
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A243 120

so TATIE4 DEC i 0 1991

t C

THESIS
ENHANCED PRODUCTIVITY TOOLS: AN EVALUATION OF

THEIR PROCUREMENT, IMPLEMENTATION AND
OPERATIONS

by

Eric James Lindenbaum

March, 1991
Thesis Advisor. LCDR Robert Knight

Approved for public release; distribution is unlimited

91-17297
I0nhmn|1111iH -k

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.
2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School Naval Postgraduate School

37

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000

a8.. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Program Element No. Project No- Task No. Work Unit AccesmOn

I___ I
Number

11. TITLE (Include Security Classification)

ENHANCED PRODUCTIVITY TOOLS: AN ANALYSIS OF THEIR PROCUREMENT, IMPLEMENTATION AND OPERATIONS

12. PERSONAL AUTHOR(S) LINDENBAUM, ERIC JAMES

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT
Master'sTheuis From To MARCH, 1991 107

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the US.
Government.
17. COSATI CODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Productivity; Software development; Database application generators.

19. ABSTRACT (continue on reverse if necessary and identify by block number)

Reductions in available Information Resources (IR) dollars in the budget places increased emphasis on the productivity of both system developers
and users. New technologies have been proposed to improve these productivities. Three software development tools in particular have been
proposed to the Navy. One was developed using Naval amet Another is available Off-The-Shelf and the third was developed by both
government assets and by a contractor. This paper will evaluate and compare the three products and their associated development techniques.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
M UNCtASSIFIEDIUNLIMITED Q SAME AS REPORT [3OTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area code) 22c. OFFICE SYMBOL
LCDR Robert Knight (408)646-2771 AS/Kt

DD FORM 1473.84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete Unclassified

• mu u~mumm mmmum n amimma~w mf- -

Approved for public release; distribution is unlimited.

ENHANCED PRODUCTIVITY TOOLS: AN ANALYSIS OF THEIR PROCUREMENT,
IMPLEMENTATION AND OPERATIONS

by

Eric James Lindenbaum
Lieutenant, United States Navy

B.S., United States Naval Academy, 1981

Submitted in partial fulfil ment

of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL

Author:Author:~ " /James Li n d en b a um

Approved by:
Robert Knigh Thesis Advisor

T~ak~kdelHamdSr~nd Reader

David R. Whipple, Chairman
Department of Administrative Sciences

ii

ABSTRACT

Reductions in available Information Resources (IR) dollars in the

budget places increased emphasis on the productivity of both system

develoDers and users. Three software development tools in

particular have been proposed to the Navy. One was developed using

Naval assets. Another is available Off-The-Shelf and the third was

developed using both government assets and by a contractor. This

paper will evaluate and compare the three products and their

associated development techniques.

Acemestan for-

N 713 - 4Ra&1

Distil t I .&/
Avillabtl.ly Cod

fiWQLaud/eor
Dist W oetal

III "/

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PROBLEM STATEMENT 1

B. BACKGROUND 2

1. The Software Crisis 2

2. Software Development Methods 6

3. Evolution of Computer Languages 8

C. DEVELOPMENT TOOLS 10

D. PRODUCTIVITY 12

1. Definition 12

2. Lines of Code Methods 13

3. Function Point Analysis 14

4. Summary and Application 15

E. COST/BENEFIT ANALYSIS 17

F. RESEARCH QUESTIONS 19

G. THESIS ORGANIZATION 20

II. DEVELOPMENT TOOLS 21

A. DEVELOPMENT TOOL CHARACTERISTICS 21

B. SURVEY RESULTS 25

1. bocumentation 27

2. System Speed 29

Iv

C. RESULTS . 31

III. OFF-THE-SHELF: PARADOX 33

A. OVERVIEW 33

B. THE TYPE COMMANDER HEADQUARTERS AUTOMATED

INFORMATION SYSTEM (THAIS) 33

C. NEW SYSTEM DEVELOPMENT AND IMPLEMENTATION . . . 35

D. RESULTS AND FEEDBACK 37

IV. IN-HOUSE DEVELOPED: DB3GEN 39

A. BACKGROUND 39

B. SYSTEM DESCRIPTION 39

V. COMBINED MILITARY AND CONTRACTOR ASSETS: ADASAGE . 42

A. BACKGROUND 42

B. DEVELOPMENT ENVIRONMENT 44

C. REUSABLE ADA LIBRARIES 46

D. FUNCTIONALITY 49

E. PERFORMANCE 51

1. End User Considerations 51

2. Programmer Considerations 53

3. Software Development Considerations 54

VI. COST/BENEFIT ANALYSIS 57

A. DB3GEN 57

1. Financial Costs 57

v

2. Performance Liabilities 58

B. PARADOX DATABASE MANAGEMENT SYSTEM 59

1. Financial Costs 61

2. Performance Liabilities 61

3. Analysis 62

C. ADASAGE SYSTEM 63

1. Costs 64

a. Training and personnel 64

b. Cost of hardware 66

c. Cost of software 67

2. Benefits 69

3. Analysis 70

VII. RESULTS, CONCLUSIONS AND RECOMMENDATIONS 77

A. OVERALL RESULTS 77

1. DB3GEN Results 77

2. Paradox Database Management System Results . 78

3. AdaSAGE System Results 79

B. RECOMMENDATIONS 84

1. Productivity 84

2. Development Tool Procurement 85

a. In-House developed 85

b. Contractor developed 87

c. Off-The-Shelf developed 89

3. Purchasing Strategies 91

C. CONCLUSIONS 93

vi

D. FOLLOW-ON STUDY AREAS...............94

LIST OF REFERENCES....................95

INITIAL DISTRIBUTION LIST.................98

vii

I. INTRODUCTION

A. PROBLEM STATEMENT

Reductions in available Information Resources (IR) dollars

in the budget places increased emphasis on the productivity of

both system developers and users. New technologies and

techniques have been proposed to improve these productivities.

In particular, fourth generation language (4GL) tools and

developmental techniques designed to exploit them, all claim

productivity enhancements.

Two Naval Regional Automatic Data Centers (NARDACs) have

independently implemented different means to increase

programmer and end user productivity. Both activities use a

fourth generation language tool however, one is produced with

in-house assets and the other is purchased off-the-shelf. The

tools are the commercially available Paradox series and the

NARDAC San Diego developed DB3GEN. A third alternative, which

has been proposed by their headquarters, Naval Computers and

Telecommunications Command (NCTC). While AdaSAGE does not use

a fourth generation non-procedural language, it does encompass

the same fourth generation development techniques as the

others. This paper will evaluate and compare the three

products and their associated development techniques.

The United States Navy desires to standardize its tools in

an effort to obtain economies of scale in training and

software procurement costs. The 4GL tool the Navy selects

will influence the future of both the IR community and systems

they create. The decision should be made only after a careful

examination of many factors such as the tool's functionality,

productivity and life cycle costs.

B. BACKGROUND

1. The Software Crisis

The world is experiencing a software crisis. The

crisis is the inability of software technology to keep pace

with hardware technology (Conte, 1986, p.1). The reasons for

this crisis are many and complex:

" The growth in demand for higher quality, critical software
in information-based and embedded code systems (Conte,
1896, p. 2)

" The productivity of programmers has not kept pace with the
demand for completed applications (Martin, 1985, p. 2)

" While the decrease in the cost of hardware has made
computer systems more available for different
applications, the cost of the software to run these
applications has been increasing (Boehm, 1987, p.44) Since
1973, there has been a 12 percent per year growth rate in
the cost of developing software (Martin, 1985, p. 5)

" The number of computers and applications is growing. One
estimate places the need for programming in 1995 at 372
times the 1985 level. Given the 1985 level of 400,00
programmers, 148 million programmers would be needed if
their productivity remained constant. (Martin, 1985, p. 1)
See figure 1.

2

f I.

L

I.r

9
....................

eM M

Figure 1 Supply and Dmand of Programmers

New technologies and methodologies are being marketed

that claim to solve the productivity problem. Computer aided

software engineering (CASE), 4GLs, application generators, and

rapid prototyping are examples of types of products or

methodologies designed to address the crisis. Selecting

between these presents the information manager a decision

which must be addressed in a structured manner. Following the

structured analysis steps of Edward Yourdon, the situation

facing the United States Navy is:

•The problem, a lack of a proper productivity level, has
been identified

L3

" The alternatives presented are the possible solutions

" Next, formulate the criteria for the evaluation of the
alternatives

" After evaluating the alternatives, select the most
advantageous solution (GSA Guide for Requirements Analysis
and Analysis of Alternatives, p. 3-7, 1990)

• Implement and test the solution

" Maintain the new system. (Yourdon, pp. 42-64, 1988)

In 1960, the ratio of expenditures for hardware versus

software was 80 percent hardware cost and 20 percent software

cost. These hardware systems were all mainframe computers and

their applications were mostly transactional processing. The

Introduction of the microcomputer and the growth of the number

of software applications, especially into embedded systems,

started changing the relationship. By 1980, the ratio had

reversed to 80 percent now spent on software and only 20

percent on hardware. In the 1990's the trend will continue

with over 90 percent being eventually spent software alone.

See figure 2. Software, not hardware now drives the overall

life cycle costs of a computer system. (Fairley, 1985, p. 85)

As stated before, since 1980 growth in the number of

applications puts more emphasis on productivity performance of

the computer programmer. Unfortunately for the computer

industry, growth in the number of programmers is not keeping

up with demand. The growth rate in supply of programmers

since 1980 is 15 percent per year while the demand has risen

4

HARDWARE VS SOFTWARE OOSTS

0

F I

T

TIM

C

TIME

Figure 2 - Hardware vs Software Costs

by 372 percent. In terms of people, this means by 1990 it is

estimated the demand for programmers will out pace supply by

750,000 to 2,000,000 personnel (Fairley, 1985, p. 8).

The productivity increases of programmers is also

failing to make up for the lack of available programmers. A

study conducted from 1973 to 1983 indicated programmer

productivity only improved at an average of four percent a

year (Martin, 1983, p. 3). So while demand for programmers is

increasing, productivity of existing programmers is not

keeping pace with growth in software demand.

5

The characteristics of software itself has also

undergone several changes that have contributed to this

software crisis. Today, software must be more reliable,

easier-to-use and user-friendly than ever before (Conte, 1986,

p.2). This reflects increased reliance upon software to run

advanced systems and also increased expectations of end users

who have become educated in uses of computer technology.

Thus, even more pressure is placed upon programmers.

This burden is not solely placed upon the programmers'

shoulders. Developmental techniques and productivity

enhancement tools have been created that supposedly ease the

coding load. These products seek to improve either the coding

itself by making it less time consuming (reuse of code,

automatic generation of code, fewer lines of code necessary to

do the same f-nction, etc.) or less difficult to understand

(menu driven formats, non-procedural languages that mimic

natural languages, etc.).

2. Software Development Methods

Changing the way software is developed is seen as a

possible solution for the software crisis. In the 1960s

systematic approaches were created because many of the

delivered applications were over budget, behind schedule,

inefficient and did not satisfy the original requirements

(Fairley, 1985, p. 5). The name "structured methodologies" is

given to systematic approaches which have been developed.

6

Specific names of structured methodologies are many: The

Systems Acquisition Process, the Cost Model, the Prototype

Life-Cycle Model and the Waterfall model.

Each of these models generally follows the same stages

in creating a program. A typical representation of these

stages is shown in the System Development Life Cycle (SDLC).

In a simplified form, the SDLC steps and questions the steps

answer are:

" Recognition of a need: What is the problem?

" Conduct of a feasibility study: What are the facts and
user requirements? Is the problem worth solving?

• Design the solution: How must the problem be solved?

" Implement the solution: What is the actual operation?

" Maintain the system: Should the system be modified to
change with different user requirements over time?

These steps are conducted by a development team as they study

and interact with end users. Thus, the SDLC is a way to bring

together two types of computer users: computer programmers and

computer application users.

As the steps are followed in a structured approach,

the software being developed is supposed to be delivered on

schedule, on budget and in a maintainable and acceptable form

(Yourdon, 1988, p. 1). But the use of structured development

techniques alone can only account for productivity gains up to

25 percent (Martin, 1982, p. 43). To achieve the productivity

7

gains required to overcome the software crisis, other methods

must be used in conjunction with structured approaches.

3. Evolution of Computer Languages

Since the early 1950's when assembly languages were

created in order to simplify the task of coding machine

language instructions, programmer productivity has been tied

to both the ability of the programmer and the language in

which coding was conducted. Attempts to increase programmer

productivity can be categorized in three areas:

" Further train the programmer. The disadvantage is the
time spent in training is lost until the person starts
coding again

" Let the person gain experience through time and effort.
Productivity differences of up to 20 to 1 have been found
between entry level programmers and experienced
programmers when using a 3GL (Sackman, 1968, pp 3-11).
This method is costly though in the early steps of the
learning curve as the beginning programmers learn the
language

" Use a more advanced language that facilitates the coding
process. The more advanced language must be taught to the
programmers.

It is the third option that has received the greatest scrutiny

because it is the option that allows greatest potential gains.

This third option has led to the creation of many

computer languages. The evolution of computer programming

languages is categorized in the form of "generations." In

figure 3 is a list of each generation. With each generation

8

is listed the identifying characteristics and the chief

benefits over the previous generation.

GENERATION CHARACTERISTICS BENEFITS

First Hardware Specific. Formalized programming.

Second Hardware Specific. Simpler coding.
Symbolic coding. Requires less commands.

Third Non-Hardware Simpler coding.
Specific. Commands are problem

Requires a compiler. orientated vice
machine orientated.

Requires less commands.

Fourth Non-procedural. Easier to learn.
Requires less commands.

(Awad, pp. 104-114, 1988)

Figure 3 - Computer Language Generations

Studies show productivity improvements of up to 50

percent when a switch is made to a higher programming

language. These gains in productivity reflect a 25 percent

increase when structured development techniques are used and

a gain of another 25 percent when a higher language is also

used (Martin, 1982, p. 44). But once again because of the

severity of the software crisis, still larger gains in

productivity are needed.

9

C. DEVELOPMENT TOOLS

The results of incorporating development tools do show the

productivity gains necessary to combat the software crisis.

Productivity gains over 1000 percent are not uncommon with the

use of tools (Martin, 1982 p. 44). The types of tools vary

greatly but the reasoning behind their creation is the same

An individual tool simplifies an action that is too difficult

or tedious for a programmer to do manually (Panko, 1988, p.

17). Without writing a single line of code, a user can create

a custom application (Panko, 1988, pp. 456-458). This frees

the end user from relying upon a programmer.

As database management becomes the cornerstone of

information systems technology (Chorafas, 1986, p. 6) and

systems developers attempt to incorporate end users in all

aspects of a computer systems development, creation of

database applications has become one of the largest areas of

programming today. Thus it is not surprising to find some of

the greatest emphasis of tools in database management.

Structured Query Language (SQL), Query By Example (QBE),

dBase, FoxPro and Paradox Application Language (PAL) are a few

examples. Each tool allows end users to directly manipulate

the database in order to bypass the system analyst and

programmer. This bypassing saves time and increases

productivity.

Usually a tool follows a series of menu driven steps in

which the system structure is developed and the actions to be

10

taken upon the system are defined. Tools for databases are

most frequently used because the actions to be taken on a

database are standardized (Input, delete, update, sort and

inquiry). Customization takes place as end users design the

formats of the output reports and the input screens. Users

also will define how they want the data sorted and displayed

on the screen. Constraints can be entered to ensure the data

entered is within preset limits. Security features such as a

password system can be installed and some systems even have

features to handle up to Secret level documents that require

special erasure routines.

4GL tools generally claim success in two areas: (1)

Increased end user programming capability and (2) Increased

professional programmer productivity (Chorafas, 1986, p. 3).

Inclusion of the end user as the actual programmer allows

immediate feedback in meeting demands of the user. Firms

which have extensive database dealings often make this switch.

In 1981 Xerox Corporation estimated 25 percent of the

company's computer resources were dedicated to end user

computing and by 1991 this percentage was predicted to triple

(Nelson, 1989, p. 1).

The success of database application generators for

professional programmers can be linked to several factors.

First is that the data types are predefined. The application

generator does not have to structure the data or define it.

The database itself has already done this for the application

11

generator. Second, the operations conducted on databases are

standard. Data entry, update, deletion, retrieval and inquiry

constitute the five standard actions conducted on a database.

Third, the outputs from a database are also standardized.

They are graphs of individual data fields and summary fields

and reports based on the same fields (with the headers already

defined). Finally and most importantly to both the programmer

and the end user, is the use of the non-procedural 4GLs and

menus in the creation of the applications. A high level of

training, compared to 3GLs and even 4GLs without a menu driven

format is not needed to produce a high quality program in a

short period of time.

D. PRODUCTIVITY

1. Definition

What is this productivity that the different languages

and tools boast they can improve and thus solve the software

crisis? In general terms, productivity is the ratio of what

comes out of a process divided by what goes into the process.

An increase in productivity would mean either more is being

produced with the same level of input or less input produces

the same level of output as before. In simplest terms it

means getting more for less.

The first step in measuring productivity is to

determine units of measurement for both inputs and output6.

If no measurements can be found then no determination of

12

productivity can be made. Traditionally, in the field of

computer software development, inputs have been measured in

terms of level of effort (man-months for example) or in terms

of dollars. Calculation of the level of effort can lead to

some misunderstandings due to confusion of whom is included.

Some productivity measurements include support personnel and

others include only programmers and analysts. For the

purposes of this case study, only programmers are included for

two reasons: First, in the SDLC design phase only coding,

debunging, and error checking steps were observed. Second,

and most importantly, traditional boundaries between roles of

programmers and analysts were changed by use of a 4GL

application generator thus making any comparison to older

studies invalid.

2. Lines of Code Methods

While there is general agreement on measurements of

inputs there is general disagreement on measurements of

outputs. The most popular, in terms of which have been used

the longest and most frequently, are the Lines-Of-Code (LOC)

based methods. Foremost among these are the COCOMO

(COnstructive COst MOdel) and SLIM models. These methods are

easy to understand in concept and the measurements are simple

to conduct. They also have a large historical database to

draw from and base comparisons on. But, traditionally three

areas complicate their use:

13

" They are not directly transportable across organizations.
A calibration process must be accomplished to ensure
characteristics of the organization using the model are
accounted for before any meaning set of predictions or
measurements can be made.

" They are very sensitive to differences in LOC counting
methods. The fundamental question of: What is a line of
code? must be first answered. Some methods count only
executable LOC. Some methods count executable and data
definition LOC. Another counts the LOC changed during
maintenance only. (Arthur, 1985, pp. 16-28)

" They penalize high level languages. A comparison of the
number of LOC needed to produce the same program in terms
of functionality between a 3GL and a 4GL will show the 3GL
will require seven times more lines of code. (Dreger,
1989, p. 5)

3. Function Point Analysis

An alternative to LOC based methods adopted by the

British government and 300 major corporations (Jones, 1991, p.

8) is the Function Point analysis method. This method is

based on measuring functionality of the program requested by

end users. A function point is defined as one end user

business function. The basis of the measurement system is a

user must request a function in the specifications in order to

include it in the measurement. This requirement is intended

to cut down on programmers adding unwanted functions for their

convenience. Function points deal with one or more of five

general areas:

* Outputs: items of information processed by the computer
for end users

" Inquiries: Direct inquiries into a database or master file
that look for specific data

14

" Inputs: Items of data sent by users to the computer for
processing and to add, change or delete something

e Files: Data stored for an application, as logically viewed
by the users

* Interfaces: Data stored elsewhere by another application
but used by the application under evaluation.

In general terms, function point analysis of a system

counts the function points and then, by using a series of

matrices, determines system complexity . The number of

function points and a quantitative expression of the

complexity level are then plugged into an equation. This

arrives at a number used to predict the level of effort

required for system development. As with the COCOMO model,

the function point analysis method must be calibrated for the

organization's individual characteristics before results will

be accurate. (Dreger, 1989, p. 5)

4. Summary and Application

Regardless of which method is used to measure

productivity, there are several quality characteristics to be

examined in order to assure any comparison of productivity

measurements is accurate. The following is a list of aspects

to consider in regard to the quality of software:

15

" Accuracy

" Error tolerances

" Execution efficiency

" Simplicity of the design

" Modularity

" Instrumentation

" Flexibility of the system toward change

* Testability

* Maintainability

" Reliability

" Reusability.

A detailed examination of the applications quality

delivered to end users by software development organizations

observed in this study is beyond the scope of this paper. All

applications examined in this paper have been delivered to end

users and are presently fulfilling the tasks they were

designed to do. Therefore, accuracy, error tolerances,

instrumentation, reliability, testability and simplicity of

design are all assumed to be equal among products produced and

delivered. The remaining characteristics are all addressed in

summary terms vice specific terms related to a particular

program. Given the limited number of programs observed in

development, extrapolation to any broad conclusion in these

areas is unfounded.

16

For this study, no formal model of productivity was

used. The organizations observed measured input in terms of

the number of people working on the system times the number of

calendar months they worked on it. Output was defined as

simply a working system. This was done for several reasons:

First, the organizations have no formal method of measuring

productivity in place. They have been ordered to institute

function point analysis and are in the process of setting it

up. Second, no LOC data was kept on any system. Third, the

systems observed used different languages and even different

generations of languages. Thus any Judgement from a

comparison of other than total man hours spent developing

systems would be unfounded. Problems this represents are

discussed in the conclusions section.

3. COST/BRNEFIT ANALYSIS

Once the liabilities and strengths of various systems are

determined, a way of selecting the best system is necessary.

A method for selecting between competing alternatives is by

conducting a Cost/Benefit Analysis. A cost/benefit analysis

seeks to identify all expenses and advantages associated with

one product when it is compared to others. This method is

selected when each of the alternatives does nut offer the same

level of benefits. The costs are normally quantifiable in

terms of dollars expended. The benefits though are divided

into two categories of quantifiable and nonquantifiable

17

benefits. Examples of quantifiable benefits are decreased

errors per one hundred lines of code, increased number of

transactions processed per hour and decreased time to produce

a report. Examples of nonquantifiable benefits are increased

data availability, increased data timeliness and increased

data accuracy.

For each system reviewed the cost/benefit considerations

are identified and explained in the last section of each

review chapter. The performance costs listed are from

functionalities offered by either of the other systems

examined that the system in question does not offer.

The overall cost/benefit analysis is conducted for the

nine commands who attended the 1991 Ada Technical Workshop.

These commands are:

" NCTS San Diego

" NCTS Newport

" NARDAC Norfolk

" NARDAC Washington

" NARDAC Pearl Harbor

" NARDAC Pensacola

" NARDAC New Orleans

" NARDAC San Francisco

" NARDAC Jacksonville.

They also all report to NCTC so uniformity can be controlled

by one senior command. These nine commands have all been

18

directed to implement Ada and also include the two commands

that implemented the Off-The-Shelf and In-House developed

systems. The costs and benefits for an activity are the

average cost for all nine commands except as otherwise noted.

Since the activities all operate under the Navy Industrial

Fund concept, all work conducted by the employees must be

charged to clients. This includes overhead charges such as

training. The fiscal year 1991 rates are as follows:

Title RATE/HOUR

" Senior Analyst $43.1481
4

" Programmer/Analyst $38.1299

" Junior Programmer $27.3940

" Admin Support $29.4167.

These figures are used when calculating opportunity cost

of training, cost of product development and cost of product

maintenance.

F. RESEARCH QUESTIONS

The following specific research questions will be

addressed in order to determine the correct DBMS development

tool for the Navy to procure:

* What are the characteristics of a DBMS development tool
that contribute to end user and programmer productivity?

19

" Which method of procurement, In-House, Off-The-Shelf or
Contractor aided, should be used to obtain the Navy's DBMS
development tool?

" Which of the tools offered by the three procurement
methods provides the Navy with the best productivity
potential for end users and programmers? Which tool has
the greatest potential for future growth?

" How can the Navy best use the services offered by
commercial and other DOD sources as it attempts to improve
productivity and yet face a decreasing IR budget?

G. THESIS ORGANIZATION

In the following six chapters, three DBMS software

development tools are evaluated. Their advantages and

disadvantages are discussed in comparison to each other and to

an ideal DBMS as defined in Chapter II. Chapter VI contains

a cost/benefit analysis of the three tools. The seventh

chapter includes results and recommendations from the

comparisons and analysis. The recommendations address which

software development tool should be selected for the Navy,

what that tool should offer and how it should be procured.

20

II. DEVELOPMENT TOOLS

A. DEVELOPMENT TOOL CHARACTERISTICS

As previously stated, the database is the mainstay of the

Information Technology field. In the original conventional

file environment each application for a database had a

separate set of data elements. But data integration solved

this problem and allowed applications from different users to

use the same data for separate tasks. This saves data storage

costs, reduces data redundancy and improves data integrity.

Handling of data integration is the heart of the database

system. A Database Management System (DBMS) accomplishes this

task.

The basic functions a DBMS provides are:

* Establishes data relationships within the system

* Allows users to add new information, change information
already loaded, delete old information, sort information
into a useful order, and search for particular types of
information

* Controls concurrent processing by two or more users on the

same data

* Provides security to identify users and authorize actions

* Provide facilities for recovery of the database from
system failures. (Simpson, 1989, p. 8)

21

Since actions performed on a database are standardized,

the area of database management programming shows great

potential for end users to create their own applications. End

users know what they want from their database applications, so

want they need is a tool to free them from reliance upon

system analysts and programmers to create their applications.

Data organization is familiar to end users. The conceptual

workings of a database (Update, entry, deletion, query, sort)

are also familiar.

This is the reason behind creation of automatic code or

application generator tools. These products follow a menu

driven format that takes end users through a series of steps

that define data elements, establish relations between data

elements, create data entry screens, and format output

reports. The menu concludes with the code being automatically

generated with inclusion of standard database functions. The

result is creation of a stand-alone database system defined

and created by end users without the aid of system developers

or programmers.

A questionnaire was distributed to both end users and

programmers of database systems. They were asked to rate

characteristics they desired in a database system. The scale

was from one being the most desirable trait to 13 being the

least desirable trait. All end users lacked previous formal

computer training in either programming or computer systems.

The professional programmers have at least a bachelor of

22

science degree in computer science and on average five years

of programming experience on database systems using both 3GLs

and 4GLs. Results are shown in Figure 4.

Programmers End users
System response time 2 4
Ad hoc capability 8(tie) 2
Ease of use 4 1
Ease of learning 1 5(tie)
Mouse compatibility 13 13
Graphics 10 8
Documentation 6 5(tie)
On-line help 7 9
Training from the vendor 12 7
Maintenance ease 8(tie) 11
Security features 11 10
Data integrity 3 12
Reliability 5 3

Figure 4 - DBMS Characteristics Ratings

Two areas with a high differential between end users and

programmers preferences, data integrity and training from the

vendor, are each caused by a temporary condition. First,

there was a misunderstanding in terms used on the

questionnaire and second, context of the workers' Jobs when

they answered the questionnaire influenced their answers.

The term "Data Integrity" was misunderstood by all end

users who took the questionnaire. Their perception about its

meaning ranged from "I had no idea so I ranked it low." to "I

thought It had to do with how the data was read off of

messages when it was input into the system." When it was

23

explained after finishing the questionnaire, each answerer

said they would have ranked it higher had they known what it

meant.

The difference in ranking of "Training from the vendor" is

explained by understanding the stage users were in when they

answered the questionnaire. The users had just switched from

an old system that offered little flexibility but they

understood how it worked. The new system offered the

flexibility and functionality they needed but training was

required so they could operate their system to it's full

extent. Users saw "Training from the vendor" as an immediate

solution to their learning curve problems. The programmers

rated this characteristic from a life cycle perspective. They

thought it was important when the training occurred but

throughout the life cycle it did not rank highly.

Other than these two areas, ad hoc capability stands alone

as the one area where end users and programmers disagreed.

This is not explained by a temporary condition but by a

difference in development philosophy. In fact, if the

programmers who did supply ad hoc capabilities to their end

users were factored out, the difference becomes even larger.

It must also be noted if the end users who presently did not

have ad hoc capabilities rated this characteristic more in

line with the programmers.

Senior analyst personnel also exhibit a difference in

opinion with users over desirability of ad hoc capabilities.

24

In interviews with the author, systems analysts for DB3GEN at

the Naval Regional Data Automation Center (NARDAC) San Diego

and Clipper at NARDAC Norfolk stated 95 percent of all end

users do not want ad hoc capabilities. This means developers

do not think end users want ad hoc capabilities so they create

applications without them. But end users with the

capabilities not only desire them but rate them second highest

in desirability out of all characteristics. The results

indicate the users cannot want something they do not have.

Besides these three mentioned traits, end users and

programmers were in general agreement over the importance of

the characteristics they wanted in a database system. Ease of

use, ease of learning and system response time were at the top

of both lists while mouse compatibility was at the bottom of

both lists. As a note, no responders to the survey were

presently using a mouse on their computer.

B. SURVEY RESULTS

Once determining what the users and programmers wanted in

a system, another questionnaire was administered to measure

the satisfaction they had with their present systems. The

following twelve areas are traditionally used to measure user

satisfaction of a Full-Featured MS-DOS DBMS (Microsoft-Disk

Operating System Database Management System) (Robb, 1990, p.

12).

25

Results are as follows in Figure 5: (1 = excellent, 2 =

good, 3 = fair and 4 = poor. An asterisk (*) indicates no

evaluation or not known.)

DB3GEN PARADOX ADASAGE

Reliability 1 1 1
Documentation 4 4 3
Ease of use 2 1 2
Report Generation 2 1 2
User Interface 2 1 1
Standards * 2 1
Programming Features 2 1 1
Speed 1 2 1
On-Line Help 3 1 2
Vendor Support 1 1 1
Value 1 2 1
Installation * 1 4

Average 1.9 1.5 1.7

Figure 5 - Survey Results

On the average, the Paradox system scored better than

DB3GEN and AdaSAGE. All three systems scored, on the average

between excellent and good in overall rating. This makes

sense when considering each person polled, except for four end

users, had selected their present system over competing

systems. This poll does not show a preference of users and

programmers of one product over another. No user or

programmer of any system had used either of the two other

systems. This poll does show the Paradox programmers and end

26

users are slightly more satisfied with their product than the

other two systems.

1. Documentation

A constant discrepancy between all three systems is in

the accompanying documentation. Reasons for this discrepancy

for each systems varied.

The DB3GEN system required end users to print out the

documentation from computer disks supplied with the program.

The print out is hard to read as a stand alone document.

Users must follow the program on the screen or the

documentation does not make sense. As users create systems,

the documentation does not explain the reasoning behind the

actions you are required to make. This is due to users of the

DB3GEN system are normally programmers or advanced users who

are already trained on the system. No system is delivered

without first training end users on the system and most

applications are created by the programmers. Training of

users on the system accomplishes feedback but the application

is delivered as a finished product without the complete ad hoc

capabilities of a Paradox system. The senior DB3GEN analyst

says 95 percent of the end users who have systems delivered to

them do not want ad hoc capabilities. If this is true for

their end users then, the documentation discrepancies will not

affect the system performance because the users will not need

it.

27

The AdaSAGE documentation scored the highest of the

three but it still is poor, on the average, according to end

users and programmers. Documentation is also one area

requiring improvement as identified by the Ada Technical

Workshop. From interviews with AdaSAGE programmers in the

United States Marine Corps, 25 of the 37 procedures in the

AdaSAGE library are not used. Of those 25 unused packages,

seven are not used because programmers do not know what the

package does or cannot figure it out from the documentation.

It must be noted non-use of these 25 procedures has not caused

failure of any application to be developed.

The Paradox documentation problem was due to the rapid

system development time. The programmers were able to deliver

the application to the end users faster than they had planned

so the documentation was not ready yet. The situation was

made worse by users needing more documentation than with a

non-ad hoc capable system. The ad hoc capabilities require

more user involvement. This increased involvement led to more

user questions. More questions meant more reliance on

documentation and it was not ready. The system did have on-

line help features but traditional reliance upon printed

material for help caused end users to call the developers for

help frequently. (As often as twice a day when the system was

first delivered.) This further delayed the documentation by

slowing down it's creation. One user was so frustrated, he

28

went out on the commercial market and bought a manual with his

own personal funds.

2. System Speed

The speed scores were excellent for the DB3GEN and

AdaSAGE systems and good for the Paradox system. Ordinarily

this low difference in opinion should not be an area of

concern but it is since speed was rated high in importance of

characteristics by programmers and end users. Speed is a

selling point of AdaSAGE according to documentation

accompanying the AdaSAGE demonstration disks.

Several factors can affect system operation speed.

First, is the system hardware. Processors operate at

different speeds so applications have different run-times on

different computers. What takes an unacceptable length of

time for an operation on an older 286 based PC might be

acceptable on a newer 386 based PC. Computers with the same

processor can even operate at different speeds. Addition of

extra cache memory or a co-processor will speed up execution

of a program. Thus program operation time may be unacceptable

only on certain computers which have certain hardware

configurations.

Another consideration, especially for the AdaSAGE

system, is which compiler is used. Paradox and DB3GEN both

always use their same compilers so their inputs are constant.

The AdaSAGE program presently only uses one compiler, the

29

Alsys compiler, but other compilers may soon be on the market.

As stated in the AdaSAGE response testing section, the M2SAGE

performed faster because it used a faster compiler. As more

compilers enter the marketplace, AdaSAGE users should be aware

of the affects of this component on system performance.

The way a program handles memory as it executes is

another factor affecting system operation speed. The more

random-access-memory (RAM) left available for the program to

conduct its operations and the fewer times a program must go

to disk storage memory, the faster it will operate. The way

a program is written and its size will determine how it

operates.

The Paradox program includes operations users may not

use each time they execute the program. These unused

operations still require added program code that must be

loaded Into RAM and then executed. The program has to check

and see if the user wants to use an operation regardless of

whether or not it is to be used. The DB3GEN and AdaSAGE

programs only offer end users the functionality they request

(and the system can offer). This means the application does

not have to query the system to find out if the end user wants

to do a specific operation except at the menu screens. And

even at the menu screens there are fewer options afforded

users that corresponds to less code to load and execute. All

this adds up to faster times as evidenced by the speed tests

in the earlier section.

30

Developers at the Norfolk Naval Regional Data

Automation Center (NARDAC) have gone one step further in order

to speed up Paradox developed systems they deliver. The slow

part of the process was the message loading section. This

section was rewritten instead In the C language and the rest

was written using the Paradox Application Language (PAL).

This decreased message loading time by half. The program was

not tested using the new 386 based desktop III workstation

with the extended memory or with the updated version of the

Paradox system. Either of these new options should decrease

the program run time.

C. RESULTS

The one common trait between the two questionnaires is

users and programmers are content with what they have. This

means they are either satisfied with what they have or, as

with the first survey and ad hoc capabilities, do not know

what they are missing.

Users and programmers agree they want systems to be fast

to operate, easy to use, and reliable. Users also want better

documentation, training from the vendor and ad hoc

capabilities. Documentation and training can be improved

readily and without any fundamental changes to the system. Ad

hoc capabilities are different. They represent a basic

difference in how the system develops applications and how the

applications operate.

31

To analyze the difference between having and not having

this capability, the costs and benefits of the three products

must be found and compared. This is done in the following

chapters.

32

III. OFF-THE-SHELF: PARADOX

A. OVERVIEW

The Naval Regional Data Automation Processing Center

(NARDAC) located in Norfolk, Virginia creates programs for

Department of Defense (DOD) commands under the Industrial Fund

concept. This concept requires the NARDAC to compete as a

self-funded organization for Information Resources (IR)

dollars of DOD activities. This is in direct competition

against commercial organizations and other NARDACs for

contracts. When NARDAC Norfolk is awarded a contract to

create a computer system or a computer application for a

specific dollar amount, the NARDAC acts just as a commercial

corporation would: To maximize the output of the employees

while minimizing the expenses incurred. This ratio is the

productivity of the organization.

B. THE TYPE COMMANDER HEADQUARTERS AUTOMATED INFORMATION

SYSTEM (THAIS)

In 1979 Norfolk NARDAC was designated the Central Design

Agency (CDA) for the Type Commander Headquarters Automated

Information System (THAIS) contract. The THAIS mission is to

provide an on-line, interactive management information system

to seven Type Commanders (TYCOMs). It creates a centralized

database in 10 functional areas to provide earlier problem

33

recognition and expand data utility to more end users.

Through use of a hierarchial structured database, the on-line

portion is menu driven, provides summary data for staff

analysis, and produces standard reports and ad hoc queries.

The system was originally designed to be run on SNAP I

hardware consisting of three Honeywell DPS-6 mini-computers.

No microcomputer interfaces were in the initial design.

The original system was written in COBOL and delivered to

the TYCOMs. The system had several stumbling blocks that

limited use of information in the database by end users.

Primary of these stumbling blocks were time delays in creation

of reports involving graphics and lack of capability to create

ad hoc reports and forms. Neither of these two areas were

requested in the original specifications but their need arose

after delivery. The cost of rewriting the existing system to

include these capabilities was prohibitive (two to three

months of effort by four to six programmers) so manual methods

were found to make up for lacking functionality.

Two reports that could not be created with the original

system are the OPTAR (Operating Target: a financial budgeting

report) and the Performance Summary report. Each report

requires addition of data fields that are not in the original

database and summary totals of old and new data fields. In

order to produce the new reports, an operator down loaded data

in the database, had a second operator add two fields of data,

and then process the data on a 286 based Personal Computer

34

(PC) using the LOTUS 1-2-3 program. This entire process took

three weeks.

To create the graphics reports, data from the database was

also down loaded from the Honeywell minicomputer and input

onto a 286 based PC. This process took the system operator

from one to two weeks depending on the amount of data. This

meant the information was at least one week old (and at most

three weeks) when the report was finally printed. During that

time the system operator could handle any new requests or

correct mis-entered data.

C. NEW SYSTEM DEVELOPMENT AND IMPLEMENTATION

The senior analyst for the THAIS contract (and also an

experienced COBOL programmer) was concerned with the system's

Inability to provide end users with the desired functionality.

The analyst also realized system maintenance was causing too

great a workload on his programmers. He realized any future

module designed, coded, and delivered in the same manner,

would also contribute to the maintenance backlog.

After a review of maintenance requests submitted by end

users, the analyst determined a majority of requests asked for

reformats of outputs, additions to outputs or added

functionality. To identify existing system deficiencies, the

analyst interviewed end users and arrived at this list of

needed capabilities:

35

" Ad hoc report generation

" Ad hoc form generation

" Graphics

" Security (to handle secret level material).

With these requirements in mind, plus the original database

specifications, the analyst set out to find a 4GL and/or

database package to solve the problems. The system selected

was the Paradox 3.0 database management system.

Paradox 3.0 system is described by its manufacturer as a

multi-user, relational database compatible with the industry

standard dBase series data file format. Queries are conducted

by the Query-By-Example (OBE) method instead of the Structured

Query Language (SOL) and programming is done either manually

using the Paradox Application Language (PAL) or automatically

by the application generator. The system allows the user to

modify the pop-up boxes and screens instead of Just presenting

them in one format. This is accomplished either through use

of a keyboard or a mouse. The program also includes

extensive on-line help features which assist end users in all

phases of application development and use.

Other systems on the market provide similar functionality

but the decision to select the Paradox system was based on

three factors: First, it (Paradox 3.0) met all requirements;

Second, it was within the price range of the buyer and third,

it was the first system tested that met all requirements.

36

Two of the original THIAS programmers were selected to

create the new database system using Paradox. Neither

programmer had ever coded using either a 4GL or an automatic

code generator. Including time spent on learning the new

program, the two programmers took only two months to produce

what had taken six experienced programmers six months.

D. RESULTS AND FEEDBACK

Once the new system was delivered, improvements were

realized immediately. Time to create ad hoc reports fell from

three weeks to one day with the limiting factor being print

time. Time to create graphical reports fell from one week to

also one day. An unanticipated area of improvement was in

loading or "reading" of messages containing data into the

system. The previous system had a ten percent error rate.

These errors were manually corrected by the system operator.

The new system has yet to have an error in data input from

messages thus freeing up 10 man hours per week.

Another area of increased benefits is the timeliness of

reports. Under the old system, the reports usefulness was

limited to tracking trends over a long period because the data

was at least two weeks old. But since the new reports were

only one day time late because of the ad hoc capability they

are now used to monitor day to day progress of fleet

activities.

37

The ad hoc functionality also improved the readability of

the reports. Originally, the reports came in only one form so

end users had to glean needed information out of all the data

presented. Ad hoc capabilities allowed users to modify

reports to suit the readers. The increased readability and

timeliness of the reports has led to a doubling of requests

for the reports since implementation of the new system.

Two areas of concern have been raised by the switch to the

PC based Paradox system. First, periodic reports require 400

to 700 pages of output and the microcomputer's printer will

not handle such a load. This problem has been solved by

loading report data to a mini-computer to print the report.

A long term solution is presently being sought.

The second area is decreased turn around time in delivery

of end products to users. The rapid development time, leaves

programmers with less time to produce documentation. This is

a management issue and does not reflect on any discrepancy

with the system.

38

IV. IN-HOUSE DEVELOPED: DB3GEN

A. BACKGROUND

In 1981 Naval Computer and Telecommunications Station

(NCTS)(Formerly the Navy Regional Data Automation Center

(NARDAC)) San Diego, introduced DB2GEN. It allowed

professional programmers to create applications rapidly for

end users with little training in dBase programming. It also

alleviated advanced end users from having to rely on

professional programmers to customize or alter a program in

order to conduct ad hoc queries.

B. SYSTEM DESCRIPTiOh

DB3GEN, the updated version of DB2GEN, is similar in

design to commercially available products. It, like other

DBMSs, focuses on the standard operations end users conduct on

a database. Once preliminaries such as naming the system,

entering the date and creating a password are done, the system

creator lists the field names in the data file. (The data

file must be created separately.) From these files "quick

access" fields may be selected. These are the fields by which

the user desires to call up or retrieve records. Sorting or

conditional information may be entered at this time when the

user wants to sequence on multiple fields. The creator also

39

may validate fields (within specific limits) for correct data

entry.

Standard operations which all DB3GEN applications have

are:

" Add

" Change

" Delete

" Display

" Reports

" Ad Hoc Query

" System Utilities

" Change to Another System

" Exit the System.

Any other operations that users require must be manually coded

by the system creator.

Working with the industry standard dBase file structure,

DB3GEN allows programmers to change the manner in which data

is sorted, queried, displayed and updated. Turnaround time is

now hours (however long it took the user to change the system)

instead of days or weeks when programmers have to change the

original source code. This automated capability, as with all

development tools, means increased productivity.

The problem with DB3GEN comes not from the program itself

but from a change in how business is to be conducted at all

NARDACs across the country. In the early 1980's, in an effort

40

to curb the rising cost of Information Resources (IR), NARDACs

and NCTSs were changed from being independently funded to

organizations funded under the Naval Industrial Funding (NIF)

concept. This means any system development at a NIF activity

has to be funded by a DOD client. DB3GEN did not fall into

that category. Even though it was designed to fit a need and

increase productivity, lack of a sponsoring (funding)

organization has frozen the status of the system. DB3GEN can

be used to develop applications but no improvements to the

system can be made by NCTS San Diego programmers.

Presently, DB3GEN does not offer complete ad hoc

capability to end users; especially users who are unfamiliar

with dBase III+ programming commands. The applications it

creates are easy to use and understand but they cannot be

altered without changing the entire program.

All official work on improving and modernizing DB3GEN

ended with implementation of the NIF. Since then, commercial

products have been introduced on to the market that not only

perform the functions DB3GEN but add to them. Examples

include dBase IV, Foxpro and Paradox. Needed changes which

programmers have been unable to make include addition of pop

up windows, graphics capability and creation of a Local Area

Network (LAN) version.

41

V. COMBINED MILITARY AND CONTRACTOR ASSETS: ADASAGE

A. BACKGROUND

Ada is the only major language developed primarily for

modern embedded processors (Johnson, 1985, p. 1). But it is

the Department of Defense's (DOD) decision to adopt it as it's

standard computer language that makes Ada unique among all

languages. The primary reason to standardize is to reduce

life cycle costs. In the late 1960's DOD, as it tried to

update the World Wide Military Command and Control System,

found it was faced with the task of integrating over 800

applications written in over 30 different languages (Schatz,

1985, p. 22). Ada was adopted in order to simplify this

problem. Testifying before the House Committee on Science and

Technology, Dr. Edith W. Martin, the Deputy Under Secretary of

Defense for Research and Advanced Technology, stated "The

potential benefits due to the use of Ada have been estimated,

via three independent studies, to be in excess of $1000

million per year." (Johnson, 1985, p. 22)

Ada was not the first language developed by DOD. COBOL

was designed over thirty years ago to fill much the same need

Ada faces today. Technical merits aside, the requirement by

DOD for use of COBOL in all defense computer contracts made it

the most popular programming language in the government and

42

m u tnsur mnmmm .42

private industry. This created economic demand and private

industry followed suit. It is estimated the market for Ada

language programs alone in 1985 was $6 billion. And with the

need for software in DOD rising at a rate of 12 percent a year

(Johnson, 1985, p. 2), this equates to a demand of $11.8

billion today.

In 1974, twenty-six different languages were initially

evaluated to become the DOD-wide standard but all were found

to be inadequate for the tasks required. Then in 1977, in

response to the problems identified in an earlier study, two

Pascal based languages were developed and combined to form the

language then know as DOD-1. This language was renamed as

Ada. The calibration process for requirements and standards

for the language were further updated until 1983 when the DOD

and the American National Standards Institute (ANSI) released

the Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-1815A. This document continues to be the guiding

standard today. (Wallace, 1986, p. 6)

There are three guidelines that require use of the Ada

language in the DOD. They are:

e DOD Directive 3405.2 of 30 March, 1987

9 DOD Software Master Plan of 4 June, 1990

e Section 8084 of the 101st Congress House Appropriations
Bill.

43

All three address the use of Ada in the DOD in broad and

specific terms. The later two documents address the inclusion

of Ada in non-tactical software development where before only

mission critical software had to use the Ada language.

The three documents do not specify how the transition will

be funded and this is very important in the Navy Industrial

Fund (NIF) environment. Since end users specify what products

they want and the activity must create the products as

inexpensively as possible, decreased productivity during the

learning curve process is a detriment to any change not

accompanied with funds to assist the switch.

B. DEVELOPMENT ENVIRONMENT

By design, Ada Is intended to support modern software

engineering concepts and principles. This means the language

requires an automated environment. In the environment,

software development tools must be able to develop, support

and maintain software over the entire program life cycle. The

environment presently being used by the DOD is the AdaSAGE

system. This environment is currently provided under a

Department of Energy (DOE) contract to DOD activities.

AdaSAGE is an unlicensed public domain product available

through the National Energy Software Center at Argonne,

Illinois. It is considered a "shareware" program since it was

developed with United States' government funds and is

available in accordance with the Freedom of Information Act.

44

It is defined as an Applications Development System for Ada

(Taylor, 1990, p. 1). This means it provides an entire

development team (including end users) the environment in

which a set of utilities can be used to facilitate rapid, end

user specific system creation. The utilities are a

combination of precoded applications and program development

programs. Precoded applications are divided into five general

packages: Database, Windows, Communications, Graphics and

Documentation. In each package or library there are precoded

modules that can be linked together to provide capabilities to

end users such as database storage and retrieval, online help,

sorting and editing. The linking of modules can be done by

either manual coding or by precoded "linker" programs. An

example, "THOR", is used to create the data dictionary. By

creating a data dictionary the developer defines field names

and their relationships; field formats, types, ranges, and

valid entries; schema structures; views; passwords; report

formats; forms; menus and windows. This is all done without

requiring manual coding.

The AdaSAGE environment requires a full function Ada

compiler in order to create applications. The compiler of

choice among DOD activities is the Alsys 286 compiler. All

four DOD activities interviewed that were using the AdaSAGE

system, were also using the Alsys compiler. Presently no

other validated personal computer (PC) based Ada compiler

fully supports the full memory model required by AdaSAGE.

45

The AdaSAGE program and the Alsys compiler it must run on

have memory requirements that must be met before the program

can be loaded. A 286-based Personal Computer (PC) system, in

addition to the standard one megabyte of RAM already

installed, requires at least two more megabytes of RAM and

seven megabytes of hard disk space. All United States

government PCs have the hard disk space available but no 286

based PC has the RAM space without modification. Most 386

based PCs do have the RAM requirements but the addition of six

megabytes of RAM is desired in order to increase the system's

performance. For the purposes of this paper only the minimum

hardware configuration will be used.

C. REUSABLE ADA LIBRARIES

Individual libraries have various costs for both the

installation, training and maintenance of the system. The

United States Army has developed the Reusable Ada Products for

Information Systems Development (RAPID) system as a

comprehensive reuse environment. This system not only

centrally locates procedures for other activities to reuse but

through design guidelines, methodologies and adherence to

strict quality control standards ensures all procedures are

compatible with each other. Before a procedure is admitted to

the library for reuse, it must meet specific guidelines to the

definition of what the procedure does, documentation of how

the procedure operates and technical aspects in regards to

46

variable handling and input\output requirements. By requiring

up-front conformance to standards, the RAPID system ensures

reusability of procedures by other activities. Strict

adherence to documentation standards ensures modules are able

to be reused. Programmers can read the model documentation

and fully understand what it does and what it needs in order

to function.

Ideally one central library could be created but the lack

of joint funds for staffing of personnel to maintain and

manage the library is a limiting aspect.

The minimum equipment required to run RAPID is extensive.

The hardware required is:

* DEC MicroVAX II or

* DEC MicroVAX 3100

* 16 megabytes of Random Access Memory (RAM)

* 1 Console terminal printer

* 7 Terminal ports

* 1 Printer port

* 2 RD54 Disk drives

* 2 TK50 Streaming tape drive

* 1 2400 Baud modem

* 1 VT220 Video terminal

* 1 VT340 Color video/graphics terminal.

The software used by the RAPID system is:

47

* VMS 5.3

* Ada V1.4

" RAPID Center Library System 3.1

* Oracle V5.1.22. (Piper, 1991, p. 2-1)

The Army's RAPID system is mentioned not as just a

possible source of reusable code but as a model of how DOD

should design it's own library of procedures. There are

presently over 24 different sources of reusable Ada code in

the United States (Levine, 1990, pp. 62-65). The RAPID system

has the advantage of being a military source plus already

having strict guidelines and standards in place. Once the

Navy develops its own procedures, they should be placed in

this library. This would be the first major step toward

developing a DOD-wide non-tactical repository of Ada code.

In order to make the RAPID system a DOD-wide library, the

Army would require an increase in its manning level of quality

assurance personnel. The Ada Joint Project Office, as the

leader of the Joint service Ada effort, should select

programmers from each service to make this effort truly DOD-

wide. It is a waste of resources if each service sets up its

own library with redundant staff and hardware. These

duplicated libraries would also have to employ their own

quality assurance teams to examine software produced, publish

instructions on how software should be designed to ensure

compatibility and, in essence, recreate the entire system the

48

Army already has in place. This defeats the very nature of

the Ada language: reuse. A DOD library (The RAPID system)

saves overhead costs, ensures a DOD-wide standard for Ada

software and uses an in-place system so one does not have to

be created.

D. FUNCTIONALITY

Presently, the AdaSAGE system is trying to catch up to

commercially available database management systems (DBMS).

The creators and maintainers of AdaSAGE are quick to point out

their system is just not a DBMS. But it is in this area that

most of the non-tactical applications and comparisons are

made. The biggest discrepancy between AdaSAGE and commercial

DBMSs is the lack of end user ad hoc capability in generation

and customization of reports, forms, graphics and queries.

This problem is known to developers of AdaSAGE and projects

such as the QBE procedure development address this issue. The

fundamental problem AdaSAGE is faced with is to find funding

from governmental activities to develop procedures that

commercially products already have. It is against DOD policy

to compete with off-the-shelf products according to OMB

circular A-76 but it is also DOD policy to support use of the

Ada language. So far AdaSAGE is the only development tool

which produces it's code in Ada so it is the adopted tool.

An attempt to use the functionality of commercially

available programs, such as Paradox DBMS, within the Ada

49

environment has led to the creation of "binder" programs. A

binder allows two programs, written in different languages, to

interact. The "binder" acts as a translator between the

programs. Since the successful creation of a Paradox/Ada

binder by the programmers at NARDAC Norfolk, there is now a

tie between Ada and Paradox.

The Paradox/Ada binder is written in a generic format so

any database system might be used instead of just Paradox.

This does not however give AdaSAGE all the capabilities of the

Paradox system. This is because of two reasons. First the

binder links only the Ada language and Paradox together and

not AdaSAGE and Paradox. A procedure could be written to call

a Paradox-like database system in AdaSAGE through the use of

this binder but one has not yet been coded. The second and

most important reason is that even with the binder, the

"bound" program will not produce Ada code. The code produced

will remain in the language it was designed to create. The

"bound" will still perform as before but its' results cannot

be integrated into the AdaSAGE system.

The binder program can be used though in an office

management system written in Ada. If personnel are already

trained in the use of Paradox or another program and do not

want to switch systems, they will not have to with the binder.

The binder does not help the move to AdaSAGE but it does help

switch to the Ada language.

50

E. PERFORMANCE

1. End User Considerations

The Marine Corps Logistics Depot at Albany, Georgia

conducted performance tests on a database with five different

database management systems (DBMSs). The test platform was a

Compaq portable 20 Mega-Hertz (MHz) 386 with 2048 kilobytes

cache memory, 10 Mega-Byte (MB) RAM and a 110MB hard disk

drive. All software programs were installed according to

manufacturer specifications. Database on which the operations

were conducted consisted of 10,000 records and four fields

within each record. The schema definition was as follows:

Field Name Field Type Field Length Key

NUM NUMBER 5 Primary

ALPHA CHARACTER 10 Alternate

BIGNUM NUMBER 8 Alternate

NAME CHARACTER 20 None

The actions conducted on the database were standard operations

for a database: Load, UpdL e, Unload and Delete. The results

are shown below:

51

" Test 1 : LOAD
10,000 records from an ASCII file were loaded into a
database. Indexes were built during or after the
operation as the program required.
Program Time (sec) Disk space required (Bytes)
M2SAGE 138.25 672,050
AdaSAGE 213.72 672,050
Paradox 3.0 485.88 859,530
Informix 2.10 1384.26 798,720
Oracle 5.1 392.65 517,120

" Test 2 : UPDATE
An update consisting of subtracting one from the value of
BIGNUM for each record was conducted from each record.
Program Time (sec)
M2SAGE 119.46
AdaSAGE 176.70
Paradox 3.0 1861.00
Informix 2.10 560.00
Oracle 5.1 874.00

" Test 3 : UNLOAD'
All 10,000 records were unloaded into an ASCII file.
Program Time (Sorted)(sec) Time (Unsorted)(sec)
M2SAGE 33.12 11.53
AdaSAGE 44.54 17.30
Paradox 3.0 73.07 Not Applicable
Informix 2.10 Not Applicable 42.45
Oracle 5.1 Not Applicable 84.00

" Test 4 : DELETE
All records that have a value of "P" in the first value of
the ALPHA field were deleted. A total of 385 records were
deleted.
Program Time (sec)
M2SAGE 39.16
AdaSAGE 54.60
Paradox 30.00
Informix 2.10 67.00
Oracle 5.1 58.00.

The Not Applicable portions are cannot be performed.
Paradox stores fields sorted and Oracle and Informix do not.
Therefore, unsorted and sorted unload tests cannot be run on each
system.

52

In the above tests, the top performer was the M2SAGE

system at 329.99 seconds. AdaSAGE was second with 489.56

seconds and Paradox was third with 2449.95 seconds. The

M2SAGE system uses the Stony Brook compiler, which while it is

faster, it does not include all of the functionality required

under the 1815A mil-spec.

2. Programmer Considerations

Developing applications with AdaSAGE presents several

difficulties to programmers. The first problem is a slow

compile time. This problem stems not from the AdaSAGE program

but from the compiler the system must use. Since the Alsys

compiler is presently the only Ada compiler that is both PC

based and validated in accordance with the American National

Standards Institute (ANSI) Reference Manual for the Ada

Programming Language, ANSI/MIL-STD-1815A, there is nothing to

compare it against except the experience of programmers who

have used more mature compilers from other languages such as

C, C+, COBOL and the dBase series. All programmers who had

coded in another language before switching to Ada and AdaSAGE

said the compile time of AdaSAGE seemed excessive or as one

programmer said "When you compile, it is a good time to take

a coffee break."

The second problem programmers face with use of the

AdaSAGE system is In the error handling process. AdaSAGE will

cause the system to "crash" when it encounters errors rather

53

than let the programmer, through error handling routines,

account for identification and correction of the error. This

is a technical problem that will not be encountered by end

users but is very frustrating to programmers as they attempt

to debug an application they are creating.

3. Software Development Considerations

The following statistics on Ada productivity come from

a study conducted on 75 completed projects consisting of over

30 million lines of code (LOC) from 15 United States' firms.

The average project size was 100,000 LOC and the range was

from 10,000 LOC to five million LOC. The comparative database

of non-Ada projects was from over 1500 projects completed over

ten years. The study itself took over three years to

conduct.

As the transition to Ada occurs there will be three

different cost phases the changing organization will go

through. The first phase will see an increase of 10 to 20

percent in the total development cost of a project. This will

last for two or three projects until the break-even point can

be reached. The development time will take three to five

projects before reaching the schedule time break-even point.

Increases in cost and schedule time are due to the learning

curve of employees as they get used to the reuse environment

and structured environment of the Ada language. As a general

54

rule, there must be at least a 10 percent reusage rate for the

project to break even in cost. (Reifer, 1990, p. 475)

After the initial transition period and up to the

three year period the average increase in productivity was 20

percent. The cost was decreased 25 to 30 percent; especially

when the reusage rate reached more than 20 percent. The

degree of planned reusage (as opposed to ad hoc reusage)

averaged 18 percent after the transition. The changes in

productivity are summarized in Figure 6. (Reifer, 1990, p.

475)

Number of completed Change in Change in
pro ects Pr iit cost

zero to three ten to 20 ten to 20
percent decrease percent increase

four to five none none

more than five 20 percent 25 to 30
increase percent decrease

Figure 6 - Ada Productivity Changes

The use of a development tool can further increase

productivity. Gains as much as 17 percent were found when the

tool was integrated to object orientated methods. The average

gain in productivity with a development tool was 10 to 12

percent in the study. (Reifer, 1990, p.475)

AdaSAGE, which supports object-oriented design, has

been found to have a 65 to 70 percent reusage rate for

55

Management Information Systems (MIS) applications. This

percentage drops to 50 percent if you do not include a second

call to a procedure as reuse. This is a direct cause of

duplication of applications that MIS systems have at two or

more activities. Database management system (DBMS) functions

wanted by one command are normally the same functions desired

by all other commands. It is this standardization the AdaSAGE

system hopes to take advantage of through its reusability of

procedures. (Stewart, 1991)

The use of previously coded packages and following the

structured format of the Ada language rewards the developer

with a decrease in maintenance costs of 10 to 20 percent. The

number of errors through out the life cycle is also decreased

at a rate of 20 to 30 percent. (Reifer, 1990, pp. 473-475)

56

VI. COST/BENEFIT ANALYSIS

A. DB3GEN

1. Financial Costs

DB3GEN is free to the programmers of Naval Computer

and Telecommunications Station (NCTS) San Diego. It was

developed in-house and the costs to create it are now sunk

costs. If it were distributed Navy-wide, the cost would be

determined by the cost to maintain and update the system.

From interviews with senior system developers and programmers,

it was determined the staff personnel for the development and

maintenance teams would consist of the following:

" one senior analyst

" one programmer/analyst

" one Junior programmer

" one administrative support member.

This team composition is for each team for a total of eight

employees.

The cost of the teams is based on the following:

* 40 hour work week

* 52 weeks per year

* $276.1774 per hour per team opportunity cost

* Two teams.

57

Multiplying out these three figures arrives at the product of

$574,448.99 per year.

The training cost for programmers would consist of one

week of instruction on the dBase III+ language and one week on

the use of DB3GEN. Given the same hourly rates and the

substitution of a programmer (Instructor for the team) for the

administrative support personnel, the cost of training is

determined as follows:

* Two weeks training time

* $146.8019 per hour per team opportunity cost

* 40 hours per week

* Two teams of personnel.

The product of these figures is $23,488.30. The training

would have to be conducted on an annual basis to account for

the turnover of personnel. A summary of all costs is in

Figure 7.

The DB3GEN program is compatible with all IBM Personal

Computers (PCs) and no extra hardware is required to run the

program on personal computers (PCs) presently supplied by the

Department of Defense (DOD).

2. Performance Liabilities

DB3GEN does not provide graphics, mouse support,

secret level security functions, user changeable screens,

complete ad hoc capabilities for reports, screens, sorting,

58

forms and queries or produce its code in Ada. No benchmark

speed tests are available using the DB3GEN program or any

application it has developed. No library of reusable code

exists. All development costs to this day are also sunk

costs.

Traininx Cost

Two weeks * 40 hours/week * $146.80/hour * two teams = $23,488

Development and Maintenance Costs

52 weeks/year * 40 hours/week * $276.18/hour * two teams = $574,448

Total Costs

$23,488.30 + $574,448.99 = $597,937.29 for the first year.

$574,448.99 for each year thereafter.

Figure 7 - DB3GEN Costs

B. PARADOX DATABASE MANAGEMENT SYSTEM

Off-The-Shelf products have an advantage In a cost benefit

analysis when compared to In-house or contractor developed

products. The purchase price of the development tool includes

the development cost; no development team needs to be

staffed. The large volume of Off-The-Shelf product sales

spread out the costs of development. The other two options

59

require the full development cost to be paid by the developer.

In the case of DB3GEN and AdaSAGE, the developer is the U.S.

Navy.

Another advantage Off-The-Shelf products have is they are

designed to meet market requirements, thus they are designed

to run on computers presently in use. This means no hardware

modifications are usually required to run the system. This is

true with the Paradox DBMS.

Off-The-Shelf products also arrive as complete packages

which include tutorials, documentation and installation

directions.

Training in the use of the Paradox DBMS is no different

than with the DB3GEN product for programmers. Two weeks is

the accepted norm after which programmers can begin to create

applications. End users will require more training in use of

the Paradox system than with the other two systems because of

the ad hoc capabilities. The other systems do not require end

users to do anything except follow the directions of the

application created for them. Thus, two weeks of training,

rather than one week, is required for end users.

The three costs for the Paradox system are the cost to

initially purchase the system, updates to the system and

training on system use. The cost of updating the system is

not a yearly cost. On the average, Paradox-like systems

distribute updates every two years. This figure was arrived

at by averaging the update periodicity of the Paradox, FoxPro,

60

dBase and Informix DBMSs. So to arrive at a yearly figure,

the cost to update all systems was divided in half to reflect

the two year time cycle.

1. Financial Costs

Productivity measurements were made using Paradox

version 3.0. It is no longer offered. The updated 3.5

version, which is presently on the market, retails for $795.00

per copy. The Local Area Network (LAN) version retails for

$995.00. The update for version 3.0 retails for $135.95 per

copy.

Paradox is compatible with all IBM Personal Computers

(eCs) and requires no hardware alterations to run the program.

The manufacturer claims to offer a site licensing agreement.

This agreement does not allow any extra copies of the program

to be made and only includes extra training benefits and

telephone assistance. (Santana, 1991) This is not site

licensing as desired by the Navy. (Hamblen, 1990, p. 6)

2. Performance Liabilities

Paradox does not produce Ada code. The NARDAC Norfolk

successfully created an Ada/Paradox binder which allows a

program written in Ada to call and use the Paradox program but

still no Ada code is generated by the program. Paradox does

provide all other Management Information System functions that

DB3GEN and AdaSAGE presently offer. There is no reuse

61

capability of the Paradox code except for reuse of the entire

application by different users.

3. Analysis

Training costs reflect two expenses. First, is the

opportunity cost of the personnel being trained. Second, is

cost of the instructor. Again using the rates given in the

introduction, the training cost is determined as follows:

* 24 + one instructor

* One week of training

* 40 hours per person per week

* $32.76 per hour opportunity cost2 .

The product of these figures is $32,761.95. This expense will

occur annually due to turnover of personnel.

Using the 33 Personal Computers (PCs) figure given in

the introduction and a cost per copy of $795.00, the first

year cost is the product $26,235.00. The annual cost of

updating the system is 33 copies @ $195.00 and then divided

over the two year periodicity. This comes to $3,217.50.

In summary, the costs of the Paradox DBMS are

determined as in Figure 8.

2$32.76 quals the average of a Programmer/analyst's and a
Junior programmer's hourly rate under NIP.

62

Training Costs

24 personnel * one week * 40 hours/week * 32.76/hour = $32,761

Software Costs

Purchase Cost

33 copies * $795.00/copy = $26,235

Update Cost

33 copies * $195.00/copy = $6,435 over a two year period

Total Costs

*32,761 + $26,235 = 058,995 for the first year

$3,217 for each year thereafter

Figure 8 - Paradox DBMS Costs

C. ADASAGE SYSTEM

The cost/benefit analysis of the AdaSAGE system is more

complicated than with DB3GEN or Paradox. There are hardware

modification and leasing considerations. Training is not only

for the development tool but for a new language. The

additional options such as a reusable code library must also

be considered.

63

1. Costs

a. Training and personnel

The training costs for programming personnel vary

according to the type of training. At the 1991 Ada Technical

Workshop, the issue of training personnel was discussed and a

consensus was arrived by comparing successful training

initiatives carried out by various commands. As a minimum,

each programmer requires basic training in the Ada language

and in use of Ada development tools such as AdaSAGE. The

basic language training would last two weeks and the tool

instruction would last one week on the average. A bulletin

board service has been established at NARDAC Norfolk that

lists training facilities available and experiences learned by

various commands. This is to help commands direct their

perspective trainees toward the training facility that would

most likely benefit their activity.

A typical training asset for the basic language

education would be the Keesler Air Force Base Ada course.

This training is at no cost to the requesting command besides

the students' per diem and travel expenses. The school costs

are provided for under a joint service training agreement.

The problem is the limited number of seats available for

training.

Typical tool instruction would come from a firm

similar to EG & G who is under contract held by Naval Computer

64

and Telecommunications Command (NCTC) at a cost of $160,000

per year. Presently under this contract, only the personnel

from Naval Computer and Telecommunication Station (NCTS) San

Diego and NARDAC Norfolk are included because of a limited

number of trainers. The training includes two weeks of

instruction at each activity for approximately two dozen

students. As more funding becomes available, more commands

will be included.

Other NARDACs have sought Ada training from

commercial sources. An example is NARDAC San Francisco.

First, their senior programmer and two other personnel

attended an introductory Ada language class. Upon completion

of the course, they felt they were not prepared to create

applications in Ada. To complete their training they

contracted a local Ada consultant for $100 per hour for four

hours per day four days a week for two weeks. According to

a San Francisco representative at the 1991 Ada Technical

Workshop, they gained more benefit in the first day with the

contractor then they received from the entire course. This

was attributed to the contractor being aimed towards creation

of business applications and the Introductory course being

only for novice programmers.

In response to a NCTC questionnaire, seven of the

eleven subordinate commands stated they required training of

452 personnel in the Ada language. Interpolating for the

NCTSs that did not respond (Neither the largest nor the

65

smallest NCTSs failed to respond so interpolation would be

valid.) puts the number of personnel to be trained at over

700. However those personnel are trained, the cost in terms

of dollars spent on instruction and in terms of man days lost

is significant. If all activities receive the level of

training offered to NCTS San Diego, then over 7000 man-hours

will be spent on training alone.

Training will also have to be conducted on the

RAPID system. The Army's RAPID system has a one time

installation fee that covers training of the users, training

of the library custodian and installation of the system. This

fee is $75,000.00.

Once the personnel are trained, the RAPID system

requires the services of a full time library manager/custodian

and an assistant. Using the rates for personnel under the NIF

environment, the cost of the library manager/custodian and

assistant will be $73,209.41 per year per person.

b. Cost of hardware

Each 286-based personal computer (PC) requires the

addition of a two megabyte random-access-memory (RAM)

expansion board in order to run the Alsys compiler. The cost

of this expansion board Is $597.44. (NAVCOMTELSTA San Diego

catalog, 1991, p. 29)

The VAX computer and the associated accessories must

also be leased for the Reusable Ada Products for Information

66

Systems Development (RAPID) system. The equipment necessary

to run the RAPID system, costs $27,500.00 per year to lease.

The installation cost for the hardware and the software is

$75,000.00. (Rothrock, 1991)

c. Cost of software

There is no cost for the AdaSAGE System since it is

a "shareware" program. But the amount of Government funds

spent to develop the AdaSAGE system is in the millions. It

was originally funded by the Department of Energy but the Army

and Marine Corps have also contributed to the development

costs. The number of program copies in use cannot be

determined since it is legal to make as many copies of the

program as users want. Therefore, it is impossible to

determine an exact cost per copy of the program.

A cost that can be determined is the expense of the

compiler that is required for each computer that runs the

AdaSAGE program. Presently only the Alsys corporation has a

compiler supports the full memory model on a Personal Computer

(PC) that AdaSAGE requires and meets the specifications of

American National Standards Institute (ANSI) / Military

Standard 1815A. The cost of the Alsys compiler is $1815 and

a one year maintenance contract that includes any upgrades

that may be released during the year is $660. The United

States Army has an open contract with Alsys under which

compilers may be purchased at the reduced rate of $778.00 but

67

only for the 386 based PC system. One recommendation from the

Navy's 1991 Ada Technical Workshop is to "untie" the AdaSAGE

system from the Alsys compilers. This will require other

contractors to spend money in the development and testing of

a PC based full memory compiler. Other contractors will not

make this investment until it is clear the DOD shows a serious

commitment to Ada in the non-tactical PC environment. Until

then, the Alsys organization has a virtual monopoly on the PC

based Ada compilers.

The RAPID system also has software costs. The

programs that run the VAX computer and operate the RAPID

library are required. The software costs for RAPID is

$28,250.00 per year to lease (Rothrock, 1991). Also required

is a negotiable "maintenance fee" designed to cover their

overhead costs of maintaining the system and quality control

of individual procedures that are added to the library. This

"maintenance fee" is supposed to be relative to the activity's

usage rate of the Reusable Code Library (RCL). According to

a customer service representative, the average cost of the

"maintenance fee" is $125,000.00 per year. (Rothrock, 1991)

In summary, personnel, training, hardware and

software costs for implementation of the AdaSAGE system with

the RAPID library are as follows:

* "Maintenance Fee" - $125,000.00

" Hardware lease expense - $ 27,500.00

68

" Software lease expense - $ 28,250.00

" Installation expense (First year only) - $ 75,000.00

" Two megabyte expansion board per PC - $ 597.44

" One Alsys compiler per PC - $ 1,815.00

" One Alsys maintenance contract per PC - $ 660.00

" Training course - $ 80,000.00

" Librarian and assistant salaries - $146,418.82

" Installation fee (First year only) - $ 75,000.00.

2. Benefits

From the Ada productivity study mentioned in the

AdaSAGE section, it is seen there is a 25 to 30 percent

increase in productivity due to the use of the Ada language.

There is also a 17 percent gain in productivity when a

development tool is used. There is no indication of whether

or not the productivity gains are additive. If they were, it

would assist in reducing time to reach the break even point.

For purposes of this analysis, they are considered additive

for the following reasons:

* The study's reusage rate averaged only 18 percent while
AdaSAGE has shown average reusage rates of 65 to 70
percent

* The learning curve decreases in productivity will not be
as dramatic as in the study because the developers will
being using a tool (AdaSAGE) and the learning process has
already started at all of the activities.

69

These two issues point toward the AdaSAGE scenario being more

favorable than in the study; so therefore the productivity

gains of using the Ada language and an Ada development tool

will be cumulative.

Assuming a 25 percent reduction in development costs,

the average in the Ada productivity case study, and a 17

percent gain from the use of a development tool (AdaSAGE) the

overall gain amounts to 42 percent.

3. Analysis

This analysis is for one activity only and the Navy

wide costs are prorated for one activity. This includes cost

of training and cost of hardware. While the actual costs will

vary, this represents the best average estimate. Some

activities will have more than five large (One million dollars

or more) software development contracts others less. The

larger activities will have more contracts but the development

effort is spread out over more people. Smaller activities

generally receive less contacts but have fewer analysts and

programmers to rely upon. The point is no matter the size of

an activity, the work load for each person is the same. Equal

work loads mean equal time spent over coming the learning

curve.

Activities will also vary on costs of contracts. Some

will be larger than the one million dollar figure used in the

analysis, others will be smaller. The relative losses and

70

gains in productivity are not dependent upon contract size.

If an activity has larger contracts than the initial losses

will be higher. But the eventual gains will be also larger.

The opposite is true for organizations that receive small

sized contracts. Thus activities which average small or large

sized contracts will reach the break even point approximately

the same time.

The discount factor, for taking into account the time

value of money of 10 percent, is in accordance with Department

of Defense Instruction 7041.3 and OMB Circular A-94. All

other figures are as noted.

The first analysis, shown by Figure 9, assumes the

productivity gains of using Ada and AdaSAGE are cumulative.

According to the Reiffer study, the first five projects

represented the learning curve process. The first three

projects were developed with a 15 percent increase in cost.

The next two projects were at the same cost as previous

methods. The next four projects each had a ten percent

reduction in cost until the average level of productivity

improvement, 42 percent, was reached. The break even point is

reached with the first project in the third year.

The second analysis, as shown by Figure 10, does not

assume the productivity gains are cumulative. Therefore with

the lower cost reduction, 25 vice 42 percent, the break even

point takes longer to be reached. Here the break even point

71

or pay back period is delayed until after half way through the

third year. The figures for both are as follows:

72

YEAR1 YAR YEAR 3 YEAR4
Revenue

cost -0- 100,000 420,000 420,000
Savints 200,000 420,000 420,000

300,000 420,000 420,000
400,000 420,000 420,000
420,000 420.000 420.000

TOTAL -0- 1,420,000 2,100,000 2,100,000

Avg. D ,* * .954 * .867 * .788

Factor
Present -0- 1,354,680 1,820,700 1,654,800

Costs

Learninx 450,000 -0- -0- -0-
CUrve

.(iiare 55,750 55,750 55,750 55,750
Software)

146,418 146,418 146,418 146,418

Insallation/ 200,000 125,000 125,000 125,000
Maintenance

Hardware 20,910 -0- -0- -0-

Software 86,625 23,100 23,100 23,100

Triig80.000 -0- -0- - -O-

Total 1,039,703 350,268 350,268 350,268

. D *954 *.867 *.788

Factor

Present (1,039,703) (334,155) (303,682) (276,011)
Value

NPremnt (1,039,703) 1,020,525 1,517,018 1,378,789
Value

Q ula.tive (1,039,703) (19,178) 1,497,840 2,876,629To~tal.

Figure 9 -Cumulative Analysis

73

YEAR I YEARZ 2 ~ L XE hL3YER4
REVENUE
c2Lt; -0- 100,000 250,000 250,000

Savints 200,000 250,000 250,000
250,000 250,000 250,000
250,000 250,000 250,000

25 .000 250.000 - 250.000

TOTAL -0- 1,050,000 1,250,000 1,250,000

Avg. Disc. *0 * .954 . * .788

Factor
Present -0- 1,001,700 1,083,750 985,000

Valge

COSTS

L.B.Ji 450,000 -0- -0- -0-
Curve

(Hrware/ 55,750 55,750 55,750 55,750

Personel 146,418 146,418 146,418 16,418

Inhtallation/ 200,000 125,000 125,000 125,000

Hadwa 20,910 -0- -0- -0-

SoLtwmre 86,625 23,100 23,100 23,100

Trii& 8,0 --o- -- -9-

TOTAL (1,039,703) 350,268 350,268 350,268

Ave, isc, *.954 *.8§7 *,788

Present (1,039,703) 334,155 303,682 276,011
Value

Net .j en(1,039,703) 667,545 780,068 708,989

Cumlativ (1,039,703) (372,158) 407,910 1,116,899

Figure 10 Non-Cumulative Analysis

74

In either scenario, the first year operates at a loss

of $1,028,314. This is attributable to a decrease in

productivity as the personnel goes through the learning curve

process and the cost of the capital investment. In the second

year, the learning curve has been overcome, the capital

investments made and now the advantages of reusability and a

development tool can be felt. In the third year, the break

even point is reached and by the end of the fourth year the

cost savings will surpass the initial investment in setting

the system. See Figure 11 for the summary.

75

OO91B UlT ANALYSl
AI)WIAGE

N W °................... o...................T' ZG

T N L l

N I *O.

To as.................. *

At ~ r - - d S G ------ .e e i

E

76

I ~~ ~ I2.0m •m ~ l• ~

VII. RESULTS, CONCLUSIONS AND RECOMMENDATIONS

A. OVERALL RESULTS

1. DB3GEN Results

DB3GEN cannot compete against commercial products when

it is funded via the Naval Industrial Fund (NIF) concept. End

users do not have the Information Resources (IR) funds to pay

for product enhancements. Commands senior to Naval Computer

and Telecommunications Station (NCTS) San Diego are prohibited

by directive and regulation from funding the product. Even if

they were not, it is more economical to purchase Off-The-

Shelf. The cost of maintaining a full time development and

support staff is higher than purchasing 334 copies of Paradox

3.5 the first year. After the first year, the cost of Paradox

decreases due to only having to purchase update packages, if

they are released during the year, but the cout of DB3GEN does

not decrease.

In addition to the added cost of developing and

maintaining DB3GEN, another negative factor is the decreased

functionality it offers programmers and end users in

comparison to Paradox 3.5 like products. DB3GEN does not

offer a Local Area Network (LAN) version, complete end user ad

hoc capabilities, graphics, pop-up windows and secret level

security functionality. The existing documentation needs

77

improvement in readability and completeness. In order for the

user to create data validation statements and combination

sorting instructions, dBase III+ programming statements must

be coded. The DB3GEN system does not offer a library of

reusable code. It does not generate Ada code and is presently

not supported by a binder for use in an Ada program.

2. Paradox Database Management System Results

The Paradox database system at the Norfolk Naval

Regional Data Automation Center (NARDAC) has been an

unqualified success for both end users and programmers. For

end users, it has met all their requirements and given them ad

hoc capabilities. The ad hoc capabilities allow for faster

turn-around times when creating new reports and graphs. Most

importantly, they allow for changes in end user requirements.

When a need changes or a new requirement arises, end users can

make changes without assistance from analysts and programmers.

Paradox has also been a success for programmers. They

took a chance by adopting the Paradox system. They could have

remained secure in their positions using traditional C, COBOL

and Clipper languages. Yet, in just two months, two

programmers were able to do the work of six in one third the

time. The product they delivered had fewer errors and the

errors they had were easier to find and correct than before.

78

3. MaSAGE System Results

The literature which accompanies the AdaSAGE

demonstration disk goes to great lengths to tell users AdaSAGE

is not a database management system. The AdaSAGE developers

admit that the primary use of AdaSAGE to date has been that of

a database application generator but it actually is an

application development environment. The difference may not

be readily apparent but it is what holds great promise for the

future use of this system.

As a database application generator, it does not yet

provide all of the benefits of a fourth generation language

based database system. It does include a menu-driven database

development process complete with an automatic code generator

but it does not yet include ad hoc capabilities for the end

user as with the Paradox system. These capabilities allow end

users to be independent of system analysts and programmers.

This factor cannot be understated as the proponents of both

the AdaSAGE system and the Clipper system at NARDAC Norfolk

claim. Both of these system proponents state 95 percent of

end users do not want to have ad hoc capabilities. All end

users of the THAIS system and the Marine Corps logistics

systems at the Albany, Georgia Marine Corps Depot stated they

would want ad hoc report, form, graphics and query

capabilities if they were offered. The AdaSAGE software

development methodology (AdaSAGE-SDM) relies upon rapid

prototyping to identify and Include all end user requirements

79

in the application as it is developed. But the system

requirements will change over time no matter how many

iterations of prototyping are conducted. If end users have

the capabilities to change with the changing needs, then the

system will continue to provide the needed data without any

interruption. If end users have to turn over the system to

developers and programmers every time their requirements

change then development and turn-around time will be wasted

time for end users. If they had ad hoc capability then they

could change the system by themselves.

AdaSAGE, with the use of RAPID, has a greater growth

potential than commercial database systems. Each newly coded

module adds potential to the AdaSAGE system for reusability.

Commercial databases do not offer the modularity required to

achieve the same level of reusability.

Another advantage AdaSAGE offers that other DBMSs do

not is the ability to tie into embedded systems. True

integration of processes that combine embedded and

transactional systems cannot be accomplished with the

commercially available fourth generation language based

database systems alone. They must be combined with a third

generation language that means having either a separate team

of programmers or contracting out the non-database section(s).

A major area of concern in the proposed switch to the

AdaSAGE system is the decreased ad hoc ability of the end

user. Typical ad hoc capabilities that an end user would have

80

on a fourth-generation-language-based database system that

includes automatic code generation features are many. They

include report generation, form generation, graph generation,

the addition or deletion of data fields, the establishment of

different relationships between data fields, the sorting of

the data on various attributes and the customization of the

screens and menus that lead the user through the database

application. The AdaSAGE environment does support all of

these features except graphics but end users cannot make these

changes. The changes must be submitted to the analysts and

programmers.

The AdaSAGE developers have tried to decrease the

changes end users might otherwise need by including rapid

prototyping in the development phase. The Initial changes

will decrease but according to end users interviewed, after

about one month they found new requirements for the system.

But since end users did not have ad hoc capabilities, analysts

and programmers were required to make the changes. Had the

system contained ad hoc capabilities end users could of made

the changes themselves.

This problem has been addressed by the creators of

AdaSAGE by the inclusion of the ad hoc type packages in the

library. The OBE ! an example of a package designed to meet

this need. This package is designed to allow the user to

define relationships based on the join operation. The name of

this package might lead the user to believe it was the same

81

Query By Kxample as created by the Borlan Corporation but this

is not true. But according to experienced AdaSAGE

programmers, end users without depth training would not be

able to use the QBE package without programmer assistance.

(Sugar, 1990)

The use of the AdaSAGE system by developers gives them

an advantage over other systems that do not use reusable code.

Both development time and maintenance time is decreased by use

of reusable :ode. The use (or reuse) of newly written

packages is a very quick process. In the best case, all that

is required is the inclusion of a "procedure call" in the

application. This comes after finding a procedure to satisfy

the requirements of the application being created. The most

likely scenario is a previously written application must be

modified to meet new requirements. Once it has been adapted

a procedure call is written into the application and then the

new application can be included in the Navy's library for

future reuse. Development systems that do not reuse code must

start from scratch each time an application is created or

modified.

The true value of the AdaSAGE system lies in three

areas. The first is for the development of embedded systems.

This was the original reason for the creation of the Ada

language. The language is strongly structured and fully

supports object-orlentated programming. This aids in creation

of documentation for a system and in life cycle maintenance

82

costs because object orientated programs are modular in design

and therefore easier to maintain. That this language also can

be used to create transactional systems is a tribute to it's

flexibility but its original purpose is for embedded code.

The second advantage of the AdaSAGE system is it

produces code in the Ada language. This is an advantage that

cannot be taken lightly. Since 1983 Ada has faced stiff

opposition in its acceptance among non-tactical programmers.

Resistance to any change has been well documented by

psychology studies (Herbert, 1976, pp. 342-344, 430-433). The

switch to the Ada language is not different. Especially when

programmers are rated, along with other attributes, by their

familiarity and years of experience in use of a language. But

by commitment of senior Navy personnel and education of

programmers on the benefits of Ada, it has gained in use and

popularity.

The third advantage of AdaSAGE is it allows reuse of

previously coded modules. Establishment of reusable libraries

is a matter of high concern for Department of Defense (DOD)

activities. The United States Army, Air Force and Marine

Corps have already begun formulating their libraries. The

Army's RAPID system is the most advanced. It is also the

model the Navy should use in designing its own library.

83

B. RECOMMENDATIONS

1. Productivity

The one constant misunderstanding between all end

users and all programmers interviewed, with the exception of

the two Paradox programmers and one Paradox systems analyst,

is the role of ad hoc capabilities by the end users. Systems

analysts for DB3GEN at NARDAC San Diego and Clipper at NARDAC

Norfolk stated 95 percent of all end users do not want ad hoc

capabilities. The AdaSAGE analysts agreed with these analysts

that if the needs of end users are properly identified during

the system development phase, then the need for end user ad

hoc capability should not exist.

Contrary to this idea is the desire to have ad hoc

capability by all end users who were interviewed. One end

user, who had recently received ad hoc capability for the

first time, went as far as to say he could not imagine going

back to the way he had operated before (without ad hoc

capability). In the questionnaires given to both programmers

and end users ad hoc capability had the third greatest

difference in terms of rated level of importance of all the

characteristics evaluated.

End users are becoming better educated in regard to

the use of computer systems. The users of the information

which Management Information Systems (MIS) supply are also

becoming better educated and are demanding more from their

84

systems. Programmers must realize this and stop delivering

applications that require end users to operate in only one

manner.

2. Development Tool Procurement

This thesis examined programs from the three different

sources of non-tactical software: In-House developed, Off-The-

Shelf, and a combination of outside contractor and DOD asset

developed. Each method of acquisition offers advantages over

the others.

a. In-House developed

In a present day analysis, the Off-The-Shelf

product offers the best value for the United States Navy.

This product, Paradox, is by no means unique in what it

offers. But what it and other similar products do offer, out

weigh the other two options.

The In-House developed program costs too much

compared to the other two options. A full time staff must be

applied to maintain and improve the program. Even when this

staff is maintained at an unrealistically low level of a

middle level analyst and a middle level programmer, it costs

more than the Off-The-Shelf option. The question who would

fund the staffing under the Naval Industrial Funding (NIF)

concept is a matter to be determined.

The staff would be constantly under pressure to

perform as well as the civilian sector. As competitive

85

products offer more functions and capabilities the In-House

developers would be tasked to provide the same. Commercially

funded systems either adapt and improve or lose their market

position. The Navy's system under the In-House or combined

options will adapt or modify only when the need is identified

and funded. As the funds available for the Information

Resources (IR) community decrease, the ability to compete with

the commercial developers will decrease.

This is not a problem as long as the needs of the

Navy coincide with the marketplace needs. But when the Navy

has a requirement the marketplace does not have, it falls back

on the Navy to pay for the modification or development. This

problem is lessened when the four services combine their

resources and Jointly fund the development of a tool such as

AdaSAGE. But then the problem of coordinating what changes to

make arise.

An advantage this alternative has is immediate

responsiveness to the needs of the Navy. Once a need is

Identified, all that Is required to make the change or changes

is for the Navy's analysts and programmers to design and

develop the system or application. No bidding or convincing

an outside contractor it is in their interests to develop or

adapt a product to meet the needs of the Navy is required.

86

b. Contractor developed

Contractor supplied assets have many advantages

over both the Off-The-Shelf and In-House options. They have

the responsiveness of the In-House method since both the

military and contractor assets answer to DOD guidance. They

allow expertise to be "imported" from contractors and combined

with the functional experience of military personnel. It

allows flexibility to switch contractors if the performance of

the present organization is not up to required levels. In

short, it offers the advantages of the Off-The-Shelf option

with increased DOD input and influence.

The disadvantage of the combination option is the

product presently being offered by use of this alternative.

This product is the AdaSAGE development environment. The

primary disadvantage of the AdaSAGE program is not the Ada

language, the personnel developing and maintaining the

product, or the identification of shortcomings in the system.

These actually are all advantages. The disadvantage this

system has is two fold and the two problems are interrelated.

First, the AdaSAGE program is presently in a "tail

chase" scenario where it is constantly trying to develop the

functionality already being offered by the Off-The-Shelf

market. The development of the Local Area Network (LAN)

system called Multi-SAGE and the ad hoc query system called

QBE are examples of this reaction by the combination assets to

87

provide functionality already offered by commercial products.

Until the AdaSAGE system equals the functionality of the

marketplace products it cannot lead them.

The second, but related disadvantage is funding.

Making improvements and modifications to AdaSAGE requizes

funding. Under the Navy Industrial Funding (NIF) concept, a

client must pay for all work conducted by analysts, developers

and programmers. No user client has the Information Resources

(IR) funding to sponsor an update to the whole AdaSAGE system

and the NCTSs are forbidden to initiate changes under the NIF

concept. User clients only have limited funding for creation

of specific applications for their own activity. Changes for

the entire AdaSAGE system must come from a service-wide,

Department of Defense-wide or even United States' government-

wide activity.

The problem is client activities and NCTSs are the

users of AdaSAGE and therefore the people who identify needed

changes. But these activities do not have the funding to make

the changes occur. The parent commands, who do not directly

use the tool, do have the funding capabilities. Comuunication

of needed changes then becomes a critical element of having a

successful tool. The subordinate commands must inform their

superiors when a need arises AdaSAGE can but does not satisfy.

It is then the responsibility of the parent command (NCTC for

example) to have foresight to allocate limited funding toward

only those changes needed and will benefit the most users.

88

So far this is not a problem. The Ada Technical

Workshop sponsored by the Navy Computer and Telecommunications

Command (NCTC) ironed out the initial Navy policy on updates

to the AdaSAGE system. This was determined after receiving

inputs from the three other services and all NCTSs. One of

the recommendations was the formation of a configuration board

that would monitor and plan changes to the AdaSAGE system to

ensure the needs of the Navy are met.

c. Off-The-Shelf developed

The Paradox 3.5 system offers the most value of the

three options. It is the only option that offers all

important characteristics as identified by programmers and end

users. It has a proven record of improving productivity. It

has the least expense life cycle costs over the two years the

costs can be accurately estimated. If a system was to be

purchased for the development of a system over Just the next

two years, the Paradox 3.5 or a comparable Database Management

System (DBMS) which has all the functionality of the Paradox

System should be selected.

The Paradox system has two primary advantages over

the competing systems. First, it offers ad hoc capabilities

to end users. This is the basis for the productivity

improvements. The requirement for analysts and programmers to

make report, form, graph or screen changes to a delivered

system is removed. This lowers the maintenance costs and work

89

load. These capabilities also shorten the development time

required to identify end user requirements for outputs. If a

requirement changes, the end user makes the change.

The second advantage the Paradox system has is

services the Navy does not have to fund. Foremost among these

services are updates and changes to the system. As new

functionality is added or as defects are identified and

corrected, the Navy does not have to contribute to the funds.

This is at the sacrifice of controlling the direction of the

updates and changes. This sacrifice is lessened because the

other two products are trying to update to the present level

of the Paradox system. Another service the Navy does not have

to fund is the dial-in phone service for questions and

answers.

Disadvantages of the Paradox system come from the

comparison of it versus the AdaSAGE system. It does not

produce Ada code and therefore does not meet the guidelines of

the Congress and the DOD. It does not offer a reusable

library of procedures and the possibility of creating one are

remote due to limited nature of its applications: databases

only. It is not compatible with embedded code. This further

limits it's uses in integrating systems.

All of these disadvantages limit the future growth

of the Paradox system with regard to it becoming a DOD wide

tool or application generator and this is where the DOD should

address its efforts. With all of the advantages Paradox has

90

over AdaSAGE, its lack of growth potential makes it a poor

choice for investment purposes in the long term. Here, the

long term is meant by any time over three years. In one year

the learning curve will be overcome and then the benefits of

reusability can be realized. In two years the ad hoc

capabilities, now missing, can be developed. In the third

year all the advantages a Paradox like system has over AdaSAGE

will be gone and AdaSAGE will be enjoying the reusability

benefits others do not have. Paradox and similar systems will

continue to grow during this two year time frame but they can

act as guides and test beds for showing the way towards future

AdaSAGE improvements. Meanwhile, the library of reusable code

will grow and save the DOD millions in development costs.

Today the Paradox system has the advantage but tomorrow the

AdaSAGE system will have more value.

3. Purchasing Strategies

Site licensing is paying one fee for as many copies of

an application as the site requires. Site licensing is also

a high priority issue as evidenced by Vice Admiral Tuttle's

interview in the July issue of CHIPS magazine distributed by

NARDAC Norfolk.

"I want site licensing for the Navy. And I'm going to
discourage using the software manufacturers who don't come
aboard." (Hamblen, 1990, p. 6)

91

The normal method for paying for the programs is by

the copy. At a software development facility that conducts

its programming on PCs it rapidly becomes expensive when each

computer requires a copy of a certain program in order for

each programmer to create an application. Local Area Network

versions do not help since the development program has only

one set of the files necessary to create applications.

As an example, one Navy activity, which has 100 copies

of the Clipper database management program, is required to

purchase 100 copies of the updated program when it upgrades to

the 5.0 version of Clipper. The cost of one copy was $207.00.

The personnel at the command hoped to get a volume discount

but had not asked the Clipper corporation even if they had a

site licensing policy.

This was brought out as an example and not to single

out a particular command. In fact, from a questionnaire in

regard to the number and type of database programs at all of

the NARDACs and NAVDAFs (Naval Data Automation Facilities),

only two activities (NARDAC San Diego and NAVDAF Orlando) had

a site licensing agreement on any database program.

The entire Navy needs to speak as one voice to the

software manufacturers in order to put authority behind Its

demand for site licensing. The individual commands cannot

bring enough pressure to bear to force the issue. The best

scenario would be a Joint contract of DOD licensing of

products. The worst this can do is bring attention of senior

92

management to the overall expense of dealing with the purchase

of programs individually on a service wide basis.

C. CONCLUSIONS

These conclusions are lessons learned from working with

and most importantly, observing non-tactical software

developers in DOD. They are guidance for all managers of non-

tactical software development assets.

" Ad hoc capabilities improve end user and programmer
productivity. All applications delivered to Naval end
users should have ad hoc capabilities.

" Use and invest in the AdaSAGE system. It is not the best
system presently available and it is actually a step
backwards in technology. But it uses the Ada language and
has the most promise for future. After the third year,
productivity increases pay for the system.

" The number one priority for improving AdaSAGE should be
the development of complete ad hoc capabilities end users
can easily use in delivered applications.

" If any tool is developed which combines both Ada code
generation and ad hoc end user capabilities, buy it.

" Promote competition in the area of Ada microcomputer
compilers. A sole source supplier of compilers stifles
creativity and does not lead to a fair market price.

" Adopt the United States Army's RAPID system as the
Department of Defense wide Ada procedure repository. A
Jointly funded and manned library goes a long way towards
showing a strong commitment to the Ada language in the
non-tactical arena.

" Strive for site licensing at the Department of Defense
level to obtain volume discounts and better manage
Information Resource assets. The buying power of the
entire Department of Defense will make contractors see the
need for site licensing.

93

D. FOLLOW-ON STUDY AREAS

This thesis has found as many unanswered questions as it

has solved. The following is a list of areas which need to be

addressed:

" A case study of one or more applications developed using
AdaSAGE or any other Ada-based non-tactical software
development tool. Are the productivity gains the same as
forecast?

" A case study involving productivity at DOD activities that
have instituted function point analysis. Is function
point analysis as accurate with Ada?

" A case study of planning and procurement procedures within
the non-tactical software community. Specifically, is
effective planning being conducted to support required
policy issues?

94

LIST OF REFERENCES

1. Arthur, L. J., Measuring Programmer Productivity and
Software Quality, John Wiley & Sons, 1985.

2. Awad, E. M., Management Information Systems, The
Bejamin/Cummings Publishing Company, 1988.

3. Boehm, B. W., Software Lifecycle Factors, Van Nostrand
Reinhold Company, 1984.

4. Boehm, B. W., Improving Software Productivity, IEEE
Computer, 1 September 1987.

5. Chorafas, D. N., Fourth and Fifth Generation Programming
Languages, Vol. II, McGraw-Hill Book Company, 1986.

6. Conte, S. D., Dunsmore H. E., and Shen V. Y., Software
Engineering Metrics and Models, The BeJamin/Cummings
Publishing Company, 1986.

7. Dreger, J. B., Function Point Analysis, Prentice Hall,
1989.

8. Eisner, H., Computer-Aided Systems Engineering, Prentice
Hall, 1988.

9. Fairley, R. E., Software Engineering Concepts, McGraw-Hill
Book Company, 1985.

10. Hamblen, D., "VADM Tuttle: Sailing Into the 21st Century",
Chips, Volume X Issue 3, July 1990.

11. Herbert, T., Dimensions of Organizational Behavior,
Macmillan Publishing Company, 1976.

12. Johnson, P. I., The Ada Primer, McGraw-Hill Book Company,
1985.

13. Jones, C., "Using Function Points to Evaluate CASE Tools,
Methodologies, Staff Experience, and Languages", CASE Trends,
January/February 1991.

14. Levine, T., "Reusable Software Components", Ada Letters,
Volume X Number 5, May/June 1990.

95

15. Martin, E. W., Strategy for a DOD Software Initiative,
IEEE Computer, 1983.

16. Martin, J., Application Development Without Programmers,
Prentice-Hall, 1982.

17. Martin, J., Fourth-Generation Languages: Volume I,
Principles, Prentice-Hall, 1985.

18. Nelson, R., End User Computing: Concepts, Issues and
Applications, John Wiley & Sons, 1989.

19. Panko, R. R., End User Computing: Management,
Applications, and Technology, John Wiley & Sons, 1988.

20. Piper, J., and Barner W. L., RAPID Systems Operator Guide,
U. S. Army Information Systems Software Development Center-
Washington, 1990.

21. Reifer, D., Softcost-Ada: User Experiences and Lessons
Learned at the Age of Three, Association for Computer
Machinery, Inc., 1990.

22. Robb, D. W., "Product Preference Survey: Paradox DBMS Has
an Edge Over Ubiquitous Ashton-Tate", Government Computer
News, 28 May 1990.

23. Sackman, H. and others, Exploratory Experimental Studies
Comparing On-Line and Off-Line Programming Performance,
Communications of the ACM, 1968.

24. Schatz, W., "The Pentagon's Botched Mission", Datamation,
Volume 35, 1 September 1989.

25. Shelly, G. B. and Cashman T. J., Computer Fundamentals for
an Information Age, Anaheim Publishing Company, 1984.

26. Simpson, A., Understanding dBase Iv, Sybex Inc., 1989.

27. Stewart, H., "AdaSAGE", NCTC Ada Technical Workshop, 1991.

28. Taylor, M., AdaSAGE- An Applications Development System
for Ada, Idaho National Engineering Laboratory unpublished
pamphlet, 1990.

29. Wallace, R. H., Practioner's Guide to Ada, McGraw-Hill,
1986.

30. Yourdon, E., Managing the Life Cycle, Yourdon Press, 1988.

96

31. Telephone conversation between Sergeant Schugar, USMC,
Marine Logistics Command, Albany Ga., and the author 15
November 1990.

32. Telephone conversation between Mr. Jack Rothrock,
Softtech: Prime contractor for U. S. Army's RAPID system, and
the author, 12 February 1991.

33. Telephone conversation between Mr. Frank Santana, Borland
Corporation Government Sales Department Head, and the author,
15 February 1991.

34. NAVCOMTELSTA San Diego, Value Added Computer Store Price
List, 1 February 1991.

97

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. LCDR Robert Knight, USN 1
Code AS/KT
Naval Postgraduate School
Monterey, California 93943-5002

3. Prof. Terek Abdel-Hamid 1
Code AS/AH
Naval Postgraduate School
Monterey, California 93943-5002

4. Prof. Tung Xuan Bui 1
Code AS/BD
Naval Postgraduate School
Monterey, California 93943-5002

5. Prof. William James Haga 1
Code AS/HG
Naval Postgraduate School
Monterey, California 93943-5002

6. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

98

