
DTIC z0Sn" 1.' V-'-r T~~
AD-A243 162

July 1991 M90-19

W. M. Farmer IMPS: An Interactive
J. D. Guttman Mathematical Proof
F. J. Thayer System

CONTRACT SPONSOR MSR
CONTRACT NO. N/A
PROJECT NO. 9128A
DEPT. G117

Approved for public release;
distribution unlimited.

&WE 41 1209 141-1
The MITRE Corporation
Bedford, Massachusets 91-17470.91-174l 0

Abstract

IMPS is an Interactive Mathematical Proof System intended as a general
purpose tool for formulating and applying mathematics in a familiar fashion.
The logic of IMPS is based on a version of simple type theory with partial
functions and subtypes. Mathematical specification and inference are per-
formed relative to axiomatic theories, which can be related to one another
via inclusion and theory interpretation. The system supports a natural style
of inference based on deduction graphs, which are akin to derivations in a
sequent calculus. t _

'\'

Ac'-*.H 8o r /

•i /t j poa '

Acknowledgments

Several of the key ideas behind IMPS were originally developed by Dr.
Leonard Monk oil the Heuristics Research Project sponsored by The MITRE
Corporation during 1984-87. Some of these ideas are described in [24].

This work was supported by the MITRE-Sponsored Research program
under project 91280.

iv

Table Of Contents

Section Page

1 Introduction 1

2 Logic 3
2.1 Higher-Order Functions and Types. 3
2.2 Partial Functions
2.3 Constructors. 6
2.4 Sorts. 7
2.5 Summary 9

3 Theories 10
3.1 Definitions 10
3.2 Theory Interpretations. 12
3.3 Example Theories. 16

4 Theorem Proving 18
4.1 Deduction Graphs. 18
4.2 Building Deduction Graphs 19
4.3 Strategies. 21
4.4 Soundness 22
4.5 Simplification 22
4.6 Proof Presentation 24

5 Theory-Supported Reasoning 25
5.1 Reasoning about Definedness 25
5.2 Transforms 26
5.3 Macetes 27

6 Applications 29
6.1 Mathematical Analysis. 29
6.2 Software Verification. 29

7 Implementation Notes 31
7.1 Syntax and Expressions 31

V

8 Example: the Archimedean Property 32
8.1 Prescriptive Presentation 33
8.2 Descriptive Presentation 36

9 Conclusion 45

List of References 47

vi

Section 1
Introduction

IMPS is an Interactive Mathematical Proof System, currently being devel-
oped at The MITRE Corporation, that is intended to support the axiomatic
method. The IMPS user can specify axiomatic theories, interactively prove
theorems in them, and relate one theory to another via both inclusion and
theory interpretation. The guiding goal of IMPS is to provide strong com-
putational support for rigorous mathematical reasoning in a framework that
closely models standard mathematical practice. Clarity and flexibility of
expression are thus valued over raw deductive power.

The general goals of IMPS fall into five areas:

* Logic. The logic of the system should provide a precise, flexible frame-
work in which to express many kinds of mathematical specification and
inference. It should be easily accessible to the user by utilizing stan-
dard syntactic and semantic ideas. And, it should allow the user to
formulate mathematical concepts and arguments in a natural and di-
rect manner. In particular, the logic should not be based on restrictive
or unusual methods.

* Proofs. The system should support the interactive development of in-
telligible formal proofs. There should be essentially no structural dif-
ference between partial and complete proofs. Proofs should be encoded
by internal data structures that can be manipulated and analyzed by
software.

* Computational. support. The system should provide several kinds of
computational support, including syntax checking, expression simpli-
fication, and various kinds of assistance for building and presenting
formal proofs.

* Reusability. The user should be able to reuse previously formulated
expressions, languages, theories, and arguments. There should be sup-
port for constructing new theories from old theories either directly or
via theory interpretations, and it should be possible to develop abstract

mathematical results and then use them in a variety of more concrete
contexts.

* Human-machine interaction. It is essential that the system has a con-
genial interface that gives the user wide access to the system while
protecting the user from making unsound inferences. The user should
be able to tailor machine deduction to his own needs, and machine
calculations should generally be performed in less than a minute.

This paper presents an overview of the IMPS system. The next section,
Section 2, describes the logic of IMPS which is a based on a version of simple
type theory with partial functions and subtypes. Section 3 discusses the role
axiomatic theories play in IMPS and explains how they can be extended by
definitions and be related to one another by theory interpretations. The the-
orem proving system of IMPS is described in Section 4; it supports a natural
style of inference based on deduction graphs, which are akin to derivations in
a sequent calculus. Section 5 describes some of the ways the proof process
in IMPS is driven by information contained in the axioms and theorems of a
theory. Applications and the implementation are briefly discussed in Sections
6 and 7, respectively. Section 8 contains, as an example, a proof that the
real numbers satisfy the Archimedean property. Finally, a brief conclusion is
given in Section 9.

2

Section 2
Logic

The logic1 of IMPS is called LUTINS 2 , a Logic of Undefined Terms for In-
ference in a Natural Style. LUTINS is a conceptually simple implementation
of higher-order predicate logic that closely conforms to mathematical prac-
tice. Partial functions are dealt with directly, and consequently, terms may
be nondenoting. The logic, however, is bivalent; formulas are always defined.

LUTINS is derived from the formal system PF* [10], which in turn is
derived from the formal system PF [9]. PF is a version of Church's simple
theory of types in which functions may be partial, and PF* is a multi-sorted,
multi-variate simple type theory with partial functions, subtypes, and def-
inite description operators. LUTINS is essentially PF* plus a number of
convenient expression constructors, which are discussed below. It is shown
in [9J and [10] that PF and PF*, respectively, are complete with respect to a
Henkin-style general models semantics [18). The formal semantics of LUTINS
is straightforwardly derived from the (standard models) semantics of PF*.
(See [17] for a detailed description of the syntax and semantics of LUTINS.)

2.1 Higher-Order Functions and Types

Higher-order logic (or type theory) was developed in the early part of this
century to serve as a foundation for mathematics, but lost its popularity as a
foundation for mathematics in the 1930's with the rise of set theory and first-
order logic. Higher-order logic emphasizes the izole of functions, in contrast

'By a logic, we mean in effect a function. Given a particular vocabulary, or set of
(nonlogical) constants, the logic yields a triple consisting of a formal language £, a class
of models A for the language, and a satisfaction relation k between models and formu-
las. *The function is normally determined by the syntax and semantics of a set of logical
constants for the logic.

The satisfaction relation determines a consequence relation between sets of formulas and
individual formulas. A formula P is a consequence of a set of formulas S if A I P holds
whenever A k Q holds for every Q E S.

When we speak of a theory, we mean in essence a language together with a set of axioms.
A formula is a theorem of the theory if it is a consequence of the axioms.

2Pronounced as the word in French.

3

to set theory, which emphasizes the role of sets. In type theory, functions
may be quantified and may take other functions as arguments. In order to
avoid circularity, functions are organized according to a type hierarchy.

Type theory has a uniform syntax; it is based on familiar notions; and it
is highly expressive. The use of A-notation allows functions to be specified
succinctly. Since type theory contains second-order logic, there are many
things that can be expressed in it which cannot be directly expressed in first-
order logic. For example, the induction principle for the natural numbers
can be expressed completely and naturally by a single second-order formula.
See [3] and [30] for discussion on the expressive power of second-order logic
relative to first-order logic.

The type hierarchy of LUTINS consists of base types and function types.
Let £ be a language in LUTINS. The base types of £ are prop, indl,..., ind.
where m > 1. prop is the type of propositions and each indi is a type of
individuals. The function types of £ are inductively defined from its base
types: if a,.. . , an,, a,+ are (base or function) types where n > 1, then
aI,... , an -- + is a function type. Since m and n may be strictly greater
than 1, the type structure is "multi-sorted" and "multi-variate," respectively.

A higher-order logic with this sort of type hierarchy is called a simple type
theory. The automatic theorem proving system TPS developed at cMu [1] and
the proof development system HOL developed at the University of Cambridge
[15] are both based on simple type theories. However, in these systems
function types contain only total functions, while in LUTINS, some types
may contain partial functions. These are the types of kind ind. We say that
a type a is of kind ind if a = indi for some i > 1 or a = al,..., an --+ an+1

and a,+ 1 is of kind ind. Otherwise, we say that a is of kind prop.
Every formal expression in LUTINS has a unique type. The type of an

expression serves both a semantic and syntactic role: An expression denotes
an object in the denotation of its type (if the expression is defined), and the
syntactic well-formedness of an expression is determined on the basis of the
types of its components. An expression is said to be of kind ind [prop] if
its type is of kind ind [prop]. Expressions of kind ind are used to describe
mathematical objects; they may be undefined. Expressions of kind prop are
primarily used in making assertions about mathematical objects; they are
always defined.

4

2.2 Partial Functions

One of the primary distinguishing characteristics of LUTINS is its direct ap-
proach to specifying and reasoning about partial functions (i.e., functions
which are not necessarily defined on all values). Partial functions are ubiq-
uitous in both mathematics and computer science. If a term is constructed
from simpler expressions by the application of an expression denoting a par-
tial function f to an expression denoting a value a which is outside the
domain of f, then the term itself has no natural denotation. Such a term
would violate the existence assumption of classical logic, which says that
terms always have a denotation. Thus a direct handling of partial functions
can only lie outside of classical logic.3

The semantics of LUTINS is based on five principles:

(1) Expressions of kind ind may denote partial functions.

(2) Expressions of type prop always denote a standard truth value.

(3) Variables, constants, and A-expressions always have a denotation.

(4) An application of kind ind is undefined if its function or any of its
arguments is undefined.

(5) An application of type prop is false if any of its arguments is undefined.

As a consequence of these principles, expressions of kind ind may be
nondenoting, but expressions of kind prop must be denoting. Hence the
semantics of LUTINS allows partial functions without sacrificing bivalent logic.
We have chosen this approach for dealing with partial functions because it
causes minimal disruption to the patterns in reasoning familiar from classical
logic and standard mathematical practice. (For a detailed discussion of the
various ways of handling partial functions in predicate logic, see [9].)

3 However, since the graph of a function (partial or total) can always be represented as
a relation, the problem of nondenoting terms can in theory be easily avoided-at the cost
of using unwieldy, verbose expressions. Hence, if pragmatic concerns are not important,
classical logic is perfectly adequate for dealing with partial functions.

2.3 Constructors

The expressions of a language of LUTINS are constructed from variables and
constants by applying constructors. Constructors serve as "logical constants"
that are available in every language. LUTINS has approximately 20 con-
structors. (PF and PF" have only two constructors, application and A-
abstraction.) Logically, the most basic constructors are apply-operator,
lambda, iota, and equality; in principle every expression of LUTINS could
be built from these four." The other constructors serve to provide economy
of expression.

There is a full set of constructors for predicate logic: constants for true
and false, propositional connectives, quantifiers, and equality. LUTINS also
has a definite description operator iota, an if-then-else operator if, and
some definedness constructors such as is-defined (denoted by the postfix
symbol 1) and is-defined-in-sort (infix 1). Although a few constructors
(such as implies (infix D) and not (-)) correspond to genuine functions,
most constrictors do not. For example, the constructors and (infix A) and or
(infix V) are applicable to any number of formulas (i.e., expressions of type
prop). The constructor if is nonstrict in its second and third arguments, and
several constructors bind variables, including forall, forsome, and iota, in
addition to the basic variable-binding constructor lambda.

iota, the definite description operator of LUTINS, is a constructor that
cannot be easily imitated in other logics. Using this constructor, one can
create a term of the form Ix. P(x), where P is a predicate, which denotes
the unique element described by P. More precisely, Ix . P(x) denotes the
unique x that satisfies P if there is such an x and is undefined otherwise. In
addition to being quite natural, this kind of definite description operator is
very useful for specifying (partial) functions. For example, ordinary division
(which is undefined whenever its second argument is 0) can be defined from
the times function * by a A-expression of the form

Ax, y . Iz . x * z = y.

In logics in which terms always have a denotation, there is no completely

'Throughout this paper, constructors will be denoted using traditional symbology. For
example, lambda and iota are denoted, respectively, by the variable-binding symbols A
and 1; equality is denoted by the usual infix symbol =; and apply-operator is denoted
implicitly by the standard notation of function application.

6

satisfactory way to formalize a definite description operator. This is because
a definite description term Ix . P(z) must always have a denotation, even
when there is no unique element satisfying P.

The IMPS implementation allows one to create macro/abbreviations called
quasi-constructors which are defined in terms of the ordinary constructors.
For example, the quasi-constructor quasi-equality (infix f-) is defined as
follows:

el = e2 = (el Ve2l) D el = e2.

Depending on the choice of the user, a quasi-constructor can be used in
IMPS in two different modes: as a device for constructing expressions with
a common form or as an ordinary constructor. The first mode is needed
for proving basic theorems about quasi-constructors, while the second mode
effectively gives the user a logic with a richer set of constructors. Quasi-
constructors can be especially useful for formulating generic theories (e.g., a
theory of finite sequences) and special-purpose logics within IMPS.

Constructors and quasi-constructors are polymorphic in the sense that
they can be applied to expressions of several different types. For instance,
the constructor if can take any three expressions as arguments as long as
the type of the first expression is prop and the second and third expressions
are of the same type.

2.4 Sorts

Superimposed on the type hierarchy of LUTINS is a system of subtypes. We
call types and subtypes jointly sorts. The sort hierarchy consists of atomic
sorts and compound sorts. Let C be a language in LUTINS. C contains a set
of atomic sorts which includes the base types of C. The compound sorts of
C are inductively defined from the atomic sorts of C in the same way that
function types of C are defined from the base types of C. Every atomic sort is
assigned an enclosing sort. (The enclosing sort of a base type is itself.) The
assignment of enclosing sorts determines a partial order -< with the following
properties:

0 a .< 3 whenever / is the enclosing sort of at.

* al,..., a, -- C,+l "< i,.. fl -- On+ whenever a, - #3, for all i with
1<i<n+1.

7

" A sort is a maximal element in -< iff it is a type.

" For all sorts a, there is a unique type fl, called the type of a, such that

* The type of an atomic sort is of kind prop iff the atomic sort is itself
prop.

A sort is said to be of kind ind [prop] if its type is of kind ind [prop]. If
two sorts have the same type, then that type is clearly an upper bound for
them in -<. Moreover, since each atomic sort has a single enclosing sort, an
inductive argument shows that any two sorts of the same type have a least
upper bound.

A sort denotes a subset of the denotation of its type. Hence sorts may
overlap, which is very convenient for formalizing mathematics. (The over-
lapping of sorts has been dubbed inclusion polymorphism[4].) Since a partial
function from a set A to a set B is also a partial function from any superset
of A to any superset of B, compound sorts of kind ind have a very elegant
semantics: The denotation of a = a,,. ., a, -+ an+1 of type # of kind ind
is the set of partial (and total) functions f of type fi such that f(a,,..., an)
is undefined whenever at least one of its arguments ai lies outside the deno-
tation of ai. (The semantics for compound sorts of kind prop is similar but
less elegant.)

Sorts serve two main purposes. First, they help to specify the value of
an expression. Every expression is assigned a sort on the basis of its syntax.
If an expression is defined, it denotes an object in the denotation of its sort.
Second, sorts are used to restrict the application of binding constructors. For
example, if a is a sort of type i0, then a formula of the form

V- : a . P(X)

is equivalent to the formula

Vy : !6. (y ., a) D P(y).

Sorts are not directly used for determining the well-formedness of expressions.
Thus, if f and a are expressions of sorts a -+ /3 and a', respectively, then the
application f(a) is well-formed provided only that a and a' have the same
type.

8

As a simple illustration of the effectiveness of this subtyping mechanism,
consider the language of our theory of real numbers, h-o-real-arithmetic,
in which we stipulate N is enclosed by Z, which is enclosed by Q, which is
enclosed by R, which is enclosed by the base type indi. So N - R denotes
the set of all partial functions from the natural numbers to the real numbers.
This set of functions is a subset of the denotation of ind, -+ indl. A function
constant specified to be of sort R -, R would automatically be applicable
to expressions of sort N. Similarly, a function constant f declared to be of
sort N -+ N would automatically be applicable to expressions of sort R, but
an application f(a) would only be defined when a denoted a member of the
natural numbers. It is important to observe that a subtyping mechanism of
this kind would be quite awkward in a logic having only total functions.

2.5 Summary

LUTINS is a multi-sorted, multi-variate higher-order predicate logic with par-
tial functions and subtypes. Like other versions of simple type theory, it is
highly expressive. It has strong support for specifying and reasoning about
functions: A-notation, partial functions, a true definite description operator,
and full quantification over functions. Its type hierarchy and sort mechanism
are convenient and natural for developing many different kinds of mathemat-
ics. Although LUTINS contains no polymorphism in the sense of variables
over types, polymorphism is achieved through the use of constructors and
quasi-constructors, sorts, and theory interpretations (see Subsection 3.2).

Perhaps most importantly, the intuition behind LUTINS closely corre-
sponds to the intuition used in everyday mathematics. The logical principles
employed by LUTINS are derived from classical predicate logic and standard
mathematical practice. This puts it in contrast to some other higher-order
logics, such as Martin-Lf's constructive type theory [23], the Coquand-Huet
Calculus of Constructions [61, and the logic of the Nupri proof development
system [5]. These logics-which are constructive as well as higher order-
employ rich polymorphic type structures that incorporate the "propositions
as types" isomorphism (see [21]). They are a significant departure from stan-
dard mathematical practice. Moreover, their type structures achieve a high
level of polymorphism at the cost of increased semantic complexity.

9

Section 3
Theories

IMPS is a platform for rigorous mathematical reasoning based on the
axiomatic method. The system allows users to specify axiomatic theories, to
prove theorems within them, and to relate one theory to another via inclusion
and theory interpretation. Mathematically, a theory in IMPS consists of a
language and a set of axioms. At the implementation level, however, theories
contain additional structure which tabulates or encodes procedurally this
axiomatic information to facilitate various kinds of low-level reasoning within
theories. The three most important examples are:

* Theory-specific algebraic simplification, for instance, simplification of
polynomials when a theory contains the structure of a ring or field.

" Deciding satisfiability of linear inequalities, for instance, when a theory
contains the structure of an ordered ring or field.

" Exploiting information about the domains and ranges of functions to
infer whether terms are defined or undefined.

A theory is constructed from a (possibly empty) set of subtheories, a
language, and a set of axioms. Theories are related to each other in two
ways: one theory can be the subtheory of another, and one theory can be
interpreted in another by a theory interpretation. A theory may be enriched
via the definition of new atomic sorts and constants and via the installation
of theorems. Definitions and theory interpretations are discussed below in
the next two subsections. Several examples of theories are discussed in the
last section.

3.1 Definitions

A theory in IMPS may be enriched by defining new sorts and constants. For
example, the functions min and max from pairs of reals to reals, and the limit
operator from sequences of reals to reals, are all defined constants in our stan-
dard theory of the real numbers. Functions may also be defined by recursion,

10

using the general mechanism of fixed-point inductive definition analyzed by
Moschovakis [25, 261. Mutually recursive definitions are permitted. Simple
examples of recursively defined operators include the E and 1 operators for
summing and multiplying finite sequences.

IMPS supports four kinds of definitions: atomic sort definitions, constant
definitions, recursive function definitions, and recursive predicate definitions.
In the following let T be an arbitrary theory.

Atomic sort definitions are used to define new atomic sorts from nonempty
unary predicates. An atomic sort definition for T is a pair 6 = (n, P) where
n is a symbol intended to be the name of a new atomic sort of T and P is
unary predicate in T intended to specify the extension of the new sort. 6 can
be installed in T only if (1) n is not the name of any current sort of T or of
a theory for which T is a structural subtheory, and (2) the formula 3x.P(x)
is known to be a theorem of T. When 6 is installed in T, a new atomic sort
with the name n is added to the language of T, and a new axiom is added
to T which says that the new sort and P are coextensional.

Constant definitions are used to define new constants from defined expres-
sions. A constant definition for T is a pair 6 = (n, e) where n is a symbol
intended to be the name of a new constant of T and e is an expression in
the language of T intended to specify the value of the new constant. 6 can
be installed in T only if (1) n is not the name of any current constant of T
or of a theory for which T is a structural subtheory and (2) the formula e
is known to be a theorem of T. When 6 is installed in T, a new constant c
of the same sort as e with the name n is added to the language of T, and a
new axiom c = e is added to T.

Recursive function definitions are used to define one or more functions by
(mutual) recursion. They are essentially an implementation of the approach
to recursive definitions presented by Y. Moschovakis in [26]. A recursive defi-
nition for T is a pair. 6 = ([nl,..., nk], [F,..., Fk]) where k > 1, [n1, ... , nk]

is a list of distinct symbols intended to be the names of a list of k new con-
stants, and [Fh,..., Fk] is a list of functionals of kind ind in T intended to
specify as a system the values of the new constants. 6 can be installed in
T only if (1) each ni is not the name of any current constant of T or of a
theory for which T is a structural subtheory, and (2) each functional F is
known to be monotone with respect to the order C on partial functions de-
fined by: g C g' iff g' is an extension of g (i.e., g(ai,...,am) = g'(al,..., am)
for all m-tuples (a,,... ,a,,) in the domain of g). When 6 is installed in T,

11

k new constants fl,...,fk with names nl,...,nk, respectively, are added
to the language of T, and a new axiom is added to T which says that
fi = F(f,... ,fk) for each i with 1 < Z < k and [fi,...,fk is the mini-
mum solution of [F,,..., Fk] (with respect to E).

This approach to recursive definitions is very natural in IMPS because
expressions of kind ind are allowed to denote partial functions. Notice that
there is no requirement that the functions defined by a recursive definition be
total. In a logic in which functions must be total, a list of functionals can be
a legitimate recursive definition only if it has a solution composed entirely of
total functions. This is a difficult condition for a machine to check, especially
when k > 1. Of course, in IMPS there is no need for a recursive definition to
satisfy this condition since a recursive definition is legitimate as long as the
defining functionals are monotone. IMPs has an automatic syntactic check for
monotonicity that succeeds for many common recursive function definitions.

Recursive predicate definitions are used to define one or more predicates
by (mutual) recursion. They are implemented in essentially the same way
as recursive function definitions using the order C on predicates defined by:
q g q' if q' includes q (i.e., q(a,...,a..) D q'(aj,...,a,) for all m-tuples
(a,,... ,am) in the common domain of q and q'). This approach is based on
the classic theory of positive inductive definitions (see [25]). As with recursive
function definitions, there is an automatic syntactic check for monotonicity
that succeeds for most typical recursive predicate definitions.

3.2 Theory Interpretations

One of the chief virtues of the axiomatic method is that the theorems of a
theory can be "transported" to any specialization of the theory. A theory
interpretation is a syntactic device for translating the language of a source
theory to the language of a target theory that has the property that the image
of a theorem of the source theory is always a theorem of the target theory.
It then follows that any theorem proved in the source theory translates to
a theorem in the target theory. We use this method in a variety of ways
(which are described below) to reuse mathematical results from abstract
mathematical theories.

Theory interpretations are constructed in IMPS by giving an interpretation
of the sorts and constants of the language of the source theory; this is the
standard approach that is usually seen in logic textbooks (e.g., see [7] and

12

[31]).' We give below a summary of theory interpretations in IMPS; a detailed
description of theory interpretations for PF* is given in [10].

Let 7 and T' be theories over languages £ and C', respectively. A trans-
lation from 7 to T' is a pair (yi, v), where ti is a mapping from the sorts
of £ to the sorts of ' and v is a mapping from the constants of £ to the
expressions of V', such that:

(1) p(prop) = prop.

(2) For each sort a of C, a and y(a) are of the same kind.

(3) If a is a sort of £ with type P, then p(a) and a(#) have the same type.

(4) If c is a constant of £ of sort a, then the type of v(c) is the type of

There is a canonical extension F/ of v which maps expressions of C to expres-
sions of '.

Let T = (y, v) be a translation from T to V. An obligation of %D is a
formula I(V) where 'p is either:

(1) a (nonlogical) axiom of T;

(2) a formula asserting that a particular atomic sort of C is a subset of its
enclosing sort; or

(3) a formula asserting that a particular constant of C is a (defined) mem-
ber of its sort.

By a theorem called the theory interpretation theorem (see [10]), T is a theory
interpretation from 7 to 7" if each of its obligations is a theorem of T'.

Theory interpretations are used extensively in IMPS in a variety of ways.
The following are brief descriptions of the most important ways they are
used.

5Although the theory interpretations available in IMPS are very general in nature, we
shall restrict our attention to a subclass of theory interpretations which are especially easy
to describe. In the more general case, the image of a sort under the interpretation may
be a unary predicate, representing a subset of some sort of the target theory, rather than
a sort of the target theory, as it is in the case described here. The more general version is
somewhat cumbersome to describe.

13

for every a, b: U, m: Z implication
" conjunction

o not(a = oU)
o not(b = ou)
ol<m

* (a b = b) -o *ext(comb(m, k),a -k bk).

Figure 1: The Binomial Theorem in Commutative Rings

Theorem reuse Mathematicians want to be able to formulate a result in
the most general axiomatic framework that good taste and ease of compre-
hension allow. One major advantage of this approach is that a result proved
in an abstract theory holds in all contexts that have the same structure as
the abstract theory. In IMPs, theory interpretations are used foremost as a
mechanism for realizing this advantage: theorems proved in abstract theo-
ries can be transported via a theory interpretation to all appropriate concrete
structures. For instance, the binomial theorem may be proved in a (suitably
formulated) theory of commutative rings (see Figure 1).' Because the real
numbers form a commutative ring, we can define a theory interpretation from
the commutative ring theory to a theory of the reals. As a consequence, we
can then "install" the usual binomial theorem for the real numbers.

Automatic application of theorems Theorems can be automatically
applied in IMPS in two ways: (1) as macetes (see Subsection 5.3) and (2)
as rewrite rules (see Subsection 5.2). Theorems can be applied both inside
and outside of their home theories. A theorem is applied within a theory T
which is outside of its home theory 7 by, in effect, transporting the theorem
from 'H to T and then applying the new theorem directly within T. The
theorem is transported by a theory interpretation that is either selected or
constructed automatically by the system.

"In this formulation, U is the underlying sort of ring elements, oU is the additive
identity of the ring, e is ring addition and ® is ring multiplication. The operation *ezt

multiplies an integer by a ring element, and means repeated ring addition, while expo-
nentiation means repeated ring multiplication. Figure I is printed exactly as formatted
by the the TEX presentation facility of IMPS. Various switches are available, for instance
to cause connectives to be printed in-line with the usual logical symbols instead of being
written as words with subexpressions presented in itemized format.

14

Polymorphic operators As we noted in Subsection 2.3, constructors and
quasi-constructors are polymorphic in the sense that they can be applied to
expressions of several different types. This sort of polymorphism is not very
useful unless we have results about constructors and quasi-constructors that
could be used in proofs regardless of the actual types that are involved. For
constructors, most of these "generic" results are coded in the form of rules,
as described in Subsection 4.2. Since quasi-constructors, unlike constructors,
can be introduced by IMPS users, it is imperative that there is some way to
prove generic results about quasi-constructors. This can be done by proving
theorems about quasi-constructors in a theory of generic types, and then
transporting these results as needed to theories where the quasi-constructor
is used. For example, consider the quasi-constructor composition (infix o)
defined as follows, for expressions f and g of type 3 -- -y and a -- 3,
respectively:

fog - Ax:a.f(g(x)).

The basic properties about composition, such as associativity, can be proved
in a generic theory having four base types but no constants, axioms, or other
atomic sorts.

Symmetry and duality proofs Theory interpretations can be used to
formalize certain kinds of arguments involving symmetry and duality. For
example, suppose we have proved a theorem in some theory and have noticed
that some other conjecture follows from this theorem "by symmetry." This
notion of symmetry can frequently be made precise by creating a theory
interpretation from the theory to itself which translates the theorem to the
conjecture. As an illustration, let T be a theory of groups where * is a
binary constant denoting group multiplication. Then the translation from
'T to T which takes * to Ax, y. y • x and holds everything else fixed maps
the left cancellation law x * y = x • z D y = z to the right cancellation law
y * x = z * x D y = z. Since this translation is in fact a theory interpretation,
we need only prove the left cancellation law to show that both cancellation
laws are theorems of T.

Parametric theories As argued by Goguen (e.g., in [13] and [141), a flex-
ible notion of parametric theory can be obtained with the use of ordinary
theories and theory interpretations. The key idea is that the primitives of a

15

subtheory of a theory are a collection of parameters which can be instantiated
as a group via a theory interpretation. For example, consider a generic theory
T of graphs which contains a subtheory T' of abstract nodes and edges, and
another theory U containing graphs with a concrete representation. The gen-
eral results about graphs in T can be imported into U by creating a theory
interpretation * from T' to U and then lifting T, in a completely mechanical
way, to a theory interpretation of T to a definitional extension of U. This
use of theory interpretations has been implemented in OBJ3 as well as IMPS.

(For a detailed description of this technique, see [8].)

Relative consistency If there is a theory interpretation from a theory
7 to a theory T', then T is consistent if T' is consistent. Thus, theory
interpretations provide a mechanism for showing that one theory is consis-
tent relative to another. One consequence of this is that IMPS can be used
as a foundational system in which the user is allowed to only use theories
which are known to be consistent relative to a chosen foundational theory
(such as perhaps our theory of real numbers, h-o-real-arithmetic, which
is described in the next subsection).

3.3 Example Theories

The most important theory in IMPS is a theory of higher-order real arithmetic
called h-o-real-arithmetic. The theory contains a specification of the real
numbers as a complete ordered field; the rational numbers and integers are
specified as the usual substructures of the real numbers. The completeness
axiom is formulated as a second-order sentence, which in the TEX output of
IMPS has the form:

for every p : [R, prop] implication
* conjunctiono 3P : R p(3

o3a:R VO:R p(O)DO<a
* for some y : R conjunction

oVO:R p(O)DO<-y
oV 1t':R (VO:R p()DO <)D-1<-Y.

The theory h-o-real-arithmetic is equipped with routines for simplify-

16

ing arithmetic expressions as well as rational linear inequalities (see Subsec-
tion 4.5). These routines allow the system to perform a great deal of low-level
reasoning automatically. The theory contains several defined entities; e.g.,
the natural numbers are a defined sort and the higher-order operators E and
I are defined recursively.

As an encoding of the real numbers, h-o-real-arithmetic is an ex-
tremely useful theory building block. If a theory has h-o-real-arithmetic
as a subtheory, the theory can be developed with the help of a large portion
of basic, everyday mathematics. For example, in a theory of graphs with
real arithmetic, one could introduce the very valuable concept of a weighted
graph in which nodes or edges are assigned real numbers. We imagine that
h-o-real-arithmetic will be a subtheory of almost every theory formulated
in IMPS.

Several theories of abstract mathematical structures have been formu-
lated in IMPS, including theories of monoids, groups, group actions, rings,
and metric spaces. There is a family of "generic theories" for reasoning
about quasi-constructors used to formulate objects such as sets, pairs, and
sequences. These theories usually contain no nonlogical axioms (except for
possibly the axioms of h-o-real-arithmetic); consequently, reasoning is
performed in them using only the purely logical apparatus of LUTINS (and
possibly real arithmetic). We have also developed various theories to support
specific applications of IMPS in the area of software analysis, such as theories
of state machines, abstract syntax, and denotational semantics.

17

Section 4
Theorem Proving

Theorem proving in iMPS is based on two levels of reasoning. Reasoning
at the formula level is largely done automatically by the machine via an
expression simplification routine. Reasoning at the proof structure level is
done by user and the machine interactively. IMPs is designed to make great
use of automated deduction without giving excessive reign to the machine;
machine deduction is always orchestrated and controlled by the user.

IMPS produces formal proofs, but they are very different from the formal
proofs that are described in logic text books. Usually a formal proof is a
tree or graph constructed in a purely syntactic way from axioms, previously
proved theorems, and a small number of low-level rules of inference. Formal
proofs of this kind tend to be composed of a mass of small logical steps.
It is no wonder that humans usually find these proofs to be unintelligible.
In contrast, the steps in an IMPS proof can be very large, and most low-
level inference in the proof is performed by the expression simplification
routine. Since inference is described at a high-level, proofs constructed in
IMPS resemble informal proofs, but unlike an informal proof, all the details
of an IMPS proof are machine checked.

4.1 Deduction Graphs

Every proof is carried out within some formal theory. In the process of
constructing a proof, IMPS builds a data structure representing the deduction,
so that during the proof process the user has great freedom to decide the
order in which he wants to work on different subgoals, and to try alternative
strategies on a particular subgoal. At the end of a proof, this object, called
a deduction graph, can be surveyed by the user or analyzed by software.

The items appearing in a deduction graph are not formulas, but sequents,
in a sense derived from Gentzen [121; see [24] for a discussion of the advantage
of organizing deduction in this way. A sequent consists of a single formula
called the assertion together with a context. The context is logically a set
of assumptions, although the implementation caches various kinds of derived
information with a context. In addition, the implementation associates each

18

context with a particular theory. We will write a sequent in the form F =. A,
where F is a context and A is an assertion.

A deduction graph is a directed graph with nodes of two kinds, represent-
ing sequents and inferences respectively. If an arrow points from a sequent
node to an inference node, then the sequent node represents a hypothesis to
the inference. An inference node has exactly one arrow pointing at a sequent
node, and that sequent node represents the conclusion of the inference. A
sequent node is said to be grounded if at least one arrow comes into it from
a grounded inference node; an inference node is grounded if, for every ar-
row coming into it, the source of the arrow is a grounded sequent node. In
particular, an inference node with no arrows coming into it represents an in-
ference with no hypotheses, and thus "closes" a path in the deduction graph.
It is said to be "immediately grounded." A deduction graph may have one
distinguished sequent node as its goal; it then represents the theorem to be
proved.

This representation of deductions has several advantages. First, because
any number of inference nodes may share a common sequent node as their
conclusion, the user (or a program) may try any number of alternative strate-
gies for proving a given sequent. Second, loops in deduction graphs arise
naturally; they indicate that either of two sequents may be derived from
the other, possibly in combination with different sets of additional premises.
Finally, at the end of a proof, the resulting deduction graph serves as a
transcript for analyzing the reasoning used in the proof, and recollecting the
ideas.

4.2 Building Deduction Graphs

A deduction graph is begun by "posting" the goal node, a sequence node
representing a sequent to be proved. The deduction graph is then enlarged
by posting additional sequent nodes and creating inferences. The building of
a deduction graph usually stops when the goal node is marked as grounded.
Inference nodes are created by procedures called primitive inferences. Prim-
itive inferences provide the only means to add inference nodes to a deduction
graph; there is no way to modify or delete existing inference nodes. Each
primitive inference works in roughly the same way: Certain information is
fed to the primitive inference zero or more new sequent nodes are posted; and

19

finally, an inference node is constructed that links the newly posted nodes
with one or more previously posted nodes.

There are about 30 primitive inferences. Two of the primitive inferences
are special: simplification makes an inference on the basis of simplification
(see Subsection 4.5); macete-application makes an inference by applying
a macete (see Subsection 5.3). Each of the remaining primitive inferences
embody one of the basic laws of LUTINS (or is a variant of simplification).
For example, the primitive inference direct-inference applies an analogue
of an introduction rule of Gentzen's sequent calculus (in reverse), accord-
ing to the leading constructor of the assertion of the input sequent node.
The system also has primitive inferences for beta-reduction, universal gen-
eralization, existential generalization, equality substitution, contraposition,
cut, eliminating iota expressions, extensionality, unfolding defined constants,
definedness assertions, defined-in-sort assertions, raising if-then-else expres-
sions, recognizing tautologies, and for modifying the context of a sequent in
various ways. Although the primitive inferences are available in every theory,
some of them, such as simplification and defined-constant-unfolding
depend on the axioms and theorems in the theory.

It is often inconvenient to call primitive inferences directly. For instance,
defined-constant-unfolding takes, as one of its arguments, a set of paths
to a defined constant that is to be unfolded. However, it can be quite difficult
for a user to directly calculate the paths he is concerned with. This problem is
addressed in IMPS by having a one or more interface procedures corresponding
to each primitive inference. Each interface procedure (1) collects certain
conveniently formulated information, (2) processes this information into a
form appropriate for a particular primitive inference, and then (3) calls the
primitive inference on the processed information. For example, corresponding
to defined-constant-unfolding is an interface procedure that collects a set
of natural numbers, where the number n represents the nth occurrence of the
defined constant to be unfolded. The interface procedure calculates a path
for each natural number and then calls defined-constant-unfolding with
this new information.

20

for every n : Z implication
*O<n

* E 0 6= n7/7 + n6 /2 + n5/2 - n3 /6 + n/42.

Figure 2: The Sum of Sixth Powers

for every f,g :Z -- R implication
" for everyx:Z f(x) <g(x)
* for every m :Z implication
o0<m
o f f(k) < ZUo g(k).

Figure 3: The Monotonicity of Summation

4.3 Strategies

Strategies are procedures that call primitive inferences and interface proce-
dures in useful patterns; they are akin to what are called tactics in some
other systems, such as HOL (151, LCF (161, and Nuprl (5]. We have created a
variety of strategies, both general and theory-specific. Some strategies facili-
tate the application of primitive inferences such as cut, equality substitution,
and existential generalization.

An extremely important strategy is used for proving theorems by induc-
tion. The strategy takes, among other arguments, an inductor which specifies
what induction principle to use, how to apply the induction principle, and
what heuristics to employ in trying to prove the basis and induction step.
IMPS allows the user to build his own inductors; the induction principles are
axioms or theorems of an appropriate form. For example, the induction prin-
ciple for the integers in h-o-real-arithmetic is just the full second-order
induction axiom. The induction strategy is very effective on many theorems
from elementary mathematics; in some simple cases, the strategy can pro-
duce a complete proof (two such formulas are printed in Figures 2-3), while
in other cases it does part of the work and then returns control to the user.
For instance, in the proof of the binomial theorem in commutative rings, the
induction strategy proves the base case but does only a little processing on
the induction step.

IMPS also has a family of "ending" strategies, the most basic of which is
called prove-by-logic-and-simplification. These strategies correspond

21

to statements like "and the theorem follows from the above lemmas" that
are commonly given in informal proofs. They make complicated, but shallow
inferences using lots of logical deduction and simplification. These strategies
have the flavor of the proof search strategies of classic automated theorem
provers; hence, they give IMPS a strong automated, as well as interactive,
theorem proving capability.

4.4 Soundness

We intend, of course, that the user can only make sound inferences in IMPs.

Our scheme for guaranteeing this is rather simple: IMPS allows the user
to modify a deduction graph only by posting sequent nodes or by calling
primitive inferences (either directly or indirectly). Since posting a sequent
node does not effect the inferences encoded in a deduction graph, IMPS will be
sound as long as each primitive inference is sound. The primitive inferences
have been carefully implemented so that there is a high degree of assurance
that they do indeed only make sound inferences. With this scheme, there is
no problem about the soundness of interface procedures and strategies since
they ultimately only affect a deduction graph through the application of
primitive inferences. Hence, our machinery of deduction graphs and primitive
inferences makes a type discipline like ML's unnecessary for assuring that
complex reasoning does not go awry.

4.5 Simplification

Expression simplification is performed by the procedure context-simplify.
This procedure applies to a context r (in a theory T) and an expression e
(of any syntactic type). It uses both theory-specific and general methods to
compute an expression e' such that T and F together entail that e and e' have
the same denotation.' The algorithm traverses the expression recursively; as
it traverses propositional connectives it does simplification with respect to a
richer context. Thus, for instance, in simplifying an implication A D B, A
may be assumed true in the "local context" relative to which B is simplified.
Similarly, in simplifying the last conjunct C of a ternary conjunction A A

7That is, if either e or e' is defined, then both are, and in that case their values are
equal.

22

B A C, A and B may be assumed in the "local context." This strategy is
justified in [24].

The procedure context-simplify is organized according to the top-most
constructor or quas; -constructor of the expression to be simplified. Each
constructor and quasi-constructor has its own simplification routine. A few
constructors have very special routines that make use of information embod-
ied in the axioms and theorems of the context's theory. The routines for the
constructors is-defined and is-defined-in-sort do definedness checking
with the help of the theory's domain-range handler (see Subsection 5.1). Ex-
pressions are simplified with the help of a theory-specific table of procedures.
These procedures include rewrite rules, but in addition, certain algebraic
theories (including h-o-real-arithmetic) make use of special-purpose sim-
plification routines. These routines have been designed so that the simplifi-
cation is done in a language independent way. Another built-in component
of the simplifier is a decision procedure for rational linear inequalities. This
component is also implemented in a language independent way.

A procedure called context-entails? uses context-simplify to check
whether a formula is implied by a context. More precisely, context-entails?
is a predicate that applies to a context F and a formula A which returns the
Lisp value true if context-simplify can reduce A, relative to F, to the
formula called truth. Intuitively, it tests whether the sequent F = A is
recognizable as valid using only trivial reasoning.

The procedures context-simplify and context-entails? are used sys-
tematically in the course of building deduction graphs. For instance, if F
and A satisfy context entailment, then the sequent F = A is considered im-
mediately valid without any further inference. In addition, many kinds of
inference are invariant with respect to context simplification. Hence, if A
and B simplify to the same form relative to F, then the sequent F =. A can
be replaced (in many positions) by F =* B without affecting the integrity of
the deduction graph. This gives our proofs a degree of independence from
the specific syntactic forms of the expressions occurring in them.

Since functions may be partial and terms may be undefined, term sim-
plification in LUTINS must involve a certain amount of definedness checking.
For example, simplifying expressions naively may cancel undefined terms,
reducing an undefined expression such as 1/x - 1/x to 0 which is defined.
In this example, the previous reduction is valid if the context F can be seen
to entail the definedness or "convergence" of lz. In general, algebraic re-

23

ductions of this kind produce a certain number of intermediate definedness
formulas which have to be considered by the simplifier. These formulas are
called convergence requirements.

Despite these apparently stringent restrictions, the IMPS simplifier is able
to work effectively. Although allowing partial functions in theories does in-
troduce difficult problems in keeping track of and checking definedness of
expressions, one of the significant lessons that we have learned from IMPS is
that these difficulties can be overcome.

4.6 Proof Presentation

We are currently developing procedures for presenting proofs that have been
constructed in IMPS. These procedures manipulate either the command his-
tory of a deduction graph or the deduction graph itself with the intention
of highlighting the key steps while suppressing uninteresting details. The
idea is that once a user has created a proof he should be able to create a
presentation of the proof that is appropriate for a particular audience. The
user can thus construct machine-checked proofs that are just as readable as
ordinary informal proofs.

One basic procedure prints on the screen a full description of a given de-
duction graph in ThpX. The procedure creates a ThX file that can also be used
to print out the proof presentation on paper. Another useful procedure gives
a more prescriptive TJEX presentation of a deduction graph by presenting the
deduction graph in terms of the commands (interface procedures and strate-
gies) that were used to construct it. In Section 8, a proof of the Archimedean
property of the real numbers is presented in TW9 using both of these proof
presentation procedures.

24

Section 5
Theory-Supported Reasoning

The logical content of a theory is determined by its language and set of
axioms. As an IMPS object, a theory also has a variety of other characteristics,
such as the sequence of defined constants that have been introduced, and the
sequence of theorems that have been derived so far. This section will discuss
three mechanisms that support theory-specific reasoning, by which we mean
reasoning that is sound only relative to the axiomatic content of particular
theories.

5.1 Reasoning about Definedness

Because LUTINS contains partial functions, it is important to automate, to
greatest extent possible, the process of checking that expressions are well-
defined or defined with a value in a particular sort. This kind of reasoning
must rely heavily on axioms and theorems of the axiomatic theory at issue.
The domain-range handler for a theory stores two primary kinds of informa-
tion about the domain and range of function symbols in the language of the
theory.

* value information: If a theorem is of the form

w x: all ,, ... X,, : a -¢ (X , -,. ,,,f (X ,,..., x ,))

then it characterizes the range of f, and can be used in checking the
definedness of expressions of the form 9(... f(t... , t,) ...).

* definedness information: A sufficient condition for the definedness of
terms involving g is given by a theorem of the form

wX1 : a1,,... ,Xn ; an, -?(X,,.. - ,X) D 9(X1,...,n)1 •

In addition, the domain-range handler keeps a list of everywhere-defined func-
tion symbols. For instance, of the arithmetic operators (considered on the
reals), addition, subtraction, and multiplication are everywhere-defined; only
division and exponentiation require information on definedness.

25

These facts are used in IMPS by an algorithm for checking definedness.
Let r be the relevant context, and let t be the term in question. First, a
variety of simple tests for definedness (using F) are applied. If they do not
succeed, but t is of the form g(t,.. . , t,), and we can (recursively) establish
that t1 , ... , tn are all well-defined, then we consult the domain-range handler.

If g is known to be everywhere-defined, then t is defined. Otherwise, if g
has definedness condition iP(xj,..., xn), we form the new goal V5(tj,..., tn).
Moreover, for each subterm t, that is of the form f(t,...,t) and has
a value condition 0, we add 0(t',...,tf(t....,)) to r, thus forming
an expanded context F'. Finally, we call context-entails? on r' and4¢(t,,. .. t)

A similar algorithm is used to check whether an expression is defined with
a value in a particular sort, using another kind of information also maintained
in the domain-range handler. This is sort-definedness information. A formula
of the form

is used as a sufficient condition for g to be defined with a value in a particular
sort a.

5.2 Transforms

Each theory contains a table with information used by the simplifier. This
table is organized as a hash table of procedures (called transforms) each of
which will transform an expression in a sound manner. Look-up in this table
is done by using constructor and first lead constant as keys. Rewrite rules
are implemented in this way, as are algebraic simplification procedures that
would be impractical to represent as rewrite rules.

In IMPS some of the transforms can be generated in a uniform way, in-
dependently of the specific constants which play the role of the algebraic
operations. This means that the simplifier can be crafted to provide par-
ticular forms of simplification, when the constants have certain algebraic
properties. For instance, algebraic simplification for real arithmetic and for
modular arithmetic are derived from the same entity, called an algebraic pro-
cessor. An algebraic processor is applied by establishing a correspondence
between the operators of the processor (e.g., the addition and multiplica-
tion operators) and specific constants of the theory. Certain operators need

26

not be used; for instance, modular arithmetic in general does not have a
division operator. Depending on the correspondence between operators and
constants, the algebraic processor generates a set of formulas that must be
theorems in the theory in order for its manipulations to be correct.

5.3 Macetes
In IMPS we have used the name macete (in Portuguese, a macete is a clever
trick) to denote user-definable extensions of the simplifier which are under
direct control of the user. They operate at a lower level than what we call
strategies (see Subsection 4.3), but share an affinity to what are called tactics
in some other systems. Formally, a macete is a function which takes as
arguments a context and an expression and returns an expression. Macetes
are used to apply a theorem or a collection of theorems to a sequent in
a deduction graph. Individual theorems are applied by theorem macetes
built automatically when a theorem is installed in a theory. Compound
macetes are constructed from theorem macetes, some special macetes such as
beta-reduce and simplify, and other compound macetes using a few simple
macete constructors, which are just functions from macetes to macetes. This
provides a simple mechanism for applying lists of theorems in a manner which
is under direct user control.

One kind of theorem macete based on straightforward matching of ex-
pressions is called an elementary macete. An expression e matches a pattern
expression p if and only if there is a substitution a such that a applied to
p is a-equivalent to e. Though any kind of theorem can be used to gener-
ate an elementary macete, for the purposes of this exposition, let us assume
the theorem is the universal closure of a conditional equality of the form
s D P1 = P2. When applied to a context-expression pair (C, e), the macete
works as follows. The left-hand side p, is matched to e; if this matching
fails, then the macete simply returns e. If the matching succeeds, then the
resulting substitution a is applied to the formula s. If the resulting formula
is entailed by the context C, then the macete returns the result of applying
the substitution a to the right-hand side p2 of the original theorem. (This
mechanism is described in more detail in [34].) Elementary macetes are used
to apply a theorem within its home theory.

Another kind of theorem macete is called a transportable macete. It is
based on a much more interesting kind of matching we call translation match-

27

ing, which allows for inter-theory matching of expressions. A translation
match is essentially a two-fold operation consisting of a theory interpreta-
tion and ordinary matching. An expression e is a translation match to a
pattern expression p if and only if there is a theory interpretation 4 and
a substitution a such that a applied to the translation of p under 4 is a-
equivalent to e. Apart from using translation matching instead of ordinary
matching, transportable macetes work in much the same way as elementary
macetes. Transportable macetes are used to apply a theorem outside of its
home theory.

28

Section 6
Applications

The development of IMPS is currently being directed toward two applica-
tion areas: mathematical analysis and software verification.

6.1 Mathematical Analysis

The development of IMPS has been guided, in large part, by our attempts
to prove theorems in mathematical analysis-both theorems about the real
numbers and theorems about more abstract objects such as continuous func-
tions from one metric space to another. Mathematical analysis has tradition-
ally served as a ground for testing the adequacy of formalizations of math-
ematics, because analysis requires great expressive power for constructing
proofs. Nonetheless, surprisingly little has been done in the way of applying
automated deduction to analysis (see Bledsoe's discussion [2J).

With partial functions, higher-order operators, and subtypes, LUTINS is
well-suited as language for analysis. The value of having a natural way
of dealing with partial functions in the development of analysis cannot be
overestimated. Partial functions abound in analysis (as they do in most areas
of mathematics), and many elegant theorems of analysis completely lose their
elegance when they are expressed in a language having only total functions.
Moreover, many of the important operators of analysis, such as the integral
of a function and the limit of a sequence, are higher-order partial functions.

We have proved a variety of results leading up to a proof of the binomial
theorem in commutative rings, including the combinatorial identity and var-
ious facts about E and II. We have also proved in a theory of two metric
spaces that the image of a connected set under a continuous mapping is itself
connected (see [11]). These proofs are noteworthy because they correspond
closely to standard proofs and because they are constructed by calling only
a small number of commands.

29

6.2 Software Verification

We also believe that IMPS is well-suited to certain kinds of software verifica-
tion. For instance, some approaches to specifying and verifying concurrent
programs make use of traces or acceptance trees [20, 19]. These sequence-like
or tree-like objects are easily formalized as partial functions on appropriate
domains, and the operations and predicates used by the semantics can then
be formalized as objects of the next higher type.

In addition, we have designed IMPS to be suited for reasoning about de-
notational definitions of programming languages. The standard approach to
denotational semantics [33, 29] is rife with objects of higher type and expres-
sions built using A. Hence, a logic based on simple type theory seems highly
appropriate to mechanizing reasoning in this area.

We are currently using IMPS on compiler verification for the Scheme pro-
gramming language [27], which has a semantic definition in the denotational
style. We have developed a theory of abstract syntax for Scheme and the
target language of the compiler, together with a theory of the domains used
in the denotational definitions of the two languages. Other applications are
also underway.

30

Section 7
Implementation Notes

The IMPS program is written in T [28, 22], a sophisticated version of
Scheme. The user interface is implemented using the subordinate process
mechanism of GNU Emacs [321, which allows a program executing in T to
issue commands to Emacs, and vice versa. Thus IMPS can request that
formulas and derivations be presented to the user, specially formatted by
Emacs, while conversely the user can frame his requests to IMPS using the
interactive machinery of Emacs.

7.1 Syntax and Expressions

IMPS distinguishes between multiple user-oriented syntaxes, a basic s-expres-
sion syntax, and the logical expression itself. The logical expression is a
T object with a great deal of cached information; logical expressions are
uniquely instantiated in the system in the sense that the same abstract log-
ical expression is never represented in two chunks of memory.8 Translation
between logical expressions and the s-expression syntax has a simple recur-
sive character. Only this s-expression syntax is considered a basic part of
IMPS. The s-expression syntax is then used as a basis to translate into vari-
ous forms that are more appealing to users. For instance, we frequently use
a string form akin to MACSYMA's representation of formulas; to inspect com-
plex formulas we generate TEX code from the s-expression form and preview
the results.

SMany other entities, such as contexts and sequents, are also uniquely instantiated in
this sense.

31

Section 8
Example: the Archimedean Property

Ideally, we would like to give an example of how a proof is developed
in IMPS, but unfortunately the "look and feel" of the IMPS user interface is
quite difficult to capture in a conventional report such as this. Instead, we
will present an example of the final product of the IMPS proof process. More
specifically, we will take a deduction graph which proves that the real num-
bers satisfy the Archimedean property in the theory h-o-real-arithmetic
and display it in TEX using IMPS proof presentation procedures.

We are interested in the following formula

Va: R. 3n: Z. a < n,

which says that the real numbers are Archimedean, i.e., that every real num-
ber is dominated by some integer. The standard proof of this formula is by
contradiction: Assume the negation of the formula; that is, assume there is
some real number a greater than every integer. Hence, a is an upper bound
for the set of integers, and so, by the completeness axiom of the real num-
bers, the integers have a least upper bound. However, since the integers are
closed under addition of 1, the set of upper bounds of the integers must be
closed under subtraction of 1, which contradicts the existence of a least upper
bound of the integers.

This informal proof sketch can be straightforwardly formulated in IMPS by
a deduction graph consisting of 22 nodes. Below are two TEX presentations of
the proof contained in the deduction graph-one prescriptive and the other
descriptive. The prescriptive presentation is given in terms of the commands
(interface procedures and strategies) used to construct the deduction graph,
while the descriptive presentation shows the full structure of the deduction
graph. Both presentations were automatically generated from the deduction
graph. The comments within square brackets have been added by hand.

It is important to keep in mind that this example illustrates only a very
small part of the IMPs theorem proving mechanism. In fact, only seven dif-
ferent commands and nine primitive inferences were used in the construction
of the deduction graph, and macetes were not used at all.

32

8.1 Prescriptive Presentation

Theorem
for everya:R for somen:Z a<n.

PROOF: Apply the strategy INSTANTIATE-THEOREM to the claim of the theorem. [Instan-
tiate the completeness axiom of h-o-real-arithmetic with the predicate A{x : Z Itruth),
and then take the result as an assumption.] This yields the following new subgoal:

Sequent 2.
Assume:

implication
" conjunction

o nonvacuous?{A{x : Z I truth}}
o3a:R VO:R A{x:Zltruth} (O)DO<a

" for some y : R conjunction
oVO:R A{x:Zltruth) (0)D0<Y
oV7 :R (VO:R A{z:Zltruth} (0)D0<-i)Dy:<y1.

ThenVa:R 3n:Z a<n.

Apply the interface procedure CONTRAPOSITION to the previous sequent. This [sets up a
proof by contradication and] yields the following new subgoal:

Sequent 7.
Assume 3a: R Vn: Z not(a < n). Then:

conjunction
" for some a : R for every 0 : R implication

o A{z:ZItruth) (0)
o0<a

" nonvacuous?{fA{z : Z ltruth}}
" for every 7 : R disjunction

o 30:R A{z :Zltruth} (0) A not(O < 7)
o3-,1 :R (VO:R A{ x: Zltruth} (0) D <)A not(7yi).

33

Apply the interface procedure ANTECEDENT-INFERENCE to the previous sequent [in order
to fix an a satisfying the assumption of the sequent]. This yields the following new subgoal:

Sequent 8.
The conclusion of sequent 7 holds, provided Vn : Z not(a < n).

Apply the interface procedure SIMPLIFICATION to the previous sequent. This yields the
following new subgoal:

Sequent 9.
Under the same assumptions as sequent 8, we have:

conjunction
" for some a : R for every 0 : R implication

oOj. Z
o<a

" for every - : R disjunction
o3:R OJZAno(8<y)
o37 :R (VO:R OIZDO<Tt)Anot(7<_.- 1).

Apply the strategy DIRECT-INFERENCE-STRATEGY to the previous sequent. This yields
the following new subgoals:

Sequent 10.
Under the same assumptions as sequent 8, we have:

for some o : R for every 0 : R implication
.e Z
.9< a.

34

Sequent 13.

Assume:

0. for every 0 : R implication
*0 1 Z
* < <Y.

1. for some a R for every 0 : R implication
*01Z
.0< a.

2. for every n :Z not(a < n).

Then:

for some -l : R conjunction
" for every 0 : R implication

081 Z
o 0 <-J

" not('/<_ -1).

Apply the strategy INSTANTIATE-EXISTENTIAL to the sequent 10. [Instantiate a with a.]
This yields the following new subgoal:

Sequent 14.
Under the same assumptions as sequent 8, we have:

for every 0 : R imp!ication
*0 Z
* < a.

Apply the interface procedure SIMPLIFICATION to the previous sequent [which immediately
grounds the sequent]. Next, use the strategy INSTANTIATE-EXISTENTIAL applied to the
sequent 13. [Instantiate -1 with - - 1.] This yields the following new subgoal:

35

Sequent 16.
Under the same assumptions as sequent 13, we have:

conjunction
" for every 90 : R implication

o 0 1 Z
o 00< f -1

" not(7 <7 - 1).

Apply the [ending] strategy PROVE-BY-LOGIC-AND-SIMPLIFICATION to the previous se-
quent [which grounds the sequent]. This completes the proof.

8.2 Descriptive Presentation

Theorem
for everya: R for somen:Z a<n.

PROOF: Inference based on the primitive inference CUT reduces sequent 1 to the subgoal
sequents 2 and 3. [Note: The assumption of sequent 2 is the completeness axiom of
h-o-real-arithmetic instantiated with the predicate A{z : Z I truth}.]

Sequent 2.
Assume:

implication
* conjunction

o nonvacuous?{Afz : Z Itruth}}
o3a:R VO:R A{z:Zltruth} (O)DO<a

" for some 7 : R conjunction
oVO:R A{z:Zltruth) (O)O<-
oV 1 :R (V0:R A{z:Zltruth} (0)D0<7t)D7<t1 .

ThenVa:R 3n:Z a<n.

36

Sequent 3.
implication

" conjunction
o nonvacuous?{A{z : Z I truth}}
o3a:R VO:R A{z:Zltruth} (O)DO<a

" for some -: R conjunction
oVO:R A{z:Zltruth} (O)D <7
oV-fi:R (VO:R A{z:Zltruth} (O)DO<"7)D-Y<71.

Inference based on the primitive inference CONTRAPOSITION reduces sequent 2 to

Sequent 7.
Assume 3a : R Vn: Z not(a < n). Then:

conjunction
" for some a : R for every 0 : R implication

o A{z:Zltruth} (0)
oO<ca

• nonvacuous?{fAz : Z ltruth}}
" for every 7 : R disjunction

o30: R A{z:Zltruth) (O)Anot(O<7)
o3-fy:R (V0:R x{z:Zltruth} (0)D9<y1)Anot(-7<y-).

Inference based on the primitive inference FOR-SOME-ANTECEDENT-INFERENCE reduces
sequent 7 to

Sequent 8.
The conclusion of sequent 7 holds, provided Vn : Z not(a < n).

37

Inference based on the primitive inference SIMPLIFICATION reduces sequent 8 to

Sequent 9.
Under the same assumptions as sequent 8, we have:

conjunction
" for some a : R for every 0 : R implication

o00 eZ
o0<a

" for every -y : R disjunction
o30:R OlZAnot(0<-)
o3-y :R (VO:R 0JZD0<-yi)Anot(y<5y1).

Inference based on the primitive inference CONJUNCTION-DIRECT-INFERENCE reduces se-
quent 9 to the subgoal sequents 10 and 11.

Sequent 10.
Under the same assumptions as sequent 8, we have:

for some a : R for every 0 : R implication
*tOI Z
*0<a.

Sequent 11.
Assume:

0. for some a : R for every 0 : R implication
*OlZ
, <a.

1. for every n :Z not(a < n).

38

Then:

for every - : R disjunction
" for some 0 : R conjunction

oOlZ
o not(O < 7)

" for some 71 : R conjunction
oVO:R 0 ZD0<y1
o not(y < 71).

Inference based on the primitive inference EXISTENTIAL-GENERALIZATION reduces sequent
10 to the subgoal sequents 14 and 15.

Sequent 14.
Under the same assumptions as sequent 8, we have:

for every 0 : R implication
.0 Z

0 < a.

Note that this sequent is immediately grounded by SIMPLIFICATION.

Sequent 15.
Under the same assumptions as sequent 8, we have:

a IR.

Note that this sequent is immediately grounded by SIMPLIFICATION.

39

Inference based on the primitive inference FOR-ALL-DIRECT-INFERENCE reduces sequent
11 to

Sequent 12.
Under the same assumptions as sequent 11, we have:

disjunction
" for some 0 : R conjunction

o0lZ

o not(O <)
" for some 71 : R conjunction

oVO:R 0IZD0< 7 1
o not(-y < 71).

Inference based on the primitive inference DISJUNCTION-DIRECT-INFERENCE reduces se-
quent 12 to

Sequent 13.
Assume:

0. for every 0 : R implication.0IZ
*0<7.

1. for some a : R for every 0 • R implication
*OIZ

0< a.

2. for every n :Z not(a < n).

Then:

for some 7 : R conjunction
" for every 0 : R implication

o0lZ
o0< 571

" not(7 < 71).

Inference based on the primitive inference EXISTENTIAL-GENERALIZATION reduces sequent
13 to the subgoal sequents 16 and 17.

40

Sequent 16.

Under the same assumptions as sequent 13, we have:

conjunction
* for every 00 : R implication

0 00 1. z
o 00 <7- 1

" not(- < 7Y - 1).

Sequent 17.

Under the same assumptions as sequent 13, we have:

- I I R.

Note that this sequent is immediately grounded by SIMPLIFICATION.

Inference based on the primitive inference SIMPLIFICATION reduces sequent 16 to

Sequent 18.
Under the same assumptions as sequent 13, we have:

for every 0o : R implication
* 0o Z
0 1+00 <7.

Inference based on the primitive inference FOR-SOME-ANTECEDENT-INFERENCE reduces
sequent 18 to

Sequent 19.
Assume:

0. for every 0 : R implication
.01 Z
.0 <.

41

1. for every 0 R implication
.01Z
* 0<7.

2. for every n Z not(a < n).

Then:

for every 0o : R implication
* 00 Z
* 1+00 <.

Inference based on the primitive inference FOR-ALL-DIRECT-INFERENCE reduces sequent
19 to

Sequent 20.
Under tl- e sarn assumptions as sequent 19, we have:

implication
* 0o0 Z

S1 +00 <7.

Inference based on the primitive inference IMPLICATION-DIRECT-INFERENCE reduces se-
quent 20 to

Sequent 21.
Assume:

0. 0o Z.
1. for every 0 : R implication

* Z
*0< .

2. for every 0 : R implication
* 1 z
.0<7.

3. for every n :Z not(a < n).

Then:
1 +9 o 7.

42

Inference based on the primitive inference BACKCHAIN-INFERENCE reduces sequent 21 to

Sequent 22.
Under the same assumptions as sequent 21, we have:

l+o001 Z.

Note that this sequent is immediately grounded by SIMPLIFICATION.
Inference based on the primitive inference UNIVERSAL-INSTANTIATION reduces sequent

3 to the subgoal sequents 4 and 5.

Sequent 4.
for every p: R -- * implication

" conjunction
o nonvacuous?{p}
o3a:R V:R p(O)DO<a

" for some I : R conjunction
oVO:R p(0)DO<
oV7:R (VO:R p(O)D0<-Y1)D-<71 .

Sequent 5.
A{z : Z lI truth} 1 [R,*].

Note that this sequent is immediately grounded by SIMPLIFICATION.
Inference based on the primitive inference THEOREM-ASSUMPTION reduces sequent 4

to

Sequent 6.
Assume:

for every p : R - • implication

" conjunction
o nonvacuous?{p}
o"3a:R V0:R p(O) DO<c

" for some y : R conjunction
oV0:R p(0):D,<y
oV--1 :R (V0:R p(0)D0<-i)D7Y<7 1 .

43

Then:

for every p: R -- • implication
" conjunction
o nonvacuous?{p}
o3a:R VO:R p(O)DO<0

" for some y : R conjunction
oVG:R p(O) O<-y
oV'y:R (V:R p(0)Do<7) 7<71.

Note that this sequent is immediately grounded by SIMPLIFICATION. [This completes the
proof.]

44

Section 9
Conclusion

IMPS is an interactive proof development system intended to support
standard mathematical notation, concepts, and techniques. In particular, it
provides a flexible logical framework in which to specify axiomatic theories,
prove theorems, and relate one theory to another via inclusion and theory in-
terpretation. Theory interpretations, which are extremely useful for reusing
theorems and theories, are used extensively in IMPS. The IMPS logic is a con-
ceptually simple, but highly expressive version of higher-order logic which
allows partially defined (higher-order) functions and undefined terms. The
simple types hierarchy of the logic is equipped with a very effective subtyping
mechanism. Proofs are developed in IMPS with the aid of several different de-
duction mechanisms, including expression simplification, automatic theorem
application, and a user-extensible mechanism for orchestrating applications
of inference rules and theorems. The naturalness of the logic and the high
level of inference in proofs make it possible to develop machined-checked
proofs in IMPS that are very intuitive and readable. Finally, the unique and
congenial IMPS user interface enables the user to control and understand the
deduction process, and to inspect and present proofs using TEX.

45

List Of References

1. P. B. ANDREWS, S. ISSAR, D. NESMITH, AND F. PFENNIG, The
TPS theorem proving system (system abstract), in 10th International
Conference on Automated Deduction, M. E. Stickel, ed., vol. 449 of
Lecture Notes in Computer Science, Springer-Verlag, 1990, pp. 641-
642.

2. W. W. BLEDSOE, Some automatic proofs in analysis, in Automated
Theorem Proving: After 25 Years, American Mathematical Society,
1984.

3. G. S. BOOLOS, On second-order logic, Journal of Philosophy, 72 (1975),
pp. 509-527.

4. L. CARDELLI AND P. WEGNER, On understanding types, data abstrac-
tion, and polymophism, Computing Surveys, 17 (1985), pp. 471-522.

5. R. L. CONSTABLE, S. F. ALLEN, H. M. BROMLEY, W. R. CLEAVE-

LAND, J. F. CREMER, R. W. HARPER, D. J. HOWE, T. B.
KNOBLOCK, N. P. MENDLER, P. PANANGADEN, J. T. SASAKI, AND
S. F. SMITH, Implementing Mathematics with the Nuprl Proof Devel-
opment System, Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

6. T. COQUAND AND G. HUET, The calculus of constructions, Informa-
tion and Computation, 76 (1988), pp. 95-120.

7. H. B. ENDERTON, A Mathematical Introduction to Logic, Academic
Press, 1972.

8. W. M. FARMER, Abstract data types in many-sorted second-order logic,
Tech. Rep. M87-64, The MITRE Corporation, 1987.

9. - , A partial functions version of Church's simple theory of types,
Journal of Symbolic Logic, 55 (1990), pp. 1269-91.

10. -, A simple type theory with partial functions and subtypes. Forth-
coming.

47

11. W. M. FARMER AND F. J. THAYER, Two computer-supported proofs
in metric space topology. Forthcoming.

12. G. GENTZEN, Investigations into logical deduction (1935), in The Col-
lected Works of Gerhard Gentzen, North Holland, 1969.

13. J. A. GOGUEN, Reusing and interconnecting software components,
Computer, 10 (1986), pp. 528-543.

14. - , Principles of parameterized programming, tech. rep., SRI Inter-
national, 1987.

15. M. GORDON, HOL: A proof-generating system for higher-order logic,
in VLSI Specification, Verification and Synthesis, Kluwer, 1987, pp. 73-
128.

16. M. GORDON, R. MILNER, AND C. P. WADSWORTH, Edinburgh LCF:
A Mechanised Logic of Computation, vol. 78 of Lecture Notes in Com-
puter Science, Springer Verlag, 1979.

17. J. D. GUTTMAN, A proposed interface logic for verification environ-
ments, Tech. Rep. M91-19, The MITRE Corporation, 1991.

18. L. HENKIN, Completeness in the theory of types, Journal of Symbolic
Logic, 15 (1950), pp. 81-91.

19. M. HENNESSY, Algebraic Theory of Processes, MIT Press, 1988.

20. C. A. R. HOARE, Communicating Sequential Processes, Prentice-Hall
International, Englewood Cliffs, NJ, 1985.

21. W. A. HOWARD, The formulae-as-types notion of construction, in To
H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, Academic Press, 1980, pp. 479-490.

22. D. KRANZ, R. KELSEY, J. REES, P. HUDAK, J. PHILBIN, AND
N. ADAMS, ORBIT: An optimizing compiler for scheme, SIGPLAN No-
tices, 21 (1986), pp. 219-233. Proceedings of the '86 Symposium on
Compiler Construction.

48

23. P. MARTIN-L6F, Constructive mathematics and computer program-
ming, in Logic, Methodology, and Philosophy of Science VI, L. J. Co-
hen, J. Los, H. Pfeiffer, and K. P. Podewski, eds., Amsterdam, 1982,
North-Holland, pp. 153-175.

24. L. G. MONK, Inferenc, rules using local contexts, Journal of Auto-
mated Reasoning, 4 (1988), pp. 445-462.

25. Y. N. MOSCHOVAKIS, Elementary Induction on Abstract Structures,
North-Holland, 1974.

26. - , Abstract recursion as a foundation for the theory of algorithms, in
Computation and Proof Theory, Lecture Notes in Mathematics 1104,
Springer-Verlag, 1984, pp. 289-364.

27. J. REES AND W. CLINGER EDS., Revised' report on the algorithmic
language scheme, ACM SIGPLAN Notices, 21 (1986), pp. 37-79. a

28. J. A. REES, N. I. ADAMS, AND J. R. MEEHAN, The T Manual,
Computer Science Department, Yale University, 5th ed., 1988.

29. D. A. SCHMIDT, Denotational Semantics: A Methodology for Language
Development, Wm. C. Brown, Dubuque, 10, 1986.

30. S. SHAPIRO, Second-order languages and mathematical practice, Jour-
nal of Symbolic Logic, 50 (1985), pp. 660-696.

31. J. R. SHOENFIELD, Mathematical Logic, Addison-Wesley, 1967.

32. R. M. STALLMAN, GNU Emacs Manual (Version 18), Free Software
Foundation, 6th ed., 1987.

33. J. E. STOY, Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory, MIT Press, Cambridge, MA, 1977.

34. F. J. THAYER, Obligated term replacements, Tech. Rep. MTR-10301,
The MITRE Corporation, 1987.

49

