority. Priorn simulates a firer selecting its next
target. After removing any targets already being engaged, the program compares the remaining targets if
1) it has detected the target, 2) the target is not dead, 3) and is within 4 km. If any two targets have the
same priority, the program selects the one that was least recently engaged. If neither has been engaged, the
program selects the closest target.

Figure 4 illustrates the order in which priorn executes:

make reoecall break slc
tresserviced priort ties highest

tagestargets priority

Figure 4. Selection of Highest Priority Target

The subroutine priorn creates a dummy target that is given an extreme range, and made to be more
recently engaged than all other possible targets. The code assigns the dummy target a priority of 1000 and
then compares all other tanks, each time selecting the one with the highest priority (lowest priority
number).

The DO 30 loop compares each tank in turn with the last selected target and selects the higher prior-
ity of the two. First it checks to see if either a friendly tank or the firer is guiding or firing a missile to the
target. If the target is being serviced, it is not considered in the comparisons. This option should only be
used to conserve expensive missiles, and this only happens with missile systems having more than one gui-
dance channel. The code also makes sure the firer does not select targets that it doesn't see. ones it knows
are dead, and ones beyond 4 km. When a target that is in view, is alive, and is not being engaged has been
chosen, the subroutine calls priort to assign the target a priority number.

After the priority number is ass gned, the code 'fuzzes' the range, finds how recently the firer has
fired on the target, and determines whether this is a 'better' target. (Better means higher priority.)

The range is 'fuzzed' because the crew cannot estimate range perfectly and will tend to pick the tar-
get they think is closer. This avoids several firers selecting the same tank simply because it is a tiny dis-
tance closer. The 'fuzzing' is done by adding a random amount to the range. This random amount is
chosen from a normal distribution with mean zero and standard deviation equal to 5% of the true range.

If the current target and best previous target have equal priority, the code breaks ties. If the targets
are new, then the closest one will be given higher priority. If the targets have previously been fired on, the
code chooses the one that has been least recently fired upon. This spreads the fire over targets instead of
concentrating on a single target.

Finally, if the current target has a lower priority number, it replaces the previous best choice.

47

CODE COMMENT

t Time (sec).
I ID of firer.
levold Priority level of highest priority target (1..22).
armyf Side of firer. I if Blue, 2 if Red (integer).
rgold Range to highest priority target (M).
told Time firer last serviced highest priority target (sec).
priorn Priority of current candidate (integer).
pick True IFF the tank is a candidate for selection (logical).
share() True IFF tanks on a side know which targets are engaged by friends (logical).
mot(ij) True if missile is on (assigned to) a target (logical).
fot(ij) True if firer i is on (servicing) target j (logical).
see(ij) True 1FF firer i sees target j (logical).
life(j) Status of target j. 1FF less than IKILL, it's considered threatening.
ck tgt True IFF target should be checked - it's a candidate (logical).
level Priority level of current candidate (1.22).
rg tgt Approximate range to target (M).
t tgt Time firer last serviced target (sec).
better True IFF priority of current candidate is highest found so far (logical).

c V7.3 ENDIF
INTEGER FUNCTION PRIORN (t, 1, lev old) ENDIF

c 6 Priorn: Select target with highest priority. 30 CONTINUE
include 'common.h' if (trace) print ,'< priorn'
logical better, ck tgt, pick END
integer I, armyf

if (trace) print *,'> priorn'
armyf - army(l)
'make' dummy tgt for comparison

rg old-1.e35
t old-L.e35
Iev old-1000
priorn - NULL

last - nblu+nred
DO 30 mtgt-1,last

c Compare all possible targets
pick-true.
IF (share(armyf)) THEN

c Don't select this tgt if anyone is already servicing it.
DO 20 jfirer-I,last

if(mot(j firer,mtgt).or.fot(jfirermtgt)}pick-.false.
20 CONTINUE

ELSE
c Don't select this target if I'm already servicing it.

ifot(l, mtgt)-or-fot(I.mtgt I)pick-. false.
EF
rg tgt = rgf (t,l,mtgt)
ck tgt - see(I,mtgt) .and. life(mtgt).lt.KILL

.and. rgtgt.le.4000.0 and. pick
IF (ck tgt) THEN

c Firer sees tgt, it's threatening, & he's not firing at it.
call priort(l, mtgt, rg tgt, t, level)

c Now pick the tgt with highest priority
rg tgt - rg tgt *(1+.05*rann(1.0))
t tgt - tfire(i,mtgt)
better - level it. lev old
IF (lev old.eq.level) THEN

c Same priority class; now break ties
c if new tgts pick closer

if (t tgt.le. 0) better - rg tgt It. rg old
c if old tgts, pick older (least recently fired on)

Ef(t tgt.gt.0) better - t tgt It. t old

IF (better) THEN
ev old - level
t old - t tgt
rg old - rg tgt
priorn - mtgt

48

4.4 Priort: Find Priority of a Single Target. Each time priort is called, it assigns a priority
number to a single target. A target is given a priority after the consideration of whether or not the target
has been shot at previously, if it has been hit, how close it is, whether or not it has fired recently, and if it
is moving, slowing, or stationary.

Table 2 shows the factors taken into account when assigning priority to a target.

Table 2. Factors in Target Selection

Preferred Less Desirable Rationale How
Choice Choice Modeled

Close tgt Far tgt 1 Easier to hit 1 Tgts within 1.5km
given higher priority

2 More dangerous 2 If tgts have equal
priority, select closest

A tgt that A tgt that A firing tgt is Tgts that fired
fired recently hasn't more dangerous in the last 30 sec

_given higher priority

A tgt you A tgt you A tgt that Missed tgts given
missed hit was hit is less higher priority

likely to survive

A tgt not A tgt being I Conservation Tgts being approached
being approached approached of missiles by a missile
by a missile by a missile 2 Tgt being will not be

approached has selected!
less chance of
shooting back.

An old tgt A new tgt A new tgt may Old tgt given higher
be a false tgt priority *IF

USER DESIRES

A new tgt An old tgt Old tgt is New tgt given
partially serviced higher priority
so it may be *IF USER DESIRES
dead

A tgt that A tgt that 1 Tgt that is Stopped or slowing
is stopped is accelerating stationary is tgt is given
or slowing easier to hit higher priority

2 Tgt may be
stopping to shoot

A tgt that has A tgt that has 1 Tgt that has tgt A tgt that has
a tgt no tgt is threatening a tgt is given

2 Tgt that has tgt higher priority
is know to be active

*A target that has been previously fired on should be given higher priority if the probability of an F-kill is

low. A new target that has not been engaged should be given higher priority if the probability of it being a
false target is low.

After all factors are taken into account, a list of selection priorities can be made. The list combines
the preferences found in Table 2 with information about the targets' movements (stationary, slowing, or
active). Table 3 lists the priority for each set of target conditions. The first column should be used when
the probability of F, MIF, or K kill for the target is low. The second column should be used if the proba-
bility of the target being a false target is low.

49

Table 3. Selection Priorities

1 1 Close old tgt missed that fired in last 30 sec
2 2 Close old tgt missed that has tgt
3 3 Close old tgt missed that is stopped or slowing
4 4 Far old tgt missed that fired in last 30 sec
5 5 Close old tgt missed all others
6 6 Far old tgt missed that is stationary
7 7 Far old tgt missed all others
8 8 Close new tgt that fired in last 30 sec
9 9 Far new tgt that fired in last 30 sec

10 15 Close old tgt hit that fired in last 30 sec
11 13 Close old tgt hit that has tgt
12 17 Close old tgt hit that is stopped or slowing
13 18 Far old tgt hit that fired in last 30 sec
14 19 Close old tgt hit all others
15 20 Far old tgt hit that is stationary
16 21 Far old tgt hit all others
17 10 Close new tgt that has tgt
18 11 Close new tgt that is stopped or slowing
19 12 Close new tgt all others
20 13 Far new tgt that is stationary
21 14 Far new tgt all others

The code calculates whether or not the target has been shot at previously or not. If it has been shot
at, the code then finds out if it was hit. If the target was not hit, then the subroutine checks to see if the
target is within recognition range. If the target is within 1500 meters, then the code determines if the tar-
get is slowing or stationary. If it is, it is assigned a priority of 3. If the target appears to be preparing to
engage, it is given a priority of 2. If the target has fired within the last 30 seconds, the code assigns it a
priority of one. Any other target within 1500 m that has been shot at but not hit is assigned a priority of
5.

If the target has been shot at and missed but is beyond recognition range, then the code determines if
the target is stopped. The code does not determine whether or not the target is slowing, because at that
range it would not be possible to tell. If the target is stationary, it is given a priority of 6. It is also impos-
sible to tell if the target is aiming from beyond recognition range, so the code does not determine if the
target is preparing to engage. However, if the target has fired a shot in the last 30 seconds, the code gives
it a priority of 4. Any other target beyond 1500 m that has been fired on but not hit is assigned a priority
of 7.

If the target was hit when it was fired on, the code determines if the target is within recognition
range. If the target is within 1500m, then the code calculates if it is stationary or slowing. If it is, then it is
given a priority of 12. If the target appears to be preparing to engage, it is given a priority of 11 If the
target has fired in the last 30 seconds, the code assigns a priority of 10. Any other target within 1500 m
that has been hit receives a priority of 14.

If the target was hit but is beyond recognition range, the code assigns it a priority of 16. If it is sta-
tionary, the priority is set at 15. If it has fired in the last 30 seconds, the priority is raised to 13.

If the target has never been fired upon, the code first calculates if the target is within recognition
range. If it is within 1500m and is either stationary or slowing down, it is assigned a priority of 18. If the
target appears to be preparing to engage a new target, then it is assigned a priority of 17. If the target has
fired in the last 30 seconds, the priority is 8. Any other targets that are new and close are given a priority
of 19.

50

If the target has not previously been engaged, and is far away, the code assigns it a priority of 21. If
it is stationary, then the target's priority is changed to 20. If the target has recently fired, the priority is
set at 9.

c V7.3
SUBROUTINE PRJORT(1, it, rgtgt, t, L)

cO0 PRIORT:
include 'common.h'
logical missed
common /MayPri/ missed(NN,NN)
dimension lev(21,2)
save / MayPri/, ley
data ley/ /1,2,3,4,5,6,7,8,9,10,11I,12,13,14,15,16,17,18,19,20,21,

12,3,4,5,6,7,8,9,15,16,17,18,19,20,21,10,11,12,13,14/
I ormat('PRIORT: ',a4,i3,' considrs ',a4,i3,' with priority'

if (trace) print *,'> priort'
j - nprior(army(l))
m - motion(it)
tactiv - 1.e35
if (tlire2(t).gt.O.) tactiv - t-tfire2(it)

.j tfr(,it).gt.0) THEN
c I have a!ready shot at this target previously.

IF (missed(l,it)) THEN
c Missed target with last round fired at it

IF (rgtgt.lt.recknz(army(l))) THEN
c Target is within recognition range.

it (m-eq.STATN or. m.eq.SLOWNG) L -3

if rrtgt (it). ne. L*- 2
i t(tactiv it. 30.)L - I

ELSE
c Target is beyond recognition range.

L- 7

If m.eq.STATNY)
L - 6

1tciv t. 30.) L - 4

ELSE
c I hit target with last round fired at it.

IF (rgtgt.It.recknz(army(I))) THEN
c Target is within recognition range.

L - 14
if (m eq.STATNY or. m.eq.SLOWNG) L -12

it (nrtgt(it). ne.0) L = I I
if (tactiv Alt. 30.) L - 10

ELSE
c Target is beyond recognition range.

L - 16
i(eq.STATNY) L - 15

EN tiF At. 30.) L - 13

END IF
ELSE

c Target is a e tare
IF (rgtgt.it.recknz army(1))) THEN

c Target is within recognition range.
L - 19
if (m.eq.STATNY o~r. m.eq.SLOWNG) L -18

if (nrtgt(it).ne.0) L = 17
if (tactiv It. 30.) L - 8

ELSE
c Target is beyond recognition range.

L - 21

if m.etq.STATNY) L - 20

EN~f o Ivt. 30.) L = 9

ENDIF
L - ley(L~j
if (trace print <priort'
EN

51

4.5 Engage: Begin Engagement of a New Target by This Firer. Engage starts the engage-
ment of the newly selected target by the firer. It sets the firer in a position to fire, determines the range to
the target, and then engages.

Engage begins by determining if the firer still has the ability to fire and has any rounds left. If the
gunner is capable of engaging, then the subroutine calculates its velocity. The code will slow down any
firer still in motion. When the firer has become stationary, engage finds the range to the target, and then
prepares to fire.

CODE MATH COMMENT

t1, t2 Current time (sec).
I ID of firer.
it ID of target.
m Side of firer. 1 if Blue, 2 if Red.
n Side of target. 1 if Blue, 2 if Red.
life(I) Status of firer. Fully alive, mobility killed, etc.
nrd(l) # rounds fired by firer.
nrds(m) # rounds on board tanks on side m.
nbrst(I) # Rounds fired in burst.
ishtfs(m) 1 if tanks on side m halt to fire. Zero otherwise.
motion(l) 1..4 if tank I is braking, stationary, accelerating, cruising
speed(m) Combat cruise speed for tanks on side m.
rg Range to target (m). Use opening range if false target.
nrg N(0.5) Range band.

dt at = fire(e Time to fire first round (sec).
prevrd(I) =1 implies this is the first round fired at the target.
nrib(I) =0 implies firer I is just beginning a burst (if it fires bursts).
nrot(l) Count of rounds on target.

c V7.4 ENDIF
SUBROUTINE ENGAGE (t], t2, 1, it) IF(trace) print *,'<engage'

c ? Engage: END
c I - the firer.
c it - the target.
c tl, t2- ?

include 'common,h'
c

if (trace) print *,'>engage'
mr army(1)
n 3-m
IF (life~i .lt.FKILL.and.nrd(l).lt.nrds(m)) THEN

nbrst(1) - I

IF (ishtfs(m).gt.0 AND. motion(l).ne.STATNY
1 .and. speed(m).gt.O.O)THEN

c halt to fire
call cancel (l,'maxvel',NULL)
call cancel (l,'accel ',NULL)
call skedul(tl,I,'slowup',NULL)

ELSE
c Schedule a fire event otherwise
c find range to target

F (it.eq.-l) THEN
rg - rgO
nrg - int(.5+rg/irginc)

ELSE
dm - rgf(tl,it,lJ

ENDIF
nrg - minO(8,nrg)
dt - tfirst(army (knrg) * exp(rann(O.5))
prey rd(l) - 1
nrib(I)- 0
nrot(I) - 0

c if(kindrd(rn).eq.4) dt-0.!
call skedul (t2+dt,I,'fire 'it)

ENDIF

52

5. FIRING ROUTINES

The event subroutine fire simulates firing a round and schedules the effects. The appropriate events
depend on the ammunition status, number of shots fired, and type of round: gun burst, single shot gun, or
missile. If the firer is out of ammo, it will either attempt to hide or schedule a reload if it is a missile sys-
tem.

The diagram below shows the major routines called by fire. This section discusses the ones in solid
boxes; they are most closely related to firing. The pinpnt routine is discussed with the other detection
routines, create is discussed with the utility routines, and seleca is discussed with the target selection rou-
tines. The arrow leading into the reload box indicates frdmsl calls reload indirectly rather than
directly. It does this via the clock routines.

fire

r - r -"- -

I .I I I

I pinpnt I I create 1 frdmsl frdbst frdssg
SI I I

I I II

L -------- J L ----- -- -- J

reload I selecs

L 5 - -

53

5.1 Firing Cycles. Each type of weapon on armor has its own timing characteristics. We'll discuss
some or all of these:

Cannon w/rr..tnual loader Cannon firing 'bursts'
Cannon w/load assist Guided missiles
Cannon w/auto loader Beam Weapons

Human reaction times. Delay times in the firing cycle include human reaction times. These times
are approximately log-normally distributed. That is, the logarithms of the reaction times are normally
distributed, typically with p = 0, and o = 0.5.

If N[O.51 is a random draw from such a normal distribution, tm is the median time for the log-
normal, and tA is a randomly chosen human reaction time, then:

N10.6]

First round time. The model assumes that the first round is loaded when the tank engages a tar-
get. The time to launch the first round at a target is a function of the range to the target. Why? Perhaps
the gunner considers a distant target less threatening and more difficult to hit, so he takes more time to
aim carefully. Table 4 contains sample values against a stationary target. The time to fire the first round
at a moving target is proportionally longer and should be added to the model in the future.

Table 4. Times From Target Selection to Launch

Range (in) 500 1000 1500 2000 2500 3000
Time (sec) 10.0 11.0 12.0 13.0 14.0 15.0

Time to subsequent launch. The time between rounds fired at the same target depends on the
type of armament and load mechanism. The model uses eight values for fixed times as a function of range.
It also uses the median, minimum, and intra-burst times.

Manual loader. For manually loaded guns, the time between rounds is a random human reaction
time. The delay time is:

N10.51
At = tmre

If the median time between rounds is 10 seconds then the mean time between rounds will be approximately
11.4 seconds.

Load assist. Certain tank guns have a load assist mechanism which performs its task in a fixed
time t, in series with a human who performs his task in a log-normally distributed time. for this type of
system:

N10.51
At = te+tme

Auto-loader. Other tank guns have an auto loader which performs its task if a fixed time in paral-
lel with a human who performs his task in a log-normally distributed time. For these times the delay is:

NIO.S]

At = max(te,tie)

Burst fire cannon. Tank cannoo which fire, say 3 rounds, in a burst have been postulated. These
have a fixed time between rounds in a burst on the order of, say, two seconds The time between the last
round in a burst and the first round in a subsequ' nt burst at the same target is random, based on human
response times. The time between rounds in a burst is:

54

At = 1701
The time between bursts is:

t =treN (0,0.
5)

The code for burst firing must be re-introduced into Tank Wars.

Guided missiles. Missile systems may guide n missiles to n targets, where n is the number of gui-
dance channels. Many missile systems have only a single guidance channel. In any case, when the gui-
dance channels are full, the system must wait until a missile impacts or is aborted before firing another
missile. For systems with a single channel, the time between rounds is the time of flight, which in turn is a
function of the range to the target.

(= tf(rg) = time of flight

Some conceptual systems have multiple guidance channels and are able to fire on n targets simul-
taneously. For such systems the time between launches may be a fraction of a second until all n guidance
channels are busy, then the launch of the n+lst missile must wait until a channel is free. If a guidance
channel is free, the time between launches is:

t = t,

Otherwise, the time between launches depends on when a channel becomes free and is not a direct input to
the model.

These conceptual systems may hold fir- until n targets are designated and then launch n missiles a
fraction of a second apart. Tank Wars doesn't yet model this hold-fire technique but it should be added.
It will require careful thought about what happens when there are fewer than n targets or fewer than n
missiles remaining.

Beam weapons. If such weapons fire several times at one target, the time between shots will
depend primarily on a fixed time to recharge. If t, is the recharge time, then perhaps:

A t = max(t,tm e N)

55

5.2 Fire: Simulate Firing of a Round and Schedule Effects. Fire simulates the firing of a
round, updates and saves related values, and schedules effects of the firing. These effects include impact of
the round, detection of the firer by its firing signature, and the next activities of the firer. The firer's next
activities depend on whether it fires single shots, bursts, or guided missiles. The firer may fire again,
switch targets or move. Missile firers may also replace an empty missile pod (reload) or simply wait until
impact.

CODE MATH COMMENT
t Time (see)
I firer
it Target
busy(J) T/F. Tentatively set to false. This permits the tank to select

a new target.
m,n Side of firer, target
nrd(I) ri = r.+1 Number of rounds fired by tank
nrib Number of rounds fired in burst
nrpb Number of rounds per burst
nrot(l) Number of rounds fired at current target

it > 0 =true if a real target. ID of false tgt is -1
tfire(l,it) t = t Save time firer fired at target. When switching

targets, firer will give priority to least recently serviced tgt.
tfire2(l) t2 = t Save time firer last fired. When selecting tgt,

foes will give priority to tgts that fired recently.
it = FLSTGT Implies target is a false target. Code must generate

position and set velocity to zero.
rg Range of target (m).
nrg Number of range band
irginc Size of range bins (in).
s(i) i=1,2,or3 Position of tank in question.
iflash(I) T for flashing decoy, F for passive decoy.
bullet ID of bullet.
tfly Time of flight (sec).
tof Time of flight table (sec).
psense Probability of sensing the impact location of a miss
vxO,vyO v Current velocity of firer or tgt (m/s).
kindrd I for KE,2 for HEAT,4 for missile,5 for STAFF

Initially busy is set to false, although this may not be true for missile systems. We may have to reset
it to true depending if it is a simple or multi-missile system.

By counting the number of rounds fired in a burst(nrib) and the number of rounds per burst(nrpb),
we can determine if the burst is just starting, in the midst, or over. If the burst is just starting we must
draw errors for the burst, but if the burst is over the firer can switch targets or pop-down. The firer may
want to change targets based on the policy of firing a fixed number of rounds at a target, therefore, we
need to count the number of rounds fired at the current target(nrot).

Tfire and tfire2 are used in a target's selection process based on previous set priorities. The last time
the firer fired at a target (tfire) is needed if the firer returns to service the least recently engaged target.
Tfire2 saves the last time the firer fired at any target. This is used by the target's foes and priority is
given to recent firers.

Velocities, positions are updated and used to find the time of flight of round, and saved for use at
impact time. No velocity or position, however, is calculated for false targets, although a dummy position
is picked at x=0,z=0, and y=+/- opening range. A false target is a natural object such as a bush or stone

56

mistaken for a real target. A real target updates its position by using rgf(range of firer).

Pinpnt is called to find out if any foes detected the firer due to its muzzle flash.

If iflash(I) = 0, this is a real firer, otherwise it is a flashing decoy. In this branch, we are only con-
cerned with a real firer and the round it fires. Fire calls create to set aside space for information about
the round. In this space, Fire stores: 1) target ID, 2) firer ID, 3&4) predicted (x,y) position of target at
impact, 5&6) unused, 7) probability that the impact location of the bullet will be sensed, 8) unused, 9)
speed of target when round was fired at it, and 10) speed of firer.

The number of shots fired by the firer's side is counted for output statistics by kshot(m,1). Impact
for the round is then scheduled. For missiles systems, assign a guidance channel to the missile.

This completes calculations for the bullet that was fired. Non-missile systems must select single shot
or burst fire code, while missile systems must select missile code.

c V7.8 if nrpb mj) e.l) call frdssg(t,1,it,m)
SUBROUTINE FIRE (t,I,it) if (npbm) ge.2) call frdbst(tj,,it,m)

c 7 Fire: Simulate firing of a round & schedule effects. ELSE- (k idrd(m).eq. 4) THEN
include 'common.h' c Simultaneous missiles branch
integer bullet if (nichan(1).lt.nichans(m)) call frdmsl(t,f,itm)

1 format(f8.2, Ix, a4, i3, 'fires at', a4, i3) ENDIF
2 format(fS.2, 1x, a4, i3, 'ran out of ammo.') if (histry and. nrd(I).ge. nrds(m)) print 2,t,color(m),I

if (trace) print ' <fre'
if (trace) print *,'>fire' END
busy(I)-.false.
m - army(I)
n - 3-in
if (histry) print 1,t~color(m),I. color(n)it

c Update rd counts, time of last fire.

if (it. t.0) tfire(, it) - t
tfire2(1) - t

c Update positions &velocities.
I(it.eq.FLTT THEN
rg - rgO
nr- maxo(1,int(0.5-irg/irginc))
s(1j =0. 0
s(2) - rg0
s(3 - 0.0
if ((m.eq.BLU .and. scene. eq.BATTAK) .or.

I .me.RDand. scenene.BATTAK)) s(2) - -rgO

dm - rgf(titI)
ENDIF
call pinpnt (tjl

IF (iis(I.qO THEN
c Branch for real firer (do nothing if firer is flashing decoy)

c Create round with various attributes
call create (10,bullet)
a(bullet+1) - it

a(bullet+2) -I
ty - tof(m,nrg) lxo)alul'let+3 - s 1+tfly xO(I)
a(ble+4 - ()+tfy(I
a(bulet+7) psense(m,nrg
a(llet+g) - sqrt(vxO(it) 2+vyO(it)*2)

if (it.eq.-I) a(bullet+10) - 0.0
if (it. gt.0) a bullet+t10) -sqrt(vx0(l)**2+Yy0(I)**2)

kshot(,1) - kshot(m,I) + 1
c Schedule impact for rd & allot guidance channel.

call skedul (t+tfly,bullet,'impact',it)
IF (kindrd(m).eq.4) THEN

i(igt.0) mot(izt) -. true.
iDi O 2k - 1 5

IF (chanel(m,I,k) eq. 0) GOTO 25
20 CONTINU
25 chanel(m,l,k) - bullet

ENDIF
ENDIF

c Move, fire, or switch targets as required
IF (kindrd(m).le.2 or. kindrd(m).eq.5) THEN

57

5.3 Frdssg: Results of Firing a Single Shot Gun. Frd sag schedules what the firer does after
firing a single shot gun. The primary consideration is whether it has more rounds or not. If so, it will
switch to a new target or continue to fire at the current target. If not, it will hide if it can move.

CODE MATH COMMENT

nrd(I) r # rounds fired by tank.
nrds(n) rm., magazine capacity (Ammo load).

r <rmax firer has more rounds to shoot.
tactic(n) 3 Side n fires a fixed number of

rounds at a target.
nrot(1) Number of rounds fired at current target.
nrpt(n) Number of rounds per target before switching targets.
busy(I) False for tank not busy; True for tank is busy.
loader(n) k 1 for manual loader, 2 for automatic loader then manual,

3 for automatic loader parallel with manual gunning.
tvar N[0.S Median between rounds of tank cannon.

dm dm = te Random human reaction time (sec).
tcon(n) t, Minimum time to fire tank cannon (sec).
dt At = d. For k = 1 (manual loading).

At = d,,+t, For k = 2 (series auto-loading).
At = max(dm, t) for k = 3 (parallel auto-loading).

empty(1) No ammo.

Does the firer have more rounds to fire? The number of rounds it fired is nrd(I) and the
number of rounds it started with is nrds(n). It has more rounds iff nrd(I) < ndrs(n).

Should it switch targets? If the firer has more rounds to shoot, the next consideration is whether
it switches targets or continues to fire at the current target. If tactic(n).eq.3, then the policy is to fire a
fixed number of rounds at a target and then switch targets. The number of rounds to fire is nrpt(n), so if
nrot(I).eq.nrpt(n), the policy has been satisfied and the firer attempts to switch targets.

Switching targets. Upon disengaging, a halt-to-fire system that can still move will move before
firing at the new system, so this kind of firer is scheduled to accelerate now.

Firing again at the current target. If the tank switches targets after firing a fixed number of
rounds at the target and has done so, it will switch targets. Otherwise, the code schedules the next fire at
the target. The time the next round will be fired depends on the loader type.

Out of ammo. The code for a system that has ammo ends here and the code now treats the tank
that is out of ammo. The tank is out of ammo when empty(I) = .true. If the tank is not going but can
move, the code schedules an acceleration event right away and a hide event in thide(n) seconds. Since the
tank cannot shoot any more it seeks cover.

c V7.3 call dis eng (t, I, it,.true.,.true.)
SUBROUTINE FRD SSG (t, I, it, n) c If no other it and can move, skedul acceleration

c 6 Frd ssg: Schedule effects after firing single shot gun. if (can go(l,t) and. ishtfs(n).eq.l)
c t - time (see). call skedul (t,l,'accel ',NULL)
c I - firer nrot(1) -0
c it - target ELSE (it.gt.0) THEN
c n - side firer is on c Schedule next round fired

include 'common.h' k-loader(n)
logical can go, done, tactc3 dm - tvar(n)*exp(rann(0.5))

1 format('FRD SSG: t,I,it,n-',7.2,3i3) if (k.eq) dt-dm
2 format(f8.2, Ix, a4, i3, 'is out of ammo. Will attempt', if (k.eq.2) dt-tcon(n) + dm

1 ' to hide if mobile.') if (k.eq.3) dtamaxl(tcon(n),dm)
c call skedul (t+dt,l,'fire ',it)

if (trace) print *, >frd ssg' ENDIF
IF (nrd(I).lt.nrds(n)) THEN ELSE

c Have ammo branch c Out-of-ammo branch
tactc3 - tactic(n).eq.3 empty(l) - true.
done - nrot(l).eq.nrpt(n) IF (cango(l,t)) THEN
IF ((tactc3 .and. done)) THEN call skedul (t,l,'accel ',NULL)

c Switch targets after firing a fixed nr of rds at it call skedul (t+thide(n),l,'hide 'NULL)
busy(l) - false. ENDIF

58

ENDIF
ir (true) print * '<frd ssg'

59

5.4 Fi dbst: Results of Firing a Round of a Burst. Frd bst schedules what the firer does after
firing a round in a burst. If the firer is out of ammo and is mobile, it will attempt to hide. When the sys-
tem has ammo it either disengages the old target after a certain number of rounds and searches for a new
target or the firer schedules to fire the next round.

c V7.4
SUBROUTINE FRD BST (t, firer, tgt, armyf)

c 0 Frd bst: just fired a gun burst, now schedule effects.
include 'common.h'
logical can go, done, tactc3
integer armyf, firer, tgt

I format('FRD BST: t,firer,tgt,armyf-',l'.2,3i3)
2 1c:rmat(f8.2, Ix, a4, i3, 'is out or ammo. Will attempt',

1I to bide if mobile.')
c

i(trace) print *,'>frd bst'
I(nrd(firer).ge.nrds(armyf)) THEN

c Out-of-ammo branch
IF (cango(firer t)) THEN

call skedu (t~firer,'accel ',NUJLL)
call skedul (tthide(armyf),firer,'hide %NULL)

END IF
ELSE

c Have ammo branch
tactc3 - tactic(armyf).eq.3
done - nrot(firer).eq.nrpt(armyf)
IF ((tactc3 .and. done)) THEN

c Switch targets after firing a fixed nr of rds at it
call dis eng (t, firer, tgt,.true. ,.true.)

c If halt-to-fire & no tgts & cango, skedul acceleration
if (ishtfs(armyf).eq.1 .and. can go(firer,t))

I call skedul(t,firer,'accel ',NULL)
nrot(firer) - 0

ELSE
c Schedule next round fired

timea - tcon(armyf)
timeb - tcn(ryf
timec - tvar armyf * ''(!n06")
dt - amax1(timea,timbtimec''
call skedul (t+dt,firer,'fire ',tgt)

ENDIF

if (tace) print *'fdbt

60

5.5 Frdmsl: Results of Firing a Missile. Frd msl schedules what the firer does after firing a
missile. If the firer has more ammo, it may 'reload' (replace an empty missile pod), fire again at the
current target, or switch targets. Otherwise, it does nothing further.

This routine is called after a missile is fired but not until a guidance channel is available for the next
missile. If another guidance channel is available immediately after firing a round, the fire routine calls
this routine. Otherwise, a guidance channel will become available at impact, so the impact routine calls
this routine. (If the missile is aborted it is because the target went behind the terrain. The routine abort
should be called immediately so it can fire again.)

If the system is out of ammo, it does nothing further.

If the current missile pod is empty, the firer is considered temporarily empty, any fire and select
events are cancelled, and a reload is scheduled. Since the current target is discarded, the code resets the
number of rounds on target (nrot=0).

If ammo is ready to be fired the system will either shoot again at the same target or switch targets.
This depends on the firing policy it is using and whether it has satisfied that policy. Under tactic 3, the
firer fires a fixed number of rounds at the target and then switches targets. If the firer is using this policy
and has satisfied it, switLiing occurs; otherwise the next round is fired in 1/10 sec.

Finally, if the target ID is not zero, clear the record that the firer is on target. It is possible that
'it=-l'; this implies the target is false; however, there is no place in the fot matrix to store data for false
targets.

CODE COMMENT

t Time (sec)
I ID of firer
it ID of target
m I if target is Blue, 2 if Red
nrd(l) Number of rounds fired by ith tank
nrds(m) Magazine capacity of systems on mth side.
nipods(m) Number of rounds in pod for mth side.
tactic(m) Side m fires a fixed number of rounds at tgt
nrot(I) Number of rounds I fired at current target
nrpt(m) Number of rounds per target before switching targets
empty True missile pod is empty
fot(ij) True IFF firer i on target j.

c V7.6 emptV() = true
SUBROUTINE FRD MSL (t, 1, it, m) call cancel(,'fire ',it)

c 0 Frdmsl: Fired a missile. Now schedule effects, call cancel(1,'select'.NULL)
include 'common.h' nrot(l) - 0
logi.cal done, tactc3 c shud htf that is slowing to engage speed up now?

2 format(f8.2, Ix, a4, i3, ' begins to reload.') call skedu (t+treodjm).l,'reload',NJLL)
if (histry) print 2.tcolor(m),l

if (trace) print *,'> frdmsl' ENDIF
IF (nrd(i).lt.nrds(m)) THEN ENDIF

c System. has more rourds on board, if (it.gt.O) fot(lit) - -false
IF (mod(nrd(I),nipods(m)).gt.0 .or.nrd(l).eq.0) THEN if (trace) print ,'<frdmsl'

c System has more rounds in pod. END
tactc3 - tactic(m).eq.3
done - nrot(I).eq.nrpt(m)
IF (tactc3 and. done) THIEN

c Switch targets after firing a fixed nr of rds at it
if (it.ne.FLSTGT) fot(l,it) - false.
call selecs (tl,0.C,)

ELSE
Schedule next round fired

call skedul (t+O. I['fire ',it)
ENDIF

ELSE
c Treat empty missile pod

61

5.6 Reload: Bring up Another Pod of Missiles. The subroutine Reload simulates completion of
reloading when a pod of missiles is empty. The primary consideration is whether the firer is a defender
who has popped down to reload or is fully exposed while reloading. If it's a defender, it'll pop-up and
begin searching. Otherwise, it's already fully exposed and attempts to select a target right away.

CODE MATH COMMENT

t Time (sec)
I ID of tank
firer Number of the firer

nrtgt NI0.51 Number of current target of tank
thuman 4t = 2e Human reaction time

c V7.2
SUBROUTINE RELOAD (t,l)

c 6 Reload: simulates completion of reloading
c 30 Oct 85 Fixed statement printing error message

include 'common.h'
logical defndr

1 format(f8.2,lxa4,i3,' finishes reloading')
2 format(f8.2,lx,a4,i3,' pops-up')
c

if (trace) print *,' >reload'
m - army(l)
if (histry) print I,t,color(m),l
nrtgt(l) - 0
empty (1) - false.
defndr - (scene.eq.BATTAK and. m.eq.RED) .or.

I (scene.eq.RATTAK .and. m.eq.BLU)
(defndr) THEN

c Defender pops back up and will start searching.
if (histry) print 2,t,color(m),l
call aprter(t,l,tgt,HD)

ELSE
c Attacker or 'meeter' never popped down.

thuman - 2.0*exp(rann(O.5))
call selecs(t,lthuman)

ENDIF
if (trace) print *,'<reload'
END

62

6. HIT PROBABILITY AND IMPACT ROUTINES

These routines are called when the round passes through the target plane. If the target is a false tar-
get, the gunner seeks a new target. They find whether the round hits the target or not and whether it was
a dud or not. Missile guidance channels are cleared and pop-down to reload is sometimes initiated. Under
certain policies, the firer switches to a new target. If a hit is not a dud, the damage event is scheduled.

The figure below shows the calling hierarchy of the routines discussed in this section. The accerr
routine and its subroutines are discussed in the next section.

impact

mayhit

---------------- i

acc err iz hit

L-----------

bounds

63

6.1 Impact: Find What Bullet and Firer Do at Impact. The impact event simulates what
occurs when the round passes through the target plane. The target may be a false target, in which case
the gunner realizes it is a false target and switches to a new target. If the round is a direct fire round and
the target is in full defilade no hit occurs. If the round is top attack or the target is exposed, impact finds
if a hit occurs.

Finally, impact finds what the firer does. If the firer fires simultaneous missiles, the guidance chan-
nel is cleared. This firer disengages and if pods are empty, he may pop down to reload. Other types of
firers may simply disengage the target.

First impact recovers some useful information about the round, then it figures out the effect of the
round on the target, and finally, it decides what the firer does next. It recovers the target ID, and firer ID
as well as finding which side the firer is on, what type of round it is firing and the exposure of the target.

Next it finds whether the round hit or not. The target may be a false target or a 'real' one. If the
target is a false target (a natural object that was mistaken for a target), the code simply tallies the result
for the summary statistics. If the target has vanished and the round is a typical ballistic round, the code
tallies that the round hit the 'berm' (the intervening terrain). In this case, missiles have already been
aborted and impact doesn't occur. Top attack rounds, however, still have a chance of hitting the target.
If the target is 'real' and intervening terrain is no problem, impact calls the may hit routine to see if the
round actually hits the target or not.

The rest of impact treats the future activities of the firer. If the round was a missile, impact clears
the guidance channel, disengages the target, and attempts to select a new target. If the missile firer is in
hull defilade, all guidance channels are free, and the missile pod is empty then the firer will pop down
while it brings up another pod of missiles.

If the round was not a missile, the firer may switch targets. It does this if the current target is a
false target, or is out of range (beyond 4km), or the firer's policy is to switch targets after each hit.

CODE COMMENT
t Time (sec)
bullet ID of bullet
it ID of target
I ID of firer
n Side of firer (l=Blue, 2=Red)
k Kind of round (I=KE, 2=HEAT, 4=msl, 5=TOP ATK)
expose Exposure of tank (I=FD, 2=-1D, 3=FE)
rgx Range to target (m).
mot(l,it) True iff missile on target
fot(I,it) True iff firer on target
nchan(l) Number of busy guidance channels for firer
nchans(m) Number of guidance channels for side m tanks
empty(l) True iff current missile pod or system is out of ammo
hit True iff current missile hit target.
tactic(m) Target switching policy for side m.
ndet(l) Number of detections Ith tank has.
nrtgt(l) ID of firer's latest target.

c V7.S c Find useful variables.
SUBROUTINE IMPACT (t, bullet) it - atr(l)

c 0 Impact: find what bullet does k what firer does. I - atr(2)
include 'common.h' n - army(I)
logical loaded, hit k - kindrd(n)
integer bullet, expose expose - knceal(it)
atr(i) - a(bullet+i) rgx - 0.0

c Find what bullet does.
it (trace) print *, '>impact' IF (it.eq.FLS TGT) THEN

64

c Round does nothing.
kshot 4) - kshot(n,4)+l

EE~ Iexpose.eq.FD .and. k.le.4) THEN
c Count round hitting berm.

kshot(n,S) - kshot(n,S)+1

ifLhsty)~ print *, 'Tgt in full defliade.'

c See if round hits.
call may hit(t,1, it, n, k,atr(9),atr(I0),expose, hit,rgx)

ENDIF
a(bullet) - .a(bullet)

c Find what firer does.
IF (k. eq. 4) THEN

c Missile
c Clear guidance channel.

DO 20 j-1,5
IF (chanel (n,l1j).eq. bullet) GOTO 30

20 COTIU
print ~,'IMPACT: Msl not assigned a channel.'
print ,'Channels assigned to',(chanel(n,Ij)j-1,5)
print ,'Msl #-',bullet,' Contact Fred Bunn'
STOP

30 CONTINUE
chanel(n,I,j) - NULL

loaded - nchan(I).ge.nchans(n)
call diseng (t,I,i t,.tr ue., loaded)
mot(I, it)- false.
fot(i,it)-.flse.
if (knceal(I).eq.HD and. nchan(I)).eq.O .and. empty(I))

1 call skedul(t,I,'popdn'NUL
ELSE

c KE, HEAT, or STAFF irethink this for STAFF]
IF (it.eq.FLS TGT .or. hit.and.tactic(n).eq.2 or.

1 rgxc.gt.4000.O) THEN
c Switch targets if false target or rd hit & I switch on a hit.
c Won't go here if I hit the berm; fis tgts don't go behind the
c berm, and if true tgts do, the rd won't hit.

nrtg):O0
call diseng(t,I,it,.true.,.true.)

END IF
ENDIF

if (trace) print *, '<impact'

65

6.2 Mayhit: Find Whether the Round Hits. Mayhit finds whether the round hits, handles
results of a hit or miss and tallies results. First, it finds the position of the round with respect to the aim
point. If it is above the turret ring, mayhit finds if it hit the turret. If below and the target is fully
exposed, mayhit finds if it hit the hull. If the round hits the target, mayhit finds if the round was a dud
or not. If a hit is not a dud, the routine schedules damage. It also tallies the round results as a) sensed
miss, b) lost miss c) hit, or d) hit but dud.

Does the round hit? The routine tentatively sets hit=.false., finds the relative positions of firer
and target, and from this information finds the crossing angle. The crossing angle is the angle between the
target velocity and the target position (relative to the firer). It then calls accerr to find the error of the
round relative to the aim point.

The next step is to find the position of the round relative to the center of the turret ring. If the tar-
get is fully exposed, the aim point is .3 meters below the center of the turret ring. If the target is hull
defilade, the aim point is .5 meters times the height of the turret above the bottom of the visible turret. If
the height of the incoming round is greater than 0, then it may have hit the turret; otherwise it may have
hit the hull (if the target was fully exposed.) The routine then calls izhit to find if the round passes
through the hull or turret box.

Treating a hit. When a hit occurs, the code tallies a hit for the appropriate side and tallies a hit
on the target. If the target has received enough hits to satisfy the target switching policy of the firer's
side, the code schedules a 'late kill.' Missed(l,it) is set to false. This information will be used to select or
reject this target later. Prevrd(J) is set to 2. This information will be used by the accuracy routines to
inhibit redrawing variable biases because the next shot at the target will be a subsequent round.

Duds. Next, the code finds if the round was a dud. If so, the dud is tallyed for the side. Otherwise,
the code schedules damage which will determine what if any damage results.

Treating a miss. The routine tallies a miss for the side and for the firer. Then it determines
whether the firer sensed the miss or not.

Finally, whether the round hit or not, the code checks to see if the target or firer was moving at fire
time or at impact time. In either case, prevrd is set to 1, to force the next round to be treated like a first
round on the target by the accuracy routines. (The drawing of variable biases is inhibited only for subse-
quent rounds from a stationary firer on a stationary target.)

CODE COMMENT

t Time (see)
I ID of firer.
it ID of target.
n Side of firer (1=Blue, 2=Red).
k Kind of round.
v1 Velocity of target when round was fired (m/s).
v2 Velocity of firer when round was fired (m/s).
expose Exposure of target (FD, HID, or FE).
hit True iff round hits target.
rgx Range to target (i).
crs ang Crossing angle (rad).
vxO(it) Last computed speed of target (m/s).

66

CODE COMMENT

life(it) 1=Alive, 2=M-kill, 3=F-kilI, 4=M&F-kill, 5=I-kill, 6=K-kill
nhot(it) Number of hits on target after M&F-killed.
nbump(n) Number rounds to fire at M&F-killed tgt before discarding it.
missed(I,it) True iff the round missed the target.
prevrd(l) 1=1st round on tgt, 2=previous was a hit, 3=previous was a

sensed miss, 4=previous was lost miss.
reliab(n) Probability round is reliable for nth side.
nrg Number of range band.
psense(n,nrg) Probability of sensing miss for tank.

cV7.9 if (vl.gt.0 .or. v2.gt.0) prevrd(l)-l
SUBROUTINE MAYHIT (t,l,it,n,k,vl,v2,expose,hit,rgx) if (rce) print ','<may hit'

c 0 May hit: Find what the round does. ED
include 'common.h'
common /cimpct/ x,y,theta, disp
logical missed

comn /ayPri missed(NN,NN)
save /cimpct/ /ayPri/
integer expose
logical hit, izhit

I format(f8.2,Ix,a4,i3,' Hits berm')

if (trace) print * , '> mayhit'
kshot(n,6) kshot(n,6)+1

c Find whether a hit occurs.
hit - .false.

c Find position of round w.r.t. the aim point.
rgx - rgf(t,I,it)
crs ang - 0.0
if (vx0(it).ne.0.0) crs ang - anglef(s,vt)
call accerr(n,rgx,I,crsang ,vl,v2,x,y,disp)

c Find position of round w.r.t. center of turret ring.
if (expose.eq.FE) y-y-O.3
if (exposeeq.HD) y-y+0.5*sysdi m(n,TURRET)

c Find whether round hits.
IF (y.gt.0.0) THEN

hit - i zh it(TURRET, 1, n,x,y, theta)
ELSE

IF (expose.eq.FE) THEN
hit - izhit(HULL5,n,x,y,theta)

ELSE

Ei hs)I print 1, t, color(n), I
END IF

IF (hit) THEN
c Treat hit.

kshot(n,g) - kshot(n,8)+l
ifrlf't).MFKILL) nhot it)-nhot(it)i-
i nhot(it).gt.nbump n), call skedul(t,it,'ikill ',NULL)

missed ' it)- false.

IF (reli~a (n).ge. ranu(O)) THEN
call skedul (t,I,'damage',it)

ELSE
c Round is a dud.

kshot n,Q) - kshot(n,g)+1
ENDF

ELSE
c Treat miss.

kshot(n,7) - kshot(n,7)+1
missed(l,it) - .true.
nrg - maxo(1,int(0.5+rgx/rgincr))
IF (psense(n,nrg) .gt.ranu(0.0)) THEN

prevrd(I) - 4

ifhsr)print 'Miss is sensed.'

preyrd(l) - 3
Ei (iFtry print ,'Miss is not sensed.'

ENDIF
c Careful. If either moving, make sure nx rd is treated as 1st
c round if S5 case occurs.

if (vx0(l).ne.0.0 or. vx0(it).ne.0.0) prevrd(l)-1

67

8.3 Ishit: Find i the Target Is Hit. Izhit discards rounds that are too high or too low. For
other rounds, it finds the orientation of the hull or turret and its horizontal bou daries. If the round is
within the horizontal boundaries, izhit reports a hit.

The array sysdim contains the distance 7rom the center of the turret ring to the ith edge of the tar-
get. For example, sysdim(1,5) is the distan, t from the center of the turret ring to the bottom of the hull.
These dimensions help determine if the round was too high or too low.

Distance from Center
of Turret Ring to

turret hull
i sysdim(i) i sysdim(i}
1 top 5 bottom
2 side 6 side
3 front 7 front
4 rear 8 rear

The code tentatively sets izhit=.false. It then checks to see if the vertical error of the round is
greater that the vertical dimensions of the target box. If s,. it is a miss and the code reports the miss if
the print flag is set. If not, the code checks to see ;f the round is within the horizontal dimensions of the
box. To do this, it uses the ranang routine which draws a random angle from the cardioid or frontal dis-
tribution. This angle will be used as the orientation of the target relative to the incoming round. Next
the code calls the bounds routine to find the left and right edges of the target box. If the horizontal error
is within the horizontal boundaries of the box a hit has occurred.

X, < X < 2

CODE COMMENT

nbox 1=turret, 2=hull
ndim Index of box height (1 for turret, 5 for hull).
n Side of target (1=Blue, 2=Red)
x X coordinate of bullet on target (i).
y Y coordinate of bullet on target (m).
theta Angle at which round struck target (rad).
izhit True iff the round hit the target. Logical
ylimit Height of hull or turret (m,)l.
iangd 1) if cardioid distribution, 2) if frontal distribution
xleft X coordinate of left side of tank (m).
xright X coordinate of right side of tank (m).

c V7.2 IF (keym(6).gt.0) THEN
LOGICAL FUNCTION IZHIT (nbox, ndim, n, x, y, theta) if(izhit) print 3, y,ylimit,x,xleft,xright

c 6 Iz hit: find if the target is hit. if(izhit) print 4, y,ylimit,x,xleft,xright
include 'common.h' ENDIF

1 format (' IZHIT: the round is high. y, ylimit, x -',3'7.3) ENDIF
2 format (IZHIT: the round is low. y, ylimit, x -',3r7.3) if (trace) print *,'<izhit'
3 format (IZHIT: the round is wide. y, ylimit =', 217.3,/ END

1 1 x, xleft, xright - ', 317.3)
4 format (' IZHIT: the round hits. y, ylimit -', 217.3,/

1 ' x, xleft, xright - ', 317.3)
c

if (trace) print *,'>izhit'
izhit - false.
ylimit - sysdim(n,ndirr)
IF (ylimit.le.abs(y)) THEN

c Too high or too low
IF(keym(6).gt.0) THEN

if (y.gt.O.O) print 1, y, ylimit, x
if (yle.0.0) print 2, y, ylimit, x

ELSE
c Height ok

theta - rndang(iangd)
call bounds (n, nbox, theta, xleft, xright)
izhit - xleft.lt.x and. x.lt.xright

68

0.4 Bounds: Find the Horizontal Bounds of the Hull or Turret.

Bounds finds the distances from the center of the turret ring to the left and right edges of the tar-
get box.

Theta is the angle from the nose of the box to the bullet hitting the turret center. Calculations with
theta are done to assure that the angle is between 0 and 360 degrees.

The array sysdim contains the distance from the center of the turret ring to the ith position. RI is
the left boundary and r2 is the right boundary. C is the portion of rl and r2 due to the width of the tar-
get. S2 and s3 are the portions due to the 'depth' of the target.

The figure below shows the 4 corners of the turret and the angle from the nose to the bullet. The
table below lists the left and right horizoi'tal boundaries of the box when the bullet enters it at a certain
angle. The variables c, s2, and s3 are used to find these boundaries.

Table 5. Horizontal Boundaries
a b Quadrants

boundary 0<0<90 90<0<180 180<0<270 270<0<360
left c d b a

right b a c d

c front d

The figure below shows how to find the horizontal boundaries of a hull or turret using c,s2,and s3.
This case is where the bullet enters the box at an angle between 0 and 90 degrees. The horizontal boun-
daries of the other 3 cases can be found in a similar manner.

"K

d2= distance from center of turret. ring to turret side

69

d3= distance from center of turret ring to turret rear
d4= distance from center of turret ring to turret front
c= d2cosO
s2= d3sinO
s3= d4sin6

c V7.1
SUBROUTINE BOUNDS (narmy, box, angll, ri, r2)

c 6 Bounds: find the horizontal bounds of hull or turret.
c Definitions:
c angli - angle off the nose of the box (rad).
c box- I means turret box, 2 means hull box.
c narmy - I means blue, firers, 2 means red firers.
c c, s2, s3 - temporary variables.
c ri, r2 - left and right boundaries of boxes (in).

include 'common-h'
integer box

c
if (trace) print *,'> bounds'

c initialize
temp - (angll+twopi)/twopi
theta- (temp-aint(temp))*twopi

c theta - amod (angll+twopi twopi)
c - sysdim(narmy,4*(box-1 +2) *cos theta)
s2: sysdim (narmy,4 (box-i)3 i tea
s3= sysdim(narmy, (box-i)4 intea

c
IF (theta. Ie.0. 25*twopi) THEN

c case 0 < theta < -90
ri=--s2 -c
r2 - s3 + c

ELSEIF (theta. le.0. 5twopi) THEN
c case 90 < theta <=- 180

ri - -s2 + c
r2 - s3 -c

ELSEIF (theta.le.0.75*twopi) THEN
c case 180 < theta < -270

rl - s3 +c
r2 -- s2 -c

ELSE
c case 270 < theta < -360

ri - s3 -c
r2 - -s2 + c

ENDEF
if (trace) print *,'<bounds'
E ND

70

7. ACCURACY ROUTINES

The accuracy routines read and interpolate in accuracy tables. These tables contain data for station-
ary firer vs stationary target, stationary firer vs moving target, and moving firer vs stationary target.

The diagram below shows the relationship between the accuracy routines. The dashed line between
boxes shows which routines share data via common. The impact routine mayhit calls accerr.

r---------------1
-I I

input accerr

I I

rderor F accss accsmn accms

tII I

L !-- ------------------- -------- I -----------

71

7.1 Rderor: Read Accuracy Data for One Side. This routine reads accuracy data for stationary
firers versus stationary targets, stationary firers versus moving targets, and moving firers versus stationary
targets. If desired, this data is printed to standard output with appropriate labels. The routine then
prints the name of the accuracy data file used.

Rderor reads in data for 1) stationary firer vs stationary target, 2) stationary firer vs moving target,
and 3) moving firer vs stationary target. For each of these sets, it reads in one or two header lines and
then the data proper. If jecho is set to zero, only the namne of the accuracy file is echoed. If it is set to one,
the headers for each set of data is echoed. And if it is set to two or greater, all the data is echoed.

CODE COMMENT
dbname Name of data file
In Side of firer
iecho Echo control

nrows # of rows to read
ncols # of columns of data
descr One line description of table
nss(m) # of columns of stationary-stationary data for mth side
q Description of row
sstbl Stationary-stationary table (mils)
nsm(m) # of columns of stationary firer - moving target data
smtbl Stationary- moving data table (mils)
nms(m) # columns in moving firer - stationary target table
kindms(m) 3 implies MS data is a function of firer speed.

5 implies MS data is a function of target range.
mstbl Moving-stationary data table (mils)

c V7.4 if(iecho.ge.2) print 3, q,(smtbl(ncol,nrow,m),
SUBROUTINE RDEROR (dbname, m, iecho) 1 ncol-1,ncols)

c 3 Rd eror: read accuracy data for a side. 20 CONTINUE
c dbname - name of file containing error (accuracy) data. c Read moving-stationary errors
c Mn-lu ff for Bl ue, 2iff for Red. read (4,1) nrows, neols, descr
c iecho - print input echo if! true. ifqiecho.ge.1) print 1, ncols, nrows, descr

include 'common.h' nms(m) - ncols
character*72 descr kindms(m) -nrows
character*32 dbname DO 30 nrow-1,nrows
character*8 q read (4,2) q,(mstbl(ncol,nrow,m,),ncol=1,r.cols)
real mstbl if(iecho.ge.2) print 3, q,(mstbl(ncoi,nrow,m),
common /comss/ nss(2), sstbl(10,7,2) I ncol=1,ncols)
common /comsm/ nsm(2), smtbl(10,17,2) 30 CONTINUE
common /comms/ kindms(2), nms(2), mstbl(I0,5,2) print *, 'Acc file is:', dbname

1 save a 2) ,/ osm/, /comms/ close(4)prn ,'rdrr

2 format (la8, 10f8.0) faEND
3 format (' ',la8, IMf.2)
c

if (trace) print *,'> rderor'
open (4,file-dbname, status-'old')
rewind 4

c Read stationary-statio nary errors
read (4,1) nrows, ncols, descr

l ~icho.ge.1) print 1, nrows, ncols, descr
nss(m)-ncols

DO 10 nrow-1I,nrows
read (4,2)q, (sstbl(ncol, nrow, in), ncol-l,neols)
ifqiecho.ge.2) print 3, q,(sstbl(ncol,nrow,m),

1 ncol-1,ncols)
10 CONTINUE
c Read stationary-moving errors

read (4,1) nrows, ncols, descr
if(iecho.ge.1) print 1, nrows, neols, descr
nsin(m)-ncols
read (4,1)
DO 20 nrow-I,nrows

read (4,2)q,(smtbl~nco,nrow,m).ncol-I ncols)

72

7.2 Accerr: Find the Linear Error for a Single Round. Accerr finds which table of accuracy
data is appropriate, calls the associated routine to generate angular errors, and converts them to linear
errors. If the round fired is a ballistic round, accerr checks the motion of the firer and target when the
round was fired and chooses one of three tables. If the round is guided, accerr simply uses a 'stationary-
stationary' table.

CODE MATH COMMEfNT

in Firer's side
r Range to target (in)
I Firer H
theta Crossing angle (rad)
vtgt Speed of target (m/s)
vfirer Speed of firer (m/s)
x x = .O0lzr Linear horizontal error (in)

y y = .OO1yir Linear vertical error (in)

rex r,= .Olr~r Linear horizontal dispersion (in)

rey ry= .O0lr, r Linear vertical dispersion (in)

disp d = 3.28\/§(,+ r. RMS dispersion (ft)

c V7.4
SUBROUTINE ACC ERR(m,r,l,theta,vtgt,vfirer,x,y,disp)

c I Acc err: find the linear error for a single round.
include 'common.h'
logical fmove, tstat, tmove, tstat, burst

C
if (trace) print *' >acc err'
fmove-vfirer.gt.O.O
fstat-.not.fmove
tmove-vtgt.gt.O.O
tstat-. not.tmove
burst-nrpb(m).gt. 1

C
IF (burst) THEN

c Burst fire branch
print*,'ACC ERR: Burst fire not modelled.'
STOP

ELSEIF (,move.and.tmove) THEN
print *, ACC ERR: No moving-moving data.'
STOP

ELSEIF (kindrd m) .le.2) THEN
c Either KE or A gun system. (kindrd-1,2)

if(sat.and.tstat) call accss (m,r,I~x,y,rexrey)
if (frstat.and.tmove) call accsm (m,r,theta,x,y ,rex,rey)
if (fmove.and.tstat) call accms (mr,vfirer,x,y'rex,rey)

ELSE
c Direct fire or top attack missile. (kindrd=4,5)

call acc as (m,r,l,x,y)
ENDIF

c Convert from angular to linear errors.
x = xr.001
y - yr.0O1
rex - rex r*.001
rey - reyr.001
disp - 3.28*sart(0.5*(rex**2+rey**2))

if (trace) print '<acc err'
END

73

7.3 Accss: Find Angular Accuracy for Stationary Firer vs Stationary Target. Ace"s finds
the angular errors when a stationary firer shoots at a stationary target.

Table 6 shows the format of the data as AMSAA generates it.

Table 6. First Round Accuracy
Stationary Firer vs Stationary Target

First Round Biases, Dispersions, and First Round Probability or Hit

Horizontal (mils) Vertical (mils)
Range Fixed Biases (mils) Random Variable Total Random Variable Total PH,

(Meters) Horizontal Vertical Error Biases Dispersion Error Biases Dispersion
250 1.072 0 1.3702 .5728 1.4272 1.3702 .6284 1.4504 .9927
00 .357 0 .7260 .6940 1.0043 .7260 .8572 1.1233 .9343

1000 .000 0 .4652 1.1345 1.2262 .4652 1.8468 1.9015 .3019
1600 -.119 0 .3929 1.7860 1.8287 .3929 3.4496 3.4719 .0580
2000 -.178 0 .3621 2.6669 2.6914 .3621 6.2610 6.2715 .0126
2500 -.214 0 .3459 3.8062 3.8757 .3459 11.1232 11.1286 .0032
3000 -.238 0 .3362 5.4729 5.4832 .3362 19.1972 19.2001 .0009

IA' 5/ as 01 I

The user must re-arrange the data in the above table into the format shown below.

7 7 S-S Errors for Blue xxx
rg(m) -> 250 500 1000 1500 2000 2500 3000
Ist mux 1.072 .357 .000 -.119 -.178 -.214 -.238

muy 0 0 0 0 0 0 0
nux .5728 .6940 1.1345 1.7860 2.6669 3.8062 5.4729
nuy .6284 .8572 1.8468 3.4496 6.2610 11.1232 19.1972

hil sgx 1.3702 .7260 .4652 .3929 .3621 .3459 .3362
sgy 1.3702 .7260 .4652 .3929 .3621 .3459 .3362

Figure 5 shows the relationship of the variables. The aim point is at the origin of the coordinate sys-
tem. Each of the solid arrows represents the fixed parameters of a distribution. The dashed arrows
represent random draws from those distributions. The solid arrow from the origin to the center of the
large ellipse illustrates the fixed bias. Older fire controls have fixed biases due to factors like parallax.

VY

\\\Vx

Figure 5. Bias and Dispersion Errors

74

The large ellipse illustrates the one sigma limits on the variable bias. The variable bias changes from
occasion to occasion due to factors like vehicle cant or gunner lay error. The dashed arrows from the
center of the large ellipse represent random draws from the variable bias distribution.

The smaller ellipses represent the one sigma limits on the dispersion of the round. The dashed
arrows from the centers of the smaller ellipses represent draws from the dispersion distributions.

CODE MATH COMMENT

m Side of firer
r Range to target (in)
I U) of firer.
sstbl(n,k,m) S.,k,. Errors for nth range, kth type, and mth side (mils).
k k Interpolate for range in columns k, k+1
frac f = (r-r)/rk)+-rk) Fraction of distance in interval
mux, muy p, p,' Horizontal, vertical fixed bias (mils)
sgx, sgy o, Cr. Horizontal, vertical dispersion (mils)
sx, sy 82, I Random draw for horizontal, vertical random error (mils)
nux, nuy V/, Vy Horizontal, vertical variable bias (mils)
vx, vy v, v 3 [NJ Random draw for variable bias (mils)

tx, ty +V Total dispersion (mils)
ax, ay as u.+n.+s, Angular error (mils)

The array sstbl(10,7,2) stores the input data. The diagram below illustrates the first plane astbl.kj for a
gun system. Since missile systems have no variable biases, the 6th and 7th lines become the 4th and 5th
lines in the table for missiles.

n k= 1 2 3 4 5 6 7 8 9 10
1 i* 81,1,1 82,1,1

2 ju, 81.2,1

3 p
4 v
5 v

6 az
7 8 1 7,1

The following pseudo code shows how the various errors are aggregated to produce the random angu-
lar error and the total error. It shows the calculation of the x values; y values are found similarly. Primed
values are values that will not change from shot to shot and are saved for subsequent rounds fired at the
same target until it is disengaged (either temporarily or permanently.)

75

f(k,n) = sstblkmm + frac(sstblh+l,.,m 4sstb~k,sm.)

IF (missile) THEN Find missile errors

frac=
4, fk,2)+ f(k,4)N

'3= (f (k,2) f (k,4 2

ELSE Find gun errors
IF (first round) THEN Save values

frae=
As' = f(k,2)
V2' = f(k,4)N

= f (k,6)
1'= 'V(f(k,4)2 +f(k,62

ENDIF

ENDEF

Before the first executable statement is a statement function which does a linear interpolation
between the kth and k+lst columns of row n in plane mn of the data table.

Note that for missiles or guns, the bias is stored in the 2nd row of the table. For guns, the variable
bias is stored in the 4th row and the random error is stored in the 6th row. For missiles, there is no vari-
able bias, so the random error is stored in the 4th row.

SV7.4 ifqm.eq.2)frac - (r-rrgs(k)) / (rrgs(k+1)-rrgs(k))
SUBROUTINE ACC SS(m,r,l,ax,ay,tx,ty) c Interpolate to find angular errors.

c 0 Acc ss: find Angular accuracy for station ary-station ary single shots. smux(I) : 1(,2)
include 'common.h' smuy (I) f(k, 3)
real rrgs(10), brgs(10) sv()-rann Ik,)
common /comss/ nss(2) sstbl(10,7,2) s'Y' (1 - ran nfk,5
equivalence (ast(1.,)brgs(1)) ssgx() 0~,6)
equivalence (sstb (12)rrgs(1)) ssgy (f(k,7)
save /comss/, smux, smuy, svx svy, ssgx, ssg~y, stx, sty stx(I) rsfk4)k,)
real smux(NN sm uy(NN),sgx(NN),ssgy (NN) ,svx(NN),svy(NN), sty (I rss$fRk5)f k,7)
I txNN),sty kNN), mux, muy, nux, nuy ENDIF
rqkn) x ssbl k,n,m) + c Now find angular errors.

ircs tb +I'n'm -sstbl(k,n,m)) tx -sxI

rs =~y sqr txx~y y) ty - sty (1)
rss~~y iax = smuxtl) + svx(1) + rann ssgx(l)

if((trace) print *,'> accss' ay =smuy I) + svy(I)rnsgy1)
IF (kindrd(m).eq.4) THEN ENDIF

c Find errors for a missile system. if (trace) print ,'<accss'

c Find index for interpolation. END
ir(m.eq.) k-indexx(brgs,nss(m)r
if(m.eq.2)k-indexx(rrgs,nss~m),r)
if (k1t. 1) k-I

c Find interpolation constant.

if(m.eq.l frac = (r-brgs k)) / (brgsk+)rgk)
im.eq.2)frac = (r-rrgs k) / (rrgs(k+1)-rrgs(k))

c Interpolate to find angular errors.
tx - I k,4
ty _ f :4~

ax~ m k,2) + ranntx)
ay - fk,3) + rann ty

ELSE
c Find errors for a gun system.

IF (prevrd(I).eq. 1) THEN
c Save first round values.
C Find index for interpolation.

if~m.eq.1)k-indexx(brgs,nss(m).r)f(m q2kidx(rrgs,nss(m r)
if (kt.1) k-1

c Findinterpolati on constant.
if(m.eq.1)frac - (r-brgs(k)) / (brgs(k+1).hrgs(k))

76

7.4 Accam: Find Angular Accuracy for Stationary Firer vs Moving Target. Accam inter-
polates in the stationary-firer moving-target accuracy to select the errors for each shot. For each side,
these errors are a function of the range and crossing angle.

Table 7 shows the format of the data AMSAA generates.

Table 7. Stationary-Firer vs Moving-Target Accuracy

Stationary Firer vs. Moving Target
Evasive Factor - .25

Target Crossing Direction - counterclockwise
Target Crossing Angle - 0 degrees

Bias and Dispersion in mils

Target
Speed ACCURACY DATA AS A FUNCTION OF RANGE (METERS)
(KPH) 250 S0o 1000 1500 2000 2500 3000

2 H BIAS 1.0647 .3194 -.0903 -.2843 -. 4610 -. 6415 -.8761
V BIAS .0000 .0000 .0000 .O00 .0000 .0000 .0000
H DISP .6466 .7561 1.1735 1.8110 2.6837 3.8718 5.4811
V DISP .6994 .9107 1.8725 34636 6.2689 11.1277 19.1999
PH) 1.000 .9853 .2156 .0581 .0125 .0032 .0009

10 H BIAS .7800 -. 2740 -1.4549 -2.5467 -3.5063 -3.8250 -3.2910
V BIAS .0000 .0000 .0000 .0000 .0000 .0000 .0000
H DISP .6472 .7566 1.1739 1.8114 2.6840 3.8721 5.4983
V DISP .7693 .9702 1.9082 3.4875 6.2855 11.1399 19.2091
P(H) 1.000 .9801 .1784 .0231 .0055 .0020 .0008

20 H BIAS .7794 -.2785 -1.5177 -2.8526 -4.5495 -6.6631 -8.8527
V BIAS .0000 .0000 .0000 .0000 .0000 .0000 .0000
H DISP .6468 .7583 .1.1752 1.8124 2.6849 3.8729 5.4821
V DISP .9552 1.1361 2.0154 3.5609 6.3371 11.1775 19.2378
P(H) 1.000 .9560 .1617 .0178 .0031 .0007 .0002

30 H BIAS .7793 -. 2806 -1.5296 -2.9125 -4.7684 -7.3413 -10.6929
" BIAS .0000 .0000 .0000 .0000 .0000 .0000 .0000

P DISP .6521 .7611 1.1774 1.8142 2.6864 3.8742 5,483,1
V DISP 1.2028 1.3685 2.1824 3.6799 6.4129 11.2398 19.2852

_ P(H) .9999 .9076 .1491 .0164 .0026 .0005 .0001

40 H BIAS .7792 -. 2809 -1.6338 -2.9337 -4.8470 -7.5917 -11.4060
V BIAS .0000 .0000 .0000 .0000 .0000 .0000 .0000
H DISP .7573 .76&0 1.1805 1.8163 2.6885 3.8761 6.4801
V DISP 1.4814 1.6393 2.3965 3.8400 6.5387 11.3262 19.3512
PH) .9983 .1411 .1365 .0155 .0025 .0005 .0001

H - HORIZONTAL
V - VERTICAL
P(H) - Probability or hit against a 2.3m x 2.3m vertical moving target

Tables similar to the one above are produced for crossing angles of 0, 30, 60, and 90 degrees. The
user must extract data from these tables for the combat cruise speed he wants. He then puts it in the
accuracy data file. Table 8 shows the format of the stationary-moving data included in the accuracy data
file.

First, accam finds the column k in the data so) that. it can linearly interpolate between columns k
and k+i. Then it finds frac. the fraction of the distance into the range interval. This value will be used to
linearly interpolate. Next it finds the sub-table for the appropriate crossing angle.

The crossing angle -7r < 6 < 7r is an input to acesam. Since data is only available for crossing
angles between 0 and 90 degrees and there is a certain amount of symmetry, accsm converts 0 into a W as
follows:

0' = -r/2- Ijr/2- 1O1
The result is -if/2 < 0' < 7r/2. Then accsm finds the appropriate rows i, i+1 bounding 0'. After interpo-
lating for range, accam interpolates for crossing angle.

77

Table 8. Stationary Firer vs Moving Target

(KPH) 250 600 1000 1500 2000 2600 3000
0 deg H BIAS .780W -.2740 -1.4549 -2.5467 -3.5W63 -3.8250 -3.2910

V BIAS .0000 .0000 .0000 .0000 .0000 .0000 .0000
H DISP .6472 .7566 1.1739 1.81 14 2.6840 3.8721 5.4983
V DISP .7693 .9702 1.9082 3.4875 6.2855 11.1399 19.2091

30 deg H BIAS
V BIAS
H DISP
V DISP

60 deg H BIAS
V BIAS
H DISP
V DISP

90 deg H BIAS
V BIAS
H DISP
V D_ __ _ _ _

CODE MATH COMMENT
m Side of firer. Identifies plane of data array to use.
r Range from firer to target (in)

theta Crossing angle (rad).
k k, k+1 are columns between which to interpolate.
frac f =(r-k,,m/Ak+I.I,m-8k1.) Fraction of distance into range interval.
1 Index selecting rows in table.
mux, muy A2, PY Horizontal, vertical biases (mils).
ax, ay Horizontal and vertical angular errors (mils).

tx, ty Horizontal and vertical total errors (mils).

c V7.3 muy - interp(muyl,muy2)
SUBROUTINE ACC SM(m, r, theta, ax,ay, tx, ty) U - interp(tXIUx2)

c 1 Acc sm: find angular error for stationary- firer moving-tgt. ty - interp~tyl~ty2)
c m - 1 ill Blue firer, 2 iff Red firer. ELSE
c r - range from firer to target (i). mux - muX1
c theta - crossing angle (deg). 4! muy - muyl
c ax, ay - angular error of round (mils). tX - tXl

include.'comrnon.h' ty - tyl
real brgs(10), rrgs(10) ENDIF
real interp, mux, muxi, mux2, muy, muyl, muy2 ax - mux + rann~tx)
common /comsm/ nsm(2), smtbl(I0,17,2) ay - muy + rann(ty)
save /comsm/ it (trace) print 'acc sm'
equivalence (smtbl (1,1,1),brgs(I)) END
equivalence (stl1,, rrgsl I)
interp(rl,f2) - f+frc(f2-fl)

c
if (trace) print *,*>acc sm'

c Find right range column
if (meqi)1 k-indexx brgs,nsm(mr
if (m.eq.2) k indexx rrgs,nsm(mr)
if (kiti) k-i
if (meqi) frac - (r-brgs~k)) / (brgs~k+l)-brgs(k)
if (m.eq.2) frac - (r-rrgs k) / (rrgs(k+I)-rrgs(k))

c Find errors
i -0
IF (meth smeqi) THEN
temp - abs(theta/PI)
temp m (temp. ai nt(temp)P

tm -0.56P1 - a bs(0.5 PI-temp)
i- 4*int(tempdeg/ 30.)

ENDIF
muxi - interp(smtbl(kJi+2,m), smtbl(k+I)i+2.m)
muyl - interp(sm,.bl~k,i+,) smtl(kN,i-$3,m))
txl - interp(smtbl(kj+4,m), 8mtbl((k-N ,i+4.rn)
tyl - interp(smtb (kJi+5,m) smtbl(k+l)i+S,m))

IF (methsm-eq 1) THEN
mux2 - interp s m tbl(k '+6r) smtbl(k+l)i+6,in)
muy2 - interp :mtbl (k',i+7,m), smtbl((+1)i+7,m))
tx2 - interp(smtbl (k+8.m, smtbl(k+I ,i+8,m J)ty2 - interp smtbl (k,i+9,m). smtbl3(+1)i+9,m)
frac -temp 46./PI
mux -interp(muxl,mux2l

78

7.5 Accms: Find Angular Accuracy for Moving Firer vs Stationary Target. Acc ma inter-
polates in the MS table to find the additional errors due to motion of the firer. It combines these errors
with those for a stationary firer against a stationary target to generate the total errors for the moving firer
firing at a stationary target.

Input/Output. Table 9 illustrates the data produced by AMSAA for moving firer add-on errors.
It contains horizontal and vertical data for six types of terrain:

I - Level farmland meadows
II - Field with overpass road
III - Frozen plowed fields with crossings
IV - Rolling meadows
V - Stony farmland with crossings
VI - Heavily used tank road

Usually, Tank Wars runs use type 4 terrain. The user converts velocity to meters per second and refor-
mats the data as shown in figure 7.5b.

Table 9. Add-on Dispersions for Moving Firers

MUOVNGEFI FR ADE-N DI PFj3Sr0 4miW.STIMA F
Velocity TT I TT 11 TT III TT IV TT V TT VI

(KPHI) Y H V . V 4 V H V H V
4 .40 .40 .49 .61 4.8 6.0 .40 .40 8.5 10.6 .40 .49
8 .40 .40 .49 .61 - .40 .40 - - .84 1.04

12 .40 .49 .78 .97 .40 .40 .83 1.04
16 .45 .56 1.15 1.44 .43 .66 1.75 2.20
20 .54 .67 4.30 5.50 .91 1.14
24 .76 .95 - 1.45 1.80
32 1.70 2.10 10.9 13.7
40 -

Table 10. Moving Stationary Input Data (as a function of velocity)
3 7 M-S Errors for Blue 9999

vel(m/s) 1.11 2.22 3.33 4.44 5.55 6.66 7.77
Adx .40 .40 .40 .43 .91 1.45 10.9
Ady .40 .40 .40 .66 1.14 1.80 13.7

Table 11. Moving Stationary Input Data (as a function of range)

5 8 M-S Errors for Blue 9999
rg(m) -> 500. 1000. 1500. 2000. 2500. 3000. 3500. 4000.
FxBh .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000

v .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
Te h .8000 .8000 .8000 .8000 .8000 .8000 .8000 .8000

v .8000 .8000 .8000 .8000 .8000 .8000 .8000 .8000

MS error as a function of velocity. In this case, the routine finds the errors for the SS case and
the add-on errors for the MS case and root sum squares them. See section 7.1 for a discussion of the SS
data. Acc ms performs linear interpolation to find the horizontal and vertical add-on dispersions for the
appropriate firer speed. For example, at 5 m/s, the calculations are:

5-4.44
frac =- = 0.504

5.55-4.44
Adz = interp(.43,.91) = .43+.504(.91-.43)= .672

This add on error is combined with the SS error to give the dispersion (rex), and a randomly drawn angu-
lar error as shown below.

79

CODE MATH COMMENT
m Side of firer (1=Blue, 2=Red).
r Range from firer to target (in)
v Speed of firer at fire time (m/s).
ax ,ay Angular error of round (mils).
rex,rey r., r1 Dispersion of round (mils).
ms*Qbl tkhim MS data table (mils).

kindms Number of lines of MS data.
3 if data is a function of velocity
5 if data is a function of range

brgs rk Blue ranges in data table (in).
k Index such that rk < r < k+I.

frac f =(r-rk)/(rk+1-rk) Fraction of distance into interval.
mux A.= tk2m+!tk+1,2,m.tk,2,) Horizontal bias (mils).

rex -. \I(V2+a2+AdX2) Random error horizontally (mils).
N Random draw from the standard normal distribution.

ax a. =P,+rN Horizontal error of round (mils).

MS error as a function of range. When the input data is in this format, there is no need to
access the SS data. Again the routine performs linear interpolation. In this case, it directly finds p',, rex
and a, as well as the corresponding y-values.

c V7.4 ELSEIF (kindms(m).eq.5) THEN
SUBROUTINE AGO MS(mn,r,v,ax,ay,rex,rey) c MIS data is a function of range.

c 3 Ace ins: find angular error for moving-firer stationary-tgt. if (m.eq.l) kindexx(bprm,nms(m),,r)include 'common.h' if m.eq2 kndxx rprm,nms(m)r)
common /comss/ nss(21 , sstbl(1O,7,2~ if kitil) k-i
common /comms/ kin mls(2), nmns(2 , mstbl(lO,5,2) .if m.eq.l) frac = (r-bprm(k)) /(bprm(k+1)-bprm(k))
save /com~ss/, /comms/ if rm.eq.2) frac - (r-rp)/(rprm(k+l)-rprm(k))
real bprm(1O), rprm(iO), brgs(iO), rrgs(1O), mstbl m ux : interp mstbl(k,2,m)mstbl I k+1 2,m))
real interp, mux, muy, nux, nuy muy =interp(mstbl (k,3,m),mstbl (k+I,3,m)I
equivalence (sstbl(,,)br(1) rex- interp(mstbl(k,4,m),mstb(k+1.1.m))
equivalence (sstbl 112 ,rs) rey- interp(mstbl(k.5,m),mstbl(k+1.5,ni))
equivalence (mstb (1,1,1),bp P;m(i)) ax = mux + rann(rex)
equivalence (mstbl(1,1,2),rlpr() ay = muy + rann(rey)
interp(fl,f2) - fi + frac*(f-flr) ELSE

print*,'ACC NIS: There is no ms error type', kindmns(m)
if (trace) print ,'> acc mns' STOP
IF (kindrns(m).eq.3) THEN ENDIF

c MIS data is a function or velocity, if (trace) print s ec ins'
c Find SS errors. END

if m.eq.1)k-indexx(brgs,nss,(m),r)
if(m.eq.2) k=indexx(rrgs,nsstin),r)
if (ki1t.1) k-i
if(m.eq.i)frac - (rbrgs(k)) / (brgslk+l)-brgs(k))
if 1e.2frac = (r-rrgslk)) / (rrgs(k-*ihrrgs(k))
mux = interp(sstbl(k,2,m), sstbl (k+1,2. M)muy - interp(sstbl(k.3,m), sstbl(k+l .3, i)
flux - interp(sstbl(k,4,mn), sstb (k+I,4,m))
nuy - interp(sstbl (k, , n). sstbl (k+l,5,m))
sgx - interp sstbl (k 6m, sstbl(k +,6,m))
sgy = interp(sstbl(k,7.m) sstbl(k+1,7,m))

c Find MIS add-ons.
if mneqi) k-indexx(bprm,nms(M),v)
if m.eq.2) k indexxrr~m~)v
if k.lt.1) ki
if meqi) frac -vbprm(k)) / (bpr (k+I)-bprm(k))
if m.eq.) f rac - (-rprm~k))/ (rprm(k+l)-rprm(k))
Adx- interp(mstl k.,m),mstbi 1 kl2, n))
Ady- interp(mstbl (k3.m)mstbl k+l.3, i))

c Combine SS data and MIS add-ons.
rex - sqrt(nux**2 + sgx**2 + Adx**2)
rey - sqrt(nuy**2 + sgy**2 + Ady**2)
ax - mux + rann(rex)
ay - miiy + rann(rey)

8. DAMAGE ROUTINES

The Damage Routines: Damage, Damagf, Damagm, and LateKL, find the degree of damage
done to the target by incoming rounds and schedule appropriate events. The target's damage may be
categorized into these types: M-Killed, F-Killed, M&F-Killed, I-Killed, and K-Killed. The effects on the
target's foes include: discard target and switch to another. Deaths is one of the five damage routines. It
tallies the tanks that are known to be dead on each side.

The diagram below shows the relationship of the routines called by damage. The routines in dashed
boxes find the level of damage. They will be discussed in the following section. The routines shown iin
solid boxes deal with the results of damage at various levels. They are discussed in this section.

damage

--I

I kill I damagf damagm deaths It kill

L----------------______ _______ _____

I I

I I
r -

I I
,-------------

81

8.1 Damage: Simulate Damage to the Target. Damage finds the amount of damage caused by
the current round, finds the cumulative damage, and schedules effects of any new damage. It finds the
aspect angle and dispersion of the iound, and then calls the appropriate kill routine to find the type of
damage caused. It then scores new damage, if any. Finally, it schedules the effects of any new M, F,
M&F, or K kills. These may include abort missile, cease movement, cease fire, and seek cover. The effects
on the target's foes include: discard target and switch to another target.

First, damage finds a few useful variables: n, m, and k. Then it determines nang, the index of the
30 degree sector in which the incoming round strikes the target. These 30 degree bands are shown in figure
6 below. Then it finds disp, the one foot dispersion band associated with the dispersion of th: round.

Front
1

12 2 2

1 4
' 5

11 Time (sc 3
I Irer

n I i i
- -

/
I I

t I I
I I

8 ' ' 6

Figure 6 Attack Angle Bands Around the Target

CODE MATH COMMENT
t Time (sec).

I ID of firer.
it ID of target.
n 1 if firer is Blue, 2 if Red
m 1 if target is Blue, 2 if Red
k 1 for KE, 2 for HEAT, 4 for missile. 5 for STAFF
theta 0 ,Aspect angie of incoming round (rad) (-w <0<7r)
theta2 #2= l180i/r Aspect angle of incoming round (deg) (-180K0,<1S0)
nangls(n) N Num'er of angles tabled for side n.

N,% 7 True F symmetrical target.

nang N = 0./30+1.5 1 - 12 for 30 degree bands from head-on to tail-on

rex, rey X, y. Horizontal, vertical dispersion of rounds (in)
disp 3.28Vlx +y)/2 1 Root mean square of dispersions (ft)
ndisp Dispersion bands (I - 10 ft)
k Kind of round (I=KE, 2=HL.\T, 4=missile. 5=top attack).
life(it) Status of target (1=ALIVE, 2=NIKILL. 3=FKILL,

4=M&FKILL, 5=lKILL. 6=KKILL).
injury Damage caused by latest round.
injold Damage incurred before latest round hit.

After damage finds the damage caused by the new round, it finds the ctrnulaive darnage as shown in
table 12. Then damage calls damagm to schedule mobility damage effects, and diamagf to schedule
firepower damage effects. For catastrophic kills, it calls newtgt to .switch the target's foes to new targets,
and calls deaths to count up the score and see if we have a winner. For an %1.,0 kill, it schedules an

82

inaca~vity kill a short time in the future, which simulates foes recognizing that an inactive target is no
longer a threat.

Table 12. Cumulative Damage

Previous Damage Cause by Current Round

Dama e none M F M&F K

none - M F M&F K
M - - M&F M&F K
F - M&F - M&F K
M&F - - - - K

I - - - - K

K-

-indicates no change

c V7.5 ENDIF
SUBROUTINE DAMAGE (t, 1, it) if (I ife(it).eq.MFTKILL. and. injold.lIt.MFKILL)

C 0 Damage: find if it is hit & schedule effects. 1 call skedul(t+tbump(n),it.ikill ',NULL)
include 'common.h' ENDIF
character*2 kt(6) if (trace) print *,' <damnage'
common /cpkh2/ nangls(2), pkh(2,7, 12,2,4,11) END
common /cimpct/ x,y,theta, disp
save /cimpct/, /cpkh2/
data kt / no','M-','F-','MF','I-','K-'/

Iformat f8.2,Ix,a4,i3,Ix,'Hits ' ,a4,i3,' (no damnage).')
2 for mat) f.2, Ix,a4,i3, Ix,a2,'- kilIls ',a4,i 3)
c

if (trace) print *' >damnage'
n-army(1)
m - 3-n
k - kindrd(n)
theta2 - theta*DEG
if (nangls(n).eq.7) theta2=abs(theta2)
if (theta2.lt.- 15.0) theta2-theta2+360.0
nang - int(theta2/30.0+1.5)
if (nang.lt. 1) nang- 1
if (nang.gt.12) nang=12
disp - 3.28*sqrt(O5 (rex**2+rey 2))
ndisp - max0(1.min0(;10,int(0.5+disp)))

c Find kill type (i any) ad branch accordingly
if (kne.) injury - kilI(1, it, y, ndisp, nang)
if (k.eq.) injury - kil[5(l, x, y, nang)
IF(histryI THEN

if (injury.eq.1) print I t color(n),I,color(m),it
if (i njury.gt. 1) print 2,t~color(n),1.kt(injury).color(m),it

ENDIF

injold = life(it)
IF (injury.eq.KKILL and. injuryneinjold) THEN

c Treat first catastrcphic kill.
life(it) - KKILL
call damagf(t~it,m)
call damagm(t,it)
call cancel~i t,'i kill ',NULL)
call newtgt (t,1,it)
call deaths(t)

ELSEIF (injuryneinjold and. injold.1t.NIFKILL) THEN
c Treat new damage (less than catastrophic).

IF (injury.eq.MKILL) THEN
if (injold.eq.FKILL) life it) - MFKILL
if (injoldeq.ALIVE lifeit- MKILL
if (injoldeq.ALIVE or. injoid.eq.FKILL) call damagm (tit)

ELSE IF (injury.eq.FKILL) THEN
if (injold eq.ALIVE) life(it)-FKILL
if (injold.eq.MKILL) Iife(it)=MFKILL
call damagf(t,it,m)

ELSE IF (injury .eq.MFIKILL) THEN
if (injold.1t.MF11KILL) life~it) = IMFIKILL
if (injold.ne.MKILL) call lamagm (t, it)
if (injold.ne.FKILL) call damagf)t6t.m)

83

8.2 DamagF: Simulate Firepower Damage. Damagf cancels all firepower activities. It aborts
any missiles fired by the target and cancels fire, reload, and select events scheduled for the target. If the
target is still mobile, it seeks cover. If the target is only F-Killed and its top speed is greater than zero,
damagf schedules an immediate acei event and a hide event a short time in the future.

The damaged tank can no longer fire. Its target is set to zero so the death of its taxget won't trigger
switching to a new target. Then any missiles it may have been guiding are aborted and the record of it
being in the process of firing on any target is cleared (fot(it,j) = .false.). Finally, any firepower related
events are canceled.

If the target is only F-killed and its top speed is greater than zero, damagf cancels all pending
motion events and has it seek cover. To do this, damagf schedules an immediate accel event followed by
a hide event. If it is in a defensive position, it hides in 5 seconds. Otherwise it hides after a delay deter-
mined by input values.

CODE COMMENT

t Time (sec)
it ID of target
n 1 if target is Blue, 2 if Red.
nrtgt(it) ID of target's target.
nchan(it) Number of guidance channels target has active.
kindrd(n) Kind of round fired by firer.
fot(it,j) Record that 'it' is firing at foe j.
life(it) Status of 'it'.
speed(n) Combat cruise speed of target (m/s).
dt Time required for side n to hide.

c V7.1
SUBROUTINE DAMAGF (t,it,n)

c Damagf- Discard activities due to firepower kill.
include 'common.h'

nrtgt (it) - 0
nchanit) - 0

c Clear any guidance channels in use by target.
if (kindrd(n).eq.4) call abort(t,it,0)
DO 40 j-l,nblu+nred

rot(it,j) - .false.
40 CONTINUE

call cancel (itfire ',NULL)
call cancel (it,'reload',NULL)
call cancel (it,'select',NULL)
IF (life(it).eq.FKILL and. speed(n).gt.0.0) THEN

call cancel (it,'slowup', NULL)
call cancel (it,'halt ',NULL)
call cancel (it.'accel 'NULL)
call skedul (t, it, 'accel 'NULL)
dt - thide(n)
if (n.eq.BLU .and. scene.eq.RATTAK) dt - 5.0
if (n.eq.RED .and. scene.eq.BATTAK) dt - 5.0
call skedul (t+dt,it,'hide %NULL)

ENDIF
END

81

8.3 DamagM: Simulate Mobility Damage. Damagm discards all activities due to mobility kill
including maxvel, accel, hide, and vanish. If the target M-Killed is not stopped or slowing, dainagm
schedules an immediate slowup.

CODE MATH COMMENT

t Time (sec).
it ID of target.
vxO v Current speed of target
motion m I = slowing, 2 = stopped, 3 =accelerating,

4 = cruising
SLOWNG s I

v,=0 Implies it is stopped
___m,_=_ _8 Implies it is slowing down

c V7.4
SUBROUTINE DANIAGM (t, it)

c 9 Damagm - Simulate mobility kill on the tgt.
include 'common.h'
logical SOS

c SOS - stopped or slowing
if (trace) print *,'>damagm'

cacance (it, 'maxvel', NULL)
call cancl(t 'cel ',NULL)

call cancel (it, 'hide ', NULL)
call cancel (it, 'vanish', NULL)
505 - vxO(it).eq.O.O .or. motion(it).eq.SLOWNG
if (.not.sos) call skedul (t, it, 'slowup', NULL)
if (trace) print *,'<damagm'

85

8.4 Deaths: Tally Deaths. Deaths tallies the tanks that are known to be dead on each side. A
tank is known to be dead if it is I-Killed, K-killed, or F-Killed and hidden. When the number of tanks on
one side equals the number of dead tanks on that side, the engagement is considered finished and the
opposing army wins the engagement if it can still shoot.

CODE COMMENT

t Time (sec).
dead(n) Count of dead on side n.
life(i) Status of tank i.
knceal(i) Concealment of tank i. I=FD, 2=HD, 3=FE.
deadl True IFF tank is known to be dead.
dead2 True IFF tanks is concealed and Fkilled (or worse).

If all the Blue tanks are dead or all the Red tanks are dead, the code schedules a finish event. For
this purpose, a tank is considered dead if it is in view but I-killed or K-killed, or if it has been F-killed and
has hidden.

c V7.2
SUBROUTINE DEATHS (t)

c 0 Deaths: Find death toll on each side. A tank is considered
c dead if it is 1-killed, K-killed, or F-killed & hidden.

include 'common.h'
logical deadl, dead2
integer dead(2)

1 format (i3,' Blu dead,',i3,' Red dead.')
c

if (trace) print *,'>deaths'
dead(BLU) - 0
dead{RED) -0
DO 20 i-l,nblu+nre6
deadl - life(i). ge.IKILL
dead2 - knceal(i).eq.FD .and. life(i).ge.FKILL
if (deadi or. dead2) dead(army(i))=dead(army(i))+1

20 CONTINUE
if (histry) print 1,dead
if (nblu.eq.dead(BLU) .or. nred.eq.dead(RED))

call skedul(t +5,NULL,'fln ish',NtULL)
if (trace) print *,'<deaths'
END

,86

8.5 LateKI: Simulate Discard of Inactive M&F-Killed Target. After a target suffers an
M&F-Kill and t seconds elapse or n hits are scored, the foes of the target will recognize that it is dead due
to its inactivity. Those engaging the target will then seek a new target to engage. It will be marked as I-
Killed (Inactivity killed) so that no foes will engage it again.

CODE COMMENT
t Time (sec).
tgt ID of target (integer)

hUnused dummy variable
firer ID of target's first foe. (Any will do.)
Iife(tgt) Status of target is bumped to I-killed.

c V7.2
SUBROUTINE LATE KL (t, tgt,jj)

c 3 Late kI: Simulate recognition or m &t kill after period of inactivity.
include 'common.h'
integer firer, tgt

1 format(f8.2, Ix~a4,i3,' I- killed.')
C

if (trace) print *,'> latekl'
ir (histry) print 1, t, color(army(tgt)), tgt
firer - 1
if (tgt.le.nblu) firer-nblu+1
life(tgt) - [KELL
call cancel (tgt, 'ikill 'NULL)
call newtgt (,firer,tgt)
call ets)
if (trace) print * '<latekl'
END

INTENTIONALLY LEFT BLANK.

88

9. LETHALITY ROUTINES

This set of six routines handles the lethality data. The program calls the rd pkhl, rd pkh2, or rd
pkh5 routine once per side to read in the appropriate lethality data. Rd pkh2 is used if lethality is
known only for 7 ranges at the catastrophic kill level. Rd pkh5 is used for top attack rounds like
STAFF. If the user wants sample lethality data printed, Rd pkhl calls mk tbl o generate raw and pro-
cessed data for head-on cases which will be echoed. The program calls the kill or kilI5 routine every time
a round hits to find the amount of damage caused.

The diagram below shows the relation of the lethality routines. This section discusses those in solid
boxes. The dashed lines indicate routines that share lethality data via common.

I input I damage
I I I I

L -- L ---------

I" "
I I

rdpkhl T kill I a mg I- i damagm
1 I

I I

mktbl

rdpkh2 ----

I I

rdpkh5 kill5 - damagf
I I

L -. J - - -

Data. Data stored in the labeled common blocks /cpkh, cpkh2!. and 'cpkh5 are known only to
the lethality routines. Normally, targets are considered symmetrical so data is read for aspect angles from
zero to 180 degrees at 30 degree increments, for a total of 7 individual aspect angles. When a target is
asymmetrical the program reads data for 12 aspect angles from -180 to 180 degrees.

The block /cpkh/ is known only to rd pkhl and mk tbl and the variables are:
table(4,12) - table(ij) is the lethality of it h type at jth aspect angle.
echo(2,7,7) - echo(ij,k) lethality data for ith ,ide, jth range, and kth type.
jrg(2.7) - jrg(i,j) ith side, jth range (meters).
jdisp(2,7) - jdisp(ij) ith side's jth dispersion (ft).

The block /cpkh2/ is known onlv to rd pkhl, rd pkh2, and kill. The read routines store the pro-
cessed lethality data in its variables. The arrays are:

nangls(2) - nangles(i) contains the number of angles of data stored for the ith hide.

89

pkh(2,7,12,2,4,11) - the processed lethality data.
The lethality data is a function of the:

2 sides,
7 ranges,
12 aspect angles,
2 exposures,
4 kill levels, and
11 dispersions

The block /cpkh5/ is known only to rd pkh5 and killS. The arrays are:
anglim(4) - Lower angular limit of fan sectors (deg).
pkh5(2,7,4,4,12) - the processed lethality data.
yl - Distance from center of turret ring to lower edge of fan (m).
y2 - Distance from center of turret ring to base of fan (m).
y3 - Distance from center of turret ring to center of shot pattern (M).
fans - Number of fans of data over target (integer).

Section 9.6 discusses the variables in block /cpkh5/ further.

90

9.1 RdPkhl: Read Standard Lethality Data. This routine reads standard IUA lethality data
produced by VLD/BRL converts it, does some checking of the data and if desired, echos sample lethality
data for a head on hit on the target. The IUA data consists of a header line plus 88 lines of data for
HEAT rounds. Since the lethality of a KE round is range dependent, IUA data for KE consists of a header
line plus 88 lines of data for each of seven ranges from zero meters to 3,000 meters in 500 meter incre-
ments.

The data is treated as probabilities of kill given a hit, where the first line in each set of four lines
contains the probability of a mobility kill, the second has firepower kill, the third has mobility and
firepower kill, and the fourth has catastrophic kill. Lethality data for a single dispersion is initially read
into an array table. If the target is symmetrical, the DO 30 loop will read 7 values for aspect angles from
0 to 180 degrees. For asymmetrical targets, it will read 12 values. Table 13 illustrates this.

Table 13. Lethality Data Stored in Table(4,12)

Kill Aspect Angle
Level 0 30 ... 180 ... 330

M

K

The DO 40 loop checks to see if any values are less than zero or greater than I and tallies an error if
so. If the routine finds bad data, it prints the line number. This occurs for up to 20 bad lines. The rou-
tine stops when 20 bad lines are found or before returning to the calling routine if any bad lines were
found. The most likely cause of an error is a change in the format of the lethality data.

The DO 10 loop converts the data just read in into a usable form. It finds the probabilities of a
mobility kill only, of a firepower kill only, and of a mobility and firepower kill only. These last three and
the catastrophic kill are the values actually used by the program. There are several ways to calculate
these values: here is one:

Let
1 = probability of a mobility kill given a hit

F = probability of a firepower kill given a hit
E = probability of either mobility or firepower kill as above
K = probability of a catastrophic kill given a hit
M'= probability of a mobility kill only given a hit
F'= probability of a firepower kill only given a hit
B = probability of a both a mobility and firepower kill (but not K-kill)

Then given the raw inputs N1, F. E, K, the specific kill probabilities are:
M'= E - F
F'= E - N
B =F-F'-K (=M-NI'-K=E-N'-F'- K)
K =K

The \enn diagrams in Figure 7 illustrate how the raw kills are separated into specific kills.

!) I

M F MIF K

M' F' M&F' K

Figure 7. Raw and Specific Probabilities of Kill.

If desired, the mk tbl routine is called to generate sample output, and in any case, the name of the
lethality file is printed.

Arguments and Local Variables.

CODE COMIENT
dbname Character name of lethality data file
narmy 1 for Blue, 2 for Red
iecho Echos sample lethality data if > 2
fandm Probability of M and F kill but not K-kill.
header Character header line for sample data
irg 1 to 7 for the appropriate range bands. Normally, they are

0, 500, 1000, ... , 3000 meters.
ktgt, kproj, krg, kexp, kdisp, ktype are read in but never
set. They may be used in the future for error checking.

line Line number (for reporting bad data lines)
mang Number of column containing aspect angle data.
maxexp 2 (Hull defilade and fully exposed).
mdisp 1 to 10 for 1 to 10 foot dispersions, II for uniform dispersion.
nerr Number of errors found
nhdfe I for hull defilade. 2 for fully exposed data
nrrgs KE lethality is a function of range, so read 7 sets of

data for KE. Only one is required for HEAT rounds.
nrow Row of sample data to fill in table.
onlym Probability of M-kill only.
onlyf Probability of F-kill only.

c V7.4 9 format(' Rdpkh: linps'.i I.'-'4.' ,ol'.i3.*give ni __ __

SUBROUTINE RDPKHI (dbname, narmy, iecho) 1 3f6.3)
c 3 Rd pkh: read & write probability-of-kill-given-a-hit data. C

include 'common.h' if (trace) write(*,*)' - r d
;
, k h '

character*32 dbname open (4, filefdbname. stati's=old')
character*78 header rewind 4
common /cpkh/ table (4,12), echo(2,7,7), jrg(2.7). jdisp(2,7) read(4,3) nangl. hpadpr
common /cpkh2/ nangls(2), pkh(2,7,12,2,4,1lI) if (iecho.gt.I) write(*.3) header

I format (2i4,i5.i2 32, x,12f6.3) line - 1
2 format (i7,7M.3,iA) nerrs - 0
3 format (i2,a78) nr rgs-7
I format (' Rg ',7('H')eSample Head-on ' nangls(narmy) = nangl

'Kill Probabilities',7('-'), ',lisp',/,' ' if(kind rd(narmy).gt.lnr rg=1
2 (m) M F MIP K Monly Fonly Mk&F (ft)') DO 80 irg-l.nr rgs

5 format(/,2l0x,a20) maxexp - 2
8 format(Rdpkh: line'.iA.i2.'nd value is bad (-.ffi:I.') DO 70 nhdfe=le,maxexp

9'2

DO 60 mdisp-1,11
DO 30 i=1,4

readi 4, 1) ktgt,kproj,krg,kexp,kdisp, ktype,
30 CONTIu.Y-
c Cheek table for pkh's <0 or > 1.

DO 40 i-1,4
line = line+l
DO 35 j-l,nangl

IF (table(ij).lt. or. table(ij).gt. 1.) THEN
write(*,8)linej,table(ij)
nerrs = nerr3+1
if (nerrs.gt.20) write(,'DK:tomn ros

_Cerrs.gt.20) STO

35 CONTINUE;
40 CONTINUE
c Convert to m, f, mf, k only and move to pkh array

DO 10 mang-nangl,l,-1
onlymn - table(3,mang)-table(2,mang)
only f-table(3, nang Ytabl e(l, mang)
fandm-table(2,mang-table(4,mang)-onlyf

C

pkh(narmy,irg,mang,nndfe, 1,mdisp)-onlym
pkh(narmy,irg,mang~nhdfe,2,mdisp)=onlyf
pkh(narmy,irg,mang,nhdfe,3,mdisp) - fandm
pkh Inarmy,irg,mang,nhdfe,4,mdisp) -

table(4,mang)
IF (onlymAt.0 or. onlyf~lt.0 or. fandm.1t.0) THEN

write(*,O) line-3, line, mang, onlym, onlyf, fandm
nerr-nerr+1

ENDIF
10 CONTINUE

IF (iecho.ge.2) THEN
nrow - 0
if (irg.eq.1 and. mdisp.eq.l) nrow = I
if (irg-1.eq.mdisp and. nrrgs.eq.7) nrow - irg
if (mdisp.eq. 1 and. nrrgs.eq. 1) call mk tbl(

I only m,only f,fand m, mdisp, nhdfe, 1)
ir (mdisp.le.6 .and. nrrgs.eq. 1) nrow = mdisp+l
if (nrow.gt.0) call mk tbl(

1 only m~onlyf,fandm, mdisp, nhdfe, nrow)
ENDIF

60 CONTINUE
70 CONTINUE
80 CONTINUE

close(4)
IF (iecho.ge.2 THN
write(*,5 'Hull Defilade'
write(4
write(*2 (jrg(1,i).(echo(1,i,j).j-1.7),jdisp(lIi),i-1,7)
write(5 'Fully Exposed'
write~ *A

wrte*2 (jrg(2,i),(echo(2,i,j),j-I,7),jdisp(2,i),i=l.7)
END IF
IF (nerrs.gt.0) THEN
write(*,*) 'RDPKH: errors found in data so program stops.'

STOP
ENDIF
print*,' Pkh file is:'.dbname

00 if (trace) write(*,)' < rdpkh'
END

9.2 MkTbl: Make Table of Head-on Lethality Data. The subroutine mnk tbl makes a head-on
pkh table for echo consisting of raw pk data and disaggregated data. If the user desires an echo of sample
lethality data, rd pkhl calls mnk tbl to generate the sample data. Mk tbl inserts data for 1 foot disper-
sion at zero range and 1 foot dispersion per 500 meters at greater ranges.

Mk tbl copies the raw data read by rd pkh into the first four columns of the echo table and the
processed data generated by rd pkh into the fifth through seventh columns.

Table 14. Table Generated by MkTbl

Range ____ Kill Probability by Categor y__ iseso

() M-kill F-kill Mr-kill K-kill M'-kill F'-kill M&F-kill f
0

500
1000
1500
2000
2500
3000 ____ _________ _____________ ____________

c V7.1
SUBROUTINE MK TBL (only m,ordyf,fandm, mdisp, k,nrow)

c 3 Mk tbl: make head-on pkh table for echo.
include 'common.h'
common /cpkh/ table (4,12), echo(2,7,7), jrg(2.7). jdisp(2,7)

c
if (trace) print *,'> mktbl'
jrg(k,nrow) - (nrow-l)*irginc
DO 11 j-1,4

echo(k,nrow,j) - table(j, I)
11 CONTINUE

echo k~nrow,5) - onlym
echo(k,nrow.6) onlyf
echo~ k~nrow,71 - fandm
jdisp(k~nrow) - mdisp

90 if (trace) print ,' < mktbl'
END

9.3 RdPkh2: Read HEAT and Missile Lethality Data. Rd Pkh2 read& only 7 lethality values
for 7 ranges. These are all catastrophic kill values. It sets the probability of lesse~r damage levels to zero
and stores the K-kill values in appropriate places in the pkh array. This fakes out the kill routine which
assumes lethality is a function of other variables besides range.

c V7.3
SUBROUTINE RDPKH2 (dbname, narmy, iecho)

c 1dh... Jan 1986
c from grc..ot 1981(tankwars)
c this replaces rdpkh when the following pk values are read
c instead, below puts pk values (1 for each range into
c the k-kill spot in the pkh tables, 0 for m,m+f, f kill spots

include 'common.h'
integer dbname
common /cpkh2/ nangls(2), pkh(2,7,12,2,4.11)

1 format(6rS.2)

if (trace) print ,' >rdpkh2'
read(dbname. 1)pk 1,pk2,pk3,pk4,pk6,pk6,pk7
DO 40 irg-1,7

DO 30 nhdfe-1,2
DO 20 mdisp-i,10

DO 10 mang=1,7
pkh narmy,irg,mang nhdfe,l,mdisp)=0.0
pkh narmy,irg,mang~nhdfe,2 mdisp)-0.0
pkh narmy,irg,mang ,nhdfe,3,mdisp)0.0
pkh narmy,1,mang,nhdfe,4,mdisp -pkl
pkh narmy,2,mang,nhdfe,4,mdisp -pk2
pkh narmy,3,mang,nhdfe,4,rndisp -pk3
pkh narmy,4,mang,nhdfe,4,mdisp -pk4
pkh narmy,5,mang,nhdfe,4,mdisp -pk5
pkh narmy,6,mang,nhdfe.4,mdisp -pk6
pkh narmy,7,mang,nhdreA,mdisp -pk7

10 CONj INUE
20 CONTINUE
30 CONTINUE
40 CONTINUE

print*,' Pkh file is:',dbname
if (trace) print *, <rdpkh2'
END

95

9.4 RdPkh5: Read Top Attack Lethality Data. Rd pkh5 reads STAFF's (level 5 round type)
lethality data which includes the distance to the lower bound of the fans (yj), 'base' of the fans (Y2), and
aim point (Ye), also the number of bands in a fan, sectors in a band, and fans. The lethality of the round
depends on its distance above the target and its elevation angle. Each of the 4 kill categories: only mobil-
ity, only firepower, only M&F, K-Kill, are read in and separated in each fan.

Input data

The game file contains a line specifying where the lethality data is stored. The first column of this
line contains an integer which should be 5 for STAFF data. The rest of that line contains the name of the
lethality data file.

The lethality file describes the lethality fans. The data includes:

CODE COMMENT

yl The distance from the target centroid to the lower bound of the fans.
y2 The distance from the target centroid to the 'base' of the fans.
y3 The distance from the target centroid to the aim point.
bands The number of bands in a fan (1-7).
sectrs The number of sectors in a band (1-4).
fans The number of fans (7 or 12).

The lethality data is stored in the array pkh5(2,7,4,4,12), where pkh5(i,j,k,lm) is the lethality data
for the ith army, in the jth distance band above the target, in the kth angular sector, for the Ith kill level,
and for the mth fan. The four levels of kill are; mobility kill, firepower kill, mobility & firepower kill, and
catastrophic kill. Table 15 contains dummy data illustrating the format of the STAFF lethality file.

Table 15. Sample Lethality File

band/sector/kill FAN DATA
0 deg 30 deg 60 deg 90 deg 120 deg 150 deg 180 deg

2.,8..20., distances to ran, b Lse, aim point
7,4,7, #bands. sectors, fhns

45.0,52.5,67.5,82.5, sector lower bounds
60 45.0 m 0.35 0.35 0.35 0-35 0.35 0.35 0.35
60 45.0 f 0-92 0.92 0.92 0.92 0.92 0.92 0.92
60 45.0 e 0.94 0.94 0.94 0.94 0.94 0.9.1 0.94
60 45.0 k 0.30 0.30 0.30 0.30 0.30 0.30 0.30
60 52.5 m 0.45 0.45 0.45 0.45 0.45 0.45 0.45
60 52.5 r 0.88 0.88 0.88 0.88 0.88 0.88 0.88
60 52.5 e 0.90 0.90 0.90 0.90 0.90 0.90 0.90
60 52.. k 0.25 0.25 0.25 0.25 0.25 0.25 0.25
60 67.5 m 0.52 0.52 0.52 0.52 0.52 0.52 0.52
60 67.5 f 0.74 0.74 0.74 0.74 0.74 0.74 0.74
60 67.5 e 0.78 0.78 0.78 0.78 0.78 0.78 0.78
60 67.5 k 0.20 0.20 0.20 0.20 0.20 0.20 0.20
60 82.5 m 0.62 0.62 0.62 0.62 0.62 1.62 0.62
60 82.5 f 0.62 0.62 0.62 1.62 0.62 1162 0.62
60 82.5 e 0.70 0.70 0.70 0.70 0.70 0.70 0.70
60 82.5 k 0.15 0.15 0.15 0.15 0.15 0.15 0.15
50 45.0 m 0.35 0.35 0.35 0.35 0.35 0.35 0.35

0 45.0 m 0.35 0.35 0.35 0.35 0.35 0.35 0.35

0 82.5 k 0.15 0.15 0.15 0.15 0.15 0.15 0.15

96

c V7.5
SUBROUTINE RDPKH5 (d bname, narmy,iecho)

c Rdpkh5: read STAFF lethality data.
integer fan, fans, band, bands, sector, sectrs
logical trace histry
real tbI(4,12
character*32 dbname
common /cpkh5/ anglim(4), pkh5(2,7,4,4,I2), yl, y2, y3, fans
common /ctrace/ trace, histry
save / cp kh5/

1 format(12xj12f62)
2 format(SM2)
3 format'LETAITY: head-on fan, middle band.',,
1 ' angle onlym onlyf onlymf k-kill')

c
if (trace) print *,'> rdpkhS'

c Read pkh in fan.
open (4, file-dbname, status='old')
rewind 4
read4) yI, y2, y3
read(4:) bands, sectrs, fans
re'ad (4,*) (anglim(n),n-1,sectrs)
DO 30 band=1,bands

DO 20 sector=1,sectrs
DO 5 i=1,4

c Read 1 row for each of the 4 kill categories.
read(4,1)(tbl(i,fa'i),fan=1,fans)

5 CONTINU
DO 10 fan-l,fans

c Separate each kill criteria in each fan.
onlyin = tbl(3.fan)-tb(2,fan)
onlyf = tbl(3,fan)-tbl(l~fan)
pkh6(narmy~bandsector, 1'fn) onlym
pkh(nryband:ector2.fan) -onlyf

pkh6(narmy, bandsector,3, fan) -
1tbl(3,fan)-onlym-onlyf-tbl(4. fan)

pkh5(narmy,band,sector.4,fan) - tbl(4.fan)
10 CONTINUE
20 CONTINUE
30 CONTINUE

close(4)
c Print sample data in 4th band if desired.

IF (iecho.gt.1) THEN
print 3
DO 60 sector-1,4

print 2, anglim(sector),(pkh5(narmy,4,sector,i,1),i=1,4)
60 CONTINUE

ENDIF
print*,' Pkh file is:',dbname
if (trace) print *,'<rdpkh5'
END

97

9.5 Kill: Find Type of D&mage Caused. Kill finds the kill type and probabilities for a hit on a
target including: No damage, M-Kill, F-Kill, M&F-Kill, and K-Kill. The results of each shot by kill type
and the army firing the shot are tallied in the array kshot. Arguments and local variables.

CODE COMMENT

I ID of the firer (0 <1I< NN).
it ID of the target.
y Variable no longer used
ndisp Dispersion (I to 10 ft). 11I for uniform dispersion.
nang Aspect angle band. 1 is head on, 2 is 30 degrees, etc.

pk Random draw from the uniform distribution
nhdfe 1 for hull defilade, 2 for fully exposed.
m Side of firer. 1 for Blue. 2 for Red.
jrg Range band. Normally I for 0 range, 2 for 500 meters. etc.
pksave(i) Appropriate kill probability for M'-kill, F'-kill, N1&F'-kill.

and K-kill.

cV7.5
FUNCTION KILL (1, it, y, ndisp, nang)

k: Kill: find kill type for a hit on a tgt.
include 'common.h'
common /cpkh2/ nangls(2), pkh(2,7,l2,2,4.l I)
dimension pksave(4)

c
if (trace) print *,>kill'
pk - ranu(O.O)
nhdfe - knceal(it)-l
Find probabilities for a production run

m - army(I)
jrg-minO(6,nrg)$-
if) kind rd (m).gt.1) jrg=1
pksave(l) - pkh(m,jrg,nang,nhdfe,1.ndisp)
pksave(2) = pksave(1)+pkh(m,jrg,nangnhdife.2.ndisp)
pksave(3) : pksave(2)+pkh(mjrg,nang,nhdfe. ,3.ndisp)
pksave(4) pksave(3)+pkh~mjrg,nang,nhdfe,4.ndisp)

C Find which kill type occurs.
if pk.lt.pksave(4) kill = KKILL
if (pk.lt.pksave(3) kill - FKLL
if (pk~lt.pksave(21) kill = FKILL
if (pk~lt.pksave(1) kill - MKILL
if (pk.ge.pksave(4)) kill - ALIVE
if (kill.eq ALIVE) kshotim,1O) = kshot(m,1O)+1
if (kill.eqMNKiLT,) kshot(m,ll)=-kshot(m,l1 +1
if lkill.eqFKrLL) kshotlm,l2) - kshot(m,12 -i-
if (kill.eqAIFKILL) kshot(m.13) = kshotlm,13)+l
if (kill. eq. KKILL) kshot m, 14) - kshot(m.1.1)+ 1

if (trace) print *,'<kill'
END

9.6 KillS: Find Type of Damage Caused by Top Attack Round. Kill5 randomly chooses the
type of damage caused by a single top attack round. It was designed to simulate STAFF rounds but may
be appropriate for other top attack rounds. The probability of choosing a mobility, firepower, or catas-
trophic kill is a function of: height of the round over the target, elevation angle of round, and aspect angle
(path of round w.r.t. target front)

Unlike other rounds simulated in the Tank Wars model, STAFF rounds are not fired directly at a
target. They are fired over the target, sense the target below them, and fire an explosively formed projec-
tile (EFP) down through the top of the target.

The lethality data is represented as 7 or 12 fans above the target. If the target is symmetrical, only
7 fans are needed; one at each aspect angle in the series 0, 30, ... , 180 degrees. If the target is asymmetri-
cal, 12 fans are needed from 0 to 330 degrees. Figure 8 illustrates a single fan.

The STAFF round must hit a fan above the target as shown in Figure 8 The lethality of the round
depends on its distance above the target and its elevation angle. The left figure illustrates cells in the fan.
Each cell has kill probabilities at all 4 levels. The right figure illustrates the bivariate normal shot pat-
tern, several defining measurements, and the z, y position of the actual round.

If

\+Y1

Figure 8. Lethality Fan Above Target

Each fan has up to 7 circular bands and 4 wedge shaped sectors on each side of the vertical. Ki115
finds which band and sector the round passes through. It then consults the pkh5 table to find the ., F.
M&F, and K-kill probabilities. The program then lays out the probabilities on the unit interval as shown
below. Next, it draws a random number to choose an interval. The kill level associated with the interval
becomes the damage level.

no dmg \I '-kill F'-kill \lkF'-kill I K-kill

0 PI PP 4 I

The program uses the following symbols and relations:

CODE MATH CONMMENT

I ED of firer (1.NN)
x, y X, Y Coordinates of round from center of impact (in).
nang # or angular sector in which round aproaches target.

Yi Distance from target to lower edge of ran.
Y2 Distance from target to apex or ran.
Y3 Distance round is aimed above target.

h h = Y+Y2+Y 3 Height of round above fan vertex (Mn).

d a = Vx h Distance of the round from the base of the fan (m).
d <y+ Implies round below fan.
dyl+y2,+7O Implie' round is above fan.

e (= atan(h/.r) Elevation angle of the round.
c>45 Implies round is left or right of fan.

fan I ID of fan perpendicular to approach angle.
rans # of fans defined by data.
sector 11D of sector.
angliin(n) c, Lower angular limit of the nth cell in the fan.
band I ID of band.
pk Random draw from uniform distribution
in 1 if Blue firer. 2 if Red firer
pkh5() pmi jk Probability of kill when the round passes through

the i~j cell. (For side m, kill level k, and fan 1.)
pksave(4) pi Sums of kill probabilities.
W15l Damage caused by round. I if none. 2 if mobility kill, 3 if firepower kill.

4 if mobility & firepower. 6 if catastrophic.
____________ Tallies statistical results.

cV7.5 ir (pk.gt.pksave(4)) 0ill - IKKILL
FUNCTION KILLS (1, x. Y, nang) if (ki15.oq.ALIVE) kshoti ni.l 10 kshotfin.10)+l

c9 KillS: find kill type for a STAFF-like round, if i kill,5^1AMKILL) kshott m.l 11) k ;holi m.] I l)-I
c sector - angle band if (kil.eq.FKILL) kshot rn. 12) =kshot i. 12)+l
C band - range band (distance above tgt). if (killS eq.MFIKILLIkshoti rn. 13l) =kshottm.131+I

include 'common.h' if (kill5 eq.KKILL) ks;hot(ri'> V4 kshtrn.lI 1
Uses: trace, army. ALIVE. DEG , KNILL. MFKILL. FKILL, NIKILL. ksKIDIF
integer fan, fans, band. sector ENDIF
common cpkh5,' anglim(41, pkhS5(2.7,4.4.12), y1. y*2. y3. fans if (trace) print.
save cpkhS:/ END
dimension pksave(4)

if (trace) print *,'> kill5'
h - y+y2+y3
.1 - sqrtlx**2 + h**2)
killS ALIVE
IF (di.gt.yl+y2 and. d.lt.vI+v2+70.0) THEN

c Round is within distance limits, proceed.
e - atan2lh,abs(x))*DEG
IF (e.gt.45.) THEN

C Round is within angular limits, proceed.
fan - nang
if (nang.gt.fans) fan=14-nang
sector - indexx(e,4,anglim)
band - 7-int(ld-y 1-y2),, 10.0)
pk -ranu(O.0)

mn ar my(I)
pksave(4i I.k - (pkhS5(m.bandise-tor..I.fain)
pksavel(3) pksve)p k h5(rn,band.seotor.3, fan)
pksave(2) pksavel.3)pkh.S(m.bandi.sec.tor.2.fan)
pksave(I) -pksaye(2)-pkhS"(m.baind,secror,I,fan)

if (pk.gt,pksave(I)) kill-5 - NIILL
if (pk.gt.pksave-(2)) killS - FRILL
if (pk.gt.pkstve(3)) killS) - MFKIILL

10. DISENGAGEMENT ROUTINES

There are four categories of disengagement in tank vs tank combat. Each has different causes, conse-
quences, and must be handled separately. A single tank disengages a single target when it has partially or
completely serviced it. A single tank may disengage several targets when the tank dies or goes behind ter-
rain. Multiple tanks will disengage a target when it dies or goes behind terrain. And finally, there is gen-
eral disengagement at the end of combat.

Experience over a dozen years shows that the logic for target disengagement is extremely complex
and error prone. For that reason, this section discusses the subject in detail.

One tank disengages a single target. A single tank will disengage a single target if it runs out of
ammo, meets it's target switching criterion, smoke blocks the line of sight. or the target goes out if range.

The target switching criterion are 1) the firer hits the target or 2) the firer fires nb,, p rounds at the target.

One tank disengages several targets. When a target is F-killed or worse, it disengages any tar-
gets it has and takes no new ones. When a target vanishes due to terrain, it disengages any targets it has
and again takes no new ones.

Many tanks disengage a single target. All foe will disengage a target when it is visibly killed or
vanishes due to terrain. The target is visibly killed when it is K-killed or I-killed.

The I-kill (inactivity kill) is a concept unique to Tank Wars. It occurs when a tank is %I&F killed
and one or both of the following occur: the target suffers nb., p hits or tb.mp seco:-' elapse. This is an
attempt to simulate gunners discarding a tank that is inactive for some time. The foe will disengage a K-
killed target when damage calls newtgt and an I-killed target when Itkill calls newtgt.

The target vanishes due to terrain if it's path simply takes it behind terrain, it hides because it is
firepower killed or out of ammo, or it is a defender that pops down to 'reload' by replacing an empty mis-
sile pod with a full one. The foe will disengage such a vanished target when vanter calls newtgt.

IO I

10.1 Disengagement Tactics. Tank Wars contains logic for three disengagement policies so that
you can evaluate weapon systems under each policy. Under the first policy, a firer continues to engage its
target until the target is K-killed. A variant of this policy allows the firer to disengage if the target is
M&F killed and certain other conditions are met. Under the second policy, a firer disengages the target
after firing a fixed number of shots at it, but may re-engage at a later time. Under the third policy, a firer
disengages the target after hitting it, but may re-engage it at a later time.

Tactic 1: Standard U.S. Armor doctrine says the gunner will shoot at a target until it is known to
be dead (K-killed). This ignores the very real possibility that the gunner would do better by switching tar-
gets on evidence that the current target is no longer a threat. If the target ceases all activity and the
gunner pumps further rounds at the target or a reasonable period of time passes, the target is very likely
M&F-killed and should be disengaged. In the model if the target has been M&F-killed and the gunner sees
no activity for tbmp seconds or pumps another n.. rounds on the target he then disengages the target
permanently. If you want to force the model to keep firing at an M&F killed target, just make tb.mp, and
ibmp very large values.

Tactic 2: If the probability of an F-kill given a shot is high, it may be reasonable to fire a fixed
number of rounds at the target and then switch to a more threatening target. Later, at leisure the gunner
may return to these partially serviced targets to make sure they are dead. Tactic 2 plays this early switch-
ing.

Tactic 3: Similarly, if the probability of an F-kill given a hit is high, it may be reasonable to fire
until the target is hit and then switch to another target. Again with the possibility of returning to a previ-
ous, partially serviced target. Tactic 3 plays this early switching.

Naturally a firer disengages a target if it vanishes behind terrain and he disengages all his targets
if he himself vanishes. Similarly, a firer disengages all targets if he is F-killed or worse.

Actual switching varies a great deal depending on the types of rounds.

102

10.2 Single-Shot Ballistic Projectiles. For guns firing single-shot KE or HEAT ballistic projec-
tiles, the logic is straightforward to implement. This is discussed below and summarized in Table 16.

The first disengagement policy causes the firer to permanently disengage a target because it is known
to be dead. Policies 2 and 3 cause a temporary disengagement because there is reason to believe the target
is dead. Even if policy 2 or 3 is used, the disengagement criteria of policy I causes a permanent disengage-
ment.

With tactic set to 1, 2, or 3, when a K-kill occurs, the program immediately and permanently disen-
gages the firer from the target. At this same time, if the target is just M&F-killed, the program schedules
a "late kill event" and sets a flag. A K-kill causes the M&F-kill to be bumped up to a K-kill and the target
to be permanently disengaged. A Late-kill causes bumping to a K-kill by the fire event if nb,mp additional

rounds have been fired at the target, and again permanent disengagement occurs. Note that tb,,p is
currently a constant but should be replaced with a draw from a random distribution when it becomes
known.

Table 16- Switching Logic for Pullets

Tactic Condition Event Act ion

1 K-kill Impact Disengage target forever and
select new target.

M&F-kill Impact Schedule a late kill
in t seconds,
Also set a flag to ,,,itch after
n., more shots.

\I F-kill + LateKI
thump sec select new target.
Nl&F-kill. and Fire Disengage target forever and
n,_._, shots select new target.

2* flit Impact Disengage target for now and
select new target.

Fired Fire Disengage target for now% and

n, rds sl,ct a new ;i rget

* The logic of tactic 1 is used for permanently di ,engaging a target.

In the second type of policy the gunner fire , a fixel nihmr ()f roindi, it : ar't and then
attempts to switch targets. The fire routine triggers this switch a., -,-)i a . romnd, :irv tir,l. Tli.- is,
a temporary disengagement: the firer tnav re-engage the t:irgt Lter

In the third type of policy the gunner fires until he gt.l a hit iaid then :ittnqp:- to .vitch The
Impact event. triggers this switch ,as soon :.s a lilt occurs This is a tenipor;iry i-,,i :iert. tlii firer may
re-engage the target later.

I103

10.3 Missile Systems. Tank Wars simulates current 'simple' missile systems as well as proposed
systems that can guide N missiles to N targets simultaneously. Appropriate disengagement policies are
discussed below.

Simple missile systems. A simple missile system is one that can only handle one target at a time
and one whose missile must be guided by the gunner until impact. Target disengagement for this kind of
weapon is discussed below and summarized in table 17.

Tactic 1: The standard missile uses the same logic as for single shot bullets except that the missile
must be guided to impact. As before, target disengagement on a K-kill occurs at impact time. If the tar-
get is M&F-killed and disengagement is to occur after a delay, the firer may have already launched
another missile at the target. Disengagement should not take place until this missile impacts.

Tactic 2: Don't usp this tactic. Switching after firing doesn't make much sense for the simple mis-
sile system. The gunner will surely guide the missile until impact and if it is a miss he will fire again. If it

is a hit and the gunner wishes to switch after a hit, tactic 3 should be used.

Tactic 3: The gunner temporarily disengages the target and selects a more threatening target if one
is available.

Table 17. Switching Logic for Simple Missiles

Tactic Condition Event Action

1 K-kill Impact Disengage target forever and
select new target.

M&F-kill Impact Schedule a late kill

in t seconds.
Also set a flag to switch after
n, more shots.

NI F-kill + LateKI

tbamp sec select new target.
\I&F-kill, and Fire Disengage target forever and
n,._, shots select new target.

2* (Don't use) 1 _

3* Fired Impact Disengage target for now an(l
n I rds select a new target.

(Since msl is guided to impact
switching cannot occur until then)

* The logic of tactic 1 is used for permanently disengaging a target.

Multi-Target Missile Systems. Suppose a multi-missile can handle 4 targets at a time. It selects
the first target and fires at it, then it selects a second target and tires at it while it automatically guides the
first missile to impact. It fires at the second target, then selects a third target meanwhile guiding perhaps
two missiles. The fourth target is selected and fired upon and now if it is guiding four missiles, it cannot
switch to a fifth target after firing because all the guidance 'circuits' are busy and it must wait until one of
the missiles impact and frees up guidance 'circuits'. Thus the first select is triggered by a detection, the
second, third, and fourth by a fire event. and t he filth by an impact event. This is discussed below and
summarized in table i.

10I

Tactic 1: Do not use this tactic. This kind of system selects a new target for every missile. If the
target is known to be dead, it will not be reselected.

Tactic 2: Don't use this tactic. Switching after firing doesn't make much sense for the simple mis-
sile system. The gunner will surely guide the missile until impact and if it is a miss he will fire again. If it
is a hit and the gunner wishes to switch after a hit, tactic 3 should be used.

Tactic 3: This is the appropriate tactic; select a new target after each fire event if not loaded with
targets, otherwise switch at impact. Disengage each target at impact.

Table 18 Switching Logic for Multi-Target Missile Systems

Tactic Condition Event Action
1 Don't use
2* Don't use

3* Fired Impact Disengage target for now and
nb.mp rds select a new target.

(Since msl is guided to impact
I switching cannot occur until then)

nb,,,up should be set to 1. A target that is known to be dead (K-killed) will never be reselected. Suppose

the system can handle 4 targets at a time. If it is currently engaging less than -1 it is not loaded: it can
handle more targets. At fire time, if it is not loaded with targets, it then selects another target. If it is
loaded at fire time, it waits until one of the missiles impacts before selecting another target.

105

10.4 Key Disengagement Variables. At various places in the program the code must find the
answer to certain key questions. The variables containing the answers and the key questions are:

VARIABLE QUESTION
busy(i) Is i too busy to select a new target?
nrtgt(i) What's firer i's latest target?
fot(ij) Is firer i engaging target j?
mot(ij) Does firer i have a missile enroute to target j?
loaded Are firer i's guidance channels full? (missile firers)

Is firer i engaging a target now? (gun systems)
empty(i) Is firer i's upraised missile pod empty? (missiles)

Is firer i out of ammo? (guns or missiles)

The table below tells which routines set, unset, or use certain key variables. A dash means the vari-
able is not mentioned. Roman font means this is the normal place to set or unset the variable. Such set-
tings are clear and well understood. Italic indicates an abnormal setting. These settings are a mystery.

The routines in the first column are divided into three groups. The first routine init unsets the vari-
ables at the beginning of each engagement. The second set of routines, selecs through reload are the nor-
mal firing sequence routines. The last set of routines, newtgt through vansmk handle the firer's activi-
ties when the target dies or vanishes.

busy nrtgt fot mot loaded empty
(local)

Init unset unset unset unset unset
Selecs set
Select unset set set
Fire unset - set --

-Frdmsl - - unset - set
-Frdssg unset - - set
Impact - unset unset unset -

-Diseng - unset unset
--Frdmsl
Reload - unset unset

Newtgt unset unset unset .set
Abort - unset -

Damagf - unset unset --

Vanter - unset unset - -

Vansmk unset - - -

Below is a discussion of each variable and why each routine gives it the value it does. In the discus-
slon, the subscript i is the ID of a firer,,searcher, j is the ID of the target. and k is the ID of the target's
target.

Busy Tells whether the firer is too busy to select a new target. It's purpose is to inhibit selection of a
second target from the time it starts to select a first target until it fires on that first target.
(The variables loaded and empty inhibit selection for other reasons.)

Init When the game begins, i is not. busy with a target, so busy(i)=.false.

106

Selecs When i begins to select a target, i is busy selecting, so busy(i)=.true.
Select At the end of selection, if i has no targets, i is no longer busy with a target, so busy(i)=.false.
Fire If i did select a target, then when i fires at it, i is no longer busy, so busy(i)=.false.
Frdssg Resetting busy is redundant since it was just reset in fire. Anyway, here's the scenario. The

firer is a gun system that still has ammo. It disengages after firing nrpt rounds at the target
and it's done just that.

Newtgt Firer i has selected target j but hasn't yet fired on it. Either target j dies or goes behind ter-
rain, so newtgt is called.

Vansmk Firer i has selected target j but hasn't yet fired on it. Now smoke blocks the line of sight
between i and j. Busy must be reset so firer i can select a new target. The code is: if
(busy(i).and.nrtgt(i).eq.j) busy(i)=.false.

Nrtgt It is a vector containing the ID of the latest target for each firer. It contains information simi-
lar to that in fot.

Init At the beginning of the engagement, firer i has no target, so Drtgt(i)=O.
Select When i selects target j, then nrtgt(i)=j.
Impact Firer i is a gun system. Target j is a false target or firer i switches targets on a hit or target j

is beyond 4km. If any of these are true, firer i will disengage.
Diseng This is where a single firer normally disengages a single target.
Reload When reload is complete, the firer selects a target. Any prior target is discarded by resetting

nrtgt(i)=O. Note that reload is scheduled by frdmsl and by newtgt. After the latter
schedules reload it also resets nrtgt(i). This is redundant.

Newtgt Firer i's target has died or vanished. The code discards i's target by resetting nrtgt(i)=O.
Damagf System j is a target that has just been F-killed. It no longer has a target of its own. so the rou-

tine sets nrtgt(j)=O.
Vanter System j is an attacker that has moved behind terrain or a system that has popped down to

reload. It discards its target, so nrtgt(j)=O. Note When systems are F-killed and then hide.
vanter is also called. Nrtgt is already reset, so resetting it here is redundant, but that's ok.

Fot A matrix telling whether a firer is engaging a target. It contains information similar to that in
nrtgt.

[nit At the beginning of the engagment, no firer is engaging any target, so fot(i.j) = false.
Select When i selects a target j, the fot(ij)=.true.
Frdmsl Missile system i is ready to fire another missile system. It's tiring policy is to tire a hx.'d

number of rounds at the target and then switch targets. It's done that and is ready to switch
targets. A.s part of dropping target j, the code resets fot(i.j)=.false.

Impact Here's the scenario. Firer i is a gun system. Target j is a false target or tirer i switches targets
on a hit or target j is beyond Ikm. If any of these are true, firer i will disengage.

Diseng Firer i 1- disengaging target j. so it resets fot(i.j)=.false.
Newtgt Firer i is disengaging target j, so it resets fot(i.j)=.false.
Damagf When a system j is F-killed, it no longer has a target. That's why fot(j.k) is set to 0 for all foes

k.
Vanter System j is an attacker that has moved behind terrain or a system that hlrs popp'd down to

reload. It discards all its targets, so fot(j,k)=.true. for all foes k.
Note When systems are F-killed and then hide,. vanter is also called. fot is already reset, so reset-

ting it here is redundant, but that's ok.
Mot An array that tells which firers have a missile in flight to which targts.
Init When the game begins, firer i has no missiles enroute to it. so mot(i.j)=.fal'.
Fire When i fires a missile at j, mot(i.j)=.true.
Impact The missile is no longer enromte, so mot(i.j)=.false.
.-\bort If j dies or disappears the missile is aborted, so mot(i.J)=.fals,.

107

Loaded In impact, newtgt, and selecs it tells whetier all of -A missile system's guidance channels are
loaded. In selecs it tells whether a gun system has a target or not. Loaded is similar to busy
in that it inhibits the selection of a new target.

Empty Tells whether the current missile pod is empty or not. Sometimes tells when the system is out
of ammo.

Init When the game begins, the pod is not empty, so empty(I)=.false.
Frdmsl During the course of firing, it may become empty.
Frdssg Gun system i is out of ammo. Reset empty(i)=.true.
Reload At the end of reload, the pod is not empty, so empty(I)=.false.
Newtgt The target died or vanished. Firer i was engaging it, so the code checks to see if the current

missile pod is empty and records whether it is by setting empty(i)=.true.

10.5 Diseng: Attempt to Disengage 1 Firer from 1 Target. There are two circumstances in
the model where a single firer disengages a single target. When a round impacts the firer may choose to
disengage. When smoke breaks line of sight, either or both of the parties involved will disengage if they
were engaged. Diseng handles these two cases.

The first step is to find whether the firer is actually engaging the target. If not, diseng does nothing.
If the firer is engaging the target diseng branches depending on whether it is firing a gun or missile.

If it's a gun system, the following steps are taken:

1. If the firer is about to fire at a real target, the fire event is canceled and it's disengaged from it.

2. If the firer has ammo it begins to select a new target.

3. If it has no ammo but has mobility and is a halt-to-fire system it starts to accelerate.
In any case, the number of rounds on target is reset to zero and the ID of the firer's target is reset to zero.

If it's a missile system, the following occurs:

1. The code may decrement the number of guidance channels the firer has busy.

2. If the target is a real target (not a false one), and the firer is about to fire on the target, the fire event
is canceled and the firer is disengaged from the target. If the calling event is impact (on false target)
the firer reselects.

3. The code may call frdmsl to start on a new target.

Finally, whether it's a gun or missile, if the firer was engaging this target, the code checks to see if
search is off. If it's off, it gets turned back on.

CODE COMMENT

t Time (sec).
I [D of firer.
it [D of target.
drop True IFF target should be dropped (logical).
take True IFF new target should be selected (logical).
mytgt ID of firer's actual target. "
m Side of firer (1=Blue, 2=Red).
n Side of target (1=Blue, 2=Red).
havamo True IFF firer has ammo. (logical)
nrd(I) Number of rounds fired by firer.
nrds(m) Number of rounds firers on side m start with.
inbrst True IFF a burst firer is in the middle of a burst. (logical)
nrpb(m) Number of rounds in a burst. If <. 2 it is a single shot gun.
nrib(1) Number of rounds fired in the burst so far.
on tgt True IFF firer is engaging this target. (logical)
kind Kind of round. (I=KE, 2=1tEAT. 3 unused. 4=missile, 5=top attack)
fot(ij) True 1FF firer is about to fire at this target. (logical)

thuman Random time for firer to select a target (see).
nrot(l) Number of rounds firer has fired at target since engaging it.

c V7.3 C Set useful local variables
SUBROUTINE DIS ENG (t, I, it,drop,take) my tgt - nrtgt(!)

c 7 Diseng: attempt to disengage I firer from I target. m = army(I)
c Diseng is called by impact if firer condition warrants. n - 3-rn
c When I inelde guns, other routines may call it. hay amo - nrd(l).lt.nrls(n)l

inhte 'common.h' inbrst = srpl(m) gt.1 and. (O.ne.niod(nril,(l).
logical in brst. hay arno, on tgt, drop, take, ,ango I nrpblm))

3 format (f8.2,1xa.-4i3,' lis-ongs al .i3,20x. #tgts= .i2) if (it.Pq.FLS T(;T) on tgt = .tir .
if (it n i . S T (,n tig = frt(L.itI or

if (trae I print *,' .,liseng, I (kinilttrn(eq.-i n i l.it))

I w)

c Firer on tIs t arget
kind - kindrd(m)
IF (kind.le.2 or. kind.eq.5) THEN

IF (nrpb(m).le.1) THEN
c Single shot gun system or STAFF fire & forget system.

IF (it.ne.FLS TOT) THEN
if (fot(l,it)) call cancel (I,'fire ',it)
rot(l,it) - false.

END IF
hay amo = nrd(I).lt.nrds(m)
IF (hay amo) THEN
thuman - 2.*exp(rann(O.5))
call selecs(t,I,thuman)

ELSEIF (can go(l,t).and.ishtfs(m).gt.O) THEN
c Firer moves on.

if(histry)print 3, t,color(m),I,
I color(n),it,nchan(I)

call skedul(t,1,'accel ',NULL)
END IF
nrot(I) 0

nrg() = 0
ELSE

c Burst fire gun system.
print *,'DISENG: Not implemented for burst fire guns.'
STOP

END IF
ELSEEF(kind.eq.4) THEN

c Guided missile system.
if (drop) nchan(l) - nchan(lyl-
IF (it.ne.FLS TGT) THEN

IF (rot(I,it)) THE N
call cancel(I,'fire ',it)
fot(l,it) - false.

END IF
ENDIF
if(histry)print 3, t,color(m),I,

1 color(n),it,nchan(l)
c Firer attempts to select a new target

IF (take) THEN
call frd msl(t,l,it,m)

C The firer begins to select a new target right now and
c finishes the selection in a few seconds.

END IF
ENDIF

ENDIF
IF (.notrepeat) THEN

repeat = true.
call skedul (t+.01,0,'search',NULL)

ENDIF
if (trace) print *,'<diseng'
END

110

10.0 Newtgt: Redirect All Foe to a New Target. When a target is obviously killed or disap-
pears every foe engaging the target disengages it and attempts to engage a new target. In Tank Wars this
occurs when the target becomes K-killed or I-killed. It also occurs on a hide or vanish due to terrain.

First the code finds the first and last foe of this target. then it sets a few variables for later use.
Then it checks all the foe to see if they are engaging the target. If not, nothing happens. If so, the code
branches for gun & missiles.

Gun systems. If the gun fires bursts, the program stops because this branch is not developed. If
it's single shot, the code does the following:

1. Cancel foe's firing at target.

2. Permit foe to select new target (if this was current one).

3. Delete foe's current target (if this was current one).

4. Delete current target of foe.

5. Reset # rds fired at current target to zero.

6.
IF (foe has ammo) THEN

foe starts selection
ELSEIF (foe can go and is halt-to-fire) THEN

schedule acceleration
ENDIF

Missile systems. The code does the following:

1. Cancel foe's firing at target (if fot).

2. If (foe has msl enroute to target) abort it

3. Some other stuff under special conditions.

CODE COMMENT

t Time (sec).
I ID of firer.
it ID of target.
m Side of firer (1=Blue. 2=Red).
n Side of target (l=Blue, 2=Red).
havamo True FF firer has ammo. (logical)
nrd(I) Number of rounds fired by firer.
nrds(m) Number of rounds firers on side m start with.
nrpb(ni) Number of rounds in a burst. If -. 2 it is a single shot gun.
kind Kind of round. (I=KE, 2=IIEAT. 3 un:sed. -=missile. 5=top attack)
fot(i.j) True 1FF firer is about to fire at this target. (logical)
thuman Random time for firer to select a target (sec).
nrot(l) Number of rounds firer has fired at. target, since engaging it.

V75 formatLf8.2, 1x. a-l. i3, begins to reloa,')
SUBROUTINE NEWTGT (t. I, it)

3 Newtgt: redirect all "attackers' of it to a new target. if (trace) print newtgt'
c Newtgt called for non-false tgts only and only if it -on,iition Find first and last attaker

warrants it. It should only be -alled if tgt is V-killed, first = I
vanishes, or hides, if (l.gt.nli) first = nsli+l

c Malbe it should he called if the tgt is 1-killed 1,Y a gun ystem. last = nbh,
include 'comrnmon.h' if (I.gt nllu last = Tit,ls+snr
integer first i = arny firt)
logial loaded, hay amo, -ango n 3- M

I format(fs.2.1xaIi3,' lis-ngs ',al.i3.20x, #tgtc=',i2) kind = kinirl(m!

III

nrpb2 - nrpb(m)
DO 0-jfirst last

IF ((mot(j,it or. fot(j,it)) and. life(j).t.FKILL) TH-EN
IF (kind.le.2 or. kind.eq.5) THEN

c Singl e shot gun system or other fire & forget system.
IF (nrpb(m).le.1) THEN

c Single shot gun system.
call cancel(j,'fire ',it)
if (nrtgt~j)j.eq.it) busy(j) J alse.
if (nrtgt,). eqit nrgtJ) -0
hav ao d rd).tnrds(m)
IF (hay amo) T N

thuman - 2.*exp(rann(O.5))
call selecs(t,j,thuman)

ELSEIF (can goti,t).and.ishtfs(m).gt.O) THEN
c Move out

call skedul(t,j,'accel ',NULL)
ENDIF
nrot(j) -0
fot(j,it) -false.

if (histry) print 1, t, color(m), j,
I color(n), it. nchan(j)

ELSE
c Burst fire gun.

print *,NEWTGT: Not implemented for burst fire.'
STOP

END IF
ELSEIF (kind.eq.4) THEN

c Guided missile branch.
if (fot(j~it)) call cancel(j,'flre ',it)
if (mot(j,it)) call abort(tjit)
loaded -nchan(j eq. nchans(m)
IF ((.not.empty~j and. mot(jjit) and, loaded) or.

I(.notempty (j .and. fot(j,it))) THEN
IF ((mod(nrdl(j)nipods(mi)) .gt. 0) or.
f ot(j~it)) THEN

c More rds in pd
IF (fot(j i) THEN

call cancel (j, select', NULL)
busy(j) - false.
fot(j,it) - false.

END IF
C if (it.ne.FLS TOT) fot(j~it) = false.

thuman - 2.0*exp(ran(0.5j)i
call selecs(tj,thuman)

ELSE
c Treat empty missile pod

emipty(j) = true.
CallI cancel(j,'fire ',it)
call cancel(j,'select',NUTLL)
busy(j) - false.
nrot(j) - 0

Cshud htf that is slowing to engage speed up now?
call skedul (t-ttrelod(m)j,'reload',NUTLL)

if (histry) print 2,tcolor(m),j
END IF

ENDIF
nchan(j) n chanli) -I
nrtgt(j) = 0
foLjit) = false.

ENDIF
ENDIF
if (see(j,it)) ndet(j) m ndetlj) - I
s.ee~jit) = false.

20 CONTINUE
IF (.notrepeat) THEN

repeat - true.
call skedul (t+.0l,0,'search',NU'LL)

END IF
if (trace) print ' < newtgt'
EN"r)

112

10.7 Abort: Abort a Missile in Flight. This routine simulates the abortion of a missile in flight.
This happens when the target or firer disappears behind terrain or when either is killed. !n any of these
cases, the code cancels the impact event for the missile. If the launch vehicle is in a defensive position,
alive, and has an empty missile pod, it pops down to bring up another missile pod.

Relevant variables are:

CODE COMMENT

t Time (sec).
I ID of launch vehicle.
it ID of target.
m Side of launch vehicle (1 for Blue, 2 for Red).
n Side of target.
k Guidance channel number.
chanel(m,I,k) ID of missile in kth guidance channel.
msl ID of missile and location of its attributes in the a-array.
msltgt ID of missile's target.
kshot(m,3) Count of missiles aborted for side m.
mot(I,it) Set 'I have a missile on (target) it' to false.
a(msl) Storage area for attributes of missile. Release it.
defndr True IFF I (firer) am in a defensive posture.
empty(I) True IFF pod is empty.

The code loops through all guidance channels and finds the ID of the missile assigned to the channel.
From the ID, it finds which target the missile is approaching. If the target is the right one, the code aborts
that missile.

In aborting the missile, the code tallies another abort for the side the launch vehicle is on and cancels
missile impact. Then it frees the guidance channel. If the target is not a false target, it clears the 'missile
on target' record. Next, it releases the storage area containing the attributes of the missile. Finally, it
determines whether the firing vehicle is in a defensive posture and needs to pop down behind cover while it
brings up another missile pod.

c V7.4 defndr - (scene.eq.BATTAK .and. m.eq.RED) or.
SUBROUTINE ALBORT (t.l.it) I (scene.eq.RATTAK and. m.eq.BLU)

c 6 Abort: abort msl from I to it Ito aii its if it-i0) if (defndr.and.empty(1).and.(lifell).le.ALIVE))
include 'common.h' 2 call skedu(t.I,'pop-jn NULL)
logical defndr END IF

1 format(f8.2,1x,a4.i3.' msl for ',a4,i3.' aborted.' ENDIF
'2 format ('ABORT: l.it,i,chanel-',4i3) 20 CONTINUE
3 format ('ABORT: msl approaching it'.i3) if (trace) print. abort
c END

if (trace) print *,'>abort'
m - army(1)
it - 3-m
DO 20 k-l,5

c Check all 5 missile pointers for this firer
msl - chanel(m.l,k)
if (keym(19).gt.0) print 2, I. it, k, msl
IF (msl.gt.0) THEN

c Missile found (pointer is non-zero)
msl tgt - a(msl+l)
if (keym(I9).gt.0) print 3, msl tgt
IF (it.eq.0 .or. it.eq.msl tgt) THEN

c Abort this missile
kshot(m,3) - kshot(m.3)+l
call cancel (msl,'impact', NULL)
chanel(m.l,k) - 0
if (msl tgt.ne.FLS TGT) mot(l,msl tgt)= .false.

c Release area for storage of missile data
a(msl) - -a(msl)
if (histry) print I.tcolorm),l..

1 color) it).msl tgt
Pop-d wn to reload if ,tf-'nder, pod ernki. I> fifly alive

113

INTENTIONALLY LEFT BLANK

11. MOTION ROUTINES

The motion routines handle initial deployment of the tanks on each side, the significant motion
events, and provide motion information to other routines.

115~

11.1 Deploy: Place Combatants at Start of Engagement. Deploy sets the exposure, position,
and motion of the tanks at the beginning of each enragement.

Opening Range. The initial separation between forces may be thought of as the distance between
the forces when they are first able to see each other because one of the forces just came from behind terrain
or the fog just lifted. Naturally, the initial separation can vary greatly due to the terrain, weather, or tac-
tical obscurants.

Peterson '2 analyzed World War II data to find the distribution of ranges at which tanks were killed
in Northern Europe and a later study (The NATO Range Study) in the sixties also analyzed the ranges at
which tanks might be killed in future combat. (This latter study is apparently unpublished and is
classified.) While these studies indicate the ranges at which tanks are killed, they do not give the analyst
or simulation builder what he needs; the distributions of opening ranges and the motion of the tanks dur-
ing combat. The user should consult these references or use good engineering judgement and give the
model the appropriate opening ranges.

The code breaks into three divisions. First, it initializes the Blue tanks, then the Red, and finally, it
calculates some values for sinusoidal motion.

To initialize the Blue tanks, the code sets the spacing between the tanks to 100 meters. Realistic
values are 70 to 150 meters. Then it finds a point South of the East-West axis as a base for placing the
tanks.

Then the DO 20 loop assigns values to each of the Blue tanks. The following chart explains these
assigned values.

CODE COMMENT
army(l) = BLU Tank I is associated with the Blue side.
knceal(I) = FE Tentatively made Fully Exposed.
scene.eq.RATTAK True if Blue is in a defensive posture.
knceal(I) = HD Exposure changed to Hull Defilade.
tO(l) = 0.0 Time position of tank I last updated.
x0(l) = 0.0 Tank I placed on the y axis.
y0(i) = sp*i+c Tank I offset along the y axis from previous tank.
vx0(i) = 0 Tentatively set to zero speed.
vx0(l) = speed(BLU) Reset to combat speed if Blue is attacking.
motion(I) Tentatively set to stationary
motion(I) = MNLAX VEL Reset to moving at maximum combat speed if attacking.
nwaves.gt.1 Test to see if Blue fights multiple waves of Reds.
nrd(i) = nused(neval+l) Reset number of rounds fired by ith tank.
neval = neval+nblu Tallies # of Blues taken from the regrouping pool.

The DO 30 loop performs similar assignments for the Red tanks. The major difference is that Red
survivors are not regrouped to fight, subsequent waves of Blue tanks, so the last two lines of the DO 20
loop have no equivalent in the Red DO 30 loop.

Lateral motion values found at the end may be ignored in later routines. If so this portion can be
deleted. Nobody's ever used it anyway.

c V7.5 p 1000
SUBROUTINE DEPLOY c - -sp*(l+nblu) 2.0

c Deploy: set initial exposure, position, and motion. DO 20 i-I.nblu
include 'common.h' army(l) - BLU
:ommon /inpwavy keydi.r), nwaws, neval, nlised(3000) knrealll) - FE

if (s,-ene P'q.RATTAIK) kno'ai(l) IIIiD

if (trace) print'. deploy' toIl) - 0.0n
Initialize Bl,,e tanks. xO(I) - 0.0

116

y0~I) - sp i+c

"o(I 0.0
if (scene.eq.BATTAK) Yx0(1) - speed(BLU)
motion(I) - STATNY
if (see qBATTAK) motion(I) - MAXVL
ifr (nweav-e.gt.l1) nrd(i) - n used(nev &I+ 1)

10 it (nwaves.gt.1) neval - neval+nblu
20 CONTINUE
c Initialize Red tanks.

sp - 100.0
c =- sp*(1+nred)/2.0
DO 30 j=I,nred

I = nblu+j
army (I) - RED
knceal(1) - FE
it (scene. eq.BATTAK) kneeal(l) -HD

to(l -1=0.0
xO(I) - rgO
YO(I(- spij+c

IX) - 0.0
if (scene.eq.RATTAK) vx0(I) - -speed(RED)
motion(l) - STATNY
if (scene. eq.RATTAK) motion(I) = MAXVL

30 CONTINUE
C Ilardwired lateral motion valuc-.

accmax(BLU) = 0.0
accmax(RED) - 0.0
wvlth(BLU) = 50.
wv lih 3ED) - 50.

ampi B U)M accmax(BLU)j (TWVOPIspeed(BLU)/wvlth(BLL'))*'2
ampi RD~ - accmax(RED)/ TWOPIspeed(RED),wvlth(RED))**2
if (trace) print*, '<deploy'
END

I117

11.2 SlowUp: Begin Deceleration. Slow up simulates the moment when a moving tank begins
to slow up. If the tank was previously moving, the code records the tank as slowing and schedules a halt
event.

Slow up branches to one of 4 branches depending on the previous motion of the tank. Each of the
branches prints a line appropriate to that branch if the program is printing an event history. If the tank
was already slowing or stationary, the code takes the first or second branch respectively and does nothing
beyond possibly printing a line for the event history. If the tank was accelerating or at cruise speed, the
code takes the third or fourth branch respectively.

If the tank was accelerating, the third branch finds the position and velocity of the tank at the time
it begins to slow down. It calls path to generate these values. Then it finds the time required to stop
using the following equation:

dt= Iv, I/decel
Finally, it sets motion to SLOWNG (=2) and schedules a halt in dt seconds.

If the tank was at cruise speed, the code executes the fourth branch which is similar to the third
branch.

CODE MATH COM.MENT
t t Time (sec)
I ID of tank.
kindmv Motion of tank (I=slowing, 2=stationary,

3=accelerating, 4=cruising).
n Side of tank (1=B3lue, 2=Red).
decel(n) d Deceleration (ma 2).-
vy V Current speed (m/s).
dt - = vjd Time to halt from acceleration (see).
dt -1 te = sid Time to halt from cruise speed (see).

V:7.4
SUBROUTINE SLOW 1P 1t)I

c8 Slow up: simulate tank starting to slow down.
incl ude 'common. h'

I format (f82.lx~a4.i3,' continues to slow up.')
2 format lf8.'2,Ix.a4.i3,' would slow up if it wer~n-'
I 'already stopped.')

3 format If.2l ba.3'~rak~s' .1 x,') was accelerating)')
I format (f8.2.Ix,a4,i3,' brakfs',IIx,'(was cruising)')

if (trace) print *,' -slowup'
kind my - motionl)
n - armyll)
IF (kind mv eq.SLOWNG) 1 HIEN

f(histryjprint 1. t. -'olorin), I
ELSEIF (kind mv -ISTATNY) THEN

flhistry (print 2., t. 'olor) n , I
ELSEIF (kind my -I.ACCELG) THEN

ihistry)pri nt 3. t, -olorl), I
.:all path) Itmotion) I).)f.x.y~vx~vy I
-it - abul vy) dpepl)
rnotio(in) - SLOWNG
,,all skedult+lt.I. 'halt ', NUL'1.1

ELSEIF (kindi mv.ftq..MAXVI.) THIEN
if) histry (print 4. t. eolor) I
,-all path (It~motionI).O O.x.y. vy.V)

, -helule halt timei
At - 5p-edw nI lw
'all 'kelul~t tI., halt ',NULL.1)
motion) I) - Sl,)W N(;

END IF
if (trv'.) print *,'- -lowuip
END

I 1S

11.3 Halt: Simulate a Tank Halting. Halt simulates a halt event. If the tank is a halt-to-fif-
system, halt may trigger the engagement of a target.

The simulation of a halt is simple, but the consequences of the event are more complicated than in
other motion routines. First, if the model is simulating terrain intervisibility (invisb.eq.1), any vanish
events associated with the tank must be canceled. Then halt calls path to update the tank's position and
set the velocity to zero. It then marks the tank as stationary.

The bulk of the code treats the halt-to-fire system. If the system is halt to fire (ishtf(m)=1), and it
can shoot (life(I)<FKILL), and it has ammo (nrd(I).lt.nrds(m)), then the branch is executed.

Inside the branch, the code finds whether the firer still has a target. (A firer 'has a target' if it has
selected a target from among 1 or more it is aware of. This continues until it disengages the target.) If the
target is a false target, the firer still has a target if it's not in full defilade. If the target is not a false tar-
get, the firer still has a target if line of sight exists between the firer and the target.

If the firer has a target the code schedules a fire event, otherwise the code attempts to schedule the
firer to accelerate. The fire event occurs after a delay dt, where:

N10.51
dt = t/e

Where,
dt is the delay time (sec),
t, is the median time to fire 0.e first round (sec),
N[0.5] is a draw from ,- nal distribution with o = 0.5.

But wait, dt = max(.01,dt-3) hat.'s that for? The code indicates that this is a first round being fired at
the target, sets the numl- ,- iounds fired in a burst to zero, and sciedules a fire event.

If the target ha.- Jisappeared, the code schedules an immediate acceleration for the firer.

CODE NMTH COMMENT
t t Time (sec).
I ID of tank.
il Side of tank (I=Blue, 2=Red).
motion(i) Current motion of tank.
xy Coordinates of tank (in).
vx,vy vz, vy Velocity of tank (m's).

ishfts(m) 1=halt to fire system. 2=fire on the move.
life(m) Status of tank (I=ALVE, 2=-Ikilled. etc).
nrd(l) Number of rounds fired by tank.
nrds(m) Number of rounds at start of engagement.
nrtgt(1) ID of tank's target.
knceal(I) Concealment of tank (I=FD, 2=1ID, 3=FE).
fot(ij) True iff firer i is on target j.
tfirst(m,nrg) t, Median time to fire first round for side in an nith range (see).
rann(0.5) N ,v Draw from the standard normal distribution w std dev=0.5).

dt At1 = e Time to fire first round (s).
prevrd l=1st shot, 2=prev rd hit. 3= .eised miss.. *=Iost miss.
nrib(I) Number of rounds fired in burst.
it ID of tank's target.

I1I9

c V7.5
SUBROUTINE HALT (t, 1)

c 7 Halt: simulate tank halting.
include 'common.h'
logical cango, threat

1 rormat (f8.2,1x,a4,i3,' halts', 12x,'(x-',f8. I,' y-',l8.1,)')

if~ trace) print * ,'>halt'
if(invisb.eq. 1)ca11 cancel (I 'vanish',NULL)
M - army (I)call path (1,t,moin)OO,X,y,vx,vy)
if (histry) print 1, t, color(m), 1, x, y
motion(1) - STATNY

c See if fire is a halt-to-fire-system and can still shoot
IF (ishtfs(m).eq.1 and.

1 lfl)l.KILL .and. nrd(l).l t.nrds(m)) THEN
c Thi's is a halt-to-fire syntem. schedule firing if target is
c still available.

if (nrtgt(1).eq.FLSTGT) threat - knceal(l).ne.FD

if (nr a~).tO threat - rot(I,nrtgtI)
I(threat) THEN
dt - tfirst(m,nrgl)exp rann(O.5))
dt - anal.0.t3O
prey rd(I) - 1
nrib(I) - 0
it-nrtgt(I)
call skedul (t+dt, 1, 'fire ',it)

ELSE
c Move firer because it's target has vanished.

ifango(I,t))call skedul (t, 1, 'accel ', NULL)
ENDIF

if (trace) print *,' <halt'
c Move firer if tgt vanished may be redundant.

END

1 20

11.4 Accel: Begin Acceleration. Acceif simulates acceleration of the tank. Now that the tank
can move, it can vanish. So the code first schedules a vanish event. Then it treats acceleration, depending
on the previous motion of the tank. If the tank was slowing up the code takes the first branch. In this
branch it may print a line for the event history. Then it calls path to find the current position and velo-
city. It next finds the time to reach combat cruise speed (dt):

dt = (8ped- Iv, I)/aceI
Where,

speed is the combat cruise speed,
Vis the current velocity, and

accel is the acceleration of the tank.
Finally, motion of the tank is set to accelerating.

If the tank was halted the code takes the second branch. This branch is identical to the first branch,
except that the current speed is zero.

If the tank was already accelerating or at combat cruise velocity, the code takes the third or fourth
branch and does nothing except perhaps print a line for the event history.

CODE MATH CONMENT
t t Time (sec).
I IM of tank.
life(I) 1 if ALIVE, 2 if M-killed, etc
invisb 1 if terrain, 2 if smoke causes NLOS.
knceal(I) 1 if FD. 2 if HD, 3 if FE.
n Side of tank (1=B3lue, 2=Red).
motion(I) 1=Slowing, 2=stationary,

3=accelerating, 4=cruising.
x.y Coordinates of tank (in).
vx,vv vZ, Vy Velocity of tank (m/s).
speed SCruise speed (m/s).
accel(i) a Acceleration for side mn (rn/C).
dt -.It = (s-tv)/a Time to reach cruise speed from current velocity (sec).
dt l.t=vla Time to reach cruise speed from halt (sec).

cV7.4 ir (trace) print ,<accel'

SUBROUTINE ACCELF (t, 1) END
c § Accelf: simulate tank starting to accelerate.

include 'comm,3n.h'
I format (f8.2.lx,a4J~3j' speed up',§Jx,al

c

if (trace) print ,>accel'

i fli fe)l). ne.FiKILLand.i nv isb. eq. 1. and. k nceal (1).ne.FD)
Icall skedul (tO.'vanish' NULL)
n - army)
IF (rnotion(I).eq.SLOWNG) THEN

if (histry) print 1, t, colorln), 1, '(was slowing)'
call path(I,t,motion(I),O.O~x~y~yx,vy)
dt = (speed(n)-abs(vy l)/accel~n)
call skedul (t+dt,I,'maxvel',NULL)
motion(I) - ACCELG

ELSEIF (motion(I).eq.STATNY) THEN
it (histry) print 1, t, color(n), 1, '(was halted)'
call path) I.t,motion(l),O.Ox,y,vx,vy)

c schedule time full velocity reached (max vel)
dt - speed(nl/accellarmyll)
,all skedllt+'lt,['maxvel'NULL)
motionl) - ACCELG

ELSEIF (motion(l).eq.ACCELG) THEN
if Ihistry) print 1, t, color(n), 1. '(was sppeling up)

ELSEIF (motion) l).eq. MAXN'I. I THEN
if (histry) print 1, t, 'olorw, 1, I '(is orii ng)'

ENDIF

121

11.5 MaxVel: Simulate Tank Reaching Combat Cruise Speed. Max vel simulates the tank
reaching combat cruise speed. The routine may print a line for the event history. Then it calls path to
update the position and velocity of the tank. It sets motion to M4AXVEL, and checks to see if the firer has
a target. Then the code calls engage.

CODE COMMENT
t Time (sec).
I ID of tank.
motion(T) 1=slowing, 2=halted, 3=accelerating, 4=':ruising
it ID of tank's target.

c V7.2
SUBROUTINE MAX VEL(t, 1)

c 6 Max vel: simulate tank reaching cruise speed.
include 'common.h'

1 format (f8.2, lx,a4,i3,' at full speed.')
c

if (trace) print *,'> maxvel'
if (histry) print 1, t, color(army(l)), I
call path(I,t,motion(I),O.O,x~y ,vx,vy)
motion(l) - MAXVL
it - nrtgt l)
IF (it.eq.FLSTGT) THEN

call engage~t,tIjt)
ELSEIF (lire(it).lt.KILL) THEN

call engage(t,t~l~it)
ENDIF
if (trace) print *,' <maxvel'
END

122

11.8 Path: Find Position and Velocity of Combatant. Path returns the position and velocity
of a single tank. Path uses a table that looks like this:

Tank to Z0 Yo V.- Vy
1

2

NN 77

When it is called to return the position and velocity of a single tank, it checks to see if the data in the
table is sufficiently recent. If the data is obsolete, path updates it. In either case, Path copies the data to
the output arguments; x, y, vx, and vy.

The data in the table is obsolete if a) the tank is on the attacking side, b) the tank still has mobility,
and c) the time since the data was last updat-d ,.er than delt. For purposes of this routine,
defenders and tanks in a meeting engagement don" ,e, o their position and velocity never needs to be
updated. When attackers are mobility kill, ' ' is updated, so it doesn't have to be updated later
for those tanks. This means path must be just before the program changes life(I) to indicate a
mobility kill or worse. The last update time for the ith tank is t0(I) and the current time is t, so the time
since last update is: dt = t-tO(I). If this is greater than delt then the data is old. If the data needs to be
updated, the code stores the current time t as the update time t0(I) and then branches depending on the
current motion of the tank.

If the tank is slowing the code finds the velocity change, the new position. and the new velocity as
shown in the chart below.

CODE MATH COMMENT
decel(n) a Deceleration of tank (m/s**2).
dt -1 t Time since last update (s).
dv .3 = a.At Velocity change (m/s).
dv -t, =-Av Change sign because Red moves in negative direction.
xO(l) x Old x coordinate (in).
vxO(I) v Old velocity (m/s).
xO(I) .' = A1(V-A1v/2) New x coordinate (in).
v v = v-.A New velocity (m/s)

Iv I < 0 Force velocity to zero if round off gives almost zero speed.
This avoids choosing moving accuracy data for stationary tank.

vx0(I) v" = v1 Save new velocity in table.

If the tank is stationary, the speed is updated to zero.

If the tank is accelerating the code finds the velocity change, the new position. and the new velocity
as shown in the chart below.

CODE MATHl COMMENT
dv -V = -Iv Change sign because Red moves in negative direction
vx0(l) v Old velocity (mrs).
xO(l) t' = .t(v-V/2) New x coordinate (m).
v = v-.1 V New velocity (in s)

12:3

If the tank is at cruise speed the code finds the new position and velocity as shown in the chart
below.

CODE MATH COMMENT

xO(I) X1 = x+vZ~t New x coordinate (in).
vxO(I) v, = a Current velocity is combat cruise speed (m/s).

c V7.3
SUBROUTINE PATH (It, motio2, delt, x, y, vx, vy)

c 4 Path: search path table for position and vel at time t.
include 'common.h'
logical is atkr, kan go, old

c
if (trace) print *,'>path'
n - army~l)
is atkr - (scene.eq.RATTAK and. n.eq.RED) o.0!
I(scene. eq.BATTAK and. n.eq.BLU)
kin go - (motio2.ne.STATNY or.
Ilire(I).eq.ALIVE or. life(l).eq.FKILL)
dt =t-t0(I)

old -dt .gt. delt
IF (is atkr .and. kin go .and. old) THEN

c Update positions and velocity.
tO(I) - t
IF (motio2.eq.SLOWNG) THEN

dv - dccl (n)*dt
if (n.eq.RED) dy-dy
XO(I) - x0(I)+dt*(vxo(I1-0.5*dv)
v - vx0(I)-V
if (abs).lt.O.001) v - 0.0
vxo(I) - v

ELSEIF (motio2.eq.STATNY) THEN
vx0(l-0.

ELSE& (motio2.eq.ACCELG) THEN
dv - accel (n)dt
if (n.eq.RED dy--dy
xO(I) x()+dt(vx0(I)+0.5*dv)
v.(I) - vx0(I)+dv

ELST(motio2.eq.MXL THEN
xO(I) - xO()+vxO()dt
vx (I) - speed(n)
if (n.eq.RED) vx0(l)--vx0(I)

ELSE
print *,'PATH: no such motion. motio2-,',motio2
STOP

ENDIF
ENDIF

vx-VX0(I)
vy=0.0
if (trace) print '<path'

END

121

11.7 Rgf: Find Range to Target, Relative Position, and Velocities Rgf finds the position and
velocity of the firer and target. It then finds the position of the firer with respect to the target, the range,
the range band number, and the rounded range.

The code calls path to get the position and velocity of the firer and its target. Then it stores the
difference in positions in the s array and finds the range between them (temp). Next it finds the range
band (nrg) and the range corresponding to that band (rg). Finally, it may print the positions and veloci-
ties if the appropriate debug flag is set.

Why find the range band? The program uses numerous tables. Some of them give values as a func-
tion of range, for example, accuracy as a function of range. If the program uses the nearest value in a
table, it requires the index of the value. Table 19 below shows the relationship between target range and
the range band index (nrg). If the target range is in the range bands shown in row i, the nrg takes the
values shown in row 2, and the range is assumed to be the values shown in row 3.

Table 19. Range Bands

Range band 0-750 750-1250 1250-1750 1750-2250 2250-2750 2750-3250 3250-3750 3750-42.50
nrg 1 2 3 4 5 6 7 8
Range used 500 1000 1500 2000 2500 3000 3500 4000

CODE COMMENT
t Time (sec).
I ID of firer.
it ID of target
xf,yf Coordinates of firer (in).
xt,yt Coordinates of target (in).
vfx,vfy Velocity of firer (m/s).
vtxvty Velocity of target (m/s).
s(3) Relative position of target w.r.t to the firer (in).
nrg Range band
rgf Range to target from firer (in).
rg Rounded range to target from firer (in).

c V7.4
FUNCTION RGF (t, I, it)

c 3 Rgf: find the position of the firer w.r.t. the tgt.
include 'common.h'
common /,pathc / xf, yf, xt, yt
save /pathc /
format (9x,'Firer x, y, vx, vy -',4fl0.1./

* 9x,'Target x, y, vx, vy 4f101)

if (trace) print *,'>rgf'
call path (It,motion(1),0.0.xf,yf, vfxv fy)
call path (it,tmotion(it),0.0,xt,yt,vtx,vty)
s(1) - xf-xt
s(2) = yf-yt
s(3) = 0.0
temp - sqrt(s(1)*2+s(2)*2)
nrg = maxO(1,int(0.5+temp/rgincr))
rgf = temp
rg - irginc*nrg
if (keym(20).gt.0) print 1,

xf, yf, vfx, vfy', xt, yt, vtx. vty
if (trace) print ,'< rgf'
END

125

11.8 CanGo: Find if Tank is Stopped but Mobile. Can go finds whether the tank 'can go'. If
the tank is an attacker and is mobile and is either stationary or slowing down, then it 'can go'.

CODE COMMENT
t Time (sec).
I ID of firer.
m Side of firer (1=Blue, 2=Red).
scene 1=Meeting, 2=Blue attack, 3=Red attack.
isatkr True iff firer is moving toward foes.
malive True iff firer mobile.
faster True iff firer is able to go faster.
cango True iff firer can go faster than it is going now.

c V7.1
LOGICAL FUNCTION CAN GO (1, t)

c 6 Can go: True iff is stationary and can move.
include 'common.h'
logical is atkr, m alive, raster

m - army(I)
is atkr = (m.eq.BLU and. scene.eq.BATTAK) or.
1(m.eq.RED and. scene. eq.RATTAK)
m alive - iie(I).eq.ALIVE or.

1life(l).eq.FKI1L
faster - motion(I).eq.STATNY .or.

motion().eq.SLOWNG)
can go = is atkr and. m alive and. raster
E ND

126

12. OBSCURATION ROUTINES

The obscuration routines model the effects of terrain or smoke on line-of-sight (LOS). The model
does not handle the combined effects; only one or the other. When terrain effects are modeled, breaks in
and restoration of LOS depends on the distance traveled by the attackers. When smoke effects are
modeled, breaks in and restoration of LOS depends on time elapsed. In either case, targets appear then
vanish, then appear again in a cycle that ends only when the target is mobility killed or moves beyond
viewing range.

The diagram below shows the relationship between the obscuration routines. Initially, targets are
assumed to be masked if smoke is used and are assumed to be in view if terrain is used. The important
relationship is the cycling between the vanish and appear events. Appear calls AprSmk or AprTer as
appropriate and these routines turn on the search cycle 1FF it has been turned off. (The code models
search only if detection is possible.)

r --------- 1

I it I

smo rd sk terain

aprssnk aprtr vasni mk teaaterI II

r r - - - -

search abort
III I

L ---------- L --------- J

127

12.1 RdSmk: Read Intervisibility Data for Smoke. Rd sink reads smoke intervisibility data.
This data consists of cumulative distributions of in-view and out-of-view segment lengths and their proba-
bilities.

Tank Wars simulates breaks in line-of-sight (LOS) caused by intermittent terrain or smoke but not
both. If smoke is used, a special file must be created which contains 6 tables. They consist of the following
data:

1. First out-of-view for IR band sensors (Thermal viewers).

2. First out-of-view for visual band sensors (eyes, binoculars, periscopes).

3. Subsequent out-of-view for IR band sensors.

4. Subsequent out-of-view for visual band sensors.

5. In-view for IR band sensors.

6. In-view for visual band sensors.

Each table has 21 rows with 5 entries in each row as shown in table 20. The program draws a ran-
dom number and finds the range from the sensor to the target and does a 2-way linear interpolation in the
table to find the time the target will be in-view. For in-view data, the time in view increases as range
decreases. The opposite occurs for out-of-view data; time out of view increases as range increases.

Table 20. Time In-View for a Visual Band Sensor

Range (meters)
Prob 0 1000 2000 3000 4000

0.00 500. 210. 150. 125. 100.
0.05 500. 190. 85. 80. 75.
0.10 500. 170. 63. 58. 42.
0.15 500. 150. 44. 40. 26.
0.20 500. 130. 33. 28. 10.
0.25 500. 110. 26. 16. 0.
0.30 500. 90. 18. 10. 0.
0.35 500. 80. 13. 4. 0.
0.40 500. 68. 9. 0. 0.
0.45 500. 55. 4. 0. 0.
0.50 500. 42. 0. 0. 0.
0.55 500. 34. 0. 0. 0.
0.60 500. 25. 0. 0. 0.
0.65 500. 15. 0. 0. 0.
0.70 500. 8. 0. 0. 0.
0.75 500. 4. 0. 0. 0.
0.80 500. 0. 0. 0. 0.
0.85 500. 0. 0. 0. 0.
0.90 500. 0. 0. 0. 0.
0.95 500. 0. 0. 0. 0.
1.00 500. 0. 0. 0. 0.

The actual data file is free format, with numbers separated by blanks or conms.

Figure 9 below shows a plot of the data. When the tanks are 1000 meters apart, 20'r of the time
LOS exists only momentarily seconds. Only rarely does it exist for 200 seconds or more.

128

I1

Prob 0.5 -r = Om

r = Ik m

0- r=4km

II II - -T
0 100 200 300 400 500

Duration of LOS (sec)

Figure 9. Probability LOS exists for t seconds or more.

CODE COMMVENT
toutil(21,5) Table of out-of-view segment lengths for infrared
toutvl1(21,5) Table of out-of-view segment lengths for visible band
touti(21,5) Table of out-of-view segment lengths for infrared band
toutv(21 ,5) Table of out-of-view segment lengths for visible band
tini(21,5) Table of in-view segment lengths for infrared band
tinv(21,5) Table of in-view segment lengths for visible band
ptbl(21) Vector of probabilities.
rtbl(5) Vector of ranges (in)

c VL.3
SUBROUTINE RDSMfK (fname)

c R~d sink: Read intervisibility data ror smoke.
chb.-acter*32 rname
include 'common.h'

co -ut 1~ smoti, t).tin(2l.,),tbul(21.5)rth uiS) -S)

open k. n.i e-rname, status-'old')
rewind 4
print ,Smoke causes intervisibility.'
read
read . Io i (j1.1.).-.1
read
read ' (ot ~~ ji5ii.1
read
read Wouti(ij,j-1,5),i-I.21 I
read
read ,ltuvij)jI.1i1.)

read
read ' (iiijj.)ii.2
read
read ((ti n v i.j).j-I1. 5). i- 1. 21
close(4)
END

[29

12.2 Smoke: Find When Smoke Will Stop Blocking LOS Between Searchers and Targets.
At the beginning of each engagement init calls smoke. For each Blue/Red pair of tanks, smoke finds
when each will appear to the other. It then schedules the target to appear for the searcher at that time.

CODE COMMENT

p For all Blue/Red pairs a random number is drawn
r Opening range.
dt Time smoke blocks LOS between searchers and target (sec)

For each searcher/target pair, the code draws a random number from the standard uniform di:tribu-
tion. It finds the opening range and viewer type for each side. Then it does a 2-dimensional interpolation
in the table for the appropriate viewer. The code uses the range and random number to find the time of
appearance. If both sides use the same type of viewer, the searcher and target will appear to each other
simultaneously.

For details of the interpolation routine, see the section discussing the utility routine tdintp.

c V7.6
SUBROUTINE SMOKE

c 0 Smoke: Find path lengths where attacker is hidden by smoke.
include 'common.h'
common /smokel/ toutil(21,5),toutvl(21,5),touti(21,5),

I toutvl21,5),tini(21,5),tinv(21,5),ptbl(21).rthl(5)
data ptbl '0.05,. 1.. 15,.. 36,. 4..45,.5.55,.6,.65,."

1 75,.8,.85.9.-95,1.0/
data rtbl /0.,1000., 2000..3000.4000./

if (traceiprint *,' >smoke'
DO 80 nb- l.nblu
DO 70 nr -nbli+l.nblu+nred
Find first ime window for LOS between tanks nb, nr.

p -ranu(di)
r-rgO
if kview) £ED).eq. 1) dt-tdintpiptblrtbltoutvlpr.21.5)
if (kview RED).eq.2) dt-t~tintplptbl~rtbl~toutil~p~r,.21.5)

call skedul(dt.nb.'appear'. nr)
if (kview(BLU).eq. 1) dt-diintplptbl.rtbl toutv I .pr.21.5)
if (kview(BLU).eq.2) dt-tdintp(ptbl.rtbltouti l.p.r.21,5)
,,all skedulldt.nr.'appear',n b)

7) CONTINUE
80 CONTINUE

ifltrace)print *,'<. smoke'
END

130

12.3 Appear: Simulate or Reschedule an Appear Event. Appear simulates the re-
establishing line-of-sight between a target and one or more searchers.

The overall structure of the routine is as follows:

IF (simulating terrain) THEN
simulate appearance from behind terrain

find distance tank has traveled
IF (tank has traversed entire out-of-view distance) THEN

treat appearance of the tank
ELSE

reschedule appearance
ENDIF

ELSE
simulate appearance out of smoke

IF (both sides use similar viewing devices) THEN
Treat appearance and vanishing for both sides

ELSE
Treat appearance for searcher only

END IF
ENDIF

The first branch treats terrain intervisibility. The code checks to see if the tank is stationary and
stops the simulation if it is. (This is a redundant check but can be useful if the code that treats hiding
behind terrain is altered.) Then the code finds how far the tank has traveled since it vanished. A call to
path produces the position of the tank. If the tank has traversed the entire out-of-view segment length
it's ready to appear, otherwise appear will be rescheduled.

CODE \.L-TH COMNMENT
t Time (sec)
it ID of target
I TD of firer.
armyt Side of target. (=1 for Blue, 2 for Red)
armyf Side of firer. (=1 for Blue. 2 for Red)
invisb =1 if terrain modeled. 2 it smoke modeled
speed(n) v, Combat cruise speed of tanks on side armyt (m s).
x,y ., y Current position of target (in).
xold. yold z, y, Position of target when it vanished (m). If target appears.

these will become position of target when it appears.
travel d = /((z-zo)+(y-yo)) Distance traveled while masked (ni).
dist(it) d t Length of out-of-view segment (m).
iseg(it) # of current segment (indexes vector of alternating

in view and out-of-view segments.
dist(it) d = d.oeg,, In view segment length (m).

dt .t- di,/v, + 0.01 Time to next vanish (sec).
dt T= (dt-d)/v3 + 0.01 Remaining time to reach end of out-of-view segment (sec).

The second branch treats smoke intervisibility. The code checks to see if both sides are using the
same kind of viewer. If so, the code restores LOS for both simultaneously. There's a fine point here. The
code schedules appear for both but to re-establish LOS simultaneously, it has to discard the appear
event for one and treat it, for both when the other occurs. So when the appear occurs for Blue. the code
finds the next time in-view and out-of-view for both sytems. It the schedules the next vanish and next
appear for both.

13 1

If the systems are using different viewers, the code for the less effective viewer must re-establish LOS
after and lose it before the more effective viewer. For this reason, the less effective visual band viewer
triggers the next in view and out-or-view times for both systems.

Figure 10 shows how in view and out-of-view time segments overlap for two viewers. Neither viewer
has line-of-sight through the middle of a smoke cloud where the density is highest. However, nearer the
edges of the smoke cloud, where the smoke is less dense, the IR viewer has line-of-sight while the visual
band viewer still has no line-of-sight.

CODE MATH COMMENT
di 11 Random in view time for visual (sec).
d2 A2 Random out-of-view time for visual (sec).
d4 A,4 Random out-of-view time for JR (sec).
d3 A3 = A 1+.-5("'-A- 4) In view time for JR (sec).

JR band out-of-view in view out-of-view

t+-/ 3 t+.13±1 4

visual band out-of-view in view out-of-view

t t+A1

Time a
Figure 10. Overlap of Visibility Segments for Disparate Viewers

c V7.7 call aprsmk(t,it.I)
SUBROUTINE APPEAR(t,it,I) c Schedule next disappearanc

c 0 Appear: if tgt appears treat, otherwise reschedule appearance r - rgf(t.I,it)
include 'common.h' p - ranu(0)
common /smokel/ toutil(21,5),toutvl(21,5),touti(21,5X, pout - ranu(0)
Itoutv(21,5),tini(21,5),tinv(21,S),ptb (21Xrtbl(5) IF (kview(RED).eq.kview(BLLU)) THEN
common /terane/ d(40), xold(20), yol d (20), distJ20), iseg(20) IF (m.eq.BLU) THEN
rss(x,y) - sqrt(xx+yy) IF (kview(m).eq.2) THEN

I format(r.2,1x,a4i3,' appears '.9x.'(x-',f8.1,' y='.f8.I.')') dtin-tdintp(ptblrtbtini.pr.21.5)
2 rormat3f.2,lx,a4,i3,' LOS to ',a4.i3,' starts.') dtout-tdi ntppt bl. rt blto u t ipout. r, 21.5)

ELSE
if (trace) print *,'>appear' ditin-tdintptbl~rtbl.tiniv p.r,21 Si
n - army(it) dtouLtadlntp(ptbl.rtbl~toutv, pout, r.21 .5)
m - 3-n ENDIF
IF (invisbeq1) THEN call skedul(t+dtin~it.vanish .I)

c Terrain causes intermittent LOS. call skedul(t+dtin.l.'vanish'.it)

ifspeed(n .le.0.)print *,'APPEAR: n.sp"d-',n.speed(n) call skedul(t +dti n+dtout.it.'ap pear'.1)
if speed~ n).1e.0.1 STOP call skedul(t+dtin+dtout.l.'appear'.it)
call path(it,t~motion(it),0.2.x,y,vx,vy) END IF
travel - rss(x-xold(it), y-yold(it)) ELSE
IF (travel.gt.dist(it)) THEN IF (kview(m).eq.I) THEN
Tgt is no longer masked by terrain dil-tdintp~ptblrtb.tinv.p.r,21.5)
if (histry) print I.t~color(n),it~x,y 12:tdi ntp(pt bl. rt bl.tout v, pout. r. 21.5)
xold(it) x :14 =tIi nrp)pt bi.rt b~touti p~out .r.2 1,51
yold(it) y 13=11+) 12-1J4"0.-S
iseg(it) -iseg(it)+1 call skeduilt±d 1.it.'vanish*.l
if fiseg(it).gt.40) iseg(it)-iseg(it)-40 call skedul(t+11+,12.it.'.-ppear'.1)
dist(it) - dliseg(it)) call skedult+13.Il'vanish'.it)
call aprter(t,it,I.F E) call skedul(t+,13+d 4.. Lap pear' it)

1: Schedule next disappearance ENDIF
dt - dist(it)/speed(n) + 0.01 ENDIF
call skedul(t+dt,it,'vanish',NUTLL) ENDIF

ELSE if (trace) print .Kappear'

c Still masked by terrain, so roschedule mask end END
IF (life(it).eq.ALIVE) THEN

dt - (dist(it) - travel) / speed(n) + 0.01
call skedul (t+lit, it.'ap pear' NULL)

ENDIF
END IF

ELSE
1 Tgt is no longer masked by smoke

if (histry) print 2,t ,colorl3-n II. color)n).it

132

12.4 Aprsmk: Simulate Target Appearing from Behind Smoke. When a target appears from
behind smoke, apr sink restores the line-of-sight from the firer to the targ,t (but not from target to firer.)
If search has been de-activated, apr sxnk re-schedules it.

-CODE COMMIENT
t Time (sec).
it ID of target.
I ID of firer.
n Side of target (1=Blue, 2=Red).
knceal(it) Concealment of target (Reset to RD or FE).
nblu, nred Number of Blue, Red combatants.
los(ij) True 1FF i has line of sight to j.
repeat If false, reset to true and restart search.

cV7. I
SUBROUTINE APRSM1K(t,it.I)

c 0 Aprsmk: Tgt appears out of smoke, reset.
include 'common.h'
common /terane/ d(40), xold(20), yold(20), dist(20), iseg(20)

c
if (trace) print *,'>aprsmk'
n - army(it)

c Restore line-of-sight from firer to tgt.
los(l~it) - army(l).ne.n

c Turn search on if it is A
IF (.not.repeat) THEN

repeat - true.
call skedul(t+.O1.0,'search',NU-LL)

END IF
if (trace) print *.'<aprsmk'
END

1:3

12.5 Aprter: Simulate Target Appearing from Behind Terrain. The target has just re-
appeared from behind terrain. If it's a defender it will pop-up to bull defilade and if it's an attacker it will
be fully exposed. Aprter re-establishes line-of-sight to all targets that are not in full defilade. Then, if
search was turned off, it is turned back on.

CODE COMMENT

t Time (sec)
it ID of target.
I ID of firer (UNUSED).
jexpos Exposure of target after re-appearing (HID or FE).
n Side of target (I=Blue, 2=R1ed).
knceal(it) Exposure of target.
los(i,j) True 1FF i has line of sight to j.
reppat If false, reset to true and restart search process.

c V7.1
SUBROUTINE APRTER(tit1.Jexpos)

c 0 Aprter: Tgt has appeared from behind terrain, reset.
include 'common.h'
integer it~firer
common /terane/ d(40), xold(20), yold(20), dist(20), iseg(20)

1 format(f8.2,lx,a4,i3, aprter',gx,'(x-',f8.1,' y-',f8.1,')')
c

if (trace) print *,'> aprter'
n - army(it).
knceal(it - jexpos

c Restore all lines-of-sight involving it
DO 20 i-1,nblu+nred

IF (knceal(i).ne.FD) THEN
los itJi - army (i).ne.n
los i,it) - army i)ne.n

END IF
20 CONTINUE
c Turn search on if it is off

IF (.notrepeat) THEN
repeat - true.
call skedul(t-i.0I,0,'search',NULL)

ENDIF
if (trace) print * '<aprter'
END

131

12.0 Terain: Find Path Lengths Where Attacker is Masked by Terrain. Terain finds the
portions of the attacker paths where the attackers are hidden from the defenders by terrain.

Init calls this routine at the beginning of each engagement if the scenario is a Blue or Red attack.
Terrain then creates a table d(40) and puts randomly chosen in-view segment lengths in the odd elements
of d and out-of-view as shown in figure 11.

in out in out outIi t I! I
di d, d3 d4 d 40

Distance

Figure 11. Alternating In View and Out-of-View Segments

Later, the code will need to know which segment each attacker is in, the length of the segment, and
where the segment began. The DO 30 loop stores this information for each attacker and tentatively
schedules a vanish for each. (The vanish is only tentative because the attacker may stop while travers-
ing the in view segment; it may halt to fire or it may be mobility killed.)

The segment lengths are random variates drawn from Wiebull distributions. The in view segment
length is:

f =alf
and the out-of-view segment length is:

f
where

f = -log(ran), and
ran is a draw from the standard uniform distribution.

Sometimes these segment lengths are excessively long so that the attackers are out-of-view at all rea-
sonable engagement ranges, with the result that no engagement occurs. For this reason, the segment
lengths are truncated to 30% of the opening range.

CODE COMMENT

ifirst ID of first attacker.
last D of last attacker.
d(i) Length of segment (m)

rgO Opening range (m).
xO(i), yO(i) Position of attacker (mi).

xold(i), yold(i) Beginning of segment (in).
dist(i) Length of segment (in).
iseg(i) Number of segment ith attacker is in.

-V7,6 if (histry) print 1. l,1l.., i+l)
SUBROUTINE TERAIN (ifirstlast) 20 CONTINUE

0 Terain: find path lengths where attacker is masked by terrain c Initialize data for each tank
include 'common.h' DO 30 i=ifirst.last
common /terane/ d(40), xold(20), yold(20), dist(20), iseg(20) xold(i) = xOi)
common /terrac/ at, bl, a2. b2 yold(i) - yO(i)

1 format (' visible for',f5.0,'m, then hidden for',f5.0,'m.') dist(i) = di)l1
iseg(i) = I

if (trace) print *,' > terain' call skedul (0.i,'vanish',NUL L)
c Find segment length at start of each engagement. 30 CONTINUE

DO 20 i-1,39,2 if (trace) print *,',- terain'
c Hunfeld terrain constants END

f = -alog(ranu(0.0))
f = a1~f**bI
1(i) - aminl(f,.3*rg0)
f - -alogfranu(0.0))
f - a2sf**t,2
l(i+ll - aminO(f,3*rgO)

1315

12.7 Vanish: Simulate or Reschedule Vanish Event. Vanish models the disappearance of a
target due to smoke or terrain blocking the line of sight. Smoke blocks the line of sight at a definite time.
Terrain blocks the line of sight only when the attacker traverses the in view segment, so vanish is only
scheduled tentatively for terrain blockage. The code checks to see if the attacker has completed the in
view segment. If so, it schedules a subsequent vanish, otherwise it reschedules varih h ,, 'I ,a the in
view distance left to travel and the combat cruise speed of the attackers.

If smoke causes the target to disappear, the code simple calls vansmk.

If terrain causes the target to disappear, vanish is only tentative. If the attacking t:.nk has com-
pleted the in view segment, the code sets up the next appear event and calls v.'--.r rC complete the van-
ish event. To set up the next appear event, the code records the beginning of the out-of-view segment,
the segment number, and the length of the segment. It then finds the time to complete the out-of-view
segment and schedules an appear event at the end of that time.

CODE MATH COMMENT

t Time (sec).
I ID of searcher.
it ID of target.
n Side target is on. (1 if Blue, 2 if Red)
invisb 1 if terrain blocks LOS, 2 if smoke blocks LOS
speed(n) v Combat cruise speed of target (m/s).
x, y Position of target (in).
xold, yold zo , Beginning of in view segment (in).
travel d = ((z-:t)2 +(Yy-) 2 Distance traversed in segment (m).
dist(it) dit Length of in view segment target is in (in).
dt It = dil/v+.O1 Time to travel out-of-view segment if

target vanished (sec).
dt It = (djt-d)/v+.O1 Time to finish traveling in view segment

if target paused enroute (sec).

c V7.4
SUBROUTINE VANISH(tit,l)

c 0 Vanish: if tgt vanishes treat, otherwise reschedule vanish
include 'common.h'
common /terane/ d(40), xold(20), yold(20), dist(20), iseg(20)
rss(x,y)-sqrt(x*x+y*y)

if (trace) print *,'>vanish'
n - army(it)
IF (invisb.eq.1) THEN

if(speed)n}.le.0.(print *,'VANISH: n,speed-',n,
speed(n)

IF (speed(n).le.0.) STOP
call path(it,t,motion(it),O.O,xy,vx,vy)

Terrain causes intervisibility
travel = rss(x-xold(it), y-yold(it))
IF (travel.gt.distit)) THEN

c Tgt is now masked by terrain
xold(it) - x
yold(it- y
iseg(it) - iseg(it)+l
if (iseg(it).gt.40) iseg(it)=iseg(it)-40
dist(it) - d(iseg(it))
call vanter(t,it,l)
dt - dist(it)/speed(n) + 0.01
call skedul (t+dt,it,'appear',NULL)

ELSE IF (life(it).eq.ALIVE) THEN
C Not yet masked by terrain, so reschedule

it - (dist(it) - travel) / speed(n) + 0.01
call skedul (t+dtit,'vanish',NULL)

ENDIF
ELSE

! Tgt is now masked by smoke
,-all vansmk(t,itl)

ENDIF
if (trace) print *.'.- vanish'
END

1.36

12.8 Vansmk: Simulate Target Vanishing Behind Smoke. Smoke breaks line-of-sight. If the
firer had detected the target, the number of taigets detected is decremented. The firer loses the target and
the time the firer last shot at the target is reset to zero. This means when the target re-appears, it will be
treated as a new target for selection priority purposes. If the firer was busy and this was its latest target,
the firer is reset to 'unbusy'. If the firer had selected this target (mot=T or fot=T) it now disengages from
it. If the target was slowing down to fire and was fully functional and about to engage the firer, the code
cancels his halt and schedules an acceleration event.

CODE COMMENT
t Time (sec).
I ID of firer.
it ID of target.
m Side of firer (1 if Blue, 2 if Red)
n Side of target.
los(I,it) True IFF fir'er has line-of-sight to target.
see(I,it) True IFF firer has sight of target.
tfire(I,it) Time firer last fired at target (sec). If zero,

firer treats it as a brand new target.
busy(I) If firer was occupied with this target it isn't any more.
nrtgt(I) ID of target firer is occupied with.
mot(I,it) IF true, firer has a missile assigned to this target.
fot(I,it) If true, firer is about to shoot a gun at this target.
motion(it) Target is slowing, halted, accelerating, or cruising.
life(it) Status of target.

c V7.3
SUBROUTINE VANSMK(t.it,I)

c 0 Vansmk: Treat tgt that vanished behind smoke.
include 'common.h'

I format(fM.2,1xa4,i3,' LOS to ',a4,i3,' broken by smoke.')
c

if (trace) print *,'>vansmk'
m - army(it)
n = 3-m
if (histry) print 1, t, color(n), I,

I color(m),it
c Cancel line-of-sight between tgt and firer.

los)l,it) .false.
if (see(l,it)) ndet(I) - ndet(l)-l
see(Iit) - false.
tfire(I,it) - 0.0
if (busy(I).and.nrtgt(I).eq.it) busy(I)=.false.

c Abort firer missile on tgt.
IF (mot(I,it).or.fot(I,it)) THEN

call diseng(t,lit,.true.,.true.)
if (mot(I,it)) call abort(t.l.it)

ENDIF
c Accelerate tgt that was halting to fire.

IF (motion(it).eq.SLOWNG and. life~itl.ei. Iand.
I fot(it.l)) THEN

call skedul (tit,'accel ',NULL)
call cancel (it/halt '.NULL)

ENDIF
if (trace) print *,'<vansmk'
NOTE: shouldn't halted tgt accelerate too?
END

137

12.9 Vanter: Treat Target Vanishing Behind Terrain. The target has now definitely vanished
behind terrain. It is marked as being in full defilade, as having no targets, and no detections. All lines of
sight to and from it are broken. The target sees no foes and they no longer see it. The last fire times are
reset to zero so the target and its foes are treated as new threats when the target reappears. Any missiles
are aborted. Foes engaging the target disengage it and if they were halting to fire, they begin to
accelerate.

CODE COMMENT

t Time (sec)
I ID of any foe.
it ID of target.
n Side of target (1=Blue, 2=Red)
knceal(it) Set to full defilade.
nrtgt(it) ID of target's target.
ndet(it) Number of foes target is aware of.
nblu, nred Number of Blue, Red combatants.
los(ij) True IFF i has line of sight to j.
see(ij) True IFF i sees j.
tfire(ij) Time i last fired at j. Zero implies j is a new target.
fot(i,j) True IFF i is about to fire a gun at j.
nchan(it) Number of busy missile guidance channels for target.
ifirst ID of target's first foe.
last ID of target's last foe.
motion(it) Motion of target.
life(it) Status of target. (Alive, m-killed, etc)

c V7.5
SUBROUTINE VANTER(t,it,I)

c 0 Vanter: Treat tgt that vanished behind terrain.
include 'common.h'

I format(fS.2,1x,a4,i3,' vanishes',gx,'(xi',f8.1,' y=',f8.1,')')
c

if (trace) print *,'> vanter'
n - army(it)
if (histry) print 1, t, color(n), it,
x0(it), yo(it)

knceal(it) - FD
nrtgt(it) = 0
ndet(it) = 0

c Cancel all lines-of-sight and sightings involving tgt
DO 20 i=l,nblu+nred

los(it,i) - false.
los(i,it) = false.
if (see(i,it)) ndet(i)-ndet(i -1
see(it,i) = false.
see(i,it) - false.
tfire(it.i) = 0.0
tfire(i,it) = 0.0
fot(it.i) - false.

20 CONTINUE
c Abort outgoing missiles

call abort(t.it,ALL)
nchan(it) - 0

c Abort incoming rounds & disengage tanks firing at tgt
ifirst-I
if (n.eq.i) iflrst - nblu+l
call newtgt(t,ifirst,it)
call cancel (it,'fire ',NULL)
call cancel (it,'select',NULL)

C Accelerate tgt that was halting to fire,
IF (motion(it).eq.SLOWNG and. life(it).Pq. 1) THEN

call skedul it,it.'accel ',NULL)
call cancel (it,'halt ',NULL)

ENDIF
if (trace) print *,'< vanter
END

138

12.10 Hide: Simulate Tank Hiding. If the tank can move and it is firepower killed, it attempts
to hide. It goes into full defilade, relevant lines of sight are broken, its foes disengage it, all events associ-
ated with the hidden tank are discarded, and it halts. Since it is no longer involved in the engagement, a
check is made to see if the engagement is over.

CODE COMMENT

t Time (sec)
it ID of target.
knceal(it) Concealment is set to full defilade.
I ID of first foe.
last ID of last foe.
los(ij) Line-of-sight is broken (set to .false.)

c V7.2
SUBROUTINE HIDE (t, it)

c 5 Hide: Simulate tank hiding.
include 'common.h'

1 format (f8.2,x,a4,i3,' goes into full defilade.')
c

if (trace) print *,'>hide
if (histry) print 1, t, color(army(it)), it
knceal(it) - FD

c Cancel all activities involving this tgt.
c except discard rounds-in-flight in the impact routine

ifirst - 1
if (it.le.nblu) ifirst-nblu+1
last - nblu
if(it.le.nblu) last-nblu+nred
DO 20 i-iflrst,last
los(i,it) - false.
los(it,i) - false.

20 CONTINUE
call newtgt (t, ifirst, it)
call cancel (itall ',NULL)
call skedul (t,it,'slowup',NULL)

call deaths(t)
if (trace) print *,'<hide
END

139

12.11 PopDn: Simulate Defender Popping Down to Reload Missile Pods. The defender
pops down to bring up another missile pod.

Popdn simply calls vanter.

CODE COMMENT

t Time (sec)
I ID of defender.

c V7.1
SUBROUTINE POP DN (t,l)

c 0 Pop dn: Have defender pop down to reload
include 'common.h'

C
if (trace) print *,'> pop dn'
call vanter(t,I,NULL)
if (trace) print *,'<pop dn'
END

1 .10

13. TIME ADVANCE ROUTINES

The event routines are: reset, skedul, event, and cancel. Reset can be thought of as resetting the
clock, clearing the calendar, or initializing the list of pending events. Skedul inserts an event in chronolog-
ical order while saving the time, ID of the entity performing the action, type of action, and possibly the ID
of the entity receiving the action. Event fetches the next pending event, recovering the time, subject
entity, action type, and object entity. Cancel removes zero or more events from the list.

III

13.1 Event Handling Using Linked Lists. The two major ways of handling events are stepping
a fixed time interval and stepping to the next significant event. Stepping to the next significant event (the
method discussed here) requires routines to reset (initialize) the data structure, schedule an event, fetch an
event, and cancel events. This section, touches on various techniques for handling the event data and then
discusses the Linked List technique used by the software in the next four sections.

As a minimum, the model must store the time at which an event will occur, the identity of the entity
that will perform the event, and the type of event. It may also be desirable to store the entity receiving
the action of the event and other information about the event. If, at the current time t, the program finds
that after a delay of 5 seconds, tank 4 may fire at tank 6, this would require a Fortran call as follows:

call skedul (t+5.0,4,'fire..',6)

Methods of handling event data. A great many methods have been used for storing and retricv-
ing event data. The simplest is to add an event to the end of a list and when the next event is needed,
simply search the list for the event with the smallest time. The next simplest is to insert the event just
before the next following event. This requires moving the next and all subsequent events down in the list
and is slow. The method used here uses linked lists, so that the events are always sorted chronologically,
but records of subsequent events need not be moved. (McCormack2 discusses eight methods for handling
event data applied to 12 problems. None of the eight was fastest for all 12 problems, however the method
described here was best for 6 of them.)

The search from the front linear linked-list technique was used in the algorithms in the following sec-
tions. The key elements are:

* A set of links

" A pointer to the first idle link

" A pointer to the link containing the next event

" Several auxiliary pointers for manipulating the links

Initially, the 'idle' pointer points to the first available link, which points to the subsequent link. and so on
until the last available link, which points to the null link £.. The 'next event* pointer points to .2 also.
When an event is inserted in the list, the algorithm removes the first idle link from the chain of idle links.
inserts it chronologically in the chain of active links, and inserts the event data into the link.

Retrieving the next event simply involves copying the data from the first link of the chain of active
links, removing the link from that chain, and inserting it at the head of the chain of idle links.

Cancelling an event is similar, but involves links anywhere in the chain of active links. This imple-
mentation stores up to 100 events. Each type of information is stored in an array dimensioned to 100.
however a given link consists of the ith element of each array. The arrays are:

real when(100) Time of the event
integer who(100) The entity performing the event
character*6 what(100) The type of event performed
integer whom(100) The entity receiving the event
integer next(100) The pointer to the next link

when(9) who(9) what(9) whom(9) next(9)
18.32 4 fire.. 6 31

Figure 12. Contents of a Link

142

13.2 Reset: Re-initialize the Event List. The Reset subroutine 'resets the clock' to time zero.
To do this it rebuilds the linked list of idle events and clears the linked list of active events. It is one of
four routines, Reset, Skedul, Cancel, and Event, that cooperate to handle events in Monte Carlo Simula-
tions. Although it was designed for use in combat simulations, it has much broader use. Only the waves
routine calls it.

If the single argument to reset is true, the event routines will print out each event as it is scheduled
or cancelled; if false, this printing is not done. The subroutine then builds a linked list of idle links, as
shown at the top of exhibit 13.2. It also makes a null linked list of active links as shown at the bottom of
exhibit 13.2; no events are yet scheduled.

idle I41lnk . ?

nxevnt- (2

Figure 13. The Initial Linked Lists

Code.

c V7.1
c clock.h file

parameter (NE-200)
character*6 what
integer who, whom
logical prflag
common /eventl/ whatlNE)
common /event2/ when(NE), who(NE),

I whom(NE), next(NE), nxevnt, nxidle, prflag
save /eventl/, /event2/

c V7.I.
SUBROUTINE RESET (prflg)

c 0 Reset: Initialize the clock to time zero.
include 'clock.h'
logical prflg

c
prflag - prflg
nxevnt = 0
nxidle - I
DO lOj-INE

nextij) - j+I
10 CONTINUE

next(NE) = 0
END

1 13

13.3 Skedul: Schedule an Event. The Skedul subroutine schedules an event in a linked list of
events. It is one of four routines, !.Ieset, Skedul, Cancel, and Event, that cooperate to handle events in
Monte Carlo simulations. Although it was designed for use in combat simulations, it has much broader
use. The event information stored is; event type, entity that will perform the event, time the event will
occur, and perhaps the receiver of the action.

The calling statement. The arguments to the Skedul subroutine tell when, who, what, and whom.
That is when will a future (tentative) event occur, which entity will perform that event, what event
(activity) will be performed and possibly to whom will that activity be directed. If, for example, the
second Blue system will fire 12 seconds in the future then the following statement would appear in the pro-
gram:

call skedul (t+tf,I,'impact',it)
Where:

t is the current time,
tf is the time delay after which the event may occur,
I is the subject or actor causing the event,
'impact' is a 6 character string identifying the type of event, and
it is an integer identifying the object of the event.

Note that the event must always occur in the future, so in the example, tf > 0.0.

When skedul is called like this, it inserts the when, who, what, and whom data into a linked list in
chronological order with other scheduled events. In this case, the time to fire is the current time 't' plus 12
seconds, the actor is tank 2, the event is indicated by an integer stored in the 'eFIRE' variable, and the
target (the whom) is indicated by an integer stored in the 'tgt' variable.

Algorithm. On average, Skedul must traverse half the linked list to find the place to insert the
event link. It must also check to see if an idle link is available. If so, it then inserts the new event using
these 6 steps, as shown in exhibit 13.3.

1. Store the index of the idle link/event in n.
2. Store the index of the new head of the idle chain in idle.
3. Store the index of the immediately preceding link/event in 1.
4. Store the index of the succeeding idle link/event in m.
5. Store the index of the now active link/event in next(l).
6. Store the index of the succeeding link/event in the now active link event in next(n).

Start idle

nxevnt - ... y =X_-

Step 1 n

Step 2 idle

Step 3 1

Step 4 m

Step5 n H B I±1I

Step 6 nextev--- ...

Figure IH. Scheduling an Event

1 .1

Code.

c V7.3
SUBROUTINE SKEDUL (tI,act,it)

c g Schedule: Schedule an event for later execution.
include 'clock.h'
character*6 act

1 format(gx,'skedul ',i3,' ',a6,i3,' at time',f8.2)
C

if (prfiag) print 1, 1, act, it, t
IF (lnxidle.eq.O) THEN

c If stora e all used stop
print f,' Storage overloaded with too many events.'
STOP

ELSE
C Store the event
c Cut storage unit from empties

n - nxidle
nxidle - next(nxidle)

c Then find where to insert this event in the event list.
IF (nxevnt.le.0) THEN

c New event is only event
next(n) - 0
nxevnt - n

ELSE
c Then find where to insert it.
c Point to first 2 events

I- nxevnt
m - next(l)

c Find where to insert them
IF (t..ge.when(l)) THEN

c See if between 2 scheduled events.
c Loop till found.
20 IF (m.ne.O and. t.ge.when(m)) THEN

I -im
in - next(m)
GOTO 20

ELSE
c Splice new event into list

next(n) m i
next(l) -n

END IF
ELSE

c Place new event as most imminent
next(n) - nxevnt
nxevnt - n

END IF
END IF

c Finally store event info
whenin) -t
what(n) - act
whomn) - I
whomn) - it

END IF
END

1 15

13.4 Event: Find Next Event. The Event subroutine finds the next event to be simulated from a
linked list of events. It is one of four routines, Reset, Skedul, Cancel, and Event, that cooperate to handle
events in Monte Carlo simulations. Although it was designed for use in combat simulations, it has much
broader use.

The Event subroutine is only called when an event is completed and the simulation is ready to exe-
cute the next event at the top of the list. One of the 'model' routines called Events is the only routine that
calls Event. It is called as follows:

call event(l, act, it, t)

All four arguments are output from Event and contain the time of the most imminent event, who (which
tank) is performing the event, what event is being performed, and whom (which target) is receiving the
action. If t, I, act have the values 10.5, 4, 'select' then the current becomes 10.5 seconds and at that time
tank 4 attempts to select a target. (The variable 'it' is undefined for this particular event.)

The event routine simply extracts the information for the next event from the first link on the linked
list of events and then moves that link to the head of the linked list of idle links. The information
extracted is:

I - the entity performing the event
act - the event or act
it - the object of the event (or other useful information)
t - the time the event occurs

Figure 15 shows the arrangement of the idle and active linked lists before and after the most imminent
event is fetched.

Before idle ------

nxevnt .

After idle xlink a

nxevnt

Figure 15. Selecting the Next Event

Code.

c V7.2
SUBROUTINE EVENT (I.act,it,t)

c 0 Event: Find the next scheduled event.
include 'clock.h'
character*6 act

c
c Fill arguments

I - who(nxevnt)
act - what(nxevnt)
it - whom(nxevnt)
t - when(nxevnt)

c Drop storage unit rrom active storage chain
n - nxevnt
nxevnt - next(nxevnt)

c Add storage unit to inactive storage.
next(n) - nxidle
nxidle - n

END

116b

13.5 Cancel: Cancel an Event. The Cancel Subroutine cancels an event from a linked list of
events. It is one of four routines, Reset, Skedul, Cancel, and Event, that cooperate to handle events in
Monte Carlo Simulations. Although it was designed for use in combat simulations, it has much broader
use.

Cancel removes zero or more links (events) from the list of scheduled events and places them in the
linked list of idle links. This removes the record of these events, so they never occur. The cancel routine is
called in the four ways illustrated below:

call cancel (l,'fire ',it)
call cancel (,'all ',it)

call cancel (I,'all ',NULL)

call cancel (I,'fire ',NULL)

The first call to cancel cancels any fire events associated with entity I and object it. The second ver-
sion cancels all events associated with entity I and object it. The third version cancels all events associated
with entity I, no matter what is the object of the action. The fourth version cancels all fire events associ-
ated with entity I.

Figure 16 shows how the active and idle chains look before and after cancelling the second active
event; event y.

Before idle

nxevnt__- lik..ik. in

After idle - in--li--k

nxevnt

Figure 16. Cancelling an Event

Code.

c V7.1 n - next(n)
SUBROUTINE CANCEL (I, act, it) ENDIF

c 0 Cancel: cancel 'act' events for T entity. GOTO 10
c (all events if act-") ENDIF
c Definitions of local variables: E IND
c m - pointer to previous event
e n - pointer to current event being considered

include 'clock.h'
logical is what, is who, is whom
character*6 act

1 format(Ox,'cancel ',i3,' ',a6,i3,' at time',f8.2)

m -0
n - nxevnt

10 IF (n.ne.0) THEN
C Continue until n-0

is who - I .eq.who(n)
is what - act.eq.what(n) .or. acteq.'all
is whom - it.eq.whom(n) .or. it.eq.0
IF (is who .and. is what and. is whom) THEN

c Then remove event
if (prflag)print 1, 1, act, it, when(n)
if (m.eq.O) nxevnt - nextfn)
if (m.ne.0) next(m) - next(n)
next(n) - nxidle
nxidle - n
if m.eq.O) n - nxevnt
if (m.ne.0) n - next(m)

ELSE
C Don't remove event. Shift to next event.

m n

I.7

INTENTIONALLY LEFT BLANK

14. OTHER UTILITY ROUTINES

The routines in this section are gener-1 ,vrpose routines. They are useful for more than just the
simulation of combat. They have few if any common statements and generally are stand alone routines.
The exception is that several of the random number routines call the uniform random number generating
routine.

1 19

14.1. Create: Find Space to Store Bullet Data. Create 'creates' temporary entities. So far, it
is only used to create bullets and missiles. They are created by fire and are destroyed by impact. Actu-
ally, it finds an lID for the entity and allocates space in a linked list to store vital parameters for the entity.

Create manipulates the array a(1000) as shown below.

a 1 a2 , I I

The ID of the temporary entity is the index of the first word storing information for that entity. For
example, the ID of the first entity created is 21. If 9 values are stored for the entity, they will be stored in
locations 22..30. The next entity created would have ID=31. The second through 20th words of the array
are not used so entity ID 1..20 will not be assigned and cause a conflict with the iD's of the permanent
entities.

When the code creates an entity with n attributes, it rnds an unused block of words. If the block is
m words long, it is divided into two blocks of n+1 and m-n-I words. If a, is the first word of the first
block and a, is the first word of the second block, the code sets a, = ±j. When a, is negative, the first
block is active. After impact of the round, the round is destroyed by setting a, = ab8(a,). This tells
create that this block of the a-array is available for use.

When create is searching for an unused block of sufficient length, it checks the current (ith) block
and its successor (jth) block. If a, and a, are both positive, they are both unused and create joins them
into one block by setting ai = a,+a .

CODE COMMENT

n The number of attributes to be stored.
a The vector used to store attributes in.
done True iff the routine is done; if it finds space to

store the attributes in.
i The index of the storage space we are currently

looking at.
ient The index of the storage space where the attributes

will be stored. It is also the number that will be used
to identify the temporary entity created.

istart The starting point for the search. If we get
back to istart without a find, we have a storage overload
and we error off.
The index of the next storage space. We want to look
at it with the possibility of catenating it to the
storage space beginning at i.

nreq The number of spaces required. It equals the
number of attributes plus one word. This one word is used
for searching purposes. If it is negative (-abs(m)), that
indicates that the next m words are being used to store
the m attributes of an entity. If it is positive, then the
next m words are available for use.

The amount of storage space is 1000 words. If you want to increase this, change all occurrences of
1000 in this routine and in reset.

150

c V7.4
SUBROUTINE CREATE (n, lent)

c 8 Create: create a temporary entity. (a bullet or mnsl)
c note - The amount of storage space is 1000 words. If you want to
c increase this you'll hp've to change all occurrences of 1000.
c Also note that in .,eset these must be set - a-0, a(1)-1000.,
C i-i.
C

logical trace, histry, done
common /ctrace/ trace, histry
common /tstore/ a(1000),

1 format ('CREATE: Not enuf space to store',iS, 'attributes.')

2 format ('CREATE: i, j, a(i), a(j) -',2i,2f10.3)
c

if (trace) print *,'>create'
c Initialize

done - salse.
istart -
nreq - n+1

c Find empty space in the a-array
10 IF (.not.done) THEN
c Try next empty space
20 CONTINUE
c Catenate empty spaces if possible
c Find next space (and error off if we're back at start)

j - i+iabs(int(a(i)))
if (j.gt. 1000) j-1
IF ((jeqi1) or. (a(i).lt.0) or. (a(j).lt.0)) THEN

c Test this space for size.
IF (a(i).lt.float(nreq)) THEN

c Move to next space.
i -
if (i.eq.istart) print 1, n
IF (ieqistart) STOP

ELSE
c Reserve space.

done - true.
item p= i+nreq

ifai.ne.float(nreq))a(itemp) =afotne

a i) -- nreq
jent -

-=j
END IF

ELSE
c Do catenation.

a(i) - a(i)+a(j)
IF (a(i).gt.O.0 and. a(j).gt.O.O) GOTO 20
print 2, i, j, a(i), a(j)
STOP

END IF
GOTO 10

ENDIF
if (trace) print *,' <create'
END

SUBROUTINE CRESET
c0 Creset - Reset variables used by create.

,omnmon :tstore/ a) 1000), iholy
parameter (NN=20)
DO 20i-2,1000

a(i)-0.0
20 CONTINUE

ail)--NN
a(NN'+1) = 1004-NN
iholy=NN+l
END

151

14.2. Anglef: Find the Angle Between Two Vectors. The dot product of two vectors is:
&-b = abcosO

where, 0 is the angle between them. So
&-b

z = cos0 = -
ab

To avoid round off errors, the result is trimmed so that -1 < cos0 < -1.
Next, the cosine is taken:

yCos X
Finally, the appropriate sign is attached:

z = -aign(y'r.)
Note that a, b are approximately in the ground plane and that r3 is the 3rd component of the cross pro-
duct. The result is in radians.

c V7.3
FUNCTION ANGLEF (a, b)

c 9 Anglef: find angle between two vectors.
dimension a(3), b(3)

vabsa - sqrt,(1 + &(2)**2 + a(3)**2
v absb - sr(*2 + b(2)*2 + b(3)**2)
dotab - a,(1)* b(1'I + a(2)$b2) + a(3)*b(3)
dm - dotab/(Yabsavyabsb)
dm - amin1(1.,amaxi(-1.,dm))
dm - acos(d M)r3 - a(1)*b(2) - a(2)*b(l)
anglef - -sign(dm,r3)
E ND

152

14.3. Confb: Find the 90% Confidence Interval On a Binomial Outcome. Dixon and
Massey 4 give the method for finding a confidence interval on a binomial outcome.

CODE COMMENT

p The number of desirable outcomes.
np The number of trials.
hi, lo The high and low ends of the confidence interval.
fail True IFF a confidence interval cannot be found.

If most outcomes are desirable ones or most outcomes are undesirable or if the sample size is too
small, no confidence interval can be found.

c VIA
SUBROUTINE CONFB (p, nr, hi, lo, fail)

c Confb: Find the 901o binomial confidence interval.
c p - the sample probability.
c nr - the sample size.
c Reference: Introduction to Statistical Analysis, 3rd edition,
c Dixon and Massey, p24

6
.

real lo, n
logical fail
data z/1.645/

C

n - float(nr)
fail = (n'p.lt.5) or. ((n-n'p).lt.5)
IF (.not.fail) THEN
Find confidence interval (sample size is big enough).
sli n/(n+z**2)
s2 = 0.5*z"2/n
s3 - (p+0.S n) * (1.0-p-0.S/n
s4 - (p-0.5/n) * (1.O-p+0.5/n)
s5 - z*2/(4.0"n'n)
lo = sl* (p-O.5/n+s2-z'sqrt(s3/n+s5))
hi - sl*(p+0.5/n+s2+z*sqrt(s4/n+s5))

ENDIF
END

153

14.4. Indexx: Find the Index j, W~here &(j) <= x < &(j+l). To interpolate in tables, use the
indexx function. Indexx assumes that the dependent variable is stored in a vector of reals, for example, x(1)
.x(n), in ascending or descending order. Given the arguments x, n, x~, where x is an ascending vector, it

finds the value i such that , x, , x,+, using binary search. If x, <xor z,>x., it returns a zero value
for i.

Suppose we wish to linearly interpolate in table 21. We may use the following lines of code, where
the second line is a statement function:

real f(10), x(10)
ON~x) = f(i) + (f(i+1)-f(i)) * (xj-x(i)) / (x(i+1)-x(i))

= indexx(x,10,xj)
y =fj(xj)

Table 21. Find an index

x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
f(x) 0.0 0.4 0.81 1.23 1.68 2.10 2.52 2.95

Code.

c V7.2
FUNCTION INDEXX(a. n, x)

c Find the index j, where a(j) <- x < a(j+1)
integer n lo, hi, mid
logical incres, above

real a(n), x

incres - a(n).gt.a(l)
1o-0
hi-n+l

10 IF (hi- lo.gt. 1) TI-EN
mid-(hi+lo)/2
above-x.gt.a(mid)
IF (i ncres. eqv. above) THEN

lo-mid
ELSE

hi-mid
ENDIF

GOTO 10
END IF
indexx-lo
END

15.1

14.5. Ranu: Draw a Random Number from the Standard Uniform Distribution. This sub-
routine uses a version of the uran3l uniform random number generator to pseudo-randomly draw a
number from the uniform distribution extending from 0 to 1. The following explains how to "seed" the
generator and shows some sample draws.

Why use a random number generator coded in Fortran? For the following reasons:

1. First we believe this is one of the better random number generators. It is based on an algorithm by
Pike . We also recommend the discussion of random number generators by Press6 and by Knuth7 .

2. If you are transporting a program from one computer to another, and it draws random numbers,
you'll be more confident if test cases generate exactly the same results on each machine.

3. If a long run dies in mid-stream, and you've printed the random number seed periodically, you may
be able to restart the run at the point it last printed the seed.

4. And finally, if you are debugging a run by turning on more and more print statements, you can
suppress enormous volumes of printout by judiciously setting the random number seed and restart-
ing the run in mid-stream.

Input/Output. Ranu requires the calling program to initialize the variable j in the common state-
ment /crandm/ j. We have used the value j=1111111, however other odd integers are legal. The common
statement may be replaced with a data statement such as: data j /1111111,/ if you do not wish to reset the
seed. The calling statement: call ranuo, of course, requires no argument. Figure 17, below illustrates ten
draws using ranu, and shows a plot of 20 draws using pairs of variates as the coordinates of the 10 points.

Y
1 Seed= 1111111

0 First ten draws from the function:

0 0.7401378 0.9308131

0.7908101 0.2813551

0 0.2351466 0.8330226
0 0.1955611 0.1284252

0.3288300 0.5939014

00

00

0-
0 __ -- I. X

0 1

Figure 17. Ten Pairs of Numbers Drawn from a Uniform Distribution

Mathematics. Ranu is a variant of the uran3l subroutine long used at BRL. It is discussed in the
Collected Algorithms of the ACM6 . We have tested a number of random number generators and found
Ranu to be the only one to pass all 5 tests. Ranu & uran3l will work on any computer with 31 or more
bits per integer. Any odd seed between I and 67108863 was acceptable for the earliest veision. Revisions
to accommodate 31 bit machines will have reduced this upper limit and the cycle length. Cycle length of
the current version is 16.777,215.

155

Code.

FUNCTION RANU (din)
c Ranu: A version or uran3l uniform random nr generator.

common /crandm/
real al

j-j*25
j-j-j/67108864)*7108864
j-j -5
j-j-(j/67108864)67108864

j-j.(j/67108864)*67 108864
al-j
ranu- al/67108864
END

156

14.8. Rann: Draw a Random Number from a Normal Distribution. Rann draws two ran-
dom variates from the standard normal distribution using the Box-Muller method.

Output. This subroutine generates two real numbers randomly chosen from the normal distribu-
tion. Interpreting the output as x and y coordinates, we produced the twenty points drawn in Figure 18,
which represent random shots.

Y
02-

0
0 0

U O00 0 x

0
0

-2 0 2

Figure 18. Draw of 20 Random Shots
8

Mathematics. Rann is based on an algorithm by Bell . It produces two independent random vari-
ables. each frrm the normal distribution with mean 0 and standard deviation 1. The subroutine calls the
real function an twice. Ranu is a pseudo-random number generator that produces a number lying strictly
between 0 an(. 1. See section 14.5 for details. Algorithm 334 is a slightly faster, but, more complex version
of algorithm -i7. See also algorithm -1-12 for a slower, but higher precision algorithm. Finally, see algo-
rithm 148, wlt,ch may be fraster if one or the 2 random deviates must be discarded.

Code.

SUBROU1TNE RANN(p.q)
7 Rann: dra, two random numbers rrom the std normal distribution.

Box-Mulle. mpthod

x - sqrt(-. *aiog(ranu(,m 1))
v .. 3.1 192535"ranurim)

p = x'o5'
'4 = x '.,
END

1'57

14.7. RndAng: Draw a Random Angle from a Cardioid or Other Distribution. The aspect
angle is the angle of an incoming round measured from the nose of the target. Rnd ang chooses an aspect
angle for the incoming round by randomly drawing from the cardioid distribution or a more frontally
oriented distribution.

Peterson '2 has analyzed the angular distributions of shots on hulls and on turrets during World War
II. He found that the distributions were approximately cardioid with the distribution of shots on turrets
slightly more tightly grouped for the turret than for the hull. Again, this distribution is not very helpful
to the armor analyst or simulation builder because the initial orientations and subsequent motions are not
defined, only the final orientations. If we assume a cardioid distribution initially, the straight line motion
of the attackers tends to spread out the distribution of impacting rounds on the tanks. Further, the act of
pointing the turret at a target tends to pinch the distribution of impacting rounds on the turrets. The net
result in simulations is a distortion of the distribution of impact angles on the tanks, but it is not neces-
sarily severe. This is how the initial orientations are chosen for each engagement and if they move this is
how they will move.

The cardioid density function is:
p = (l+cosO)/27r

The cardioid distribution function is the integral of the density function:
I

P = fp dO (O+sinO+r)/ 2r.
--V

Both of these are illustrated in figure 19 below.

Prob 0.5 -

0

-200 -100 0 100 200

AVpect A\ngle (deg)

Figure 19. Cardloid Density and Distribution Functions

A more frontally oriented distribution, often used is given by:
p = (1 + cos 30)/67r, -7r/3 < 0 < ,r/3

P = (30 + 3cos 30)/2-r

There may be no way to analytically solve for 0 given P and Newton's method for solving
misbehaves, so the code uses binary search. The last 2 equations in the table below are repeated 10 times.
each time saving the value of 0 in ti or t, as appropriate.

158

CODE MATH COMMIENT

Pi
denom d = 0.5/ir
p p = ranu() Random draw from a unirorm distribution.
tlo 01= -wr Lower limit of angular value (rad).
thi Ok= 7r Upper limit of angular value (rad).

REPEAT FOLLOWING LINES 10 TIMES
theta 0 = (01+0h)/2 Limit (rad).

IF p, < p THEN True iff0is too low.

ELSE
Ok= 8

END IF

c V1.2
FUNCTION RNDANG(iangd)

c Rnd ang: Draw a random angle from a cardioid/other distribution.

PI-3.1415926536
denom - 0.5 /PI
P-ranu(dummy)

c Do binary search to find theta associated with random draw
tlo -P1
if (iangd.gt.1) tlo - -P1/3.
thi - PI
if (iangd.gt.1) thi - P1/3.
DO 20 i=l,10

theta -0.5 (tlo+th
if(ind.eq. 1) px - (theta+sin(thetal+PI)*denom

if (iangd.gt. 1) px = (3.Otheta+si n(3.*theta[*PI)'denom
IF (px.it.p) THEN

tto = theta
ELSE

thi - theta
END IF

20 CONTINUE
r n dang=t heta
END

159

INTENTIONALLY LEFT BLANK

160

15. REFERENCES

1. Peterson, R. H., The Range and Angular Distribution of A.P. Hit Tanks, BRL-RPT-590A, U.S. Army
Ballistic Research Laboratory, Aberdeen Proving Ground, MD, December 1951, (UNCLASSIFIED)

2. Peterson, R. H., Hardison, D. C., Benvienuto, A. A., Terrain and Ranges of Tank Engagements, U.S.
Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, June 1953, (UNCLASSIFIED)

3. McCormack, W. M., and Sargent, R. G., "Comparison of Future Event Set Algorithms for Simulations
of Closed Queuing Systems", Current Issues in Computer Simulation, Academic Press, NY, 1979, pp 71-82.

4. Dixon, W. J., and Massey, F. J., Introduction to Statistical Analysis, 3rd edition, McGraw Hill, New
York, 1969, p. 246.

5. Pike, M. C., and Hill, I. D., "Algorithm 266, Psuedo-Random Numbers," page 266-P 1- 0, "Remark on
Algorithm 266, Psuedo-Random Numbers," page 266-P 2- Ri, Collected Algorithms from CACM, volume
II, Association for Computing Machinery, NY, 1980.

6. Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T., Numerical Recipes, Cambridge
University Press, NY, 1986, pp 191-199.

7. Knuth, D. E., Seminumerical Algorithms, The Art of Computer Programming, Addison-Wesley Publish-
ing Company, Reading MA, 1969, pp 1-157.

8. Bell, J. R., "Algorithm 267 Random Normal Deviate", page 267-P 2- 0. Collected Algorithms from
CA CM, volume II, Association for Computing Machinery, NY, 1980.

161

INTENTIONALLY LEFT BLANK

162

No. of No. of
Copies Organization Copies Organization

2 Administrator 1 Commander
Defense Technical Info Center U.S. Army Missile Command
ATTN: DTIC-DDA ATTN: AMSMI-RD-CS-R (DOC)
Cameron Station Redstone Arsenal, AL 35898-5010
Alexandria, VA 22304-6145

1 Commander
Commander U.S. Army Tank-Automotive Command
U.S. Army Materiel Command ATIN: ASQNC-TAC-DIT (Technical
ATTN: AMCAM Information Center)
5001 Eisenhower Avenue Warren, MI 48397-5000
Alexandria, VA 22333-0001

1 Director
Commander U.S. Army TRADOC Analysis Command
U.S. Army Laboratory Command ATTN: ATRC-WSR
ATTN: AMSLC-DL White Sands Missile Range, NM 88002-5502
2800 Powder Mill Road
Adelphi, MD 20783-1145 1 Commandant

U.S. Army Field Artillery School
2 Commander ATTN: ATSF-CSI

U.S. Army Armament Research, Ft. Sill, OK 73503-5000
Development, and Engineering Center

AITN: SMCAR-IMI-I (Cls. only) I Commandant
Picatinny Arsenal, NJ 07806-5000 U.S. Army Infantry School

ATTN: ATSH-CD (Security Mgr.)
2 Commander Fort Benning, GA 31905-5660

U.S. Army Armament Research,
Development, and Engineering Center (Unclam. only) 1 Commandant

ATTN: SMCAR-TDC U.S. Army Infantry School
Picatinny Arsenal, NJ 07806-5000 ATTN: ATSH-CD-CSO-OR

Fort Benning, GA 31905-5660
Director
Benet Weapons Laboratory 1 Air Force Armament Laboratory
U.S. Army Armament Research, ATTN: WL/MVINOI

Development, and Engineering Center Eglin AFB, FL 32542-5000
ATIN: SMCAR-CCB-TL
Watervliet, NY 12189-4050 Aberdeen Proving Ground

(Unclam. only) I Commander 2 Dir, USAMSAA

U.S. Army Armament, Munitions ATTN: AMXSY-D
and Chemical Command AMXSY-MP, H. Cohen

ATITN: AMSMC-IMF-L
Rock Island, IL 61299-5000 1 Cdr, USATECOM

ATTN: AMSTE-TC
Director
U.S. Army Aviation Research 3 Cdr, CRDEC, AMCCOM

and Technology Activity AITN: SMCCR-RSP-A
ATTIN: SAVRT-R (Library) SMCCR-NU
M/S 219-3 SMCCR-MSI
Ames Research Center
Moffett Field, CA 94035-1000 1 Dir, VLAMO

ATTN: AMSLC-VL-D

10 Dir, BRL
ATTN: SLCBR-DD-T

163

No. of
Copies Organization

General Dynamics Aberdeen Proving Ground
Land Systems Divsion
ATIN: David Stremling 6 Dir, USAMSAA
P.O. Box 2045 AT-IN: AMXSY-GC,
Warren, MI 48090 G. Comstock

L. Harrington
General Defense Corporation AMXSY-GA,
Tactical Systems Division W. Brooks
ATTN: Ray Edmondson K. Tarquini
P.O. Box 21606 AMXSY-GI,
St. Petersburg, FL 34664 C. Ehrig

E. Walker
LTV Aerospace and Defense Company
A'ITN: C. H. McKinley
P.O. Box 655907
Dallas, TX 75265-5907

Booz Allen and Hamilton, Inc.
ATTN: Mike McGinnes
Suite 1610
1300 17th St.
Rosslyn, VA 22209

Military Vehicles Operation
ATTN: Dan Bitz
P.O. Box 420
Mail Code 01
Indianapolis, IN 46206

Technical Solutions, Inc.
AITN: George Ober
P.O. Box 1148
Mesilla Park, NM 88047

Mr. Harry Reed
338 Carter Street
Aberdeen, MD 21001

164

USER EVALUATION SHEET/CHANGE OF ADDRESS

This laboratory undertakes a continuing effort to improve the quality of the reports it
publishes. Your comments/answers below will aid us in our efforts.

1. Does this report satisfy a need? (Comment on purpose, related project, or other area of
interest for which the report will be used.)

2. How, specifically, is the report being used? (Information source, design data, procedure,
source of ideas, etc.)

3. Has the information in this report led to any quantitative savings as far as man-hours or
dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please
elaborate.

4. General Comments. What do you think should be changed to improve future reports?
(Indicate changes to organization, technical content, format, etc.)

BRL Report Number IBRL-TR-3292 Division Symbol

Check here if desire to be removed from distribution list.

Check here for address change.

Current address: Organization
Address

DEPARTMENT OF THE ARMY
Director NO POSTAGE
U.S. Army Ballistic Research Laboratory NECESSARY
ATTN: SLCBR-DD-T IF MAILED
Aberdeen Proving Ground, MD 21005-5066 IN THE

OFF~IALBusi~ssUNITED STATESOFFICIAL BUSINESS BUSINESS REPLY MAILUNTDSAE
FIRST CLASS PERMIT No 0001, AP, MD

Postage *ill be paid by addressee

Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T _

Aberdeen Proving Ground, MD 21005-5066

