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Matrix Cracking Initiated by Fiber Breaks in Model Composites

A. N. Gent and C. Wang

Institute of Polymer Engineering

The University of Akron, Akron, OH 44325-0301, U.S.A.

Abstract

Fracture of resin in a composite material can be initiated by

a tensile break in a fiber. This process has been investigated

for a simple model composite, consisting of two inextensible rods

placed along the axis of a cylindrical elastic block and touching

in the center. The rods represent a broken fiber. Energy

release rates G were calculated by FEM for a circular crack

growing outwards from the point where the rod ends separated as

they were pulled apart. Results are compared with experimental

observations on cracking of a silicone rubber cylinder containing

two steel rods. It was found that a crack grew outwards under

increasing load until its radius reached a certain size,

approximately half way to the surface of the resin cylinder. At

this point G reached a minimum value and then increased.

Simultaneously, the crack accelerated and the sample broke.

Forces required to propagate the crack were successfully

predicted by linear elastic fracture mechanics at all stages of

crack growth and for a wide range of fiber and sample radii. In

particular, good agreement was obtained with the maximum force
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that the model system could support, i.e., the breaking load.

When the sample was surrounded by a rigid tube, representing

neighboring fibers surrounding the broken one, growth of a crack

required an increasing load at all stages. The sample finally

fractured when the broken fiber pulled out with resin still

attached to it. Application of these results to unidirectional

fiber-reinforced materials is discussed.
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1. Introduction

Fiber-reinforced composites are light-weight and strong

materials, with several possible modes of rupture. At present

there is no satisfactory theory relating strength of composites

to properties of the constituent materials, even in the simplest

cases. Two models of a composite with continuous fiber

reinforcement are employed here to study the consequences of a

fiber break. The first model is shown in Figure la. Two

identical steel rods were embedded along the axis of a

cylindrical block of silicone rubber resin, with their ends in

contact. They were treated with a primer to give good bonding

to the silicone rubber. Because of the great difference in

Young's modulus of steel and silicone resin, the rods can be

considered to be inextensible in comparison with the elastic

matrix. Thus, when the sample is put under a tensile load all

of the strain energy is stored in the matrix resin, assumed for

simplicity to be linearly-elastic.

The second model was used to investigate the effect of

neighboring fibers on a crack propagating outwards from the

initial break. It is shown in Figure lb. It differs from the

first model by the addition of a rigid tube enclosing the resin

cylinder and bonded to it. The sample thus consists of a tube

of silicone resin, bonded to a broken rigid fiber at its center,

and to a concentric rigid tube surrounding it. The external
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tube represents the ring of parallel fibers surrounding a given

fiber in a multi-fiber composite. Strong bonding between the

resin, the central fiber, and the external tube, ensured that

adhesive failures did not occur in the experiments.

A Griffith fracture criterion is applied, as follows (1):

- aW/aAle Gc (1)

where W is elastic strain energy stored in the system (in the

present case, in the resin only) A is crack area and G is~-C

fracture energy of the resin. The derivative is evaluated at

constant length 8, and hence displacement, so that the applied

force does no further work as the crack grows. Thus, energy

required for fracture is obtained solely from elastically-stored

energy. The left-hand side of Equation 1, termed the strain

energy release rate, is denoted G hereafter.

Equation 1 gives a necessary condition for a crack to

propagate: the rate of release of strain energy must reach a

critical value. In some cases crack growth will be stable,

i.e., the applied load must be increased to grow the crack

further. In other cases growth is unstable, resulting in

catastrophic failure. The criterion for stable growth is:

dG/dA < 0, at G = Gc .  (2)
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When a fiber breaks, two types of failure may ensue. A

debond may propagate along the fiber/matrix interface in the form

of a cylindrical crack running in the fiber direction, or a

planar (circular) crack may grow outwards into the matrix

material at right angles to the fiber. Which mode of failure

takes place depends on the geometry and mode of loading of the

specimen and the relative strength of adhesion compared to

strength of the resin. If adhesion is relatively weak, a crack

will propagate along the interface as a debond. On the other

hand, if adhesion is strong, then a perpendicular crack will grow

outwards into the resin - which is the case considered here.

Debonding of fibers, "pull-out", and repeated fracture of

fibers as a result of progressive failure of the bond between

fiber and resin, have been examined elsewhere (2-5). A critical

force is required to initiate an interfacial crack at the fiber

end. Values were calculated from a Griffith fracture criterion,

Equation 1, with G replaced by a fracture energy for rupture of-C

the interfacial bond , denoted G a (6). (Values of G a are

generally smaller than G .)

As a fiber is debonded, frictional resistance to pull-out

increases and the force needed to propagate the debond increases

continuously with the length debonded (3). This effect can lead

to repeated breaking of the fiber, termed "fragmentation". The

frictional effect has been minimized in other work by using

"push-out", instead of "pull-out", mechanics (4). In practice,
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the main parameter which determines whether debonding will occur

or not in a given composite is G a, the energy required to debond

unit area of fiber-matrix interface.

Compared with fiber pull-out, the mechanics of resin cracking

have received little attention. Results for two extreme cases

are well-known. Growth of a small penny-shaped crack of radius

a in a homogeneous material has been analyzed by Sack (7). The

critical far-field tension stress is:

a2 = iEG c/3a. (3)

The corresponding problem for a circular debond located at

the interface between an elastic half-space and a rigid substrate

was solved by Mossakovskii and Rybka(8). The result is similar:

2a = 2rEG c/3a. (4)

the additional factor of 2 arising from the presence of

elastically-stored energy in only one-half of the composite.

These examples can be regarded as extreme cases of matrix

cracking (2). They both predict catastrophic growth of the

initial crack when the critical condition is achieved, because

the stress required to propagate a crack decreases as the crack

radius increases. The more complex case when a broken fiber is

the initiator of a crack has been considered by Mullin et al.(9).
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They considered a single inextensible fiber embedded in an

elasto-plastic resin and found that either one circular crack,

two inclined-conical cracks, both, or neither, formed at the

break and grew into the matrix. Which process occurred

depended on the particular combination of fiber and matrix

considered. Mahishi et al used a finite element model to

examine crack propagation in an elasto-plastic matrix material

(10,11). They found that the stress intensity factor increased

with crack radius up to a certain point. Thereafter, unstable

crack growth was predicted to occur.

A greater release of strain energy may be obtained for a

cylindrical crack that propagates along the fiber, in the resin

but as close to the fiber as possible, rather than for a circular

crack growing at right angles to the fiber. This is probably

the case when the fiber radius is small in comparison to the

radius of the cylinder of resin (2). We are concerned here only

with growth of cizcular cracks, as observed when the fiber radius

is relatively large compared to that of the resin cylinder

qu-rounding it and the bonding between fiber and resin is strong.

Experimental measurements of crack growth and breaking force

have been carried out for the simple two-rod model, using various

ratios of rod radius to resin cylinder radius. The results are

compared with theoretical predictions from FEM calculations.

The objectives of the study are to elucidate the principal

factors affecting resin cracking initiated by a broken fiber and
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to predict the strength of a model fiber composite when this is

the mode of failure. The analysis is also relevant to the

widely-used "tragmentation test" for adhesion between resin and

fiber (12-15).

2. Stress intensity factors and strain energy release rate

The stress field around a broken fiber end is quite complex

and analytical solutions are rather difficult to obtain. Finite

element numerical techniques have been widely used, therefore, to

determine crack tip stress fields and stress intensity factors.

In some cases special crack tip elements were employed to deal

with the stress singularity at the crack tip (16). But stress

intensity factors can also be derived from energy release rates,

as described below. Finite element methods were used here to

derive values of energy release rate G for various sizes of crack

in the resin, from the effect of a crack on the sample

compliance. Dixon (17) showed that the stress field in the

immediate vicinity of the crack tip makes relatively little

contribution to the overall displacement of the system, and hence

to the compliance, so that excessive refinement of the mesh at

the crack tip is not necessary. This is the principal advantage

of energy methods as employed here.

The first step is to calculate the elastic compliance C of

specimens containing cracks of increasing radius a. Strain

energy release rates associated with the creation of new crack

8



surface are then obtained by numerical differentiation of the

relation between compliance and crack area A (18):

G = (F 2/2)aC/aA = (F 2/4la)aC/aa. (5)

The following procedure was employed:

First, for a given value of crack radius a, the displacement 6

was calculated for a given tensile force F applied to the outer

ends of the rods. In this way the compliance C was determined,

C = 6/f. Then, by incrementing the crack radius, the rate of

change of compliance with crack radius was evaluated and hence G

from Equation 5. Finally values of the applied force F at which

a given crack would grow were calculated from Equation 5 by

replacing the value of G with its critical value, the fracture

energy G c of the resin. Hence:

2F = 47aG c/(aC/aa). (6)

In linear elastic fracture mechanics, the relation between

energy release rate and stress intensity factor K in plane strain

is (18)

K2 = EG/(I - V ) (7)

where E is Young's modulus and v is Poisson's ratio of the resin.
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The dimensionless stress intensity factor Y is defined by (18)

K = Yav/-a (8)

2where a is the far-field stress, a = F/rR 0, where R is the

radius of the resin block. Values of K and Y can thus be

calculated from G by means of Equations 7 and 8, and values of

breaking force F b obtained on substituting a critical value for

K, denoted K c in Equation 8. Thus, exactly equivalent

calculations can be carried out in terms of stress intensity

and its critical value Kc in place of strain energy release rate

G, with a critical value G

3 Details of experimental procedure and FEM calculations

3.1 Preparation of test-pieces and properties of the resin

Transparent silicone resin (Sylgard S-184, Dow Corning

Corporation) containing 10% by weight of curing agent(Sylgard

C-184, Dow Corning Corporation) was used as matrix material, and

flat-ended steel rods as fibers. To obtain good bonding to the

resin the cylindrical surfaces of the rods were first polished

with fine emery paper, cleaned with isopropanol and dried.

They were then immersed in Primer 92-023 (Dow Corning

Corporation) for 24 hours. A small amount of partially-cured

resin was used to glue two rods together end-to-end. The joined

rods were then carefully placed along the axis of a plastic tube,
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used as a mold for casting the cylinder of resin. Uncured

silicone resin was poured into the tube to surround and

encapsulate the steel rods. Curing was effected by heating the

assembly for 12 hours at 110 0C. Samples were made with

different combinations of rod radius R. and external radius R of--. -O

the resin cylinder: Ri = 0.435 to 1.16 mm; R = 3.0 and 5.6 mm.

All samples had a length L of 50 mm.

For the second set of experiments, glass tubes were bonded to

the external surface of the cured resin cylinder to simulate the

constraints due to neighboring fibers. The internal and

external radii of the glass tubes were 3 and 4 mm, respectively.

Strong bonding between the silicone resin and glass was obtained

by immersing the tubes in a 50 % solution of adhesive primer in

heptane for 12 hours and then drying them at room temperature

before use. Rods, glued together, were placed along the axis of

the tube, which was then filled with uncured resin. Curing was

effected at room temperature for 7 days to avoid cracking caused

by shrinkage stresses, either at the fiber/resin or tube/resin

interface, that was encountered on cooling from an elevated

curing temperature. Typical dimensions of a specimen were: rod

radius Ri = 0.435 mm, external radius R of the resin cylinder =

3.0 mm, overall length L of cylinder = 50 mm.

Tensile stress-strain relations for the cured silicone

resins were found to be quite linear up to about 30 percent

strain. Young's modulus E was determined from the slope at
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small strains to be 2.8 MPa for samples cured at ll0°C and 0.87

MPa for samples cured at room temperature.

Fracture energies G of silicone resin were determined at

different rates of tear propagation, from measurements of the

average force required to propagate a tear. The results are

plotted in Figure 2 against the rate of tearing. Results for

both curing conditions were approximately the same, even though

the values of tensile modulus were quite different. As for

other viscoelastic materials there is a considerable effect of

tear rate, the value of G increasing from about 180 J/m2 at a-C

rate of 0.8 pm/s to about 330 J/m2 at a rate of 2 mm/s. In

experiments with both models of a composite, crack growth took

place at rates lying in the relatively narrow range: 5 to 25

4m/s. Thus, the relevant value of Gc in the fracture

experiments was 200 to 230 J/m2 .

3.2 Measurement of crack size and sample compliance

Specimens were loaded in tension using an Instron tensile

testing machine equipped with a microscope, video camera and

recorder to study crack growth as the applied tensile load was

increased continuously. When the steel rods were pulled apart,

a crack initiated at the point where they were initially in

contact, and grew transversely across the matrix. Its radius a

was measured as the distance from the axis of the rods to the

crack tip. The relation between load and displacement was
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recorded simultaneously, and the compliance of a specimen

containing a crack of a given radius was derived from the chord

of the displacement-load relation at the appropriate

displacement, as shown in Figure 3. Compliances for various

crack radii were obtained in this way in a single experiment. A

relatively slow rate of stretching, of 8 Wm/s, was employed.

All measurements were carried out at room temperature, about

25°C.

Due to its cylindrical surface, the transparent silicone

resin served as a lens and magnified the size of the crack. The

degree of magnification was approximately constant as the crack

grew, given by the refractive index of the resin, 1.41X (see

Appendix 1). Corrections were made to the observed crack radius

to allow for this magnification.

In contrast, the applied tensile stress, enhanced somewhat by

stress concentrations near the crack tip, caused the resin

cylinder to undergo Poissonian contraction and the crack became

smaller in radius than in the unstressed state. A correction

for the amount of contraction was deduced by FE, as described in

Appendix II. Generally speaking, the effect of magnification on

the apparent crack size was about + 40% and that of Poissonian

contraction was about - 10%.

Figure 3 shows a typical force-displacement relation for a

model composite specimen without external constraints, loaded in

tension. It is linear initially, up to the point B.
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Non-linearity starting at B is attributed to crack propagation.

Thus, the load at B, about 3.0 N, is taken as the force required

to initiate growth of a crack with a radius given by the rod

radius. Then, as the crack grew, the compliance of the specimen

increased continuously.

Linear elastic behavior of a cracked specimen was verified by

stretching a sample with a large-diameter crack already developed

at the rod end, and then unloading the specimen before the crack

started to grow further. A linear relation was obtained between

load and displacement for this cracked specimen, with virtually

no hysteresis between loading and unloading relations.

3.3 Pre-stress due to thermal contraction

A curious feature of the experimentally-determined relations

between load and displacement was a small offset in the initial

portion of the force-displacement curve (region O-A in Figure 3).

In effect, a certain force was required to pull the rods apart

initially. This is attributed to a prestress set up by

differential thermal contraction between the rods and resin as

the specimen was cooled down from curing temperature to room

temperature. As a result, a shrinkage stress developed in the

resin, pulling the rods together. The shrinkage force could be

estimated by extrapolating the linear behavior observed at small

displacements (region A-B) back to the load axis. A residual

force of about 0.9 N was deduced in this way, approximately 8% of
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the maximum load required to break the sample. Figure 4 shows

the variation of residual force with test temperature. It

decreased continuously, becoming zero at 100 0C, close to the

curing temperature, confirming that the source of this anomalous

feature of the load-displacement relation at room temperature was

a compressive pre-load caused by thermal shrinkage of the resin.

In contrast, there was no thermal contraction in the second

composite model because the resin was cured at room temperature

in that case.

3.4 Numerical calculations

An ADINA FEM program (ZO) was used to calculate compliances

of a specimen with different crack radii. Eight-noded

quadrilateral axisymmetric elements with four integration points

were used. The mesh is shown in Figure 5. Because of the

symmetry of the system, only one-half of the specimen was

modeled. Fifteen elements were employed in the radial direction

and thirty elements in the axial direction, between the rod end

and upper end of the cylinder. For the second model, with

external constraints imposed by the outer rigid tube, all nodes

on the outer surface, radius R0 , were fixed. The maximum aspect

ratio of mesh elements was about 4.5.

Both rods and resin were assumed to be linearly-elastic and

nearly incompressible, with Poisson's ratio of 0.4999. To make

the rods effectively rigid, Young's modulus was made 109 times
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that of resin. Perfect bonding was assumed to exist between the

rods and resin (and between the resin and external tube, in the

second model). Different radii R. and R were employed, with

the ratio Ri/R° ranging from 0.053 to 0.8. The ratio of

cylinder length L to resin radius R was chosen to be long enough

to minimize end effects and still give adequate accuracy for

determining small changes in compliance with crack radius.

Preliminary results indicated that a value of 16.6 was

satisfactory in this respect; it was used in all the cases

reported here. Most of the calculations were carried out for a

representative specimen with dimensions: R = 0.435 mm, R = 3

mm, L = 50 mm.

3.5 Test of validity of FEM results

The validity of the FEM model was examined by solving a

simple case for which an analytical solution is already known.

A penny-shaped crack in the center of a homogeneous elastic

cylinder under tension has been widely investigated (21). An

approximate solution for a dimensionless stress intensity factor,

denoteJY' and defined by the relation:

K = Y'a 1 / 2 [l - (a/R)]1 /2[F/r(R 2 - a 2 )] (9)

was obtained by cubic interpolation (21). It takes the form:
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2 3Y' = (2/r) [l + (1/2) (a/R) - (5/8) (a/R) 2 ] + 0.268(a/R) 3 . (10)

When the crack size is much smaller than the radius R of the

cylinder, the value of Y' (now equal to Y, Equation 8) is 2/r, in

agreement with Sack's result, Equation 3.

Values of the compliance C and its derivative aC/aA with

crack area were calculated using the present finite element

model. Values of Y' calculated from them by means of Equations

5, 7 and 9 are compared with values from Equation 10 in Figure 6.

Agreement is quite good, within 5 percent over most of the range

of crack radius. Discrepancies for extremely small and

extremely large cracks are attributed to the use of only 15

elements to represent the entire radial distance for crack

growth. Thus, small cracks were represented by only one or two

elements and, for large cracks, only one or two elements remained

unbroken. FEM results would not be expected to be highly

accurate under these circumstances.

4. Results and discussion

4.1 Results for an unrestrained sample (model 1)

4.1.1 Compliance as a function of crack size

Values of compliance were calculated as a function of crack

radius for various values of rod radius Ri and sample radius Ro

Results for specimens with a external radius R of 3 mm are
-O
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plotted in Figure 7. The compliance increased with increasing

crack size, in an approximately linear way, and then more rapidly

as the dimensionless crack radius (a-Ri)/(Ro-Ri) exceeded about

0.6. And the larger the radius of the enclosed rods, the lower

was the compliance. Similar relations were obtained for samples

with different external radius R . As expected, the compliance-O

was smaller for samples of larger radius.

In the experiments, a circular crack was found to grow

symmetrically, under increasing load, until it reached a certain

size, about half way to the edge of the sample. The load then

decreased slightly and catastrophic failure followed immediately.

Stages in the growth of a typical crack are shown in Figure 8.

Values of sample compliance were recorded continuously as the

crack grew, until the sample fractured. Figure 9 shows a

comparison of compliance results from FEM and from direct

measurement. Good agreement is seen to hold where comparison is

possible, i.e., until catastrophic failure intervened.

4.1.2 Energy release rates and breakinq forces:

Rates of change of compliance with crack area aC_/6A were

calculated by a central difference method using three successive

values of C as a function of crack radius. From these results,

values of G for a unit applied tensile load were obtained using

Equation 5. They are plotted in Figure 10 as a function of

dimensionless crack radius, for samples with an external radius

18



of 3 mm and different rod radii. Initially, G decreases with

increasing crack size and then passes through a broad shallow

minimum at a dimensionless crack radius of about 0.5. Similar

results were obtained for different rod radii and with other

sample radii.

Corresponding values of force F required to propagate a crack

were then calculated from Equation 6, using the appropriate value

2 f-of fracture energy G of 230 J/m for the silicone resin used in-c

the experiments. They are represented in Figure 11 by a

continuous curve. As a crack starts to grow from its initial

size, given by the rod radius, an increasing load is seen to be

needed to propagate it. Thus, crack growth is initially stable.

But after the required force passes through a maximum (and the

energy release rate passes through a minimum), the system becomes

unstable and catastrophic failure ensues.

Experimental measurements of crack radius are plotted in

Figures 11 and i2 against the applied load, for comparison with

calculated values. Good agreement was obtained, both in the

general form of the relation for crack propagation force as a

function of crack radius, and in the breaking force when the

crack reaches a critical size. A similar degree of agreement

was obtained with rods and samples of various radii. Thus, the

theoretical treatment appears to describe the process of crack

growth with considerable success. Experiments could not be

continued beyond a dimensionless crack radius of about 0.5
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because the samples broke at this point, as predicted.

4.1.3 Stress to initiate crack growth:

The applied force Fi and corresponding stress ai required to

initiate crack growth were estimated using Equation 6. Initial

values of G were obtained by fitting calculated values to a

five-term polynomial function of crack radius and then

extrapolating back to a crack radius equal to that of the rod.

Values of F. and a. obtained in this way are given in Table 1.1l 1

They increase as the radius of the rods, and hence the radius of

the starter crack, increases. This is in striking contrast to

an isolated circular crack, Equation 3, where larger cracks

require smaller stresses to propagate them. Apparently the

presence of rigid bonded rods has a protective effect on cracks

formed at their ends.

The effect of sample radius is shown in Table 1 also. For a

given rod radius, the stress ai required to initiate a crack was

found to decrease as the sample radius increased, although the

force, of course, increased.

4.1.4 Breaking stress:

Values of breaking force F and breaking stress ab were

calculated from minimum values of G, using Equation 6. The

results are given in Table 1. When the rod radius was smaller

than about 0.5 R0 , the minimum value of G was found to be
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approximately constant, and was reached at a critical crack

radius a of about (Ri + Ro)/2, i. e., when the crack was about

half-way to the edge of the sample. On the other hand, when the

rod radius was larger than about 0.5 R , the minimum value of G

was larger and occurred at a smaller crack radius. In other

words, when the rod radius is smaller than about one-half of the

sample radius, fracture would be expected at a dimensionless

crack radius of about 0.5 at a constant force, independent of rod

radius, but when the rod radius is larger than this, fracture is

predicted to occur at an earlier stage of crack growth and at a

smaller force. In contrast, the force required to start a crack

growing depends directly upon its initial radius Ri, as shown in

Table 1: the larger the value of Ri, the larger the force needed

to initiate crack growth. Experimental results were in good

agreement with these predictions in all cases.

Samples with a larger external radius were found to break at

a lower stress, even though the breaking force was higher,

Table 1. In fact, the breaking stress was somewhat smaller

(0.55X to 0.7X) than the corresponding value for an isolated

circular crack of the same radius in a homogeneous solid,

Table 1. Thus, although embedded rods strengthen a sample

initially and prevent small cracks from growing catastrophically,

they have a slight weakening effect when the crack reaches its

critical size.

It should be noted that the stress to fracture a composite

depends on both Ri and R separately, and not on the ratio Ri/R o -
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For example, if we compare a sample with R.= 2.4 mm and R = 3.0--1 -o

mm with another sample with Ri= 0.435 mm and R = 0.545 mm, both-O

composites have the same Ri/E ° ratio but the breaking stresses

are different: 0.29 and 0.62 N/mm2 .

All of the FEM results indicate the rather surprising feature

that a crack will grow from a fiber break in a stable way,

requiring an increasing tensile load, until it is about half way

to the edge of the specimen. This is in marked contrast to a

crack in a homogeneous medium or at the horizontal interface

between an elastic and a rigid material, when all cracks are, in

principle, unstable.

in a fiber fragmentation test, cracking of the resin is

sometimes observed, originating at the broken fiber ends (13-15).

Diameters of these resin cracks can be several hundred times

larger than the fiber diameter without fracturing the specimen

(13). This feature is consistent with the observations of crack

growth and crack stability reported here.

4.2 Effect of neiQhboring fibers (model 2)

A rigid cylindrical tube bonded to the external surface of

the matrix is used here to represent neighboring fibers

surrounding a broken fiber. Calculated compliances for

different values of rod radius R are plotted in Figure 13 as a

function of dimensionless crack radius. When the dimensionless

crack radius is greater than about 0.5, the compliance is seen to
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reach a substantially constant value. Corresponding values of

the energy release rate G, obtained as before from the rate of

change of compliance with crack area, are plotted in Figure 14.

They are seen to decrease over the entire range of crack radius.

Thus, stable crack growth would be expected for all sizes of

crack, until the crack reaches the surface of the

externally-restraining tube. Addition of the rigid tube has

thus made crack growth more difficult and there is now no

tendency for catastrophic growth to occur.

Force-displacement relations were determined experimentally

for samples with a rigid tube bonded to the external surface of

the resin. Forces due to thermal contraction were absent and,

because of the external restraint, Poissonian contraction did not

occur. Thus, only the effect of optical magnification needed to

be taken into account in determining crack radii. The

refractive index of the glass tube was assumed to be the same as

that of the silicone resin.

Cracks could be observed up to a radius of 2.7 mm in a sample

with resin radius of 3.0 mm, corresponding to a dimensionless

crack radius of 0.9, before internal reflection prevented further

viewing. Crack growth was stable up to the limit of

observation. A comparison is made in Figure 15 between the

calculated relation for crack radius as a function of applied

force, represented by the full curve, and experimental

measurements. Good agreement is seen to obtain over the entire
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range of crack radius, .using a value for resin fracture energy g

of 230 J/m2 as indicated by direct measurements on the resin.

Crack growth began at an applied force of 9.5 N, close to

the value, 8.4 1, obtained by extrapolating FEM results to the

initial crack size. Further crack growth required a larger

.Lorce. It is clear that the presence of the external tube,

representing neighboring fibers around a broken fiber, tends to

make resin cracking more difficult and prevent it from becoming

catastrophic.

Thus, both the form of the crack growth relation and the

actual values of crack driving force appear to be predicted

successfully for the second model, as well as for the first.

The fiber content of the composite is represented in model 2

by the ratio of cross-sectional areas of fiber and sample,

2(Ri/Ro) . As this ratio was increased, the force required to

propagate a crack increased, Table 2.

5. Conclusions

In general, materials fail when the energy release rate of

the system reaches a critical value, G . This criterion is-C

widely used in linear elastic fracture mechanics. If dG/dA is

negative, an increased stress is needed to maintain crack growth.

This results in stable crack growth. It has been shown that a

circular crack, created by fiber fracture in a single-fiber model

composite, is stable in this way until it reaches a relatively

large radius, about half-way to the surface of the cylindrical
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resin block containing the fiber. Experimental observations are

in agreement with these conclusions. The force required to

propagate a crack was found to be in good agreement with values

predicted by linear elastic fracture mechanics at all stages of

crack growth. In particular, the maximum force that the system

could support - the breaking load - was predicted successfully

for a range of dimensions. On the other hand, for a model

surrounded by a rigid tube representing neighboring fibers in a

closely-packed fiber composite, a crack growing outwards from a

broken fiber was predicted to be stable at all stages of growth,

requiring an increasing force to make it grow further. Again,

good agreement was found between calculated and measured values.

Eventually, these specimens broke by failure of the resin in

shear, after the crack tip had reached the edge of the resin

cylinder. A similar analysis of this mode of failure is

therefore being attempted.
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Appendix I

Magnification of the apparent crack radius by the cylinder of

resin surrounding it can be calculated as follows. As shown in

Figure 16, the angles 8a and 8b of light rays emerging from the

cylinder can be expressed by Snell's law:

sin a = n (yo/Ro) (11)

sin 8b = n sin [tan- (yo /R )] (12)

where n is the refractive index of the resin (n = 1.41), R is-O

the radius of the resin cylinder, and y0 is the crack radius.

Equations for the light path are:

- 2 2 /2 tal[
Yo- Y =- [x- (R 0- y) tan [8 a - sin (yo /R )] (13)

y = - (x - R0 )tan 0b  (14)

The degree of magnification y/y 0 can be determined by

inserting the actual crack size y into the above equations and

solving for y. A calibration curve is given in Figure 17, and

compared with experimental measurements of the degree of

magnification. Over a wide range, the magnification is about

1.4X, approximately the same as the value for small angles, given
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by the refractive index of the resin.

Total internal reflection occurred when the incident angle

was larger than a critical value. This made it impossible to

measure a crack radius larger than about 70% of the cylinder

radius.

Appendix II

When a cracked specimen is subjected to a tensile force

under which the crack does not propagate but merely opens, the

crack is reduced in radius by Poissonian contraction of the

entire specimen. The measured crack radius is thus smaller than

its actual size in the unstrained state. The higher the stress,

the larger the discrepancy. An estimate of the amount of

lateral contraction can be obtained by FEM, by determining the

relative lateral contractile displacement of the crack tip (6')

and longitudinal tensile displacement of the upper surface of the

cylinder (6), for unit applied tensile load. A plot of 6'

versus 6 is presented in Figure 18 for a sample with rod radius

Ri = 0.435 mm and resin radius R° = 3.0 mm. The actual crack

radius is then given by

aactual a observed + 6'. (15)
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Table 1. Calculated and measured forces F and stresses q to

initiate a crack(Fi, a i)and cause catastrophic rupture

(Eb, ab) in Model 1 specimens.

R. R F i  a. _Fb  a b  F. Fb  a a b-. -o 1 12 2- b - 1 -b-c

(mm) (mm) (N) (N/mm ) (N) (N/mm2 ) (N) (N) (mm) (N/mm

calculated measured calc.

0.16 3.0 2.5 0.09 11.9 0.42 1.58 0.65

0.3 3.0 3.0 0.11 11.7 0.41 1.65 0.64

0.435 3.0 3.5 0.12 11.3 0.40 2.9 10.6 1.72 0.63

0.6 3.0 4.0 0.14 11.1 0.39 1.80 0.61

0.78 3.0 4.6 0.16 12.0 0.42 3.9 10.9 1.89 0.60

1.0 3.0 5.1 0.18 11.6 0.41 4.7 11.2 2.00 0.58

1.16 3.0 5.2 0.18 11.5 0.41 5.5 10.6 2.08 0.57

1.5 3.0 5.5 0.19 10.7 0.38 2.25 0.55

2.0 3.0 5.1 0.18 9.1 0.32 2.42 0.53

2.4 3.0 4.2 0.15 8.1 0.29 2.64 0.51

0.435 0.545 0.4 0.43 0.6 0.62 0.49 1.17

0.435 1.45 1.3 0.20 3.7 0.56 0.94 0.85

0.435 2.18 2.2 0.15 6.8 0.46 1.31 0.72

0.435 5.6 6.9 0.07 28.6 0.29 11.3 32.3 3.02 0.47

* value when G is a minimum.

** : calculated from Eq. 3 at the critical crack radius ac
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Table 2. Calculated and measured forces Fi to initiate

a crack in Model 2 specimens.

R. R F1  F.
-1 -- O -- -1

(mm) (mm) (N) (N)
calculated measured

0.15 3.0 6.0

1.0 3.0 11.8

2.0 3.0 16.8

0.435 2.0 7.5

0.435 3.0 8.4 9.5

0.435 4.0 9.9 10.3



Figure Legends

1 (a) Sketch of the first model. A resin block contains two

rods with their ends touching, representing a broken fiber.

(b) Sketch of the second model. A rigid tube, representing

unbroken fibers, surrounds a resin cylinder containing a

broken fiber.

2. Fracture energy G c vs. tearing rate for silicone rubber

samples cured at 1100 C (0) and at room temperature (0).

3. Force-displacement relation for a sample with a propagating

crack. Ri= 0.435 mm; Ro= 3.0 mm.

4. Variation of residual compressive force with temperature.

R.= 0.435 mm; R = 3.0 mm.

5. Sketch of finite element grid for a sample containing a crack

of radius a. The shaded area represents the embedded rod

(fiber).

6. Comparison of FEM results for stress intensity factor Y'

(defined by Equation 9) for a penny-shaped crack in a solid

cylinder, with values calculated from Equation 10.

Dimensions of cylinder: radius = 3.0 mm; length = 50 mm.

7. Calculated compliances of Model 1 specimens vs. dimensionless

crack radius (a-Ri)/jRo-Ri). Rod radius Ri as shown;

external radius R = 3.0 mm.-O

8. Cracks photographed at different stages for a sample with

rod radius Ri = 0.435 mm, external radius R. = 3.0 mm.
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9. Comparison of measured and calculated compliances as a

function of crack radius, for a sample of 3.0 mm external

radius. The vertical line denotes the rod radius R..--1

10. Calculated energy release rate G for unit applied load vs.

dimensionless crack radius (a -_Ri)/(R0 - Ri). Rod radius

Ri as shown; sample radius R = 3.0 mm.

11. Comparison of applied load F vs. crack radius, calculated by

FEM, with experimentally measured values. The vertical

line denotes the rod radius R..

12. Comparison of applied load F vs. crack radius, calculated by

FEM, with experimentally measured values. The vertical

line denotes the rod radius R..

13. Compliances calculated by FEM for Model 2 specimens, with

various values of rod radius R.. External radius R =--i -O

3.0 mm.

14. Calculated energy release rate G vs. dimensionless crack

radius for Model 2 specimens subjected to unit applied load.

Rod radius Ri as shown; resin radius R = 3.0 mm.

15. Calculated and measured values of applied load F vs. crack

radius for a Model 2 specimen. Rod radius R. (represented

by the vertical line) = 0.435 mm; resin radius R = 3.0 mm.-O

16. Sketch of light ray paths 1 and 2 to indicate optical

magnification of crack by the resin cylinder acting as a

lens.

17. Calculated magnification y/yo of the crack radius.
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18. Poissonian contraction of the crack radius. Lateral

displacement (contraction) 6' of the crack tip vs.

longitudinal displacement (extension) 6 of the sample, for

unit applied load. R.= 0.435 mm; Ro= 3.0 mm.

--4
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Photographs of crack propagation
Figure 8
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