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ABSTRACT

Atmospheric turbulence severely degrades images of astronomical objects.
Providing images that accurately reflect the true nature of these objects is essential
to their understanding. Several object recovery techniques exist within the field of
speckle imaging that produce accurate representations of astronomical objects. This
thesis provides an in-depth comparison of two such techniques, Knox-Thompson and
triple-correlation.

Through computer simulation, this thesis accurately compares the abilities of
both recovery techniques to enhance turbulence degraded objects by exploiting the
diffraction-limited information contained in short exposure, or "speckle"”, images. The
simulation produced these images by creating an object and several phase screens
which simulated the effects of turbulence. Together, the object and the appropriate
quantity of phase screens yielded the required short exposure images. Application
of the Knox-Thompson and triple-correlation techniques to identical sets of these
degraded images produced the resulting reconstructed objects, their signal-to-noise
ratios and their azimuthal RMS phase errors. Comparison of these three factors over

several imaging criteria concluded that the superior phase recovery technique was

triple-correlation. | Accesion For
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I. INTRODUCTION

Scientific research of astronomical imagery has been continual since the
invention of the telescope at the beginning of the seventeenth century. Initially, the
limiting factor on astronomical image resolution was the quality and size of the
telescope optics. As technology progressed, larger telescopes improved to the point
where atmospheric turbulence (hereafter, simply turbulence) became the limiting
factor on image resolution.

Turbulence severely limits the resolution of long exposure images produced by
ground-based telescope imaging systems. Removal of turbulence corruption to
improve image resolution is an area of extensive research. Optimal telescope site
location minimized the effect of turbulence, but did not produce the near diffraction-
limited images desired. Removal of turbulence distortion occurred through the
development of statistical methods, called speckle imaging techniques, that produced
near diffraction-limited resolution. The basis of these techniques was the assumption
that turbulence remains essentially stationary during a short exposure image of the
desired object. Though distorted, these short exposure images retain diffraction-
limited information.

Determination of the object’s power and phase spectra are separate operations.
Although the power spectrum can be directly averaged while retaining diffraction-

limited information, the phase spectrum cannot. Instead, either the cross-spectrum




(the Knox-Thorpson method) or the bispectrum (the triple-correlation method) are
averaged because diffraction-limited information is retained. Then the phase
spectrum is recovered from either the cross-spectrum or the bispectrum. The
combination of the power and phase spectra generates the object’s Fourier spectrum
which, when inverse Fourier transformed, provides the recovered image.

Several factors affect the quality of image reconstruction. These factors
influence both phase recovery techniques and include the amount of turbulence, the
size of the telescope, and the light level of the object. The randomness of turbulence
and the effect of random photon noise, make exact image reconstruction impossible,
however, increasing the numbzr of short-exposure images in the averaging process
recovers a better image. This thesis compares the Knox-Thompson and triple-
correlation phase recovery techniques under several different imaging conditions to
determine their ability to improve the signal-to-noise ratio (SNR) of a degraded

object.




II. BACKGROUND

A. RESOLUTION
In the image reconstruction process, resolution determines image quality.
Resolution is defined as:

the process or capability of making distinguishable the individual parts of an
object, closely adjacent optical images, or scurces of light [Ref. 1].

From a Fourier optics perspective, resolution is proportional to the high spatial
frequency content of the imaging system. The standard for resolution is based on the
image of two point objects (binary star) viewed through a telescope. The image

consists of two overlapping Airy patterns with intensity
I(y) = 1(0)" 250 )
¥) = -5 ) (2.1)

where J, () is the first order Bessel function and ¢ is the normalized spatial
frequency. The separation of the two first order fringes of the two Airy patterns

constitutes the so-called Rayleigh limit of image resolution

_1.22 -2
Ag = ==5—, (22)

(in radians) for a circular aperture where A is the wavelength of light and D is the
telescope diameter [Ref. 2]. Telescope imperfections and turbulence prevent

attainment of the theoretical limit for large apertures. Speckle imaging techniques




remove distortions due to these factors and produce images with resolution near the

theoretical limit.

B. TURBULENCE EFFECTS

Turbulence produces temporal and spatial variations in atmospheric density,
temperature, and index of refraction. The turbulence in the atmosphere perturbs an
image, such as an Airy pattern from a point object (star), producing an extended
image referred to as a seeing disk. The perturbation randomizes the electromagnetic
phase front of the object. This randomization produces angular spreading, image
wandering about its centroid, and scintillation or "twinkling". Turbulence effectively
reduces the telescope’s resolving power by randomly attenuating the high spatial

frequencies.

C. HISTORICAL PERSPECTIVE

Until roughly 1970, attempts at solving the turbulence distortion problem were
limited to finding the ideal telescope site. Generally, the sites were high in elevation
and at locations regarded as having long periods of atmospheric stability. Even with
great care in site selection, the typical angular resolution obtained was approximately
one arcsecond, the maximum resolution attainable with a 12 centimeter telescope.
Although phase distortions from turbulence constrained resolution, construction of
large diameter telescopes provided enhanced light gathering capability.

In 1970, a technique developed by Labeyrie enabled recovery of near

diffracticn-limited image Fourier moduli [Ref. 3]. The concept that a long




exposure image was blurred by turbulence fluctuations due to phase spectrum
blurring and not power spectrum blurring, provided the basis of Labeyrie’s technique.
Labeyrie determined that a short exposure image, about 10 milliseconds, would freeze
the disturbance yet still contain near diffraction-limited information of the object.
Taking many short exposure images, calculating their power spectra, then averaging,
enabled a diffraction-limited estimate of the object’s power spectrum to be made.
Labeyrie’s technique allowed high resolution measurements of binary star separations.
However, lack of object phase information prevented faithful image reconstruction.

In 1974 Knox and Thompson developed a technique for retrieving the object’s
phase spectrum [Ref. 4. The method uses the Knox-Thompson (KT)
algorithm to provide an estimate of the object’s phase spectrum using the same short
exposure images required for the estimate of the object’s power spectrum. The KT
method calculates the average cross-spectrum of the object in Fourier space to
determine the object’s phase spectrum. Calculation of the cross-spectrum involves
determining the average correlation of spatial frequency pairs displaced from each
other by a small frequency differential. The average provides a statistical phase
difference approximation from which the object’s phase spectrum is obtained.

In 1983 Lohmann, Weigelt, and Wirnitzer developed another technique for
retrieving the object’s phase spectrum [Ref. 5]. This method, referred to as
triple-correlation (TC), also uses short exposure images to estimate the object’s phase
spectrum. The TC method calculates the average bispectrum of the object in Fourier

space to determine the object’s phase spectrum. Calculation of the bispectrum




involves determining the average of a third order correlation that consists of a
frequency point, a point shifted by an offset, and a difference term. As with the KT
technique, the average provides a statistical phase difference approximation from
which the object’s phase spectrum is obtained.

Either the KT or the TC technique determines the object’s phase spectrum
which is necessary to produce accurate recovered images. Combining the
reconstructed power spectrum and phase spectrum produces the reconstructed

Fourier spectrum, which when Fourier transformed, yields the recovered image.




III. THEORY

A. TURBULENCE MODEL
Both the KT and the TC techniques utilize short exposure images to recover

the object’s phase spectrum. A method developed by Tyler and Fried of the Optical
Sciences Company, simulates turbulence to produce the short exposure images
required to test these recovery techniques [Ref. 6]. This method requires the
following three assumptions: [Ref. 7]

1. Turbulence is represented by a single phase screen in the pupil plane of the

telescope.

2. Turbulence is isoplanatic, that is, the distortion from turbulence and the
imaging system is considered shift invariant over the entire image plane.

3. The images are quasi-monochromatic.

With these assumptions, a single short exposure image becomes a convolution in

image space
iI(X) =o(R) *»s(X) , 3.1)

where i(X) is the short exposure image intensity, o (%) the object intensity, and
s (X) is the instantaneous point spread function. The vector & represents the two-
dimensional orthogonal spatial coordinates x and y. Using the convolution theorem,

equation (3.1), becomes a product in Fourier space




(@ = ol - s(d , (32)

where I(d) is the Fourier transform of the short exposure image intensity, O ()
is the Fourier transform of the object intensity, and S(d) is the instantaneous
incoherent transfer function. The vector T represents the two-dimensional
orthogonal spatial frequency coordinates u and v.

The point spread function, s (&), and thereby the incoherent transfer function,
s(d), represent distortions from both turbulence and the imaging system. The
assumption of stationary turbulence is accurate for short exposure images.
Consequently, an instantaneous distribution of random phases (phase screen)
approximates the instantaneous distortion of an image by turbulence. An array of
random numbers filtered by a power spectral density function and corrected for low
spatial frequency under-representation can simulate this phase screen [Ref. 6].

Therefore,
H(O) = P(AF{) ei®@rn | (3.3)

represents the instantaneous coherent transfer function, where P(AFi) is the
transfer function of the telescope, e!®AFD js the instantaneous turbulence phase
screen, F is the focal length of the telescope, and A is the wavelength of light [Ref.

7]. Finally, the auto-correlation of the coherent transfer function, #(d),

S(d) = H(O) » H(D) . (3.4)

yields the instantaneous incoherent transfer function required for equation (3.2).




B. PHASE SCREEN PRODUCTION

Three common techniques for producing turbulence phase screens exist. One
technique, the Fast-Fourier-transform (FFT) method, creates an array of filtered
white noise and inverse Fourier transforms the array to real space providing the
phase screen. A second technique, referred to as the Karhunen-Loeve (KL)
expansion method, uses the KL expansion with a basis of Zernike polynomials to
represent the phase screen. The third, hybrid, technique referred to as the
Karhunen-Loeve-Fast-Fourier-Transform (KLFFT) method, combines the best
properties of both techniques and manufactures phase screens which most accurately

represent turbulence distortions.

1. Fast-Fourier-Transform Method
The FFT method provides a rapid means of generating a phase screen.
Initially, creation of a square array of Gaussian-distributed random r;;xmbers of unity
variance provides a representation of the phase over the entire aperture of the
imaging system being evaluated. The array amplitudes are filtered in Fourier space
radially outward from the origin by the square root of the Kolmogorov power spectral

density function
F (@) = 0.1517r,%¢ | d|1v/¢ (3.5)

where | d | is the radial distance from the origin in frequency units, and r, is the
coherence diameter [Ref 7). The origin is set to zero removing the constant (DC)

term from the phase screen before applying the inverse Fourier transform. Two




phase screens result since complex numbers in the array consist of real and imaginary
parts which are entirely distinct and statistically independent.

Though the FFT method generates phase screens rapidly, it has
deficiencies. The FFT uses a finite number of discrete points, and consequently, high
and low spatial frequency cutoff occurs. High spatial frequency cutoff is minor since
most of the wave front error induced by turbulence is of low spatial frequency. Low
spatial frequency cutoff is more serious as it induces under-representation of low
spatial frequencies producing wave front tilt, or centroid position errors. Therefore,
the associated structure function of the FFT-produced phase screen does not

completely represent the 5/3 power law turbulence structure function.

2. Karhunen-Loeve Expansion Method
The KL expansion method provides an accurate method of generating a
phase screen. Random phases associated with turbulence can be expanded in terms

of a series of orthogonal functions £,(¢),

r(t) =2;rkf,(t:) . (3.6)

The expansion coefficients r,, are uncorrelated Gaussian random variables which
represent turbulence statistics. The orthogonal functions provide the proper spatial
dependence, thereby allowing the random phase to be evaluated anywhere within the
aperture. The above expansion is referred to as the KL expansion. For a finite value

of j, the KL expansion is the optimum basis whose eigenvalues represent the energy

10




content of the expansion coefﬁcignts, r,(t), and the total energy is the sum of these
eigenvalues. [Ref. 8].

Zemike expansion coefficients, for a random phase screen, are Gaussian
random variables. Unfortunately, these expansion coefficients are correlated and
cannot be used as a KL basis set directly. However, the Zernike covariance matrix
(the matrix of expansion coefficients) is useful in determining the KL expansion for
turbulence.

Three properties justify the use of Zernike polynomials as a basis set for
the KL expansion to determine wave front turbulence. Use of the Zernike
covariance matrix provides the necessary random variables required for the phase
screen. Additionally, each eigenvector of the Zernike covariance matrix is the
representation of the KL function in terms of the Zernike polynomials. Further, each
eigenvalue of the Zernike covariance matrix is the variance associated with the
corresponding KL expansion coefficient. Wave front error induced by turbulence is
an outcome of the these properties. [Ref. 6]

The eigenvectors and the corresponding eigenvalues of the normalized

Zernike covariance matrix are found which obey the relation
Cei = l’i ey ., (3.7)

where C is the covariance matrix, e, is the i®® eigenvector and A, is the

corresponding normalized eigenvalue. The eigenvectors are normalized so each

11




element of the eigenvector indicates the amount of the corresponding Zernike

polynomial that is contained in the i% KL function expressed as
Ki(p) =Y e z,(p) ., (3.8
P

where K;(p) is the ith KL function, e,, is the p* component of thei®
eigenvector, and Z,(p) is the p*® Zernike polynomial. Hence, the random wave

front error produced by turbulence, ¢ (?), is

&(D) = ;nfﬁ(ﬁ—z) : (.9)

where v, is a set of Gaussian-distributed random numbers, 7 is the distance from
the origin, and D is the telescope diameter.

Though the KL expansion method is accurate, deficiencies exist, and care
must be taken in its use. Calculating wave front distortion using the KL method
requires an enormously large number of Zernike polynomials to achieve enough
accuracy. The required number is proportional to (D/r,) 2. Additionally, numerical
inaccuracies exist in evaluating Zernike polynomials of high radial order. Therefore,
to achieve the accuracy desired, avoidance of Zernike polynomials of high radial

order is necessary.

3. Karhunen-Loeve-Fast-Fourier-Transform Method
The KLFFT method combines the fast computational speed of the FFT
method with the optimum low spatial frequency representation of the KL functions.

This technique requires a phase screen to be developed by the FFT method. The

12




first five KL functions are produced and applied to this phase screen to compensate
for the under-representation of low spatial frequencies. With this compensation, this
combined technique closely represents atmospheric turbulence.

The KLFFT method is quite powerful. Since only five KL functions are
produced and applied, the total number of operations per phase screen is
approximately double that of the FFT method alone. Therefore, this phase screen

production technique is relatively fast. [Ref. 6]

C. IMAGE RECOVERY

The image recovery techniques represent methods for providing the
reconstructed image from a turbulence-distorted object by utilizing several short
exposure images of the object and a nearby star. The Labeyrie technique recovers
the object’s power spectrum [Ref. 3]. The power spectrum provides the modulus of
the Fourier transform of the object, the first part of the complex quantity required.
Both the KT and TC techniques recover the object’s phase spectrum. Inverse
Fourier transforming the product of the modulus and the phase provides a

reconstructed image of the original object.

1. Power Spectrum Recovery
Equation (3.2) represents the image intensity for a single short exposure
image in Fourier space. The time average power spectrum of several short exposure

images in Fourier space is

13




QI(DP> = jo(dDP - <Is(dP> . (3.10)

where the term on the left is the time average power spectrum of the image, the first
term on the right is the object’s power spectrum and the second term on the right is
the incoherent transfer function. Several images of a star under similar imaging
conditions as the object determine this transfer function, which is the time average
of the instantaneous transfer functions. The object and the star need not be in the
same isoplanatic patch as long as the second order statistics of the transfer function
are the same for both sets of exposures [Ref. 9]. Solving for the object power

spectrum, equation (3.10) becomes

w2 S|T(DP>
Io(u)' <Is(a)|2> ' (3.11)

which recovers the object’s Fourier modulus.

2. Phase Spectrum Recovery
Both the KT and TC phase recovery techniques recover the object’s phase
spectrum by using the cross-spectrum and bispectrum averaging processes
respectively. To recover the object’s phase spectrum, the KT technique calculates the
average cross-spectrum while the TC technique calculates the average bispectrum.
a. Technique Analysis
The KT technique is the simpler of the two phase recovery methods.
Determining the cross-spectrum is at the heart this algorithm. The cross-spectrum

is defined as the product of two quantities in Fourier space: an array point and the

14




complex conjugate of an array point which is shifted, in frequency, from the original

array point by a small offset, Ad. The cross-spectrum, CS(i) , is

cs(@) = X(0) - X*(T+AD) , (3.12)

where X (d) is the array point and X* (4 +A{) is the complex conjugate of the array
point shifted by the offset vector Ad.

The TC technique is a more complicated form of phase recovery. The
bispectrum is defined as the product of ‘hree quantities in Fourier space: an array
point, the complex conjugate of an array point which is shifted, in frequency, from
the original array point by an offset, and an array point which is a function of the

offset only. The bispectrum, BS(i), is

BS(d) = X(d) - X*(d+Ad) - X(AD) , (3.13)

where X(Ad) is the array point which is a function of offset only and the other
terms are the same as defined for equation (3.12).
From equation (3.2), the average cross-spectrum is

<I(d)-I*(d+Ad)> =

(3.14)
[O(d) - 0*(T+AD) ] - <S(T) - §*(T+AD)> .

where the first term on the right is the object’s cross-spectrum and the second term
on the right is the average incoherent transfer function cross-spectrum. The average

bispectrum is

15




<I(d)- I*(d+Ad)- I(Ad)>
[o(d) - o*(d+Ad) - O(AD)] - (3.15)
<s(d) - s*(d+Ad)* s(Ad)> ,
where the first term on the right is the object’s bispectrum and the second term on
the right is the average incoherent transfer function bispectrum.

The average incoherent transfer function cross-spectrum and
bispectrum contain distortions from both the turbulence and the imaging system. The
average phases resulting from these calculations for turbulence are zero.
Imperfections in the imaging system produce phases which are negligible for both the
cross-spectrum [Ref. 10] and the bispectrum [Ref. 5] calculations. Therefore,
the average cross-spectrum and bispectrum of the incoherent transfer function is

assumed to be unity. Equations (3.14) and (3.15) reduce to simpler forms
o(d) - o*(d+Ad) = <I(d)* I*(d+Ad)> , (3.16)
and

o(d) - o*(d+Ad) - O(AD) =

(3.17)
<I(D) - I°(T+AD - I(AD)> .

b. Phasor Spectrum Recovery

Direct recovery of the object’s phase spectrum is not possible since
the cross-spectrum and bispectrum phases are only known modulo 27r. The recursion
algorithm fails when the cross-spectrum or bispectrum phase estimates are not equal

to their principle arguments if multiple estimates of a single object phase spectrum
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point are used. To avoid this problem without losing information, the reconstructed
object’s phasor spectrum is determined instead. The recovery process will henceforth
be referred to as phasor reconstruction.

An arbitrary complex number N in phasor notation is
N=|N|e¥, (3.18)

where | N | is the modulus of the complex number and e?* is the phasor in which ¢
represents the phase of the complex number. Solving for the phasor, equation (3.18)

becomes

N

e = N = 37 (3.19)

where the subscript ph denotes phasor. Therefore, solving for the phasors of

equations (3.16) and (3.17) by dividing each by their respective moduli gives

Opy (0) * Opu(T+AD) = Ip;(d,AT) , (3.20)
and
Opn (@) * Opn (T+AD) - O, (AD) = IN(T,AD) , (3.21)
where
@ an ~ SHALIEd (3:22)
and
I%(d,Ad) = <I(d) I*(d+Ad)-I(Ad)> (3.23)

|<I(d) - I*(T+AD) - T(AT)>|
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Jhe terms I5(d,Ad) and IJ{(d,Ad) are four-dimensional quantities, since
several offset values may be used to determine estimates of the object’s cross-
spectrum and bispectrum. Solving for the offset-shifted object phasor and applying

the complex conjugate operator to both sides, equations (3.20) and (3.21) become

=, am )
O, (T+AD) = (L‘bm—) , (3.24)
and
@ Am )
Opn (T+AD) (o,,,(ﬁ‘)-o,,,(Aii)] (3:25)

Equations (3.24) and (3.25) provide the phasor spectrum necessary for image
reconstruction. However, use of these equations is limited to infinite photon count,

short exposure images which are unrealistic and useful for computer simulations only.

c. Photon Noise effects
Compensating for photon noise allows image reconstruction from low
photon count images, though more of these images are required in the process to
resolve the object. During the recovery process of low light-level objects, the
introduction of photon bias occurs. This bias corresponds to the cross-spectrum or
bispectrum averaging of photon events with themselves and contributes no useful
information to the average. With the bias removed, equations (3.11) and (3.12)

become
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Ccs(d) = X(d) - x*(d+Ad) - x*(AD) , (3.26)

and

BS(d) = x(d) - X*(d+Ad) - X(Ad) + 2N, -
IX(DE + |X(T+ADP - (X(ADE , (3.27)
where -X*(Aid) removes the cross-spectrum photon noise bias, -X(d)J?,
-1X(d + Ad)?, and - X(Ad)}* remove the bispectrum photon noise bias, and N,
is the photon count [Ref. 11]. Therefore, for realistic image reconstruction,

equations (3.24) and (3.25) become

| rEEs g, am
0, (2+AD) = ( e ] , (3.28)
and
IS (1, Adl) )
0, (d+Ald) = ( L ! , 3.29
o 0, (@) ~ Oy (AD) (3-29)
where
IS (g A < SI(D) - I*(+AD) - IT(AD)>
i LAD = I(GeAD - T (AT (3.30)
and

I (g, Ad) =

<I(@) - I*(d+Ad) - | I(@)P- | I(@+ADP- | Z(ADR+ 28>  (331)
[<T(@) -« I*(d+AD) ~ | I(DP- | T(@+ADP- | TADP+ 2N |
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Equations (3.28) and (3.29), allow realistic image reconstruction.

d. Phasor Spectrum Weighting

Phasor spectrum weighting provides a means for enhancing desired
phasor estimates, increasing reconstructed image quality. Both phasor recovery
techniques benefit from phasor spectrum weighting. Weighting techniques suppress
higher frequencies and enhance the reconstructed image’s SNR. The method
presented is the weighted least squares estimation approach. Matson showed that
this method obtained the best resuits of four approaches analyzed [Ref. 12].
The method weights the object’s phasor spectrum with the SNR determined from the

variance of the cross-spectrum or bispectrum as follows:

n

(Re[ssi(a)z] _ {Rel<ss(ii)>]}3

0% (Re(SS(i)]) = fv'; n ) (3.32)

n-1

) (m[ss,(am - ”‘"“si‘ﬁ”“’) (333
o2 (Imlss(d)]) = |32 ’
n-1
o = yo*(Re[SS(d)]) + 0*(Im[SS(d)]) (3.34)
swr = LSS . (3.35)

where SS (i) represents either the cross-spectrum or the bispectrum.
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e. Recovery Process

Determination of the object’s phasor spectrum is afforded by the
recursive method. An estimate of the image cross-spectrum or bispectrum for each
short exposure image spectrum element provides the necessary information to
determine the object’s phasor spectrum. The estimates for each array element are
determined recursively, from the origin radially outward to the diffraction limit of the
imaging system. This method capitalizes on the inherent property of the phasor
spectrum SNR which decreases radially as a function of increasing spatial frequency.
These estimates are averaged over all the short exposure images and are weighted
utilizing equation (3.35). This process results in the object’s phasor array determined
by equations (3.28) or (3.29). Once the reconstructed phasor array is found in this
manner, it is multiplied by the square root of the power spectrum provided by
equation (3.11). Inverse Fourier transforming this spectrum to image space provides

the final reconstructed image.

D. PHASOR RECOVERY TECHNIQUE COMPARISON

There are several distinctions between the two phasor recovery techniques,
aside from the obvious differences of equations (3.28) and (3.29). Since the recursion
technique utilizes all the values from unity to the offset value in the averaging
process, the greater the offset, the better the reconstructed image. For the KT
technique, the modulus of the offset vector, | dii |, is restricted to be less than the

seeing limit, r,/A, whereas for the TC technique, the offset is unlimited. This
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restriction allows the TC technique to surpass the KT technique in image quality by
using a greater offset that includes more phase information. [Ref. 13}

Shift invariance becomes important for low photon count images. The KT
technique is not shift invariant and requires shifting of the degraded short exposure

images to the center of the image array by,

- ;x_., - I;(x)

; Lo (3.36)
and
_ ;Yj * Ij ()
y = ; Lo (3.37)

prior to the recovery process. Image centroiding minimizes linear phase ramping in
Fourier space, however, centroiding accuracy decreases with lower light levels
resulting from the randomness of the image. Consequently, since the KT technique
is not shift invariant, it performs poorly for low photon count images because the
centroiding accuracy is decreased. The TC technique is shift invariant, eliminating
the centroiding requirement. Since the TC technique does not require centroiding,
the inaccuracy of the centroiding process at low light levels does not enter into TC

image reconstruction. [Ref. 11]
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E. SUMMARY

The short exposure image is the key to effective image recovery. The high
spatial frequencies within the short exposure image contain diffraction-limited
information, though the object’s phase spectrum is randomized. Recovery of the
phasor spectrum provides the information required for true image reconstruction.

Three techniques for image reconstruction provide the recovered image. The
Labeyrie technique recovered the object’s power spectrum. Both the Knox-
Thompson and the Triple-Correlation techniques recovered the object’s phasor
spectrum. Each phasor recovery technique yielded an independent array of phasors
that, when combined with their corresponding power spectrum and inverse Fourier
transformed, produced reconstructed images for comparison. Simulation of
turbulence-degraded short exposure images by the Karhunen-Loeve-Fast-Fourier-

Transform method allowed computer simulated comparison.




IV. COMPUTER SIMULATION

A. COMPUTER REQUIREMENTS

Turbulence simulation and image recovery processing, by their nature, require
enormous amounts of calculations. The simulation presented in this thesis creates
an object and a turbulence phase screen. The phase screen distorts the object
producing a short exposure image. Several of these short exposure images are
utilized in the image reconstruction process by using either the KT or TC recovery
techniques. The phase screens and short exposure images are presented in the form
of two-dimensional square arrays. The arrays produced are of dimension 64 x 64
consisting of 4096 elements. Several operations are performed on each element in
these arrays throughout the entire simulation process. As a result, the requirement
arose for a fast computer to process the arrays and for a large random access
memory (RAM) to store them during the process.

A personal computer was used for the simulation process and the data
reduction. The computer, a Compaq Deskpro 80386/20 with 16 megabytes of RAM
and a Weitek 1167 coprocessor, provided ample speed and convenience as long as
array sizes did not exceed 64 x 64. Standard Fortran 77 was the language used
throughout the simulation. A Microway 32 bit NDP Fortran-386 compiler provided
the speed, precision, and array processing capabilities required for the simulation.

The construction of each short exposure image and its subsequent cross-spectrum or
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bispectrum estimation, required approximately 28 to 34 seconds to process with this
computer-compiler combination, depending on the imaging parameters (coherence
length, photon count, short exposure image quantity). Surfer and Grapher software
from Golden Software provided plots of image data, phasor spectrum SNR
comparison data, and azimuthal RMS phase error (henceforth, simply phase error)

comparison.

B. SIMULATION PROCESS

The simulation process compared the KT and TC phasor recovery techniques.
The necessity for two programs, one using the KT technique and the other the TC
technique, arose from RAM limitations. To ensure accuracy, both programs were
identical except for the individual phasor recovery subroutines. Additionaliy, the
imaging parameters and the random number seeds were identical for each
comparison run to ensure production of the same phase screens and, hence, the same
short exposure images. With identical short exposure images and object power
spectra, the only distinguishable difference between reconstructed images resulted
from the utilization of different phasor recovery techniques.

The simulation utilized the speckle imaging procedure. This procedure involved
the use of several short exposures, from 25 to 1600, to remove the effects of
turbulence by means of an averaging process. This process determined the object’s
power and phasor spectra by calculating the autocorrelation and the cross-spectrum

or bispectrum respectively, for each short exposure image. At the end, these values




were averaged and combined, providing the object’s Fourier spectrum. A separate
program filtered and transformed this spectrum to image space, yielding the

recovered image. The simulation process is shown in Figure 4.1.

1. Object Production
Construction of an object that provided adequate detail to test the
resolution of the two phasor recovery techniques was essential. Three objects were
designed to compare the two techniques over several different image parameters.

These objects were created, scaled, transformed to Fourier space, and normalized.

a. Object Creation

The first step in the process created the object. The option to
construct one of three objects was provided. The first object resembled a finite-
dimensional astronomical body centered in the array. The body was a convolution
of a Gaussian function and a circular pupil function, giving it the appearance of a
smooth planet. Since phasor spectrum SNR declines radially with spatial frequency,
round objects provide a less than ideal choice for image recovery comparison.
However, increasing the detail on the body provided a means to test the resolution
capabilities of the two phasor recovery techniques. Seven Gaussian functions of
various size and depths at random locations on the body provided craters. These
craters gave the body the appearance of an asteroid. The randomness of the craters

on the asteroid provided the additional detail to test resolution.
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The second object resembled a binary star. This object consisted of two
delta functions placed symmetrically about the center. Initially,this object provided
the ability to troubleshoot the program since the phase spectrum of an equal intensity
binary star involves a square wave pattern that was easily recognizable. After the
completion of troubleshooting, the binary star allowed a test of the ability of the
phasor recovery techniques to resolve point objects at very low photon counts. One
point had twice the intensity of the other to reduce any ambiguities brought about by
symmetry.

The third object resembled a star. The object consisted of a delta
function at the center of the array. The short exposure image of a point source yields
the instantaneous incoherent transfer function representing distortion from the
turbulence and the imaging system. The transfer function allowed recovery of the

object’s power spectrum.

b. Object Scaling

The object had to be scaled before use. Object scaling assured that
the imaging parameters retained complete frequency information within the given
array size and ensured that the size of the object was within acceptable limits. One
such parameter was r,, the coherence length, which was a measure of the amount of
turbulence present in the atmosphere [Ref. 14). For the simulation, values
of 0.206 and 0.103 meters were chosen. Another parameter, |i|, was the offset
value. This value represented the number of pixels (array elements), in Fourier

space, contained within the coherence length. The offset maximized the averaging
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of cross-spectrum and bispectrum while preventing loss of high frequency information.
Offset values of two and four were chosen for the simulation. The corresponding
width of each pixel in terms of coherence length was determined and divided into the
telescope diameter to calculate the number of pixels retained by this telescope under
the conditions of the above parameters. The number of pixels is synonymous with
the frequency cutoff of the diffraction-limited telescope incoherent transfer function

(D/A) . The image array size limits the frequency cutoff value to

fo27-1, (4.1)
where £ is the frequency cutoff and n is the array size. If the frequency cutoff is
too large, frequency information is lost.

After constraining the imaging parameters, the field of view and the object
size were ascertained. The field of view (FOV) is equivalent to the reciprocal of the
fundamental spatial frequency

FOV = (d| - (TA) , (4.2)

0

where (A/r,) is the seeing disk. In general, the allowance of one seeing disk width
between the object and each side of the array provided for object distortion effects.
The size of the asteroid was then maximized to provide the most visual detail while
satisfying the above criteria. Verification that the binary star and the star obeyed the

above criteria was sufficient for those objects.
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c. Fourier Spectrum Determination

Production of phase screens occurred in Fourier space, while object
production transpired in image space. Proper image production required
transformation to frequency space. A two-dimensional Fast-Fourier-transform (2D-
FFT) algorithm transformed the object to Fourier space. The FFT provides a fast
and accurate method of transforming a discrete function to Fourier space. The 2D-
FFT employs a 1D-FFT provided by Gonzalez and Wintz [Ref. 15]. This
1D-FFT determines the discrete Fourier transform of a complex one-dimensional
array of numbers. The 2D-FFT simply calls the 1D-FFT for each row then each
column of the two-dimensional object array. Testing of the 2D-FFT by transforming
a normalized pupil function then inverse transforming enabled comparison between
the results and the original function. With double precision complex numbers, the
2D-FFT provided accuracy to ten significant figures. In addition to determining the
object’s Fourier spectrum, this 2D-FFT provided the means for transformation, from

image space to Fourier space and back, extensively throughcut the simulation.

d. Fourier Spectrum Normalization
Normalization of the object’s Fourier spectrum produced the correct
number of photons in the short exposure image. In reality, each short exposure
image furnishes a photon count, however for the simulation, the scrue value was
chosen for all short exposures used for each image reconstruction run. Dividing the'
object’s Fourier spectrum by the photon count normalized the spectrum. Since the

phase map was normalized by its DC value, the photon count was the same for the
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object and for the short exposure image. The normalization was important for

Poisson noise generation introduced later in the process.

2.  Turbulence Phase Screen Production
Construction of a turbulence phase screen that correctly resembled true
atmospheric turbulence allowed accurate phasor recovery technique comparison.
Testing the KLFFT method of phase screen production showed it represented the
actual 5/3 power law structure function closely [Ref. 16]. Therefore, this

method was adapted to produce the phase screens in this simulation.

a. Gaussian Random Number Array
Each phase screen involved an array of random numbers. The
random numbers represented the random phases produced by turbulence. A
Gaussian distributed random number generator, provided by the subroutine Gauss,
produced the required random numbers that represented the randomness of

turbulence statistics.

b. Filter Function
The simulation used a filter function that represented the square root
of the Kolmogorov power spectral density function, equation (3.5). This function
represented turbulence statistics and filtered each array of Gaussian distributed
random numbers to provide the turbulence structure function. The resulting array

elements ¢37*, when put in terms of the Rytov approximation, modelled the 5/3
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power law structure function, and hence provided a model for turbulence, though the

low spatial frequencies were under-represented.

c. Karhunen-Loeve Functions

The simulation used the first five KL functions. Each filtered array
was inverse Fourier transformed and then the five KL functions were applied in
image space to compensate for the low spatial frequency under-representation. This
application involved more than simple multiplication. The inner product of the KL
functions and the filtered array provided scalars which expressed the amount of each
individual KL function contained in the array. These amounts were subtracted from
the array. The technique involved random numbers with variances equal to the
eigenvalues associated with their respective KL function. Multiplying the random
numbers by their corresponding KL functions and adding the result to the array gave
the corrected phase screen. The resulting array elements ¢3=7 -, \\;hen put in terms
of the Rytov approximation, accurately depicted the 5/3 power law structure function.

An effect of the KLFFT method was the inclusion of tilt in the short
exposure image. An option was given in the simulation which allowed the removal
of tilt by setting the first two KL functions to zero. This option allowed phasor
recovery without the presence of tilt and was utilized as a criterion for comparison

of the phase recovery techniques.
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d. Incoherent Transfer Function
Use of the Rytov approximation determined the incoherent transfer

function of the turbulence and imaging system. The Rytov approximation,
A-elt (4.3)

provides the coherent transfer function of the turbulence and imaging system, where A
represents the amplitude (set to one) and ¢, represents the realization of the phase
screen determined above. Calculating the autocorrelation of the coherent transfer
function produced the incoherent transfer function. This calculation first required
multiplying the phase screen array produced by the Rytov approximation by the pupil
function of the telescope. Squaring the modulus of the Fourier transform of this
array and Fourier transforming and normalizing the result yielded the incoherent

transfer function of the true phase screen.

3. Object Degradation

The product of the phase screen and the object’s Fourier spectrum yielded
the short exposure image spectrum. The inverse Fourier transform of this spectrum
resulted in the required short exposure image. Since the object was normalized to
the photon count of the short exposure image and the phase screen was normalized
to unity, the final step in the degradation process was to apply photon noise to the
short exposure image. The photon noise effect was added to the short exposure
image by entering each image element into a Poisson distributed random function

generator provided by the Poisson function in the simulation. The generator returned
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a random number at each image point drawn from a Poisson distribution with mean
equal to that value. As the photon count decreased from infinity, the randomness of
the returned values increased which caused the grainy, photon noise effect. With

photon noise included, the short exposure image was complete.

4. Centroiding

The simulation supported centroiding the degraded short exposure in
image space. If desired, the image array was shifted to its true centroid first by
column, then by row, based on the centroids determined from equations (3.32) and
(3.33). Determining the centroid of the binary star object modified with equal
intensity stars checked the accuracy of the centroid subroutine. The object initially
had an arbitrary translation from its centroid. Centroiding this translated object using
the subroutine then analyzing its phase spectrum ensured the subroutine performed
correctly. Image centroiding worked well on high light-level image.s of the asteroid
above 10* photons. Images below this level had unevenly distributed intensities and

centroiding was ineffective.

§. Image Recovery
The simulation separated image recovery into two distinct parts. First, the
Labeyrie technique provided the object’s power spectrum. Use of this technique for
both programs ensured uniformity in comparison. Second, the KT and TC techniques

reconstructed the object’s phasor spectrum, each in separate programs.
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a. Power Spectrum Recovery

Recovery of the object’s power spectrum provided the modulus of the
object’s Fourier spectrum. Estimates of the autocorrelation were calculated for each
short exposure image of the object and the point source. Averages of these results
yielded the average power spectrum. Normalizing both power spectrum arrays by
their respective DC values provided an equivalent intensity basis. Dividing the
object’s average power spectrum by the point source’s average power spectrum
removed imaging system errors. The square root of this result multiplied by the

photon count furnished the object’s modulus.

b. Phasor Spectrum Recovery

The object’s phasor spectrum, with its modulus, determined the
object’s Fourier spectrum. Each short exposure image provides estimates of the
either the cross-spectrum or the bispectrum, for various offset values. Several of
these estimates, each with a different offset value, determined a specific phasor array
element by averaging these estimates over all short exposure images, then over all
offset values.

Recursive calculation, outward from the origin of the image array,
supplied the estimates, and hence the object’s phasor spectrum. The number of
estimates which existed within an estimation circle of integer pixel radius equal to the
whole part of the pixel distance of the desired point determined the maximum
number of estimates and the offset value for each phasor estimated. The estimation

circle began at the origin, and the estimates of the phasor spectrum points began one
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radial pixel distance beyond that. The phasor at the origin had a value of one, since
it had no imaginary part, and it was normalized. Each phasor spectrum point
included more estimations as the recursive process proceeded, out to the maximum
radial offset value. The same estimates of the phasor spectrum were found for every
short exposure image and then averaged. Averaging a set of estimates associated
with a phasor spectrum point produced the corresponding phasor value for that point.

Using the phasor spectrum of the uncorrupted binary star object
modified with equal intensity stars verified the phasor recovery process. Comparing
the phasor spectrum of the binary star before and after the recovery process using
complex doubie precision numbers provided a match for all points to ten significant
figures.

The phasor recovery process required an extensive amount of
calculation. The time for phase reconstruction was approximately 30 seconds for
every short exposure image. The process was made less time consuming by invoking

Hermitian symmetry. Hermitian symmetry dictates
O1,5 = 05,1 (4.4)

thereby allowing half the number of calculations to determine the full object’s phasor
spectrum.

At the end of the phasor recovery operation, the variance of the cross-
spectrum or bispectrum estimates provided an SNR value for each phasor element

from equations (3.34) through (3.37). The square of the SNR for each estimate was
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then multiplied by the corresponding estimate when the phasor spectrum points were
calculated. This calculation provided a weighted least squares estimation of the
object’s phasor spectrum. When combined with the recovered modulus, the object’s

Fourier spectrum resulted.

6. Azimuthal Signal-To-Noise Ratio
Averaging the SNR values of the cross-spectrum and bispectrum provided
an average SNR value for each phasor element. This average SNR array was then
averaged azimuthally, one radial pixel value at a time, from the origin out to the
cutoff frequency to provide a SNR as a function of radial spatial frequency. This
radial SNR provided one means to compare the two phasor recovery techniques as
well as to determine the frequency at which noise overcame signal to enable proper

filtering.

7. Fourier Spectrum Filtering
The final result of the simulation process was a weighted least squares
estimate of the object’s Fourier spectrum. Before inverse Fourier transformation, the
object’s Fourier spectrum required filtering. A simple rectangular low-pass filtering
method, which truncated spatial frequencies beyond the radial frequency where the
azimuthal SNR was unity, determined the object’s Fourier spectrum. This filtering
process was provided by a separate program which included a method to determine

the phase error of the recovered image’s Fourier spectrum.
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8. Azimuthal RMS Phase Error
Measuring the phase error of the two phasor recovery techniques
produced another means for comparison. The object’s phasor spectrum determined
its phase spectrum. Computing the phase spectrum modulo 27, then subtracting the
result from the object phase spectrum of the true object representation provided the
array point phase error. The square of this error was determined then averaged
azimuthally one radial pixel value at a time, from the origin out to the cutoff

frequency. The square root of this average provided the azimuthal RMS phase error.

C. SUMMARY

The simulation process obtained the reconstructed image from several short
exposures images. The process prodrced the desired object and the phase screens
to make the short exposure images required for speckle imaging. With several short
exposure images of the object, the Labeyrie technique recovered its power spectrum
and the Knox-Thompson and Triple-Correlation techniques recovered its phasor
spectrum. Low-pass filtering removed noise and the SNR and phase error
calculations presented means for comparison of the two phasor recovery techniques.
The inverse Fourier transform of the filtered spectrum yielded the recovered image

presented in the form of a contour plot.
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V. SIMULATION RESULTS

A. RECOVERY TECHNIQUE COMPARISON CRITERIA

Seven criteria provided a basis for comparison of the KT and TC phasor
recovery techniques. Each criterion tested the reconstructed image’s resolution
produced by both algorithms over a range of values for a specific imaging parameter.
A baseline of imaging parameters (Table A.I) was established. Typically one
parameter was varied within an individual criterion. Each criterion used a range of
two to four imaging parameter values. The criteria included reconstructed image
evaluation based on the quantity of short exposure images, the short exposure image
photon count, and the amount of turbulence. Additionally, the effects of short
exposure image tilt on reconstruction as well as centroiding in image space to remove
it, were weighed. Further, the effect of offset value on cross-spectrum and
bispectrum estimates and object size on image resolution, were rated.

The techniques were judged in terms of image resolution, phasor spectrum
SNR, and phase error. Each comparison included both the KT and TC image
reconstructions. The evaluation included two-dimensional graphs of the SNR values
for both the KT and TC image reconstruction as well as their phase error values.
The reconstructed images appear with normalized intensities on two-dimensional
contour plots with hachure marks indicating the direction of minima. The SNR and

phase error values for each comparison were plotted against spatial frequency. The
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maximum frequency value was the last point at which the SNR had a value of one
or greater. The reconstructed image plots were visually compared to the object’s true

image. By contrast, their SNR and phase error values were compared to each other.

B. RECOVERY TECHNIQUE COMPARISONS

Appendix A maintains the resulits of the recovery technique comparisons within
the seven criteria. Table A.I delineates the imaging parameters involved in the
simulation process and whether these values are variable over these criteria. Figures
Al and A.2 represent the true representations of the asteroid and binary star
respectively. 'I‘lxese figures show the results of the actual computer generated objects
without turbulence corruption, filtering, or modification resulting from the imaging
system including aperture effects, which all other figures include. They were the
reference figures for the reconstructed images and the phase error calculations.
Figures A.3 through A.22 are plots of single short exposure images of the asteroid,
the binary star and the star that show the effects of varying coherence lengths and
photon counts. They show the level of distortion the objects realize in the imaging
process. Figures A.23 through A.25 are plots of long exposure images that consisted
of an average of 100 short exposure images with tilt. The inclusion of these images
provides an appreciation for the necessity of image reconstruction to acquire an

image that more closely resembles the truth.




1.  Short Exposure Image Quantity
Image resolution increases with the quantity of short exposure images used
in the reconstruction process. Varying the quantity of images with no tilt present
provided the first comparison criterion for the recovery techniques. For the four
comparisons, the values of N, were 400 (baseline), 25, 100, and 1600 short exposure
images. All other baseline parameters remained unchanged. The relevant plots and
graphs are Figures A.26 through A.41. In all cases, the visual image quality of the
TC recovered images was superior to those recovered by the KT process. This image
quality distinction was especially noticeable at the lower N, values of 25 and 100. As
the value of N, increased, the distinction decreased to the point where it was only
slightly noticeable at the N, of 1600. Analysis of the phasor spectrum SNR graphs
showed, in general, that the TC SNR curves were offset toward approximately ten to
20 percent greater SNR values than those of the KT SNR curves. Further, the phase
error graphs showed the error curves resulting from the TC method were offset
toward approximately five to 15 percent lesser error than those of the KT method.
These two series of graphs confirmed that in all cases, especially at low N, the TC

technique outperformed the KT technique.

2. Photon Count
Image resolution increases with the amount of short exposure image
photons present. Varying the quantity of photons in the short exposure images with
no tilt present provided the second comparison criterion for the recovery techniques.

For the four comparisons, the photon count values were 10° (baseline), 105, 10%, and

41




10° photons where all other baseline parameters remained unchanged. Figures A.26
through A.29 and A.42 through A.53 are applicable for this criterion. The visual
quality of the TC and KT reconstructed images for photon counts of 10° and 10° was
almost identical. For photon counts of 10* and 10° the KT technique produced
slightly better reconstructed images. This photon count distinction of recovery
technique performance was confirmed by both the SNR and phase error graphs. For
low photon count short exposure images, the KT technique SNR curves were offset
toward approximately ten to 20 percent greater SNR values than those of the TC
technique, and the phase error curves were generally offset toward five to 25 percent
lesser error values. Therefore, for low photon count image recovery without tilt, the

KT phasor recovery technique provides slightly better resolution.

3. Turbulence Magnitude and Offset Value

As the amount of turbulence increases, the resolution of the reconstructed
image decreases. Short exposure images with no tilt of coherence lengths 0.103 and
0.206 meters (baseline), provided the third and fourth comparison criteria for the
recovery techniques. For the turbulence magnitude criterion, the 0.103 meter
coherence length images required an offset value of two, to ensure inclusion of all
spatial frequencies. For consistency, the 0.206 meter coherence length images used
the same value. Comparison between offset values of two and four satisfied the
offset criterion for TC and KT reconstructed images. Offset values effect the
quantity of cross-spectrum or bispectrum averaging and the reconstructed image

quality increases with increasing offset value. All other baseline parameters remained
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unchanged. Figures A.54 through A.61 showed the comparisons of the turbulence
criterion and Figures A.26 through A.29 and A.58 through A.61 showed the
comparisons of the offset criterion. For the coherence length case, the KT technique
provided a slightly better image with greater turbulence. The TC SNR curve was
offset toward approximately five to ten percent greater SNR values relative to the KT
curve. However, the KT phase error curve was offset toward approximately five
percent lesser error values providing the more resolved image. For the offset value
case, the TC technique produced a slightly better image, though the SNR and phase
error curves were almost coincident. This apparent contradiction arose from TC
techniques having more frequency values above the unity SNR value, thereby

providing higher frequencies for the filtering process.

4. Tilt

The resolution of the reconstructed image declines with .the inclusion of
tilt in the short exposure images. The previous criterion comparisons were conducted
without the presence of tilt. The addition of tilt provides a more realistic comparison
of the phasor recovery techniques as tilt is always present in true short exposure
images. Varying the photon count of the short exposure images with tilt present
provided the fifth criterion for comparison of the recovery techniques. For the three
comparisons, the photon count values were 10% 10%, and 10® photons and all other
baseline parameters remained unchanged. Figures A.62 through A.77 were
applicable for this criterion. In all photon count cases, the TC recovered image were

superior. The KT SNR curves were generally offset toward 30 to 50 percent lesser
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SNR values and dropped below the unity value at lower spatial frequencies than the
TC curves. Hence, fewer high frequency values were included in the filtering process,
producing a poorer resolution. The phase error curves for the TC recovered images
were offset toward approximately 20 to 50 percent lesser error values than for those
recovered using the KT process except at the 10° photon count. At this value,
however, the KT SNR curve was offset toward much lower SNR values.
Consequently, the TC technique was found to be superior when tilt was included in

the short exposure images.

§. Centroiding

Centroiding the short exposure images prior to image reconstruction
enhances both the TC and KT recovery techniques for high photon counts. Short
exposure image centroiding provided the sixth criterion for comparison of the
recovery techniques by again varying the photon count of the short exposure images.
With tilt present, the images were centroided prior to reconstruction. For the three
comparisons, the photon count values were 10°, 10*, and 10 photons and all other
baseline parameters remained unchanged. Additionally, a comparison with 10°
photons and 1600 short exposures with and without tilt tested the effects of
centroiding at high N, values. Figures A.78 through A.93 were relevant for this
criterion. Centroiding offered a two to five percent improvement to both recovery
methods with higher photon count. At low photon counts such as 10° photons,
centroiding actually offset the phase error curves toward higher error values. For the

TC method, centroiding should have no effect or the effect should disappear with
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large enough N, values since the method is shift invariant. However, at 10° photons
and with 1600 short exposure images, a minor improvement in phase error occurred
with centroiding. Centroiding did not improve the reconstructed image to the point
of those recovered images having no tilt, nor did centroiding bring the KT method
results in line with that of the TC method. However, a minor improvement in phase

error occurred for both methods.

6. Point Objects

The resolution of the reconstructed image depends upon its size and
detail. Resolution of an object such as a binary star occurs more easily because of
the requirement for less short exposure image photons. A binary star with one star
having twice the intensity as its counterpart, provided the seventh comparison
criterion for the phasor recovery techniques. The binary star was corrupted by
turbulence of coherence length 0.103 and 0.206 meters and with short exposure image
photon counts of 10° and 10° photons. Figures A.94 through A.109 are germane.
The two techniques produced identical results at the higher photon count and lower
turbulence values. With lower photon count and greater turbulence, the TC
technique provided greater resolution of the stars. Both the SNR and phase error

curves supported this fact.

7.  Recovery Technique Comparison Findings
For the eventual use of real objects in future applications of the recovery

techniques where tilt is inherent in short exposure images, triple-correlation was the
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superior reconstruction technique. The triple-correlation technique exceeded the
Knox-Thompson technique by far in the comparisons where tilt was a concern. The
shift invariance of the triple-correlation technique provided the ability to resolve low
light-level objects where the Knox-Thompson technique failed. Though the Knox-
Thompson technique required eight percent less time for image reconstruction, the
resolution improvement obtained by the TC approach outweighed the computational

time efficiency of the competing technique.




VI. CONCLUSION

A. OVERVIEW

This thesis compared the Knox-Thompson and triple-correlation phasor
recovery techniques. Since speckle imaging involves extensive calculations,
comparison of the two techniques required a powerful computer. The simulation
produced an object and a phase screen for each short exposure image. The
diffraction-limited information in these images allowed reconstruction of the object’s
power and phasor spectra. Combining these spectra produced the reconstructed
image. Image reconstruction comparison under seven imaging criteria permitted the
ability to determine the superior technique. The triple-correlation technique provided
the best overall image resolution. This judgement stems from its superiority with

regard to realistic short exposure images which included tilt.

B. OPTIMUM IMAGE RECOVERY APPROACH

This thesis found that, of the two phasor recovery techniques compared, the
triple-correlation technique was the optimum approach for real short exposure image
recovery. From the shift invariance of the triple-correlation technique, attainment
of 20 to 50 percent less azimuthal phase error values occurred when compared with
the Knox-Thompson technique. As a result, use of the triple-correlation phasor

recovery technique is essential. Specifically, removal of the noise bias compensates
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for the random photon noise that is intrinsic to real images. The use of phasor vice
phase recovery is key to avoid the phase 27 wrap-around problem. The weighting
of the phasors determined from their cross-spectrum or bispectrum estimates by the
least squares estimation approach, is critical. The recursion method used to provide
the phasors is not imperative, and other techniques may be used, such as the method
of least squares or the method of steepest decent, not discussed in this thesis. With
regard to imaging parameters, the triple-correlation technique allowed larger
maximum offset values than the Knox-Thompson technique; D/A instead of r,/A.
This provides maximum estimate averaging. Based on the results with centroiding,
it is helpful for relatively high light level short exposure images. Finally, peak
recovered image resolution requires the maximum amount of short exposure images

practicable.

C. FURTHER STUDY

This thesis provided simulated results for comparison of the two recovery
techniques. Application of the triple-correlation technique to actual, turbulence-
degraded images provides an avenue of research. Development and testing of other
methods of extracting the phasor spectrum beyond the recursion method demands
analysis. Reconstructed Fourier spectrum filtering processes beyond the simple

rectangular low pass filtering approach used herein require exploration.
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APPENDIX A. PLOTS AND GRAPHS

The following table, plots, and graphs were referenced in the text.

Figure A.I Imaging Parameters.

Imaging Parameter | Parameter
Abbrev.

Short Exposure Variable
Image Quantity

Coherence Length Variable

Short Exposure 10° Variable
Image Photon
Quantity

Offset Value 4 (pixels) Variable

Telescope Primary 1.6 (m) Corstant
Diameter

Telescope Secondary 0.33 (m) Constant
Diameter

Aperture Radius 31 (pixels) Constant

Light Wavelength 5.5 x 107 Constant
(m)
Cutoff Frequency 68.3 (1/arcsec) | Constant

Random Number 123456789 Constant
Seed
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APPENDIX B. KNOX-THOMPSON MAIN PROGRAM

THIS PROGRAM CREATES ONE OF THREE IMAGES: A STAR, A
BINARY STAR AND AN ASTEROID. IT THEN DEGRADES THE
IMAGE BY SIMULATING ATMOSPHERIC CONDITIONS AND PHOTON
NOISE, AND THEN RECONSTRUCTS THE IMAGE USING THE
KNOX-THOMPSON ALGORITHM.

AUTHOR:

LT JAMES M. LACKEMACHER

COMPL. DATE: 26 OCTOBER 1990

REASON:
GOAL:

COMPLETE REQUIREMENTS FOR A MASTERS
DEGREE IN PHYSICS.

SIMULATE OBJECT, DEGRADE OBIJECT,
RECONSTRUCT OBJECT USING KNOX-
THOMPSON AND TRIPLE-CORRELATION
METHODS, FILTER AND COMPARE.

PROGRAM KNOXTHOMPSON

MAIN PROGRAM COMPLEX VARIABLE LIST

F
GAUSSIAN

I
IKT
IS
ISKT

n DIM ARRAY USED IN THE FOURIER TRANSFORM
nx n DIM ARRAY THAT REPRESENTS THE GAUSSIAN
PORTION OF THE ASTEROID

n x n DIM ARRAY THAT REPRESENTS THE
DEGRADED IMAGE

nxnx5x 9 ARRAY THAT REPRESENTS THE CROSS-
SPECTRUM OF THE IMAGE

n x n DIM ARRAY THAT REPRESENTS THE
DEGRADED POINT SOURCE

nx n DIM ARRAY THAT REPRESENTS THE MCDULUS
SQUARED OF THE POINT SOURCE
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OKT

OBJDATA
KTPHASOR

PUPIL
TEMPDATA

n x n DIM ARRAY THAT REPRESENTS THE OBJECT
SPECTRUM OF THE RECONSTRUCTED IMAGE

n x n DIM ARRAY THAT REPRESENTS THE OBJECT
nxn DIM ARRAY THAT REPRESENTS THE PHASOR OF
THE OBJECT IN THE RECONSTRUCTION PROCESS

n x n DIM ARRAY THAT REPRESENTS THE PUPIL
PORTION OF THE ASTEROID

n x n DIM ARRAY THAT IS USED AS A TEMPORARY
ARRAY

MAIN PROGRAM REAL VARIABLE LIST

KTsnr
mod

snr

xvarikt

n x n DIM ARRAY THAT REPRESENTS THE SNR OF
EACH PHASOR

nx n DIM ARRAY THAT REPRESENTS THE MODULUS
OF THE RECONSTRUCTED IMAGE

n/2 DIM ARRAY THAT REPRESENTS THE SNR AS A
FUNCTION OF RADIUS

nxnx 5 x9DIM ARRAY THAT REPRESENTS THE
REAL PART OF THE VARIANCE OF THE CROSS-
SPECTRUM
nxnxJ5x9DIM ARRAY THAT REPRESENTS THE
IMAGINARY PART OF THE VARIANCE OF THE CROSS-
SPECTRUM

MAIN PROGRAM INTEGER VARIABLE LIST

fwd
icounter

inv
In
offset

mseed

VALUE OF 1 FOR FORWARD FFT

COUNTER THAT COUNTS THE NUMBER OF
SNAPSHOTS

VALUE OF -1 FOR INVERSE FFT

2”In FOR USE WITH FFT SUBROUTINE

VARIABLE THAT REPRESENTS THE NUMBER OF
PIXELS THAT ARE AVERAGED IN THE KNOX-
THOMPSON PROCESS

VARIABLE USED TO ENSURE ONLY ONE PASS OF
INITIAL PART OF PHSUB SUBROUTINE
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n
nframes
nphoton
nyquist

O 0O006000

DIMENSION OF ONE SIDE OF 2-DIM ARRAY
TOTAL NUMBER OF SHORT EXPOSURE SNAPSHOTS
TOTAL NUMBER OF PHOTONS IN SNAPSHOT
EQUAL TO THE TELESCOPE PUPIL FUNCTION RADIUS
DERIVED FROM THE RELATION:
nyquist = (telescope diameter x

number of pixels per r0)/r0

MAIN PROGRAM

PARAMETER(n=64,In=6,fwd=1,inv=-1)

COMPLEX*16 OBIDATA(n,n), TEMPDATA(n,n), F(n),
+ PUPIL(n,n), STARDATA(n,n), GAUSSIAN(n,n),

+ KTPHASOR(n,n), IKT(n,n,5,9), ISKT(n,n),

+ I(n,n), IS(n,n), OKT(n,n)

REAL*8 mod(n,n), xvarrkt(n,n,5,9), xvarikt(n,n,5,9),
+ KTsnr(n,n), rsnr(n/2)

INTEGER offset

CHARACTER®*16 filel, file2
CHARACTER*1 cent

¢  INITIALIZE MSEED TO ALLOW ONLY ONE PASS THROUGH FIRST
c PART OF PHSUB

mseed = 1

¢ INITIALIZE PROGRAM READING REQUIRED VARIABLES AND
¢  CREATE THE DESIRED OBJECT

CALL Initialize(OBJDATA,GAUSSIAN,PUPIL,F,TEMPDATA,
+ filel,file2 fwd,inv,In,nframes,nphoton,nyquist,

+ offset,cent,n)

¢  TRANSFORM THE OBJECT TO FREQUENCY SPACE

CALL FFT2D(OBJDATA,TEMPDATA,F,In,fwd,n)
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NORMALIZE ALL OF THE ARRAY ELEMENTS TO THE VALUE OF
THFE, NUMBER OF PHOTONS WHERE THE DC TERM EQUALS THE
NUMBER OF PHOTONS OF THE IMAGE
CALL Photons(OBJDATA,nphoton,n)
CREATE THE POINT SOURCE
CALL Star(STARDATA,n)
TRANSFORM THE POINT SOURCE TO FREQUENCY SPACE
CALL FFT2D(STARDATA, TEMPDATA F,In,fwd,n)
NORMALIZE ALL OF THE ARRAY ELEMENTS TO THE VALUE OF
THE NUMBER OF PHOTONS WHERE THE DC TERM EQUALS THE
NUMBER OF PHOTONS OF THE IMAGE
CALL Photons(STARDATA nphoton,n)
COMMENCE THE LOOP THAT COUNTS THE SNAPSHOTS
DO 10 icounter = 1, nframes

DEGRADE THE IMAGE WITH THE TELESCOPE, THE ATMOSPHERE,
AND THE PHOTON NOISE

CALL PHSUB(L,F,TEMPDATA,OBJDATA,icounter,nframes,
+ nyquist,fwd,inv,In,n,mseed)

CENTROID THE DEGRADED IMAGE ONLY SINCE ONLY PHASE IS
EFFECTED BY CENTROIDING IF CENTROIDING IS DESIRED.

IF ((cent.EQ."Y").OR.(cent.EQ.y’)) THEN
CALL Centroid(TEMPDATA n)
ENDIF
TRANSFORM THE DEGRADED IMAGE TO FREQUENCY SPACE

CALL FFT2D(I, TEMPDATA,F,In,fwd,n)
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C

DEGRADE THE POINT SOURCE WITH THE TELESCOPE, THE
ATMOSPHERE, AND THE PHOTON NOISE

CALL PHSUB(IS,F,TEMPDATA,STARDATAicounter,nframes,
+ nyquist,fwd,inv,In,n,mseed)

TRANSFORM THE DEGRADED IMAGE TO FREQUENCY SPACE
CALL FFT2D(IS,TEMPDATA F,In,fwd,n)

DETERMINE THE MODULUS OF THE DEGRADED IMAGE AND
POINT SOURCE

CALL Modulus(LIS,IKT,ISKT,mod,icounter,
+ nframes,nphoton,n)

RECONSTRUCT THE OBJECT FROM THE DEGRADED IMAGE AND
POINT SOURCE

CALL KTrecon(KTPHASOR,LIKT,KTsnr,offset,xvarrkt,
+ xvarikt,icounter,nframes,nyquist,n)

WRITEC(*,*)icounter, FRAMES COMPLETED’
END THE LOOP

10 CONTINUE

C

CALCULATE THE AVERAGE SNR AS A FUNCTION OF RADIUS
CALL SNRcalc(KTsnr,rsnr,nyquist,n)

COMBINE THE MODULUS WITH THE PHASOR
CALL Combine(OKT,mod, KTPHASOR,n)

WRITE RECONSTRUCTED PHASE AND POWER SPECTRUM TO A
FILE

CALL Writefile(OKT,rsnr,filel,file2,nyquist,n)

STOP
END
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APPENDIX C. TRIPLE-CORRELATION MAIN PROGRAM

THIS PROGRAM CREATES ONE OF THREE IMAGES: A STAR, A
BINARY STAR AND AN ASTEROID. IT THEN DEGRADES THE
IMAGE BY SIMULATING ATMOSPHERIC CONDITIONS AND PHOTON
NOISE, AND THEN RECONSTRUCTS THE IMAGE USING THE TRIPLE-
CORRELATION ALGORITHM.

AUTHOR: LT JAMES M. LACKEMACHER

COMPL. DATE: 26 OCTOBER 1990

REASON: COMPLETE REQUIREMENTS FOR A MASTERS
DEGREE IN PHYSICS.

GOAL: SIMULATE OBJECT, DEGRADE OBJECT,

RECONSTRUCT OBJECT USING KNOX-
THOMPSON AND TRIPLE-CORRELATION
METHODS, FILTER AND COMPARE.

PROGRAM TRIPLECORR

MAIN PROGRAM COMPLEX VARIABLE LIST

BSPHASOR nxnDIM ARRAY THAT REPRESENTS THE PHASOR OF
THE OBJECT IN THE RECONSTRUCTION PROCESS

F n DIM ARRAY USED IN THE FOURIER TRANSFORM

GAUSSIAN nxn DIM ARRAY THAT REPRESENTS THE GAUSSIAN
PORTION OF THE ASTEROID

1 nxn DIM ARRAY THAT REPRESENTS THE DEGRADED
IMAGE

IBS nxnx5x9 ARRAY THAT REPRESENTS THE
BISPECTRUM OF THE IMAGE

IDBS 5 x 9 ARRAY THAT REPRESENTS THE DEVIATION

FROM THE DC TERM
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IS
ISBS
OBS

OBJDATA
PUPIL

TEMPDATA

nxn DIM ARRAY THAT REPRESENTS THE DEGRADED
POINT SOURCE

nx n DIM ARRAY THAT REPRESENTS THE MODULUS
SQUARED OF THE POINT SOURCE

n x n DIM ARRAY THAT REPRESENTS THE OBJECT
SPECTRUM OF THE RECONSTRUCTED IMAGE

n x n DIM ARRAY THAT REPRESENTS THE OBJECT

n x n DIM ARRAY THAT REPRESENTS THE PUPIL
PORTION OF THE ASTEROID

n x n DIM ARRAY THAT IS USED AS A TEMPORARY
ARRAY IN THE FOURIER TRANSFORM

MAIN PROGRAM REAL VARIABLE LIST

BSsnr
mod
Isnr
xvarrbs

xvaribs

n x n DIM ARRAY THAT REPRESENTS THE SNR OF
EACH PHASOR

n x n DIM ARRAY THAT REPRESENTS THE
MODULUS OF THE RECONSTRUCTED IMAGE

n/2 DIM ARRAY THAT REPRESENTS THE SNR AS A
FUNCTION OF RADIUS
nxnx5x9DIM ARRAY THAT REPRESENTS THE
REAL PART OF THE VARIANCE OF THE BISPECTRUM
nxnx5x9DIM ARRAY THAT REPRESENTS THE
IMAGINARY PART OF THE VARIANCE OF THE
BISPECTRUM

MAIN PROGRAM INTEGER VARIABLE LIST

fwd
icounter

inv
In
offset

VALUE OF 1 FOR FORWARD FFT

COUNTER THAT COUNTS THE NUMBER OF
SNAPSHOTS

VALUE OF -1 FOR INVERSE FFT

2”In FOR USE WITH FFT SUBROUTINE

VARIABLE THAT REPRESENTS THE NUMBER OF
PIXELS THAT ARE AVERAGED IN THE TRIPLE-
CORRELATION PROCESS
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mseed VARIABLE USED TO ENSURE ONLY ONE PASS OF
INITIAL PART OF PHSUB SUBROUTINE

n DIMENSION OF ONE SIDE OF 2-DIM ARRAY

nframes TOTAL NUMBER OF SHORT EXPOSURE SNAPSHOTS
nphoton TOTAL NUMBER OF PHOTONS IN SNAPSHOT

nyquist EQUAL TO THE TELESCOPE PUPIL FUNCTION RADIUS

DERIVED FROM THE RELATION:
nyquist = (telescope diameter x
number of pixels per r0)/r0

MAIN PROGRAM

PARAMETER (n=64,In=6fwd=1,inv=-1)

COMPLEX*16 OBJDATA(n,n), TEMPDATA(n,n), F(n),
+ PUPIL(n,n), I(n,n), STARDATA(n,n), GAUSSIAN(n,n),
+ BSPHASOR(n,n), IBS(n,n,5,9), ISBS(n,n), IS(n,n),

+ OBS(n,n), IDBS(5,9)

REAL*8 mod(n,n), xvarrbs(n,n,5,9), xvaribs(n,n,5,9),

+ BSsnr(n,n), rsnr(n/2)

INTEGER offset

CHARACTER*16 filel, file2
CHARACTER?*1 cent

INITIALIZE MSEED TO ALLOW ONLY ONE PASS THROUGH FIRST
PART OF PHSUB

mseed = 1

INITIALIZE PROGRAM READING REQUIRED VARIABLES AND
CREATE THE DESIRED OBJECT

CALL Initialize(OBJDATA,GAUSSIAN,PUPIL,F,TEMPDATA,

+ filel,file2,fwd,inv,In,nframes,
+ nphoton,nyquist,offset,cent,n)
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TRANSFORM THE OBJECT TO FREQUENCY SPACE

CALL FFT2D(OBJDATA,TEMPDATA,F,In,fwd,n)
NORMALIZE ALL OF THE ARRAY ELEMENTS TO THE VALUE OF
THE NUMBER OF PHOTONS WHERE THE DC TERM EQUALS THE
NUMBER OF PHOTONS OF THE IMAGE

CALL Photons(OBJDATA,nphoton,n)
CREATE THE POINT SOURCE

CALL Star(STARDATA,n)
TRANSFORM THE POINT SOURCE TO FREQUENCY SPACE

CALL FFT2D(STARDATA,TEMPDATAF,In,fwd,n)
NORMALIZE ALL OF THE ARRAY ELEMENTS TO THE VALUE OF
THE NUMBER OF PHOTONS WHERE THE DC TERM EQUALS THE
NUMBER OF PHOTONS OF THE IMAGE

CALL Photons(STARDATA,nphoton,n)
COMMENCE THE LOOP THAT COUNTS THE SNAPSHOTS

DO 10 icounter = 1, nframes

DEGRADE THE IMAGE WITH THE TELESCOPE, THE ATMOSPHERE,
AND THE PHOTON NOISE

CALL PHSUB(LF, TEMPDATA,OBJDATA icounter,nframes,
+ nyquist,fwd,inv,In,n,mseed)

CENTROID THE DEGRADED IMAGE ONLY SINCE ONLY PHASE IS
EFFECTED BY CENTROIDING IF CENTROIDING IS DESIRED.

IF ((cent.EQ.”Y’).OR.(cent.EQ.’y’)) THEN
CALL Centroid(LTEMPDATA,n)
ENDIF
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¢  TRANSFORM THE DEGRADED IMAGE TO FREQUENCY SPACE
CALL FFT2D(I, TEMPDATA/F,In,fwd,n)

DEGRADE THE POINT SOURCE WITH THE TELESCOPE, THE
ATMOSPHERE, AND THE PHOTON NOISE

o6

CALL PHSUB(IS,F,TEMPDATA,STARDATA icounter,nframes,
+ nyquist,fwd,inv,In,n,mseed)

¢ TRANSFORM THE DEGRADED IMAGE TO FREQUENCY SPACE
CALL FFT2D(IS,TEMPDATA F,n,fwd,n)

DETERMINE THE MODULUS OF THE DEGRADED IMAGE AND
¢ POINT SOURCE

o

CALL Modulus(LIS,IBS,ISBS,mod,icounter,
+ ~nframes,nphoton,n)

RECONSTRUCT THE OBJECT FROM THE DEGRADED IMAGE AND
POINT SOURCE

o6

CALL BSrecon(BSPHASOR,LIBS,IDBS,BSsnr,offset,
+ xvarrbsxvaribs,icounter,nframes,
+ nyquist,nphoton,n)
WRITE(*,*)icounter, FRAMES COMPLETED’
c¢ END THE LOOP
10 CONTINUE
¢ CALCULATE THE AVERAGE SNR AS A FUNCTION OF RADIUS
CALL SNRcalc(BSsnr,rsnr,nyquist,n)
¢ COMBINE THE MODULUS WITH THE PHASOR

CALL Combine(OBS,mod,BSPHASOR,n)
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c
c

WRITE RECONSTRUCTED PHASE AND POWER SPECTRUM TO A
FILE

CALL Writefile(OBS,rsnr file1,file2,nyquist,n)

STOP
END
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APPENDIX D. UNIVERSAL IMAGE RECOVERY SUBROUTINES

THE FOLLOWING SUBROUTINES WERE GENERATED BY THE
THESIS AUTHOR AND ARE REQUIRED BY BOTH THE KNOX-
THOMPSON AND THE TRIPLE-CORRELATION PROGRAMS.
ADDITIONALLY, SOME SUBROUTINES ARE REQUIRED FOR

THE FILTRMS PROGRAM IN APPENDIX H.

O 06000

SUBROUTINE LIST

SUBROUTINE Ast(ASTEROID,GAUSSIAN,PUPIL,F, TEMPDATA,
+ fwd,inv,In,n)
COMPLEX*16 GAUSSIAN(n,n), ASTEROID(n,n), PUPIL(n,n),
+ TEMPDATA(n,n), F(n), E1, E2, E3, E4, ES, E6, E7
maxval = 0.0
aval = 4.0
n2pl =n2 +1
rad = 16.0
DO10i=1,n
DO10j=1n

x = float(j - (n2p1))

y = float((n2p1) - i)

radius = sqrt(x**2.0 + y**2.0)

IF (radius.LE.rad) THEN

PUPIL(,j) = (1.0,0.0)
ELSE

PUPIL(ij) = (0.0,0.0)
ENDIF
IF ((abs(x).LE.aval).AND.(abs(y).LE.aval)) THEN
GAUSSIAN(i,j) = DCMPLX(exp(-(x**2.0 +
+ y**2.0)/4))
ELSE
GAUSSIAN(i,j) = (0.0,0.0)
ENDIF
10 CONTINUE
CALL FFT2D(GAUSSIAN,TEMPDATA,F,In,fwd,n)
CALL FFT2D(PUPIL,TEMPDATA F,in,fwd,n)
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DO20i=1,n
DO20j=1,n
ASTEROID(i,j) = GAUSSIAN(i,j) * PUPIL(i,j)
CONTINUE
CALL FFT2D(ASTEROID,TEMPDATA,F,ln,inv,n)
a=10
al =25
a2=2
a3 =25
ad =2
a5 =35
a6 =3
a7 =25
DO30i=1,n
DO30j=1,n
x = float(j - (n2p1))
y = float((n2p1)- i)
x1 = x+6
yl =y-8
xal = x1/al
yal = yl/al
IF ((abs(xal).LE.aval).AND.(abs(yal).LE.aval))
THEN

E1l = DCMPLX(a * exp(-(xal**2.0 + yal**2.0)))
ELSE
E1 = (0.0,0.0)
ENDIF
x2 = x-4
y2 = y-6
xa2 = x2/a2
ya2 = y2/a2
IF ((abs(xa2).LE.aval).AND.(abs(ya2).LE.aval))

+ THEN

E2 = DCMPLX(a * exp(-(xa2**2.0 + ya2**2.0)))
ELSE
E2 = (0.0,0.0)
ENDIF
x3 = x-10
y3 =y-4
xa3 = x3/a3
ya3 = y3/a3
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IF ((abs(xa3).LE.aval).AND.(abs(ya3).LE.aval))
THEN

E3 = DCMPLX(a * exp(-(xa3**2.0 + ya3**2.0)))
ELSE
E3 = (0.0,0.0)
ENDIF
x4 = x+6
y4 = y+6
xa4 = x4/a4
yad = y4/a4
IF ((abs(xa4).LE.aval).AND.(abs(ya4).LE.aval))
THEN

E4 = DCMPLX(a * exp(-(xa4**2.0 + ya4**2.0)))
ELSE
E4 = (0.0,0.0)
ENDIF
x5 = x+0
ys =y-2
xa5 = x5/a$
yaS = y5/as
IF ((abs(xa5).LE.aval).AND.(abs(ya5).LE.aval))
THEN

ES = DCMPLX(a * exp(-(xa5**2.0 + ya5**2.0)))
ELSE
ES = (0.0,0.0)
ENDIF
x6 = x+2
y6 = y+8
xaé = x6/a6
ya6 = y6/a6
IF ((abs(xa6).LE.aval).AND.(abs(ya6).LE.aval))
THEN
E6 = DCMPLX(a * exp(-(xa6**2.0 + ya6**2.0)))
ELSE
E6 = (0.0,0.0)
ENDIF
x7 = x-6
y7 = y+6
xal = x7/a7
ya7 = y7/a7
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IF ((abs(xa7).LE.aval).AND.(abs(ya7).LE.aval))
THEN

E7 = DCMPLX(a * exp(-(xa7**2.0 + ya7**2.0)))
ELSE
E7 = (0.0,0.0)
ENDIF
ASTEROID(i,j) = DCMPLX(DREAL(ASTEROID(i,j) -
+ (E1 + E2 + E3 + E4 + ES + E6 + E7)))
IF (DREAL(ASTEROID(i,j)).LT.0.0) ASTEROID(ij) =
+ (0.0,0.0)
30 CONTINUE
RETURN
END

SUBROUTINE Bistar(DATA,n)

¢  THIS S/R CREATES A SIMULATED BINARY STAR WITH ONE STAR
¢ LARGER THAN THE OTHER

COMPLEX*16 DATA(n,n)
n2pl =nf2 +1
DO10i=1n
DO10j=14n -
x = float(j - n2p1)
y = float(n2p1 - i)
IF ((x.EQ.12.0).AND.(y.EQ.12.0)) THEN
DATAC(,j) = (2.0,0.0)
ELSEIF ((x.EQ.-12.0).AND.(y.EQ.-12.0)) THEN
DATA(,j) = (1.0,0.0)
ELSE

DATA(,j) = (0.0,0.0)
NDIF
10 CONTINUE

RETURN
END
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SUBROUTINE Centroid(DATA,TEMPDATA,n)

THIS S/R DETERMINES THE CENTROID OF THE DEGRADED IMAGE
¢ AND THEN CENTROIDS THE IMAGE

[¢]

COMPLEX*16 DATA(n,n), TEMPDATA(n,n)
REAL*8 xj, yi, xnum, ynum, xden, yden
n2pl =nf2 +1
DO10i=1n
DO10j=1n
xj = dfloat(j - n2p1)
yi = dfloat(n2p1 - i)
xnum = xnum + xj * ABS(DATAC(ij))
ynum = ynum + yi * ABS(DATAC(ij))
xden = xden + ABS(DATAC(,j))
yden = yden + ABS(DATAC(j))
10 CONTINUE
jxbar = idnint(xnum/xden)
iybar = idnint(ynum/yden)
DO20i=1n
DO20j=1,n
ii =i - iybar
jl =j + jxbar
IF ((ii.GT.n).OR.(ii.LT.1).0R.(jj.GT.n).OR.
+ (ii.LT.1)) THEN
TEMPDATAC(i,j) = (0.0,0.0)
ELSE
TEMPDATAC(j) = DATAC(,jj)
ENDIF
20 CONTINUE
DO30i=1n
DO30j=1,n
DATAC(i,j) = TEMPDATAC(ij)
30 CONTINUE
RETURN
END
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SUBROUTINE Combine(O,mod,PHASOR;n)

THIS S/R COMBINES THE MODULUS AND PHASOR OF THE
RECONSTRUCTED OBJECT

COMPLEX*16 PHASOR(-n/2:n/2-1,-n/2:n/2-1),
+ O(-n/2:n/2-1,-n/2:n/2-1)
REAL*8 mod(-n/2:n/2-1,-n/2:n/2-1)
n2 = nf2
n2ml = n2-1
DO 10i = -n2, n2m1
DO 10 = -n2, n2m1
O(iyj) = mod(ij) * PHASOR(i,)
ONTINUE

RETURN
END

SUBROUTINE Complexconj(DATA,n)

THIS S/R IS CALLED BY FFT2D AND DETERMINES THE COMPLEX
CONJUGATE OF THE 2-D ARRAY IN ORDER FOR THE ARRAY TO
BE INVERSE FFTed.

COMPLEX*16 DATA(n,n)
DO10i=1n
DO10j=1,n
DATA(i,j) = DCONJG(DATAC(,)))
CONTINUE
RETURN
END
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SUBROUTINE FFT(F,In,n)

THIS S/R IS USED BY THE 2-D FFT TWICE, FIRST FFTing THE
ROWS THEN THE COLUMNS OF THE 2-D ARRAY. THIS S/R WAS
AQUIRED FROM "DIGITAL IMAGE PROCESSING" BY GONZALEZ
AND WINTZ.

COMPLEX*16 F(n),U,W,T
REAL*8 pi, one
one = 1.0D+00
pi = DACOS(-one)
nv2 = n/2
nml=n-1
i=1
DO3i=1, nml
IF(i.GEj) GOTO 1
T = F(j)
F(j) = F(i)
Fi)=T
k =nv2
IF(k.GE.j) GOTO 3
i=j-k
k =k/2
GOTO 2
j=j+k
DOSlI=11n
le = 2*%]
lel = lef2
U = (1.0,0.0)
W = DCMPLX(DCOS(pifle1),-DSIN(pi/lel))
DOSj=1lel
DO 4i=jnle
ip=1i+lel
T = F(ip) * U
F(ip) = F(i) - T
Fi) =F@{i) + T
U=U*W
RETURN
END
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SUBROUTINE FFT2D(DATA,TEMPDATA,F,In,dir,n)

THIS S/R IS THE MAIN S/R AND PERFORMS A 2-D FFT ON AN
ARRAY OF SIDE LENGTH ’n’ WHERE ’In’ IS THE POWER OF 2.
"dir’ IS EITHER +1 OR -1 WHETHER XFORMING OR INVERSE
XFORMING RESPECTIVELY. 'TEMPDATA’ IS A WORKING ARRAY
FOR THE QUADRANT SWAPPING S/R. °F’ IS THE 1-D ARRAY USED
BY THE 1-D FFT S/R. THIS S/R CALLS QUADSWAP, FFT, FOR BOTH
FORWARD AND INVERSE FFT AND CALLS NORMFFT AND
COMPLEXCONIJ FOR INVERSE FFT’s ONLY. THIS FFT NORMALIZES
BY DIVIDING BY n**2 WHEN THE INVERSE FFT IS PERFORMED.

COMPLEX*16 DATA(n,n), F(n), TEMPDATA(n,n)
INTEGER dir
CALL Quadswap(DATA,TEMPDATA,n)
IF (dir.EQ.-1) THEN
CALL Complexconj(DATA,n)
ENDIF
DO10i=1,n
DO20j=1,n
F(j) = DATAC(,))
ONTINUE

CALL FFT(F,In,n)
DO30j=1n
DATA(ij) = F()
CONTINUE
CONTINUE
DO40j=1,n
DOS50i=1,n
F(i) = DATAC(,j)
CONTINUE

CALL FFT(F,In,n)
do60i=1n
DATAC(i,j) = F(i)
CONTINUE
CONTINUE
IF (dir.EQ.-1) THEN
CALL Complexconj(DATA,n)
CALL NormFFT(DATA,n)
ENDIF
CALL Quadswap(DATA,TEMPDATA,n)
RETURN
END
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SUBROUTINE Modulus(LIS,IDATA,ISDATA,mod,icounter,
+ nframes,nphoton,n)

¢  THIS S/R DETERMINES THE MODULUS OF THE DEGRADED IMAGE
¢ AND THE POINT SOURCE AND NORMALIZES THEM BY DIVIDING
¢  BY THEIR RESPECTIVE DC VALUES.

COMPLEX"*16 IDATA(-n/2:n/2-1,-n/2:n/2-1,0:4,-4:4),
+ ISDATA(-n/2:n/2-1,-n/2:n/2-1), DC, DCS,
+ I(-n/2:n/2-1,-n/2:n/2-1),
+ IS(-n/2:n/2-1,-n/2:n/2-1)
REAL*8 mod(-n/2:n/2-1,-n/2:n/2-1)
k=0
n2 = nf2
n2ml =n2-1
DO 10ii = -n2, n2m1
DO 10 jj = -n2, n2m1
IDATA(ijj,k,k) = IDATA(i,jj,k,k) + ((I(iij) *
+ DCONJG(I(iijj))) - 1(k,k))
ISDATA(iijj) = ISDATA(I,jj) + ((ISCiijj) *
+ DCONIJIG(IS(ii,jj))) - IS(kk))
10 CONTINUE
IF (icounter.EQ.nframes) THEN
DC = IDATA(kk,kk)
DCS = ISDATA(k,k)
DO 20ii = -n2, n2m1
DO 20 jj = -n2, n2m1
IDATA(ii,jj,k,k) = IDATAC(ii,jj,k,k)/DC
ISDATA(iijj) = ISDATALC(Ii,jj)/DCS
mod(iijj) = nphoton *
+ dsqrt(ABS(IDATAC(ii,jj,k,k)/ISDATAC(ii,jj)))
IF (mod(ii,jj).GT.dfloat(nphoton))
+ mod(ii,jj) = dfloat(nphoton)
20 CONTINUE
ENDIF
RETURN
END
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SUBROUTINE NormFFT(DATA,n)

THIS S/R IS CALLED BY FFT2D FOR INVERSE FOUKIER XFORMS
AND NORMALIZES THE XFORM BY DIVIDING BY n**2.

COMPLEX*16 DATA(n,n)

nsqgrd = n*n

DO10i=1n

DO10j=1n

DATAC(,j) = DATAC(,j)/nsqrd

CONTINUE

RETURN

END

SUBROUTINE Photons(DATA,nphoton,n)

THIS S/R NORMALIZES THE DATA ARRAY TO MAKE THE DC
VALUE EQUAL TO THE NUMBER OF PHOTONS IN THE OBJECT.

COMPLEX*16 DATA(n,n)
REAL*8 photonum
ic=nR2+1
photonum = dfloat(nphoton)/DREAIL(DATAC(ic,ic))
DO10i=1n
DO10j=1,n
DATAC(ij) = photonum * DATAC(,j)
NTINUE

RETURN
END
SUBROUTINE Quadswap(DATA,TEMPDATA,n)

THIS S/R IS CALLED BY FFT2D AND SWAPS QUADRANTS OF DATA
ARRAY USING TEMPDATA AS A WORKING ARRAY.

COMPLEX*16 DATA(n,n), TEMPDATA(n,n)

n2 = n/2
DO 10i=1,nR2
DO 10j = 1, n/2

TEMPDATAC(ij) = DATA(i+n2,j+n2)
TEMPDATA(i+n2,j) = DATA(i,j+n2)
TEMPDATA(i,j+n2) = DATA(i+n2;)
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TEMPDATA(i+n2,j+n2) = DATAC(,j)
10 CONTINUE
DO20i=1n
DO20j=1n
DATA(i,j) = TEMPDATAC(,j)
20 CONTINUE
RETURN
END

SUBROUTINE SNRcalc(KTsnr,rsnr,nyquist,n)

¢ THIS S/R CALCULATES THE AVERAGE SNR AS A FUNCTION OF
¢ RADIUS

REAL*8 KTsnr(n,n), rsnr(n/2)
INTEGER r
n2 = nf2
n2pl =n2 +1
DO 10 r = 1, nyquist
nsnr = 0
DO20i=1,n
DO20j=1,n
x = float(j - (n2p1))
y = float(i - (n2pl1))
radius = sqrt(x**2.0 + y**2.0)
IF ((radius.GT.float(r-1)).AND.
+ (radius.LE float(r))) THEN
nsnr = nsnr + 1
rsnr(r) = rsnr(r) + KTsnr(i,j)
ENDIF
20 CONTINUE
rsnr(r) = rsnr(r)/nsnr
10 CO
RETURN
END
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SUBROUTINE Star(DATA,n)
c  THIS S/R CREATES A SIMULATED POINT SOURCE OR STAR

COMPLEX*16 DATA(n,n)
n2pl =n2 +1
DO10i=1n
DO10j=1,n
x = float(j - n2p1)
y = float(n2p1 - i)
IF ((x.EQ.0.0).AND.(y.EQ.0.0)) THEN
DATA(,j) = (1.0,0.0)
ELSE

DATA(,j) = (0.0,0.0)
ENDIF
10 CONTINUE

RETURN
END
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SUBROUTINE Writefile(DATAI1,data2 filel,file2,
+ nyquist,n)

THIS S/R WRITES THE DATA TO A FILE IN THE FORMAT REQUIRED
BY A PROGRAM WHICH PRODUCES A CONTOUR PLOT OF THE
IMAGE

COMPLEX*16 DATA1(n,n)

REAL*8 data2(n/2-1)

REAL x, lambda, RO, pi

INTEGER r

CHARACTER®*16 filel, file2

COMMON /VARS2/DIAM,0BSCUR,LAMBDA,R0,SECDIM
PIXSCALE, TPFDIM,FILENAME

OPEN (UNIT=30,FILE=file1, STATUS="NEW")
OPEN (UNIT=40,FILE=file2, STATUS="NEW")
pi = acos(-1.0E+00)
DO10i=1n
DO10j=1n
WRITE(30,*) DATA1(i,j)
CONTINUE
DO 20 r = 1, nyquist
X = r * (lambda/pixscale) * (180/pi) * 3600.0
WRITE(40,*) x, data2(r)
CONTINUE
RETURN
END
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APPENDIX E. SPECIFIC KNOX-THOMPSON SUBROUTINES

THE FOLLOWING SUBROUTINES WERE GENERATED BY THE
THESIS AUTHOR AND ARE USED BY THE KNOX-THOMPSON
PROGRAM ONLY.

SUBROUTINE LIST

SUBROUTINE Initialize(OBJDATA,GAUSSIAN,PUPIL/F,

+ TEMPDATA filel,file2 fwd,inv,
+ In,nframes,nhoton,nyquist,
+ offset,cent,n)

THIS S/R INITIALIZES SOME OF THE PROGRAM VARIABLES BY
QUEARYING THE USER FOR INPUT. IT ALSO CREATES THE
OBJECT DESIRED BY THE USER BY CALLING EITHER ASTEROID,
BISTAR, OR STAR SR.

INTEGER offset

CHARACTER*16 filel, file2

CHARACTER*1 cent, object

WRIT'E(‘,‘)’ ’

WRITE(*,*YENTER INTEGER OFFSET (<= 4 AND <= #
WRITE(*,*)PIXELS/R0):’

READ(*,*)offset

WRHE(‘,‘)’ ’

WRITE(*,*YENTER INTEGER NUMBER OF SNAPSHOTS:’
READ(*,*)nframes

WRITE(‘,*), ’

WRITE(*,*YENTER INTEGER NUMBER OF OBJECT PHOTONS PER’
WRITE(*,*)’SNAPSHOT?’

READ(*,*)nphoton

WRITE(‘,")’ ’

WRITE(*,*)ENTER INTEGER NYQUIST VALUE?
READ(*,*)nyquist
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WRITE(*,*) °’
WRITE(*,*YENTER OBJECT TYPE: " A " FOR ASTEROID,
WRITE(*,*)" B " FOR BINARY STAR, OR " S " FOR STAR'’
READ(*,40) object
IF ((object.EQ.’a’).OR.(object.EQ.’A’)) THEN
CALL AST(OBJDATA,GAUSSIAN,PUPIL.F,TEMPDATA,
+ fwd,inv,In,n)
ELSEIF ((object.EQ.’b’).OR.(object.EQ.’B’)) THEN
CALL Bistar(OBJDATA,n)
ELSEIF ((object.EQ.’s’).OR.(object.EQ.’S’)) THEN
CALL Star(OBJDATA,n)
ELSE
WRITE(*,*)INCORRECT, REENTER’
GOTO 10
ENDIF
WRITE(*,*)"’
WRITE(*,*)WOULD YOU LIKE THE DATA CENTROIDED? (Y/N)’
READ(*,40) cent
IF ((cent.NE.’y’).AND.(cent.NE."Y").AND.
+ (cent.NE.'n’).AND.(cent.NE.'N’)) THEN
WRITE(*,*)'INCORRECT, REENTER’
GOTO 20
ENDIF
er'rE(g")’ ’
WRITE(*,*)’ENTER KT OUTPUT FILE NAME (16 CHAR’
WRITE(*,*)MAX):’
READ(*,30) filel
WRITE(*,*)"’
WRITE(*,*)ENTER KT SNR FILE NAME (16 CHAR’
WRITE(*,*)YMAX):’
READ(*,30) file2
FORMAT(A16)
FORMAT(A1)
RETURN
END
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SUBROUTINE KTrecon(KTPHASOR,LIKT,KTsnr,offset,

+ xvarrktxvarikt,icounter,
+ nframes,nyquist,n)

THIS S/R IS THE HEART OF THE KT RECONSTRUCTION PROGRAM.
IT DETERMINES THE VARIANCE-WEIGHTED, NOISE-BIAS-
CORRECTED CROSS-SPECTRUM OF THE DEGRADED IMAGE AND
RECONSTRUCTS THE PHASEORS FROM THE AVERAGE OF THIS
CROSS-SPECTRUM. THIS SR IS CALLED ONCE FOR EACH
OBJECT/POINT SOURCE SNAP SHOT TO DETERMINE A RUNNING
AVERAGE CROSS-SPECTRUM AND WITH THE LAST SNAP SHOT,
THE PHASOR IS RECONSTRUCTED.

O0O00006000a0

COMPLEX*16 KTPHASOR(-n/2:n/2-1,-n/2:n/2-1), CTEMP,
+ IKT(-n/2:n/2-1,-n/2:n/2-1,-0:4,-4:4),
+ I(-n/2:n/2-1,-n/2:n/2-1), PTEMP1, PTEMP2
REAL*8 KTsnr(-n/2:n/2-1,-n/2:n/2-1), sigmar, sigmai,
+ xvarrkt(-n/2:n/2-1,-n/2:n/2-1,-0:4,-4:4), snr,
+ xvarikt(-n/2:n/2-1,-n/2:n/2-1,-0:4,-4:4), sigma,
INTEGER 1, di, dj, offset
k=0
KTPHASOR(k,k) = (1.0,0.0)
DO 10 r = 1, nyquist
DO 10ii=0,r
IF (ii.EQ.0) THEN
lim =0
ELSE
lim = -r
ENDIF
DO 10 jj = lim, r
rad = sqrt(float(ii)**2.0 + float(jj)**2.0)
IF ((rad.LE.float(r)).AND.(rad.GT.float(r-1))) THEN
IF (icounter.EQ.nframes) nsnr = 0
DO 20 di = 0, offset
DO 20 dj = -offset, offset
drad = sqrt(float(di)**2.0 + float(dj)**2.0)
IF ((drad.LE.float(r)).AND.
+ (drad.LE float(offset))) THEN
idi = ii - di
jdi = jj - dj
radd = sqrt(float(idi)**2.0 + float(jdj)**2.0)
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IF (radd.LEfloat(r-1)) THEN

iHC = -ii
JHC = -jj
IF (1(idi,jdj).EQ.(0.0,0.0))
+ I(idi,jdj) = (1.0,0.0)
IF (I(ii,jj).EQ.(0.0,0.0))
+ I(iijj) = (1.0,0.0)
CTEMP = (I(idijdj) * DCONJG(I(iijjj))) -
+ DCONIJG(1(di,dj))
IKT(idi;jdj,di,dj) = IKT(idijdj,di,dj) +
+ CTEMP
xvarrkt(idi,jdj,di,dj) =
+ xvarrkt(idi,jdj,di,dj) +
+ (DREAL(CTEMP))**2.0
xvarikt(idijdj,di,dj) =
+ xvarikt(idi,jdj,di,dj) +
+ (DIMAG(CTEMP))**2.0
IF (icounter.EQ.nframes) THEN
nsnr = nsnr + 1
sigmar = dabs((xvarrkt(idi,jdj,di,dj) -
+ ((DREAL(IKT(idi,jdj,di,dj)))**2.0)/
+ dfloat(nframes))/dfloat(nframes - 1))
sigmai = dabs((xvarikt(idi,jdj,di,dj) -
+ ((DIMAG(IKT (idi,jdj,di,dj)))**2.0)/
+ dfloat(nframes))/dfloat(nframes - 1))
sigma = dsqrt(sigmar + sigmai)
snr = (((ABS(IKT(idi,jdj,di,dj)))/
+ dfloat(nframes))/sigma) *
+ dsqrt(dfloat(nframes))

KTsnr(ii,jj) = KTsnr(iijj) + snr
PTEMP1 = IKT(idi,jdj,di,dj)/
+ ABS(IKT(idi,jdj,di,dj))
PTEMP2 = KTPHASOR(idi,jdj)
KTPHASOR(ii,jj) = KTPHASOR(ii,jj) +
+ ((snr**2.0) * (DCONJG(PTEMP1/PTEMP2)))
ENDIF
ENDIF
ENDIF
20 CONTINUE
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IF (icounter.EQ.nframes) THEN
KTsnr(ii,jj) = KTsnr(ii,jj)/nsnr
KTsnr(iHC,jHC) = KTsnr(ii,jj)/nsnr
KTPHASOR(iijj) = KTPHASOR(ii,jj)/

+ ABS(KTPHASOR(ii,jj))
KTPHASOR(iHCJjHC) = DCONJG(KTPHASOR (ii,jj))
ENDIF
ENDIF
10 CONTINUE
RETURN
END
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APPENDIX F. SPECIFIC TRIPLE-CORRELATION SUBROUTINES

THE FOLLOWING SUBROUTINES WERE GENERATED BY THE
THESIS AUTHOR AND ARE USED BY THE TRIPLE-CORRELATION
PROGRAM ONLY.

SUBROUTINE LIST

SUBROUTINE BSrecon(BSPHASOR,I,IBS,IDBS,BSsnr,offset,
+ xvarrbs,xvaribs,icounter,nframes,
+ nyquist,nphoton,n)

THIS S/R IS THE HEART OF THE BS RECONSTRUCTION PROGRAM.
IT DETERMINES THE VARIANCE-WEIGHTED,
NOISE-BIAS-CORRECTED BISPECTRUM OF THE DEGRADED IMAGE
AND RECONSTRUCTS THE PHASEORS FROM THE AVERAGE OF
THIS BISPECTRUM THIS S/R IS CALLED ONCE FOR EACH
OBJECT/POINT SOURCE SNAP SHOT TO DETERMINE A RUNNING
AVERAGE BISPECTRUM AND WITH THE LAST SNAP SHOT, THE
PHASOR IS RECONSTRUCTED.

COMPLEX*16 BSPHASOR(-n/2:n/2-1,-n/2:n/2-1), CTEMP,
+ PTEMP2, IBS(-n/2:n/2-1,-n/2:n/2-1,0:4,-4:4),

+ PTEMP], I(-n/2:n/2-1,-n/2:n/2-1), IDBS(0:4,-4:4)
REAL*8 BSsnr(-n/2:n/2-1,-n/2:n/2-1), sigmar, sigmai,
+ snr, xvarrbs(-n/2:n/2-1,-n/2:n/2-1,0:4,-4:4),

+ sigma, xvaribs(-n/2:n/2-1,-n/2:n/2-1,0:4,-4:4)
INTEGER 1, di, dj, offset

k=0

loop=1

BSPHASOR(kk) = (1.0,0.0)

DO 10 r = 1, nyquist

DO 10ii=0,r
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IF (ii.EQ.0) THEN
lim = 0
ELSE
lim = -r
ENDIF
DO 10 jj = lim, r
rad = sqrt(float(ii)**2.0 + float(jj)**2.0)
IF ((rad.LE.float(r)).AND.(rad.GT.float(r-1))) THEN
IF (icounter.EQ.nframes) nsnr = 0
DO 20 di = 0, offset
DO 20 dj = -offset, offset
IF (loop.EQ.1) THEN
IDBS(di,dj) = IDBS(di,dj) + I(di,dj)
ENDIF

drad = sqrt(float(di)**2.0 + float(dj)**2.0)
IF ((drad.LE float(r)).AND.
+ (drad.LE .float(offset))) THEN
idi =ii-di
idj =i - dj
radd = sqrt(float(idi)**2.0 + float(jdj)**2.0)
IF (radd.LE.float(r-1)) THEN
iHC = -ii
JHC =
IF (I(idi,jdj).EQ.(0.0,0.0))
+ I(idi,jdj) = (1.0,0.0)
IF (I(ii,jj)-EQ.(0.0,0.0))
I(ii§j) = (1.0,0.0)
CTEMP = I(idi,jdj) *
DCONIJG(I(iij)) *
I(di,dj) - (ABS(I(idi,jdj)))**2.0 -
(ABS(I(iiyjj)))**2.0 -
(ABS(I(di,dj)))**2.0 + (2.0 * nphoton)
IBS(idi,jdj,di,dj) = IBS(idi,jdj,di,dj) +
CTEMP

+++4+ +

+

xvarrbs(idi,jdj,di,dj) =
xvarrbs(idi,jdj,di,dj) +
(DREAL(CTEMP))**2.0
xvaribs(idi,jdj,di,dj) =
+ xvaribs(idi,jdj,di,dj) +
+ (DIMAG(CTEMP))**2.0

+ +
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IF (icounter.EQ.nframes) THEN
nsnr = nsnr + 1
sigmar = dabs((xvarrbs(idi,jdj,di,d;) -

+ ((DREALIBS(idi,jdj,di,dj)))**2.0)/

+ dfloat(nframes))/dfloat(nframes - 1))
sigmai = dabs((xvaribs(idi,jdj,di,dj) -

+ ((DIMAG(IBS(idi;jdj,di,dj)))**2.0)/

+ dfloat(nframes))/dfloat(nframes - 1))

sigma = dsqrt(sigmar + sigmai)
snr = (((ABS(IBS(idi,jdj,di,dj)))/
dfloat(nframes))/sigma) *
dsqrt(dfloat(nframes))
BSsnr(iijj) = BSsnr(ii,jj) + snr
PTEMP1 = IBS(idi,jdj,di,dj)/
+ ABS(IBS(idi,jdj,di,dj))
PTEMP2 = BSPHASOR(idi,jdj)
+ * IDBS(di,dj)/ABS(IDBS(di,dj))
BSPHASOR(ii,jj) = BSPHASOR(ii,jj) +
+ ((snr**2.0) * (DCONJG(PTEMP1/PTEMP2)))
ENDIF
ENDIF
ENDIF
20 CONTINUE
IF (loop.EQ.1) loop = 2
IF (icounter.EQ.nframes) THEN
BSsnr(iijj) = BSsnr(ii,jj)/nsnr
BSsnr(iHCjHC) = BSsnr(ii,jj)/nsnr
BSPHASOR(ii,jj) = BSPHASOR(ii jj)/
+ ABS(BSPHASORC(iijj))
BSPHASOR(iHC,jHC) = DCONJG(BSPHASOR(ii,jj))
ENDIF
ENDIF
10 CONTINUE
RETURN
END

+ +

138




OO 0o0

10

SUBROUTINE Initialize(OBJDATA,GAUSSIAN,PUPIL,F,

+ TEMPDATA filel file2,fwd,inv,In,
+ nframes,nphoton,nyquist,offset,
+ cent,n)

THIS S/R INITIALIZES SOME OF THE PROGRAM VARIABLES BY
QUEARYING THE USER FOR INPUT. IT ALSO CREATES THE
OBJECT DESIRED BY THE USER BY CALLING EITHER ASTEROID,
BISTAR, OR STAR S/R.

INTEGER offset
CHARACTER®*16 filel, file2
CHARACTER?*1 cent, object
WRITE(*,*) °’
WRITE(*,*YENTER INTEGER OFFSET (<= 4)
READ(*,*)offset
WRITE(*,*) ’
WRITE(*,*ENTER INTEGER NUMBER OF SNAPSHOTS:’
READ(*,*)nframes
WRI'TE(.,‘)’ ’
WRITE(*,*YENTER INTEGER NUMBER OF OBJECT PHOTONS PER’
WRITE(*,*)’SNAPSHOT:’
READ(*,*)nphoton
WRITE(*,*) °’
WRITE(*,*YENTER INTEGER NYQUIST VALUE:’
READ(*,*)nyquist
WRITE(*,*)' ’
WRITE(*,*)ENTER OBJECT TYPE: " A " FOR ASTEROID,
WRITE(*,*)" B " FOR BINARY STAR, OR " S " FOR STAR.
READ(*,40) object
IF ((object.EQ.’a’).OR.(object.EQ.’A’)) THEN
CALL AST(OBJDATA,GAUSSIAN,PUPIL F,TEMPDATA,
+ fwd,inv,In,n)
ELSEIF ((object.EQ.’b’).OR.(object.EQ.’B’)) THEN
CALL Bistar(OBJDATA,n)
ELSEIF ((object.EQ.’s’).OR.(object.EQ.’S’)) THEN
CALL Star(OBJDATA,n)
ELSE
WRITE(*,*)INCORRECT, REENTER’
GOTO 10
ENDIF
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20 WRITE(*,*)"’
WRITE(*,*)WOULD YOU LIKE THE DATA CENTROIDED? (Y/N)’
READ(*,40) cent
IF ((cent.NE.’y’).AND.(cent.NE.’Y").AND.
+ (centNE.n").AND.(cent.NE.'N’)) THEN
* *yYINCORRECT, REENTER’
GOTO 20
ENDIF
WRITE(*,*)"’
WRITE(*,*)ENTER TC OUTPUT FILE NAME (16’
WRITE(*,*)(CHAR MAX):’
READ(*,30) filel
WRITE(*,*)"’
WRITE(*,*YENTER TC SNR FILE NAME (16 CHAR’
WRITE(*,*YMAX):’
READ(*,30) file2
30 FORMAT(A16)
40 FORMAT(Al)
RETURN
END
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APPENDIX G. ATMOSPHERIC DEGRADATION SUBROUTINES

THE FOLLOWING SUBROUTINES WERE PROVIDED BY CAPTAIN
CHUCK MATSON AND MS. IDA DRUNZER OF WL/ARCI AND
MODIFIED FOR USE WITH THE KNOX-THOMPSON AND
TRIPLE-CORRELATION IMAGE RECONSTRUCTION PROGRAMS.
THESE SUBROUTINES ARE REQUIRED FOR BOTH PROGRAMS.

SUBROUTINE LIST

SUBROUTINE PHSUB(SEIMG,F,TEMPDATA,OBJARR,
+ icounter,nframes,nyquist,
+ fwd,inv,In,n,mseed)

FUNCTION: Creates an image of a object located in space by filtering a
single snapshot of an object with a phase screen.

ORDER OF EVENTS TO OBTAIN IMAGE:

Create an object

Create Gaussian Array

Expose array to what the atmosphere will do to the object
(Correlation Filter Function)

Expose array to the stipulations of the telescope

Autocorrelate the object (incoherent transfer function)

Multiply the object by the phase screcn to obtain the Image

DICTIONARY:

DIAM
ICOUNTER

Telescope pupil diameter

Number of user chosen iterations of
phase screens to process

Seed to be used for random number
generator

Center wavelength

Mean

ISEED

LAMBDA
MU
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PIXSCALE - Corresponds to each pixel in cycles/m

RO - Variable characterizing the strength of atmospheric turbulence
with respect to the optical system

TPFDIM - Dimension for pupil of telescope

PCOUNT - The actual number of photons per frame

NFRAMES - The number of frames to process

NPHOTON - The number of photons the user wants per frame

NKL - The number of Karhunen-Loeve functions projected off and

added back in the phase map.

PARAMETER (IDIM = 64,LDIM = IDIM*IDIM)
PARAMETER (IDIM2 = 64,LDIM2 = IDIM2*IDIM2)
PARAMETER (IDIM1 = .7071*IDIM2)

PARAMETER (IWDIM = 5*IDIM/2,]WDIM2 = 5*IDIM2/2)
PARAMETER (N1 = 11,N2 = (N12) + 1,

+ N3 = (N1- 1)*(N1 + 2)2)

PARAMETER (N4 = (N1 - 1)*(N1 + 3)/4)

PARAMETER (NKL = 20)

CHARACTER*16 FILENAME
CHARACTER*1 TILT

COMPLEX*16 PHAMAP(LDIM2),PS1(LDIM),IMAGE(LDIM),
+ OBJARR(LDIM),PS2(LDIM2),SEIMG(LDIM)

REAL POIARRAY(LDIM},RVAR,MULT1,MULT2LAMBDA,

+ PIXSCALE,ZERO,SIZE,DIAM, TPFDIM,R0,INNERSCALE,

+ CORR(LDIM2),SECDIM,OUTERSCALE,OBSCUR,RARRAY (LDIM)
INTEGER PCOUNT

DIMENSION ZKLMAP(IDIM2,IDIM2,NKL),LINPTR(N3),BVAL(N3)
COMMON /VARS/ZERO,RMAX,RMIN,CMINUS1,RCONST1,FCONST1,PI

COMMON /VARS2/DIAM,0BSCUR,LAMBDA,R0,SECDIM,
+ PIXSCALE, TPFDIM,FILENAME

¢ Initialize variables

CMINUS1= (-1.E0,0.E0)
ZERO = 0.E0

MU = 0.E0

SIGMA = 1.E0
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PI = DACOS(-1.0D+00)
JDIM = IDIM

JDIM2 = IDIM2

IC = IDIM/2+1

INNERSCALE = .0001
OUTERSCALE = 10000.E0
MULT1 = 5.92/INNEKSCALE
MULT2 = (2.0*PI)JOUTERSCALE

Only do certain subroutines the first time calling this subroutine (when wanting
several snapshots).

CONTINUE

IF((ICOUNTER.EQ.1).AND.(MSEED.EQ.1)) THEN
FILENAME = ’phvar2.d’
OPEN(10,FILE=FILENAME,STATUS="OLD’,ERR =500)
READ(10,*)DIAM,0BSCUR,LAMBDA,R0
CLOSE(UNIT=10)

Call the subroutine which prompts the user for all names and variables that the
subroutine will need in order to run.

CALL PARAM2(IDIM,NYQUIST,TILT,ISEED)
Generate a filter function to be used as a multiplier on a complex gaussian

array to be stored in array CORR. However, only call the filter function on
multiple runs if there are changing values for the width of the object and RO.

CALIFILT2(RARRAY,CORR,LDIM2,IDIM2,MULT1,MULT2,PIXSCALE,

+ ZERO,R0)

Calculate the simulated size of the telescope (tpfdim). Compare it with the
dimension that is know (size). If size is less than tpfdim, there will be an error
due to the array being too small to store the data from the fourier transform,
and thus, data will be truncated.

SIZE = (IDIM/2)-1
IF(SIZE.LT.TPFDIM) THEN
WRITE(*,*)’’
IF(SIZE.LE.(.5*TPFDIM)) THEN
WRITE(*,*YERROR. IMAGE ARRAY SIZE MUST BE

+ 512x512.
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ELSE
WRITE(*,*YERROR. IMAGE ARRAY SIZE MUST BE
+ 256x256.
ENDIF
WRITE(*,*)’’
GOTO 400
ENDIF

Call BGSCREEN subroutine first time through phase screen. The BGSCREEN
subroutine manipulates the phase map to result in a phase map with proper
statistics.

CALL BGSCR2(BVAL,ZKI MAP,LINPTR,IDIM2)
End the if statement if first time through the subroutine.

mseed = mseed + 1
ENDIF

Get Gaussian numbers and then multiply these two numbers by the correlation
filter function to obtain the phase map (PHAMAP).

DO 20 J = 1,LDIM2
CALL GAUSS(MU,SIGMA,R1,R2,PLISEED)
PHAMAP(J) = DCMPLX(R1*CORR(J),R2*CORR(J))
CONTINUE

Get phase screen which is in the frequency domain. Next perform the inverse
FFT on array.

CALL FFT2D(PHAMAP,TEMPDATA,F,In,inv,n)

DO 25 = 1, LDIM
PHAMAP(J) = PHAMAP(J)*(DFLOAT(LDIM))
CONTINUE

CALL PROJ(PHAMAP,BVAL,ZKLMAP,LINPTR,iseed,

+ NKL,RO,N1,N2,N3,N4,IDIM2,P,PIXSCALE, TILT)
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¢ Calculate ae**(i*realization of phase screen). Take cosine and sine of every
¢ real element in the array and put into the phase screen array.

DO 60 J = 1,LDIM2
PS2(J) = DCMPLX(DCOS(DREAL(PHAMAP(J))),
+ DSIN(DREAL(PHAMAP()))))

60 CONTINUE

¢  Perform the Telescope Pupil Function (TPF) on the phase map to obtain the
¢  coherent transfer function. First, call this routine to cut out chunk of phase
¢  screen based on Telescope Pupil Function of D/LAMBDA to be stored in array
¢ PSL

CALL TPF2A(PS1,PS2,IDIM,IDIM2, TPFDIM,SECDIM)

¢ Calculate the incoherent transfer function by multiplying phase screen by the
auto correlation filter function. Begin by taking the Fourier Transform of the
¢  phase screen.

(2]

CALL FFT2D(PS1,TEMPDATA,F,In,fwd,n)

¢  Take the magnitude squared of the array and put the data into the real part of
¢ the phase screen.

DO 120 J = 1,LDIM
PS1(J) = DCMPLX(DREAL(DCONIG(PS1(J))*PS1(J)),0.e0)
120 CONTINUE

CALL FFT2D(PS1,TEMPDATA/F,In,inv,n)

¢  Divide the phase screen by the value at dc in order to normalize the array by
¢ that value (dcval).

TEMP = DREAL(PS1(IC+(IC-1)*IDIM))
DO 125 J = 1,LDIM
PS1(J) = PS1(J)/TEMP
125 CONTINUE

145




¢ Incoherent transfer function is completed. Now get the image in the fourier
¢ domain by multiplying the object and the phase screen to get the image.

DO 160 J = 1,LDIM
IMAGE(J) = (PS1(J)*OBJARR()))
160 CONTINUE

CALL FFT2D(IMAGE, TEMPDATA F,In,inv,n)

Call the function, poisson, which will return as a floating point number in
integer value that is a random deviate drawn from a Poisson distribution of
mean equal to image value, using another real function, uniform, as a source
of uniform random deviates.

[« I « I o TN ¢ ]

PCOUNT = ZERO

DO 230 J = 1,LDIM

RVAR = DREAL(IMAGE()))

IF(RVAR.LE.0.0) THEN
POIARRAY(J) = ZERO

ELSE
ITEMP = POISSON(RVAR,ISEED)
POIARRAY(J) = DFLOAT(ITEMP)
PCOUNT = PCOUNT + ITEMP

ENDIF

SEIMG(J) = DCMPLX(POIARRAY(J),ZERO)

230 CONTINUE

300 RETURN

400 WRITE(**)"’
WRITE(*,*)'STOPPING PROGRAM DUE T ERROR’
STOP

c Error Statments

500 CONTINUE
WRITE(*,*)’’
WRITE(*,*YERROR, THIS FILE DOES NOT EXIST. REENTER.
WRITE(*,*)’’
GOTO 11
800 CONTINUE
END
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90

95 continue

SUBROUTINE BGSCR2(bval,zklmap,linptr,nsid)

This program does the things that result in a phase screen with proper statistics

parameter(lu = 12,Ju4 = 18)
parameter(nr=100,nkl=20)
PARAMETER (N1 = 11, N2 = (N1/2) + 1,

+

N3 = (N1- 1)*(N1 + 2)2)

PARAMETER (N4 = (N1 - 1)*(N1 + 3)/4)
real bval(n3),bvec(n2,n3),rmap(nr,n4),nsid1
dimension zklmap(nsid,nsid,nkl)

dimension ival(n3,3),ir(n3),linptr(n3)
character*16 fname,noname

nsidl = .7071*(nsid - 1)

fname = ’eigen.d’

noname = ’kirad.d’

Dictionary

bval = contains eigenvalues of covariance matrix

bvec = contains eigenvectors of covariance matrix

ir = pointers

ival = pointers

linptr = pointers

nl = number of azimuthal orders to be used in the Zernike functions
nkl = number of Karhunen-Loeve functions projected off and added

back

nr = number of points in rmap (100 is more than enough)

nsid = dimension of side of screen

rmap = stored radial cut of Karhunen-Loeve functions, computed in

michelin

zkimap = stored Karhunen-Loeve functions

open(lufile = fname,form="formatted’,status="old")

rewind(lu)
read(lu,*) linptr

read(lu,*) bval

read(lu,*) ival

do 95 i=1,n2

do 90 j=1,n3
read(lu,*) bvec(i,j)
continue
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10 format(6E4.9)
open(lu4,file=noname,form="formatted’,status="old’)
rewind (lu4)
do 80 i=1,nr

do 85 j=1,n4
read(lu4,*) rmap(i;j)

85 continue

80 continue
read(lu4,*) ir
call kelp(zkilmap,rmap;ir,ival, linptr,n3,n4,
+ nsid,nr,nkl)
return
end

SUBROUTINE FADD(bmap,zkimap,iq,nsid,nkl,sum)
¢  bmap is the phase screen

complex*16 bmap(nsid,nsid),sum
dimension zklmap(nsid,nsid,nkl)
data pi/3.14159265358979/

do 10i = 1,nsid
do 20 j = 1,nsid
bmap(i,j) = bmap(i,j) + sum*zklmap(i,j,iq)
20 continue
10 continue

return
end

SUBROUTINE FILT2(RARRAY,CORR,LDIM2,IDIM2MULT],

+ MULT2,PIXSCALE,ZERO,R0)
¢ Subroutine Function: This function generates an array representing the effects
c of what the atmosphere will do to an object
c when it passes through it.

REAL RARRAY(LDIM2),CORR(LDIM2),MULT1,MULT2,RCONST,
+  PIXSCALE,ZERO,R0,FCONST,R,ARRAYW
INTEGER JOFFSET
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Calculate the radial average of an input image.

ARRAYS: CORR(LDIM?2) - idim2 x idim2 array
RARRAY(IDIM2) - this is a small work array
that needs to be at least
IDIM2 in size
other variables: IDIM2 - x dimension1
RCONST,RCONST?2 - real constants

load CORR with X (J) indicies squared

FCONST = .1517
DO 10 J=1,IDIM2
JOFFSET=(J-1)*IDIM2
R=FLOAT( J-(IDIM2/2+1) )
RCONST=R*R
DO 15 I=1,IDIM2
CORR(1+JOFFSET) = RCONST
CONTINUE
CONTINUE

Add to L1, Y (I) indicies squared (one column of Y indicies stored in L2)

DO 20 I=1,1DIM2 .
R=FLOAT( I(IDIM2/2+1) )
RARRAY(D) = R*R
CONTINUE
DO 30 J=1,IDIM2
JOFFSET=(J-1)*IDIM2
DO 401 = 1,IDIM2
CORR(JOFFSET + I) = RARRAY(I) + CORR(JOFFSET + I)
CONTINUE
CONTINUE

Move the scaling array to another array in order to do calculations for the filter
function

DO 501 = 1,LDIM2

RARRAY(I) = CORR(I)
CONTINUE
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70

90

Multiply the scaling array by the correlation filter function

RCONST = (-11.E0/12.E0)
DO 60 I = 1,LDIM2

RARRAY(I) = (RARRAY(I)+(MULT2*MULT2))**RCONST
CONTINUE

ARRAYW = PIXSCALE*IDIM2

RCONST = (RO/ARRAYW)**(-5.E0/6.E0)

DO 701 = 1,LDIM2
RARRAY(I) = (RARRAY(I)*RCONST)*FCONST
NTINUE

Set the middle point in array to zero to normalize the array by that value
RARRAY(IDIM2*(IDIM2/2)+(IDIM2/2+1)) = ZERO

Calculate second part of correlation filter function and multiply it by the first
part to complete the filter array.

RCONST = -2.0*(MULT1*MULT1)
DO 90 I= 1,LDIM2

CORR(I) = (EXP(CORR(I)/RCONST))*RARRAY(I)
CONTINUE

900 CONTINUE

RETURN

END

SUBROUTINE GAUSS(MU,SIGMA,RNUM1,RMNUM2,Pliseed)
PURPOSE:

GET GAUSSIAN DISTRIBUTED RANDOM NUMBER WITH MEAN MU
AND STANDARD DEVIATION SIGMA

REAL MU,SIGMA,Y1,Y2,RNUM1,RNUM2,PL, TWOPI
TWOPI = 2.e0*PI

Y1= uniform(iseed)
Y2= uniform(iseed)
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¢  Calculate first random number

RNUM1 = MU + SIGMA*SQRT(-2.0*ALOG(Y1))*COS(TWOPI*Y?2)
¢ Calculate the second random number

RNUM2 = MU + SIGMA*SQRT(-2.0*ALOG(Y1))*SIN(TWOPI*Y2)

RETURN
END

SUBROUTINE INPROD(bmap,zkimap,ig,nsid,nkl,zap)

complex*16 bmap(nsid,nsid)
complex*16 zap
dimension zklmap(nsid,nsid,nkl)

zap = (0.0,0.0)
area = 0.0
do 10i = 1,nsid
do 20 j = 1,nsid
zap = zap + bmap(ij)*zklmap(i,j,iq)
area = area + ( zklmap(i,j,iq) )**2
20 continue
10 continue
zap = zap/area

return
end
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SUBROUTINE KELP(zklmap,rmap,ir,ivallinptr,
+ n3,n4,nsid,nr,nkl)

zklmap is the map of the k-1 functions, sigh

dimension rmap(nr,n4),ir(n3)
dimension zklmap(nsid,nsid,nkl)
dimension ival(n3,3),linptr(n3)
data pif3.14159265358979/
icent = nsid/2 + 1
dx = 1.0/(nsid/2 - 1)
dr = 1.0/(nr - 1)
do 15 iq = 1,nkl
m = ival( linptr(ig),1 )
iod = ival( linptr(iq),2 )
ipq = ir(iq)
do 10i = 1,nsid
= (i - icent)*dx
do 20 j = 1,nsid
zklmap(i,j,iq) = 0.0
y = (j - icent)*dx
r = sqrt(x**2 + y**2)
th = 0.0
if( r.Je.1.0) then
if( r.gt.0.0) then
th = atan2(yx)
if(th.le.0.0) th = 2.0*pi + th
else
th = 0.0
endif
if(r.1t.0.99999) then
k1 = int(r/dr) + 1
k2=kl+1
rl = (k1 - 1)*dr
12 = (k2 - 1)*dr
coefl = (12 - r)/dr
coef2 = (r - rl)/dr

top = coefl*rmap(kl,ipq) + coef2*rmap(k2,ipq)

else

top = rmap(nr,ipq)
endif
if(iod.eq.1) zz = cos(m*th)
if(iod.eq.2) zz = sin(m*th)
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zkimap(ij,iq) = zz*top
endif
20 continue
10 continue
15 continue
return
end

SUBROUTINE PARAM2(IDIM,NYQUIST, TILT,ISEED)

¢ The function of this subroutine is to ask the user various questions about the
¢  subroutines he or she wishes to use and what values he or she wants to assign
¢ to the variables in the program.

REAL DIAM,LAMBDA,R0,PIXELNUM,0BSCUR,PIXSCALE,
+ SECDIM,TPFDIM

INTEGER IDIM

CHARACTER*16 FILENAME

CHARACTER*1 ANSWER FLAG,TILT
COMMON/VARS2/DIAM,0BSCUR,LAMBDA,R0,SECDIM,

+ PIXSCALE, TPFDIM,FILENAME

WRITE(*,*) ’
WRITE(*,*YTHE DEFAULT VALUES FOR THIS PROGRAM ARE AS
+ FOLLOWS: ’

WRITE(*,*)"’

WRITE(**) TELESCOPE DIAMETER: » DIAM
WRITE(*,*Y CENTER WAVELENGTH: ' LAMBDA
WRITE(**) RO *RO

WRITE(*,*Y  TELESCOPE SECONDARY DIAMETER:’,0BSCUR
20 CONTINUE
WRITE(*,‘)’ ’
WRITE(*,*)'USE THE DEFAULT VALUES? (Y/NY’
READ(*,14) FLAG
IF(((FLAG.NE.’Y").AND.(FLAG.NE.’y")).AND.
+ ((FLAG.NE’N).AND.(FLAG.NE.'n’))) THEN
wRI'I'E(.")’ ]
WRITE(*,*)YOUR ANSWER HAS TO BE EITHER Y OR N.
+ REENTER’
FLAG =’
GOTO 20
ENDIF
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30 CONTINUE
IF((FLAG.EQ.N’).OR.(FLAG.EQ.’n’))THEN

+++4++

WRITE(*,*)’

WRITE(*,*)’ A: ALL VARIABLES’

WRITE(*,*yY D: TELESCOPE DIAMETER’

WRITE(*,*)’ W: CENTER WAVELENGTH (LAMBDA)’
WRITE(*,*Y R: RO’

WRITE(*,*Y S: SECONDARY DIAMETER’

WRITE(*,*)’’

WRITE(*,*)WHICH VALUE WOULD YOU LIKE TO CHANGE?'
READ(*,14) ANSWER
IF(((ANSWER.NE’A").AND.(ANSWER.NE.’2")).AND.

((ANSWER.NE.’D’).AND.(ANSWER .NE.’d")).AND.
((ANSWER.NE.'L’).AND.(ANSWER.NE.T)).AND.
((ANSWER.NE."W").AND.(ANSWER.NE.'w’)).AND.
((ANSWER.NE.R’).AND.(ANSWER.NE."r’)).AND.
((ANSWER.NE.’S").AND.(ANSWER.NE.’s"))) THEN
WRITE(*,*) °
WRITE(*,*ANSWER IS NOT A CHOICE. REENTER’
GOTO 30
ENDIF
WRITE(*,*)"’
WRITE(*,*yTHE CURRENT VALUES ARE: ’
WRm.,‘)’ ’
WRITE(*,*)’ TELESCOPE DIAMETER: ’,DIAM
WRITE(*,*) CENTER WAVELENGTH: ’LAMBDA
WRITE(*,*) RO: ’RO
WRITE(*,*) SECONDARY DIAMETER ’,OBSCUR
WRITE(*,*)"’
WRITE(*,*)"’

IF((ANSWER.EQ.’A’).OR.(ANSWER.EQ."a")) THEN
WRITE(*,*)INPUT THE FOLLOWING’
WRITE(‘,‘)’ y
WRITE(*,*YENTER NEW TELESCOPE DIAMETER?
READ(*,100) DIAM
WRITE(‘,‘)’ ’
WRITE(*,*YENTER NEW CENTER WAVELENGTH:’
READ(*,100) LAMBDA
WRITE(.,‘)’ ’
WRITE(*,*YENTER NEW R0
READ(*,100) RO
WRH'E(‘,*)’ ’
WRITE(*,*YENTER NEW TELESCOPE SECONDARY DIAM:’
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READ(*,100) OBSCUR
ELSEIF((ANSWER.EQ.'D’).OR.(ANSWER.EQ.’d")) THEN
WRHH*")’ ? .
WRITE(*,*YENTER NEW TELESCOPE DIAMETER:’
READ(*,100)DIAM
ELSEIF((ANSWER.EQ."W’).OR.(ANSWER.EQ.'w’))THEN
WRITE(",')’ ’
WRITE(*,*)ENTER NEW CENTER WAVELENGTH:’
READ(*,100) LAMBDA
ELSEIF((ANSWER.EQ.R’).OR.(ANSWER.EQ.")) THEN
WRITE(',‘)’ ’
WRITE(*,*)ENTER THE NEW RO0:’
READ(*,100)R0
ELSEIF((ANSWER.EQ.’S’).OR.(ANSWER.EQ.’s")) THEN
WRH'E(.,‘)’ ?
WRITE(*,*YENTER THE NEW SECONDARY DIAMETER?’
READ(*,100) OBSCUR
ENDIF
CONTINUE
WRITE(*,*)’ ’
WRITE(*,*)WOULD YOU LIKE TO CHANGE ANY OTHER VALUE?
+ (Y/Ny
READ(*,14)ANSWER
IF(((ANSWER.NE."Y’).AND.(ANSWER.NE.’y")).AND.
+ ((ANSWER.NE.N’).AND.(ANSWER.NE.n"))) THEN
WRI'TE(‘,‘)’ ’
WRITE(*,*)YOUR ANSWER HAS TO BE EITHER Y OR N.
+ REENTER’
GOTO 50
ENDIF
IF((ANSWER.EQ."Y’).OR.(ANSWER.EQ.’y’)) THEN
GOTO 30
ENDIF
OPEN(UNIT=10,FILE=FILENAME,FORM="FORMATTED,
+  STATUS="UNKNOWN’)
REWIND(10)
WRITE(10,*)DIAM,0BSCUR,LAMBDA,RO
CLOSE(UNIT=10)
ENDIF

WRITE(*,*)’
WRITE(*,*YENTER THE NUMBER OF PIXELS PER RO:’
READ(*,*)PIXELNUM
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WRITE(*,*)’’
WRITE(*,*)ENTER SEED VALUE:
READ(*,*)ISEED
PIXSCALE = RO/PIXELNUM
TPFDIM = nint(DIAM*PIXELNUM/RO0)
SECDIM = nint(OBSCUR*PIXELNUM/RO)
60 CONTINUE
65 CONTINUE
t’t)’ ’
WRITE(*,*yDO YOU WISH TO INCLUDE X/Y TILT? (Y/N)’
READ(*,14)TLLT
IF(((TILT.NE’Y").AND.(TILT.NE.y")).AND.
+ ((TILT.NE.’N’).AND.(TILT.NE.'n’)))THEN
WRITE(*,*) ’
WRITE(*,*YYOUR ANSWER MUST BE EITHER Y OR N.
+ REENTER’
GOTO 65
ENDIF

¢ Check the value for nyquist to assure it is equal to tpfdim
IF(NYQUIST.NE.TPFDIM) GOTO 999
RETURN

¢  Format Statements

14 FORMAT(AI)
100 FORMAT(E11.4)
110 FORMAT(I6)

c Error statements

999 WRITE(*,*)’’
WRITE(*,*YERROR. VALUE FOR NYQUIST MUST EQUAL
+ TO.,TPFDIM
+ , NOT ’,nyquist, ’.’
WRITE(*,*)"’
WRITE(*,*)YPROGRAM STOPPING. CHANGE NYQUIST.
STOP
END
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SUBROUTINE PROJ(bmap,bval,zklmap,linptr,iseed,
+ nkl,r0,n1,n2,n3,n4,idim2,pi,pixscale,tilt)

¢ The function of this subroutine is to project off the low-order Karhunen-Loeve
¢  functions and then adds them back with the proper strength.

¢ nlis the number of azimuthal orders, bmap is the phase screen

complex*16 bmap(idim2,idim2),zap,sum
dimension bval(n3),linptr(n3)
dimension zklmap(idim2,idim2,nkl)

real x,y,yi,pi,twopi,pixscale,dr0,r0
integer izern,idim2

character tilt

izern = 5

twopi = 2.e0*pi

dr0 = (pixscale*idim2)/r0
DO 10i = l,izern

¢ A random size is generated for each karhunen function

x = sqre(bval(linptr(i) ) )

y = 0.e0

yi = 0.e0

mu = (.e0

sigma = X

call gauss(mu,sigma,y,yi,pi,iseed)

sum = cmplx(Y,YI)

sum = sum*(dr0**.83333333)

call inprod(bmap,zklmap,i,idim2,nkl,zap)

¢  The function is projected out

if(tilt.eq.’N’.or.tilt.eq.’n’) then
if(ile.2)sum = 0.0

endif

sum = sum - zap

call fadd(bmap,zklmap,i,idim2,nkl,sum)

10 CONTINUE

RETURN
END
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SUBROUTINE TPF2A(PS1,PS2,IDIM,IDIM2, TPFDIM,SECDIM)

¢ Function: The function of this subroutine is to cut out a portion of array with
c the dimension of TPFDIM and put the data into an array of zeros.

COMPLEX*16 PS1(IDIM,IDIM),PS2(IDIM2,IDIM2)
REAL TPFDIM,SECDIM
INTEGER IC,IC2

IC=IDIM2 + 1
IC2 = IDIM2/2 + 1

¢ Zero out psl to ensure that no reminents of previous phase screen is left over.

DO 10J = 1,IDIM
DO 10K = 1,IDIM
PS1(J.K) = (0.0,0.0)
10 CONTINUE

¢ Divide the telescope pupil dimension by 2 in order to obtain the radius instead
¢ of the diameter of the pupil.

TPFDIM2 = TPFDIM/2
SECDIM2 = SECDIM/2

IF(SECDIM.EQ.0.0)PS1(IC,IC) = PS2(IC2,IC2)

¢ Now insert the phase screen into the larger array. The smaller array is the data
c that this telescope is able to see due to the inhibition of its size.

DO 20 I = 0, TPFDIM2
DO 20 J = 0, TPFDIM2
IF((I**2 + J**2).LE.TPFDIM2**2) THEN
IF((I**2 + J**2).GT.SECDIM2**2) THEN
PS1(IC+LIC+J) = PS2(IC2+LIC2+J)
PS1(IC+LIC-J) = PS2(IC2+LIC2-J)
PS1(IC-LIC+J) = PS2(IC2-LIC2+1J)
PS1(IC-LIC-J) = PS2(IC2-1IC2-J)
ENDIF
ENDIF
20 CONTINUE
RETURN
END
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FUNCTION GAMMLN(xx)

real cof(6),stp,half,one,fpfx,tmp,ser
data cof,stp/76.18009173d0,-86.50532033d0,

+ 24.01409822d0,-1.231739516d0,.120858003d-2,

+ -.536382d-5,2.50662827465d0/
data half,one,fpf/0.5d0,1.0d0,5.5d0/

X = XX - one
tmp = x + fpf
tmp = (x + half)*log(tmp) - tmp
ser = one
do10j= 1,6
X = X + one
ser = ser + cof(j)/x
continue
gammin = tmp + log(stp*ser)
return
end
REAL FUNCTION POISSON(pmean, iseed)
mean of poisson distribution
real pmean
Seed for random number generator

integer iseed

Summary of purpose

Generate a random number with a poisson distributionof mean pmean (poisson

deviate)
Author

numerical recipes, p207, routine poidev.for
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Modifications

13 nov, 1987: pat fitch
1988: erik m johansson - fixed integer conversion problem with maxint

Routines called

uniform
gammin

(c) Copyright 1987 the Regents of the University of California. All rights
reserved.

This software is a result of work performed at Lawrence Livermore National
Laboratory. The United States Government retains certain rights therein.

real pi
parameter (pi=3.141592654)

maxint is the largest real number which can be converted to an integer without
resulting in an arithmetic error (32 bits)

real maxint
parameter (maxint = .214748352¢10)

real pexpmean, oldmean, t, em, sq, alxm, y, gammin,
+ uniform

integer times
data oldmean /-1./
if(pmean.it.12.0)then

Use direct computation method
if(pmean.ne.oldmean) then
New mean, calculate the exponential
oldmean = pmean
pexpmean= exp(-pmean)
endif
em = -1.0

t=1.0
em =em + 1.0
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t = t * uniform(iseed)
if(t.gt.pexpmean) go to 2
else
if(pmean.ne.oldmean) then
oldmean = pmean
sq = sqrt(2.0*pmean)
abim= alog(pmean)

¢ Natural log of gamma function = gammin

pexpmean= pmean*alxm - gammin(pmean+1.)
endif

times = 0

1 y = tan( pi* uniform(iseed))
times = times + 1
if (times .ge. 1000) then
write(*,*)’ERROR: STUCK IN LOOP IN POISSON’
stop
endif
em = sq*y+pmean
if((em .1t. 0.) .or. (em .gt. maxint)) go to 1
em = int(em)
t = 0.9*(1.+y**2)*exp(em*abkm-gammin(em+1.)-
+ pexpmean)
if(uniform(iseed).gt.t) go to 1
endif

poisson = em

return
end
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REAL FUNCTION UNIFORM(seed)
integer*4 seed

Summary of purpose

implements a multiplicative linear congruential generator generates random
numbers uniformly distributed on the open interval 0.0 to 1.0 (0 and 1 are NOT
included)

Author

from "Random Number Generators: Good Ones Are Hard to Find," Stephen
K. Park and Keith W. Miller, Communications of the ACM, October 1988, Vol
31, No 10, pp 1192 - 1201 routine is listed on p 1195

modifications

4/11/89 erik m johansson - modified code to use less computational steps.
Equations used are from the article "Efficient and Portable Combined Random
Number Generators,” Pierre L’Ecuyer, Communications of the ACM, June
1988, Vol 31, No 6, at the top of p745.

(c) Copyright 1989 the Regents of the University of California. All rights
reserved.

This software is a result of work performed at Lawrence Livermore National
Laboratory. The United States Government retains certain rights therein.

integer*4 a, m, q, 1

parameter (a = 16807)
parameter (m = 2147483647)
parameter (q = 127773)
parameter (r = 2836)

real h

parameter (h = 1./ 2147483647.)
integer*4 k
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¢ The function

k =seed/q
seed=a*(seed-k*q)-k*r
if (seed .It. 0) seed = seed + m
uniform = seed * h

return

end
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APPENDIX H. PHASE ERROR AND LOW PASS FILTER PROGRAM

THIS PROGRAM WAS DEVELOPED BY THE THESIS AUTHOR AND
DEVELOPS A LOW PASS FILTER IN THE FREQUENCY

DOMAIN TO FILTER THE RECONSTRUCTED OBJECT DATA FILE
FOR BOTH THE KNOX-THOMPSON AND TRIPLE-CORRELATION
METHODS. ADDITIONALLY, THIS PROGRAM DETERMINES THE
AZIMUTHAL RMS PHASE ERROR FOR THE INPUT FOURIER
SPECTRA.

THE FOLLOWING SUBROUTINES ARE REQUIRED FROM
UNIVERSAL SUBROUTINES IN APPENDIX D:

Complexconj
FFT
FFT2D
NormFFT
Quadswap
AUTHOR: LT JAMES M. LACKEMACHER
COMPL. DATE: 26 OCTOBER 1990
REASON: COMPLETE REQUIREMENTS FOR A MASTERS
DEGREE IN PHYSICS
GOAL: SIMULATE OBJECT, DEGRADE OBJECT,

RECONSTRUCT OBJECT USING KNOX-THOMPSON
AND TRIPLE-CORRELATION METHODS FILTER
THE DATA THE COMPARE THE TWO METHODS.

PROGRAM FREQFILTER

MAIN PROGRAM COMPLEX VARIABLE LIST

BSDATA n x n DIM ARRAY REPRESENTING THE INPUT
TRIPLE-CORRELATION RECONSTRUCTED OBJECT IN
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FREQUENCY SPACE

BSLP n x n DIM ARRAY REPRESENTING THE LOW PASS
FILTERED TRIPLE-CORRELATION RECONSTRUCTED
OBJECT IN FREQUENCY SPACE

F n DIM ARRAY USED IN THE FOURIER TRANSFORM

KTDATA n x n DIM ARRAY REPRESENTING THE INPUT
KNOX-THOMPSON RECONSTRUCTED OBJECT IN
FREQUENCY SPACE

KTLP n x n DIM ARRAY REPRESENTING THE LOW PASS
FILTERED KNOX-THOMPSON RECONSTRUCTED
OBJECT IN FREQUENCY SPACE

TEMPDATA n x n DIM ARRAY THAT IS USED AS A TEMPORARY
ARRAY IN THE FOURIER TRANSFORM

TRUDATA nx n DIM ARRAY REPRESENTING THE TRUTH DATA

MAIN PROGRAM REAL VARIABLE LIST

bserror n x n DIM ARRAY THAT REPRESENTS THE SQUARE
PHASE ERROR FOR THE TRIPLE-CORRELATION
RECONSTRUCTED IMAGE

bslpmod nx n DIM ARRAY THAT REPRESENTS THE MODULUS
OF THE LOW PASS FILTERED TRIPLE-CORRELATION
RECONSTRUCTED IMAGE

bsr n/2 DIM ARRAY THAT REPRESENTS THE RADIAL
FREQ VALUE IN INVERSE ARCSECONDS FOR THE
TRIPLE-CORRELATION IMAGE

bssnr n/2 DIM ARRAY THAT REPRESENTS THE INPUT SNR
VALUES OF TRIPLE-CORRELATION IMAGE

bstrunc TRIPLE-CORRELATION RADIAL TRUNCATION VALUE

kterror n x n DIM ARRAY THAT REPRESENTS THE SQUARE
PHASE ERROR FOR THE KNOX-THOMPSON
RECONSTRUCTED IMAGE

ktlpmod n x n DIM ARRAY THAT REPRESENTS THE MODULUS
OF THE LOW PASS FILTERED KNOX-THOMPSON
RECONSTRUCTED IMAGE

ktr n/2 DIM ARRAY THAT REPRESENTS THE RADIAL
FREQ VALUE IN INVERSE ARCSECONDS FOR THE
KNOX-THOMPSON IMAGE

ktsnr n/2 DIM ARRAY THAT REPRESENTS THE INPUT SNR
VALUES OF KNOX-THOMPSON IMAGE
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Q0O 0000060060

0O 0060600000600

000060

kttrunc KNOX-THOMPSON RADIAL TRUNCATION VALUE

lambda WAVELENGTH OF QUASI-MONOCHROMATIC LIGHT

rBSerror n/2 DIM ARRAY THAT REPRESENTS THE AZIMUTHAL
RMS PHASE ERROR OF THE TRIPLE-CORRELATION
RECONSTRUCTED IMAGE

rKTerror n/2 DIM ARRAY THAT REPRESENTS THE AZIMUTHAL
RMS PHASE ERROR OF THE KNOX-THOMPSON
RECONSTRUCTED IMAGE

RO COHERENCE LENGTH

MAIN PROGRAM INTEGER VARIABLE LIST

fwd VALUE OF 1 FOR FORWARD FFT

iktcount NUMBER OF KT PIXELS WITH SNR GREATER THAN 1.0
inv VALUE OF -1 FOR INVERSE FFT

itccount NUMBER OF TC PIXELS WITH SNR GREATER THAN 1.0
In 2”7 In FOR USE WITH FFT SUBROUTINE

n DIMENSION OF ONE SIDE OF 2-DIM ARRAY

nyquist EQUAL TO THE TELESCOPE PUPIL FUNCTION

DERIVED FROM THE FOLLOWING FORMULA:
nyquist = (telescope diameter x number of pixels/r0)/r0
numpix THE NUMBER OF PIXELS PER RO

MAIN PROGRAM INTEGER VARIABLE LIST

end CHAR INPUT TO DETERMINE WHETHER TO STOP THE
PROGRAM

mean CHAR INPUT TO DETERMINE WHETHER TO FIND THE
AMSPE

rite CHAR INPUT TO DETERMINE WHETHER TO WRITE
DATA TO FILE
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MAIN PROGRAM

PARAMETER(n=64,In=6,fwd=1,inv=-1)

COMPLEX*16 KTDATA(n,n), BSDATA(n,n), TEMPDATA(n,n),
+ F(n), KTLP(n,n), BSLP(n,n), TRUDATA(n,n)

REAL*8 ktlpmod(n,n), bslpmod(n,n), kterror(n,n),
+ bserror(n,n), rKTerror(n/2), rBSerror(n/2),
+ ktsnr(n/2), bssnr(n/2)

REAL ktr(n/2), bsr(n/2), kttrunc, bstrunc, lambda
CHARACTER*1 mean, end, rite

¢ INPUT THE DATA

CALL Readfile(KTDATA,BSDATA,n)

WRITE(*,*)ENTER NYQUIST VALUE:?’
READ(*,*)nyquist

WRITE(*,*)’

WRITE(*,*YENTER THE NUMBER OF PIXELS PER R0?’
READ(*,*) numpix

WRITE(*,*)’ ’

WRITE(*,*)ENTER R0 VALUE IN METERS:’

READ(*,*) RO

WRITE(*,*)’

WRITE(*,*ENTER WAVELENGTH VALUE IN METERS?’
READ(*,*) lambda

WRITE(‘,‘)’ ’

CALL Readsnr(ktsnr,bssnr,ktr,bsr,nyquist,n)

¢ LOW PASS FILTER BASED ON RADIAL TRUNCATION VALUE
¢  DETERMINED FROM SNR DATA

CALL Truncval(ktsnr,ktr,kttrunc,nyquist,iktcount,n)
WRITE(*,*))KT RADIAL TRUNCATION VALUE IS:’
WRITE(*,*) kttrunc,’1/ARCSEC.’

WRITE(*,*)’VALUES GREATER THAN THIS RADIUS’
WRITE(*,*)WILL BE TRUNCATED.’

WRITE(*,*)’
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20

CALL Truncval(bssnr,bsr,bstrunc,nyquist,itccount,n)
WRITE(*,*)’'TC RADIAL TRUNCATION VALUE IS’
WRITE(*,*) bstrunc,’1/ARCSEC.’

WRITE(*,*)’VALUES GREATER THAN THIS RADIUS’
WRITE(*,*)’WILL BE TRUNCATED.’

WRITE(*,*)"’
TRUNCATE THE DATA

CALL Truncate(KTDATA,KTLP kttrunc,lambda,R0,numpix,n)
CALL Truncate(BSDATA,BSLP,bstrunc,lJambda,R0,numpix,n)

INVERSE FFT THE DATA AFTER FILTERING

CALL FFT2D(KTLP,TEMPDATA,F,In,inv,n)
CALL FFT2D(BSLP,TEMPDATAF,In,inv,n)

DETERMINE THE MODULUS OF THE DATA IN IMAGE SPACE

CALL Modulus(ktlpmod,KTLP,n)
CALL Modulus(bsipmod,BSLP,n)

NORMALIZE THE MODULI FOR PLOTTING

CALL Normalize(ktlpmod,n)
CALL Normalize(bslpmod,n)

WRITE THE MODULUS TO A FILE FOR PLOTTING IF DESIRED

WRITE(*,*)WRITE MODULUS TO A FILE? (Y/N)’
READ(*,*)rite
erTE(‘,‘)’ ’
IF ((rite.NE.”Y").AND.(rite.NE.’y’).AND.
+  (rite. NE.'N’).AND.(rite.NE.'n’)) THEN
WRITE(*,*YERROR, REENTER.
WRITE(*,*)"
GOTO 20
ENDIF
IF ((rite.EQ.”Y’).OR.(rite.EQ.y’)) THEN
CALL Writefile(ktlpmod,bslpmod,numpix,lambda,R0,n)
ENDIF

168




¢  DETERMINE THE AZIMUTHAL RMS PHASE ERROR

30 WRITE(*,*)FIND THE AZIMUTHAL RMS PHASE ERROR? (Y/NY
READ(*,*)mean
WRITE(*,*)’
IF ((mean.NE.”Y’).AND.(mean.NE.’y’).AND.
+ (mean.NE.’N’).AND.(mean.NE.n’)) THEN
WRITE(*,*YERROR, REENTER.’
WRH'E(‘,‘)’ ’
GOTO 30
ENDIF
IF ((mean.EQ.”Y’).OR.(mean.EQ.’y’)) THEN

¢ READ IN DATA
CALL Readtrufile(TRUDATA,n)
¢  DETERMINE SQUARE PHASE ERROR

CALL AMSPE(KTDATA,BSDATA,TRUDATA,
+ kterror,bserror,nyquist,n

DETERMINE AZIMUTHAL AVERAGE OF THE RMS PHASE ERROR

o

CALL AMSPEcalc(kterror,bserror,rKTerror,rBSerror,
+ nyquist,n)

¢ WRITE AMSPE TO A FILE FOR EACH CORRELATION TECHNIQUE

CALL Writerrfile(rKTerror,rBSerror,nyquist Jambda,
+ RO,numpix,iktcount,itccount,n)

ENDIF

STOP
END
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SUBROUTINE LIST

SUBROUTINE AMSPE(KTDATA,BSDATA,TRUDATA,
+ kterror,bserror,nyquist,n)

¢  THIS S/R CALCULATES THE SQUARE PHASE ERROR OF THE
¢  RECONSTRUCTED PHASES

COMPLEX*16 KTDATA(n,n), BSDATA(n,n), TRUDATA(n,n)
REAL*8 kterror(n,n), bserror(n,n), truphase, ktphase,
+ bsphase, pi, pi2
pi = dacos(-1.0D+00)
pi2 =2 * pi
n2pl =n2 +1
DO10i=1n
DO10j=1,n
x = float(j - (n2p1))
y = float((n2p1) - i)
radius = sqrt(x**2.0 + y**2.0)
IF (radius.LE.nyquist) THEN
truphase = datan2(DIMAG(TRUDATAC(,j)),
+ DREAIL(TRUDATAC(,j)))
ktphase = datan2(DIMAG(KTDATAC(,j)),
+ DREAL(KTDATAC(,)))
bsphase = datan2(DIMAG(BSDATAC(,))),
+ DREAL(BSDATAC(,)))
20 IF (truphase.GT.pi2) THEN
truphase = truphase - pi2
GOTO 20
ENDIF
30 IF (truphase.LT.-pi2) THEN
truphase = truphase + pi2
GOTO 30
ENDIF
40 IF (ktphase.GT.pi2) THEN
ktphase = ktphase - pi2
GOTO 40
ENDIF
50 IF (ktphase.LT.-pi2) THEN
ktphase = ktphase + pi2
GOTO 50
ENDIF
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70

100

110

IF (bsphase.GT.pi2) THEN
bsphase = bsphase - pi2
GOTO 60

ENDIF

IF (bsphase.LT.-pi2) THEN
bsphase = bsphase + pi2
GOTO 70

ENDIF
kterror(i,j) = truphase - ktphase

IF (kterror(ij).GT.pi2) THEN
kterror(i,j) = kterror(ij) - pi2
GOTO 80

ENDIF

IF (kterror(ij).LT.-pi2) THEN
kterror(i,j) = kterror(ij) + pi2
GOTO 90

ENDIF
IF (kterror(i,j).GT.pi)

kterror(i,j) = kterror(i,j) - pi2
IF (kterror(i,j).LT.-pi)

kterror(i,j) = kterror(i,j) + pi2
kterror(i,j) = (kterror(i,j))**2.0

bserror(i,j) = truphase - bsphase
IF (bserror(i,j).GT.pi2) THEN
bserror(i,j) = bserror(i,j) - pi2
GOTO 100
ENDIF
IF (bserror(i,j).LT.-pi2) THEN
bserror(i,j) = bserror(i,j) + pi2
GOTO 110
ENDIF
IF (bserror(i,j).GT.pi)
bserror(i,j) = bserror(i,j) - pi2
IF (bserror(i,j).LT.-pi)
bserror(i,j) = bserror(i,j) + pi2
bserror(i,j) = (bserror(ij))**2.0

ENDIF

10 CONTINUE

RETURN
END
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SUBROUTINE AMSPEcalc(kterror,bserror,sKTerror,
+ rBSerror,nyquist,n)

¢ THIS S/R CALCULATES THE RMS PHASE ERROR AS A FUNCTION OF
¢ RADIUS

REAL *8 kterror(n,n), bserror(n,n), tKTerror(n/2),
+ rBSerror(n/2)
INTEGER r
n2pl =nf2 +1
DO 10 r = 0, nyquist
nerr = 0
DO20i=1,n
DO20j=1,n
x = float(j - (n2p1))
y = float((n2p1) - i)
radius = sqrt(x**2.0 + y**2.0)
IF ((radius.GE.float(r)).AND.
+ (radius.LT .float(r+1))) THEN
nerr = nerr + 1
rKTerror(r) = rKTerror(r) + kterror(ij)
rBSerror(r) = rBSerror(r) + bserror(i,j)
ENDIF
20 CONTINUE
rKTerror(r) = dsqrt(rKTerror(r)/nerr)
rBSerror(r) = dsqrt(rBSerror(r)/nerr)
10 CONTINUE
RETURN
END

SUBROUTINE Modulus(mod,DATA,n)
¢ THIS S/R DETERMINES THE MODULUS OF A COMPLEX NUMBER

COMPLEX*16 DATA(n,n)
REAL*8 mod(n,n)
DO10i=1n
DO10j=1n
mod(i,j) = ABS(DATAC(,j))
10 CONTINUE
RETURN
END
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SUBROUTINE Normalize(data,n)
THIS S/R NORMALIZES THE OUTPUT DATA TO 1.0.

REAL*8 data(n,n), maxval
maxval = 0.0D+00
DO10i=1n
DO10j=1,n
IF (data(i,j).GT.maxval) maxval = data(i;j)
CONTINUE
DO20i=1,n
DO20j=1,n
data(i,j) = data(i,j)/maxval
ONTINUE

RETURN
END

SUBROUTINE Readfile(KTDATA,BSDATA,n)
THIS S/R READS THE RECONSTRUCTED DATA FROM A FILE

COMPLEX*16 KTDATA(n,n), BSDATA(n,n)
CHARACTER*16 ktfile, bsfile
WRI'TE(",‘)’ ’
WRITE(*,*)ENTER INPUT KT RECON FILE NAME (16 CHAR’
WRITE(*,*)MAX)”’
READ (*,30) ktfile
WRH'E(‘,.)’ ’
WRITE(*,*YENTER INPUT TC RECON FILE NAME (16 CHAR’
WRITE(*,*)MAX)’
READ (*,30) bsfile
WRI'I'E(*,‘), ’
OPEN(UNIT=40,FILE=ktfile,. STATUS="OLD")
OPEN(UNIT=50,FILE=bsfile, STATUS="OLD")
DO10i=1n
DO10j=1,n
READ(40,*) KTDATAC(,j)
CONTINUE
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DO20i=1,n
DO20j=1,n
READ(50,*) BSDATA(i,j)
CONTINUE
FORMAT(A16)
RETURN

END

SUBROUTINE Readsnr(ktsnr,bssnr,ktr,bsr,nyquist,n)
THIS S/R READS THE SNR DATA FROM A FILE

REAL"*8 ktsnr(n/2), bssnr(n/2)
REAL ktr(n/2), bsr(n/2)
CHARACTER®*16 ktsnrfile, bssnrfile
WRITE(*,*YENTER KT SNR FILE NAME (16 CHAR MAX):’
READ (*,30) ktsnrfile
WRITE(*,*)’’
WRITE(*,*YENTER TC SNR FILE NAME (16 CHAR MAX):’
READ (*,30) bssnrfile
WRITE(*,*)’
OPEN(UNIT=40,FILE=ktsnrfile, STATUS="OLD’)
OPEN(UNIT=50,FILE=bssnrfile, STATUS="OLD")
DO 10i = 1, nyquist
READ(40,*) ktr(i), ktsnr(i)
CONTINUE
DO 20 i = 1, nyquist
READ(50,*) bsr(i), bssnr(i)
CONTINUE
FORMAT(A16)
RETURN

END

SUBROUTINE Readtrufile(TRUDATA,n)
THIS S/R READS THE TRUTH DATA FROM A FILE
COMPLEX*16 TRUDATA(n,n)

CHARACTER*16 file

WRITE(*,*ENTER INPUT TRUTH DATA FILE NAME (16 CHAR’
WRITE(*,*YMAX):’
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READ (*,20) file
.,.)’ 9
OPEN(UNIT=30,FILE=file, STATUS="OLD")
DO10i=1n
DO10j=1,n
READ(30,*) TRUDATA(i,j)
10 CONTINUE
20 FORMAT(AI16)
RETURN
END

SUBROUTINE Truncate(DATA,LPDATA trunc,lJambda,
+ RO,numpix,n)

THIS S/R FILTERS THE OBJECT SPECTRUM ARRAY BY
TRUNCATING THE ARRAY AT A RADIUS SET BY THE SNR VALUE
GREATER THAN 1

aO oo

COMPLEX*16 DATA(n,n), LPDATA(n,n)
REAL lambda
n2 = nf2
n2pl =n2 +1
pi = acos(-1.0E+00)
DO10i=1n
DO10j=1n
x = float(j-n2p1)
y = float(i-n2p1)
rad = sqrt(x**2 + y**2) * numpix * (lambda/R0) *
+ (180.0/pi) * 3600.0
IF (rad.LE.trunc) THEN
LPDATAC(,j) = DATAC(,j)
ELSE
LPDATAC(,j) = (0.0,0.0)
ENDIF

10 CONTINUE

RETURN
END
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SUBROUTINE Truncval(snr,r,trunc,nyquist,icount,n)

THIS S/R DETERMINES THE TRUNCATION VALUE BASED ON THE
SNR. THE VALUE IS BASED ON THE POINT AT WHICH THE SNR IS
UNITY OR GREATER.

REAL*8 snr(n/2)

REAL r(n/2)

i=1

DO 10 i = 1, nyquist

IF ((snr(i).GE.1.0D+00).AND.(j.EQ.i)) THEN
trunc = r(i)
icount = j
ji=j+1
ENDIF

CONTINUE

RETURN

END

SUBROUTINE Writefile(ktlpdata,bslpdata,numpix,
+ lambda,R0,n)

THIS S/R WRITES THE DATA TO A FILE

REAL*8 ktlpdata(n,n), bslpdata(n,n)
REAL conv, lambda, RO, x, y
CHARACTER®*16 ktlpfile, bslpfile
pi = acos(-1.0E+00)
WRITE(*,*YENTER OUTPUT KT FILE NAME (16 CHAR MAX):’
READ (*,50) ktlpfile
WRITE(*,')' ’
WRITE(*,*YENTER OUTPUT TC FILE NAME (16 CHAR MAX):’
READ (*,50) bslpfile
WRITE(::’Q-)’ ’
OPEN(UNIT=30,FILE=ktlpfile, STATUS="NEW’)
OPEN(UNIT=40,FILE=bslpfile, STATUS="NEW’)
DO10i=1,n
DO10j—=1,n

conv = float(numpix) * (lambda/R0) *
+ (180.0/pi) * 3600.0

x = float(j - (n/2+1)) * conv/float(n)

y = float(i - (n/2+1)) * conv/float(n)
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WRITE(30,60) x, y, ktlpdata(i,j)
NTINUE

DO20i=1,n
DO20j=1,n
conv = float(numpix) * (lambda/R0) *

+ (180.0/pi) * 3600.0

x = float(j - (n/2+1)) * conv/float(n)
y = float(i - (n/2+1)) * conv/float(n)
WRITE(40,60) x, y, bslpdata(i,j)

20 CONTINUE
50 FORMAT(A16)
60 FORMAT(F7.4,2x,F7.4,2x,F7.4)

c

RETURN
END

SUBROUTINE Writerrfile(rKTerror,rBSerror,nyquist,

+ lambda,R0,numpix,iktcount,
+ itccount,n)

THIS S/R WRITES THE ERROR DATA TO A FILE

REAL*8 rKTerror(n/2), rBSerror(n/2)
REAL x, y, lambda
CHARACTER*16 ktfile, bsfile
INTEGER r
pi = acos(-1.0+00)
WRITE(*,*ENTER OUTPUT KT ERROR FILE NAME (16 CHAR’
WRITE(*,*)MAX):’
READ (*,30) ktfile
WRITE(*,*)’
WRITE(*,*YENTER OUTPUT TC ERROR FILE NAME (16 CHAR’
WRITE(*,*YMAX):’
READ (*,30) bsfile
WRITE(‘,‘)’ ’
OPEN(UNIT=1,FILE=ktfile, STATUS="NEW’)
OPEN(UNIT =2,FILE=bsfile, STATUS="NEW’)
DO 10 r = 1, iktcount
X = r * numpix * (lambda/R0) * (180.0/pi) * 3600.0
WRITE(1,*) x, rKTerror(r)

10 CONTINUE
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DO 20 r = 1, itccount
x = r * numpix * (lambda/R0) * (180.0/pi) * 3600.0
WRITE(2,*) x, rBSerror(r)
20 CONTINUE
30 FORMAT(A16)
RETURN

END
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