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1. INTRODUCTION

The usae of lasers to initiate combustion events in reactive gaseous mixtures has been the
subject of recent investigations in many laboratories (Forch and Miziolek 1986, 1987; Syage
et al. 1988; Lavid and Stevens 1985; Raffel, Wamntaz, and Wolfrum 1985). Laser ignition has

. generally peen achieved through photochemica! initiation (combustion initiation through chain-
branching chemical reactions), thermal heating (laser heating of gases), nonresonant spark
formation (which resuits from gas breakdown by intense laser radiation), and through the
resonant multiphoton photochemical formation of microplasmas. Laser-induced gas
breakdown, which is detined as the point in which single ionization of the gas occurs, results
from the absorption of many photons which leads to ionization, collision-induced cascade
ionization, and spark formation. It has been shown, however, that the laser energy at the
threshold of nonresonant gas breakdown :s typically far in excess of the requisite minimum
ignition energy such that the formation of a biast wave may lead to a detonation (Weinberg
and Wilson 1971). Here, nonresonant gas breakdown refers to spark formation in a gas
which is initiai'y transparent {early on in the laser pulse) at 2 particular laser wavelength. At
sufficiently high field strength and as the laser pulse increases in time, electrons can be
generated from multiphoton ionization of the parent fuel and/or oxidizer molecule. Electrons
can then absorb radiation from the intense laser field, ionize other gas molecules, and
eventually lead to cascade ionization and gas breakdown. It naturally follows that the laser
energy at the sharp gas breakdown threshold may indeed exceed the minimum energy
required to ignite the gas mixture and thus the extraction of a minimum ignition energy from
this experiment may be difficult. However, if the laser energy threshold for the
photoproduction of iree electrons can be reduced (and thus eiectrons are produced early on in
the laser pulse) then laser spark ignition may be a more controllable process. The efficient
formation and characterization of laser produced sparks (microplasmas) as an ignition source
is the subject of this paper.

The resonant muitiphoton photochemical formation of microplasmas, which is an ignition
means that we have been investigating at the Ballistic Research Laboratory, appears to be a
more controllable means {o generate laser-produced sparks than gas breakdown. Recent
investigaticns (Forch and Miziclck 198€, 1987) have revealcd the first example of a streng

wavelength dependence in the amount of incident laser energy which was required to ignite a




premixed flow of H,/O, at atmospheric pressure. A tunabie uitraviolet (UV) iaser system which
operates near 225.6 nm was found to inruce photodissociation of the oxidizer component,

O, or N,O, to produce oxygen (O) atoms in three ground-electronic spin-orbit split states 2p*
*P,,o- It was found that the minima in a piot of incident laser energy (ILE) required for ignition
vs. wavelength were located exactly at the same spectral positions as the oxygen atom two-
photon allowed absorption transitions from the 2p* °P,, ; states to the lowest excited state of
the same symmetry (Alden et al. 1982; Miziolek and DeWilde 1984; Meier, Kohse-Hoinghaus,
ana Just 1986; Goldsmith 1983; Dagdigian, Forch, and Miziolek 1988). Subsequent detailed
experimental investigations (Forch and Miziolek 1986, 1987) resulted in the formulation of a
mechanism for this process which consists of three components: (1) the multiphoton
photochemical formation of oxygen atoms; (2) resonant multiphoton ionization of these atoms
to efficiently form free electrons in the laser focal volume early in the laser puise; (3) and the
controlled, resonance-enhanced formation of a microplasma using seed electrons which were
generated in the previous process.

This ignition method appears to alleviate the problems associated with the sharp and
uncontrolled ignition thresholds which are encountered in the extraction of minimum ignition
energy measurements using desirable short-pulse lasers (10° sec) (where energy release
occurs within a very short time, over a very small volume in free space and is not associated
with catalytic and intrusive effects of electrode surfaces). Therefore, we began a detailed
experimental investigation of the potential photochemical interaction of the UV laser and the
fuel components of these premixed flows. In this paper, we describe a sensitive wavelength
dependence on the laser energy required to ignite a premixed gaseous flow of H,/O, and
D,/0, through resunant muitiphoton excitation of hydrogen (H) and oeuterium (D) atoms near
243 nm. We show that there is a definitive excitation wavelength shift near 243 nm (11 cm’
at the single photon wavelength, 243 nm) for the resonant formation of microplasmas that
corresponds exactly to H-D deuterium isotope shift ot 22 cm™ at the two-photon excitation
energy (two photons at 143 nm). (D is excited at a wavelength 11 ¢cm” to the blue of H and
the 2S leval of D is 22 cm™ higher in €nergy than the 2S level of H). Plots of ILE vs.
equivalence ratio, ®, with the excitation wavelength of the laser tuned to either the H or D-
atom two-photon transition, shows a minimum at ® = 0.7 in the fuel lean region at an ILE of

~0.85 mJ. Characterization of the photochemistry involved in microplasma formation was




made. A pressure threshold for microplasma formation was determined, and an estimate of
the laser power dependence for the ionization process was made.

2. EXPERIMENTAL

A schematic of the experimental apparatus that was used in this investigation ic given in
Figure 1. Tunabie laser radiation near 243 nm was generated by using the second harmonic
(532 nm) of a Q-switched Quanta-Ray Nd:YAG laser (DCR-2A,) t0 pump a Quanta-Ray Dye
laser {PDL-1) which was operated at ~580 nm with a DCM dye. The dye laser beam was
then frequency doubled using an angle-cut KDP crystal in the first stage of a s2rvo-motor
based tracking system, Quanta-Ray WEX-1; then the doubled radiation was frequency mixed
with the 1.06l fundamental from the Nd:YAG in an angle-cut KDP crystal which was contained
in the second-stage, WEX-1 module. The 243 nm laser radiation was separated from
unwanted beams with two Pellin-Broca prisms (which were positioned to avoid net beam-
steering), a broad-band pass filter and aperture. This configuration yielded 7-nsec (10 Hz),
~2.0 cm™ band width FWHM, 1.5-mJ tunable laser puises.

The atmospheric pressure turner system consists of a water-cooled and argon-shrouded
nozzie with a pinhole aperture (0.6 mm) that was mounted onto an x-y-z transiation stage.
Gas flows were controlled with Matheson (Model 629) flow meters or Tylan mass flow
controlliers (Model FC-280-V), which were calibrated vy a GCA Precision Scientific wet test
meter for H,, D, and O, flows up to 2 L/min. Linear flow velocities were in the 10° cm/sec
range. The incident laser energy was measured just before a 50-mm focal length lens (the
beam waist at the focus was about 50 p) with a Scientech (Model 33-0103) disc calorimeter-
nower-energy meter. The output laser energy could be varied by irisertion of one (or more)
dielectrically-coated partially transmitting filters in the beam and/or attenuation of the Nd:YAG
amplifier stage gain. It was found that tha beam characteristics (such as spatial and temporal
profiles) were unaltered using this method.

Laser ignition measurements were made by flowing a carefully metered, homogeneous
mixture of fuel and oxidizer through the burner. The beam was precisely focused ~0.5 mm
above the pinhole orifice, then the laser erergy was adjusted until a single pulse ignited the
gases and a flame stabilized on the bumner surface. The {lame was immediately extinguished
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Figure 1. Schematic of Experimental Apparatus.

(tuel and oxidizer valves were closed) in order to maintain a constant burner temperature (as
not to preneat the gases in succeeding measurements and to conserve the gases, especially
deuterium) then the incident laser energy was measured. it was found that the measured
values of ILE for ignition were independent of lateral positioning across the burner aperture
(entrainment of room air in the Ai-shrouded, premixed gas jet was not occurring). Wavelength
dependent ignition plots near 243 nm were generated by holding U constant and measuring

ignition ILE as a function of excitation wavelength.

Excitation scans of the laser produced microplasma emission (from H or D atoms) (in cold
gaseous flows or a variable pressure cell) were recorded by collecting emission (with a pair of
lenses that were matched to the f/number of a 0.22-m McPherson model 180 monochromator-
Hamamatsu R928 photomultiplier system). Emission signals were captured on a 500-MHz
Hewlett-Packard mode! 54111D digital oscilloscope and/or Stanford Research Systems boxcar

integrator and strip chart recorder.




lon signals were detected in a R.M. Jordan time-of-flight mass spectrometer or using a
nlatinum-tipped optogalvaric probe which was biased to detected free electrons liberated in
the ionization process. The TOF system consists of a pulsed-molecular Leam valve, a
skimmed differentially pumped laser ionization region, a 1.3-m drift tube and microchanne!
plate detector. Operation pressure is ~107 Torr. The optogaivanic probe was used in
atmospheric pressure gas samples. All gases were Matheson UHP and were used "as is”
without further purification.

3. RESULTS AND DISCUSSION

3.1 Microplasma Formation. Figure 2 illustrates the single laser spectroscopic schemes

which have been utilized for the detection of H atoms in fiames, molecular beams, discharges,
and other environments (Lucht et al. 1983, Alden et al. 1984; Goldsmith 1982; Goldsmith
1984; Tjossem and Coo! 1983; Forch, Morris, and Miziolex 1980). The energy gap between
the 1S ground electronic state and the 2S lowest excited electronic state (near-degenerate
28, 2P, ,. 2P,, levels) is ~10 eV (Figure 2, scheme 1). Since tunable laser sources which
operate in this regime are not readily available, two-photon absorption of laser radiation at
243.07 is required to excite the 1S-28 transition. Absorption of an additional third photon from
the resonantly excited 2S state is sufficient to ionize an H atom since the three-photon
excitation energy (3 x 5.1 eV) exceeds the 13.6 eV H atom ionization potential. (Note that
absorption of an additional photon by an H atom in any one of the excited state electronic
manifolds given in Figure 2, schemes 1-5, are sufficient to achieve ionization.) Detection of
laser-induced fluorescence from iesonance excitation of the n=2 level in flames and other
environments is difficult since the emission at 122 nm is absorbed by flame and room gases.
Therefore, we investigated the possibility of inducing multiphoton photolysis of H, in a cold
atmospheric flow, followed by resonance enhanced (2 + 1) multiphoton ionization H atoms to
form a laser-produced microplasma. Within the high temperature plasma environment, there
exist collisional processes which may populate (for exampie) the n=3 or 4 levels wnere
Balmer-f (486.1 nm) or Balmer-a (656.3 nm) emissions could be detected (monitored by
sefting the monochromator at the wavelength of interest). Figure 3a gives an excitation
wavelength scan where Balmer-B emission was monitored. The signal maximum is found
precisely at the known two-photon resonance transition of atomic hydrogen, although the
spectral width is much larger than that of a purely atomic transition. This observation is
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cleasly indicative ot a much more comipiex, highly noniinear pnenomenon, i.e., the formaticn of
a microplasma. Multiphoton absorption and ionization generates free electrons (priming or
seed electrons) early in the laser pulse which initiate cascade ionization and the formation of a
plasma which is heated up to a very high temperature by the inverse brenmsstrahlung effect.

The temporal profile of the emission, Figure 4b, is also indicative of microplasma
formation. The lifetime of the emission (~40 ns) is much greater than that of the time-resolved
scattered laser radiation (~7 nsec) (Figure 4a) or, for example, from resonance multichoton
laser induced fluorescence from H-atoms that we have detected using scheme 5, where the
emission signal follows the temporal profile of the exciting laser pulse (Figure 4a). Althougn
microplasma formation is initiated by atomic ionization, the litetime of the emission is purely a
property of the microplasma.

Figure 5a—d, gives the emission profiles as a function of four different laser pulse energies
(0.15-1.5 mJ). The widths of the spectral profiles both in -eases and shows a linear
dependence on laser pulse energy. Extigpolation of the measured linewidths to zero laser
energy give a FWHM of ~6 cm™', which is a factor of about six timas greater than the
measured spectral bandwidth of the laser at this wavelength. it is known, for example, that at
pressures near atmospheric the radiation intensities required to cause breakdown by the
cascade processes are sufficiently strong that optically induced Stark shifts (which is a linear
function of laser energy) and broadening of the electroric levels of an atom occur and have a
marked influence on transition orobabilities (Tjossem and Cool 1683; Lambropoulos 1974).
The signals certainly are severely AC Stark broadened (9 cm'/GW cm?), however the widths
are much greater than the expected naturai linewidth of the atomic transition (<<tcmi). This
evidence further indicates that emission we observe is not simply an atornic property, but that
ot a much more complex event.

To further verify the importance of resonance enhancement in multiphoton photochemical
formation of a microplasma, these experiments were repeated under identical conditions
except that H, was repiaced with D,. Figure 3b gives the normalized specira! profile of
emission signai which was observed. Note that spectra (a) and (b) are essentially identical
except that the emigsion signal in (b) rcaches a maximum at a wavelength position which is
~11 ¢m™ to the blue of (a) (the spacing at the two-photon energy is ~22 cm). The
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observation wavelength-bandpass of the monochromaior was broadened and centered to
equally catch both emissions at 656.3 nm and 655.1 nm for i4 and D, respectively. A simple
calculation and check with a known value 19 shows that this separation is nearly identical with
the H-D isotope shift (the D 2S level is 22.4 cm™ higher in energy than the H 2S level). This
isotopic shift is indeed identical to that which has bzen ¢bserved in spectroscopic probes of H
and D atoms in flames and other environments. These results strongly support our contention
that microplasma formation is the result of initial photolysis of H, or D, to produce ground
electronic stat2 H and D atoms and subsequent multiphoton excitation and ionization are
important in the efficient wavelength dependent formation of these microplasmas, just as had
been observed previously for oxidizers, O, and N,O (Forch and Miziolek 1986, 1987). The
photoproduction of free electrons early on in the temporal evolution of the laser pulse from
resonant multiphoton ionization of H or D atoms is responsible for the efficient microplasma
formation. When the laser is tuned off the resonance absorpiion wavelengths of either H or D
atoms, then no microplasma formation is seen under these exparimental conditions.

3.2 Laser Power Cependencies. In order to gain information on the laser power

dependence for the photolysis and mulitphoton ionization processes, we performed a series of
experiments in a well-controlled low-pressure (107 Torr) environment using a molecular-beam
time-of-flight mass spectrometer (Figure 1). Curiously, we were unable to detect any H* or D*
from laser irradiation of molecular beams of H, or D, when the laser beam was focused into
the ionization region of the spectrometer (with the tightest focusing (200-mm f.1. lens) that
~eometrical constraints would allow). We did, however, tind a pressu. = threshold of ~70 Torr,
ILE=1.2 mJ, for the onset of microplasma formation in & variable pressure flow cell.
Comparison of these results suggests that a collisionally induced photodissociation process
may be responsible for the production of ground state H and D atoms and subsequent
microplasma formation, and, is currently under investigation. We were able to generate
intense pulsed and effusive (ground state) H and D atom beams with a hot wire tungsten
tilament inserted before the skinimed differentially pumped ioi.ization region in the TOF-M 20.
No ions were produced from the hot wire filament itself. lons were detected ornly when the
laser was tuned on resonance with H and D atoms. Excitation spectra (Figure 6) were
recorded by mass gating either tha H* or D* signals with a boxcar integrator, then scanning
the laser through the two-photor resonance, three photon ionization transitions (2+1) (note
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that there was virtually no signal off resonance of either excitation wavelength). Again, a
wavelength spacing of 11 cm™ is evident, which corresponds to a deuterium isotope shift of
22 cm™ at the two-photon energy). Laser power dependencies for ion signa! production were
made assuming a signal deoendence on laser intensity of 1°, where n equals the number of
photons absorbed. Values of n=2.75+/-0.24 and 2.63+/-0.36 were obtained for H* and D*
production, respectively, which corresponds to two-photon resonance excitation and one
nhoton ionization at low iaser energies (<0.5 mJ). These results {zs expected) indicate that
the overall excitation and ionizaticn was a three-photon process. The noninteger values are
indicative of partial saturation of the initial two-photon absorption and ionization step. We
could easily fully saturate the ionization process at higher laser energies {>8.4 GW/cm?/cm)
and record laser energy dependencigs of ~2 for H* and D*. Although the dissociation energy
of H, is ~4.5 eV and the energy of a photon at 243 nm is ~5.2 eV, absorption of a single
photon is insufticient for the photoproduction of an H atom from H, because of negligible
single-photen absorption at this waveiength (the ionization potentials of H, and O, are 12.06
and 15.43, respectively). Laser power dependence measurements for the photolysis of cold
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flows of H, at atmospheric pressure were made using the optogalvanic probe. The laser
beam was focused ~0.5 mm from the 1-mm-diameter anode of the probe, which was inserted
in the tlowing gas, H,. Photolysis ct H, produces ground state H atoms which are
photoexcited and photoionized. The iiberated electrons are then detected with the
optogalvanic probe. A laser power dependence measurement gave a value of n=4.54+/-0.3.
This result also suggests a two-photon dissociation of H, to produce H atoms. This reasoning
is consistent with a two-photon dissociation of H, to produce ground state atoms, two-photon
resonance excitation and a one photon ionization. These results, when compared to the time-
ot-flight data and variable pressure cell data, strongly suggest a collisional induced
photodissociation process may Occur.

This spectroscopic data gives valuable information on the laser power dependence for
microplasma formation. The overali laser energy dependence for the microplasma formation
must then be at least a five photon prccess and cleary is highly nonlinear. The absorption ot
two laser photons are required for the photoproduction of ground state atoms and the
absorption cf three additional 1aser photons are necessary for photoionization. In comparison,
photoproduction of atomic oxygen from molecular oxygen photodissociation near 225.5 nm
gave a two-photon dependence even though the single photon energy wouid be sufficient for
photolysis (overall a five photon process) (Forch and Miziolek 1987).

3.3 Ignition Experiments. We then began a series of experiments on premixed flows of

H,0O, and D,/O, at atmospheric pressure in order to investigate the possibility of using these
microplasmas as ignition sources. Previous work ( orch and Miziolek 1986, 1987; Syage

et al. 1988; Lewis von Elbe 1951) has shown that the minimum ignition energy for these
reactive gaseous mixtures occurs in the fuel leain region (@ = 0.7-.8) and is characteristic of
light, diffusive fuels such as H,, which can replenish burmed fuel early on in the avolution of
the ignition kernel as it expands into a stabilized flame front. In our recent work on excimer
laser (ArF, 193 nm) ignition of H/O, we also found that the most efficient ignition was in the
fuel lean region (Forch et ai. 1983). In two separate, but identicai experiments, premixed
flows ot either H,/O, or D,/O, which were held constant at ® = (.7 were produced. The laser
wavelength was varied and the amount of ILE required to ignite either flow into a stabiiized
combusiion was measured. Figures 7a and 70 give ihe waveiengih depeindence on the
amount of ILE necessary to ignite premixed flows of H2/02 and D./O,, respectively. The
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of Excitation Wavelangth Mear 243 nm. A Shift of +11 cm”' of ignition Curve b
Relative to Ignition Curve a is Evidei.

ignition curves clearly show a strong dependence of the ILE on the lasar wavelength. Two
prominent minima are evident. A simple compariscn with the microplasma data (as described
above) show that they correspond exactly to the spectral locations of the H and D atom two-
photon resonance excitation wavelengths near 243 nm. Apparently, the focused UV laser
near 243 nm riot only phetodissociates H, or D, to yieid ground state atoms, but also, when
on resonance with H or D, requires ine least amount of 1aser energy to ignite the gases into a
stabilized combustion. We beligve that the ignition of these reactive gases occurs through the
resonant formation of a microplasma from muitiphoton excitation of H and D atoms. The
wavelength shift of +11 ¢cm-1 of the D,/O, innition curve relative to that of the H,O, curve is
clearly related to the H-D deuterium isotope shift and underscores the impontance of
resonanceg enhancement in the ignition event. We next measured the dependence of the ILE
(at a fixed laser wavelength) on ®. Figure 8a and b gives plots of incident laser energy
required ior ignition of premixed flows of H,/O, and ©,O, vs. ® when the laser is tuned to the
two-photon resonance exitation ‘vavelengths for H and D atoms, respectively. The observed

mimima in both curvas occurs in the fuei iean region (@ = 0.7) and vith iLE=C.53+/-0.07 md
and 0.52+/-0.05 for H/O, and 0,/O,, raspectively. These experiments suppori the three step
mechanism which we have proposed which consists of the laser photoproduction of ground
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Figure 8. Dependence of the ILE Required to Ignite Premixed Flows of: (a) H/O, and (b)
D,/O,, as a Function of Equivalence Ratio. The Laser Was Set at the Peak of the
Two-Photon Excitation Wavelength of: (a) H Atoms at 243.07 and (b) D Atoms at
243.00.

state atoms, resonant multiphoton ionization of the atoms to liberate free electrons early on in
the laser pulse and the formation of a laser producad microplasmma which serves as an ignition
kemel. We have a'sc found that microplasmas could be formed very easily through
resoriance multiphoton ionization, at very low laser energy, that were not intensa gnough to
cause ignition. Thus, our method allows for precise control of laser energy in the ignition
process. By comparison, we havs investizated ignition of these gas mixtures using the
fundamental wavelength oi the same Nd:YAG laser (1064 nm) or its second harmonic

(532 nm) under identical experimental conditions and found that: 1) a factor of greater than
torty times more laser energy was required for ignition; 2) ignition curve plots of ILE vs. ®
were fiat (1.xdapendent of @; 3 a ralatively iritanse spark was produced. This behavior is
consistant with our mechanism and reasoning. The 1064 nm and 532 nm beams are
essentially initially transparent to the reactive gaseous mixture (there is no absorption of the
laser iight). As the l2ser pulse grows in intensity with time, the laser field strength reaches a
point where multiphoton ionization of the fuel and/or oxidizer liberates tree electrons in the
laser focal volume and a very intense laser spark is produced (through nonresonarit gas
breakdown). Here the iaser energy greatly exceeds the requisite minimum ignition energy.
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Visual examination of the laser ignition sparks produced from resonant multiphotcn ionization
and ronresonant gas kreakdown are differ dramatically the former being much less intense
than the latter. This is only a cualitiative observation at present, but we have purchased a
high-speed streak camera to foliow the temporal evolution of the laser-produced microplasmas
into an ignition kerne! and stabilized combustion and also perform more detailed spectroscopic
examination of the sparks.) In our experiments, the incident laser energy, which is required
for ignition, has been measured. Attempts tc measure the energy absorbed by the
microplasmas (through time-resotved absorpiicn neasurements) have been very difficult. The
microplasma is heated to a very high terperature ard, of course, expands with time wherein
radiation losses could be significant. Furtherr:ore, scattering of laser radiation by the
microplasma occurs and has been calculated to be about 10% (Syage et al. 1988). The
microplasmas are formed during the laser pulse (ca. / nsec) through a highly nonlinear
process (at least a five photon dependence). Thus, it was very difficult to obtain reliable
absorption data although recently we have successtully performed time-resolved absorption
measurements on C,H,/O, and C,H,/air ignition experiments. A rough stimate of the absorbec
laser enzrgy (making these corrections) is about .12 mJ at ® = 0.7 for H/O, and D,/O,.

4. CONCLUSION

We have observed a strong wavelength dependence on th‘e ignition of H,/O, and D, /O,
premixed flows using 1 tunable iaser near 243 nm. Furthermore, we have observed a
wavelength shift in both microplas:n1a formation in H, and D, gases and in the ignition of
H,0, and DO, flows. These resuiis underscore the importance of two-photon atomic
resonances in the microplasme formation process. We nave demonstrated that our recent
observations of a new las&a: ignition phenomenon that involves resonant multiphoton
phaotochemical formation of micropiasmas appears to be more general and applies to fuel
molecules (H, and D,) as well a: oxidizers (O, and N,0). We believe that this is the first
report of a sensitive wavelength cependence on the laser energy required to ignite these
mixtures through resonan. mulipt.oton excitation of H and D atoms (produced from H, and D,
photolysis) and the first report of a deuierium isotope effect in laser ignition. Measurement of
the ILE required for ignition ve. equivalence ratio (®) shows that the most efficient ignition
occurred with .53 md iLE at & = 0.7 in ihe fuei iean region. Stiong éapeiimental evidence is

givsn which sh.ows that ignition occurs through the resenant formation of a laser-produced
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microplasma in a well-defined volume. These new experimental results indicate that
resonance enhancement in the formation of a microplasma is a well controlied ignition method
which appears to alleviate the problems associated with the sharp thresholds encounterad in
the well-known laser-produced spark (gas breakdown) process. Currently, we are exploring
other possible resonance effects for the purpose of activating or enhancing the combustion of

other reactive systems.
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