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ABSTRACT

-

The problems of load balancing and locality of reference for large distributed memory

message-passing multiprocessors running object-oriented applications are studied. The
object-oriented nature of the applications implies that tasks must be executed on the
processor containing the host object for the task (tasks are method executions, the host object
is the destination of the message that invokes the method). The particular constraint for the
study is that objects will not be moved between processors once allocated. The primary
resource allocation problem then becomes the determination of the best processor on which
to allocate each new object during the execution of the application. The study uses discrete
event simulation of pseudo-applications under the control of several resource allocation
policies selected as limiting cases of practical solutions. Results are presented, and some
general rules-of-thumb are suggested for use in real systems.
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SECTION 1

INTRODUCTION

One principal challenge of managing distributed memory multiprocessor systems is resource
allocation. Resource allocation strategies attempt to reduce the execution time of programs
by assigning computation to processors in order to balance processor load and reduce
communication delays. Our goal is to use resource allocation strategies to reduce the total
execution time of object-oriented applications on distributed memory multiprocessors, where
total execution time is defined as the interval between application startup and termination.
We do not attempt to reduce the impact of one application on a multiprocessor running many
applications; we view the multiprocessor as a single-user machine running only one
application at a time. Also, we are interested in the performance of programs that have a
very large number of tasks, so we favor resource allocation strategies that perform best as the
size of programs (number of tasks) increases.

Generally, it is intractable to find the optimal allocation of processes (tasks) to processors,
even if the evoluti-:n of processes within the system can be analyzed statically. The dynamic
behavior of programs further complicates any resource allocation strategy, since the
evolution of processes in such programs is data dependent. However, suboptimai resource
allocation strategies can still yield important performance benefits.

Such suboptimal strategies may actually yield performance benefits approaching optimal
strategies asymptotically as the size of the systems in question (number of tasks, number of
processors) increases. This is certainly true when minimizing the average task execution
time on a multiprocessor used as a multiprogramming environment, where the central limit
theorem of statistics implies that a random allocation of tasks to processors would perform
well as the number of tasks increases (the total task execution load assigned per processor
would approximate a normally distributed random variable with decreasing variance as the
number of tasks increases). However, if performance is defined as the maximum processor
execution time, then the central limit theorem does not promise that good results are so easily
achieved.

In this section, we will detail the problem of resource allocation for distributed object-
oriented programs and compare it to previous work on similar problems. Section two
introduces our resource allocation algorithms. Section three describes our simulation
technique, and section four presents the simulation results.

1.1 PROBLEM DESCRIPTION

As previously stated, our goal is to investigate the problem of managing resources for object-
oriented applications executing on distributed-memory multiprocessors. Before describing




the problem of resource allocation in detail, we briefly review here the concepts of object
orientation, distributed memory, and their compatibility.

1.1.1 What is Object-Oriented Programming?

A programmer using the object-oriented paradigm [7] conceptualizes a problem to be solved
in terms of communicating active objects and their behaviors. The objects have mutable
state, represented by instance variables. Objects’ behaviors are represented by function-like
methods. Objects communicate to other objects by sending messages. When an object
receives a message, it invokes the corresponding method, which may change the object’s
state and/or send messages to other objects. There are several other concepts associated with
object-oriented programming, including inheritance and late binding, which are not important
to our study.

1.1.2 What is Distributed Memory?

Distributed memory multiprocessors are composed of individual homogeneous processor
elements, each having local memory and corresponding address space. There is no global
shared address space. Processor elements communicate with each other by transmitting
messages through an interconnection network of some type.

1.1.3 Mapping OOP onto Distributed Memory Architectures

Data access within standard non-object-oriented procedural languages (e.g., Pascal, C, Ada,
FORTRAN) consists of simple reads and writes. Within any one procedure, these reads and
writes may be scattered throughout the address space.

The primary difference between object-oriented programming and non-object-oriented
programming that we are exploiting is the object-oriented abstraction of data accesses above
the level of simple reads and writes so that these accesses incorporate portions of the
execution of the program. In fact, in a fully object-oriented program, there is no execution
that is not contained within data accessing abstractions.

The data encapsulation property present within object-oriented programming languages
facilitates the use of distributed memory hardware by creating an abstraction of data access
that is sufficiently removed from direct addressing. Objects are addressed through
identifiers, which can be mapped to any of several implementations (including direct
addressing). The data internal to an object can be considered to exist in an address space
unique to that object. All methods invoked on an object can be viewed as executing within
the object’s address space (so long as call-by-value semantics are used for argument passing).
Thus, one or more objects can be allucated to each individual processor without any added
semantic interference from the processors’ separate address spaces.




1.2 COMPARISON TO PREVIOUS WORK

A more extensive overview of various techniques for handling distributed resource allocation
can be found in [8, 19].

1.2.1 Task Model vs. Object Model

In our model, the object, together with all method invocations on that object’s data, is the unit
of work load that is allocated to a processor. Objects tend to be a long term commitment on
the part of a processor, often persisting for a significant portion of the program’s lifetime.

Furthermore, objects and messages in the object-oriented model are created during the
execution of methods on other objects. Initially, there is only one object. The creation of the
rest of the objects occurs during execution at a rate that depends on the rate of execution, and
hence on system load. This scheme differs considerably from the task model, in which tasks
are assumed to be injected into the system from some outside source at a rate independent of
the load on the system.

Much of the work in the area of dynamic resource allocation is targeted toward allocating
independent tasks to processors [6, 13]. In these models, the unit of work is a task. The
arrival rate of tasks to the system is generaily independent of the state of the system, and is
often viewed as constant. The goal of such tasking models is generally to increase the
throughput of tasks. Systems such as these can be represented adequately by queuing
models.

The resource allocation problem that we have studied is not directly amenable to analysis
using standard queuing models. Primarily, this is due to the variation in object creation rates
over time resulting from differing levels of parallelism. We have looked into designing an
appropriate Markov process model, but have not made progress worthy of mention here.

Other research in resource allocation deals with shared memory multiprocessors or emulates
a shared memory multiprocessor by providing virtual shared memory [18].

1.2.2 Static and Dynamic Analysis Issues

Others advocate the use of static analysis to resolve the problem of resource allocation in
distributed systems [10, 20]. If the characteristics of the program are known beforehand,
then static analysis of the program may help to determine the appropriate placement of tasks
among processors in the system. Information such as an estimate of how long each task takes
to run and the relationship between tasks (i.e., how often they communicate), if available, is
valuable in determining where to allocate resources. For example, it may be advantageous to
place tasks which communicate frequently on the same processor (in local memory) since
this minimizes communication distance to a local reference. Alternatively, tasks
communicating less frequently can be placed on different processors. Some static analysis




techniques can detect concurrent computations (threads) that should not be placed on the
same processor.

There are several problems with static analysis that make its use prohibitive to us as a basis
for resource allocation decisions. In our model, program characteristics are not known in
advance. The behavior of many programs is largely data dependent and cannot be
characterized ahead of time. The style of programming used for object-oriented
methodologies makes static analysis even less attractive due to the frequency of dynamic data
dependencies. Even if analysis makes use of programmer annotations about program
behavior, static analysis techniques can, at best, predict only “typical” program behavior.

The resource allocation problem becomes much easier if program structure is known in
advance. For example, a load balancing algorithm for applications which demonstrate

periodic behavior [9] and a resource allocation strategy for programs with data parallel
computations [15] have been proposed.

Dynamic program behavior can be determined using run-time analysis techniques. During
program execution, data can be collected about processor utilization, memory utilization,
and/or data dependencies. This information can be coordinated by a control mechanism
(centralized or distributed) to make more informed resource allocation decisions possible.
The question with run-time analysis of program behavior is: once this information is
collected, how is it best used to make resource allocation decisions? Also, program behavior
is constantly changing, so some out-of-date information must be contended with. Another
factor is the overhead associated with any run-time data gathering technique; the overall gain
in system performance must outweigh the overhead incurred by gathering, analyzing, and
acting on program characteristics determined at run-time.

[14] proposes a dynamic resource allocation scheme where both system architecture and
program structure must be hierarchical (i.e., hierarchical multiprocessor and task structure).
The program must also have the capability of adjusting grain size dynamically.

Our interest in distributed object-oriented programs stems from other research which is
currently investigating the application of the Time Warp simulation paradigm to general
purpose object-oriented computation [1, 2, 17]. Any Time Warp [11] based run-time system
is sensitive to message arrival order. Under different orderings of message arrivals, an object
will execute different computations. Despite the fact that all object states will later be
brought into agreement with what would be achieved in a sequential execution, the excess
computation obviously does have an impact on resources, especially on processor load.
Therefore, accurate time predictions of the sequential execution of a program, or even of
parallel executions with differing message arrival times, would not accurately predict
processor load in any given parallel execution.




1.2.3 Moving Objects

Others advocate periodic remapping of tasks to processors during execution [10, 12, 15, 16].
Because the target run-time system we have in mind is based on Time Warp, there is a
considerable memory overhead per object moved. This phenomenon would make the cost of
relocating objects prohibitively large. As a result, we do not consider relocating objects to
balance load or increase locality of reference.

1.2.4 Locality of Reference

Originally, our study investigated the importance of locality of reference in distributed
resource allocation. However, our tests showed that load balancing considerations far
outweigh locality of reference considerations for the applications tested. The reasoning
behind this is explained below. Others have investigated the impact of locality of reference
specifically in shared memory non-uniform memory access (NUMA) machines {4, 5].







SECTION 2

RESOURCE ALLOCATION ALGORITHMS

This project began without a clear picture of which algorithms to test. There were several
initial algorithms that were far more complex than the ones included in the final study. The
difficulties of dealing with the complexity of the initial algorithms lead us to develop
simplified cases that could be used to study individual concepts. The simplified algorithms
represent ideal limiting cases where many aspects of resource allocation algorithms are
completely ignored. For example, in most of the tests, message latency was eliminated. In
other tests, some interprocessor communication was done without messages at all. In all
cases, computation involved in the resource allocation procedure internal to a processor
incurred no simulation time overhead.

The results of each simplified test pointed us towards other algorithms, which were tested in
turn. This iterative procedure continued until we found a particular class of algorithms that
behave nearly as well as our ideal baseline case, but have practical implementations.

In this section, we present the components of the tested algorithms and apply them to several
cases. We will describe the case in which every processor has perfect knowledge of the state
of all processors. This “omniscient” algorithm is used as a baseline for our study. Next, we
relax the amount of information each processor requires about other processors and describe
several classes of algorithms developed using the relaxed criteria. At the other end of the
spectrum, a random allocation algorithm is used as the second baseline for our study. The
goal is to find resource allocation algorithms which approach the results of the omniscient
algorithm, but perform no worse than the simplistic random allocation algorithm which uses
no information about processor load.

2.1 ALGORITHM COMPONENTS

The resource allocation algorithms discussed here can each be divided into three components:
a processor load metric, a processor choice method, and a source-destination handshaking
protocol. A processor load metric is used to determine which processors are “good”
candidates for allocation. A processor choice method deals with kow a destination processor
is selected once the load metric for each processor is known. The source-destination protocol
determines the respective duties of each processor (source and destination).

2.1.1 Processor Load Metrics

Each resource allocation algorithm contains a method for estimating the relative future
execution loads on processors by examining the processors’ current state. The ideal resource




allocation algorithm would be able to accurately determine the future load on every
Pprocessor.

Future Load. The actual future load of each object, a measure of the computation time
required to execute all yet-to-be-received messages for the object, is an unrealistic metric to
use for practical resource allocation algorithms. However, for the purposes of our study, this
ideal metric can be used as a baseline for comparison with other metrics. The purpose of
such an ideal baseline is to determine when possible additions to algorithms cannot increase
performance sufficiently to merit the additional effort and complexity.

We can include the ideal metric in our study because we drive each simulation from an
execution trace which contains sufficient information about future loads. Note that an
algorithm that uses the ideal metric is not necessarily optimal. An optimal algorithm must
use information about future object creations in conjunction with the ideal metric to
determine optimal object placement. This information is present in the execution traces that
drive the simulations; however, we do not attempt to simulate the optimal algorithm because
of its intractability.

Number of Objects. When future load information is not available, as would be the case in
realistic systems, the resource allocation algorithm must use some alternative metric that can
be expected to order processors in approximately the same way as future load measures
would. One piece of information readily available on all processors is the number of objects
allocated to each. The future load on a processor is expected to be very roughly proportional
to the number of objects. This is especially true if some garbage collection algorithm
removes objects from processors once it can establish that the objects will have no future
tasks to perform. Using the number of objects to predict future load would not be expected
to work well if objects tend to remain inactive for long periods of time, or if some objects
require much more processor time than others.

Memory Used. When all objects are nearly the same size (in terms of memory consumed),
then the number-of-objects metric is nearly equivalent to a metric that takes into account the
amount of memory consumed on the processor. However, if the execution time requirements
of an object are somewhat proportional to the size of the object, then a metric based on the
amount of memory used would perform better than one based on the number of objects.
Conversely, if the execution load of an object is not correlated to the object’s size, then the
amount-of-memory metric may not be beneficial.

Message Queue Length, As messages arrive at a processor, they are queued prior to being
delivered to their destination objects. The length of a processor’s message queue can thus be
used to gauge the load on the processor in the near future. Using the time-weighted average
of the message queue length as the resource allocation algorithm’s load metric works
particularly well if the execution times of messages do not vary too greatly.




Average Message Queue Wait Time. Statistics of a processor’s previous load can be used
to predict its future load to varying accuracy. One such statistic is the average time that a
message spends on the processor’s input queue. The average time on the queue would be
expected to more closely parallel the actual load on the processor than would the queue
length metric, since the average time does not assume that the execution times of messages
are similar. However, average time on the queue as a metric is not necessarily a predictor of
future load on the processor, as is the queue length.

Distance. Minimizing the actual communication distance between source and destination
processors may be advantageous in cases where message latency contributes significant
overhead to the running program. This metric may have little effect if locality of reference is
not important. For a more complete discussion on the issues of locality of reference, see the
discussion below on the non-uniform random baseline algorithm.

No Metric. The other baseline for our study is a resource allocation metric that does not
attempt to predict future load at all: all processors are viewed by the algorithm as equal
regardless of their state. We consider any algorithm that does not perform at least as well as
this zero-information baseline case as having “failed” in a sense. We will address a common
attribute of many of the failed algorithms that, when added to many successful algorithms,
will cause them to fail (see the discussion of “piling on” in section 4).

2.1.2 Processor Choice Methods

Once a resource allocation algorithm has determined a ranking for each possible destination
processor for a particular allocation using some metric, it must then pick the actual
destination processor. The obvious approach would be to choose the highest ranking
processor. However, our preliminary studies show that the highest ranking processor is not
always the best choice. Therefore, we have developed several alternative methods of
selection.

The first and most obvious selection strategy we studied is to select the best processor
satisfying the metric. However, several processors may rank equally according to a single
metric. Consequently, a tie breaking strategy needs to be employed. One tie breaking
strategy would be to use a second processor load metric to differentiate among the “tied”
processors. Another strategy would minimize the communication distance between source
and destination processors. A third strategy is to select a processor arbitrarily from among
the highest ranked processors.

Instead of consistently choosing the best processor, an alternative approach would select a
processor from a set of processors not necessarily all ranked highest according to the
processor load metric. The set is constructed in either of two ways. A collection of possible
destination processors can be sorted by the load metric and a set constructed from some
percentage of the top of the list. Alternatively, the set can be formulated by using a cutoff
measurement that is equal to the average metric for all processors plus or minus some




number of standard deviations. The set can then be constructed from those processors whose
metric is better than the cutoff; i.e., the worst processors are filtered out.

Once the set is formed, a destination processor can be selected in one of three ways: uniform
random, non-uniform random, or round-robin. Both uniform random and round-robin
selection strategies view each possible choice of destination processor as equivalent. The
difference between uniform random and round-robin selection is that round-robin uses the
history of previous choices by the source processor to determine the next choice. In effect,
resource allocations are equally distributed among all destination processors from the point of
view of the source processor. Non-uniform random attempts to minimize communication
distance by favoring processors nearby. One aim of our investigation was to study the effects
of a non-uniform random distribution on increasing locality of reference among objects.

2.1.3 Source-Destination Protocol

In any resource allocation algorithm, the processor load metric needs to be tested to
determine the allocation destination, and updated when the destination is finally chosen. The
source-destination protocol refers to which processor performs the test and which processor
performs the update. However, to simplify our description of processor load metrics and
choice methods, we have biased our discussion up to this point by suggesting that the source
processor performs the metric test and destination selection tasks. In reality, the source or
destination processor can do either task, resulting in significantly different allocation
algorithms. For example, the source processor can choose the destination arbitrarily, and the
destination can determine its suitability for allocation based on a processor load metric, and
possibly refuse the allocation request. Furthermore, a processor load metric, such as number
of objects, can either be updated when the object is allocated on the destination processor or
updated immediately when a processor is chosen to be the destination. In some algorithms,
allocation and update do not occur simultaneously because of message latency and queue
delay.

None of the processor load metrics discussed above guarantees that the best possible
destination processor, as determined using the metric, has sufficient memory and other
resources to satisfy the allocation request. Thus, in addition to testing the processor load
metric, either the source or destination processor must determine if sufficient resources are
available at the destination." If the source processor does not determine whether sufficient
resources are available at the chosen destination, the destination may refuse the allocation. In
this case, control returns to the source processor, which must choose an alternative
destination.

Once the destination for the allocation is determined, the destination processor must be
updated to reflect the allocation. The update actually consists of three parts: reserving the
necessary space for the object, updating the load metric on the destination processor, and
initializing the object (permitting it to execute methods). The initialization of the allocated
object takes place in all our tests when the allocation request message is received and
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processed. The other two parts of the update can be done either atomically without sending
messages, or when the allocation message is received and processed. The distinction
between these two implementations turns out to be a very important factor in the performance
of an allocation algorithm, and will be discussed later.

2.2 BASELINE ALGORITHMS
2.2.1 Random

Random allocation policies are non-adaptive policies, since the decision to place an object in
a particular processor does not depend on system state (which is analogous to using no
processor load metric). Some variations on random policies are discussed in [6, 13].

The baseline algorithm of the least complexity is one that uses a uniform random distribution
to select the destination processor. The algorithm does not use state information of any
processors in the system to make its decision. Also, the algorithm does not modify the state
of the source processor, so successive allocations are independent. Obviously, any other
algorithm that cannot perform sufficiently better than a uniform random one is not worth
investigating further.

In most large parallel distributed systems, the transmission time of messages is proportional
to the actual communication distance traveled. In such systems, it is advantageous to place
objects which communicate frequently closer to each other. One measure of determining
which objects will communicate frequently is the parent/child relationship. If an object
creates another object, then chances are that the parent object will reference the child object.
This assumption is the motivation for using object creation (and, therefore, resource
allocation) for determining locality of reference.

The particulars of the object-oriented resource allocation problem that we have studied
reduce any potential benefit that can be gained through decreasing the message
communication distance (and hence the latency) between objects. This effect is caused by
the relatively low ratio of computation to communication within method invocations. As a
result, the message queues on the processors tend to be long enough to hide the effects of
message latency.

Locality of reference is only expected to be important if the application includes synchronous
communication operations, or if the amount of communication is neither too high (to fill up
the processor queucs) nor too low (so that increasing the performance of the communication
would not significantly alter the execution time of the entire application). However, we did
investigate a simple scheme that can be used in place of uniform random allocation which
does reduce message distances. This scheme uses a non-uniform random distribution biased
towards nearby destinations.
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2.2.2 Ideal

At the opposite end of the scale, we include an algorithm in our tests that exploits knowledge
about future execution behavior of the program that no realistic allocation algorithm can
possibly use. This ideal algorithm uses a metric that assigns to each processor a weight based
on the processor’s exact future load from the objects currently allocated on it. The metric
does not need to take into account any synchronization-induced blocking that may take place
during the future computations on these objects, since the processor is available for
computation on other objects while blocking. Once all processors are assigned a weight, the
ideal algorithm always picks the processor with the least load for the destination of the
allocation.

The ideal algorithm also uses the unrealistic protocol in which the source processor of the
allocation updates the destination processor’s state atomically, increasing the future load
metric by the amount of computation required by the allocated object. Furthermore, the
source processor ensures that the destination does have sufficient memory to hold the object
prior to allocation; otherwise the source processor chooses the next best destination. The
resulting algorithm, as mentioned previously, is not optimal, since it does not take into
account future object creations when making its decision. However, the performance of this
ideal algorithm is an upper bound on the performance of all practical algorithms, which
cannot possibly use information about future object creations either.

2.3 TEST CASE ALGORITHMS

There are literally hundreds of combinations of load metrics, choice method, and protocol.
Furthermore, since our simulation takes hours to run for a test of a single combination, all
combinations were not tested. Since the primary goal of our study is to find a suitable
algorithm that performs well (better than random and close to ideal), we used an approach
that narrows the search to algorithms which appear most promising. We admit the possibility
that we may have missed a combination with advantages greater than those tested. We
include as an appendix five charts and their descriptions that summarize some of our
simulation results.
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SECTION 3

SIMULATION TECHNIQUE

In order to determine the performance of our baseline and test cases, we constructed a
discrete event simulation of a 1024-processor multicomputer with a four nearest neighbor
mesh topology. The simulation was coded in C++ using our own discrete event simulation
library, MOOSE (MITRE Object-Oriented Simulation Executive). MOOSE adds several
classes (primarily the process class) which facilitate the development of process model,
discrete event, object-oriented, thread-based simulations. For a more complete description of
MOOSE, see [3].

Within the simulation, each processor is represented as having an input queue for messages, a
table containing objects, and a CPU resource. All messages received by a processor are put
on the same input queue, which is FIFO. Messages on the input queue get serviced one at a
time by the single processor resource.

When a message is sent, the transmission time is calculated from the distance between the
source and destination (without taking into account network traffic). A message reception
process is then scheduled for the destination processor object at the calculated receipt time.
The reception process is responsible for queuing itself on the destination processor’s input
queue, obtaining the destination processor’s CPU resource, and finally simulating the actual
execution of the message.

Operating system messages, such as allocation requests, execute immediately once they
acquire the destination processor’s CPU resource. Application messages are passed on to the
target object, where they are queued once again. The application object queues, rather than
being simply FIFO, pass messages in the order corresponding to the sequential execution
order of messages recorded for that object. When an application message arrives that can
execute without blocking (without waiting for an “earlier” message to arrive), the
corresponding reception process keeps control of the CPU resource during its execution. If
the next message in the sequential execution order is already queued on the object, the
executing message will pass the CPU resource to it immediately on completion.

Each application message process consists of a loop. For each iteration of the loop, the
process consumes some CPU time and either sends an application message to some other
object or requests that an object be created. The simulation time required for sending
messages and requesting object creations is parameterizable.

The reception processes of operating system messages, such as object creation requests and
refusals, also consume simulation time during their execution.
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Garbage collection is simulated by removing each object from its host processor when the
object finishes processing its final message.

The simulation is started by placing an initial object on some processor in the mesh, usually
in the center of the mesh. A startup message is scheduled for the initial object at simulation
time 0. The initial object then begins the simulation by executing the startup message’s
reception process. '

To drive our resource allocation simulations, we developed a tool for recording the
characteristics of object-oriented programs. With this tool, we are able to record specific
objects dynamically created by a program, and the number and sequence of messages sent
and received by each object. The application programs recorded to drive the simulation,
however, are graph construction and traversal programs devised specifically to generate very
large parameterizable program traces with large numbers of objects and messages. Since we
do not have any large object-oriented applications available, the approach of generating
synthetic applications is necessary for our tests.

Using the program trace constructed during the application program’s sequential execution,
we are able to drive the simulation deterministically. The synthetic applications we used for
our tests contained about 20,000 objects and 250,000 application messages. Depending on
the resource allocation algorithm being tested, the real time needed for each simulation run
ranged from three hours to nearly five hours on a SUN SPARCStation 1. The simulations
each consumed between forty and fifty megabytes of memory. The SPARCStation used for
testing contained 64 megabytes of RAM, so paging overhead was low.

The granularity of computation between message sends and the size of the applications
objects are exponentially distributed with maximum cut-off values. Because of the large
variances in exponential distributions, the scenarios generated are likely to make load-
balancing more difficult than would real applications. This augments the difference between
the ideal and random baseline cases, and provides a greater resolution in the test results.
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SECTION 4

RESULTS

Perhaps our most ubiquitous result is that it is quite difficult to construct an allocation
algorithm that can perform much better than the baseline random algorithm. Even the ideal
baseline algorithm only performs about 25 percent better than random. Using a round-robin
allocation policy in place of a uniform random one offers a slight improvement in some of
our tests. This improvement is probably due to the tendency of a round-robin algorithm to
balance allocations from the perspective of each source processor, thus providing a lower
standard deviation of load per processor than that provided by a random distribution.
However, in most cases, the improvement noticed is too small to consider more than a
statistical aberration.

Another surprising result is the tendency for many algorithms with a specific choice method
and protocol to actually decrease in performance as the amount of knowledge incorporated in
the allocation decision increases. These algorithms are prone to a phenomenon, piling on, in
which a small number of destination processors are inundated by resource allocation
requests. Piling on happens when simultaneous or nearly simultaneous allocation requests
from different processors occur, and only a small number of destination processors are
considered favorable destinations for allocation. The choice methods responsible for piling
on are those which narrow the allocation algorithm’s focus to a small number of possible
destinations that have low loads. These methods simulate the greater use of load information
in an allocation algorithm. One would expect that this increased use of information would
result in greater performance. However, because fewer processors qualify for each
allocation, requests pile up on the message queues of the qualifying processors, creating a
bottleneck. Once the favorable processors accept the first few allocations, they become less
favorable places for the remaining allocations. If these algorithms use the source
measurement protocol, the remaining allocations will not be refused by the destination
(unless the destination runs out of space). When the number of nearly simultaneous
allocations is sufficiently high, the chosen destinations will fill quickly to capacity, severely
unbalancing processor load in the system. Regardless of what metric is used, the resuiting
simulation runs are three to four times slower than the random baseline.

The relative performance of the load metrics in all of the tests was much less surprising. The
future load metric consistently outperforms all of the others. Furthermore, all of the other
metrics resulted in nearly equivalent performance. The number-of-objects metric was the
best in this remaining group, but this result is probably due to the independence of object size
and object load resulting from our pseudo-application generation scheme. For applications
where object size and load are correlated, the memory-use metric would probably result in
greater performance. However, because of the small performance differences between the
metrics tested, we did not construct pseudo-applications to test this hypothesis. We instead
concentrated on finding solutions to the piling-on effect.
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Once we spotted the piling-on effect and determined its cause, we decided on three different
possible fixes. The first response was to incorporate atomic test-and-set as a possible
protocol. The atomic protocol has the source processor testing the possible destinations,
choosing the actual destination, and updating the actual destination’s load accordingly
without elapsing simulation time. As a result, other source processors doing simultaneous
allocations will see the chosen destination with its updated load. The atomic protocol is
obviously impractical in an asynchronous system, but the resulting algorithms can serve as
best case tests for each of the different load metrics.

The second answer to the piling-on effect increases the size of the initial set of possible
destinations produced by the processor choice mechanism. The set would be formed by
incorporating processors that have loads lower than the average system load plus or minus
some number of standard deviations. The source processor would then choose the actual
destination from this set either randomly or round-robin.

The most practical response to piling on is to have the destination processor do the work of
determining if it is an appropriate allocation site. In such schemes, the source processor
would choose the destination either randomly or round-robin. The destination, upon receipt
of the allocation request, would compare its load to the average system load. Again, the
allocation request would be accepted if the destination processor’s load is lower than the
average load plus or minus some number of standard deviations. If the allocation is refused,
the destination processor would forward the request to some other processor chosen either
randomly or round-robin.

Simulation results of the above approaches indicate that all three consistently perform better
than the random baseline, regardless of the metric used. Also, for each metric, the relative
performance difference among the three methods never varied more than 135 percent. Finally,
the variation in performance with either the second or third approach as the number of
standard deviations above the average was varied between 0 and 2 remained below

10 percent, despite the large differences in the number of refused allocations in the third
approach. This is quite surprising, considering that the variation (between 0 and 2 standard
deviations) in the number of processors allowed as destinations is 47 percent (if the
distribution is normal). We did notice, however, that the third approach degrades when the
number-of-objects metric is used and the number of standard deviations from the average is
0. This is due to the fact that there is no variation in the number-of-objects metric per object
allocated (it always increases by one), so processors fill up synchronously: every processor
gets one object before any is allowed to get a second and so on. This generates an enormous
number of allocation refusals as the number of acceptable destinations decreases from

1024 to 1 in each cycle. (We suspect that any way of estimating the average number of
objects that allows overestimates would alleviate this problem.)

The small amount of variation in the performance of the third approach (where the
destination processor does the testing) as the number of standard deviations from the average
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changes (with the above caveat for the number-of-objects metric) leads us to believe that the
algorithms can perform well with very imprecise information about the global load average.
Cases where each processor’s view of the load is out of date, or only a statistical sample of
part of the mesh (such as the local neighborhood), should not suffer a performance
degradation beyond the 10 percent we observed. Our target operating system already
incorporates a periodic global collect and broadcast algorithm (see the discussion of global
virtual time in [17]); the messages used in this algorithm can be easily modified to carry and
distribute processor load information.
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SECTION §

CONCLUSIONS

We have investigated several resource allocation algorithms. A resource allocation algorithm
for our purposes takes care of assigning dynamically created objects to processors, taking
into account the current state of the system. We classify resource algorithms by their load
metrics, choice methods, and protocols.

Examples of processor load metrics are the number of objects on a processor, the amount of
memory used, the length of the message queue, the average wait ime on a message queue,
and remaining execution time of objects on the processor. In addition, each object to be
allocated must fit in the destination processor’s local memory.

Processor choice methods involve the determination of the destination once the loads for all
processors are known (in some fashion, such as the average). The investigated choice
methods include choosing the best processor based on the load, choosing one of the

X percent best processors, for some X, and choosing a processor with a load that is not
greater than the average plus or minus X standard deviations, for some X.

The protocol portion of an allocation algorithm involves the determination of which of the
two processors involvzd does the measurement of the loads and when information about the
loads is updated.

Our tests failed to demonstrate a significant performance advantage for any of the plausible
processor load metrics, given the specific performance characteristics of the particular
applications used to obtain our results. The one implausible metric, future processor load,
consistently outperforms the rest, but only by about 10 percent.

The allocation protocol plays a significant role: preventing an effect we refer to as piling on.
Piling on results when a large number of nearly simultaneous allocations all choose from the
same small set of acceptable destinations. The resulting bottlenecks can reduce performance
considerably.

The most promising algorithms have the source processor attempt an allocation based on
some choice method independent of processor load. When the destination processor of the
allocation receives the request, it determines if it is a suitable location based on a comparison
between its local load and an estimate of the average processor load in the system. If the
destination is not suitable, it forwards the request to some other processor, which then
decides if it is an acceptable location, and so on. Our observations indicate that this
technique is fairly insensitive to errors in the determination of the global load average due to
out-of-date or approximate data.
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APPENDIX

SAMPLE SIMULATION CHARTS

The execution time shown in the figures in this appendix is the total execution time of a
recorded application program with 20,000 objects and 250,000 application messages whose
execution was simulated on a mesh of 1,024 processors. The first two columns in each figure
show the execution times of the two baseline algorithms. Figure 1 shows that the round-
robin choice method can perform slightly better than the random baseline. The rightmost
column is an example of piling on. The algorithm is just the ideal baseline with one change:
the destination’s load is not updated atomically, but after the allocation is accepted.
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Figure 1. Round Robin and Piling On
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Figure 2 shows that piling on can be reduced significantly by increasing the number of
acceptable processors in the choice method. Each of the double columns shows the
performance of an algorithm with the future-load metric (the same metric used in the ideal
atomic baseline and ideal non-atomic piling-on examples). The percentage labels indicate
the number of processors considered acceptable by the choice method (as a percentage of the
entire mesh). The first column in each pair uses the atomic update protocol, the second
column does not. :
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Figure 2. Atomic vs. Non-Atomic Protocol
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Figure 3 compares three algorithms using the future-load metric and three different choice
mechanisms. The first column of each triple results from using the destination-measure
protocol (where the destination processor decides if it is an acceptable host for the
allocation), with the source protocol choosing potential destinations randomly. The second
column results from a similar algorithm that has the source processor choose potential
destinations round-robin instead of random. The third column (for which there is only data
in the 0- and 1-standard deviation range) results from having the source processor do all of
the work, including updating the destination’s load atomically. The graph shows that the
practical choice mechanisms (the first two in each triple) perform nearly as well as one that
uses atomic updating.
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Figure 3. Future-Load Metric
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Figure 4 illustrates the performance of the number-of-objects metric. The 1- and 2-standard
deviation column pairs result from the practical destination-measuring choice method. The
first column in each pair results from having the source processor choose potential
destinations randomly; the second column is round-robin. The 0-standard deviation column
results from a protocol that has the source processor do all of the work. Data for 0 standard
deviations above the average for the destination-measuring case is not included, because of
the anomaly mentioned in the discussion of results.
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Figure 4. Number-of-Objects Metric
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Figure § illustrates the performance of the memory-use metric. The first three columns to the
right of the baselines result from the destination-measuring choice method, with the source
choosing potential destinations randomly. The last column shows the performance of the
impractical source-measuring protocol that updates the destination’s load atomically. Again,
the performance advantage of the impractical case is small.

Execution Time

6000

5000

4000

3000

2000

1000

0
random . ideal 0 1 2 0
atomic atomic
Baselines Standard Deviations Above Average

Figure 5. Memory-Use Metric
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