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ABSTRACT

As computing machines advance, new fields are explored and old ones are ex-

panded. This thesis considers parallel solutions to several well-known problems

from numerical linear algebra, including Gauss Factorization and the method of

Conjugate Gradients. The Gauss algorithm was implemented on two parallel ma-

chines: an Intel iPSC/2, and a network of INMOS T-800 transputers. Interprocessor

communication-in both cases-was borne by a hypercube interconnection topology.

The results reveal general findings from parallel computing and more specific

data and information concerning the systems and algorithms that were employed.

Communication is timed and the results are analyzed, showing typical features of

a message passing system. System performance is illustrated by results from the

Gauss codes. The use of two different pivoting strategies shows the potential and

the limitations of a parallel machine. The iPSC/2 and transputer systems both

show excellent parallel performance when solving large, dense, unstructured systems.

Differences, advantages, and disadvantages of these two systems are examined and

expectations for current and future machines are discussed.
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THESIS DISCLAIMER

The computer programs developed in this research have not been exercised for

all cases of interest. Every reasonable effort has been made to eliminate computa-

tional and logical errors, but the programs should not be considered fully verified.

Any application of these programs without additional verification is at the user's

risk. A reasonable effort has been put forth to make the code efficient. Optimization

has been suppressed, however, in areas where it would jeopardize the simplicity and

clarity of the algorithm without great reward in terms of performance.

IMS, inmos, and occam are trademarks of INMOS Limited, a member of the

SGS-THOMSON Microelectronics Group. INTEL, intel, and iPSC are trademarks

of Intel Corporation. IBM, PC AT, and PC XT are registered trademarks of Inter-

national Business Machines Corporation. CIO, LD-ONE, LD-NET, TASM, TCX,

TIO, TLIB, and TLNK are trademarks of Logical Systems. MS-DOS is a trademark

of Microsoft Corporation. MATLAB is a trademark of The MathWorks, Inc. All

other brand and product names are trademarks or registered trademarks of their

respective companies.
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I. PREFACE

The need for speed accompanied by reliability has driven many advances in machine

design. The history of computing is replete with examples-many from scientific

fields-where necessity became the impetus for faster, more reliable machinery.

Without exception, history and past designs have played key roles in the invention

of new equipment. The maturity of mechanical calculator design was foundational

in the construction of electronic computers. Today's multiprocessor computers are

extensions of uniprocessor machines and include technology developed by our tele-

phone industry. Many well-worn tools and lessons from the past can be applied.

Many new ideas must be put to the test. This thesis is about applying old principles

and evaluating new tools and equipment.

A. A SURVEY OF COMPUTING MACHINERY

Nothing is more important than to see the sources of invention, which are,
in my opinion, more interesting than the inventions themselves.

- GOTTFRIED WILHELM LEIBNIZ (1646-1716)

1. Beginnings

The history of mathematics and computing is as old as civilization. Tools

like the abacus have been used to simplify arithmetic problems. Wilhelm Schickhard

(1592-1635), Blaise Pascal (1623-1662), and Gottfried Wilhelm Leibniz designed and

built mechanical, gear-driven calculators. The latest of these was essentially a four-

function calculator. By the mid-1800s, Charles Babbage had designed his Difference

Engine and proceeded to the more advanced Analytical Engine. These machines were

1



never completed (at least not to the grand scale that Babbage planned), but the basic

design of the Analytical Engine lies at the heart of any modern computer. Consider

his motivation.

The following example was frequently cited by Charles Babbage (1792-1871)
to justify the construction of his first computing machine, the Difference Engine
[Ref. 1]. In 1794 a project was begun by the French government under the direction
of Baron Gaspard de Prony (1755-1839) to compute entirely by hand an enormous
set of mathematical tables. Among the tables constructed were the logarithms of
the natural numbers from I to 200,000 calculated to 19 decimal places. Comparable
tables were constructed for the natural sines and tangents, their logarithms, and the
logarithms of the ratios of the sines and tangents to their arcs. The entire project
took about 2 years to complete and employed from 70 to 100 people. The mathemat-
ical abilities of most of the people involved were limited to addition and subtraction.
A small group of skilled mathematicians provided them with their instructions. To
minimize errors, each number was calculated twice by two independent human cal-
culators and the results were compared. The final set of tables occupied 17 large
folio volumes (which were never published, however). The table of logarithms of the
natural numbers alone was estimated to contain about 8 million digits.

This quote, from Hayes [Ref. 2: p. 1], helps to explain why computers

exist and shows some of the incentive for making them better. Computing ma-

chinery is designed for speed and reliability. A computer's "performance" should

be measured against both of these components. Speed normally receives the most

attention. Reliability, by whatever label you choose to give it, rarely receives due

(and/or timely) attention. Too often errors and issues of correctness receive careful

consideration in reactive-not proactive-situations. Kahan says, "The Fast drives

out the Slow even if the Fast is wrong" [Ref. 3: p. 596].

The correctness side of performance is a much tougher game; and reliability

can be a fairly subjective matter. Often we pursue solutions that are "good enough"

(and this cannot always be defined). Time, on the other hand, has well-defined units

and the standards for measuring time enjoy a history as old as the first sunrise. The

ease with which the programmer can access the machine's clock makes measurements

of this side of performance somewhat easier.

2
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Figure 1.1: Technologies and Computing Speed

Industry demands fast machines because "time is money" and speed alone

can make difficult, time-consuming problems tolerable. Without doubt, the speed

of a processor and execution time are important performance considerations. But

speed is partly dependent upon technology. Babbage's designs represented quite an

advance, but they could not be realized in his day. Technology can determine which

designs succeed, and to what extent. Figure 1.1 compares several recent technologies

using speed (measured in operations per second) as the yardstick. The data for this

3



illustration was taken from Hayes [Ref. 2: p. 9]. As the figure indicates, it was nearly

a century after Babbage's work when major technological advances came about.

2. Electricity

Significant gains in speed were made possible when electricity could be used

in computer engineering. The United States census of 1890 employed punched cards

that were read using electricity and light. Herman Hollerith (1860-1929), the de-

signer of these cards, formed a company that would later join others and (in 1924)

take on the name International Business Machines Corporation. Punched paper tape

was later used by IBM in the Harvard Mark I, a general-purpose electromechani-

cal computer designed by Howard Aiken (1900-1973). In the late 1930s, at Iowa

State University, John V. Atanasoff was creating a special-purpose machine to solve

systems of linear equations. He is credited with "the first attempt to construct an

electronic computer using vacuum tubes" [Ref. 2: p. 16].

In 1943, J. Presper Eckert and John W. Mauchly began work-at the Uni-

versity of Pennsylvania-to direct the creation of "the first widely known general-

purpose electronic computer". The Electronic Numerical Integrator and Calculator

(ENIAC) project was funded by the U. S. Army Ordnance Department. The 30-ton

machine was completed in 1946. It held more than 18,000 vacuum tubes. It could

perform a ten-digit multiplication in three milliseconds, three orders of magnitude

faster than the Harvard Mark I. [Ref. 2: pp. 17-18]

3. First Generation Computers

From Babbage's Analytical Engine to ENIAC, computer architectures held

data and programs in separate memories. In 1945, John von Neumann (1903-1957)

proposed the stored-program concept (i.e., programs and data could be stored in

the same memory unit). The Hungarian-born mathematician's involvement in the

4



ENIAC project is not remembered by many, but the "von Neumann architecture"

has become commonplace. In fact, it "has become synonymous with any computer

of conventional design independent of its date of introduction" [Ref. 2: p. 31].

Hennessy and Patterson [Ref. 3: pp. 23-24] object to the widespread use of this

term, claiming that Eckert and Mauchly deserved more of the credit.

In 1946, von Neumann (and others) began to design such an architecture

at the Institute for Advanced Studies (IAS), Princeton. This machine, now called

the IAS computer, is representative of so-called first-generation computers (as Hayes

points out: "a somewhat short-sighted view of computer history"). The IAS machine

was roughly ten times faster than ENIAC [Ref. 3: p. 24]. During the 1946-1948

timeframe, A. W. Burks, H. H. Goldstine, and John von Neumann wrote a series of

reports describing the IAS design and programming. The advances and refinements

in computer design that came out of this period were important and lasting. By

1950, von Neumann and his colleagues had formed a foundation of theory and design

worthy of advanced technology. [Ref. 2: pp. 19-20]

4. Transistors

The change from vacuum tube to transistor technology marked the begin-

ning of the "sccond-generation" of computers (approximately 1955-1964). Transis-

tor technology provided faster switching elements, but this was not the only change

of the decade. Many of the plans of the late forties and early fifties involved memory,

so it was fitting that ferrite cores and magnetic drums be used for faster main mem-

ories. Changes such as these led Hennessy and Patterson to conclude that "cheaper

computers" were the principal new product of the early 1960s [Ref. 3: p. 26].

Additionally, machines began to become more sophisticated. The space and

tasks of the central processing unit (CPU) and main memories were decentralized

with the advent of special-purpose processors to augment the CPU and special-

5



purpose memories (e.g., registers) to augment the main memory. Finally, system

software was becoming a greater issue. Programming continued moving upward,

away from the machine level, and the processing of batch jobs was becoming more

automated. [Ref. 2: pp. 31-32]

5. Integrated Circuits

The first integrated circuit (IC) was introduced in 1961 [Ref. 4: p. 1], and

the use of ICs would be among the most significant advances evident in third-

generation computers (starting about 1965). Integrated circuits brought major

changes in cost, maintenance, reliability, and the amount of real estate required.

Other than these hardware improvements (circuits and memory), third-generation

computing was not easy to distinguish from that of the second generation. There was

some migration from hardware to software (e.g., microprogramming), more special-

ized and compartmentalized CPUs (e.g., pipelining), and system software continued

to advance (e.g., operating systems that could support multiprogramming through

"time-slicing"). [Ref. 2: p. 40)

6. Instruction Set Trade-Offs

A large part of designing computer hardware and software involves analysis

of cost-performance ratios. Other than genuine advances in design or technology,

almost every aspect of computer architecture involves trade-offs. There is usually

a spectrum of options from which the computer architect chooses, and the "best"

solutions are not always found near the ends of the spectrum. Performance can rarely

be optimized with respect to both space and time, so a balance must be sought. This

space-time conflict and others appear when a designer must select a sophisticated

instruction set, or a very simple one, or one of the many options along the spectrum

between these options.
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In the late 1970s and early 1980s both hardware and software became pro-

gressively more sophisticated. Instructions became longer and more complex. The

Complex Instruction Set Computer (CISC) was popular. This design has the advan-

tage of powerful instructions, but the machine must decode each instruction (it is

a binary code). The decoding process favors brevity because longer instructions re-

quire more levels of decoding circuitry. Nonetheless, if the longer instructions could

carry enough meaning, the decoding endeavor would be justified.

IBM researchers uncovered a provocative statistic-20% of the instruction

set was carrying 80% of the burden [Ref. 5: p. 5]. The instruction set had become

too complex. With some help from several researchers and IBM, the Reduced In-

struction Set Computer (RISC) architecture became popular. RISC machines admit

a smaller vocabulary, but claim quicker comprehension. In fact, the goal of the RISC

architectures is one-cycle execution of the instructions [Ref. 5: pp. 6-7]. Hennessy

and Patterson, both key contributors to the RISC movement, give an indication of

the current broad acceptance of the RISC architecture [Ref. 3: p. 190]:

Prior to the RISC architecture movement, the major trend had been highly
microcoded architectures aimed at reducing the semantic gap. DEC, with the VAX,
and Intel, with the iAPX 432, were among the leaders in this approach. In 1989,
DEC and Intel both announced RISC products-the DECstation 3100 (based on the
MIPS Computer Systems R2000) and the Intel i860, a new RISC microprocessor.
W lith these announcements, RISC technology has achieved very broad acceptance.

In 1990 it is hard to find a computer company without a RISC product either
shipping or in active development.

Three major research projects were central to early RISC developments. The first-

the IBM 801-began in the late 1970s, under the direction of John Cocke. In 1980,

David Patterson and his colleagues at the University of California at Berkeley began

the RISC-I and RISC-Il projects for which the architecture is named. Finally, John

Hennessy and others at Stanford University "published a description of the MIPS

machine" in 1981. [Ref. 3: p. 189]
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7. Multiprocessors and Multicomputers

The most recent advances in the design of computing machinery include

parallel and concurrent architectures. The tec-rminology associated with these ma-

chines has been developing for about twenty-five years, but it is still immature.

The terms "multiprocessor" and "multicomputer", for instance, are sometimes used

with additional meaning. C. Gordon Bell proposes that an MIMD machine with

message passing and no shared memory be called a multicomputer. He calls a

shared-memory MIMD machine a multiprocessor [Ref. 6: p. 1092]. This termi-

nology seems to be on the way to acceptance, and it seems useful in giving a general

characterization to many systems, but it lacks the sort of precision that may be

necessary.

First, the word "computer" usually carries many expectations with it. From

a computer, we expect things like input and output facilities, peripheral devices, and

so on. These are things that a node on a typical "multicomputer" does not always

possess. A "processor" is just the opposite. It might be just about any sort of

processor and we are cautious about attaching any expectations to the term. Many

processors are special-purpose machines, but (more substantial) central processing

units and arithmetic logic units are also numbered among processors. The terms

"computer" and "processor" are not precise.

Secondly, by automatically associating Flynn's taxonomy, memory mod-

els (e.g., shared, distributed), and other things with a terminology, we reduce their

importance and hide them behind the term. By using the term "multicomputer",

without careful definition up front, we run the risk of forgetting that we are talking

about an MIMD machine that uses message passing and has no shared memory. Ad-

ditionally, this terminology-packed with expectations-ignores an entire spectrum

of very real possibilities. Are we saying that a machine cannot employ a combination
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of shared and distributed memory? Using this terminology, how would we say that

the memory available to each node of a given system was 30 percent shared and 70

percent local (distributed)?

Nevertheless, the terms have some use, provided we don't expect too much

of them. After all, we distinguish cars from trucks in everyday conversation with

reasonably little confusion. But-in the same way that it is not prudent to assume

that "car" implies a vehicle equipped with a V-8 engine and four doors-we should

be careful to guard against packing too many specifics and expectations into the

teriiis "multiprocessor" and ' nulticomputer." For this reason, the terms multipro-

cessor and multicomputer are used almost interchangeably in this work. A conscious

effort is made to support them with a clear description of the memory paradigm,

communications facilities, and so on.

Bell's terminology identifies the systems used in this work (iPSC/2 and

transputer networks) as multicomputers. Nevertheless, I often use the term "mul-

tiprocessor" to identify a system with more than one processor (such as the ones

described in Chapter V and Appendix B). That is, multiprocessor means nothing

more than the expected combination of "multi" with "processor." To forestall confu-

sion, the rest of the thesis pertains to distributed memory machines that use message

passing to communicate instructions and data between nodes.

8. Uniprocessors and Multiprocessors

At the chip level, multiprocessor systems resemble their single-processor

predecessors. Experience (e.g., telephone industry, electronic technology) and a foun-

dation of theory and design (e.g., von Neumann's work, network theory) are distinct

benefits in the development of equipment and techniques for distributed and parallel

computing. From a system perspective, though, the concurrent use of more than one

processor creates a fundamentally different environment.
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Uniprocessor systems differ substantially from multiprocessors and multi-

computers in their ability to access data without competition. In the presence of

more than one processor-regardless of memory model-there is a need to coordinate

requests for data. This means that the multicomputer must accommodate interpro-

cessor communications. The nodes of a multiprocessor system must work together

efficiently to justify the cost of the resulting system. Some parts of the solution are

relatively mature, but a vast territory-algorithms, electronic components, media

for communication, and software engineering techniques-begs further exploration.

B. CURRENT APPROACHES

1. Machines

To compare the capabilities of different machines, some method of bench-

marking is typically used. By timing the ex ,,uuon of a certain program(s) on a given

machine we can determine its performance for the given problem. By comparing the

execution times for the same problem(s) on different machines, we arrive at a notion

of their relative power. A popular method for sizing up the computing power of

a machine is the LINPACK benchmarking program [Ref. 7]. This is essentially a

program involving the solution of a dense system of linear equations.

Currently, under this LINPACK test, the fastest machines in the world

have surpassed the gigaflop mark (a billion floating-point operations per second).

Table 1.1, adapted from Dongarra's report [Ref. 8: p. 21], shows performance data.

The leftmost column of this table gives the name of the system and the cycle time (in

parentheses). The next column contains p, the number of processors used to obtain

the data that is shown in the four remaining columns. For most systems (e.g., the

Intel iPSC/860) the size of the system (number of processors used for a given run)

can be scaled, so data was reported for several different system sizes.

10



TABLE 1.1: WORLD'S FASTEST COMPUTERS

Computer (Clock Rate) p rma nmar n1 rpeak

Intel Delta (40 MHz) 512 11.9 25000 7000 20
Thinking Machines CM-200 (10 MHz) 2048 9.0 28672 11264 20
Intel Delta (40 MHz) 256 5.9 18000 5000 10
Thinking Machines CM-2 (7 MHz) 2048 5.2 26624 11000 14
Intel Delta (40 MHz) 192 4.0 12000 4000 7.7
Intel Delta (40 MHz) 128 3.0 12500 3500 5
Intel iPSC/860 (40 MHz) 128 1.9 8600 3000 5
nCUBE 2 (20 MHz) 1024 1.9 21376 3193 2.4
Intel Delta (40 MHz) 64 1.5 8000 3000 2.6
nCUBE 2 (20 MHz) 512 .958 15200 2240 1.2
Intel iPSC/860 (40 MHz) 64 .928 5750 2500 2.6
Fujitsu AP1000 512 2.251 25600 2500 2.8
Intel iPSC/860 (40 MHz) 32 .486 4000 1500 1.3
nCUBE 2 (20 MHz) 256 .482 10784 1504 .64
MasPar MP-1 (80 ns) 16384 .44 5504 1180 .58
Fujitsu AP1000 256 1.162 18000 1600 1.4
Intel iPSC/860 (40 MHz) 16 .258 3000 1000 .64
nCUBE 2 (2n MHz) 128 .242 7776 1050 .32
Fujitsu AP1000 128 .566 12800 1100 .71
Intel iPSC/860 (40 MHz) 8 .132 2000 600 .32
nCUBE 2 (20 MHz) 64 .121 5472 701 .15
Fujitsu AP1000 64 .291 10000 648 .36
Intel iPSC/660 (40 MHz) 4 .061 1000 400 .16
nCUBE 2 (20 MHz) 32 .0611 3888 486 .075
Intel iPSC/860 (40 MHz) 2 .044 1000 400 .08
nCUBE 2 (20 MHz) 16 .0320 5580 342 .038
Intel iPSC/860 (40 MHz) 1 .024 750 .04
nCUBE 2 (20 MHz) 8 .0161 3960 241 .019
nCUBE 2 (20 MHz) 4 .0080 2760 143 .0094
nCUBE 2 (20 MHz) 8 .0040 1280 94 .0047
nCUBE 2 (20 MHz) 8 .0020 1280 51 .0024
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The column labeled rmax gives the performance (in gigaflops) for the largest

problem run on the macline. The size of that largest problem is indicated by nma,

where n is the dimension of tie matrix of coefficients, A E5 R"",(. The n1/ 2 column

gives the problem size that yielded a rate of execution that was half of r,. Finally,

rpe, dotes the theoretical peak performance (in gigaflops) for the machine.

This data indicates that Intel is the current leader-among companies in

the United States-of the teraflop race, so we shall take a closer look at their prod-

ucts. The Intel i860 microprocessor, together with 8 megabytes of memory, forms

one of 128 nodes in the hypercube-connected iPSC/860. This machine achieves per-

formances of nearly two gigaflops with LINPACK. iPSC stands for intel Personal

SuperComputer, so this entry would not appear to target high-end markets. The

most significant project in supercomputing at Intel today is the Touchstone project.

George E. Brown, chairman of the U. S. House Committee on Science,

Space, and Technology, cut the ribbon around the Intel Touchstone Delta at the

California Institute of Technology on May 31, 1991 [Ref. 9 : p. 96]. The Delta

is a mesh of 528 nodes. Each node holds an i860 processor and 16 megabytes of

memory. This machine has reached the 11.9 gigaflop mark with the LINPACK

benchmark. The closest competitor in the world would appear to be the CM-200

from Thinking Machines, Inc. This 2,048-node machine benchmarks at 9 gigaflops

[Ref. 8: p. 21]. The Touchstone program is not over. Intel plans to follow the Delta

with the Touchstone Sigma. Sigma will have at least 2,048 nodes, each consisting of

the i860 XP processor (about twice as powerful as the i860). [Ref. 9: p. 96]

The European high-performance computing market favors the transputer,

a microprocessor made by INMOS. The New York Times of May 31, 1991 lists one

German company, Parsytec, and seven American companies-Bolt, Beranek, and

Newman (BBN), Cray Research, IBM, Intel, NCube, Thinking Machines, and Tera

Computer-that have entered the teraflop race [Ref. 101. Parsytec expects their GC
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to provide "the necessary 2 to 3 orders of magnitude increase in performance above

existing supercomputers to give scientists the tool to attack their Grand Challenges."

[Ref. 10: p. 1)

Parsytec envisions a system of up to 16,384 processing elements based upon

the INMOS T9000 transputer (see Chapter VII). This would give the Parsytec ma-

chine 25-megaflop nodes capable of communications bandwidths near 100 megabytes

per second. The Parsytec design begins with a cluster of seventeen T9000 processors

(sixteen primary processors and the seventeenth for backup) and four C104 worm-

hole routing chips. From four clusters, the company will craft a GigaCube (or simply

Cube) of 64 processors (not counting redundant elements in the design). The GC-

1 would represent a one gigaflop system and this would be the building block for

greater systems (lesser systems can initially be equipped with 16, 32, or 48 nodes).

The processors in a single (Giga) Cube are arranged in a three-dimensional (4 x 4 x 4)

grid. [Ref. 10]

2. Programming Practice

Software engineering for multiprocessor systems is similar to contemporary

practices for sequential machines. The programming languages used in this work

provide normal C libraries with additional functions to accommodate interprocessor

communications. The systems typically provide a loader designed to load executable

code onto the (host and) nodes according to the programmer's instructions. Some

loaders require that the same code be loaded onto each of the nodes. Other, more

flexible, loaders allow the user to specify which program should be loaded onto each

node. The Logical Systems C network loader, LD-NET is such a program. It takes

a Network Information File (NIF), describing the network's interconnections and

loading instructions, as input and performs the loading process.
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C. THE FUTURE

1. Crossroads

Parallel and distributed computing is in the early years of a very promising

lifetime. We should give careful consideration to the direction that the field should

assume. Lacking years of experience, I will lean on the writings and advice of others

while trying to peer a little ways into the future of parallel computing. A regrettable

side effect of this decision is that this section seems to consist primarily of the

observations and opinions of others. Notwithstanding the many quotations, I believe

that several important ideas are exposed.

This business is filled with a combination of old, established ideas and

proven techniques. It also holds new questions and opportunities. Hamming's ad-

vice [Ref. 11: p. 14] seems most fitting in this situation:

Now I see constantly attempts to force new ideas to old molds. That is fre-
quently sensible: How can I make sense of what I'm seeing compared to what I did
before ? But also one must ask, "Am I seeing something fundamentally new?" That
part many people will not try. You cannot afford to make everything brand new and
not connect anything together with existing ideas, nor can you try to make every-
thing fit into preconceived categories. Some combination of the two is necessary.

We limped through the transistor revolution and the computer revolution,
which are connected with the bandwidth revolution; they are all connected together...
You have to abandon old ideas when you get an order of magnitude of change ....

- RICHARD W. HAMMING

Developments in scientific computing today make Dr. Hamming's thoughts

especially timely. The field needs to establish a strategy; a direction that will lead

from its present immaturity to a place of fulfilling its potential. Kenneth Wilson

proposes Grand Challenges for computational science that may help to establish this

strategy [Ref. 12].
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2. Grand Challenges

Wilson identifies three modes of scientific activity: theoretical, experi-

mental, and computational. He defines these areas, claiming that-with today's

supercomputers-the most recent science (computational) is becoming more signifi-

cant. So significant, in fact, that "long experience or professional training is required

to be successful in computational science at the supercomputer level, making it ap-

propriate to think of computational science as both a separate mode of scientific

endeavor and new discipline." [Ref. 12: p. 172]

Wilson is careful to distinguish computational science from computer sci-

ence. He defines computer science as the business of addressing "generic intellectual

challenges of the computer itself" and characterizes computational science as being

tailored to specific applications areas (with serious training in the application disci-

pline) [Ref. 12: p. 172]. To advance computational science, Wilson recommends a

quantitative approach with clear strategies [Ref. 12: p. 173]:

The major future opportunities for benefits of supercomputers to basic re-
search should be identified without the existing compromises, but presented as chal-
lenges to be overcome with the many obstacles to success clearly explained. The
compromises and inadequacies of current computations need to be described and
the level of advances required to overcome these inadequacies discussed. Further-
more, a feu, key areas with both extreme difficulties and extraordinary rewards for
success should be labelled as the "Grand Challenges of Computational Science".
Two examples are electronic structure and turbulence. No easy promises of success
in Grand Challenges should be offered. Instead, computational scientists should be
building plans to assault the Grand Challenges, pushing for the major advances
in algorithms, software, and technology that will be required for true progress to
be achieved in these areas. The Grand Challenges should define opportunities to
open up vast new domains of scientific research, domains that are inaccessible to
traditional experimental or theoretical modes of investigation.

Wilson describes a few examples that demonstrate the limitations of exper-

imental instrumentation and the potential of supercomputers. Weather prediction,

astronomy, materials science, molecular biology, aerodynamics, and quantum field
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theory are the six areas that Wilson chooses to make his point. He describes these

areas in reasonable detail and briefly mentions other topics. [Ref. 12: pp. 175-179]

a. Mathemadcal Background

Wilson stresses the need for sound design practices and good algorithms.

(To see why, consider Table A.1). Additionally, he warns that we should spend less

time in awe of today's supercomputing power and admit that it is terribly inadequate.

Modeling methods and sound mathematical background also appear in the "needs

improvement" category. Wilson [Ref. 12: p. 180] believes that

Mathematical developments that relate to numerical computation are highly
important. Theorems about numerical errors or sources of error, exact solutions
and expansions, existence and uniqueness proofs and the like, can make a major dif-
ference in establishing the credibility of a numerical computation. All too frequently
there is too little mathematical understanding backing up numerical simulation.

b. Issues of Quality

Wilson does not consider these to be the only problems facing com-

putational scientists. He believes that quality is endangered, primarily from two

directions [Ref. 12: pp. 180-181]:

" A tendency to stay on the safe, easy side; not wandering far from the position:

"our calculation agrees with experiment."

" The quality of computational programs, measured against practical criteria,

is lacking. The standards include rounding errors (e.g., catastrophic cancella-

tion), overflows, and stability (with respect to input parameters).
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c. Languages

Wilson cites a number of reasons for revolutions in computer languages.

In particular, he believes that "Fortran is in the long-term the most fundamental

barrier to progress" [Ref. 12: p. 182]. His approach is realistic enough to recognize

the vast investments of scientific communities in Fortran. The language cannot and

should not be eliminated in a day. Nevertheless, it has very serious shortcomings.

Some problems could be overcome by a Fortran preprocessor (the same idea as the C

preprocessor). Other problems, like lack of support for abstraction and the unnatural

exclusion of basic mathematical symbols in the language, are not solved as easily.

[Ref. 12: p. 182]

Wilson does not recommend a simple change of language as the solution,

but searches for deeper problems. He believes that the entire way that computational

scientists and programmers think about and plan programs must change as well.

After reading Wilson's analysis of language problems, the basic impression that

prevails is that we have an urgent need for general-purpose practices to replace

patchwork, hit-or-miss, case-by-case solutions.

3. Generality

David Harel is also an advocate of the need for general purpose techniques.

In the preface to his book [Ref. 13: p. viii] he warns:

Curiously, there appears to be very little written material devoted to the sci-
ence of computing and aimed at the technically oriented general reader as well as
the professional. This fact is doubly curious in view of the abundance of precisely
this kind of literature in most other scientific areas, such as physics, biology, chem-
istry and mathematics, not to mention humanities and the arts. There appears to
be an acute need for a technically detailed, expository account of the fundamen-
tals of computer science; one that suffers as little as possible from the bit/byte or
semicolon syndromes and their derivatives, one that transcends the technological
and linguistic whirlpool of specifics, and one that is useful both to a sophisticated
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layperson and to a computer ezpert. It seems that u'e have all been too busy with
the revolution to be bothered with satisfying such a need.

This idea is not unique. One of the other major proponents of general-

purpose parallel computing is David May of INMOS. In an invited lecture at the the

Transputing '91 conference [Ref. 14), he highlighted features that general-purpose

parallel hardware should deliver. Among the important components of a general

approach, May included the following:

* Scaling. Performance must scale with number of processors. Efficiency is

partly dependent on problem size, but-with adequate problem size-systems

of a thousand processors should be within technological reach. Each processor

is expected to achieve 10-109 flops.

* Portability. This is almost synonymous with "general purpose." May empha-

sizes algorithms based upon features common to many machines, and which

remain valid as technology evolves. He stresses that this general purpose par-

allel architecture will benefit both the computer designer and the programmer.

The designer will gain since the market will be somewhat predictable. The

programmer's code will work on several machines and hold a strong hope for

working into future years.

To achieve these goals, May proposes several guidelines. First, for a message passing

system using p processors, the nodes must be capable of concurrent computing and

communication. The interconnection topology must provide scalable throughput

(linear in p) and bounded delay, probably log(p). Programs, May believes, should be

written at as high a level as possible and make use of many processes. The algorithm

should express the maximum possible parallelism. Much of May's theory is based

upon the structure of a hypercube interconnection topology (or virtual hypercube).
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4. Projections

Kenneth Wilson makes a credible claim that says parallel computing is

here to stay. His reasoning is based upon the fact that mass production and heavy

competition are proven ingredients in keeping the cost of chips low. Rather than

summarize, I will quote his conclusion [Ref. 12: p. 185]:

Today a single processing unit costing millions of dollars can still be cost-
effective but I don't think this can last very long, over a period of time (I cannot
estimate how many years) it seems likely that the mazimum price of a cost-effective
processor will plunge to one hundred thousand dollars, to ten thousand dollars, to
???. I cannot estimate the ultimate equilibrium price at which this plunge will stop.

Meanwhile I can find no prospects that single supercomputer processors speeds
will advance at anything like the pace at which processor costs are being reduced,
even using Gallium Arsenide or superconducting Josephson junctions.

The result of this is inevitable-overall advances at the supercomputer level
have. to come through parallelism, namely, big increases in speed have to come from
the simultaneous use of many processors in parallel.

David May agrees with Wilson, who states that increasingly complex com-

ponents and faster clock speeds are not likely avenues of advancement. This makes

parallel processing "technically attractive." He also agrees that mass production will

make the most effective use of design and production facilities. His conclusion: "A

general purpose parallel architecture would allow cheap, standard multiprocessors to

become pervasive." [Ref. 14]

May's prediction for 1995 includes processors capable of 100 megaflops.

INMOS believes strongly in the idea of balancing computation and communication,

and May projects that node throughputs will have reached 500 megabytes per second.

In 1995's multiprocessor systems, he envisions teraflop performance. By 2000, May

projects "scalable general purpose parallel computers will cover the performance

range up to 1011 flops. Specialised parallel computers will extend this to 1013 flops."
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D. OVERVIEW

This chapter has surveyed the (relatively recent) history of computing, consid-

ered the state-of-the-art, and made a few guesses as to the future. Additionally, it

has introduced numerical and parallel computing. This serves as a backdrop for the

remainder of the thesis. Chapter II expands the background on parallel processing

and numerical methods. The latter provides a lead-in to the specific algorithms and

theory that appear in Chapter Ill. Chapter IV introduces the parallel design and

methods used in the work. A description of the environment, tools, and equipment

appears in Chapter V. Results and conclusions appear in Chapters VI and VII.

Appendices are provided to keep the chapters concise and focused. The ap-

pendix material operates on both sides of that focus. Some of the material is de-

signed to give sufficient background and the rest-code mostly-is provided for more

in-depth study. The background material may be obvious to some readers and new

to others. I have assumed that the reader has some knowledge of the background

material. I do not presume that the reader will be familiar with the code.

To simplify the discussion we must speak the same language. Appendix A

gives the basic terms and notation used in the rest of the thesis. Next, we discuss

the machines used to perform the work. While this is the subject of Chapter V, a

more detailed account is reserved for Appendix B. Appendix C provides a general

background on interconnection topologies. Emphasis is placed upon the hypercube

connection scheme. Appendix D describes the process whereby a real-world problem

is translated into matrix notation. Appendix E gives some information and results for

communications performance in a hypercube. Finally, Appendix F provides listings

for most of the code used in the research.
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II. BACKGROUND

Mathematics is the door and key to the sciences.

- ROGER BACON

Chapter I provided a backdrop, showing the state of scientific computing, es-

pecially parallel and distributed forms, today. In the present chapter, the scope

is limited to material and equipment pertaining to this research. The thesis work

deals with methods of conjugate directions implemented upon two contemporary

MIMD machines. The goal is to introduce the theory, machines, methods, and a few

peripheral issues that will be helpful as background information.

A. COMPUTING WITH REAL NUMBERS

As illustrated in Figure 1.1, the speed of computing machinery has risen swiftly

since the 1940s. This has often been encouraged by substantial advances in tech-

nology. Today's multiprocessor machines seen to be maintaining the fast-paced

growth. Additionally-although precision is a less glamorous business than speed-

the accuracy of machine solutions has become more standard. This section considers

some of the principal issues of computing with finite approximations of real numbers.

We have observed that the history of computing shows close ties to science and

mathematics. As the design and construction of computers becomes a more spe-

cialized business-mostly performed by electrical and computer engineers-we still

find that many of the fundamental requirements are related to scientific problems.

These problems typically involve mathematics and a significant amount of scientific

computing applies numerical methods that involve real numbers. The trend in com-
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puter (hardware and software) design is toward abstraction, but from time to time

we absolutely must understand and work with the underlying, concrete principles.

1. Finite-Precision

New problems are generated as the speed of computing machinery improves

with each generation of machines. One question to be considered is, how reliable

are the machines and the software that runs on them? This is a constant concern

in computing. Many scientific problems involve continuous phenomena in the real

world. Accordingly, we like to be able to represent the real numbers, R, within the

machine. But, lacking infinite storage, this is impossible. There have been several

more-or-less reasonable ideas and implementations of approximations to the real

numbers within the limits of computer storage. Of these, the floating-point concept

of storage and arithmetic enjoys the most widespread use.

The Institute of Electrical and Electronics Engineers (IEEE) has established

the principal standards for floating-point representations and arithmetic. These

standards make machine arithmetic more predictable. Surprisingly, while they exist

in much of today's computing hardware, the standards are not widely understood by

practitioners. Then, software and applications are sometimes formed in ignorance.

The title of David Goldberg's paper [Ref. 151 speaks volumes: "What Every Com-

puter Scientist Should Know About Floating-Point Arithmetic." Goldberg is also

responsible for several other contributions describing floating-point arithmetic and

the IEEE standards. Appendix A of Hennessy and Patterson's book on architec-

ture [Ref. 3] is such a contribution. He gives a very useful description of the IEEE

standards and instruction on how to perform arithmetic operations on machines that

adhere to the IEEE standards.
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2. IEEE 754

Of the four precisions specified by the IEEE 754-1985 standard, this thesis

uses the double precision format most often (to approximate real numbers) so it

will receive the most attention. In the C programming language, these numbers

correspond to the type double. They are floating-point values stored in eight bytes

(64 bits). The storage representation is illustrated as three components: one sign bit,

s; an 11-bit exponent, e; and a 52-bit fraction, f. Figure 2.1 shows an example. We

say that e is a biased exponent. Both negative and positive exponents are stored using

a range of positive binary numbers biased about (nearly) the middle. Significand or

mantissa is the name given to the number (1.f). The fraction is a packed form of

the significand. This means that the leading one of the significand is implicit. This

is called a normalized number. [Ref. 16]

All IEEE floating-point numbers are normalized except for the special rep-

resentations when e = 00000000000 = 0 or e = 11111111111 = 2047. These are

called denormalized (or subnormalized) numbers. Only the fraction, f, of a normal-

ized number is stored [Ref. 3: p. A-14]. Figure 2.1 shows a representation of the

floating-point number, x = 7.0. First, x is shown as it would be defined in a C

program. The C address of operator, &, is used to indicate the address of x in mem-

ory. That is, somewhere (namely &) in memory, there are eight contiguous bytes

that hold a floating-point representation of x and (for illustration purposes) we can

imagine the IEEE 754 double-precision representation of x as Figure 2.1 indicates.

A standard, such as IEEE 754 (and the lesser-known IEEE 854), is not a

panacea for the finite-precision problem but it lends tremendous support to those

who would scientifically deal with the problems of finite-precision arithmetic. Pro-

grams given in the files num.sys.h and num-sys.c (in Appendix F) are of interest

to those who would explore further. The programs can demonstrate that the actual
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double x - 7.0;

&x

0 1 0000000001 1 100000000000000000000000000000000000000000000000000

s e = 1025 f = .112

Interpretation: X= (-1 s ) x 1.f2 x 2 e- 1023

= (-10) x 1.112 x 21121 -1023

= 1.11 2 x 4

= 1112

=7

Figure 2.1: IEEE 754 Representation: Double Precision

order and location of bits in memory may not match the representation of Fig-

ure 2.1. This reflects practicalities concerning storage and transmission of bytes at

a very low level in the machine. It is perfectly reasonable (and easier) to use the

common abstraction of Figure 2.1 regardless of machine implementation.

B. NUMERICAL ISSUES

1. The Need

Consider the problem of determining the area under a bounded function

f(x) over a closed interval [a, b]. Numerical quadrature (integration) rules such as

the Trapezoidal Rule or Simpson's Rule are used to arrive at an approximating (or

Riemann) sum of many smaller areas within the region. Numerical methods are
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often used to approximate the solution to a problem. This is no trivial problem. To

solve it (numerically) by anything other than accident, one must first understand

the theory and analytical approach. Next, the problem can be translated into an

aloorithm (a plan-usually mathematical in nature-for solving the problem step-

by-step) which can, in turn, be translated into the sort of language that a machine

understands.

This is a relatively simple approximation problem compared to the problem

of finding the solution to a system of 500 equations in 500 unknowns. Consider the

(perhaps more realistic) problem of using numerical linear algebra to solve an elliptic

partial differential equation like the one presented in Appendix D. Numerical con-

cerns abound in problems such as these. Additionally, many problems in numerical

linear algebra have time complexities of 1(n 2 ) or O(n') and storage requirements of

0(n2 ) so speed is essential. (Appendix A reviews the complexity notation such as

big-Oh and big-Theta).

2. Errors and Blunders

A clear understanding of the differences between errors and blunders is

important since recognition of the source of error is prerequisite to eliminating or

reducing them. The terms are introduced in [Ref. 17: p. 1]:

Blunders result from fallibility, errors from finitude. Blunders will not be
consilered here to any extent. There are fairly obvious ways to guard against them,
and their effect, when they occur, can be gross, insignificant, or anywhere in bt-
tween. Generally the sources of error other than blunders will leave a limited range
of uncertainty, and generally this can be reduced, if necessary, by additional labor.
It is important to be able to estimate the extent of the range of uncertainty.

- ALSTON S. HOUSEHOLDER
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3. The Issues

To anticipate-or even troubleshoot--error we must know from whence it

comes. In [Ref. 17: p. 2], Alston Householder lists the four sources of error that

were set forth by John von Neumann and Herman Goldstine:

" Mathematical formulations are seldom exactly descriptive of any real situation,

but only of more or less idealized models. Perfect gases and material points do

not exist.

" Most mathematical formulations contain parameters, such as lengths, times,

masses, temperatures, etc., whose values can be had only from measurement.

Such measurements may be accurate to within 1, 0.1, or 0.01 percent, or better,

but however small the limit of error, it is not zero.

" Many mathematical equations have solutions that can be constructed only in

the sense that an infinite process can be described whose limit is the solution

in question. By definition the infinite process cannot be completed. So one

must stop with some term in the sequence, accepting this as the adequate

approximation to the required solution. This results in a type of error called

the truncation error.

" The decimal representation of a number is made by writing a sequence of digits

to the left, and one to the right, of an origin which is marked by a decimal

point. The digits to the left of the decimal point are finite in number and

are understood to represent coefficients of decreasing powers of 10. In digital

computation only a finite number of these digits can be taken account of. The

error due to dropping the others is called the round-off error ....
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C. MACHINE METHODS

We would like to somehow characterize the techniques that make a problem-

solving method "good". The abilities of machines and people are distinct enough that

we should not always expect an algorithm for machine solution to mirror the pencil-

and-paper method of an individual. Hestenes and Stiefel make this distinction, defin-

ing a hand method as "one in which a desk calculator may be used" and a machine

method as "one in which sequence-controlled machines are used." [Ref. 18: p. 409]

Further, in the same reference, they list the following characteristics that a good

machine method exhibits:

(1) The method should be simple, composed of a repetition of elementary
routines requiring a minimum of storage space.

(2) The method should insure rapid convergence if the number of steps re-
quired for the solution is infinite. A method which-if no rounding-off errors
occur-will yield the solution in a finite number of steps is to be preferred.

(3) The procedure should be stable with respect to rounding-off errors. If
needed, a subroutine should be available to insure this stability. It should be possible
to diminish rounding-off errors by a repetition of the same routine, starting with
the previous result as the new estimate of the solution.

(4) Each step should give information about the solution and should yield a
new and better estimate than the pret'ious one.

(5) As many of the original data as possible should be used during each step
of the routine. Special properties of the given linear system-such as having many
vanishing coefficients-should be preserved. (For erample, in the Gauss elimination
special properties of this type may be destroyed.)

D. CONJUGATE DIRECTIONS

Hestenes and Stiefel describe the method of conjugate directions (CD). This is

a general approach to solving systems of linear equations that uses direction vectors,

Po, Pi, ... , to determine how the search for a solution should proceed from step-

to-step. When the method for determining these vectors is defined, CD becomes a
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specific method. There are at least two of these specific methods within CD that

are especially suited to computer implementation: Gauss factorization (GF) and the

method of conjugate gradients (CG). [Ref. 18: p. 412]

The term conjugate is clearly an important one for these methods. Given a

matrix A E Rnx,1 that is symmetric, we say that two vectors x and y are conjugate

if

XTAy = (AX)Ty = 0. (2.1)

There is an alternative term that emphasizes the role of A in this definition. We also

say that x and y are A-orthogonal. [Ref. 18: p. 410]

The method of conjugate gradients chooses its direction vectors, pi, to be mutu-

ally conjugate (pTApi = 0 whenever i # j) and in such a manner that pi+i depends

upon pi. (A specific formula is given near the end of Chapter III). The Gauss fac-

torization chooses pi = ei, the ith axis vector. [Ref. 18: pp. 412,425-427]

In this research, the Gauss method gets almost all of the attention, but the

method of conjugate gradients receives a short overview near the end of Chapter III.

The theory of conjugate directions is not at all trivial, and the ties of Gauss and

conjugate gradients to conjugate directions are fairly deep. These issues are covered

in the work of Hestenes and Stiefel [Ref. 18]. This thesis develops the Gauss method

from an implementation standpoint.

E. PARALLEL PROCESSING

The field of parallel and distributed computing is a relatively new one. In

one sense, it is quite natural. We perform work in parallel every day. In fact, a

manager-worker notion is a very useful means to understand the issues of this field.

The programs developed in this research involve a host or manager and nodes or

workers. This is often called the workfarm approach.
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The principal "problem" in parallel computing is communication. Appendix C

relates some of the considerations. Of course, there are other concerns as well: load

balancing, problem size (granularity), and so on. These issues, as they apply to the

this research, are discussed in Chapter IV.

The bottom line-after all of the design and implementation work-is perfor-

mance. With multicomputers, as in a workfarm, we are after efficiency so that more

computing can be done in a shorter time and for less money. Bell is even more

specific. He believes the multicomputer must offer two key facilities to become es-

tablished [Ref. 6: p. 1097]:

o Power that is not otherwise available.

o Performance for a price that is "at least an order of magnitude cheaper than

traditional supercomputers."

In Chapter VI, we consider results obtained upon two contemporary parallel

machines. This information helps us to evaluate the potential of MIMD architectures

in terms of Bell's criteria.

F. SPEEDUP

The terms speedup and efficiency, defined in Appendix A, capture most of the

interest when we talk about the potential of parallel computing. The principal reason

for choosing a multicomputer over a single computer is speed. Therefore, we are most

interested in knowing what kind of speed we can obtain from a multiprocessor system.

Bell's comments on price are germane as well.
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Speedup and efficiency are both machine dependent and problem dependent.

Some problems should not be executed on a parallel machine! Suppose, for instance,

that part of a problem must be performed sequentially. Amdahl's law is a well-known

attempt to characterize this problem. Amdahl stated that speedup on P processors,

S, is limited in the following manner:

1
S < (2.2)

f + (1 - f)/P

where f is "the fraction of operations in a computation that must be performed

sequentially, where 0 < f _< 1" [Ref. 19: p. 19]. With speedup, S, defined as

in (2.2) we see that
1

lim S (2.3)P-00 7

Figure 2.2 shows how this limit begins to take effect as the number of processors,

P, is increased from zero to 500. The figure is based on Amdahl's law (2.2) with

sequential percentages, f, of 5%, 10%, and 25%.

We can see that Amdahl's law has some very discouraging news for so-called

massively parallel computing. The massive part of the term is loosely defined, appar-

ently meaning "many" processors. But Amdahl's law may be based upon a faulty

assumption [Ref. 20]. Consider the following reasoning. Let P be the number of

processors and consider the following arguments concerning time. Let s be the time

required to execute the serial portions of a program on a serial processor and let

p be the amount of time required to complete the parallel work on the same serial

processor. Using this notation, and normalizing (s + p = 1), Amdahl's law can be

restated

S s+p 1(2.4)
s + (p/P) s + (p/P)(

Then, if we consider the case P = 1,024 with s < 10%, we see in Figure 2.3, that

speedup is severely restricted.
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Figure 2.3: Amdahl's Law (P =1024)
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G. SCALED SPEEDUP

These problems with the usual notion of speedup led Gustafson, Montry, and

Benner to question the validity of Amdahl's assumptions [Ref. 20: p. 3]:

The expression and graph are based on the implicit assumption that p is
independent of P. However, one does not generally take a fired size problem and
run it on various numbers of processors; in practice, a scientific computing problem
scales with the available processing power. The fixed quantity is not the problem
size but rather the amount of time a user is willing to wait for an answer; when
given more computing power, the user expands the problem (more spatial variables,
for example) to use the available hardware resources.

As a first approximation, we have found that it is the parallel part of a pro-
gram that scales with the problem size. Times for program loading, serial bottle-
necks, and I/0 that make up the s component of the application do not scale with
the problem size. When we double the number of processors, we double the number
of spatial variables in a physical simulation. As a first approximation, the amount
of work that can be done in parallel varies linearly with the number of processors

Based upon this analysis, they present the notion of scaled speedup. They let

s' and p' represent the serial and parallel time spent on a parallel system (inverse of

Amdahl's method). So that s' + p' = 1 and a uniprocessor requires time s' + p'P to

perform the task. With these definitions, they define scaled speedup, S', to be

s' = s' + pip = p + (1 - P)s'. (2.5)

If we consider the same range of serial fractions as we did in Figure 2.3, we see that

scaled speedup is much better than the usual speedup. Figure 2.4 shows the plot of

scaled speedup.

H. SUMMARY

This chapter considers the background necessary to develop the algorithms

(Chapters III and IV) and implement them (Chapter V). Algorithms are described

as sequential plans first (Chapter III). The Gauss factorization algorithm is given
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Figure 2.4: Scaled Speedup

in detail (Chapter III), including a discussion on the significance of pivoting. The

method of conjugate gradients receives less attention, but a brief introduction is

given near the end of Chapter III. The parallel considerations surveyed quickly in

this chapter receive more attention in Chapter IV.
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III. THEORY

No human investigation can be called real science if it cannot be demonstrated
mathematically.

- LEONARDO DA VINCI (1452-1519)

A. SCOPE

The goal of this research is to demonstrate a parallel method for solving a

system of linear equations. The implementation targets two contemporary MIMD

architectures: the Intel iPSC/2 and networks of INMOS transputers. There are many

methods for solving linear systems. This work concentrates primarily upon Gauss

factorization (GF), but the method of conjugate gradients (CG) is also introduced.

Regrettably, CG is not developed due to time constraints (the derivation is not

trivial). This does not imply that Gauss factorization is superior, nor that it possesses

greater potential for parallel solution. Indeed, Hestenes and Stiefel preferred CG to

GF for a number of very good reasons [Ref. 18: p. 409].

As we shall see, the utility of either method is quite dependent upon the nature

of the particular problem. Consider the system of linear equations represented by

Au = b. (3.1)

Much of the subsequent discussion applies to general, rectangular systems where

A E R mn . For the examples, however, square systems (A E RnX,) are used. This

restriction greatly simplifies the discussion without losing much of the concept as

it applies to general systems. The Gauss process, i.e., the main part of the work,

excluding the stopping criteria and interpretation of the result, is the same in all

three cases (m < n, m = n, and m > n).
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To be sure, the three cases (m < n, m = n, and m > n) correspond to funda-

mentally different real-world systems, but the algorithms for each case are almost

identical. The restriction to a square system will greatly simplify the discussion

without blinding us to the general, rectangular case. The extensions to the general

case are well known. Golub and Van Loan [Ref. 21: p. 102] give more detail, but the

square case is most expedient for now. Square systems also simplify the experimental

procedure, data collection and analysis.

The Gauss method follows naturally from a hand method and it holds strong

appeal to intuition. Without a pivoting strategy, however, Gauss can attempt division

by zero. There is also a more subtle issue of rounding errors within the limits of

finite-precision arithmetic. To forestall errors of both kinds, partial and complete

pivoting strategies are used. This chapter develops the (sequential) algorithms and

explains the concept of pivoting. This is a sensible starting point for Chapter IV,

where parallel versions of the algorithms are given.

B. APPROACH

There are many methods that may be applied to determine the solution of a

system of linear equations. The methods were designed for different reasons and

with different problems in mind, so each exhibits a unique behavior. One method

is often preferred over another for a given problem. Ultimately, the criterion is

performance, both in reliability and speed. The approach described here and in the

remaining chapters seeks to "maximize performance" while retaining a reasonable

balance of both efficiency and quality. Speed and numerical accuracy tend to oppose

one another so we are left to choose from several options.

A hand method introduces each algorithm. The example is small and concrete.

Solving a small problem gives useful insights into the algorithms. Once the hand

method is established, it is expressed in an equivalent matrix notation. A high-level
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sequential algorithm is built upon this foundation. This algorithm shows how a

machine, using a sequence of instructions, solves the problem. It also gives good es-

timates for the problem's time and storage complexities. The sequential-to-parallel

transition involves enough issues to warrant separate coverage. These considerations

appear in Chapter IV.

In the sections that follow, Gaussian elimination is presented first. It reveals the

background (sort of a first pass) for Gauss factorization. Once the reduction process

is understood, we proceed to factorization. A description of the method of conjugate

gradients is given at the end of the chapter. This method, due to Hestenes and

Stiefel, is based upon relatively deep theory. Thus the derivations and background

are not included. Nevertheless, a synopsis of the method is given.

C. APPLYING THE METHODS

A particular method is often tailored to a specific type of system. The method

of conjugate gradients, for instance, is usually used when the matrix of coefficients,

A, is symmetric and positive definite [Ref. 18: p. 411]. The Gauss factorization

algorithm is equally important, but it takes quite another approach to solving this

system. Both CG and GF lie within the broad category of methods of conjugate

directions (Chapter II). Indeed both work in just about any case. But, the better

results are obtained by using the tool that fits the task at hand.

A very rough characterization of the problem can simplify algorithm selection.

We will look for two qualities: structure and density. CG, for instance, performs

best when applied to highly structured, sparse matrices (i.e., matrices with many zero

entries). Systems like the sparse, symmetric, highly-structured result of Appendix D

deserve careful solutions that do not destroy the existing zeros. Zeros are not always

easy to come by. Gaussian elimination must expend 2n3/3 flops to create them.
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Selecting the wrong algorithm can lead to slower execution. More importantly,

poor algorithm choice is a blunder (Chaper II). It can produce results that are ac-

cidentally perfect, grossly incorrect, or anywhere between. Therefore, no less than

three tasks confront us:

" Characterize the problem. In systems like (3.1), attributes of the matrix of

coefficients, A, may provide a wealth of information.

" Understand the algorithm(s). Know the types of problem(s) it is designed for

(and, more importantly, know why).

* Create or select an a!gorithm that suits the problem.

The sparse, highly-structured problems are not rare! Anyone who has observed

nature knows that many natural phenomena exhibit incredible structure and sim-

plicity. Strategies for solving the corresponding system should always seek to exploit

these characteristics. Both sparseness and structure can reduce storage requirements

and the number of flops required. If we know the structure in advance, there may

be a smart way to avoid some calculations entirely or minimize the work involved.

(Recall Hestenes and Stiefel's characterization of a "good" machine method from

Chapter II). Other problems, when translated into the form (3.1), exhibit a dense

matrix, A, with little or no apparent structure.

These two types of problems should not be handled with the same tools. As

with many computational problems, the reasons involve the use of time and space.

We shall see that the Gauss algorithm has time complexity E(n') and storage re-

quirements 0(n ' ). (Complexity notation appears in Appendix A). Numbers like

these grow rapidly with n and, regardless of how much memory is available, the

problem can quickly overpower the computer. A na-ive approach to problems of

these kinds can be expensive in terms of both storage and time. This is usually
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adequate incentive to take advantage of sparseness and structure whenever possible.

When it is not possible, Gauss is a good choice.

D. GAUSSIAN ELIMINATION

Suppose that we want to solve a system of linear equations using a systematic,

step-by-step method. We assume that the system of linear equations is given, and

that the method must preserve the original properties of the system. That is, the

method must be restricted to certain operations; namely:

" Multiply an equation by a nonzero constant.

* Interchange equations.

• Add a multiple of one equation to another.

The fact that the first two operations do not change the system's properties is ev-

ident. The third operation is legitimate also--maybe not quite so obviously-and

computationally, the most significant. Now let us apply some of these operations to

a system of four equations in the four unknowns, v1 , v2, v3 , and v4.

2vi + 3v 2 + 4v3 + 5v 4 = 0
4v: + 6v 2 + 8V3 + 5v 4 = -5(3.2)
2v, + 4v 2 + 7V3 + 9v 4 = 13
6v, + 8V2 + 8v 3 + 91' 4 = -17

Let m (= 4) be the number of equations, and let n (= 4) be the number of unknowns

in each equation. Additionally, let i be an equation (or row) index (1 < i < m) and

let j indicate a subscript ofv (column index) so that 1 < j < n. Finally, let ai be the

coefficient of v. in equation i (e.g., a12 = 3). Suppose that the last equation contains

only one nonzero coefficient (say 044) and the third equation has only two nonzero

coefficients (033 aid 0 34 ) and so on. This defines a triangular system (Appendix A).

The triangular system is our goal because it is easier to solve (by back substitution)

than the current (square, dense) system.
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Next, observe that a triangular system would result if we could eliminate every

coefficient, ail, of v, in all equations but the first (i > 1), coefficients, ai 2, of v2 in

the last two equations (i > 2), and the coefficient, a 43, of v3 in the final equation. To

do this, we work by stages. At stage k, the coefficient, akk, of Vk in the kth equation

is called the pivot. This term has little significance now but is clarified later (and

it plays a very important role in the examples presented. In a particular stage, k,

the goal is to operate upon all equations i where i E {(k + 1), (k + 2),. . ., m} and

eliminate all coefficients, aik, of Vk.

1. A Hand Method

Before attempting to describe an algorithm for a machine solution, we con-

sider an application of Gaussian elimination (GE) by hand. Initially, let k = 1. In

the example system (3.2), the first (k = 1) pivot is the coefficient, all = 2, of v,

in the first equation. Notice that by subtracting twice the first equation from the

second, a zero is produced under the pivot (eliminating a 21). Similarly, by subtract-

ing the first equation from the third, a zero appears as the leading coefficient in the

third equation (eliminating a3 1). Finally, three times the first equation subtracted

from the fourth equation eliminates the coefficient a 41. Following these steps the

altered system is:
2v -+ 3V2+4V3 + 5V4 = 0

-5v 4 = -5 (3.3)
v2 +3v 3 +4v 4 = 13

-V 2 -4v 3 -6v 4  = -17

This is called the natural reduction process [Ref. 22: p. 72]. In the particular case,

there are no changes on the right-hand side because the first equation's right-hand

side is zero. This makes for trivial arithmetic on the right-hand side, but we should

rememl" -r to perform the arithmetic upon whole equations (including the right-hand

side) in general. The elimination is even more successful than planned.
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The second equation already has zeros where we ultimately wanted them

in the fourth equation. That is, the system (3.3) would be closer to upper triangular

if we were to alter it by interchanging equations 2 and 4.

2v, +3v 2 + 4V3 + 5v 4 = 0
-v 2 - 4v 3 - 6v 4 = -17 (3.4)

V2 + 3v 3 + 4V4 = 13
-5V 4 = -5

The system (3.4) is called a row permutation of (3.3). The ability to recognize

patterns is a great advantage that human problem solvers enjoy. Therefore, taking

advantage of our capabilities we use a rather subjective "human" pivoting strategy.

But it is not fitting to assume that an efficient algorithm for a machine would involve

the same sort of pattern recognition.

The system (3.4) is nearly triangular. The pivot moves to the second equa-

tion (k = 2), and we focus on the coefficient, a 22 = -1, of Vk = v 2. By adding

the second equation to the third, the only nonzero coefficient remaining in the lower

triangle (a 32) is eliminated. The resulting system becomes

2vi + 3v 2 + 4v 3 + 5v 4 = 0
-v 2 -4v 3 - 6v 4 = -17 (3.5)

-v 3 -2v 4 = -4 (

-5v 4 = -5

The system is triangular, and it is easy to solve for the unknown values, vi, by back

substitution. By inspection, v4 = 1. Substituting this value into the third equation,

we find that v3 = 2. Substituting both values (v 4 and v3 ) into the second equation

yields v2 = 3. Finally, by substituting the values v4 , v3, and v2 into the first equation

gives v, = -11. The solution to tie system is then

vI -11

U V2 3 (3.6)
V3 2
V4I
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2. A Machine Method

The foregoing example illustrated the GE process as done on paper. The

system was intentionally created for easy solution by hand calculation. I.e., it uses

integers and elimination occurs faster than the usual case. Even this simple example

requires a few minutes to determine u from the system (3.2) by hand. In Chapter

VI, we see that a machine can perform this task in (much) less than a second. For

this reason, it is worth examining an equivalent process to solve for such a system

by machine.

We reenact the solution from the beginning, this time in a fashion that

a sequence-controlled machine could perform. Until now, we have used the term

"pivot" but have found no practical use for pivots. In this example, we begin to

realize the utility of a pivoting strategy. We start with "no pivoting" and shift to

the "partial pivoting" strategy. Additionally, we begin to use a more compact matrix

notation. Appendix A describes the notation followed.

By the method described in Appendix A, we give the linear system (3.2)

matrix representation that corresponds to (3.1):

2 3 4 5 v, 0
Au= 4 6 8 5 V2 -5 ] 2 b. (3.7)

2 4 7 9 V3 13 = 3

6 8 8 9 V4 -17 /4

First, we initialize a stage counter, k, so that k = 1. The pivot in stage k is akk, on

the diagonal of A (a = 2). The immediate goal is to produce zeros beneath the

pivot, in A(2:4, 1). A three-step process eliminates these coefficients in row order:

* Divide. Divide every element beneath the pivot by the pivot value.

" Update. Perform arithmetic in the Gauss transform area.

" Eliminate. Set the elements beneath the pivot equal to zero.
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The first step is a division. The denominator (pivot) is Cfkk = Cn = 2 so

CE21 becomes the multiplier (a 21/2) = 2. Similarly, let a3, = 1 and let a4 = 3. Now

2345]

26851 (38)A= l479(38

3889]

Next, consider everything below and to the right of the pivot. This is the Gauss

transform area, G = A((k + 1):m, (k + 1): n) = A(2:4,2:4). For each element in

G, replace the current value, aoj, with Crij - (aik)(akj). Do the same thing in the

corresponding rows (i > k) of b, replacing ji with i - (aik)(flk). We will call this

the process of performing arithmetic in (or updating) the Gauss transform area, G.

Finally, when the values beneath the pivot are no longer needed, eliminate

them (set them equal to zero). The result is equivalent to the system (3.3):

2 3 4 5 v, 0
0 0 0 -5 V2 = -5 (3.9)
0 1 3 4 V3 13
0 -1 -4 -6 V4 -17

We have finished one stage of GE. We move into the next stage, k = 2. This time,

when we try to update G we run into a very serious problem. The first step is to

divide everything underneath the pivot by the pivot value akk = 022 = 0. This is

the divide-by-zero problem of a "no pivoting" strategy.

During the execution of the hand example we simply moved the row to the

bottom of the system to avoid this problem. Now, we could instruct the machine

to test every element in A(k : m, K : n) and interchange rows so that those with

the most leading zeros were placed at the bottom. This is problematic for several

reasons. First, it is not dependable (testing for equality of floating-point numbers

begs disaster). Secondly-even if we could identify zeros with confidence-it would

add a sorting problem to GE! We are not looking for extra work. The solution is

partial pivotirg.
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3. Partial Pivoting

Partial pivoting is an application of row interchanges to eliminate (primar-

ily) the divide-by-zero problem. Consider the system of equations (3.1) with the

nonsingular matrix of coefficients, A E R, x. (i.e., m = n and the system has exactly

one solution). Suppose further that storage and arithmetic is performed in infinite

precision. (These assumptions-infinite precision and A nonsingular-are essential).

Even in this ideal situation Gauss without pivoting is dangerous because,

as we have just seen, it may attempt to divide by zero. Proper row permutations

completely eliminate this problem. Partial pivoting will guarantee the existence

of n nonzero pivots for A nonsingular. In fact, if we encounter a zero pivot with

partial pivoting, it means that A is singular [Ref. 23]. The remainder of this section

describes the partial pivoting strategy.

Consider stage k of the GE process with A E Rxn. The goal is to pick

the "best" row remaining (i.e., at or below the current pivot) and install it as row

k, the pivot row. For reasons that are explained later, "best" shall mean the row

whose kth (pivot column) element is largest. Let s be the row index for the best

pivot candidate. Initially, let s = k (i.e., akk is the first candidate). Next, we move

down the pivot column, considering all Qik where i > k.

To eliminate unnecessary assignments, we replace the current candidate

with another only if IajkJ > Ia,kl. When this occurs, we make sure that s is updated

by setting it equal to i. After considering all elements, a&k, for k < i < m, s is the

index of "best possible" pivot row. To accomplish our goal, we must perform a row

interchange. This is easy after the new pivot row has been determined. We simply

swap rows k and s (if k # s). Within the assumptions above, we have completely

eliminated the potential for division by zero. Now let us return to the problem at

hand.

44



4. A Machine Method (Resumed)

Applying partial pivoting to the system (3.9), we find that the next pivot

is located at A(3, 2) so we must interchange rows (equations) two and three. Be-

fore performing this step, however, let us create a vector to keep track of the row

permutations. Let q E R- be the row permutation vector. We initialize q so that

q [2 [ (3.10)
04 4

and perform row interchanges in q corresponding to those in A so that Vj is always

the original equation number for current equation number i. Thus, after performing

the row interchange, we have
2 3 4 5 v, 01
0 1 3 4 V2 = 13 q 3I (3.11)
0 0 0 -5 V3 -5 q= 2

0 -1 -4 -6 V 4  -17 .4

Notice that 03 = 2 indicates that the third equation in (3.11) was the second equation

in the original system (3.7). Now, since a 32 = 0, no arithmetic is required in the

third row. In row four, the arithmetic will be equivalent to the notion of adding (the

current) equation two to equation four. The result is

2 3 4 5 v, 0

0 1 3 4 V2 = 13 (3.12)0 0 0 -5 V3 -5
0 0 -1 -2 V4 -4

When we move the pivot index to the third equation (k = 3), we notice that a3 = 0.

The divide-by-zero problem has resurfaced. Once again, we pivot, swapping rows

three and four. After this, we have

2 3 4 5 v, 0

0 1 3 4 V [ 13 q 3 (3.13)
0 0 -1 -2 V3 -4 = 4
0 0 0 -5 V4 -5 2
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The zero beneath the final pivot obviates the need for further arithmetic. The trian-

gular system (3.13), found by our machine method, does not look like the system (3.5)

from the hand method because we did not perform the same row interchanges. If we

had maintained a row permutation vector, ., for the hand method we would have

noticed that

q= [ " [ = . (3.14)
4 3

Of course, back substitution for the final (triangular) machine system (3.13) yields

the same solution

U [ = (3.15)V3 2
V4 .1

as that of the hand method. Thus, even though we used different permutation

schemes, the "pivots" in both cases were always nonzero and the solutions were the

same. This is not surprising, since A is nonsingular and row permutation is merely

the practice of interchanging equations.

Let us review first the process and then the theory of Gaussian elimination.

The GE process performs a systematic elimination of the lower (in our example)

triangle of a matrix of coefficients, A. Arithmetic operations are performed upon

entire equations at the same time (including the right-hand side, b). In other words,

during stage k of the process, arithmetic operations are performed upon (portions of)

all rows i (i > k) of A and upon all elements (rows) 6i (for i > k) of the right-hand

sides, b. The process depends upon both A and b and both of them can be changed

substantially.

The idea behind Gaussian elimination is that general square systems are

difficult to solve, but triangular systems are easy. The goal is to transform a general

matrix A into triangular form, performing legitimate arithmetic upon entire equa-
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tions (including the right-hand sides). Reduction to triangular form costs 2n'/3

flops. Once A is reduced to triangular form, back substitution yields a solution for

the unknown, u, in n2 flops. Thus GE solves a general, dense, square system of n

equations in n unknowns by the application of 2n 3/3 + n2 flops. [Ref. 21: pp. 88, 97]

E. GAUSS FACTORIZATION

Gauss factorization (GF) is a well-known method for solving linear systems

like (3.1) that (simultaneously) factors A. GF has strong ties to the GE process.

Those ties will become evident as we develop the same example over again, this time

using the GF bookkeeping and method. GF holds several major advantages over GE.

Among these: A is recoverable (the process does not destroy it) and the process is

independent of the right-hand side, b. In fact, b is not used in the factoring process.

1. Complete Pivoting

The complete pivoting strategy will be applied in this example. There is no

special significance behind the introduction of complete pivoting with the GF process.

Either strategy-the choice of a "no pivoting" strategy is also available, but not

generally acceptable for serious problems-can be used with GE or GF. The complete

strategy is a oriightforward extension ol the partial strategy, so introducing partial

pivoting first was practical.

With complete pivoting, row interchanges are still allowed, but so are col-

umn interchanges. We will continue to use 9 E R3 m for row interchange bookkeeping.

The vector p E Rn, similarly, will maintain the column permutation information. We

search not just the pivot column, but the entire Gauss transform area, for the next

pivot. This takes longer but generally produces better solutions. The numerical dif-

ferences between partial and complete pivoting involve some difficult error analysis.

These issues will be addressed briefly after we complete the examples.
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2. Example

Now the GF process is demonstrated. We start with the same system of

four equations in four unknowns:

2v, + 3v 2 + 4v 3 + 5v 4 = 0
4v + 6v 2 + 8v 3 + 5v 4 = -5 (3.16)
2v, + 4V2 + 7V3 + 9V4 = 13
6v,+8v 2 +8v 3 +v 4 = -17

and proceed immediately to the matrix of coefficients (the factoring part of GF

concerns itself with A only).

23451
4 6851

A 2 4 7 9
4789

A 6=8 8 9](.7

a. Stage Zero

For the initial stage, k = 0, let the Gauss transform area be G = A.

Also initialize pivot indices s = t = 1. The sole purpose of stage zero is to find the

first pivot. Initially, we guess that the pivot is all, located at A(1, 1), the upper

left-hand corner of G. (This is the position where the new pivot will be installed).

Accordingly, we set row and column indices, s = 1 and t = 1 to keep track of the

best pivot candidate.

Indices s and t are changed only when we find a superior candidate for

the pivot. To begin the column-by-column search for the pivot we move down the

columns in order from left to right and through each column in a top-to-bottom

manner. When we have considered every element in G, we know that the next pivot

is currently situated at A(s, t).

For the current example, as we move down the first column of G, the

values of s and t are adjusted twice. A better pivot candidate is found, first at A(2, 1),

and next at A(4, 1). The indices are adjusted again in the last row of column two,
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where the value, 8, is larger than the value of the current candidate, 6. Column

three has no candidates larger than 8, so we do not adjust the indices again until we

find the 9 at A(3, 4). Thus s = 3 and t = 4 have located the next pivot according

to a complete pivoting strategy. This accomplishes the goal of stage zero. Now we

specify the process for each of the remaining stages.

b. Outline of the GF Process

For each stage, k, of GF, we shall perform the following steps:

* Locate the pivot according to a pivoting strategy (none, partial, or complete).

If complete pivoting is used, search all of G for the next pivot.

* Increment the pivot index, k.

* Perform any row and/or column permutations that are required to move the

pivot into the position A(k, k). Update p and q accordingly.

* Divide every element beneath the pivot by the pivot value.

* Redefine the Gauss transform area so that G = A((k + 1):m, (k + 1):n).

* Perform the appropriate arithmetic in G.

Let us return to the example and exercise the process.

c. Stage One

Since stage zero has already located the first pivot, the first step of

section b is not necessary in this stage. We increment k (to k = 1) and install the

pivot A(3,4) at A(k,k) = A(l, 1). This means that rows 1 and 3 must be swapped.

Columns 1 and 4 must be swapped in addition. The permutation v,-cfors, p and q,

record the interchanges.
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After interchanging rows and columns, we have

S947214 3

A 5 6 8 4 2 2 (3.18)5 3 4 2 P= 3 q= 1

9886 1 4

Now we perform the division beneath the pivot, producing the multipliers in the

lower three rows in the leftmost column of A. When this is done, we perform the

arithmetic in G = A((k + 1):m, (k + 1): n) = A(2: 4,2: 4). For GF, we do not

replace the multipliers with zeros. We shall find that the multipliers are very useful

in the end. The result is
.9 4 7 2

5/9 34/9 37/9 26/9 1
5/9 7/9 1/9 8/9 (3.19)

1 4 1 4

Next, with G being the lower right (3 x 3) block of A, we search G for the next pivot

and find that A(s, t) = A(2, 3) holds (37/9), the largest second pivot candidate.

d. Stage Two

We increment the stage counter (k = 2), so that it points to the new

pivot location, A(2, 2). Since s = k, we know that no row interchange is necessary

and q will not change. We must, however, swap columns k = 2 and t = 3. The result

is:
9 7 4 2 4 3

A 5/9 37/9 34/9 26/9 3 2 (3.20)5/9 1/9 7/9 8/9 2 1
1 1 4 4 I1L 4

Once again, we divide everything under the pivot by the value of the pivot and

update G. This yields

9 7 4 2

A 5/9 37/9 34/9 26/9 (3.21)5/9 1/37 25/37 30/37

1 9/37 114/37 122/37
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e. Stage Three

Now G becomes the (2 x 2) lower right block of A and the next pivot

(122/37) is found at A(s, t) = A(4,4). Since k = 3 we must interchange rows 3 and

4 as well as columns 3 and 4. The result of the permutation is

9 7 2 4 4 3

5/9 37/9 26/9 34/9 3 2 (3.22)
1 9/37 122/37 114/37 P= 1 q= 4

5/9 1/37 30/37 25/37 2 1

Then, dividing at the bottom of the pivot column and updating G, we have

9 7 2 4

A 5/9 37/9 26/9 34/9 (
1 9/37 122/37 114/37 (3.23)

5/9 1/37 15/61 -15/183

f. Stage Four

The final stage, where k = 4 = min(m, n), is always trivial. We need

only to verify that a4 4 is nonzero. This tells us that, indeed, A is nonsingular. There

is no arithmetic to perform, so (3.23) is the final, factored, copy of A.

g. Summary

Using the Gauss factorization process we have systematically trans-

formed the matrix A E R4x4 into a form that factors the original version of A. At

this point the factorization itself has not been discussed, only the process whereby

we claim to have factored A. Before we explore the resulting factorization, let us

consider-in a general way-what happens in any stage, k, of GF.

3. One Stage of Gauss Factorization

The most important part of GF is the factorization that it produces.

The GF process is reversible (pivots and other key information become part of the
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factorization). This section-using block matrix notation and induction on the stage

number-illustrates the effect of one stage of GF. The proof shows that we can

perform an n-step Gauss factorization A = LR, with L unit lower triangular and R

right (upper) triangular with nonzero diagonal elements. Before the proof, however,

let us consider a concrete illustration where n = 15.

Let 0 denote those elements that Gauss has fixed in both value and position.

The x symbol marks elements that are subject to permutations but not changes in

value. Those elements that are subject to both permutation and changes in value

are indicated by the 0 symbol. Elements in the pivot row are marked with the e

symbol and the symbol 0 denotes elements beneath the pivot. White space indicates

zeros, a is the pivot, and any pi was a former pivot (in stage i). Let k = 7. Then

the leftmost 7 columns of R7 are already fixed in upper triangular form and L7 is

unit lower triangular with the special form described above. Upon entering stage

(k + 1) = 8 of the Gauss factorization process, the matrices L7 and R, would appear

as shown below:

1
0 1

L 7 = e ee e e ee E (3.24)
x x x xx x x 1
X X X X X X X

x x x xx x x 1
x xx x xx x I
x xx x xx x 1
x xx x xx x 1
X X X X X X X
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P3 ® 0 0 0 0 X X X X X X X

P4 ® 9 0 0 X X X X X X X
PS ® 0 X X X X X X X

P6 0 0 X X " X X X X

Pf7 0X) X X X X( X X(

R7e eee e ee (3.25)
0z 0 0 0 O 0 0 0 (.5
0 0 0 0 0 0 0 0
00 0 0 0 0 0 0
0 C) 0 0 0 0 0 0
e0 0 0 0 0 0 0

L 0O 0 0 0 0 0 0 0

WVith this illustration in mind, let us prove the effect of GF.

Proposition: Given A E g , Xn. Let Li E R,,x, be the unit lower triangular matrix

with I_--the (n-i)× (n-2) identity-as its lower, right-hand block. Let Ri E RnXn

be the matrix that is upp-" right triangular in its leftmost i columns. Initially, let

A = LoRo with L0 = I and &o = A. Let P(k) be the proposition: "Stage k of the

Gauss factorization process yields the fctorization, A = LkRk.

To Show: P(k) :> P(k + 1) for 0 < k < (n - 1).

Assumptions: Pivoting, according to any valid strategy, is performed outside of

this factorization procedure and the pivoting strategy yields pivots, a : 0.
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Notation: We can partition A so that

A= G] (3.26)

where a E R is the initial pivot, x E R'-' holds the values beneath the pivot,

y E Rn-1 holds the values of the elements in the pivot row to the right of the pivot,

and G E 3Z(n-1)x(n-1) is the Gauss transform area.

Basis for Induction: We must show that P(0) = P(1). P(0) means that Lo = In

and Ro = A. That is, Ro has no special structure except (by assumption) we are

guaranteed a nonzero pivot a. Consider stage k = 1 of Gauss factorization. Let us

partition A as above and factor

A- a T= T]p B =LIR (3.27)

where B, t, r, and p (with the obvious sizes) are defined as

p=Q (3.28)

r = y (3.29)

I= (!- (3.30)

B = G - fr T (3.31)

Thus, given A = LoPR, Gauss factors A = L1 R and P(0) = P(1).

Inductive Step: Consider the matrices Lk and Rk that are submitted to stage

(k + 1) of a Gauss factorization procedure. We make the inductive step to show that

P(k) =; P(k + 1). For 0 < k < n, A = LkRk may be partitioned so that

= L 0OO [R sT]

A= mT 1 0 OT a yT =LkRk (3.32)

N 01 0 x G
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where L E Rkxk is a unit lower triangular matrix and R E Rkxk is a right (upper)

triangular matrix with nonzero diagonal elements.

The Gauss process forms p as in (3.28), r as in (3.29), multipliers, I as

in (3.30), and B as in (3.31). Then, f)r 0 < k < (n - 1), GF forms

A= mT 1 0 ] T p rT =Lk+lRk+l. (3.33)
N I 1I 0 G

Thus, for 0 < k < n, P(k) = P(k + 1). [Ref. 24]

Conclusion: The nonsingular matrix A E R"' can be factored, in n steps of the

Gauss factorization process, so that A = LR with L being unit lower triangular and

R being upper triangular with nonzero diagonal elements.

The proof has demonstrated the effect of GF. For simplicity, it excluded

the pivoting strategy (simply assuming that, at every stage, a pivot a -$ 0 would be

available). It also held A square. In this sense the proof is somewhat specific. There

is a more general conclusion to be made. This conclusion holds for GF with pivoting

and 0 0 A E RmX ' and it is absolutely essential to understanding the factorization.

4. The LR Theorem

With the GF process complete, and the vast majority of the work done,

we show how to form a solution from our factorization. Various methods of pivoting

(resulting in permutation vectors) and the method whereby A is factored have been

discussed. To solve the system, we must put all of this information together. The

key is the LR Theorem [Ref. 241:

Theorem 3.1 (LR Theorem) Let 0 $ A E ,x. Then there are permutation
matrices P E R... and Q E RX,, an integer r > 1, a lower trapezoidal matrix
L E nr and an upper (right) trapezoidal matrix R E Rx,' so that QTAP = LR.
The diagonal elements of L satisfy Aii = 1 with i = 1,2,...,r and the diagonal
elements of R satisfy p;,i 0 for i = 1, 2,..., r.
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5. Filling in the Blanks

a. The Main Factors

GF used the space of A to hold the two principal matrices, L and R,

in the factorization of A. To see them, we will extract the lower triangular matrix,

L, and upper (right) triangular matrix, R, from the final copy of A (3.23). Initially,

let L = R = 0. We form L by placing ones on its diagonal and filling the elements

below the diagonal from the corresponding locations in A.
1 0 0 0

L 5/9 1 0 0(
1 9/37 1 0 (3.34)

5/9 1/37 15/61 1

R is formed with the diagonal elements (i.e., pivots) and upper triangle of A.

9 7 2 4
R= 0 37/9 26/9 34/9 (3.35)

0 0 122/37 114/37
0 0 0 -15/183

b. Permutation Matrices

The bookkeeping allows us to construct P and Q very quickly. To form

P E nXn , we set every column, j, in P equal to the axis vector implied by 7ri, the

jth element of p. This yields the permutation matrix, P, that will satisfy the LR

Theorem, namely
Il 4 0 0 1 0

P- 7 3 = P. e4 e3 e1 e2 3= 0 1 0 o (3.36)

r4 2 1000]

Similarly, every column, j, in Q E R" ' is set equal to the axis vector implied by

4',, the j'h element of q. For our example, we have

= [ 00011101- - 3000 1
0 4 Q- e3 e2 e4 = 1 0 00 (3.37)

04 1 0 0 1 0
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c. Check

Now we check to make sure that our solution satisfies the LR Theorem.

First, consider the product LR:

1 0 0 0 9 7 2 4

LR- 5/9 1 0 0 0 37/9 26/9 34/9 (1 9/37 1 0 0 0 122/37 114/37 (3.38)
5/9 1/37 15/61 1 0 0 0 -15/183

9 7241
=5 84 6 (3.39)

And
0 0 1 0 2 3 4 5 00 1 0

S0 1 0 0 4 6 8 5 0 0 0 1 (3.40)QTp= 0 0 0 1 2 4 7 9 0 1 0 0

1 0 0 0 6 88 9 1 0 0 0

2479 0 0 1 0

(QTA)P 4 6 8 5 0 0 0 1 (3.41)
6 889 0100
2345 100 0

9724

5 8 46 (3.42)

Our factorization satisfies QTAP = LR.

d. Solution

Now we solve the system. Reca]l that Gaussian elimination operated

on the matrix, A, and the right-hand side, b, at the same time. The end result of

GE is that A is reduced to upper triangular form by successive elimination of the

lower triangle so that we could solve for u with a relatively easy back substitution.

The strategy of Gauss factorization is different. First, b is not part of

the factorization process. Secondly, even though we are changing A, we know that
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we can get it back at the end (if we want to), so there is no need to save the original

A. Now, using the LR Theorem, we complete the solution. Recall that the original

system was

Au = b. (3.43)

The factorization process constructs permutation matrices P and Q and transforms

the original matrix A into a combined version of L and R. Further (by the LR

Theorem) we know that these matrices satisfy

QTAP = LR. (3.44)

Now, by multiplying (3.44) through by Q from the left and pT on the right, we see

that

QQTAppT = QLRPT. (3.45)

Performing the cancellations on the left-hand side, we have

A = QLRPT. (3.46)

This is the factorization of A. Substituting this into (3.43) yields

QLRPTu = b (3.47)

or

LRpTu = QTb. (3.48)

Now let b = QTb and let fi = pTu. Then

LRi =b. (3.49)

Further, let Rui = c for some unknown vector, c. We have

Lc = b. (3.50)
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Since we know L and b, we may solve for c by a simple forward substitution. Then,

using c and knowing that Rfi = c, we perform a simple back substitution and deter-

mine fi. Finally, by definition, fi = pTu (i.e., f is a mere permutation of u) so we

can swap elements in ii to arrive at u using Pfi = u.

Let us summarize this lengthy process into the main steps. The GF

process factors A = QLRPT, changing the general matrix into a product where the

most significant factors are both triangular. This reduces the hard problem to two

easy ones. It is designed so that we can solve for u in two steps:

" Solve, by forward substitution, the system Lc = b for a vector, c, of unknowns.

* Solve, by back substitution, the system Ru = c for (a permutation of) the

original unknowns, u.

So, for our example, the first step is to solve

1 0 0 01 [B]_ __[~Lc = 5/ , =Q b = - = , (3.51)
1 9/37 1 0 C3 - 17 ] 3

5/9 1/37 15/61 1 c4 0 I i
Forward substitution, applied to this system, yields

Cl 13
C 2 -110/9 (
C3 -1000/37

C4 -15/61
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Now we know c, so we can solve the second triangular system, Ri- c for fi by back

substitution

9 7 2 4 [1 13
[0 37/9 26/9 34/9 t72 -110/9
0 0 122/37 114/37 V3 -1000/37 = c (3.53)

0 0 0 -15/183 t74 -15/61

which yields

(3.54)V 3 = -11
143

Now it is easy to recover u. Since we have defined ii = pTu, we know

that Pfl = u (a simple rearrangement of the elements that we have already found).

We apply P to i and find that

0 0 1 0 -i t5, 3 -11

Pi= 0 0 (3.55)0 1 0 0 6 3 = V2 2

1 0 0 0 . t4 t 1 1

Comparing this to earlier solutions, we find that GF has arrived at the same solution.

In these examples, the notion of elimination was developed first. The

GE process performs successive eliminations beneath its pivots and reduces A to

triangular form, and then the solution is available in only n2 flops. GF spends

an almost identical amount of work in the reduction process, but the result is a

factorization with L and R being the significant factors. (They are the only ones

that are more than a permutation of the identity). In the examples, we used pivoting

because it was practical. Now let us take a closer look at the justifications for

pivoting.

60



F. PIVOTING FOR SIZE

The issue of pivoting is a very interesting and important one. We concluded that

we must pivot or face the possibility of attempting to divide by zero, an unacceptable

option. To solve this problem, we may pick any nonzero element in A(k: m, k: n)

and perform the column and row interchanges required to install it as the new pivot

(k is the pivot index). There are many strategies that we could adopt.

The logical question would be something like: "Given that we must pivot, what

is the best means available?" But the answer is not so easy, and there are many

trade-offs to be considered. We are faced with choosing along a spectrum, where

speed lies at one end and accuracy lies at the other. For instance, we could begin a

search and pick the first nonzero element in this area. Or, we could search for the

row with the most nonzero elements (that had a nonzero element in the kth column).

The two most common strategies for pivoting are the partial and complete meth-

ods, which we have discussed. We determined that partial pivoting would work per-

fectly (with no error) if A was nonsingular and the storage and arithmetic could be

handled with infinite precision. If infinite precision were available, we could stop

right here. There would be no need to try to refine the method. In a finite-precision

machine, however, we must deal with the issue of errors.

To deal with errors, the problem must be stated more precisely. The errors

that concern us would arise due to growth of the elements of L and/or R as we step

through the stages of Gauss. In the end, partial pivoting guarantees that all of the

elements of L will be, at most, unity. This is easy to see. The pivoting strategy

chooses each pivot to be the largest element (in absolute value) in column k at or

below row k. This value is installed at A(k, k) and everything below the pivot is

divided by the pivot.
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Unfortunately, partial pivoting cannot make the same guarantee for the ele-

ments of R. It helps: the multipliers are less than or equal to one in absolute value.

The elements of R are bounded by 2n-1a, where a is the largest absolute value of

the elements in A. This bound is not normally attained "in practice". [Ref. 23]

Growth is an indicator of trouble in this process. If we cannot control it com-

pletely, we should, at a minimum, monitor it. The growth factor, g(n), of a Gauss

factorization process for A E RnX is defined as follows. Let a be the largest absolute

value in the original matrix, A. Let b be the largest absolute value that occurs in

any Gauss transform, G, including the first one, G = A. Then g(n) = b/a gives a

growth factor normalized by a (i.e., g(n) > 1).

A great deal of analysis has been done on this subject. Wilkinson showed

that, with complete pivoting and real matrices, g(n) grows much more slowly than

2". He conjectured that g(n) < n. The latter has recently been disproved, with a

counterexample by Nicholas Young. [Ref. 23]

As a practical matter, when one seeks to monitor growth one uses complete

pivoting. To consider performance, one uses the partial pivoting strategy. The

growth factor, g(n), is easy to monitor with a complete pivoting strategy since we are

moving through the entire Gauss transform area at each stage anyway. For clarity,

the pivoting algorithms and the Update algorithm are listed separately in this

chapter. In real code (e.g., Appendix F), however, the pivot for stage (k+ 1) should

be located during the update of G in stage k (to avoid unnecessary passes through

the matrix). This would mean extra work in the partial pivoting algorithm. Since

the primary reason for using partial pivoting is performance, it is counterproductive

to monitor g(n) while using partial pivoting. A description of both pivoting policies,

in algorithm form, follows.

62



Algorithm 3.1 (Partial Column Pivoting for Size) Given the matrix of coef-
ficients, A E Rmn; a permutation vector, q E Rm; and an index, k, indicating the
pivot column, this algorithm performs partial pivoting. First, the pivot element is
located at A(s, k) with s > k. Once the pivot has been located, rows s and k are
swapped to install the new pivot. Additionally, elements in q, indexed by s and k,
are swapped to record the row interchanges.

begin PP

s =k;

for i = (k+ 1): m

if (IA(i, k)I > IA(s, k)j)

s =i;

end if

end for

if (s $ k)

for j = : n

x = A(k,j);

A(k,j) = A(s,j);

A(s,j) = x;

end for

i =q(k);

q(k) =q(s);

q(s) = Z;

end if

end PP
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Algorithm 3.2 (Complete Pivoting for Size) Given the matrix of coefficients,
A E mxn; permutation vectors, p E R?" and q E Rm; and an index, k, indicating the
pivot row and column, this algorithm performs complete pivoting. First, the pivot
element is located at A(s,t). Once the pivot has been located, rows s and k and
columns t and k are swapped to install the new pivot. The permutation vectors are
updated accordingly.

begin PC

s =k;

t =k;

for i = k: m (locate the pivot)

for j = k :n
if (jA(i,j)j > IA(s,t)l)

s=

t=

end if

end for

end for

if (s j k) (row interchanges)

for j = 1 :n

x = A(k,j); A(k,j) = A(sj); A(s,j) =;

end for

i = q(k): q(k) = q(s); q(s) = i;

end if

if (t # k) (column interchanges)

for i = : m
x = A(i,k); A(i,k) = A(i,t); A(i,t) =x;

end for

i = p(k); p(k) = p(t); p(t) =

end if

end PC
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G. SEQUENTIAL ALGORITHMS

The examples considered have described the Gauss process. We first considered

elimination (GE) and then a factorization method (GF). Both methods require work

of the same order, so the latter, yielding a factorization of A is much preferred.

Algorithms for the GF process are described below. The arithmetic in the Gauss

transform area, G, is performed the same (regardless of pivoting strategy) so a

separate algorithm is given for updating G. The algorithms GFPP (pivoting, partial)

and GFPC (pivoting, complete) are given following the updating algorithm. These

algorithms are adapted from Gragg [Ref. 23].

Algorithm 3.3 (Update Gauss Transform Area) Given the matrix of coeffi-
cients, A E R,"Xn; and k, the pivot column, this algorithm performs the appropriate
arithmetic throughout the pivot column and Gauss transform area, G, of A.

begin Update

x = A(k, k); (x is the pivot value)

for i = (k + 1): m (pivot column division)

A(i, k) = A(i, k)/x;

end for

for i = (k + 1) : m (arithmetic in G)

x = A(i, k); (now x is the multiplier)

forj n

A(ij) = A(ij) - x x A(k,j);

end for

end for

end Update
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Algorithm 3.4 (Gauss Factorization with Partial Pivoting) Given the matrix
of coefficients, A E 3,lnx,, this algorithm modifies (overwrites) A with a unit lower
triangular matrix (with an implicit diagonal), L E R x

n
, and an upper (right) trian-

gular matrix, R E R, xn having nonzero diagonal elements (the pivots). The process
also forms the row permutation vector, q, and the corresponding permutation matrix,

Q E Rnxf, that results from partial column pivoting for size. The algorithm gives
the factorization: QTA = LR.

begin GFPP

n = ord2r(A)

Q = zeros (n, n)

for j = : n

q(j) = j; (initialize q)

end for

for r = 1 : n (the Gauss process)

PP(A, q. k) (pivoting)

if (A(k,k) = 0)

print "A is singular!"

exit

end if

Update(A, k) (Update G)

end for

for j = : n

Q(q(j),j) = 1.0;

end for

end GFPP
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Algorithm 3.5 (Gauss Factorization with Complete Pivoting) Given a ma-
trix of coefficients, A E RmXn, the following algorithm modifies (overwrites) A with
a unit lower trapezoidal matrix (with implicit diagonal), L E 3?7,, and an upper
(right) trapezoidal matrix, R E mn ,. The diagonal elements of R are nonzero (piv-
ots). The process forms permutation matrices, P E RlX,, and Q E Rx, to reflect
the complete pivoting for size. These matrices are formed to satisfy the LR Theorem:
QT AP = LR.

begin GFPC

m = rows(A); n = cols(A); (initialization)

P = zeros(n,n): Q = zeros(m, m);

for j = : n

p(j) = j;
end for

for *= 1 :rn

q(i) = i;

end for

for r = 1 :n (the Gauss process)

PC(A, q, k) (pivoting)

if (A(k, k) = 0)

print "A is singular!"

exit

end if

Update(A, k) (Update G)

end for

for j = 1: n

P(p(j),j) = 1.0; (form P)

end for

for j = 1 :m

Q(q(j),j) = 1.0; (form Q)

--nd for

end GFPC

67



H. CONJUGATE GRADIENTS

Time permits only a brief synopsis of the method of conjugate gradients (CG).

This method was described by Magnus R. Hestenes and Eduard Stiefel [Ref. 18].

CG possesses some very nice characteristics and it is quite different from the Gauss

method. Once again, we begin with a system of linear equations

Au = b (3.56)

The algorithm given by Hestenes and Stiefel is designed for A E R,x,' symmetric

and positive definite (Appendix A). Let s E R be the vector that would solve (3.56)

exactly, so that As = b. Let ui E R' be the estimate of the solution, s, produced

in the it" iteration. The original estimate, uo, is merely a guess (it may be a good

guess). For instance, in the absence of better information, we could choose u0 to be

the vector of all zeros or all ones.

The CG process takes our initial guess and develops a (guaranteed) better

estimate for the next stage. To measure the progress, we could use the residual

vector

r, = b - Aui (3.57)

but Hestenes and Stiefel warn that its Euclidean norm, 11 r, 112, may actually increase

in every step but the last! A more reliable measure, called the error vector

ei = s - u, (3.58)

has monotonically decreasing length. After n iterations of the CG process, we are

guaranteed to have a very good estimate ut of s. In fact, if no rounding errors

occur, we have un = S. In practice, CG can find a very good estimate, urn, of s

in m iterations, with m < n. The process "terminates in at most n steps if no

rounding-off errors are encountered." [Ref. 18: p. 410]
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The algorithm below is adopted from Hestenes and Stiefel [Ref. 18]. Before

considering the algorithm, however, we should define the key term, conjugate. For

A symmetric, two vectors x E Rn' and y E R are said to be A-orthogonal (or

conjugate) if the relation xTAy = (Ax)Ty = 0 holds [Ref. 18: p. 410]. This is

an extension of vector orthogonality, xTy = 0. The algorithm given below is very

simple. The iteration blindly proceeds from i = 0 to i = n. A more sophisticated

(finite precision) scheme would set a tolerance (notion of "good enough") and stop

(exit the loop) when this criterion was satisfied.

Algorithm 3.6 (The Method of Conjugate Gradients) Given the symmetric,
positive definite matriz of coefficients, A E Rn,, ; and an initial guess, uo; for the
solution, s; of the system Au = b, this algorithm (in the absence of round'ng-off
errors) finds ui = s in i iterations (i < n). The algorithm keeps track of a residual
vector, ri, and direction vectors, pi. The residuals, ri, are mutually orthogonal and
the direction vectors, pi are mutually conjugate (A-orthogonal).

begin CG

u0 =zeros(n) (arbitrary initial guess)

Po = r0 = b- Auo

for i = 0 : n

= pTAp, (denominator used below)

ai = (pTri)/6 (scalar multiplier used below)

u,+i = u, + aip, (estimate of solution)

r,+1 = r, - aAp, (residual vector)

(rtr,)/b

Pj+1 = r,+ + ,3p, (direction vector)

end for

end CG
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I. SUMMARY

This chapter develops the Gaussian elimination process, the Gauss factoriza-

tion process, pivoting strategies, and (briefly) the method of conjugate gradients.

Each of the corresponding algorithms possesses potential for parallel solution. A

parallel implementation of GF appears in the following chapter. Both partial and

complete pivoting are pursued, with further discussion on their implications in a

parallel environment.
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IV. PARALLEL DESIGN

Nature is pleased with simplicity, and affects not the pomp of superfluous
causes.

- SIR ISAAC NEWTON (1642-1727)

Sequential algorithms for Gauss factorization (GF) and the method of conjugate

gradients (CG) are establishcd in Chapter III. The goal of this chapter is to show

parallel algorithms for Gauss factorization. The C programs that implement these

algorithms are discussed in Chapter V and listed in Appendix F.

Parallel algorithm design is a process that includes many considerations. The

question of how to achieve parallelism is largely an art and is not discussed here.

The method used in this research is often called a workfarm approach because the

algorithm farms out work to processors. Equivalently, it may be called a manager-

worker model. When we distribute the problem across many processors in a workfarm

style, there are quite a number of issues that warrant careful consideration. The

concerns associated with programming a parallel machine-even with a relatively

simple model such as this-could occupy volumes.

Communications, load balancing, granularity, and other considerations abound.

Metrics like speedup and efficiency should be used to lend credibility to the parallel

nature of the algorithm. Additionally, we should consider the usual issues of main-

tainability, readability, portability, and other traits commonly associated with good

(sequential) programming practice. Parallel codes must be clear combinations of

sequential codes that are joined together in a logical manner. Simplicity should hold

a place of great esteem in a parallel algorithm. The rest of this chapter introduces

the issues of parallel design, particularly as they pertain to Gauss factorization.
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A. INTERPROCESSOR COMMUNICATIONS

Interprocessor communication is one of the most fundamental issues in parallel

processing and, quite possibly, the most involved. Without a means of communicat-

ing (in a message-passing environment), the multiprocessor system is meaningless.

The implications of any communications scheme are many and the interactions can

be quite complex. Exhaustive coverage of this issue is out of the question, so we will

consider a few of the most essential ideas.

1. The Network

A network is the part of a multiprocessor system's hardware that bears

the interprocessor communications burden. It is a combination of nodes and links

that connect those nodes, and it is the foundation upon which all communications

must build. We will also refer to the nodes of a multiprocessor-using somewhat

loose terminology-as processors. The term node is a more general term. Nodes

are typically more sophisticated than a simple central processing unit (CPU) or, for

that matter, any other sort of processor. The link is a wire that connects two nodes.

An interconnection topology describes the pattern of links used to connect the nodes

of a network. The network can be drawn or illustrated so that we can see how its

nodes are connected. Appendix C discusses interconnection topologies and it gives

a description (and illustrations) of the particular scheme used in this research: the

hypercube.

Intel combines an 80386 CPU with an 80387 math coprocessor and commu-

nications facilities to form a "CX" node for the iPSC/2 that was used in this research.

INMOS provides the same general capabilities but packages it all on a (very sophis-

ticated) single chip, called a transputer. Figure 4.1, from INMOS' T9000 Transputer

Products Overview Manual [Ref. 25: p. 31], shows a high-level block diagram of the
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components of a T9000 transputer. Thus, any node of a message-passing multipro-

cessor system can be thought of as a combination of computing and communications

facilities. It may possess other capabilities as well.

2. Message Routing

The machines used in this research exhibit different message transmission

schemes. The transputer system employs high-speed (20 megabits per second) point-

to-point serial communications and store-and-forward message passing. That is, for

multi-hop communications, each node along the way must receive the message, store

it in local memory temporarily, and then pass it to the next node in the route.

The Intel iPSC/2 uses another technique, called circuit switching or direct-

connect communications. This approach is much like our telephone system. First,

the originator of the message sends a small message containing information about

the message (e.g., destination node number, length of message) to the destination

via the nodes in-between. As this small header packet makes its way to the destina-

tion the nodes along the way flip switches, closing a circuit from the sender to the

receiver. Once this circuit is established, the message proceeds from the sender to

the destination without interruption.

Each method has its advantages and disadvantages. The circuit switching

approach allows for fewer interruptions along the way, but it ties up the entire path

for the duration of the communication. The store-and-forward method imposes

delays for storing the message into, and then retrieving it from, the memory of every

node along the way. (A more complete description of these two techniques, together

with experimental results, is given in Appendix B). For the algorithms employed in

this research, almost all communications were "nearest neighbor" in the hypercube.

In this case, the two approaches to message routing are insignificant and the nearest

neighbor performance becomes more important.
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3. Concurrent Computing and Communicating

The nodes of a multiprocessor machine should be able to both compute

and communicate efficiently and concurrently. This is no small undertaking. The

computing side must access memory to accomplish its mission, but the message-

passing begins by drawing data out of memory and ends by storing data into mem-

ory. Therefore, at a minimum, we have competition related to memory accesses.

Furthermore, the computing and communication must be synchronized to some ex-

tent. The algorithms used in this research used blocking communications--described

in Appendix E-which enforces synchronization.

There are overheads associated with communications and this synchroniza-

tion problem. Bryant showed how transputers perform under various communica-

tion loads [Ref. 261 and this is mentioned in Appendix E. The issue of overheads

is one that Charles Seitz considered for the "Cosmic Cube." Much, but not all, of

the overhead is communication-related. Seitz listed three of the major problems

[Ref. 27: p. 28]:

(1) the idle time that results from imperfect load balancing, (2) the wait-
ing time caused by communications latencies in the channels and in the message
forwarding, and (3) the processor time dedicated to processing and forwarding mes-
sages, a consideration that can be effectively eliminated by architectural improve-
ments in the nodes.

Included in these costs, we should also recognize that some amount of time is required

for the processor to perform "context switching" (changing jobs) and/or coordination

with a special-purpose processor that we might call the communications manager.

Although the issue of concurrent communication and computing is a very

complex one, we may consider significant issues that are related to the efficiency of

communications and the effect upon the processor. Geoffrey Fox presents the notion

of comparing communications ability to processing ability [Ref. 28: pp. 50-51). Let

tcalc be "the typical time required to perform a generic calculation. For scientific
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problems, this can be taken as a floating-point calculation a = b x c or a = b + c."

Furthermore, let tmm be "the typical time taken to communicate a single word

between two nodes connected in the hardware topology." Then the ratio

tcomrn

tcale

is a general characteristic of a particular system that can be quite useful in comparing

machines. Fox uses this ratio in much of the rest of his work.

A parallel machine must necessarily possess a capable communications sub-

system, but this is not enough. The program should also make prudent use of the

communications facilities. This means that the programmer and/or compiler must

exhibit a good understanding the machine's communications abilities and weak-

nesses. Some characteristics are nearly universal. Most machines, for instance,

reward the use of long messages because there is an overhead-nearly independent

of message length in many cases-to sending any message. Other characteristics are

very much machine-dependent. This means that the programmer should be rela-

tively familiar with the communications abilities and characteristics of the target

machine.

4. Accessing the Clock

The ability to accurately measure the time required by communications

and computations, preferably at the host and every node in the system, is absolutely

essential in a multiprocessor environment. Profiling, in a sequential program, allows

us to compare the time required by various parts of a program. Timing in a parallel

environment allows us profile the code. Thus we can determine the time required for

instructions, loops, functions, or communications.

Profiling is an even more important practice for parallel coding than it is in

the sequential case. The only way for a parallel program to be useful is if it can be
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can be implemented efficiently upon an acceptable number of processors. That is,

in general, the only object in choosing a multiprocessor system over a sequential

machine is the speed with which computation can be performed. One of the best

tools available to the parallel programmer is the ability to see where and how much

time is being spent.

At a minimum, we need the ability to sample a clock with reasonable preci-

sion. Both machines and compilers used in this research provide this capability (see

timing.h in Appendix F for details). The transputers offer a choice of frequencies:

the clock associated with low priority processes has a period of 64 microseconds and

the high priority clock offers one microsecond ticks. The iPSC/2 mclock() function

gives time in milliseconds.

B. METRICS FOR PARALLEL COMPUTING

1. Complexity

Perhaps the most obvious measures for a parallel algorithm are simply

those that we use for sequential algorithms. We want to keep time and storage

requirements to a minimum. Perhaps the major difference in complexity analysis

for a parallel algorithm is that we are primarily interested in a per-processor notion

of complexity. If the problem has been farmed out in a fair manner, complexity

analysis for the parallel case is merely an extension of the sequential case.

Consider the matrix A E 3Z", ". Suppose that its elements are 8-byte,

double-precision, floating-point values (type double in C). Let Alp denote the total

memory (in bytes) required to store A on p processors and let Tp denote the time

required for p processors to solve the system characterized by A. Then M, = 8n 2

bytes of storage, but (ideally) Ms = n2 . \When the problem is distributed across p

processors simultaneously, the processors can share the storage burden.
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Exceptions abound. For certain problems, it may actually be convenient

(faster or more reliable) to store the entire matrix at each processor. Nevertheless,

in most cases we would like to minimize local memory requirements. The Gauss

factorization algorithm considered near the end of this chapter is no exception. In-

deed, the transputers used in this work had only 32 kilobytes of storage each and

the results of Chapter VI for transputers show how this can dictate the size of the

problem that can be executed. The concepts of time and storage complexity have

been developed in detail for sequential algorithms and they seem to hold a place in

parallel algorithm assessment as well. We consider other measures that have been

developed for parallel computing in the following section.

2. Contemporary Measures

The concepts of speedup and efficiency (Appendix A) are two of the most

common performance measures currently associated with parallel computing, with

the ideal case (100% efficiency) yielding Ip = tj/P on a P-processor system. Selim

Akl proposes the following criteria for analyzing algorithms [Ref. 29: pp. 21-28]:

* Running Time: Running time t(n) is the time required to execute an al-

gorithm for a problem of input size n. Akl lists three ways to express this

notion. First, we may count the steps in an algorithm. Akl distinguishes be-

tween computational steps (i.e., something like flops) and routing steps that

are associated with interprocessor communication. Second, we have lower and

upper bounds (e.g., the complexity notation presented in Appendix A). Fi-

nally, we have speedup. Aki gives the usual definition of speedup but clarifies

it somewhat (details below).
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o Number of Processors: Second in importance, Akl considers the number of

processors required by an algorithm. He uses p(n) to denote the number of

processors required for a problem of size n.

o Cost: Akl defines the cost, c(n) for a parallel algorithm as the product of the

first two factors. That is, c(n) = t(n) x p(n).

* Other Measures: In this category, we have no less than three other qualities

of a parallel system that deserve consideration. The area (i.e., chip real estate)

required by the processors is significant. The length of the links, as well as

any patterns figures in (regularity and modularity). And finally, the period

between processing different elements of an input is important.

Apparently metrics for parallel computing are still developing. There are several

very useful concepts such as speedup and efficiency. The definition of speedup, at a

first glance, is rather standard. It doesn't take much probing, however, to find that

different authors make different assumptions. Akl defines speedup S in the usual

manner.

S- tj (4.1)tp

except that he is somewhat more specific about the times. He defines t1 as the

"worst-case running time of fastest known sequential algorithm for problem" and tp

as "worst-case running time of parallel algorithm." [Ref. 29: p. 241 He has been

more specific than most authors, but it seems likely that the algorithms, method of

obtaining times ti and tp, and systems should also be specified. Speedup is defined

loosely in most cases. A parameterization to accompany speedup would be tedious,

but useful. Until speedup becomes a standard term with accepted meaning, we shall

have to specify exactly what it means. We should be more careful with this term.
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3. Other Ideas

Akl has appropriately distinguished between computational steps and rout-

ing steps. The term floating-point operations (flops) has become quite popular (along

with benchmarks) and this is a useful means of expressing the computational ability

of a machine (for floating-point applications). The notion of routing, however, is

somewhat vague. Nevertheless, this idea must be addressed. It should probably

become more specific as we talk about similar machines.

The machines used for this research were MIMD message-passing systems.

We can get much more specific about "routing steps" for such a machine. First, using

the clock as a stopwatch, we can profile any segment of code (including calculations

and/or communications). An implementation specific version of Fox's tcom/tcalc

ratio can be instructive. It is important to apply this ratio to the hardware as Fox

defines it, but it is equally important to recognize the role of the software (algorithm).

That is, for some specific implementation, we should be interested in finding some

measure of how much time is spent communicating and how much time is spent

computing. More specifically, a careful profile could be made of a program in the

following manner.

The ratio of cumulative (i.e., over the execution of the entire program) time

spent communicating to time spent computing should be considered as a first cut,

especially if performance (efficiency) is weak. Algorithms such as Gauss factorization

are executed in stages, within a loop of some sort. In this case, the tcomm/talc

ratio per iteration is an interesting figure (and-if the loop represents most of the

program's execution time-this should be approximately equal to the cumulative

figure).

When possible, the analysis of communications complexities should be an-

alyzed carefully. For instance, in the Gauss factorization code that is presented in
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Appendix F, a C structure is used to relay the owner (node id) of a pivot and the

pivot's row, column, and value. This structure is 20-bytes of data and we know

the pattern with which these structures are moved about during the course of the

program. It is important to quantify communication like this when possible. The

vague notation should lose significance in the presence of such concrete information.

There are other important and related ideas. The frequency and volume

of communications traffic is easy to determine with a high degree of accuracy for

algorithms such as Gauss factorization. Once again, in the presence of this kind

of information, we should dispense with vague concepts. It is useful to consider

something like a pie chart showing the various amounts of time spent on each portion

of the major loop in a program. Indeed, this was a part of the development of the

Gauss code given in this thesis. Tools such as these are important in refining parallel

algorithms and streamlining code.

The parallel program designer must consider many other issues regarding

communications. Graph theory notation is a natural tool. A link-by-link analysis

of the communications over the course of a program is not out of the question (espe-

cially if the communication is merely a repetition of very simple messages). Efficient

use of the topology is important. We should consider the percentage of links used,

balancing of the communications load, frequency of traffic for each link (o'ten the

communication comes in bursts and often between iterations of the basic algorithm),

fiow rate (in bytes per second) for each link during the bursts or over longer periods

of time, timelines showing dependencies, and other specific characteristics of commu-

nications. Analysis should be done on a per-stage basis for algorithms that exhibit

iteration (loops).

Perhaps most importantly, a plan for interprocessor communication should

begin well in advance, before the code is ever written. A reactive approach is neces-

sary, like debugging code. But a proactive, strong design effort can simplify matters.
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The notion of communicating sequential processes (CSP) deserves attention. This

model is due to C. A. R. Hoare [Ref. 30], and it is never far away in the world of trans-

puters. There is a very close relationship between transputers, occarn (their native

language), and CSP. CSP is a useful paradigm for this sort of (message-passing)

machine. When possible, a problem should be logically separated into processes.

The division of the problem should be natural, so that every process represents a

logical group of tasks. The processes are allowed channels to communicate, and these

channels are implemented as either links in hardware or buffers in memory if, for

instance, two processes on the same processor wanted to communicate.

If a problem is designed correctly, we should have substantial amounts of

work within a process and minimal interprocess communication. If the processes and

channels are represented as the nodes and edges of a directed graph, we can make

use of some nice tools and theorems from graph theory. For instance, we should like

to maximize computation and minimize communications. One natural method is to

begin with atomic processes and start to build.

Suppose that we have many such processes (at least as many as processors)

and we represent them as the nodes of a directed graph. We can assign the processes

(nodes) a weight that reflects some form of computational difficulty. This should be

a fairly concrete number, assuming that the task (process) is well-defined. It might

be the number of flops per iteration, for example. Next, the channels should be

clearly indicated as weighted, directed edges. The weight should usually be a very

concrete number as well, like the number of bytes that passes along that channel

between each stage of a computation.

This model gives the problem the sort of order that is necessary to keep

the parallel design simple, logical, and formal (i.e., friendly for proof of program

correctness). Once the problem has been expressed in such a manner, there are

many options. For example, we could consider minimum cuts of the flow rates to
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decide how to efficiently apportion processes to processors. This mapping alone could

greatly enhance the performance of code.

It seems that much of the work in this area is rather imprecise and generally

unacceptable. Granted, parallel design methodology is a relatively recent problem

but it can be improved substantially. Good parallel designs that consider these kinds

of issues and express them clearly will likely be in high demand as parallel computing

machinery develops.

C. PARALLEL METHODS

The wide-ranging capabilities of contemporary computing machinery are evi-

dent. An exhaustive list would demand pages, but most readers could readily name

several applications that bear little resemblance to each other. For a single, very spe-

cific machine there is almost no limit to the combinations of sequential instructions

that it may carry out. Put another way, a particular machine can be designed and

built in a few months or years depending upon the level of sophistication involved.

But the different types and purposes of software that may be created to run on that

single machine are nearly limitless. Consider Householder's comments on the art of

computation [Ref. 17: p. 1]:

If a computation requires more than a very few operations, there are usually
many different possible routines for achieving the same end result. Even so simple
a computation as ab/c can be done (ab)/c, (a/c)b, or a(b/c), not to mention the
possibility of reversing the order of the factors in the multiplication. Mathemat-
ically these are all equivalent; computationally they are not (cf. §1.2 and §1.4).
Various, and sometimes conflicting, criteria must be applied in the final selection
of a particular routine. If the routine must be given to someone else, or to a com-
puting machine, it is desirable to have a routine in which the steps are easily laid
out, and this is a serious and important consideration in the use of sequenced com-
puting machines. Naturally one would like the routine to be as short as possible,
to be self-checking as far as possible, to give results that are at least as accurate as
may be required. And with reference to the last point, one would like the routine to
be such that it is possible to assert with confidence (better yet, with certainty) and
in advance that the results will be as accurate as may be desired, or if an advance
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assessment is out of the question, as it often is, one would hope that it can be made
at least upon completion of the computation.

- ALSTON S. HOUSEHOLDER

Parallel algorithms are combinations of sequential ones, so their complexity

can grow quickly. In general, the hardware issues surrounding parallel problems

are mature and straightforward. Software, on the other hand, is developing and

generally difficult to use.

In addition to the familiar design considerations for a straightforward sequential

algorithm, the design of a parallel solution must specify:

" An awareness of the interaction between processing and communication. Fre-

quency and duration (message length) of communications should be known, if

possible. Additionally, we should know how this compares to the frequency

and duration (flops) of computing work.

" A plan for interprocessor communication; including hardware and software.

" A scheme for memory usage.

* The granularity of the problem (i.e., should the processors be given larger or

smaller "chunks" of work at a time).

" Load balancing among several processors.

" A method for accessing input/output resources.

This is a very high level look at the problem. The issue of communications alone,

can be more than half of the problem. The simplicity of this short list does not do

the problem justice. Correct execution, as in the sequential case, is very important.

But parallel algorithms are subject to the added scrutiny of performance data (e.g.,

efficiency).
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The methodology for constructing parallel algorithms is a very creative process,

and there are many questions that can be asked. Is a highly efficient parallel solution

possible, or is the problem bound by dependencies and sequential work? What is

the ratio of time spent communicating to time spent computing? How nearly does

a given algorithm approach the optimal solution? What would happen on some

other number of processors? Are there any bottlenecks that can be eliminated?

Nevertheless, the current performance of parallel machines and the promise of fu-

ture architectures is more than adequate motivation to continue developing these

products.

D. ALGORITHMS

With the preceding concerns in mind, let us consider the algorithm for Gauss

factorization that was used in this work. The algorithm is given at a very high

level because detail can be gleaned from Chapter V and from the actual code in Ap-

pendix F. The first consideration for GF was "How should the work be distributed?"

There are many options. The matrix could be distributed by rows, or columns, or

blocks. The method chosen in this case was a distribution of the columns of A across

the nodes of the machine. The columns were distributed so that column j went to

processor number j (mod P) in a P-processor network.

Such a distribution scheme seems natural for several reasons. First, the work

associated with the Gauss process moves toward the lower right-hand corner of the

matrix A E K" ' . By using a modulus assignment, and assuming that n > P, we

have a situation where the load on the processors is nearly balanced for most of the

process. Second, a column-oriented assignment places the pivot column on a single

node at each stage. This makes division by the pivot value a simple task. It is

interesting to note that a similar distribution of A by rous would have merit as well.
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Once the matrix has been distributed, the code simply moves, in a synchronized

fashion, from stage to stage of Gauss. At each stage, we must pivot according to

some strategy. The complete pivoting showed especially poor performance since it

involved a great deal of communication and synchronization between stages. The

partial pivoting method allows us to determine which node will have the pivot and

much less communication is required when this node simply broadcasts the pivot and

pivot column. After the pivot node divides every element under the pivot by the

pivot value, it broadcasts the entire pivot column to every other processor. When the

processors obtain the pivot column, they use the multipliers to perform arithmetic

in the Gauss transform area, and then proceed to the next stage.

The following algorithms give an overview of the programs that appear in Ap-

pendix F.

Algorithm 4.1 (Parallel GF: Host) At this level, the host code is essentially the
same for both partial pivoting and complete pivoting. The program is very simple:
distribute the columns, and then accept them back one-by-one. Let A E R'xn be
the matrix of coefficients, and let P be the number of processors. This algorithm
forms the modified copy of A by overwriting the original copy. After the nth column
is returned from the nodes, we have the factored version of A that can be separated
into L and R in the usual manner.

begin GF (Host)

for j = 0 : (n - 1)

send A(:,j) to node (j mod P)

end for

for r = 0:(n- 1)

receive A(:, r) from node (r mod P)

end for

end GF (Host)
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Algorithm 4.2 (Parallel GFPP: Nodes) Let A E RX' be the entire matrix
(held at the host). This algorithm is executed on each node in a P-processor network.
Let the node number be N and let AN E 3,mNX, be the local copy of select columns
of the matrix A (where MN . m/P is the number of columns held locally). Let GN
be that part of the Gauss transform area, G, that is held locally. This node receives
every column, j, of A where (j mod P) = N.

begin GFPP (Nodes)

for j = 0: (nN - 1)

receive column and place in AN(:,j)

end for

for r = O: (n- 1)

if (r mod P) = N (pivot is held locally)

perform partial pivoting

broadcast pivot row index, s, to all nodes

perform pivot column arithmetic

broadcast pivot column to all nodes

else

receive pivot row index, s, and perform row interchanges

receive broadcast of pivot column

end if

ifN =0

send pivot column to host

end if

perform arithmetic in GN

end for

end GFPP (Nodes)
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Algorithm 4.3 (Parallel GFPC: Nodes) Let A E R-x, be the entire matrix
(held at the host). This algorithm is executed on each node in a P-processor network.
Let the node number be N and let AN E RmNxn be the local copy of select columns
of the matrix A (where mN Z m/P is the number of columns held locally). Let GN
be that part of the Gauss transform area, G, that is held locally. This node receives
every column, j, of A where (j mod P) = N.

begin GFPC (Nodes)

for j = 0: (in - 1)

receive column and place in AN(:,j)

end for

for r = O: (n - 1)

locate best (local) pivot candidate

elect pivot (let node Np hold the winner of the pivot election)

if (Np = N)

broadcast pivot indexes, (s, f), to all nodes

perform pivot column arithmetic

broadcast pivot column to all nodes

else

receive pivot indexes, (s, t)

perform permutations

receive broadcast of pivot column

end if

if N = 0
send pivot column to host

end if

perform arithmetic in GN

end for

end GFPC (Nodes)
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V. IMPLEMENTATION

A. ENVIRONMENT

Chapter IV introduces parallel algorithms for Gauss factorization (GF). The

GF algorithms are produced for partial and complete pivoting strategies. All of

the programs associated with this research are written in parallel versions of the C

language and executed on two types of machines at the U. S. Naval Postgraduate

School. The Math Department's iPSC/2 afforded eight of Intel's CX type processors

arranged in a hypercube topology. The Parallel Command and Decision Systems

(PARCDS) Laboratory in the Computer Science Department has more than seventy

transputers available for the experiments. The discussion below gives a more exact

description of the material and equipment used in the work.

1. Hardware

This section describes the machines upon which the work was carried out.

A general knowledge is assumed, including familiarity with the Intel 80386 micropro-

cessor, 80387 math coprocessor, and INMOS transputers. Some of this information

is provided in Appendix B.

The hardware used in this research represents the state-of-the-art for the

mid-to-late 1980s. These machines are quickly becoming outdated-fitting the his-

tory of computing-but both INMOS and Intel have more recent, competitive prod-

ucts in today's market and fine prospects for future machines. So, while they are

a bit dated, the products used in this research represent important contemporary

parallel architectures.
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HOST

Figure 5.1: Hypercube Interconnection Topology: Order n < 3

a. Networks of Transputers

The majority of the research was performed upon hypercubes of order

n E {0,1,2,3}. These are the usual hypercubes (see Appendix C) and each is

imbedded in the 3-cube. Figure 5.1 shows this topology. Some of the transputer

work for this thesis was performed by a network of sixteen IMS T800-20 transputers

connected in nearly hypercube fashion (Figure 5.2). This is not identical to the 4-

cube, so it will be called the hybrid cube (it is used as a root with two subtrees that

happen to be 3-cubes). The subtrees of the hybrid cube can be distinguished by the

first bit. One of the 3-cubes has labels like Oxxx; the other is labeled lxxx.
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The rationale behind building the hybrid cube is purely practical. The

transputers have only four links. Assuming that we define nodes of the hypercube to

be a single transputer, a pure hypercube of order four would be a closed interconnec-

tion scheme with no opportunity for input or output to or from the system. Here,

the root node has been inserted between nodes zero (0000) and eight (1000). While

this deals a horrible blow to the elegance of hypercube algorithms-particulaxly

communications-it can be used effectively.

The hardware for the hybrid hypercube is configured with code by Mike

Esposito [Ref. 311. This gives us sort of an unlabeled version of the structure that

appears in Figure 5.2. To make use of this configuration, the nodes must be labeled

in a logical fashion. The Gray code (Appendix C) is a reasonable choice for labeling

the nodes. The actual labeling is accomplished by a Network Information File (NIF)

when the transputers are loaded by the Logical Systems C Network Loader, LD-

NET. A more detailed description of this process is contained in the file named

hyprcube.nif in Appendix F.

Networks of transputers use point-to-point communications across bidi-

rectional links. The links for this work operate at 20 megabits per second (bidirec-

tionally). That is, ten megabits per second is a peak unidirectional transmission

rate. Current transputer implementations employ a store-and-forward approach to

message passing (see Appendix B) for multi-hop transmissions.

b. Intel iPSC/2

The iPSC/2 used for this research contained eight processors of the

"CX" type (80386/80387 combination). The host is an 80386--based IBM-compatible

personal computer running AT&T UNIX System V (version 3.2). The nodes run a

local subset of UNIX called NX. The host is capable of supporting many users at

once, but each node only supports a single-user.
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Users can request p nodes, where p = 2" for n E {0, 1,2, 3}. If another

user does not already have the requested portion of the cube, the request is granted.

As long as nodes remain, another user can access them. For instance, one user could

be working on two nodes and-at the same time-another user could access up to

four others. While the first two users still possessed these six nodes, a third user

could get one or both of the remaining two nodes.

Unlike the transputers, Intel uses a direct-connect circuit switching (see

Appendix B) approach to multi-hop communications. There is an overhead associ-

ated with setting up the path for communication, but this cost is nearly the same

regardless of how many hops the message cross. Once the circuit is established,

the message can proceed directly from the origin to the destination with negligible

interference from intermediate nodes.

c. Host and Root

The notion of host is similar on both machines, but there is a slight

difference. The Intel hypercube is directly connected to the host. The transputer

network, however, uses a substantially different protocol than the typical personal

computer. Transputers employ point-to-point serial communications, using an 11-

bit link protocol with byte-by-byte acknowledgment. The acknowledge is a two-bit

packet with dual meaning. The receiving transputer has begun to receive the byte

and it has storage space for another.

In the transputer case, host means the PC. We use the term root trans-

puter to identify the transputer within the host PC that acts something like a host

to the attached network of transputers. Figure 5.1 illustrates this configuration. An

IMS B004 extension board in the host PC holds a T414 root transputer. The B004

is plugged into the PC's bus and a parallel-serial converter lies between the PC and

the T414. In Figure 5.1 the "host" is a PC and the "root" transputer is the T414.
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The iPSC/2 host is simplified, and could almost be thought of as a combination of

the host and root for the transputer case. Since the entire thesis uses the same pro-

grams for both machines, the root and host terminology can become confusing. As it

is not always convenient to express this difference in painstaking detail, I will use the

terms somewhat loosely. An understanding of the differences between the machines

should serve to eliminate confusion in every case. When only one of the terms (host

or root) is needed, I have used the correct term. When both of the terms apply, I

have used them almost interchangeably and they should be interpreted according to

the machine under consideration.

2. Software

The software for this research was written in the C language. The Logical

Systems C product (version 89.1 of 15 January 1990) was used for the transputer

implementation. For the iPSC/2 work, the C compiler supplied by Intel was used.

B. COMMUNICATIONS FUNCTIONS

Prior to implementing the Gauss algorithms, a substantial communications

package was constructed. Most of the code for communications appears in the files

comm.h and comm.c (see Appendix F). As expected, the header file provides

definitions for manifest constants and specifications (declarations) for tb functions.

An overview of the functions provided in this file is is useful before we discuss the

Gauss code that called these functions.

The cubecast() function supports broadcasts from the host to all the nodes

of a hypercube. Given a hypercube of order n E {0, 1, 2, 3} with p = 2" processors,

this communication is completed in n, or log2(p), stages. This has some utility

in a 3-cube, but imagine the impact in a 10-cube. All 1,024 processors in the

hypercube would have the message after 10 stages of communication. This function
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is especially useful at the beginning of a problem, when data must be shipped to

each of the workers in the network.

Often we need to gather information in the reverse direction, from the workers

back to the root. The coalesce() function is one way to accomplish this task. If no

modification was necessary at intermediate nodes, this operation could be completed

without interference. In the algorithms that I used, however, there was occasion to

modify the information along the way back to the root. For this reason, the gathering

is accomplished using two function calls. First, information is coalesced to a given

node. Upon return from coalesce(), the data exists locally and may be operated

upon. When the data is ready for submission, the submit() function is used to pass

it one step closer to the root.

A modification of the cubecast() function that was useful for the Gauss prob-

lem was cubecast-from(). This function does not assume that the host is the

originator of the broadcast. Instead, the source is specified as the first argument to

this function. The function still performs the broadcast in log2(p) stages, but it uses

the concept of a direction to accomplish this.

The concept of directions in the hypercube turns out to be a fairly useful

one. For concreteness, consider the 3-cube shown in Figure C.2. Starting at

any given node, we can specify a direction using one of the three combinations

d E {001,010, 100). Suppose that the node's label is I and let D denote the exclu-

sive OR operation. Then for some direction, d, the number (I Ed) is the label of the

node in the direction d from the node f.

This concept can be applied in general in a hypercube of order n using n-bit

labels for the nodes and some direction d. The possible directions are all the n

combinations of (n - 1) zeros and a single one in an n-bit number. Accordingly,

the code uses directions d E {1,2, 4,... 2" }. In most cases, when a direction-by-

direction approach is desired for all possible directions, we start with one and use
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the C left shift operator (<<) to produce the other directions incrementally.

These functions and several others are described in detail in the code of Ap-

pendix F, but these basic ideas give us a reasonably good introduction at a level

that is adequate for understanding the algorithms.

C. CODE DESCRIPTIONS

A detailed description of the source code used to implement the algorithms of

Chapter IV is given in the header file gf.h. This header file, located in Appendix F, is

used by both the partial pivoting and complete pivoting codes. The code for GF with

partial pivoting can be found in gfpphost.c, the host program, and gfppnode.c,

the node program. The code for the complete pivoting algorithm is similar except

for the election of pivots, so most of it has been omitted in the interest of saving

space. Only the elect-next -pivot() function remains because it is the significant

difference between the partial and complete pivoting codes. This function appears

in gfpcnode.c.
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VI. RESULTS

A. GAUSS WITH COMPLETE PIVOTING

The host code, gfpchost.c, and the node program, gfpcnode.c, are written

to provide a parallel implementation of Gauss Factorization with complete pivoting.

Since the columns of A are distributed among the nodes of the multiprocessor system,

the selection of each pivot requires communication. The selection process, in this

case, begins with each node selecting its own best candidate for pivot. Once each

of the nodes has made this choice, an election is held to select the best candidate

among all of the nodes.

Implementation details for the election process are described in the source code,

so a detailed description is not given here. Nevertheless, these results show how

communication-like the election process-can withstand efficient parallel program-

ming. This program shows how parallel performance can suffer from the effects of

communications. (Recall Fox's tcom mitcc and Seitz's three components of overhead

from Chapter IV).

The complete pivoting strategy inserts inefficient communications between each

stage of the process. The communications themselves are bound to be inefficient since

the election process finds all nodes of an n-cube participating in an n-stage exchange

of a 20-byte structure (pivot candidates). In addition to the use of small messages,

the election imposes an added measure of synchronization upon the problem. This

allows the processors less independence and forces them to transition between "use-

ful" program execution and communication more frequently. This transition can

become burdensome and the processor can eventually find little time to perform

calculations.
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In addition to the election process, there is a one-to-all broadcast from the

node holding the pivot to inform the others of the pivot column values. With an

rn x m matrix A, this message is essentially a column of m double precision floating-

point values. Doubles for this implementation were eight bytes each, so this is a

unidirectional broadcast of 8m bytes with exponential fanout.

The election process-as simple as it appears-will prove to be an obstacle

that opposes efficiency. Both the iPSC/2 and transputer systems rewarl, in uerms

of transmission rates, the sender of long messages. Short messages are essentially

penalized by the overhead involved in setting up the transmission line and manager.

Let us consider the results of this complete pivoting strategy. The results from the

iPSC/2 appear first followed by the transputer results. The largest dimension, n,

that is recorded is n = 176. The iPSC/2 machine would handle larger problems, but

this seemed pointless since the performance appears to approach maximum efficiency

early.

1. Data for the iPSC/2 System

Table 6.1 shows the timing data for execution of Gauss Factorization with

complete pivoting on the Intel iPSC/2 system.
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TABLE 6.1: EXECUTION TIMES FOR GF(PC) ON THE iPSC/2

Dimension Time (seconds) on a Hypercube of Order
(n) 0 1 2 3

8 0.126 0.097 0.092 0.155
16 0.716 0.674 0.608 0.744
24 2.208 1.751 1.616 1.568
32 4.627 3.705 3.239 3.149
40 9.246 6.888 5.895 5.250
48 14.888 11.479 9.770 9.109
56 23.686 17.883 15.206 13.796
64 36.123 26.424 22.326 19.957
72 49.227 38.178 31.421 28.460
80 70.546 50.754 42.087 37.810
88 89.210 69.257 56.803 51.148
96 115.473 86.760 72.346 63.954

104 150.915 110.247 91.966 82.680
112 182.475 138.880 114.486 102.266
120 224.458 168.056 139.587 123.683
128 282.491 206.222 170.650 153.379
136 339.076 248.422 208.745 186.205
144 385.623 295.217 241.564 217.099
152 468.763 345.049 281.972 254.538
160 527.953 404.235 331.653 292.352
168 636.004 457.089 381.597 338.464
176 723.596 532.597 449.745 395.008
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TABLE 6.2: SPEEDUPS FOR GF(PC) ON THE iPSC/2

Dimension Speedup on a Hypercube of Order
(n) 1 2 3

8 1.299 1.373 0.813
16 1.063 1.178 0.962
24 1.261 1.367 1.408
32 1.249 1.429 1.470
40 1.342 1.569 1.761
48 1.297 1.524 1.635
56 1.324 1.558 1.717
64 1.367 1.618 1.810
72 1.289 1.567 1.730
80 1.390 1.676 1.866
88 1.288 1.571 1.744
96 1.331 1.596 1.806
104 1.369 1.641 1.825
112 1.314 1.594 1.784
120 1.336 1.608 1.815
128 1.370 1.655 1.842
136 1.365 1.624 1.821
144 1.306 1.596 ].776
152 1.359 1.662 1.842
160 1.306 1.592 1.806
168 1.391 1.667 1.879
176 1.359 1.609 1.832

The speedup data that is shown in Table 6.2 is derived from these execution times.

Speedup was calculated using the usual formula (see Appendix A for details)

for speedup on p processors.
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TABLE 6.3: EFFICIENCIES FOR GF(PC) ON THE iPSC/2

Dimension Efficiency (percent) on a Hypercube of Order
(n) 1 2 3

8 64.948 34.332 10.161
16 53.155 29.441 12.024
24 63.068 34.169 17.603
32 62.451 35.716 18.370
40 67.122 39.215 22.015
48 64.852 38.098 20.431
56 66.225 38.943 21.462
64 68.354 40.450 22.625
72 64.470 39.168 21.621
80 69.498 41.905 23.323
88 64.405 39.263 21.802
96 66.548 39.903 22.570

104 68.444 41.025 22.816
112 65.695 39.847 22.304
120 66.781 40.200 22.685
128 68.492 41.385 23.022
136 68.246 40.609 22.762
144 65.312 39.909 22.203
152 67.927 41.561 23.020
160 65.303 39.797 22.574
168 69.371 41.667 23.489
176 67.931 40.223 22.898

Given the execution times and speedups presented in Tables 6.1 and 6.2, and using

the formula
Ep = SP

P

(as defined in Appendix A), we can determine the efficiency of p processors applied

to the Gauss problem. This efficiency data is shown in Table 6.3.
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Figure 6.1: Efficiencies for GF (PC) on the iPSC/2

Many different graphical displays of this data would be interesting, but the efficiency

data may be the most interesting since it sort of captures the success or failure of a

parallel program (i.e., poor efficiencies should lead us to question the parallel nature

of the algorithm). Figure 6.1 shows a scatterplot of the data from Table 6.3.

102



TABLE 6.4: EXECUTION TIMES FOR GF(PC) ON THE TRANSPUTERS

Dimension Time (seconds) on a Hypercube of Order
(n) 0 1 2 3 4

8 0.0083 0.0075 0.0077 0.0088 0.0925
16 0.0481 0.0392 0.0373 0.0372 0.1236
24 0.1494 0.1173 0.1063 0.1001 0.1855
32 0.3417 0.2580 0.2220 0.2132 0.2947
40 0.6538 0.4922 0.4135 0.3798 0.4587
48 1.1158 0.8202 0.6934 0.6397 0.7041
56 1.2950 1.0716 0.9696 1.0239
64 1.8940 1.5688 1.4046 1.4407
12 2.2116 1.9817 1.9808
80 2.9560 2.6529 2.6248
88 3.9127 3.4812 3.4090
96 4.4808 4.3812

104 5.6442 5.4519
112 7.0388 6.7087
120 8.5430 8.1252
128 10.3300 9.7532
136 11.6930
144 13.6538
152 16.1029
160 18.5-176
168 21.4437
176 24.4684

L nma 48 67 92 128 176

2. Data for the Transputer System

Using the same methods, the timing (Table 6.4), speedup (Table 6.5), and

efficiency (Table 6.6) data for the transputer system is determined. Unfortunately,

the memory limitations of the transputers used for this work prevented comparisons

for large problem size. Empty portions of Table 6.4 signify inavailability of data (i.e.,

execution failure due to inappropriate or excessive problem size). The maximum

problem size that executed successfully for each configuration is listed on the last

line of the Table. Figure 6.2 shows a scatterplot of the data from Table 6.6.
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TABLE 6.5: SPEEDUPS FOR GF(PC) ON THE TRANSPUTERS

Dimension Speedup on a Hypercube of Order
(n) 1 2 3 4

8 1.111 1.074 0.942 0.090
16 1.227 1.288 1.290 0.389
24 1.274 1.405 1.493 0.805
32 1.324 1.539 1.602 1.159
40 1.328 1.581 1.721 1.425
48 1.360 1.609 1.744 1.585
56 1.363 1.648 1.821 1.724
64 1.389 1.677 1.872 1.826
72 1.691 1.887 1.888
80 1.734 1.932 1.953
88 1.743 1.959 2.001
96 1.975 2.020

104 1.993 2.064
112 1.996 2.094
120 2.022 2.126
128 2.030 2.150
136 2.150
144 2.186
152 2.180
160 2.207
168 2.210
176 2.227
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TABLE 6.6: EFFICIENCIES FOR GF(PC) ON THE TRANSPUTERS

Dimension Efficiency (percent) on a Hypercube of Order
(n) 1 2 3 4

8 55.556 26.860 11.775 1.125
16 61.356 32.204 16.130 2.431
24 63.693 35.133 18.662 5.034
32 66.224 38.477 20.029 7.246
40 66.409 39.526 21.514 8.90S
48 68.017 40.230 21.803 9.905
56 68.167 41.190 22.760 10.776
64 69.431 41.913 23.406 11.410
72 42.279 23.592 11.801
80 43.358 24.155 12.207
88 43.575 24.488 12.504
96 24.691 12.626
104 24.916 12.897
112 24.948 13.088
120 25.279 13.289
128 25.369 13.435
136 13.440
144 13.662
152 13.623
160 13.795
168 13.812
176 13.917
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Figure 6.2: Efficiencies for GF (PC) on Transputers
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B. GAUSS WITH PARTIAL PIVOTING

1. Data for the iPSC/2 System

Table 6.7 shows the timing data for execution of the Gauss Factorization

(partial pivoting) codes (gfpphost.c and gfppnode.c) on the Intel iPSC/2 system.

The speedup data that is shown in Table 6.8 is derived from these execution times.

Speedup was calculated using the usual formula (see Appendix A for details)

T1

for speedup on p processors. Given the execution times and speedups presented in

Tables 6.7 and 6.8, and using the formula

Ep =SpP

(as defined in Appendix A), we can determine the effectiveness (efficiency) of p

processors applied to the Gauss problem. This efficiency data is shown in Table 6.9.
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TABLE 6.7: EXECUTION TIMES FOR GF(PP) ON THE iPSC/2

Dimension Time (seconds) on a Hypercube of Order
(n) 0 1 2 3

8 0.109 0.130 0.127 0.155
16 0.371 0.359 0.394 0.493
24 0.508 0.489 0.519 0.624
32 0.752 0.673 0.675 0.782
40 1.055 0.880 0.834 0.911
48 1.499 1.144 1.024 1.067
56 2.019 1.473 1.248 1.228
64 2.733 1.878 1.491 1.402
72 3.646 2.412 1.872 1.721
80 4.743 3.040 2.256 1.989
88 6.053 3.719 2.644 2.237
96 7.567 4.547 3.125 2.560

104 9.431 5.477 3.698 2.912
112 11.468 6.561 4.252 3.237
120 13.847 7.859 4.933 3.646
128 16.552 9.211 5.661 4.070
136 19.619 10.873 6.590 4.633
144 23.071 12.632 7.532 5.170
152 26.982 14.681 8.940 5.866
160 31.204 16.869 9.866 6.539
168 35.865 19.318 11.143 7.284
176 41.064 21.990 12.605 8.084
200 59.453 31.437 17.598 10.910
225 83.962 44.076 24.329 14.701
250 114.319 59.515 32.410 19.118
275 151.443 78.652 42.336 24.512
300 195.822 102.589 54.138 30.927
325 248.153 17.840 68.082 38.418
350 309.241 158.859 84.072 46.978
375 379.538 194.599 101.984 56.280
400 459.740 235.259 122.946 67.366
425 550.536 281.312 147.058 80.439
450 653.070 333.180 173.748 94.656
475 767.616 391.136 203.513 110.243
500 894.705 455.308 236.483 127.631
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TABLE 6.8: SPEEDUPS FOR GF(PP) ON THE iPSC/2

Dimension Speedup on a Hypercube of Order
(n) 1_2 3

8 0.842 0.860 0.704
16 1.035 0.941 0.753

24 1.039 0.979 0.814
32 1.118 1.114 0.961
40 1.199 1.265 1.158

48 1.311 1.465 1.405
56 1.371 1.618 1.645
64 1.455 1.833 1.949
72 1.512 1.948 2.119
80 1.560 2.102 2.384
88 1.628 2.289 2.706
96 1.664 2.422 2.956

104 1.722 2.550 3.239
112 1.748 2.697 3.543
120 1.762 2.807 3.798
128 1.797 2.924 4.067
136 1.804 2.977 4.235
144 1.826 3.063 4.462
152 1.838 3.018 4.600
160 1.850 3.163 4.772
168 1.857 3.219 4.924
176 1.867 3.258 5.080
200 1.891 3.378 5.449
225 1.905 3.451 5.711
250 1.921 3.527 5.980
275 1.925 3.577 6.178
300 1.909 3.617 6.332
325 1.941 3.645 6.459
350 1.947 3.678 6.583
375 1.950 3.722 6.744
400 1.954 3.739 6.825
425 1.957 3.744 6.844
450 1.960 3.759 6.899
475 1.963 3.772 6.963
500 1.965 3.783 7.010
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TABLE 6.9: EFFICIENCIES FOR GF(PP) ON THE iPSC/2

Dimension Efficiency (percent) on a Hypercube of Order
(n) 1 2 3

8 42.085 21.499 8.803
16 51.743 23.526 9.416
24 51.943 24.470 10.174
32 55.911 27.842 12.019
40 59.943 31.615 14.472
48 65.544 36.615 17.563
56 68.557 40.453 20.560
64 72.764 45.825 24.365
72 75.580 48.698 26.482
80 78.023 52.554 29.804
88 81.390 57.228 33.821
96 83.218 60.541 36.955

104 86.104 63.762 40.482
112 87.402 67.427 44.287
120 88.096 70.175 47.475
128 89.849 73.097 50.832
136 90.219 74.430 52.934
144 91.323 76.577 55.781
152 91.897 75.451 57.497
160 92.492 79.072 59.651
168 92.830 80.469 61.544
176 93.372 81.442 63.498
200 94.559 84.462 68.115
225 95.247 86.278 71.393
250 96.042 88.181 74.744
275 96.274 89.430 77.230
300 95.440 90.427 79.147
325 97.056 91.123 80.742
350 97.332 91.958 82.283
375 97.518 93.039 84.297
400 97.709 93.484 85.307
425 97.851 93.591 85.552
450 98.006 93.968 86.243
475 98.127 94.296 87.037
500 98.253 94.584 87.626
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Figure 6.3: Efficiencies for GF (PP) on the iPSC/2

Here, again, only the efficiency is plotted. Figure 6.3 shows a scatterplot of the data

from Table 6.9.



2. Data for the Transputer System

Using the same methods; the timing (Table 6.10), speedup (Table 6.11), and

efficiency (Table 6.12) data for the transputer system is determined. Unfortunately,

the memory limitations of the transputers (32 kilobytes per node) used for this

work prevented comparisons for large (interesting) problem size. Empty portions of

Table 6.10 signify inavailability of data (i.e., execution failure due to inappropriate

or excessive problem size). The maximum problem size that executed successfully

for each configuration is listed on the last line of Table 6.10. The minimum problem

size for the hybrid cube on 16 processors was one where the dimension of A was

n = 16.
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TABLE 6.10: EXECUTION TIMES FOR GF(PP) ON THE TRANSPUTERS

Dimension Time (seconds) on a Hypercube of Order
(n) 0 1 2 3 4

8 0.0906 0.0904 0.0906 0.0909
16 0.1126 0.1101 0.1102 0.1107 0.1092
24 0.1582 0.1480 0.1462 0.1461 0.1439
32 0.2312 0.2038 0.1965 0.1952 0.1889
40 0.3360 0.2765 0.2568 0.2520 0.2446
48 0.3782 0.3402 0.3297 0.3149
56 0.5124 0.4463 0.4258 0.4064
64 0.6911 0.5863 0.5505 0.5196
72 0.7277 0.6715 0.6308
80 0.8976 0.8147 0.7560
88 1.0675 0.9482 0.8732
96 1.1584 1.0581

104 1.3657 1.2430
112 1.6129 1.4551
120 1.8388 1.6490
128 1.8585
136 2.1306
144 2.3606
152 2.6717
160 2.9846
168 3.2910
176 3.6606

nm. 47 66 92 127 176
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TABLE 6.11: SPEEDUPS FOR GF(PP) ON THE TRANSPUTERS

Dimension Speedup on a Hypercube of Order
(n) 1 2 3 4

8 1.002 1.000 0.997
16 1.023 1.022 1.017 1.031
24 1.069 1.082 1.083 1.099
32 1.134 1.177 1.184 1.224
40 1.215 1.308 1.333 1.374
48 1.302 1.447 1.493 1.563
56 1.387 1.592 1.669 1.748
64 1.448 1.707 1.818 1.926
72 1.888 2.046 2.178
80 2.049 2.258 2.433
88 2.256 2.539 2.758
96 2.667 2.920

104 2.853 3.134
112 2.998 3.323
120 3.219 3.590
128 3.852
136 4.019
144 4.296
152 4.456
160 4.646
168 4.871
176 5.031
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TABLE 6.12: EFFICIENCIES FOR GF(PP) ON THE TRANSPUTERS

Dimension Efficiency (percent) on a Hypercube of Order
(n) 1 2 3 4

8 50.111 25.000 12.459
16 51.135 25.544 12.715 6.445
24 53.446 27.052 13.535 6.871
32 56.722 29.415 14.805 7.650
40 60.759 32.710 16.667 8.585
48 65.090 36.180 18.666 9.772
56 69.334 39.801 20.859 10.927
64 72.412 42.678 22.727 12.039
72 47.193 25.571 13.611
80 51.228 28.220 15.206
88 56.392 31.744 17.235
96 33.343 18.252

104 35.657 19.589
112 37.475 20.770
120 40.241 22.436
128 24.073
136 25.116
144 26.849
152 27.850
160 29.036
168 30.447
176 31.441

115



800

20~ q

10 .x............ ...
0 X X

0 0 40 6 0 10 12 4 6 8

Dieso+ fteMti

20 Orde 1 .... ...... Order 2 ....... .. Order... 3... ...... Order.. 4.... ..... .....

Fiue .: fiiecesfr F(P)o Tasptr

Fiur 64 hosa catepltofth dtafomTale6.2

+116



VII. CONCLUSIONS

I value the discovery of a single even insignificant truth more highly than all
the argumentation on the highest questions which fails to reach a truth.

- GALILEO (1564-1642)

A. SIGNIFICANCE OF THE RESULTS

1. Communications and Computation

Perhaps one of the most obvious effects that can be noticed in the results

of Chapter VI is the abysmal performance of the complete pivoting code when com-

pared to the partial pivoting implementation. The relatively small amount of extra

communications required for the complete pivoting algorithm seems to force syn-

chronization delays, thus reducing the system's performance. This demonstrates the

criticality of balancing communications with calculation in parallel processing. The

conclusion, for this problem, is that parallel designs must minimize the frequency of

synchronizing events and minimize the communications volume on occasions when

communication is necessary. The greater the amount of uninterrupted work that a

processor can accomplish, the better. While control, i.e., blocking communications,

synchronization, loop-by-loop data distribution, is necessary it will have adverse im-

pacts on performance. The individual processors of a multiprocessor system should

be granted the maximum degree of independence that the mission will allow.

While there is undoubtedly some room for improvement in the complete

pivoting code, it would appear that maximum efficiencies of approximately 22%,

40%, and 70% for hypercubes of order three, two, and one, respectively, are likely on

the iPSC/2. The same code seems to be headed for somewhat better performance
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on the transputers, but with the shortage of memory, it is difficult to extrapolate

and determine the direction of the plots. The higher order cubes appear to flatten

at about the same efficiency that the iPSC/2 showed as a terminal efficiency.

The partial pivoting code, on the other hand, exhibits the kind of charac-

teristics that we like to see in parallel code. Both systems show efficiencies rising

sharply (again, the size limit for the transputers is unfortunate) and the iPSC/2

shows some very nice results as the dimension of the matrix exceeds about 250.

B. THE TERAFLOP RACE

One of the biggest challenges to parallel computing today can be found in the

"teraflop race " . There are at least three competitors with teraflop initiatives: the

United States, Europe, and Japan. The United States effort centers around Intel

with projects like Touchstone (Chapter I). The European effort relies on the T9000

transputer. Considering the three to five year old technology used for this research,

together with the numbers that the various parallel computer designers boast today,

it seems that we might see teraflop performance by the mid-1990s. C. Gordon Bell

claims that the teraflop is conceivable [Ref. 6: p. 1099]

Two relatively simple and sure paths exist for building a system that could
deliver on the order of I teraflop by 1995. They are: (1) A 4K node multicomputer
with 800 gigaflops peak or a 32K node multicomputer with 1.5 teraflops. (2) A
Connection Machine with more than one teraflop and several million processing
elements.

Current products suggest that INMOS and Intel will be among the most likely

competitors. Table 7.1, adapted from Jack Dongarra's report [Ref. 8: p. 20], shows

how transputer-based systems compare to Intel products. This Table summarizes a

test involving the solution for a 1000 x 1000 system of linear equations. The proces-

sors used for my thesis show floating-point capabilities of 0.37 Mflops (T800-20) and

0.16 Mflops (Compaq 386/20 with 80387) in Dongarra's report [Ref. 8: pp. 14, 16].
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TABLE 7.1: PARALLEL MACHINE COMPARISON

Computer t I p Jt Speedup Efficiency
Parsytec FT-400 1075 400 4.90 219.0 .55
Parsytec FT-400 1075 256 6.59 163.0 .64
Parsytec FT-400 1075 100 13.20 81.4 .81
Parsytec FT-400 1075 64 19.10 56.3 .88
Parsytec FT-400 1075 16 69.20 15.5 .97
Intel iPSC/860 59 32 5.30 11.0 .34
Intel iPSC/860 59 16 6.80 8.7 .54
Intel iPSC/860 59 8 10.60 5.6 .70

The iPSC/860 illustrates the most recent technology and shows excellent uniproces-

sor performance (6.5 Mflops) [Ref. 8: p. 9]. The T800 transputer that Parsytec

used is somewhat dated and will soon be replaced by the T9000. Nevertheless, the

transputer-based system shows good parallel performance. The times of execution in

the experiments of this thesis also indicate that the T800 is faster for floating-point

calculations than the 386/387 combination in the iPSC/2.

C. FURTHER WORK

My research suggests many areas for Luithe, investiati,,n. The method of

conjugate gradients shows a great deal of promise as a candidate for parallelization.

Indeed, it was the original aim of this thesis, but the development of other portions of

the code required a great deal of time. The parallel CG algorithm should be relatively

simple to code and holds great potential with respect to performance. Additionally,

it possesses a nontrivial derivation and the theory behind the algorithm would be

interesting to develop.

There are many other variations on Gauss factorization that could be coded

and tested. While the programs presented in this thesis are designed in an effort

to produce efficient performance, there is undoubtedly much that might be done to

enhance this code. Among the options: at a very basic level, we could begin with
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other distributions of the matrix A. A block method or row method may actually

yield better performance. As the LINPACK benchmarks seem to use blocks, this is

probably worth pursuing.

General purpose parallel computing, the ability to rely on parallel architectures

for general purpose computation without a need for investigation to be more con-

cerned with the architecture than the problem being computed, still requires much

work. The ability to use parallel architectures as a computational tool to solve

problems will mark an increasing maturity in this field.

Applying object-oriented design and programming paradigms to the parallel

world may hold a great deal of promise. In particular, the C++ language seems to

be a prudent choice for parallel programming.

In addition to the more practical options, the study of parallel theory and al-

gorithms seems interesting and shows a great need for development. In particular,

this field seems to need a more-or-less general (at least for MIMD machines) ap-

proach to classifying parallel algorithms and specifying their performance. As noted

in Chapter IV, a mixture of this field with graph theory may hold a great deal of

promise.

On an initial glance, the use of the Ada programming language with its inbuilt

tasking constructs might seem optimum for the type of computing investigated in

this thesis. Ada, in this regard, however, is optimized for use with shared memory

multiprocessors. The use of Ada on transputers still requires much experimentation

and better tools. Presently only one, rather expensive, Ada compiler is available for

transputer use. Its required use of occam harnesses makes using Ada on transputers

awkward at best. Further research is needed to create a better environment for Ada

programming on transputers. Given the significance of Ada to the DoD establish-

ment, this should become a priority. The inclusion of a standard math package and

the advent of Ada 9X may hold some promise in this regard.
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APPENDIX A

NOTATION AND TERMINOLOGY

This appendix explains the shorthand used in the rest of the thesis. Con-
ventions, by definition, are generally accepted rules of the business. This would
seem to obviate the need for further discussion of conventions, but there are sev-
eral good reasons for discussing notation and terminology. First, the notation may
not be conventional. In the absence of convention (or when the foundation that it
provides is inadequate) a more substantial agreement is required. Second, even for
conventional notation, the audience may be diverse enough to warrant familiariza-
tion. The following discussion provides this familiarity and gives the terms of an
agreement to establish the meaning of the words and symbols used in the rest of
the work. On occasion, neither convention nor this agreement will suffice. These
situations will be handled case-by-case with the philosophy that clarity should
never be sacrificed for brevity.

A. BASICS

Most of the work deals with the integers, Z (from the German word for numbers,

Zahlen), the set of real numbers, R, and the complex numbers, C . Often, the

German W is used to represent the reals. A complex number is a number, x + iy =

z E C, that has a real part (X E R) and an imaginary part (y E R), with the complex

unit i = V1" - . Sometimes the real part is denoted Re(z) and Im(z) is used to

represent the imaginary part.

A scalar is simply a real number, and is usually denoted by a lower-case Greek

letter.' A vector is an ordered set of scalars. Lower-case Latin letters like b, z, and

y are used to denote vectors. Sometimes an arrow is placed above the name of a

vector-like -to emphasize the fact that it is a vector.

'The Greek alphabet is shown in the Table of Symbols.
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Matrices are two dimensional and usually contain real or complex elements.

Capital letters (Greek or Latin) are used to represent matrices. Common examples

include A, P, Q, R, A, and E.

The number systems introduced above cannot be represented in a finite space.

There are two basic problems. First, we should consider the size (or cardinality) of

the sets. The integers are countable or denumerable since there exists a one-to-one

mapping between Z and the natural numbers, N. This is an advantage in finite

storage since it means that we can choose a finite range of the integers and be quite

certain that every integer in that range is represented (exactly). Even though Z is

denumerable, it is a set with infinite cardinality.

The real numbers present a more difficult situation for finite storage. The real

number line is dense in comparison to the integers. R is not only an infinite set, it is

not countable (i.e., R is uncountable). It is said to have the power of the continuum.

To represent a real number, x, we use the floating-point approximation, fl(x), to x.

This is a number that may be described by three parts: the sign s, the exponent e,

and the mantissa d. An illustration of such a number is provided in Chapter II.

B. COMPLEX NUMBERS

1. Notation

The previous section introduced one notation for complex numbers; namely,

z = x + iy. There are several other representations, each of which makes its own

contribution in practical use. Electrical engineers usually replace the i with j since i

is used to represent electrical current. Since the complex number can be represented

by an ordered pair of real numbers, the graphical notation of Figure A.1 is natural.

In this plane, the real and imaginary axes are used to represent the components of

a complex number.
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Figure A.I: The Complex Plane

The vector sum of these two parts, 1 = 9" + g, is an equivalent and useful

way to model complex numbers. There is yet another way to describe z. Let r be the

magnitude of the vector z and let 0 be the angle measured from the positive real axis

counter-clockwise to z. Using this notation, we could use trigonometry to describe

the complex number as z = r(cos 0 + i sin 0). The Euler formula [Ref. 32: p. 74),

ex = er +iy = eZe = et(cos y + i sin y), (A.1)

can be used to convert a complex number to yet another form: z = re
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2. Operations

a Addition and Subtraction

Addition and subtraction of complex numbers is performed in the same

manner that vectors are added or subtracted. For instance, let z, = a + ib and let

Z2 = c - id. Then the sum, zI + z2, is the same as the sum of the corresponding

vectors:

ZI+z2= b +[bd (A.2)

so the sum is zI + z2 = (a + c) + i(b - d). Differences are handled in the obvious way,

as vector differences.

b. Multiplication

Multiplication is performed by applying high school algebra. For the

same complex numbers z1 and z2:

z1 x z2 = (a + ib)(c - id) = ac - (a)(id) + (ib)(c) - (ib)(id) (A.3)

and using the definition of the complex unit, i = Vt'-i- , we may combine the middle

terms and move the i2 = -1 outside the last term to find the (complex) product:

zI x z2 = ac- z(ad- bc) + bd = (ac + bd) - i(ad- bc) (A.4)

c. Conjugation

The complex conjugate of a complex number z = x + iy is defined as

Z, = x - iy. This simple operation finds practical application in complex division.

d. Division

Consider the quotient (z1 /z 2 ) of the same complex numbers that were

used in equations A.2, A.3, and A.4. If we multiply both the numerator and the
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denominator by the complex conjugate of the denominator, f2, we have:

z= a + ib (a + ib)(c + id) _ ac + i(ad) + i(bc) + i2(bd) (A.5)
Z2 c - id (c - id)(c + id) c2 - i 2d2

and then, by applying i2 = -1, we conclude:

zI = ac - bd + i(bc + ad) (ac - bd) (bc-+ad (A.6)Sc2 +d= - (- -) + i (-"6

As a practical matter, this is not the way we would compute a complex quotient.

The code given in Appendix F (function cdiv 0 in complex.h) provides a method

that is better suited to the finite precision environment.

C. VECTORS AND MATRICES

1. Columns and Rows

Vectors are ordered collections of scalars represented as columns. Let

a,/3, 7 E C with a = 1.0 + i4.0, 3= 2.0 - i5.0, and "7 =3.0 + i6.0. Then:

1 1.0 + i4.0]
x= 2.0- i5.0

'Y 3.0 + i6.0

If row-orientation is intended the transpose is used:

XT = [a /3 -t] =[(1.0+i4.0) (2.0-i5.0) (3.0+i6.0)]

Matrices may be formed as ordered combinations of elements, vectors, or blocks.

Suppose that p = 3.0 and P = 7.0. Then, with x as given above, the following

matrices are equivalent:

1.0 + i4.0 3.0 + i12.0 7.0 + i28.0
A= [ x X ]=[ 2.0- i5.0 6.0- i15.0 14.0- i35.0 (A.7)

3.0 + i6.0 9.0 + i18.0 21.0 + i42.0

An element within a matrix is usually denoted A(i,j), where i is the row index and

j is the column index. For instance, A(1,3) = 7.0 + i28.0 in (A.7).
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A block of the matrix A is a rectangular matrix B within A. MATLAB

notation is useful. For instance, B = A(i : j, k : 1) means that B is the block of A's

rows i through j and columns k through 1. The row or column ':' means all rows or

all columns. For instance:

1.0 + i4.0 3.0 + i12.0 1
B=A(:,1:2)= 2.0-i5.0 6.0-i15.0 (A.8)

3.0 + i6.0 9.0 + i18.0

As a sidenote, a number with a decimal point should usually be taken as

a real number. Mathematically speaking, 1 = 1.0. But many compilers treat I

as an integer and use the decimal point to recognize 1.0 as a floating-point value.

Therefore, all of the code associated with this work and most of the examples use

the decimal point as a clue that the number is a real number or its floating-point

approximation.

2. Conjugation and Transposition

The conjugate of a vector or matrix is simply a vector or matrix whose

entries are the conjugates of the original entries. A superscript C is used to denote

the conjugate of a vector or matrix. For instance, with A as given A.7,

1.0 - i4.0 3.0 - i12.0 7.0 - i28.0
A¢ = 2.0 + i5.0 6.0 + i15.0 14.0 + i35.0 (A.9)

3.0 - i6.0 9.0 - i18.0 21.0 - i42.0 J

The transpose of a vector or matrix, denoted with a superscript T, refers to

a transposition of its rows and columns. With A E C" x", the effect of transposition

is that A(i,j) = AT(j,i) for all i such that 1 < i < m, and all j so that 1 < j < n.

For example, consider the transposition of the matrix A that is found in equation A.7.

XT 1 r .0 + i4.0 2 .0 - i5 -0 3.0 + i6.0UX . 1 . . 1 - . '8 0( .0AT = [uXT J= 3.0+i12.0 6.0 -i15.0 9.0 +i18.0 ](A.10)
VXT 7.0 + i28.0 14.0 - i35.0 21.0 + i42.0
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In this example we see that the columns of a matrix become the rows of its transpose.

This example also demonstrates that when we first transpose, and then stack the

columns of a matrix, we arrive at the transpose of the matrix. In the event that

A= AT, we say that A is symmetric.

The conjugate (or Hermitian) transpose of A is AH. This matrix is the

result of combining the conjugation and transposition operations on A. The following

example shows the Hermitian transpose of A:

1.0 - i4.0 2.0 + i5.0 3.0 - i6.0 "
AH = 3.0 - i12.0 6.0 + i15.0 9.0- i18.0 (A.11)

7.0 - i28.0 14.0 + i35.0 21.0 - i42.0

If A = AH, we say that "A is Hermitian." We should never confuse "A is Hermitian"

with "A Hermitian" (the conjugate transpose, AH, of A). [Ref. 33: p. 2941

3. Zeros

It could be argued that zero is the most important number. In addition to

its use as a number, zero is also used to represent a vector or matrix in which every

element is equal to zero. In the (extremely rare) event that the context does not

clearly indicate the size of a "0-vector" or "0-matrix", its size will be given explicitly.

In the absence of implied or specified size, 0 should be interpreted as the number

zero. Additionally, blank space within a matrix usually means that all elements in

that region are zero.

4. Special Forms

a. Axis Vectors

An azis vector, ei, is simply the ith column (or row) of the identity

matrix.
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b. Lower Triangular

A lower triangular matrix, usually denoted L, has the form

x
L= x x (A.12)

If L has ones on the diagonal, it is called unit lower triangular. Similarly, the upper

triangular matrix U has the form

x X x

Ux x] (A.13)

U is called unit upper triangular if the diagonal elements are all ones. Sometimes

(e.g., Chapter 11) such a matrix is called right triangular and denoted R. When the

matrix is not square, the lower and upper triangular ideas are translated to lower and

upper trapezoidal, with the unit trapezoidal matrices having ones on the diagonal.

Th Ioi.-wing matrices illustrate the different kinds of trapezoidal matrices. The

matrices may be tall and skinny as

X X X X

U x L= x x x, (A.14)
x x x

x x x

or short and fat

U= x x x x L= x x. (A. 15)

X X X X X X

D. NORMS

The information below was taken from [Ref. 21: pp. 53-60], so it seems fitting

to begin with a few of Golub and Van Loan's comments on norms.

128



Norms serve the same purpose on vector spaces that absolute value does on
the real line: they furnish a measure of distance. More precisely, R," together with
a norm on ?'' defines a metric space. Therefore, we have the familiar notions
of neighborhood, open sets, convergence, and continuity when working with vectors
and vector-valued functions.

1. Vector Norms

a. Definition

A vector norm on Rn? is a function f : 3" ---, R that satisfies the following

properties [Ref. 21: p. 53]:

f(x) >O xE n', (f(x) = 0 iff x = 0) (A.16)

f(X + y) <_ f(x) + f(y) x,y E 3R" (A.17)

f(ax) =I Q If(x) a E 3R,x E R" (A.18)

We denote such a function with a double bar notation: f(x) = 11.

b. The p-Norm

Subscripts on the double bar are used to distinguish between various

norms. The most popular example of this is the p-norm, 1 11p. This norm is

defined by [Ref. 21: p. 53]

11 X I1p= (I XI I' + .. + Ix Xn J)P p >_ i. (A.19)

The 2-norm is the one used most frequently in this work, but the I- and do-norms

find frequent application in other work. A natural representation of the 2-norm is

the square root of an inner product

II X 112= (I X I' +.. .+ I, ) 2 X (A.20)

The 2-norm of z is the Euclidean length of the vector x.
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2. Matrix Norms

a. Definition

A matrix norm on Zlxn is a function f : R"n' --_ R that satisfies

properties similar to those presented in the vector case [Ref. 21: p. 56]:

f(A) > 0 A E _,mxn, (f(A) = 0 iff A = 0) (A.21)

f(A + B) < f(A) + f(B) A, B E Rmxn (A.22)

f(aA) =1 a If(A) a OE R,AE xn (A.23)

Matrix norms also use the double bar notation: f(A) = II A 1I. The Frobenius norm

and the p-norm are the most common matrix norms

b. Frobenius

The Frobenius norm is defined as

AIIF= E i l aj I1. (A.24)
1=1 j~l

c. p-Norms

The p-norm of a matrix, A, is defined by

11 A 11p= sup 11 Ax 11 (A.25)0 II 1 "

E. LINEAR SYSTEMS

One of the fundamental tasks of linear algebra is to form a matrix representation

of a system of linear equations. Consider the system of linear equations:

2u, + 3u2 - 4u3 = 7
3u, - 5u2 + 7u3 = 3. (A.26)

4u, + 6u2 - 2u 3 = 1
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This system of equations can be expressed using the matrix notation Au = b

Au = 3 -5 7 U2= 3 =b (A.2i)
A 4 6 -2 U3 [

F. MEASURES OF COMPLEXITY

The first, and most rudimentary requirement for an algorithm is that it produce

the correct answer. This seems utterly obvious, but it must never be lost in the

algorithm designer's pursuit of the next most important elements-efficiency in using

time and space. For the moment, we shall assume that the algorithm arrives at an

acceptable answer. Then the algorithm's use of time and space becomes a very

serious subject. Knuth provides the notation in [Ref. 34].

The time complexity of an algorithm, also known as running time, describes how

the program works under a stopwatch. Space complexity is the amount of temporary

storage required to carry out the algorithm. For example, suppose a person stood at

a chalkboard, ready to solve a problem. We would not regard the input or output

storage space, but only the required space on the chalkboard, in the space complexity

of the problem. Usually we like to link the idea of complexity to the input size of the

problem, n. The following discussion of time complexity outlines a few tools that

are standard in the study of algorithms. The same tools and ideas apply for space

complexity analysis. [Ref. 35: pp. 42-43]

The most common method for describing the time complexity of an algorithm

is the "big-Oh" notation [Ref. 35: p. 39].2 A function g(n) is O(f(n)) if there exist

constants c and N so that, for all n > N, g(n) !_ cf(n).

g(n) = O(f(n)) 4=€. g(n) < cf(n), n > N (A.28)

O(f'(n)) is read "order f(n)."
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This means that for a large enough problem size n, the time to execute g(n) is a

constant multiple of some function, f(n). Big-Oh notation does not mean a least

upper bound, only an upper bound for n sufficiently large. Practically, O(f(n)) must

be augmented so that we may determine how tightly cf(n) bounds g(n).

By adding a lower bound to big-Oh, we may arrive at a more informative

statement concerning an algorithm's complexity. This is achieved through the use of

"big Omega". T(n) = fl(g(n)) means that there exist constants c and N such that,

for all n > N, the number of steps T(n) required to solve the problem for input size

n is at least cg(n).

T(n) = Ql(g(n)) -= T(n) > cg(n), n > N (A.29)

This is essentially a lower bound on time complexity. If a function, f(n) satisfies

both f(n) = O(g(n)) and f(n) = (g(n))-not necessarily using the same constants

c and N for both 0 and Q-then we say that f(n) = e(g(n)). [Ref. 35: p. 41j

f(n) = O(g(n)) = S(g(n)) €==} f'n) = e(g(n)), n> N (A.30)

Now and then, notation similar to 0 and Q? is required except that a strict inequality

is desired. In this case, we use "little oh" and "little omega". The definitions are:

f(n) = o(g(n)) 4=:} lim L(n) = O0 == g(n) = w(f(n)) (A.31)
g(n)

We have seen that 0, Q2, E, o, and w are roughly equivalent to the inequalities

<, > =, <, and >, respectively. Is this notation meaningful? Does it have utility in

problem solving? The answer is a guarded "yes." We must understand the purpose

of the notation. It cannot substitute for timing data taken from the actual execution

of an algorithm. It is intended as a good first estimate. There are too many variables

involved in modern tools and machinery to expect accurate analysis from other than

actual execution.
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TABLE A.1: ALGORITHM COMPLEXITY AND MACHINE SPEED

Algorithm Execution Time (in Seconds) for Machine Speed
Complexity 1000 steps/sec 2000 steps/sec 4000 steps/sec 8000 steps/sec
log2 n 0.01 0.005 0.003 0.001
n 1 0.5 0.25 0.125
n log2 n 10 5 2.5 1.25
nj5  32 16 8 4
n2  1,000 500 250 125

n3  1,000,000 500,000 250,000 125,000
1.1 1039 1039 1038 1038

Nevertheless, a rough estimate of how a problem grows is important to the prob-

lem solving process. Indeed, experimental ,esults and complexity analysis should not

usually be considered independently, but compared and used as complementary in-

struments. The time complexity of an algorithm is, in a sense, more important than

the speed of the machine upon which it is executed. Consider the data in Table A.1

(adapted from [Ref. 35: p. 41]). This is based upon a problem of size n = 1000 and

demonstrates the ability of an algorithm to dominate a machine. For this reason,

and with these conditions clearly established, we will find many occasions to use

time- and space-complexity notation.

Finally, the two most common performance measures for parallel computing

are speedup and efficiency. Suppose that T,, is the time of execution for a particular

algorithm, A, on n processors. Consider the best uniprocessor time T, for a sequential

version of A compared to the execution of an equivalent (not necessarily the same)

parallel program on P processors that executes in time Tp. Then speedup, Sp, is

defined as

SP= TTP

and the efficiency, Ep, is defined to be

Ep = --.

sP
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APPENDIX B

EQUIPMENT

A transputer is a microcomputer with its own local memory and with links
for connecting one transputer to another transputer.

The transputer architecture defines a family of programmable VLSI com-
ponents. The definition of the architecture falls naturally into the logical as-
pects which define how a system of interconnected transputers is designed and pro-
grammed, and the physical aspects which define how transputers, as VLSI compo-
nents, are interconnected and controlled.

A typical member of the transputer product family is a single chip containing
processor, memory, and communication links which provide point to point con-
nection between transputers. In addition, each transputer product contains special
circuitry and interfaces adapting it to a particular use. For example, a peripheral
control transputer, such as a graphics or disk controller, has interfaces tailored to
the requirements of a specific device.

A transputer can be used in a single processor system or in networks to build
high performance concurrent systems. A network of transputers and peripheral
controllers is easily constructed using point-to-point communication.

INM OS

This introduction is provided by the transputer's maker in [Ref. 36: p. 7].

A. TRANSPUTER MODULES

INMOS makes a wide variety of microprocessors to suit differing needs. To

provide a simple, modular interface they have developed the notion of a transputer

module (TRAM). The TRAM is a small board containing the microprocessor, RAM,

other circuitry, and a standard sixteen signal interface.

B. THE IMS B012

Most of the later experiments were carried out on an IMS B012 board. This

board accommodates sixteen transputers; each of which is installed on its own IMS
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B401 TRAM. In our case the TRAM holds 32 kilobytes of memory (in addition to

the four kilobytes onboard the T800-20 transputer).

d. INMOS Transputers

The INMOS transputer gives the system designer a tremendous amount

of latitude. With these processors-perhaps more than with any other parallel

architecture-one should give careful thought to the size, component processors, and

interconnection topology as the first elements in designing a solution to a problem.

This cannot be overemphasized. When the hardware is not "general purpose" in na-

ture, it must receive thoughtful consideration along the path to solving the problem.

Some of the largest applications for parallel machines-especially for transputers-

are embedded systems.

An embedded computer system is defined as "one that forms a part of

a larger system whose purpose is not primarily computational." [Ref. 37: pp. 15-16]

To automatically accept or assume a particular machine configuration is to relinquish

control of one of the tools available in system design.

Transputer is the name given to the members of a family of microproces-

sors. While INMOS is the largest producer of these processors, they have not chosen

to protect the name transputer with any sort of trademark. The name comes from

a combination of "transistor computer" and each transputer is essentially a com-

puter on a chip. The chip possesses an arithmetic logic unit (ALU), memory, and a

communication system that supports bidirectional serial communication links. Most

of the transputers used for this research also include a 64-bit (IEEE 754 standard)

floating-point unit (FPU).

The transputer module (TRAM) is the most common package for trans-

puters. The capabilities of these modules are quite diverse, but they hold to a

standard interface design. This makes the TRAM easy to use. Systems designed
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around TRAMS enjoy simple replacement of components, ease of modification, and

great scalability. Indeed, the laboratory environment in which these TRAMs were

exercised is a very dynamic one.

The PARCDS laboratory has six 80286-based IBM-compatible personal

computers, each of which contains a transputer interface board. Five hold IMS B004

boards and one holds a Transtech TMB08 board. The B004 boards each have two

megabytes of memory and an IMS T414 transputer in addition to the requisite

serial-to-parallel converter and interface circuits. The TMB08 holds four megabytes

of memory and an IMS T800-20 transputer. These "host" machines can each be

connected to an arbitrarily large network of transputers.

For this purpose, we have two INMOS Transputer Evaluation Module

(ITEM) boxes. These boxes can hold at least ten boards of the Double Eurocard size

(approximately 22 cm x 23.5 cm). Of primary interest for this thesis was the IMS

B012 board; a motherboard capable of supporting sixteen TRAMs. For this research,

all sixteen slots were filled with a TRAM that held an IM5 T800-20 transputer and

32 kilobytes of TRAM rnemory (in addition to the transputer's four kilobytes). The

shortage of memory is probably the greatest deficiency and indicator of the outdated

nature of these processors. TRAMs with four and eight megabytes of memory and

IMS T805-25 transputers are currently available for less than $900.00 and $1,300.00

respectively.

e. intel iPSC/2

The iPSC/2 used for this research contained eight node processors of

the "CX" type (80386/80387 combination). Like the transputers, this machine is

somewhat dated. Today's i860 chips have exceedingly more capacity.
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C. SWITCHING METHODS

The iPSC/2 and transputer hardware use of different switching methods. Intel

uses a circuit switching approach, whereas the INMOS approach is store-and-forward
switching. Each approach has advantages and disadvantages. The circuit switching

approach is "almost universally used for telephone networks." [Ref. 38: p. 12] The

idea is to first define a path (close a circuit) from the source to the destination and

then use it as a dedicated line.

This requires a start-up overhead that depends entirely upon the current load

being handled by the system. If any part of the medium (links or switches) between

the source and destination is busy, the message will wait at the source until the

entire path is clear. The path is determined (in the iPSC/2 case) in a deterministic

fashion, so that a message from node i to node j will always insist on a particular

path, even if some other communication is blocking that path. As the path becomes

clear, switches between the source and destination are set so that a dedicated line

will exist from source to destination.

After the overhead of establishing (closing) the circuit has been paid, commu-

nication proceeds at a rapid rate. The intermediate nodes along the path do not

store the message. Instead, their switches have been set so that the message flows

through. Intuitively, this approach should be quite effective in a network with a very

structured interconnection topology and a relatively small number of nodes. The

hypercube gives us this structure. Hypercubes of order three or four are probably

small enough to avoid difficulties that might arise as many nodes contend for the

same medium.

The store-and-forward approach does not require the availability of the entire

path between source and destination nodes. Instead, each node along the path ac-

cepts the entire message in turn and then forwards it to the next node in the path.
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This requires the use of no more than one link at a time. For a many-node environ-

ment (particularly if there is little structure or the potential of dynamic routing), this

approach would seem to offer some advantages over the circuit switching approach.

The routing criteria is separate from the type of switching used. Either of

the two general approaches described above can support many forms of routing.

Deterministic approaches alone include many methods. For the hypercube topology

with Gray-coded node labels, it is probably useful to combine the Gray code with

the notion of Hamming distance to arrive at a shortest path route. Even with this

approach, there are as many optimum paths between two nodes i and j as the

Hamming distance, H(i,j), between them. [Ref. 39: p. 7]. If a dynamic scheme

is used to determine the path, there are even more combinations of potential paths

from i to j. Usually a dynamic approach considers media utilization, "hot spot"

avoidance, and so on.
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APPENDIX C

INTERCONNECTION TOPOLOGIES

Multiprocessor computing brings with it a fundamental concern: interproces-
sor communication. Communication is-to any designer of computing machinery
or software-a burden and hindrance. An interconnection topology describes the
network that handles this load. The hypercube is one of the many topologies used
in multiprocessor computing. It has been the subject of both hype and criticism.
Nevertheless, this particular scheme possesses the qualities that quickly draw the
attention of mathematicians and parallel programmers. The hypercube's struc-
ture and simplicity make it dependable and predictable. The same properties that
enable the hypercube to endure the rigor of mathematical proof lead to practi-
cal solutions in parallel programming. This discussion describes the hypercube
topology and explores some of the the qualities that make it a practical choice for
multiprocessor computing.

A. A FAMILIAR SETTING

Organizing processors into a suitable topology is analogous to the familiar prob-

lem of organizing personnel into groups. An independent worker has limited capacity,

so we often set more hands (or machinery) to the task for productivity's sake. Groups

of people are often less efficient. Efficiency is a ratio of time spent doing useful work

to the total time spent. Other metrics might work, but time is universally recog-

nized as the standard against which productivity is measured. Dependence upon

others requires communication and consumes time. The loss may be mini-

mized, but not avoided. Any group working toward a common goal must deal with

this problem. To be efficient, an organization must possess structure and media for

communication.

People spend time on meetings, paperwork, and peripheral pursuits-all for

the sake of an organization that hopes to outperform the individual. Organizations

typically perform tasks that are simply impossible for an individual. To be sure, an

139



individual often possesses the independence and efficiency that makes him the proper

choice. There are tasks that seem to fit one or the other and-while there is some

crossover in ability-we aren't likely to get rid of either organizations or individual

workers soon! This is worth considerable attention. Individuals and organizations

are chosen for different tasks.

These ideas apply in the world of parallel processing. First, there are many

tasks. Some fit nicely onto a single processor. Others beg a parallel solution. Finally,

some have natural solutions by either method. Even when one of these options is

selected, there are many ways to solve the problem. If a multiprocessor is used to

solve the problem, the issue of communications will be unavoidable.

An interconnection topology must carry the burden of interprocessor communi-

cations. There are many schemes for handling this mission. This discussion focuses

on one design that fulfills that mission: the hypercube. To forestall confusion: the

subject is an interconnection topology, not a particular vendor's product.

B. APPEAL TO INTUITION

Productivity can suffer when the members of an organization communicate

excessively. A lack of communication can also reduce efficiency. In a network of

processc. ., lines of communication (links) are literal. The system will not be flexible

if there is a shortage of links, but with too many links a message could get delayed

or lost in the confusion. The hypercube attempts to strike a balance.

Hypercubes come in different sizes. In fact, scalability is a key characteristic of

the hypercube. It allows the designer to tailor a network to a problem. There are

several ways to express the cube's size: order is one measure. The term "hypercube

of order n" (usually called an n-cube) is filled with meaning. A more detailed de-

scription is given later, but pictures provide the most direct introduction. Figure C.1

shows hypercubes of order n where n E {0, 1,2, 3}.
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Figure C.A: The Four Smallest Hypercubes

This illustration is important. The hypercube shows geometry, structure, and

symmetry. A few observations nearly jump out of the pictures. One can see several

terms of a geometric series developing. There is also a recurrence relation at work

in the building of hypercubes. Intuition suggests the use of well-oiled mathematical

tools to analyze the hypercube.

C. TOOLS

Many benefits may be derived from a few definitions, conventions, and tools

(that suit the hypercube's structure). Figure C.2 demonstrates the utility of Carte-

sian coordinates in n-dimensional space.

The picture is deceptively simple, but worth careful study. Figure C.2 shows a

unit cube in three dimensions. The vertex labels express (xyz) position in the coor-
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Figure C.2: Cartesian Coordinates for a 3-Cube

dinate system. The labels also form a binary (Gray) code that is somehow equivalent

to coordinate labeling of a cube in n-dimensional space. The issue of communica-

tions invoked this discussion, so distance must be addressed. A comparison of the

binary labels of any two nodes reveals that the distance between the nodes is equal to

the number of bits that differ in the labels. This measure, called Hamming distance,

and the Gray code are presented in more detail later.

This brief introduction is just enough to embark upon a more precise descrip-

tion of the hypercube. The ideas of a coordinate system, node labeling, and distance

are fundamental. Graph theory also finds application in topology design. In the hy-

percube these four tools complement each other nicely. Despite their simplicity they

can be explored in almost endless detail, even within the constraints of hypercube

structure.
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D. DESCRIBING THE HYPERCUBE

The hypercube interconnection topology cannot be captured in a one-sentence

definition. A definition is often inappropriate for material objects. A description

given from several perspectives may be more useful. This is the case with topologies.

Each tool introduced above has its own utility. In a sense, each takes up a particular

perspective. A meaningful characterization of the hypercube can be achieved by

combining these perspectives.

The geometric view is most useful for visualizing the cubes. Despite its ten-

dency to break down (with three-dimensional limitations), geometry's intuitive ap-

peal is indispensable. Geometry and pictures lay the foundation for the setting of

an undirected graph. Figures C.A and C.2 take advantage of geometry, but three-

dimensional sketches begin to lose their appeal as order increases. Nevertheless,

geometry and visual models hold an important place in describing the hypercube.

They furnish us with (a) examples for comparison, and (b) expectations that are

useful in the transition to a more general description of the topology.

A hypercube of order n may be described as a set of 2' points (vertices, nodes,

or processors) connected by a set of edges. The points are each given an n-bit

binary label, b,,... b3b2bl. Thus the hypercube's node labels exhaust all possible n-

bit binary combinations. Furthermore, the labeling convention used in Figure C.2

describes the point's n-dimensional Cartesian coordinates.

The hypercube edge set (communication links) includes an edge between every

pair of points pi and pj whose binary labels differ in exactly one bit position, say bk.

That is, adjacent nodes have a Hamming distance of one. This measure of distance

proves especially convenient in the hypercube, and it can be thought of in several

equivalent ways. A first definition of Hamming distance is the number of bits that

differ in the two labels. Equivalently, it is the number of l's in a bitwise exclusive
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or (XOR) of the numbers. Figure C.2 contains an example. Let pi be the point

labeled 100 and p, be 110. The binary labels differ in exactly one bit position,

namely b2 (the second bit). The points are neighbors (one hop from each other in

communications terms). [Ref. 40]

Despite the appeal of the geometric approach, it holds limited value in a gen-

eral n-dimensional space. Consider n = 4 in three dimensions. Typical illustrations

show the sixteen-node cube as a cube inside a cube with connections between corre-

sponding nodes of the inner and outer cubes. An equivalent diagram would display

two 3-cubes side-by-side with connections to corresponding nodes. Nevertheless, it

seems that an n-dimensional coordinate system is the most convenient environment

for sketching the hypercube of order n.

E. GREATER DIMENSIONS

Three-dimensional sketches become difficult to manage. The time comes for a

change of method. Some of the finest tools available for spanning such a gap are

recurrence relations and the principle of mathematical induction. The approach is

not extremely formal, but those so inclined will not find it hard to add the formalities.

Induction can be used to generate a Gray code suitable for labeling the nodes

of a hypercube. This code and the Hamming distance can be used to determine

the cube. The first topic is a procedural description of how to build hypercubes. A

Gray code construction procedure will follow. If the two topics appear similar, it is

because they are completely equivalent (assuming that the Gray code is combined

with the concept of Hamming distance).

Constructing a hypercube of order zero is trivial. This is not important except

that it leads to greater things (i.e., it is the basis for induction). Second, suppose

that this hypothesis for induction is true: "we know how to construct any hypercube

of order k where 0 < k < n". Induction forms a hypercube of order n using this
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base case and hypothesis. This can be done in three steps:

" Replicate the Hypercube of Order (n - 1) so that there are two identical copies.

For concreteness, one will be copy number 0 and the other will be copy number

1. The hypercubes have 2(n-1) nodes each.

* Prepend the copy number to the existing node labels. That is, place a leading 0

in front of the labels for each node of copy 0 and place a 1 in front of every node

label in copy 1. Now every node in one copy has a corresponding node in the

other copy. These corresponding nodes are separated by a Hamming distance

of one. That is, the last (n - 1) bits are the same for corresponding nodes and

they differ only in the prepended copy number.

" Connect all nodes whose labels differ only in the prepended copy number. This

adds 2(n - 1) edges between the two copies.

F. GRAY CODE GENERATION

The procedure above generates hypercubes. By focusing on the vertex labels,

Gray code generation can be discussed. A Gray code is a cyclic list of all of the n-bit

numbers which changes in only one bit from one number to the next [Ref. 40]. Since

the code is binary, there are 2" numbers in the list. The starting point is arbitrary

(it is cyclic) but I have started with zero. Perhaps the best explanation of Gray

codes comes in the construction of one. As in the construction of hypercubes, a base

case is required to begin generation.

* Start with 0. This is a one-bit number (n = 1) so the one-bit Gray code must

have a total of 2' = 2 numbers. The other is 1. Next, the hypercube building

steps established above are applied with slight modification.

* Given the one-bit case, it is easy to generate the n = 2 code. Write down the

previous code and draw a line below it. Next, form a copy by reflecting the code
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TABLE C.A: GRAY CODE GENERATION

0 00 000 0000
1 01 001 0001

11 011 0011
10 010 0010

110 0110
111 0111
101 0101
100 0100

1100
1101
1111
1110
1010
1011
1001
1000

downward across the line. Place a zero in front of each number in the previous

code (above the line), and a one in front of each number in the new copy (below

the line).

9 This is a Gray code for n = 2. Table C.1 extends the idea. The list is cyclic,

each number consists of n bits, and the list contains all 2 n possible numbers. To

construct the code for larger n, the process may be applied repetitively. Copy

by reflecting the (n - 1)-bit code downward across a line, prepend a zero to

everything above the (most recent) line, and prepend a one to those below that

line.

The Gray code is probably the most useful node labeling to attach to the hyper-

cube. This code often appears in implementation. The program listing that begins

on page 152 shows one way to generate the code. It can be used, for instance, as the
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backbone of a routing function in a network. Labels with a Hamming distance of one

mark neighbors in the hypercube. What about the labels of two nodes that differ

in exactly k bits (i.e., have a Hamming distance of k)? It turns out that k is the

distance (number of edges) between these nodes. For all communications between

these nodes, the shortest path will involve k hops.

This also indicates that, for an n-cube, there is no pair of nodes that have

a Hamming distance of more than n (e.g., communication between nodes 0000010

and 1111101 in a 7-cube can be achieved in seven hops). The greatest distance

across the n-cube is n hops. In fact, for each node in a hypercube, there is a unique

corresponding node at a Hamming distance of n. Also, there are n nodes at a

Hamming distance of one from each of the hypercube's nodes.

Two approaches have been considered so far: sketching cubes in n-dimensional

Cartesian coordinates and studying the labels associated with the cubes. Though

the approaches are fundamentally different, they arrived at many of the same conclu-

sions. Careful application of the Gray code and Hamming distance could produce a

nearly endless string of results, but it is more convenient to introduce some material

from the study of graphs at this point. Graph theory combines the two approaches:

it looks at the pictures and studies the numbers as well. The small hypercubes

described with earlier methods are given graph representation in the illustration of

Figure C.3.

G. GRAPHS OF HYPERCUBES

Graph theory is, of course, much more sophisticated than the small subset

used here. Buckley and Harary provide a valuable source [Ref. 41]. This discussion

exposes a few salient features of the hypercube from the perspective of graphs.

A graph, H, consists of a vertex set, V(H), and an edge set, E(H). The vertices,

or nodes, in the multiprocessor network model are the processors. The edges are the
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Figure C.3: Hypercube Graphs

links that connect the processors. I will avoid using the term order in its graph

theory sense (i.e., number of nodes) so that it cannot be confused with the order of

the hypercube. Consider the graph, H, of a hypercube of order n. The graph has

these characteristics:

* There are 2 n nodes. This means that the number of nodes (i.e., processors)

grows very quickly with order.

" Every vertex, v, in H, has eccentricity e(v) = n. Eccentricity is the distance

to a node farthest from v. Additionally, each node in a hypercube has exactly

one eccentric (farthest) node. This property means that hypercubes are unique

eccentric node (u.e.n.) graphs.
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e The radius of a graph is the minimum eccentricity of the nodes and diameter is

the maximum eccentricity. The hypercube is self-centered, meaning its radius

and diameter are the same: r(Hn) = d(H,) = n. This is significant because it

says that worst-case communications distances only grow like the order of the

hypercube.

* Connectivity is a measure of reliability or fault tolerance in multiprocessor net-

works. The connectivity of a hypercube is equal to the order of the cube, n.

The edge connectivity is also n (each node has n incident edges).

Counting the number of nodes in a hypercube is easy. The hypercube construc-

tion process also points to a recurrence relation that reveals the number of edges

in a hypercube. The initial case, of course, is the hypercube of order zero with no

edges. After this, the number of edges can be expressed in terms of the size of the

previous cube. Suppose a hypercube of order n has q edges. Then the hypercube of

order (n + 1) will have 2q + 2' edges. This is because the construction procedure

calls for two copies and 2"n edges between them.

Figure C.4 provides an example. This is the graph, 114, of the hypercube of

order four. All of the characteristics given above are evident. Additionally, a Gray

code labeling of the nodes is given. The recurrence relation above is useful, but it

retains a dependence upon q. A more convenient formula would depend on n alone.

In fact, there is a simple formula for the number of edges in the graph of a

hypercube, but it requires a closer look at the recurrence relation. In more formal

terms: let q(n) represent the number of edges in a hypercube of order n. Then:

( 0 if n =0q 2q(n-1)+2( -1 ) if n> 1

This can be expanded and shown equivalent to: q(n) = n(2("-')). Table C.2

provides an example.
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TABLE C.2. NODES AND EDGES FOR A HYPERCUBE

Order Number of Nodes Number of Edges

0 1 0

1 2'1=2 2(0) +20= 1

2 2'2=4 2(l) + 21=4

3 2' =8 2(4) +22=12

4 2' =16 2(12)+2 3 32

5 2' =32 2(32) + 2=80

6 26 =64 2(80) + 2-192

7 2 7-128 2(192)+2 6=448

(n - 1) 2 n1 q

n 2 n2 n1
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Figure C.4: Graph of a 4-Cube

H. SOURCE CODE LISTINGS

A listing of the Gray code generation program gray.c follows.
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gray.c

1 /* -------------- PROGRAM INFORMATION -

2 *

3 * SOURCE gray.c
4 * VERSION 1.2
5 * DATE . 01 August 1991
6 * AUTHOR : Jon Hartman, U. S. Naval Postgraduate School
7 * USAGE . gray

g * REFERENCES
9 *

10 * (1] Hamming, Richard W. "Coding and Information Theory", 2nd edition,
11 * edition, Englewood Cliffs, N.J.: Prentice-Hall, 1986, pp. 97-99.

12 •

13 *

14 ------------- DESCRIPTION -=

15 *

16 * This program generates and displays the Gray code described in [1].
17 *

19 */
20

21

22 /* ------------- ALGORITHM

23 *

24 * Consider a b-bit Gray code beginning at zero. Let j be an integral index
25 * such that 0 <= i < b. Consider two b-vectors, mod-counterO and bin[.
26 * Each element, modcounter[j], holds a count mod (2-(j+1)). Initially we
27 * shall set mod.counter[j] = (2-j). Furthermore, let the elements of bin[
26 * represent a binary number in the natural way. That is, each element,
29 * bin[j] will be either 0 or 1, and bin[ will be formed so that the sum,
30 * ( 2-0 * bin[0] + 2-1 * bin[13 + 2-2 * bin[2] + ... ), represents the
31 * 'value' of bin[]. We have elected to start the code at zero, so let

32 * bin[] be set to zeros initially. Next perform this algorithm:
33 *

34 * for (i = 0; i < (2-b); i++) {
35 *

36 * Print the "binary number" represented by binD.
37 *

36 for (j = 0; j < b; j++) {
39 *

40 * Let modcounter[j] (modcounter[j] + 1) mod (2^(j+l))
41 *

42 * If modcounter[j] 0, then toggle the bit in bin(j]
43 ( Ci.e., bin[j] = (bin[j] XOR 1) ).
44 *

45 * } end for(j)

46 *

47 * } end for(i)
46 *

49 *-------------------------------------------------------------

5015
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51

52

53 #include <stdio.h>

54

55
56

57 #iindef EXIT-FAILURE
5s #define EXIT-FAILURE 1
59 Sendif
60

61
62 #ifndef SUCCESS
63 *define SUCCESS 0
64 tendif

65

66

67 #define POW2(n) (0i) << (n))

66

69

70

71

72

73 mainC) {
74

75 int patience = 5; /* there's a limit to my patience!
76
77 long b = 0, /* as in b-bit Gray code */
76 *bin, /* as described above ./
79 i, /* generic integral values */
80 j.

81 1, /* length of Gray code (2-b) */
82 *mod-counter; /* as described above e/
83

84

85 printf("\n\n\n\n\n\n--------- ");
86 printf ("This program generates the binary numbers of a Gray code. ");

87 printf("==== ---- \n\n\n");
88

89 printfi(" Successive numbers in a Gray code differ in exactly ");
90 printf("one bit position.\n");
91

92 printf(" The list generated by this program will be complete. ");
93 printf("That is, if you\n");

94

95 printf(" request the code of numbers that are b-bits long, ");

96 printf("you will get a list\n");

97

96 printf(" of (2-b) binary numbers, starting with zero.\n\n\n");

99

100
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gray. c

101 /* The sole purpc:e of this whileC) loop is to get the value of b */
102 while (b <= ) {
103

104 printf(" Please enter desired length (binary digits): ");
1os scanf("%d", b);
106 fflush(stdin);
107 printfC"\n\n");
108
109 if (b > 0) { /* else ask again (patience permitting) '/
110

111 1 = POW2(b);
112

113 if (1 <= 0) { /* guard against too many left shifts! */
114

115 printf(" The acceptable range is ");
116 printf("l..%d. ", (sizeof(long)*8-2));
117 printf("Please try again.\n\n\n");
116

119 b = -1;
120 }
121 }
122

123 if (--patience <= ) {
124

125 printf(" Ran out of patience!\n");
126 exit (EXITFAILUJRE);
127 "

126 } /* end while (b <= 0) */
129

130

131 /* Allocate storage for the arrays, test to see if it worked */
132 bin = (long*) calloc (b, sizeof(long));
133 mod-counter = (long*) calloc (b, sizeof(long));
134

135 if (('bin) II (!mod-counter)) {
136

137 printf("maino): Allocation failure bin[] or mod-counter[.\n");
1349 exit(EXITFAILURE);
139 "

140

141

142 /* Initialize iod-counter[] */
143 for (i = 0; i < b; i++) mod-counter[i] = POW2(i);
144

145 printfC '  Gray code for %ld bits gill generate ", b);
146 printf("%ld numbers.\n\n\n", 1);
147 printf(" Press RETURN to continue ....");
148 fflush(stdin);
149 i = getc(stdin);

ISO printf("\n\n\n");
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151 /* Do the foro) loop spoken of in the "ALGORITHM" section above */
152

153 for (i = 0; i < 1; i++) {
154

155 /* Print the binary representation held in binO */
156 printf("\t");
157

158 for j = (b-I); j >= 0; j--) { printf("%d", bin~j]); }
159

160 printf("\n");
161

162

163 /* Adjust the counters using addition mod (2-(j+1)) and toggle the
164 * corresponding bit in bin[] whenever an element of modcounterO

165 * reaches zero.
166 */
167 for (j = 0; j < b; j++) {
166

169 modcounter[j]++;
170

171 if ((mod.counter[j] %= POW2(j l)) 0) bin[j] 1;
172 }
173 } /* end for(i) */
174

175 free(bin);

176 free(mod.counter);

177

176 return(SUCCESS);

179 }
1,0 /* ------------- EOF gray.c -/
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APPENDIX D

A SPARSE MATRIX

Partial differential equations can be used to characterize many physical prob-
lems. Explicit solutions to these problems are often quite complicated, so alterna-
tive approaches warrant our attention. Simple matrices exist as legitimate repre-
sentatives of complex problems. A system of linear equations can be constructed
to give a discrete approximation to the problem. The structure of the physical
setting guarantees that the corresponding matrix of coefficients will be sparse and
symmetric. Why does this happen? When do we have the right to expect such a
simple matrix? Where does the matrix come from and what does it mean?

This discussion explains how to construct the matrix of coefficients and vec-
tors that describe the numerical approximation to an elliptic partial differential
equation. Poisson's equation in two dimensions is used to demonstrate the process.
The first step uses a finite difference approximation to produce a system of equa-
tions. The system is fine-tuned and the matrix of coefficients is extracted. The
process reveals the origins of structure and shows why the matrix is sparse and
symmetric.

A. LAPLACE AND POISSON

To most engineers, mathematicians, and scientists, Laplace and Poisson are

familiar French names. Pierre-Simon de Laplace (1749-1827) and Sim~on Denis

Poisson (1781-1840) made sizeable contributions to several fields. In a moment, the

discussion turns to partial differential equations named in honor of these gentlemen.

If the material seems a bit difficult, the following quote from [Ref. 42: p. 10]

may provide some encouragement. The ideas are not so obvious to everyone as they

may have been to Laplace.

Nathaniel Bowditch (1773-1838), an American astronomer and mathemati-
cian, while translating Laplace's Micanique cileste in the early 1800s, stated, "I
never come across one of Laplace's 'Thus it plainly appears' without feeling sure
that I have hours of hard work before me to fill up the chasm and find out and show
how it plainly appears."
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The next several pages are dedicated to showing how the matrix representation

of a partial differential equation plainly appears! The objective is to describe a

particular physical problem, then convert it to the equivalent matrix representation

using a deliberate, step-by-step approach.

B. EQUATIONS

Laplace and Poisson worked with partial differential equations that can be ob-

served in nature. What kinds of natural phenomena can be described with partial

differential equations? This section gives a brief answer to this question. The dis-

cussion includes the natural setting, the equations, and a quick look at the variables

and constants involved. The link between the equations and their physical meaning

is critical, so this aspect must be developed. The heat equation has one of the most

intuitive physical interpretations available, so it is used as a starting point. After

developing a general perspective, the field can be narrowed to a particular example-

Poisson's equation. Such a limited survey of partial differential equations can only

hope to succeed by appealling to the reader's experience and intuition.

1. Heat

Before looking at a partial differential equation, let us recall some plane

geometry. The intersection of a plane and a cone(s) provides many interesting shapes

and equations. Consider the equation that describes all points equidistant from a

point (focus) and a line (directrix):

y= () x2 + k. (D.1)

TL, is a parabb ia whose focus and vertex both lie on the y-axis (the axis of the

parabola is the y-axis). The focal length is c and the vertex is located at (0, k).

157



Partial differential equations are classified using conic sections much like

equations in the xy-plane. Introductions to partial differential equations often begin

with the heat equation:
- =- -92+Q t .  (D.2)

This is an example of a parabolic partial differential equation. Note the similarity of

equations (D.1) and (D.2).

a. Definitions and Notation

The heat equation describes the temperature, u(X, ), in a "thin rod"

(the single dimension x appears in the equation). The presence of t indicates depen-

dence upon time. If there is a heat source (or sink) present, it is represented by Q.

We can see that Q may be a function of x or t or both. When mass density (p),

specific heat (s), and thermal conductivity (K) are known; the thermal diffusivity,

K, can be determined using the following relation:

K (D.3)
sp

b. Houses and Heat

From our youth, we have observed several important properties of heat

flow. The lessons are simple, few in number, and can be observed from the comfort

of our home. First, heat energy only flows when there is a difference in temperature.

If the temperature outside is the same as the indoor temperature, no heat energy will

cross the threshhold (even with the door open). A temperature difference represents

an instability and heat will flow to counter this situation.

When heat does flow, it goes from hotter to colder regions. The loss of

heat energy from the warmer region reduces the temperature there, and the tem-

perature in the colder region rises as it gains heat energy. The transfer of heat
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has a stabilizing effect (the environment will not be at rest as long as temperature

differences exist). We do not find the changes in temperature surprising, but our

conversation indicates confusion concerning the direction of the flow. Most of us have

heard someone say: "Close the door, you're letting cold air in!". We understand that

this statement is not correct, but it seems to persist from one generation to the next.

In addition to the idea that heat flows in the presence of temperature

differences (gradients), we clearly understand that larger differences are related to

greater heat flow. On a very cold Winter day, the parent notices more quickly that the

child left the door open (and displays more urgency in shutting it). In other words,

the effect of heat flow is to balance differences in temperature and it somehow "works

harder" when there is a greater difference to balance. In mathematical terms, we

would suspect (correctly) that heat flow is proportional to temperature difference.

Finally, we recognize an ability to restrict heat's ever-present balancing

efforts. Sometimes we want an imbalance in temperature, and we often use insulation

to maintain this imbalance. When we shut the door, we expect that it will slow

the transfer of thermal energy through the doorway and enable us to maintain an

acceptable imbalance in temperature. For the same reason we use special materials

in the construction of refrigerators to keep heat out, and in ovens to keep heat energy

inside. This means that the effectiveness of heat transfer is subject to properties of

the medium (air, glass windows, fiberglass insulation, wood doors, steel, styrofoam,

and so on) through which it flows.

c. Heat Flux

The right-hand side of the heat equation looks a bit complex, but it

merely captures this idea of heat flow. Before tackling the second partial derivative

of u with respect to x, think about the first partial derivative. The first partial

derivative of u with respect to x (scaled by the thermal conductivity, K) describes
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movement of thermal energy. This flow of heat is usually called heat flux, denoted

0, and can be calculated using Fourier's law of heat conduction:

-K u  (D.4)

Heat flux is a measure of how much thermal energy per unit time is

moving to the right per unit surface area (by convention, flow to the left is assigned

a negative value and flow to the right is positive) [Ref. 43: p. 3]. The second partial

derivative measures changes in flux with respect to position. In other words, it

represents increasing or decreasing flux.

d. Heat Equation Summary

Let us carefully reassemble the pieces of the heat equation (D.2) to see

if the theory agrees with experience. Temperature has spatial and temporal depen-

dencies. The left-hand side describes changes in temperature over time. Changes in

heat flux are captured in the second partial of u that appears on the right-hand side.

Flux, heat energy in motion, acts to equalize temperature. The thermal diffusivity,

K, measures the material's resistance to heat flux. That is, a temperature difference

activates the flow of heat but the speed and effectiveness of this flow is moderated by

material properties. Considering everything, then, the heat equation can be stated

in one (long) sentence: Changes in temperature over time are caused by (equal to,

due to, related to) changes in heat flow (moderated or accelerated by properties of

the material) and thermal source(s).

2. Notation

With two or more dimensions, the same equations that looked simple in one

dimension can begin to look complex. The linear operator, A, is used to simplify

the notation. For example, Au, substituted into the right-hand side of (D.2), gives
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the heat equation a new look:

"-O = KAU + Q(x,t) (D.5)

This is a more general equation since the linear operator Au can be applied in any

number of dimensions. For instance (in three dimensions),

02 u 02 u a'u
AU = 81U + U a (D.6)

Sometimes this operator is called the Laplacian of u and some authors use the del

operator, V, in these equations (V 2u = Au).

3. Diffusion

The behavior of thermal energy is actually a special instance of diffusion,

so (D.5) is often referred to as the diffusion equation. With an appropriate substi-

tution for K, the equation might describe the spreading of dye through ocean water.

In an agricultural application, it could characterize water or chemical penetration

in soil. We shall continue to use the term "heat equation", though, for the sake of

consistent terminology and notation.

4. Laplace's Equation

Consider the effect of a few restrictions on the heat equation. Suppose that

there is no source of thermal energy (Q = 0) and the physical properties of the

material do not vary (K is constant). Finally, what happens if the time-dependency

is removed?

The left-hand side of the equation goes away. This is not so unrealistic.

Systems may reach a steady (equilibrium) state after a time (especially in the absence

of sources). We can divide through by K (assuming K # 0) and the equation becomes:

a u 82u
A 19U L9U 0(D.7)AU = 5X2 + y 2
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This is Laplace's equation in the two dimensions x and y. Sometimes it is called

the potential equation since it also describes the cases in which u stands for

gravity or voltage. It can also describe "steady-state heat flow... hydrodynamics,

gravitational attraction, elasticity, and certain motions of incompressible fluids".

[Ref. 44: pp. 660-661]

5. Ellipses

Although Laplace's equation seems like a steady-state heat equation, it is

fundamentally different. It falls in the elliptic class of partial differential equations.

Consider an ellipse centered at the origin with foci (on the x-axis at a distance of c

from the origin) located at (-c, 0) and (c, 0). Suppose that the foci are labeled F

and F2. The major axis passes through the center and through the foci, connecting

two vertices positioned at (-a,0) and (a,O). The minor axis passes through the

center perpendicular to the major axis and connects the vertices at (0, -b) and

(0, b). The major axis deserves its name since a > b (in the case of equality the

ellipse degenerates and we get a special case--the circle).

For any arbitrary point, p, let the distance d, be the distance from p to F,

and let d2 be the distance from p to F2 . Furthermore, let d = d, + d2 . The ellipse

is described by all points satisfying d = 2a, where a is the constant length of the

ellipse's semi-major axis as described above. The standard form for the equation of

this ellipse is
x +y(D
a C(D.8)

Using the distances from this ellipse, a right triangle can be formed with sides of

length b and c and hypotenuse of length a. This means a, b, and c are related by the

Pythagorean Theorem.
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Figure D.A: The Region

6. Poisson's Equation

We have discussed several partial differential equations and observed the

impact of changing a few parameters. Laplace's equation showed what happens in

the steady-state case when sources are removed and the thermal diffusivity is non-

zero. Now we return to the more general problem that can be represented in the

presence of a source, sometimes called a driving (or forcing) function, say f(x, y).

The result is Poisson's equation (shown here in two dimensions):

AU 5T, + ay f f(Xy) (D.9)

Again, u(x, y) typically represents temperature or voltage. Laplace's equation (D.7)

is just the special case of Poisson's equation (D.9) where f(x,y) = 0. The rest of

the discussion will focus on Poisson's equation within the rectangular region (shown

in Figure D.1): 0 < x < L, 0 < y < H.
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Figure D.2: Subdividing the Rectangle

7. Final Assumptions

We shall assume that the conditions along the boundaries are known and are

given by u = g(x, y). The problem is solved in the presence of a forcing function f.

The goal is to produce something that a computing machine can "solve". To reach

this position, several steps are required. First, the domain is divided into many

smaller regions. Using this subdivision scheme, a system of equations is developed.

The information that is known (f and g) can be moved to the right-hand side of the

system. The system can then be represented in typical Ax = b fashion.

C. DISCRETIZATION

Before attempting a numerical solution, the domain must be subdivided into a

finite (but probably large) number of elements. Figure D.2 provides an illustration

of what this mesh looks like. We should not forget that actual applications may

involve 100 (or more) divisions in each direction. Nevertheless. (artificially) small

164



examples are quite sufficient for conveying notation and measures within the region.

1. Notation

A clear understanding of the problem domain, conventions, and notation

is prerequisite to developing the system of equations. Consider Figure D.2. This

domain will serve as a reference for the upcoming discussion on conventions and

notation.

The rectangular region has length L = 9 and height H = 5. It has been

subdivided into 45 smaller elements by a mesh made of four horizontal lines and eight

vertical lines. The integers m and n are used to keep track of how many horizontal

and vertical dividing lines are used (here m = 4 and n = 8). Each element has length

h (in the x-direction) and height k (in the y-direction). In this particular example,

the elements are (conveniently) square with h = k = 1. In general, the individual

elements within the region are rectangular (it is not necessarily true that h = k).

The elements within the region are uniformly spaced (each has the same

size). L, H, h, and k do not need to be integers-they can be any convenient units.

To guarantee uniform spacing, of course, L and H must be integer multiples of h

and k, respectively. That is:

L=(n+)h, n E {0,1,2,3,...}

H=(m +)k, m E {,1,2.3,...}

2. Internal Mesh Points

Our goal is a system of equations, and ultimately a problem stated in terms

of a matrix and vectors. We will eventually see that there are rnn equations in mn

unknowns, one for each internal mesh point (where the lines cross). Imagine elements

of size h x k (as before) that are centered on these points, such as the cross-hatched
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element at (7, 3). Each equation in the system will correspond to one of these line-

crossings and represent one of these elements. It is useful to labei the lines for

reference purposes. To accomplish this, we use the (integer) counters i and j.

These counters are used to reference particular vertical and horizontal di-

viding lines. The i counter refers to a vertical line (1 < i < n) and the horizontal

lines are indexed by j (I < j <i m). Figure D.2 may be deceptively simple due to

the element dimensions h = k = 1. Because of this, i = 7 indicates an x-coordinate

of 7 and j = 3 means y = 3. But the counters i and j are not generally equivalent to

x- and y-position in the coordinate system. Given h, k, i, and j the corresponding

coordinates are (x, y) = (ih,jk).

D. A SYSTEM OF EQUATIONS

The next step is to build a system of mn equations that describes the problem.

First, we need to agree upon a referencing scheme for the internal mesh points. The

numbering will be based upon i and j as defined above. This numbering scheme

begins at the bottom left (i.e., i = j = 1), proceeds up the first column and then

moves, column-by-column, to the right. Specifically, the points will be assigned a

labc1

i = Ma(i - 1) + j(D.10)

Given the values i and j for any internal point, now we can assign it a label

(1 < I < in). Figure D.3 shows values of i along the x-axis, values of j

along the y-axis, and labeling of internal mesh points according to (D.10).

1. Finite Differences

The approach calls for analyzing each internal mesh point. Figure D.4

shows the point referenced by i and j and its neighbors to the North, South, East,
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Figure D.3: Numbering the Equations

and West. We use a centered finite difference method to approximate the partial

derivatives in (D.9) and arrive at the equations for these points. The finite difference

approximations for the partial derivatives are:

0,u ui-,j - 2ui,j + ui+,j (D.11)

OX2 01j)h 2

a2U Ui,j-, - 2ui,j + ui,j+i (D.12)
,qY2 (,,)V

The approximation for the partial derivative in the x-direction (D.11) con-

siders the neighbor to the West, the point itself, and the neighbor to the East.

Similarly, the approximation in the y-direction (D.12) recognizes neighbors to the

South and North in addition to the point. Both finite difference approximations

favor the center point (i,j), giving it twice the weight of its neighbors.

Substituting these into Poisson's equation (D.9) yields:

ui-,j - 2uij + u+,,j uj-1 - 2ui,j + uj+Au
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Figure D.4: Neighbors to the North, South, East, and Vest

The forcing function, fij, is known so (D.13) begins to look like one of many equa-

tions in a linear system. There is such an equation for every internal mesh point.

To make sure that we consider all of the internal mesh points in an orderly fashion,

we may number them as in Figure D.3 and consider them one at a time.

2. More Equations

At this point, we know the general form (D.13) for each of the equations

that must be considered. The matrix of coefficients may not be completely clear yet,

so let us consider each of the equations in the order of their labels. For now, we will

leave the i, j subscripts on everything:

(uo, - 2u, + u2,I) _ (ul.o - 2u,, + U,2) -f

-(h 2  V2

_(U 0 .2 - 2u 1,2 + U2,2) _ (U1, - 2ul,2 + U,3) _-f1.2
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Uom... - 2 u,,m-.. + U2,m-n _ (Ul,mn2 - 2 u,rn... + UI~m)

_(uo,m - 2 u,,. + U2,m) Ul rn-I - u,+ul. _,n

_(ll- 2U2,1 + U3,1 ) _ ( 2,0 - 2U2,1 + U2,2 ) f,

_(I2- 2U2,2 + U3,2 ) U2,1 - 2U2,2 + U2 ,3 )
h( 2  kc2 f,

Uj ,rn. - 2u2,m... + U3.rn 1 (U2,m-..2 - 2 U2,m-1 + U2,rn f,
-(h

2  kc2 ) f2v-

ul.y - 2 U2,m + U3,m) U2 ,,n-I -
2 U2,mn + U2.m+1) f~

Un-.2 1 - 2U-~ + Un, Un 1,0 - 2Un...,l + Un-1,2)

-h2 V_______ - Ic 2 ~

Un-22- 2 Un-1,2 + U71,2 ) (U71 1,1 - 2U71 -1,2 + Un-1.) -f-,

_U n-2 rn-I 2 U71-I.m-1 + Un,vn-I (U- ,m-2 2-l2
1 m-1 + U71 .m .mI.-

-(h
2  V- 7 1 lr-
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_(U,-2,m - 2 un-i + Un,m) _ (u,-,,-1 - 2 un.l,m + Un-l.+1 ) ; -fn-l,m

h2 V2

-1J - 2u,l + un+1, (uO - 2 Un,k + Un,2) - -fri

_(n-1,2 - 2Un,2 + Un+1,2 - 2 Un,2 + Un, 3 ) .

h2 V

_(un1,m-i - 2 u .1 + u1+1.77-1 -(Um-2 - 2 um_1 + . ) _fnm
h2  V

__(Un-l,m - 2un,,. +r Un+l.m)_ (un,rn-1 - 2un,m +r un,m+l) f,,,

3. Modification

The goal is to determine uio for all internal points (i, j). Having completed

several foundational steps, we can see a developing system of mn equations. Let's

clean it up a bit. To do this, we need to make better u-se of one more piece of the

given information-the boundary values. For those points just inside the boundaries

(a horizontal distance of h from the sides and/or a vertical distance of k from the

top or bottom) we already know part of the left side of (D.13). In particular, any

subscript i = 0, j = 0, i = n + 1, and/or j = m + 1 signifies a (known) boundary

point.

Multiplying through by (hk)2 and moving the known information to the

right-hand side of the equations, we again start with the left-most column (i = 1)

and work in the order of the labels. Now the system of equations looks like this:

170



k2(2u1,, - ts2,) + h 2 (2u1,, - U1 ,2) ;z: -(hk )2 f,, + k 2U0 ,l + h 2U1,0

k 2,2- U2,2) + h 2(-Ul,l + 2u,, 2 - U1 ,3) ;Z -(hk) 2f1 , 2 + k 2uO,2

k 2 (2ui,m.... - t12,m-1) + h 2 (_U,m..,-2 + 2Lu1,m.... - uli,m) ;- -(hk) 2 f,mi ± k 2 UO,m~i

k 2 (2u,,m - 112,m) + h 2 (_u1 ,m.. + 2ui,m) ;t -(hk ) 2 f1 ,m + k 2UO,m + h 2 ui,m+i

k 2(-Ul,1 + 2U2,1 - U3,I) + h 2(2U2,1 - U2,2) Iz -(hk) 2 f 2,1 + h 2 U2,0

k 2(-U1 ,2 + 2U2,2 - Ui3 .2 ) + h2( -U 2,1 + 2U2,2 - U2,3) - -(bk) 2 f2,2

k 2 (_U1 ,m 1 + 2 ti2,m-1 - 113 n-1) + h 2 (-U2,m.-2 + 2 U2,m-.. - 112,r) - -(hk ) 2 f 2 ,mil

k 2 (_U,m + 2 U2,m - U13,,) + h 2 ( U2,m-.. + 2 112,m) (hk )2 f 2 ,m + h 2 U 2 ,m+i

k 2(-Un..2,1 + 2Un-l,l -Un,l) + h 2(2u.,, - Un... 1,2) -(hk )2 f"_1 ,l + h 2 Un 1,0

k 2(-Un-.2 ,2 + 2 u1.-1,2 - t1,2) + h 2(ti-...1 ,l + 2 Un1n~,2 - Uf.-.13) - (k)2" ,
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k2(-U,,_2,,.-+2un-l,ml-un,ml)+h 2(-u,_l,,-2+2un-,m_,,_--un,_,m) P:. -(hk )2 f,,m_l

k2 (-un.2,m + 2Un_1,m-Un,m)+h (-Un-,m_ + 2 un_..,m) ; -(hk) 2 f..,m +h Un-_,m+i

k2(-un._1, + 2un,l) + h2(2unj - Un,2 ) ; -(hk) 2fn, + k2u.+,1 + h2u,,o

k 2(-u._ 1 ,2 + 2un,2) + h2 (-un,, + 2u,,2 - U,.3) ; -(hk) 2fn,2 + k2u.+ 1,2

k 2(-un -,m. +2Un,m- )+ h2 (-un,m,-2 +2Un,m-1 -Un,m) .Z -(hk )2 fn,m_l + k 2 Un+l,m,-1

k 2 (-Un._.i, + 2un,m) + h2 (-Un,m_. + 2un,m) : -(hk) 2fn,, + k2 un+l,m + h 2un,m+l

Now the equations are very close to what we want. There are some unfor-

tunate side effects to such a deliberate approach. The list of equations is tedious,

the subscripts are a bit involved, and it takes some concentration to match things

up. There are some benefits, though, for those who can endure! It will take very

little effort to see how the coefficients are collected.

E. MATRIX REPRESENTATION

It is not hard to translate the preceding equations into the familiar representa-

tion Ax = b. Notation is quite important. We will start with the obvious, exchanging

u for x so that (eventually) the system will look like Au = b. Dimensions are impor-

tant too. The goal is a large, sparse, symmetrix matrix A E K' X ". The vectors

u and b have the obvious dimensions and are assumed to contain real numbers as

well.
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1. Unknowns

Since there is a great deal of structure in this problem, it is useful to

partition the vector of unknowns, u. Let uij have the same meaning as it did

in equation (D.13) and consider the m-vector:

Ui,1

Ui, 2

Ui=

Ui'M-I

Ui,m

This vector captures all of the unknowns for a given column, i, of the original region.

Now we can stack the columns, n in number, forming the entire vector u of unknowns:

U1

U2

U/3

U --

U/n-I

UtnJ

This process has clearly formed u E Rm'. Now we turn to the matrix of coefficients.

2. Coefficients

The matrix A is formed by combining two smaller matrices, T and D. First

we shall consider the tridiagonal matrix T E Rmnm. For aesthetic purposes only, let

the diagonal elements of T be d = 2(h 2 + k2 ).

d -h2

-h 2  d -h 2

-h 2  d -h 2

T=
-h2  d -h 2

-h 2  -h 2

-h 2  d

Next, conider the diagonal matrix D E ,m.
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-k 2

-k 
2

- 1c2
k2

k k2

Forming the matrix A requires n identical copies of T and 2(n - 1) identical

copies of D. The matrices in A below are assigned subscripts for counting purposes.

The matrix subscripts, by the way, denote a value of i corresponding to the partition

ui which the matrix will multiply. A is the block-tridiagonal matrix

T, D2
D, T2 D3

D2 T3  D4
A=

D '- 3 T.-2 D ,- j
D.-2 T.-1 D.

D.- 1  T.

3. Knowns

We could proceed immediately to the solution vector, b E R'", using the

equations provided in the previous section. Again, though, the result can be cleaned

up a bit if we form b as the sum of three vectors f, v, w.

The vector f E R" represents the forcing fuinction. The equations clearly

indicate where the scalar multiplier comes from.

fi'2fl,2

f 2,1
f2,2

fn,m

174



Next, the vector v E R"" is used to represent the information that is known

due to the boundary values on the East and West sides of the region.

UOI

UO,2

UO,m

0
v=k

2

0
Un+lml

Un+1,2

Utn+l,rn-1

U~n+l ,m

Finally, the vector ,v E Rmn is used to represent the information that is

known due to the boundary values on the North and South sides of the region.

U1 ,0

0

0
Ul,m+l

U 2 ,0

w-h 2  0

0
U2,m+l

U 3 ,0

Unm+]

Now b is a simple sum of these vectors: b = f + v + w.
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F. CONCLUSION

This process has shown a few examples of partial differential equations that

appear frequently in nature. Poisson's equation in two dimensions was selected as

an example. After the finite difference approximation is selected, determining the

system of equations is a tedious (but not too complicated) process. Once the system

of equations is written down, the matrix representation is easy to come by.
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APPENDIX E

HYPERCUBE COMMUNICATIONS

This report displays the results of point-to-point communications tests that

were performed on the Intel iPSC/2 hypercube. The emphasis of the experiment

was to evaluate several aspects of communications time. The exercise showed that

communication on this machine is virtually independent of the Hamming distance

between communicating nodes. There is clear evidence that transmission rates are

related to message length (the transmission system favors longer messages) due-at

least in part-to an overhead charged to begin the communication. Communications

between the host and a node never achieve the rate that can be realized with node-

to-node transmissions.

The communications test code described in this appendix was only executed on

the iPSC/2. Time did not permit modification of the code and testing on the trans-

puter networks. A thorough test of communications and computational abilities of

the T414 and TS00 transputers has already been performed by Gregory Bryant. His

masters thesis [Ref. 26] contains the documentation of this work. A short summary

of Bryant's findings is included in the conclusions to this appendix.

A. SOURCE CODE OVERVIEW

The host program (commtst.c) and a node program (commtstn.c) contain

most of the code for this experiment. There is also a header file, comnitst.h, shared

by these codes,. Finally (but perhaps most important for any, high-level survey of the

code), the makefile commtst.mak shows dependencies and compilation procedures.

177



In the discussion that follows, bold-faced type is used to indicate function and object

names that actually appear in the code.

B. STRATEGY

The program must define the valid arguments. The function interpret args()

takes care of checking for occurrences of these arguments in the command line.

When the arguments have been interpreted, we know how to set variables like reps

(repetitions), bytes (length of the message to be passed), and verbose (to control

how much data is spewed out). Once these values are known, the host instructs each

node to either RECEIVE or SEND. A special Tasking packet (structure) carries

instructions to each node independently. Only one node is designated to SEND

at any one time; the rest RECEIVE. Receivers simply crecv() the given number

of bytes and return the message to the originator by calling csendo. Since this

involves a round-trip, the issue of timing requires attention.

We can divide the time measurement by two (to account for the round-trip),

provided we aren't deceived by the outcome. That is, passing two b-byte messages is

not the same as passing a single message of length 2b bytes. To make the timing data

credible, however, the round-trip method is essential. The precision of the mclocko

function is an additional issue. At best, mclock() is accurate to the millisecond (and

ten milliseconds may be a more reasonable expectation). Very short messages can

produce questionable results in terms of the precision of the timing data.

For this reason, tests of short messages should be repeated a number of times

within the block surrounded by time checks. This, of course, revives the same issue

(multiple repetitions of a message are not equivalent to a single, longer message).

We may proceed, however, provided we establish a common understanding of the

problem domain and terminology. I have used the term effective time to capture this

subtlety.
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Wherever this term appears, it should be interpreted according to the following

definition:
t

2p

where t . is the effective time, t is the actual time measurement for the message, and p

is the number of repetitions. The factor of two is included to account for the round-

trip. For instance, suppose that the user asks for three repetitions of a message. The

implementation carries this out in a for loop. Time is sampled before and after the

loop. The inside of the loop is the simple csend() and crecv() sequence described

earlier. The effective time in this examp!e would be t, = t/6.

In summary, there is no convenient (and credible) method for timing one-way

communications. If we time one-way communications, the results could be mis-

leading in that we could not be certain that the clock was starting just before the

beginning of the csend() and stopped immediately after the receiving node accu-

mulated the final byte of the message. We must also consider the issue of blocking

communication.1 Thus, the (round-trip) method is not so easily misled by the fact

that csend() is not actually blocking. The transmission dutics are quickly handed

over to a communication manager and processing continues directly. The crecv(

enforces blocking communications and execution stops at this function until the last

byte has been acquired. Thus the round-trip method seems to be quite reliable,

particularly in the case of node-to-node communications (if the host is involved, the

results are less consistent).

Since receiver nodes have nothing else to do but receive and retransmit the

message, the performance loss due to the round-trip method should be (almost en-

tirely) accounted for by two factors (loosely) placed into "software" and "hardware"

1By definition, blocking means that the invoking process (send or receive) causes execution of
the program to stop (be blocked from the CPU) until the communications requirement has been
satisfied.
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categories:

" Software overheads like establishing and freeing the activation stack for functions

(e.g., the csend() and crecv() functions).

* Hardware overheads associated with establishing the communication path and

performing switching. The take-down time for this task is probably negligible.

Hence, if this method of analyzing communications performance errs, it does so on

the conservative side. That is, the timing used in this method is liberal (if anything),

so that communication rates wilt be estimated conservatively.

C. RESULTS

Considering the nature of the implementation, communications will be consid-

ered bidirectional. In particular, the term "host-to-node" communications does not

imply that the host is the originator of directed communication, but that a bidirec-

tional exchange takes place between some node and the host. The host does send

directed, one-way instructions to the nodes, but all timed communication originates

at a node and returns to that node (even if it goes to the host). There are essentially

three groups of results; each of which captures data for node-to-node communica-

tions and host-to-node communications.

1. Small Messages Repeated Ten Times

The first test involved messages of length i < 1,024 bytes. Since the

shortest of these would not generate trustworthy timing data, the repetition count,

p, was set at ten. This gave te = t/20. Table E.1 shows the results.
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TABLE E.I: SHORT MESSAGES WITH TEN REPETITIONS

Message Node-to-Node Host-to-Node
Length t f, Rate t te Rate
(Bytes) (msec) (msec) (kbytes/sec) (msec) (msec) (kbytes/sec)

1 7.10 0.36 2.75 71.40 3.57 0.27
2 7.00 0.35 5.58 79.40 3.97 0.49
4 7.00 0.35 11.16 78.90 3.95 0.99
8 7.00 0.35 22.32 75.80 3.79 2.06

16 7.20 0.36 43.40 78.10 3.91 4.00
32 7.30 0.37 85.62 79.40 3.97 7.87
64 7.70 0.39 162.34 87.10 4.36 14.35

128 13.90 0.70 179.86 132.10 6.61 18.93
192 14.30 0.72 262.24 134.60 6.73 27.86
256 14.70 0.74 340.14 137.50 6.88 36.36
320 15.30 0.77 408.50 139.60 6.98 44.77
384 15.80 0.79 474.68 142.40 7.12 52.67
448 16.20 0.81 540.12 147.40 7.37 59.36
512 16.70 0.84 598.80 180.30 9.02 55.46
576 17.10 0.86 657.89 201.50 10.08 55.83
640 17.60 0.88 710.23 207.00 10.35 60.39
704 18.10 0.91 759.67 208.80 10.44 65.85
768 18.50 0.93 810.81 204.50 10.23 73.35
832 19.00 0.95 855.26 180.00 9.00 90.28
896 19.40 0.97 902.06 152.30 7.62 114.90
960 19.90 0.99 942.21 147.80 7.39 126.86

1024 20.40 1.02 980.39 148.90 7.45 134.32
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Figure E.1: Speed of Small Host-Node Messages (Ten Repetitions)

a. Host-to-Node Performance

The communication rates for small host-node messages with a repeti-

tion count of ten are illustrated in Figure E.1. Communications involving the host

produce very irregular results (in the sense that the relationship between length and

performance is not straightforward). The experiment was executed when only one

user was logged in at the host and the results followed the same general pattern on

repeated tests.
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Figure E.2: Speed of Small Messages Between Nodes (Ten Repetitions)

b. Node-to-Node Performnance

In the absence of contention for the communication medium, node-

to-node communications within the cube are quite predictable. Figure E.2 shows

transmission rates for small messages (up to one kilobyte) repeated ten times.
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TABLE E.2: SHORT MESSAGES WITH ONE HUNDRED REPETITIONS

Message Node-to-Node Host-to-Node
Length t t' Rate t t' Rate
(Bytes) (msec) (msec) (kbytes/sec) (msec) (msec) (kbytes/sec)

1 68.60 0.34 2.85 837.40 4.19 0.23
2 68.60 0.34 5.69 818.30 4.09 0.48
4 68.70 0.34 11.37 795.00 3.98 0.98
8 69.40 0.35 22.51 774.50 3.87 2.02

16 70.30 0.35 44.45 758.30 3.79 4.12
32 71.70 0.36 87.17 737.10 3.69 8.48
64 75.30 0.38 166.00 721.30 3.61 17.33

128 137.60 0.69 181.69 1020.10 5.10 24.51
192 142.30 0.71 263.53 1007.10 5.04 37.24
256 146.80 0.73 340.60 1007.00 5.04 49.65
320 152.00 0.76 411.18 1004.50 5.02 62.22
384 156.20 0.78 480.15 1013.40 5.07 74.01
448 161.00 0.81 543.48 1043.80 5.22 83.83
512 165.30 0.83 604.96 1152.90 5.76 86.74
576 169.80 0.85 662.54 1335.40 6.68 84.24
640 174.50 0.87 716.33 1419.50 7.10 88.06
704 179.30 0.90 766.87 1688.50 8.44 81.43
768 183.20 0.92 818.78 1869.90 9.35 80.22
832 188.20 0.94 863.44 1520.00 7.60 106.91
896 192.90 0.96 907.21 1070.30 5.35 163.51
960 197.70 0.99 948.41 1061.60 5.31 176.62

1024 202.40 1.01 988.14 1048.80 5.24 190.69

2. Small Messages Repeated One Hundred Times

For the next experiment data was collected from runs using the same mes-

sage lengths, but the repetition count, p, was raised to one hundred. This gives

te = t/200, as shown in Table E.2.

a. Host-to-Node Performance

Figure E.3 gives the transmission rates corresponding to this data.
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Figure E.3: Speed of Small Host-Node Messages (One Hundred Repetitions)
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Figure E.4: Speed of Small Messages Between Nodes (One Hundred Repel;tions)

b. Node-to-Node Performance

Figure E.4 shows the transmission rates for the node-to-node messages.

This data may have important implications. Consider the transmission of a matrix

row-by-row within a loop (where one row is transmitted each time through the

loop). The expected communications performance is related to the number of bytes

in a single row of the matrix, not the size of the entire matrix.
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3. Larger Messages

The final test considered longer messages (1,024 < f < 262, 144) that were

not repeated. This gives t, = 1/2. Since the experiment was performed over a rather

large set of message lengths, the data is divided at an arbitrary point. Messages

of 64K bytes and less are designated "medium" length ressages and placed into

Table E.3. Messages of length 128K bytes and greater are designated "long" messages

and placed into Table E.4. There is no hidden significance to this separation, it just

made for tables of reasonable length.

The figures that follow are based upon the combined data of both of these

Tables. The host terminates execution at the crecv() if we ask for more than 262,144

bytes in a single message. Chapter 2-iPSC/2 C Library Calls-of [Ref. 45: pp. 2-

16, 2-19] explain: "messages to or from a host process are limited to a maximum

of 256K bytes. There is no limit on message length between nodes." This explains

why the data stops at that meszage size.
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TABLE E.3: MESSAGES OF MEDIUM LENGTH

Message Node-to-Node Host-to-Node
Length t t, Rate t t, Rate
(Bytes) (msec) (msec) (kbytes/sec) (msec) (msec) (kbytes/sec)

1024 2.20 1.10 909.09 9.00 4.50 222.22
2048 2.80 1.40 1428.57 10.40 5.20 384.62
3072 3.70 1.85 1621.62 11.90 5.95 504.20
4096 4.40 2.20 1818.18 13.40 6.70 597.01
5120 5.10 2.55 1960.78 14.50 7.25 689.66
6144 5.80 2.90 2068.97 14.50 7.25 827.59
7168 6.50 3.25 2153.85 15.50 7.75 903.23
8192 7.40 3.70 2162.16 16.50 8.25 969.70
9216 8.10 4.05 2222.2 19.50 9.75 923.08
10240 8.80 4.40 2272.73 18.00 9.00 1111.11
11264 9.50 4.75 2315.79 18.90 9.45 1164.02
12288 10.30 5.15 2330.10 19.00 9.50 1263.16
13312 10.90 5.45 2385.32 19.60 9.80 1326.53
14336 11.80 5.90 2372.88 20.30 10.15 1379.31
15360 12.50 6.25 2400.00 21.90 10.95 1369.86
16384 13.20 6.60 2424.24 22.40 11-20 1428.57
17408 13.90 6.95 2446.04 23.30 11.65 1459.23
18432 14.60 7.30 2465.75 24.90 12.45 1445.78
19456 15.40 7.70 2467.53 24.30 12.15 1563.79
20480 16.10 8.05 2484.47 27.30 13.65 1465.20
21504 16.80 8.40 2500.00 27.10 13.55 1549.82
22528 17.60 8.80 2500.00 27.00 13.50 1629.63
23552 18.40 9.20 2500.00 27.80 13.90 1654.68
24576 19.10 9.55 2513.09 29.30 14.65 1638.23
25600 19.80 9.90 2525.25 29.40 14.70 1700.68
26624 20.50 10.25 2536.59 30.60 15.30 1699.35
27648 21.30 10.65 2535.21 30.90 15.45 1747.57
28672 22.10 11.05 2533.94 33.50 16.75 1671.64
29696 22.70 11.35 2555.07 38.50 19.25 1506.49
30720 23.50 11.75 2553.19 37.90 18.95 1583.11
31744 24.20 12.10 2561.98 37.90 18.95 1635.88
32768 24.90 12.45 2570.28 38.10 19.05 1679.79
65536 48.50 24.25 2639.18 59.90 29.95 2136.89
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TABLE E.4: LONG MESSAGES

Message Node-to-Node Host-to-Node
Length I t, Rate t t, Rate
(Bytes) (msec) (insec) (kbytes/sec) (msec) (msec) (kbytes/sec)
131072 95.60 47.80 2677.82 109.40 54.70 2340.04
150528 109.60 54.80 2682.48 123.60 61.80 2378.64
161792 117.70 58.85 2684.79 131.60 65.80 2401.22
162816 118.40 59.20 2685.81 132.90 66.45 2392.78
163840 119.10 59.55 2686.82 133.60 66.80 2395.21
164864 119.90 59.95 2685.57 135.00 67.50 2385.19
165888 120.60 60.30 2686.57 136.30 68.15 2377.11
172032 125.00 62.50 26S8.00 140.80 70.40 2386.36
182272 132.40 66.20 2688.82 148.10 74.05 2403.78
192512 139.70 69.85 2691.48 155.60 77.80 2416.45
202752 147.10 73.55 2692.05 164.60 82.30 2405.83
223232 161.80 80.90 2694.68 181.10 90.55 2407.51
243712 176.50 88.25 2696.88 194.80 97.40 2443.53
253952 183.80 91.90 2698.59 202.80 101.40 2445.76
259072 187.60 93.80 2697.23 205.50 102.75 2462.29
262144 189.70 94.85 2699.00 210.50 105.25 2432.30
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Figure E.5: Speed of Large Host-Node Messages

a. Host-to-Node Performance

The host-to-node communication rates (for large messages) are illus-

trated in Figure E.5.
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Figure E.6: Speed of Large Messages Between Nodes

b. Node-to-Node Performance

Figure E.6 shows the transmission rates for the same long messages

when passed among nodes of the hypercube. To move the plot of Figure E.6 out

into the open, a plot of transmission rate versus log lC is shown in Figure E.7.
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D. CONCLUSIONS

One of the obstacles that this experiment carefully avoided was competition

for the links. Contention for communications resources may be inherent in certain

parallel programs. Potential causes and effects of contention should always be given

due consideration in the crafting of a parallel application. All of the algorithms that

were tested in this research work involved very structured, regular communications

schemes. An application with very random communication patterns should be ex-

pected to behave very differently. Additionally, the communication scheme for every

program in this work was designed to use the shortest possible path.

The circuit switching approach has the disadvantage that a single message must

control the entire path from origin to destination. Under a less controlled, random

pattern of communications the performance of the communications subsystem might

reasonably be expected to exhibit degraded performance. Other portions of this the-

sis show that a communication-bound algorithm can experience severe performance

degradation as well. There is no specific claim that the results obtained in this

experiment represent an uppcr bound for node-to-node communications within the

hypercube, but they are probably good estimates for an upper bound.

Host-node communication is slower than node-to-node communication. This

is not surprising (consider the physical distances and materials). In the absence of

competition for the links, node-to-node transmission rates are essentially predictable

for a given message length. There is a tremendous rise in transmission rate as message

length goes from one byte to the vicinity of twenty kilobytes. Thereafter, smaller

(apparently asymptotic) performance gains are achieved by increasing the message

size. A similar phenomenon occurs with host-node communications but it takes

much longer messages to break, say the two megabytes-per-second transmission

rate.
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These performance measures are quite appealing for long messages, but con-

sider transmissions of shorter (and possibly repetitious) messages. The data shows

that short messages are penalized, even if they are part of a loop that involves a

good deal of communication. Each instance of csend() or crecv() is distinct and

incurs its own start-up cost. This is an important note for anyone considering

transmission of the rows (or columns) of a matrix within a loop structure. The

potential of (pre-transmission) storage of matrices (two-dimensional arrays) into

one-dimensional arrays might be investigated as a means of increasing the commu-

nications rate (provided the cost of copying the array is not prohibitive).

Communications in a transputer network was not developed in this work, but

Bryant [Ref. 26] gives a very thorough analysis of communications and calculations

in a network of transputers. On pages 31-34, Bryant gives a good summary of

unidirectional and bidirectional data transfer rates. He discusses link interaction (i.e.,

how communications performance varies as one, two, or all four of the transputer's

links are engaged in communication) on pages 34-38 and concludes that the effects

of link interaction are minimal.

Bryant also discusses the effects of varied communication loads on processor

performance. On pages 38-44, he finds that bombarding a transputer with many

small messages while it is trying to perform calculations can severely degrade the

processor's performance. His Figures 3.8 and 3.9 show that-with only one link

active-messages of size 100 bytes and larger cause negligible performance degrada-

tion. With all four links active, messages of size greater than one kilobyte should be

used to free the processor from most of the communications overhead.

Pages 36 and 37 of Bryant's thesis show the effects of message length on the

communication rate. Bryant's Figures 3.4 and 3.5 are quite similar to Figure E.6

above, but the transputers are much more responsive (i.e., there seems to be less

overhead involved, so the peak communications rate is achieved much earlier). In
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fact, the transputers are near their peak transmission rate with messages of 100 bytes

and messages of one kilobyte and greater always travel at peak rates.

Comparing a transputer system to an iPSC/2 system-in terms of communi-

cations performance-is essentially a lesson in the differences between store-and-

forward switching versus circuit switching for multi-hop communications. Bryant

shows [Ref. 26: pp. 83-85] that the store-and-forward transmission rates suffer as

the number of hops grows. The direct-connect (circuit switching) approach recovers

its overhead on multi-hop communications, but it ties up the entire path to do so

(making it unavailable to other potential users). The key difference is that commu-

nications performance with the direct-connect method is very nearly independent of

the number of hops.

The transputer system seems to enforce true blocking communications on both

the sending and receiving ends (byte-by-byte acknowledgment is part of the pro-

tocol). The iPSC/2 csend() is not blocking, but the crecv() function is blocking.

Proper handling of these issues can become important when implementing an algo-

rithm. Each method has advantages and disadvantages, but-at least for the current

systems-transputers seem better suited for applications involving short messages

over short distance and the iPSC/2 seems to handle long messages over long distances

better.

E. SOURCE CODE LISTINGS

The source code listings for the programs used for these tests are supplied on

the pages that follow. The makefile commtst.mak appears first and describes the

dependencies among the files and compilation procedures. Next, commtst.h is the

header file associated with these programs. Finally, the actual code is given in a host

program called commtst.c and the node program commtstn.c.
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comrntst.mak

i# Author: Jonathan E. Hartman, U. S. Naval Postgraduate School

2 # Purpose: Makefile for Hypercube Communications Test Programs

3 # Date: 07 August 1991
4

s all: hostcode nodecode
6

7 help:

s chelp
9

10

11 # --------------------------------------------------------------

12 hostcode: commtst.o clargs.o
13 CC clargs.o commtst.o -host -0 conmtst
14

15 clargs.o: clargs.h clargs.c
16 commtst.o: commtst.h commtst.c

17

18
'9 8

20 nodecode: commtstn.o
21 CC commtstn.o -node -o commtstn

22

23 commtstn.o: commtstn.c commtst.h

24

25

26 8 Execute it!---------------------------------------------------
27 run: all

26 commtst -d 3 -b 1024 -r 2
29

30

31 S Delete object files, executables--------------------------------
32 clean:
33 - *.0

34 rm commtst

35 rm commtstn

36

37 # EOF commtst.mak-----------------------------------------------
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Scommtst.h

I /* - PROGRAM INFORMATION -======-

2 *

3 0 SOURCE commtst.h
4 * VERSION 1.2

s * DATE 07 August 1991

6 * AUTHOR J Jonathan E. Hartman, U. S. Naval Postgraduate School
7 *
S *

9 ------------- DESCRIPTION

10 •

ii * This header file gives common information for use across the host program

12 * commtst.c and the node program commtstn.c. A more complete description
13 * can be found in commtst.c.

14 •

15 •

16 */

17

18 #ifndef EXIT-FAILURE
19 #define EXIT-FAILURE -1

20 #endif

21

22 #define MAXCUBESIZE 16
23

24 *define ROOT -1
25

26 #define RECEIVE 0
27 #define SEND 1

28

29 #define FALSE 0

30 #define TRUE 1
31

32

33 /* TYPE DEFINITION

34 *

35 * The following structure is the framework that the root processor (host)

36 * uses to pass instructions to the worker nodes in the cube.

37 */
38

39 typedef struct {

40

41 int task; /* choose RECEIVE or SEND as above 4/

42 long bytes; /* length of message */

43 long reps; /* number of repetitions 4/

44 int destination[MAXCUBESIZE]; /* for senders: identifies addressees */

45

46 } Tasking;
47

48

49 /* ------------------------- EOF commtst.h -/
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Scommtst.c

I / -- PROGRAM INFORMATION --

2 *
3 * SOURCE commtst.c

4 * VERSION 1.2

5 * DATE 07 August 1991
6 * AUTHOR : Jonathan E. Hartman, U. S. Naval Postgraduate School

7 *

s * USAGE commtst [-d dimension] [-b bytes] [-r repetitions] [-v]
9 *

10 * EXAMPLE If you type 'comtst -d 3 -v -b 1024 -r 10', it means to
11 * run the program on a dimension 3 hypercube in the verbose

12 * mode, with messages of length 1024 bytes, and 10 repeti-
13 5 tions for each message.

14 *

15 e REFERENCES (1) iPSC/2 Programer's Reference Manual
16 *

17 5

16 - DESCRIPTION

19 

20 C

21 e This program runs on the host. It orchestrates various point-to-point
22 * communication tasks between nodes of a hypercube. The time of round-trip
23 * communications is gathered and printed out. The output includes the time
24 * required and rate of communication (taking into account repetitions and
25 * round-trips). The 'verbose' mode gives a more detailed node-by-node

26 * accounting of the run.

27 *

28 -

29 */
30

31 char *version = "Hypercube Communications Test, Version 1.2";

32

33

34 /* ------------- ALGORITHM--------------
35 *

36 * The root (host) processor determines who will communicate with whom, and
37 * when. No node operates independently. The host identifies a sender and
38 * receiver(s). The host also gives the length of the message that should

39 0 be passed and the number of times that the message is to be repeated
40 * (multiple repetitions may be required when the message is short since

41 # mclock() returns milliseconds). The 'Tasking' structure holds instruc-

42 * from the manager (i.e., SEND or RECEIVE, the length of the message, num-
43 * ber of repetitions, and addressees). When this structure is received at

44 * a node, it performs the task and awaits further instructions from the
45 * manager processor. If the processor is a sender, it returns timing data

46 $ to the host upon completion.

47 *

48 * --- -- --------

49 5/

50
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[commtst.c

51 #include <stdio.h>

52 #include "commtst.h"
53 #include "ipsc.h"
54 #include "macros.h"

55 #include "clargs.h"
56

57 *define ASCII-CONVERSION 48 /* for char -> int conversion of 0...3 /
5s #define CTSIZE 4 /* for cubetypel size C/
59

6o #define NUMARGS 4 /* -d -b -r -v

61 *define DIM 0 / index values into optv] */
62 #define BYTES 1
63 *define REPS 2

64 #define VERBOSE 3
65

66

67 /* ---------- FUNCTION DEFINITION ---------

68

69 #ifdef PROTOTYPE

70

71 void init(int argc, char **argv, char cubetype[CTSIZE],

72 int *dim, long *bytes, long *reps, int *verbose)

73

74 #else
75

76 void init(axgc, argv, cubetype, dim, bytes, reps, verbose)

77

78 int argo;
79 char **argv,

so cubetype[CTSIZE];
81 int *dim;
82 long *bytes,

83 *reps;

84 int *verbose;

85

s6 #endif
87 {
88 int count = 1,
89 valid = FALSE;

90

91 OptStruct *optv[UNARGS];
92

93

94 /* The first step is to make a table of all of the valid arguments. The

95 * structure is defined more carefully in clargs.h, but the basic idea is

96 * that we have an array of pointers to type OptStruct (option structure)
97 * ... in this case, there are NUNARGS valid arguments and the next few
98 * steps take care of allocation and definition of them. When this is
99 * done, it is time to call interpret.args() to see what the user entered.

100 /
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1commtst-c

101

102 optv[DIM] =C(pt-.Struct *)rallocC 1, sizeofCOpt.Struct) )
103 optv (BYTES] = (Opt-.Struct e)calloc( 1. sizeof(opt.Struct) )
104 optv(REPS] =(Opt-.Struct *)callocC 1, sizoofCOpt-.Struct) )
105 optv[VERBOSEl = (Opt-.Struct 0) calloc( 1, sizoof(Opt-.Struct) )
106 optv[DIM)->lanswer = (long 0) callocC 1, uizooilong) )
107 optvCBYTES->lanswer = (long 0) calloc( 1, sizeof(long) )
108 optv[REPS->lanswer = (long 0) callocC 1, sized Clang) )
109

110 /s The intel compiler didn't like .. .- >argnae ="-d"; etc. 4

III optv[DIM3->argname[O) =

112 optv[D114)->argnazne[l) =
113 optv[DIM)->subaxgc = 1;
114 optv[DIM)->subaxgi = 1EXT-.LOIG;
115

116 optv[BYTES->argiiaie[O] =

117 optv[BYTES)->argname El] =1)
118 optvEBYTES->subargc = 1;
119 optvEBYTES->subargi = NEXT-.LONG;
120

121 optv[REPS)->agnaue[O) =

122 optv [REPS] ->argnaie Ell] O'
123 optv[REPS]->subargc = 1;
124 optv[REPS-subargi =IEITLONG;
125

126 optv[VERBOSE]->arguame(O) =
127 optvEVERBOSE->argname~l) = II
128 optv[VERBOSE->subargc = 0;
129

130 *dim =-1;
131

132 interpret..args (axgc, argv, IUW..ARGS, optv);
133

134 if (ovtv[DIM]->found) *dim = (int) optv[DIN-)lansver[OJ;
135

136 switch (*dim){
137

138 case 0 case I case 2 case 3 :break;
139

140 default:
141 while COvalid){
142

143 printfC'Enter desired cube dimension (in {0, 1, 2, 3)): )

144 scan("Ud, dim);
145 fflush(stdin);
146 switch(*dim){
147 case 0 case 1 case 2 :case 3 :valid = TRUE; break;
148}

149}

IS0O /* end switcb(o*
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commtst.-c

151 if (optv[BYTESI->found) *bytes = optv[BYTES->lanswer[0);
152

153 valid = FALSE;
154

155 if (*bytes < 1) {
156 while C!valid) {
157 printf("Enter message length (bytes): ");
158 scanf("%ld", bytes);

159 fflush(stdin);
160 if (*bytes > O){ valid = TRUE; }
161 else { printf("Nessage length must be positive.\n"); }
162 }
163

164

165 if (optv[REPS->f vnd) { *reps = optv[REPS)->lanswer[O]; }
166 else {
167

168 printf("Non-existing (or invalid) repetition count, ");
169 printf("using one repetition.\n\n");
170 *reps : 1;
171

172

173 (optv[VERBOSE->found) ? *verbose = TRUE : *verbose = FALSE;
174

175 cubetype[O] 'd'; /* for dimension (to follow) */

176 cubetype[l] = (char)(*dim + ASCIICOIVERSIOI);
177 cubetype[22 = 'f'; /* means nodes are 386/387 combo */

178 cubetype[3] = 0;
179

is0 printf ("Initialization complete...Cube Dimension: %d\n", *dim);

181 printf(" Message Length: %ld\n", *bytes);

182 printf(" Repetitions: V.ld\n\n", *reps);

183 if (*verbose) printf(" Verbose Mode: ON");

184 }
is1 /* End init() -------------------------------------------------------------- /
186

187

188

i89 #ifdef PROTOTYPE
190

191 main(int argc. char *argv[])

192

193 #else

194

195 main(argc, argv)

196

197 int argc;
198 char *argv[];
199

200 #endif

201



conimt stc C

201 { I* begin maino) *I
202

203 char *cubename = "Hypercube",
204 cubetype [CTSIZE],
205 *Msg,
206 *nodecode = "comatstn";
207

208 float avg,
209 avg.hostrate,
210 avg-hosttime,
211 avg-rate,
212 avg-time,
213 bytes,
214 reps;
215

216 int cubesize,
217 dim,
218 i

219 ,

220 verbose;
221

222 unsigned long **timing-data;

223

224 Tasking task-packet;

225

226

227 printf("\ns\n\n", version);

226

229 init(argc, argv, cubetype, &dim, &(task.packet.bytes),
230 &(task-packet.reps), &verbose);

231

232 bytes = (float) task-packet.bytes;

233 reps = (float) task.packet.reps;
234 bytes *= (2.0 * reps); /* account for two-way communications, reps */
235

236 cubesize = POW2(dim);

237

238 timing-data = (unsigned long **) calloc(cubesize, sizeof(unsigned long*));
239

240 for (i 0 0; i < cubesize; i++) {
241

242 timing.data [i) = (unsigned long*) calloc(cubesize, sizeof (unsigned long));
243 }
244

245 if (!(msg = (char *) calloc(task-packet.bytes, sizeof(char)))) {
246

247 printf("maino): Allocation failure for msg.\n");
248 exit(EXITFAILURE);

249 1
250
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commtst.c

251 /* Get the cube and load the node code e/

252

253 getcube(cubename, cubet-pe, lULL, 0);
254 attachcube(cubename);

255 setpid(O);
256 load(nodecode, ALLNODES, IODEPID);

257

256

259 /* Perform tre tasking, receive the message, return it, receive and print
260 * timing data.. .repeat for all players. The outer loop index, i, will
261 * represent the sender node. The j index runs t1he other (RECEIVE)

262 * players.
263 */

264

265 for (i = 0; i < cubesize; i++) {
26C

267 /* Get the receivers ready first */
268 task-packet.task = RECEIVE;
269 task-packet.destination[O] = i;
270 task.packet.destination[l] = cubesize; /* impossible flags end */
271

272 for (j = 0; j < i; j++) {
273

274 csend(O, &task.packet, sizeof(Tasking), j, NODEPID);
275

276

277 for (j 7 (i+1); j < cubesize; j++) {
278

279 csend(O, &task-packet, sizeof(Tasking), j, NODEPID);

280

261

262 /* Then prepare the sender ==> he can start e/
263 task-packet.task = SEND;

264 for (j = 0; j < i; j++) task.packet.destination[j] = j;
235 task-packet.destinationfi = ROOT;

286 for (j = (1+1); j < cubesize; j++) task-packet.destination[j] = j;

267

26 csend(O, ktaskpacket, sizeof(Tasking), i, NODEPID);
289

290 /* Receive from the sender and return his message e/
291 for (j = 0; j < task-packet.reps; j++) C
292

293 crecv(ANYTYPE, msg, task-packet.bytes);

294 csend(O, msg, task.packet.bytes, i, NODEPID);
295

296

297 /* Receive the timing data from this run and print it e/
296 crecv(ANYTYPE, timing.data[i), (cubesize * sizeof(unsigned long)) );
299

300 } /* end for i) ./
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301 for Ci =0; i < cubesize; i++){
302

I if (verbose){
b34

305 printf ("Source Dest. Time (ac) Rate Ckilobytes/second)\n");
306 printf± === C==-- -- - -- - -- - -- -

307 prirtfC"%4d HOST %1llu " i, timing-.dtacilli));
309 printf C" %10.21\n", Cbytes ((Cfloat) timing-.data~i][il)))
309}

310

311 avg = 0.0;
312

313 for CQ = 0; j < cubesize; j++){
314

315 if Ci != j){
316

317 avg += (float) timing..data[i) Ej];
318

319 if (verbose){
320

321 printfC' %4d", j);
322 printfC'I %10lu ", timing-datali) [j));
323 printfC"%10.2f\i". (bytes /((float) timirxg-.datati3Ej])) ;
324}

325}

326

327 if Cj (cubesize - 1)){
328

329 avg /= float) cubesize - 1;
330

331 if (verbose){
332

333 rtf - - - - - - - - - -

334 printf("---------=\n"),
335 printf ("Averages ........... %9.1f maec" avg);
336 priltf C" 77.2f". bytes/avg )
337 printfC" kbytes/sec~in\n'n);

339
340 } * end for~j) *
341 }/* end for~i) *
342

343 for Ci 0; i < cubesize; i++){
344

345 for (j 0; j < cubeaize; j++) f
346

347 Ci =j) ? avghosttime += timing.data~iJ[j)
348e avg-time += timing..data~i(i)[]
349}
350 }
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Scommtst .c

351 avg.hoattime /= cubosize;

352 avg-hostrate = bytes/avg-hosttime;
353

354 avg.time /= ((cubesize - 1) * cubesize);

3ss avg.rate = bytes/avg-time;

356

357 printf("If we average all of the times and rates .... \n\n");

358 printf(" Average Time: %9.1f milliseconds\n", avgtime);

359 printf(" Average Rate: %1O.2f kilobytes/second\n\n\n", avg.rate);

360

361 printf("NOTE: Average and Rate values are for the nodes OILY.\n");

362 printf(" They do not include the host timing data.\n\n\n");

363

364 printf("The averages for the node <--> host communications were:i\nn");

365 printf(" Average Time: %9.If milliseconds\n". avg.hosttime);

366 printf C" Average Rate: %1O.2f kilobytes/second\n\n\n", avghostrate);

367

368 }
369 /* -- OF cott.c -/
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Scommtstn.c

1 /*. ---- -PROGRAM INFORMATION ...........

2 *

3 * SOURCE commtstn.c
4 * VERSION 1.2

5 * DATE 07 August 1991
6 AUTHOR Jonathan E. Bartman, U. S. Naval Postgraduate School
7 *
S *

S*------------- DESCRIPTION --==-

10 *
ii * This program is loaded by commtst.c (which runs on the host). This code

12 * (comntstn.c) runs on the nodes of a hypercube created by the host program.

13 * For more information, see commtst.c.

14 *

15 -- - - - -- -- - -- - - -

16

17

18

19 *include <stdio.h>

20 #include "commtst.h"

21 #include "ipsc.h"

22

23 #define SUCCESS 0
24

25

26

27 #ifdef PROTOTYPE

28

29 main(int argc, char *argv[])

30

31 #else
32

33 main(argc, argv)

34

35 int argo;

36 char *argv [];

37 #endif

39 char *msg;

40

41 nt cubesize = numnodes(),

42 i,

43 j.
44 return-addr;

45

46 long rep;

47

48 unsigned long start, *timing-data;

49

50 Tasking task-packet;
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comnxtstn-cl

51 timing-.data = (unsigned long*) calloc~cubesiz. sizeof (unsigned long));
52

53 for Ci = 0; i < cubesize; i++){
54

55 crecvCANY-.TYPE, &task-.packet. sizeof(Tanking));
56

57 nag = (char *) calloc~task..packet.bytes, sizeof (char));
58

59 switch task-.packet.task){
60

61 case RECEIVE
62

63 return-.addr = task-.packet .destination[OJ;
64

65 for (rep = 0; rep < task-.packet.reps; rep++){
66

67 crecv(ANY.-TYPE, msg, task..packet .bytes);
68 csendC0, sag, task-.packet.bytes, return-addr, IODE-PID);
69

70

71 break;
72

73

74 case SEND
75

76 j =0;

77

78 while (Cj'cubesize)&&Ctask-packet.destination[j)<cubesize)){
79

80 start = mclocko);
81

82 for (rep = 0; rep < task..packet.reps; rep++){
83

84 Qj == mynodeo)
85 csend(O usg,task-.packet.bytes,myhosto),IODE-.PID):
86 csend(0, nag, task-.packet.bytez, j, 1ODE-.PID);
87

88 crecv(IYTYPE, nag, task..packet.bytes);
9

90

91 timing..Aata~j) = mclock() start;
92

93 j+

94}

95

96 /* Return the timing data *
97 csend(O. timing-.data, (cubesize * sizoof~unsigned long)),
983 myhosto). IODE.PID);
99

100 break;
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101 default

102

103 printf("Unxecognized. task at node %ld.\n". synode() )
104 slit CEXIT-.FAILIJRE);
103

106 }/* end switcho)*
107

108

109 freemsg);
110

III

112 J * end for()*
113

114 return(SUCCESS);

115

116}

117 /* --------------------- OF coautstu.c ----------------------- *
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APPENDIX F

MATRIX LIBRARY

This appendix contains part of the matrix library, matlib that is often used

and referenced in other sections and code. It could be argued that "matrix library"

is a misnomer since much of the code has little to do with matrices. This criticism is

true, but I will defend the name since the entire reason for the creating such a library

was to handle matrices in a more reasonable way. The last section of this appendix

contains all of the source code for Gauss factorization with partial pivoting, and a

short excerpt from the complete pivoting code.

The specifications and a portion of the source code for the library are given on

the pages to follow. The original intent was to include the source code in its entirety,

but this would require more than double the current number of pages so the source

has been omitted. The files are divided into three logical groups:

1. Makefiles that simplify maintenance of the library, show dependencies among

the files, and describe the compilation procedures that are used to generate the

loadable (executable) code.

2. Standard files (mostly C header files) that make definitions available (for con-

sistency) across a wide range of files. The range is implied by the content of

the file. These files include manifest constants that are installed using the C

Preprocessor #define directive, type definitions that are intended for use across

several files, and macro definitions that are expanded by the C Preprocessor.

3. Source code files that appear in pairs, like filename.h and filename.c or (mostly)

as a header file alone. The header file gives remarks, definitions of manifest con-
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stants, type definitions, and function declarations (specifications) that pertain to

the associated source code (i.e., the code within filename.c). Again, the latter

has been omitted in most cases.

4. The Gauss factorization code. All of the source code for the partial pivoting

version is given, and an excerpt of the pivot election function from the complete

pivoting code is also provided.

A. MAKEFILES

logc.mak This makefile is a standard template for programs compiled with the

Logical Systems C (version 89.1) product.

matlib.mak This makefile is used to translate matlib into a useable form. With

Logical Systems C, it creates a library suitable for installation and use as any

other normal C library. The portion of the makefile used on the Intel iPSC/2

simply works in the current directory to translate the source into object code so

that other programs can reference it.
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28
3 8 AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School
4 8 PURPOSE Nakefile for Hypercube Comunications Test Programs (LogC)

5 # DATE : 10 August 1991

68

8

9 ROOTCODE=filename
1o MODECODE=filename
ii NIFFILE=filename

12

13

14 # ---------------------- OPTIONS AID DEFINITIONS
15 #
16 # The following section establishes various options and definitions. We
17 8 start with PP, the Logical Systems C Preprocessor. The '-dX' option
is 8 (with no macro-expression) is like '*define X 1'. Next we set up the
19 # compilation options for Logical Systems' TCX Transputer C Compiler. The
20 # '-c' means compress the output file. The options beginning with '-p'
21 8 tell TCX to generate code for the appropriate processor:

22 S
23 # -p2 T212 or T222

24 # -p25 T225
25 8 -p4  T414

26 S -p45 T400 or T425
27 8 -p8 T800
28 # -p85 T801 or T805

29 #

30 8 Logical Systems' TASM Transputer Assembler is next. The '-c' means
31 # compress the output file (it can cut it in half)! The '-t' is used
32 8 because the input to TASM will be from a language translator (TCX's
33 # output) and not from assembly source code.
34 S

35 8 The final list tells TLIK which libraries to look at during linking.
36 8 It also establishes an entry point. You should always use -main for
37 8 the root node; otherwise use _ns-main (for other nodes).

38

39 PPOPT2=-dPROTOTYPE -dTRANSPUTER -dT212
40 PPOPT4=-dPROTOTYPE -dTRANSPUTER -dT414
41 PPOPTS=-dPROTOTYPE -dTRANSPUTER -dT80
42 TCXOPT2f-cp2

43 TCXOPT4=-cp4

44 TCXOPT=-cp8
45 TASHOPT=-ct

46 T2LIB=t2lib.tll
47 T4LIBfaatlib4.tll t4cube.tll t4lib.tll

4s TSLIB=matlibB.tll t8cube.tll t8lib.tll
49 RNTRYf-main
so NEXTRY=_ns-main
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51

52

538S-------------------------DEFAULT AKE ALL ------------
54 8
55

s6 all: *(ROOTCODE).tld $(IODECODE).tld
57

58

59

60

61

628#-------------- -------- ROCDE-----------------------------RTCD

638
64

65 $(P.OOTCODE): $CROOTCODE).tld
66

67 $CRODTCODE) .tld: $(ROOTCODE) .trl
68 echo FLAG c > SCROOTCODE).lnk
69 echo LIST SCROOTCODE).map >> $(ROOTCODE).lnk
70 echo INPUT $(ROOTCODE).trl >> $CROOTCODE).lnk
71 echo ENTRY $CRENTRY) >> $CROOTCODE).lnk
72 echo LIBRARY $(T4LIB) >> $CROOTCODE).lnk
73 tink S(ROOTCODE).ILnk
74

75 $(ROOTCODE).trl: $(ROOTCODE).c
76 pp $(ROOTCDDE).c $(PPOPT4)
77 tcx SCROOTCODE).pp $CTCXOPT4)
78 tasm $(ROOTCODE).tal $CTASHOPT)
79

so

81

82

93

848--------------------------------NYODE CODE ---------------
85 S

86

87 SCIODECODE): $CNODECODE).tld

69 $CIODECODE) .tld: $CIODECODE) .trl
90 echo FLAG c > $(NDDECODE).lnk

91 echo LIST $(NODECODE).uap >> $CNODECODE).lnk
92 echo INPUT SCNODECODE).trl >> S(NODECODE).lnk
93 echo ENTRY $SCITRY) >> $(NODECODE).lnk
94 echo LIBRARY $(T8LIB) >> $CNODECaDE).lnk
95 tink $(IODECODE).lnk
96

97 $(NODECODE).trl: $(IODECODE).c
98 pp $CIODECODE).c $CPPOPT8)
99 tcx $(UODECODE).pp *(TC1OPT8)

100 tasm $CNODECODE).tal $(TASNOPT)
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101

102# - - - - - - - -- - - - - - - EXECUTION --- - - - - - - - - - - - -

103
104

105 run: SCROOTCOiDE).tld $CEODECODE)..tld $CIIF..FILE).uif
106 ld-net $CNIF-.FILE)
107

108

log #------------------------------- CLEAN UP ---------------

110#
III

112 cleanl:
113 d.1 $CROOTCODE).lDnk
114 del S(IODECODE).lrnk
115 del $CROOTCODE).uap
116 del $(IODECODE).map
117 del $CROOTCODE).tal
118 del $(NODECODE).tal
119Q del $CROOTCODE).pp
120 del $(NODECODE).pp
121 del $(RODTCODE)..trl
122 del $CNODECODE).trl
123

124

125#EOF logc.mak-------------------------------------------------------------
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I * ---------- MAKEFILE FOR MATRIX LIBRARY =--------- ----------

28
3S SOURCE matlib.mak
4 8 DATE 17 August 1991
5 8 AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School
68

7 8 PURPOSE Make the matrix library 'matlib'.
88

9 8 REMARKS This makefile works with Logical Systems C, version 89.1,
i0 8 and the Intel iPSC/2 compiler. The LogC portions of this
ii # makefile actually construct libraries of the functions available in the

12 * source files indicated. There are two libraries generated--matlib4.tll
13 * & matlib8.tll---since the code is compiled for T414 or T800 processors.

14 8 For the Intel compiler, I have not created a library; but have used the
15 8 object code as needed. There are a few sections that pertain to both
16 8 compilers. The sections that only pertain to a particular compiler are
17 8 clearly marked 'Intel iPSC/2' or 'Logical Systems C'.
18 8
19 -------- -------

20

21

22

23

24

25 8 1.) DEFINITIONS AND OPTIONS -----

26 8
27 8 The following options and definitions are required. A more thorough
28 8 explanation can be found in 'logc.mak' or in the Logical Systems C
29 8 Transputer Toolset manual.
30 8
318----------------------------------------------- ------

32

33 THISMAKEFILE=matlib .mak
34

35

36 8---------- ----- 1.1) Intel iPSC/2 ----------

37 8
38

39 M NATLIBDIR is the directory that contains the matlib files
40 MATLIBDIR = /usr/hartman/matlib
41 OBJECTS = clargs.o comm.o hcube.o generate.o matops.o matrixio.o memory.o math.o
sep.o timing.o vec-ops.o
42

43

44

45

46 8 1.2) Logical Systems C ==-----------
47 #

48

49 T414LIBNAXE=matlib4
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50 TS00LIBIAMEmatlib8
51

52 TRL4FILESclarge.trlI comm.trl4 complex.trl4 generatetrIl machine.trl4 mat-.ops.trl4
math.trl4 matrizio.trl4 memory.trl4 nun-.sys.trlI sep.trl4 timing.trl4 vec-.ops.trl4
53 TRLSFILESclargs.trlS com.trl8 complex.trlS generate trie machine.trlS mat-.ops.trlS
math.trlB matrixio.trl8 memorytriB nun-.sys.trlB sep.trlS timing.trl8 vec-.ops.trlB
54

55 TLIB4FILES=clarge comm complex generate machine mat-ops math matrizic memory num-Sys
sep timing vec..ops
56 fLIBSFILES=clargs comm complex generate machine mat-.opm math matrixio memory numn-Sys
sep timing vec..ops
57

58 PPOPT2=-dPROTOTYPE -dTRAISPUTER -dT212
59 PPOPT4=-dPROTOTYPE -dTRANSPUTER -dT414
60 PPOPT8=-dPROTOTYPE -dTRANSPUTER -dT800
G 1

62 TCXOPT2=-cp2
63 TCXOPT4-cp
64 TCXOPT82-cp8
65

66 TASMOPT=-ct
67

68 T2LIB=t2lib tl
69 T4LIBmatlib4.tll t4cube.tll t4lib.tll
70 TSLIBmatlibB.tll t8cube.tll t8lib.tll
71

72 REITRY=..main
73 NENTRY-ns..main
74

75

76

77

78

79 # ----- 2.) INSTRUCTIONS FOR DEFAULT MAKE---- -------
so0

81 * The following sections give the default (since they appear first in the
828S makefile) options for this makef ile. By commenting one or the other
83 8 out, one can get to the defaults easily.
84 *

85 #--------------------------------- ------
86

87 ipsc: imatlib
gs clean: iclean
89 # tptr: tuatlib
go * clean: tclean
91

92

938 ------ 2.1) Intel iPSC/2 -----
94 8
95

215



matfib.ma

96 imatlib: *(ODJECTS)
97

98

99

100 S ----- 2.2) Logical Systems C - - ------

101 #

102 S Make everything and install in the library directory designated by the
103 8 environment variable TLIB.
104

105

106 tmatlib:
107 make -f $(TNISMAKEFILE) $CT414LIBIARE).tll
io8 make -1 W(HISHAKEFILE) iustall4
109 make -f *(TRISMAKEFILE) tclean
110 ake -f $(THISMAKEFILE) $CT800LIBIAKE).tll
iii make -f $CTHISNAKEFILE) install8
112 make -f $(THISMAKEFILE) tclean
113 make -f $CTHISNAKEFILE) install.headers
114

115

116 S8------------------CREATE T414 VERSIOI OF THE LIBRARY ---------
117

118

119 SCT414LIBI[AME).tll : $(TRL4FILES)
120 tlib $(T414LIDUAME) -b $CTLIB4FILES)
121

122 clargs.trl4 :clargs.h clargs.c
123 pp clargs.c $(PPOPT4)
124 tcx clargs.pp $(TCXGPT4)
125 tasm clargs.tal $(TASMOPT)
126

127 comm.trl4 :comm.h comm.c
128 pp COUm.c $CPPOPT4)
129 tcx COMM.pp S(TCXOPT4)
130 tasm comm.tal $(TASNOPT)
131

132 complex.trl4 :complex.h complex.c
133 pp COmpleX.c $(PPOPT4)
134 tcx CompleX.pp $(TCXOPT4)
135 tam complex.tal $(TASMOPT)
136

137 generate.trl4 :generate.h generate.c matrix.h memory.trl4
is pp generate.c $(PPOPT4)
139 tcx generate.pp $(TCXOPT4)
140 tam generate tal $CTASMOPT)
141

142 hciabe.trl4 : hcube.h hcube.c
143 pp hcube.c S(PPOPT4)
144 tCI hcube.pp 4"TCXOPT4)
146 tam hcube.tal $(TASMOPT)
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146

147 .achine.tr14 :machine.h machine.c
148 pp machine.c $(PPOPT4)
149 tCX machine.pp $(TCXOPT4)
150 tass sachinetal $(TASMOPT)

151

152 mat-.ops.tr14 : at-.ops.h mat..ops.c matrix.h
153 pp uat_..uC $CPPOPT4)

154 tCX mat..ops.pp $CTCXOPT4)
155 tasa matopsatal $(TASNOPT)
156

157 math.trl4 : ath.h math.c
158 pp Math.C $CPPOPT4)
159 tCX Math.pp $CTCXOPT4)

160 tasm math.tal $(TASNOPT)

161

162 matrixio.trl4 : atrixio.h matrixio.c ascii.h matrix.h memory.tr14
163 pp matrixio.c $(PPOPT4)
164 tCX Eatrizio.pp $CTCXOPT4)
165 tasm Eatrixio.tal $CTASKOPT)
166

167 meuory.tr14 *. emory.h memory.c matrix.h
1683 pp memory.c $(PPOPT4)
169 tCX meuory.pp $CTCXOPT4)
170 tasm memorytal $(TASMOPT)
171

172 num-.sys.tr14 :num-s.ys.h num..sys.c matrix.h
173 pp niUM-...ssC $(PPOPT4)
174 tCX UUM-B.yS~pp $(TCXOPT4)
175 tasm num-.sys.tal $CTASMOPT)
176

177 sep.trl4 :aep.h sep.c
178 pp 8ep.C $(PPOPT4)
179 tCX 86p.pp $(TCXOPT4)
inO tasm sep.ta1 $CTASMOPT)

181

182 timing.tr14 :timing.h timing.c
1&3 pp timing.c $(PPOPT4)

184 tCX tiuing.pp $CTCXOPT4)
185 taum timing.tal $CTASMOPT)
186

187 vec-.ops.trl4 :voc-ops.h voc..ops.c
I"~ pp vec..ops.c $(PPOPT4)
189 tcz voc..ops.pp $(TCXOPT4)
190 tass Yoc-.ope.tal $CTASMOPT)

191

192

193 0 ------------------ CREATE T800 VERSION OF THE LIBRARY ---------
194

195
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196 $(T800LIBIAKE).tll : (TRLSFILES)
197 tlib $(TSOOLIBkANE) -b $(TLIBSFILES)
198

199 clargs.trl8 clargo.h clargo.c
200 pp clargs.c $(PPOPT8)
201 tCX clarge.pp $(TCXOPT8)
202 tags clargs.tal $(TASKOPT)
203

204 camm.tr18 :comm.h com.c
205 pp Comnm.c C (PPOPT8)
206 tCX CORM.pp $(TCIOPTS)

207 tas commutal $(TASKOPT)
208

209 COmp1*XtrIB CoupleX.h CoapleX.c
210 pp COupleX.C S(PPOPT8)
211 tCX COMplei.pp $(TCXOPT8)
212 tags complex.tal S(TASNOPT)
213

214 generate.trIS8 generate.h generate.c matrix.h memory.tr18
215 pp generate.c S(PPOPT8)
216 tCX generat*.pp $CTCXOPT8)
217 tags generate.tal S(TASHOPT)
218

219 hcube.trlS :hcube.h hcube.c
220 pp hcube.c $CPPOPT8)
221 tcx hcube.pp $(TCXOPT8)
222 tags hcube.tal $(TASKDPT)
223

224 machine.tr18 : achine.h machine.c
225 pp machirie.c $(PPOPT8)
226 tCX sachine.pp $(TCXOPTS)
227 tags sachinetal $(TASMOPT)
228

229 mat-.ops.tr18 :mat-.ops.h mat-.ops.c matrix.h
230 pp Dat-.ops.c $CPPOPT8)
231 tCZ mat-.ops.pp $(TCXOPT8)
232 tas sat-.ope.tal $(TASMOPT)
233

234 sath.tr18B math.h math.c
235 pp math.c $(PPOPT8)
236 tCI .ath.pp $CTCXOPT8)

237 tas wath.tal $(TASHOPT)
238

239 satrizio.trl8 :*atrizja.h natrixio.c ascii-h matrix.h semory.trIS
240 pp matrizio.c $CPPOPT8)
241 tCZ matrizio.pp $CTCXaPTS)
242 tags satriziotal $(TASKOPT)
243

244 smory.tr18 : eoory.h memory.c matrix.h
245 pp memory.c $(PPOPTB)
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246 tCZ menory.pp $(TCXOPT8)
247 tass menorytal $CTASKOPT)
248

249 ua.systrIS : num-s.ys.h nua..ays.c inatrix.h
250 pp nMUM-SYs.c $CPPOPT8)
251 tCX nUIA-...smpp $(TCXOPT8)
252 tasn nuna.sy.tal $CTASKOPT)
253

264 sep.trlS : ep.h sep.c
255 p 56.C $(PPOPT8)

256 tCX u6p.pp $(TCXOPT8)
257 tasm septal. $(TASMOPT)
258

259 tiflifg.trl8 timing.h timing.c
260 pp timing.C $CPPOPT8)
261 tCX timing.pp $(TCXOPT8)
262 tass timing.tal $(TASMOPT)
263

264 vec-.ops.tr18 :vec-.ops.c vec-.ops.h
265 pp VGC-.OpS.C $CPPOPT8)
266 tCX VeC.O.psp $CTCXOPT8)
267 tam vec-.ops.tal $CTASMOPT)
268

269

270 8 ------------------- COPY LIBRARIES TO TLIB DIRECTORY ---------
271

272 inst.114:
dk 273 COPY $(T414LIBNAE).tll $CTLIB)

274

275 install8:
276 copy $CT800LIBIAE).tll $CTLIB)
277

278

279 # ------------ COPY HEADER FILES TO STANDARD INCLUDE DIRECTORY -----
280

281 install-headers:
282 copy ascii.h SCTLIB)\. .\include
283 copy sacros.h $CTLIB)\. .\includ.
284 copy watrix.h $(TLIB)\. .\include
285 copy c1&rgs.h S(TLIB)\. .\include
286 COPY COMa.h $CTLIB)\. .\include
287 COPY COMpleX.h $(TLIB)\. .\include
288 copy g~nerate.h $(TLIB)\. .\include
289 copy hcub..h $(TLIB)\. .\include
290 copy machine.h $CTLIB)\. .\include
291 copy 3&t-.ope.h $CfLID)\. .\include
292 copy uath.h $(TLID)\. .\include
293 copy matrizio.h $CTLIB)\..\include
294 copy memory.h $CTLIB)\. .\include
295 COPY naa..ay.h $(TLIB)\. .\include
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296 copy sep.h $(TLIB)\..\include

297 copy timing.h $(TLIB)\..\include
298 COpy vec.ops.h *(TLIB)\. .\include
299

300

301

302

303

304 # 3.) FILE MAIAGEMET fT UTILITIES-----------

305 *

306 # This section makes short work of a few useful/routine tasks.
307 8
3088#----

309

310

311 # 3---------- -- 1) Intel iPSC/2 ----------

312 S
313
314 iclean:
31s rm $COBJECTS)
316

317

318

319

320

321 ---------- 3.2) Logical Systems C -

322
323
324 tclean:
325 del *.pp
326 del *.tal
327 del *.trl
328
329
33o # EOF matlib.mak
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B. NETWORK INFORMATION FILES

hyprcube.nif This Network Information File gives a fairly complete description of

the hardware configuration used to perform the transputer work.
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1 NETWORK INFORMATION FILE

3 ; SOURCE hyprcube.nif
4 ; VERSION 1.1

5 ; DATE : 09 September 1991

6 ; AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School

7 ; USAGE id-net hyprcube

8 ; EDITING replace 'rootcode' with the code to run on the root

9 ; replace 'nodecode' with appropriate code(s) for the nodes
10 ;
11 ;

12 ------------- REFERENCES -------------
13 ;
14 ; [1] Inmos. INS B012 User Guide and Reference Manual. Inmos Limited,

i5 ; 1988, Fig. 26. p. 28.
16;

17
1 ;------------- --- DESCRIPTION--------
19 ;

20 ; Network Information File (NIF) used by Logical Systems C (version 89.1)
21 ; LD-NET Network Loader. This file prescribes the loading action to take

22 ; place when the 'ld-net' command is given as in USAGE above.

23 ;
24 ;
25 ;------------- HARDWARE PREREQUISITES

26

27 ; NOTE: There are three node numbering systems: the one created by Inmos'
28 ; CHECK program, the Gray code labeling, and the NIF labeling. Since all
29 ; three will be used on occasion, I will prefix node numbers with a C, G,

30 ; or N to identify which system I am using!

31 ;
32 ; The INS B004 and INS B012 must be configured correctly. The B004's T414
33 ; has link 0 connected to the host PC via a serial-to-parallel converter,
34 ; link 1 connected to the INS B012 PipeHead, link 2 connected to the T212

35 ; [communications manager (not used here)] on the B012, and link 3
36 ; connected to the INS B012 PipeTail (see [I]). By the way, link 2 from
37 ; the B004 goes to the the ConfigUp slot just under the PipeHead slot
39 ; (this connects it to the T212). Finally, the B004's Down link must run

39 ; to the B012's Up link.

40 ;
41 ;
42 ; ==== SETTING THE C004 CROSSBAR SWITCHES ====--------------
43

44 ; Once you have connected the hardware in the fashion mentioned above,

45 ; the system is ready to be transformed to a hypercube. Three codes by
46 ; Mike Esposito are used here: t2.nif, root.tld, and switch.tld. I have

47 ; a batch file called 'makecube.bat' that performs a 'ld-net t2' also.

48

49 ; Mike's code passes instructions to the T212 on the B012; which, in-turn

so ; tells the C004's how to connect their switches. After the code has

222



hyprcube.nif

51 ; executed, the (very specific) configuration that we are looking for
52 ; will exist. Specifically, the following (output from CHECK /R) is what

53 ; this process gives us:

54 ;
55 ; check 1.21
56 ; # Part rate Mb Bt C LinkO Linki Link2 Link3 3

57 ; 0 T414b-16 0.09 0 [ HOST 1:1 2:1 3:2 3
58 ; 1 T800c-20 0.80 1 [ 4:3 0:1 5:1 6:0)

59 ; 2 T2 -17 0.49 1 [ C004 0:2 ... C004)
60 ; 3 T800c-20 0.80 2 [ 7:3 8:2 0:3 9:0 ]

61 ; 4 TBOOc-20 0.76 3 [ 9:3 10:2 11:1 1:0 )
62 ; 5 T800d-20 0.90 1 [ 8:3 1:2 10:1 12:0 3
63 ; 6 T800d-20 0.76 0 [ 1:3 12:2 7:1 11:0 ]

64 ; 7 T8OOd-20 0.76 3 [ 13:3 6:2 14:1 3:0 ]
65 ; 8 T800d-20 0.90 2 [ 14:3 15:2 3:1 5:0 J
66 ; 9 T800c-20 0.77 0 [ 3:3 13:2 15:1 4:0 )
67 ; 10 T800d-20 0.90 2 C 16:3 5:2 4:1 15:0 )
68 ; 11 T800d-20 0.90 1 [ 6:3 4:2 16:1 13:0 )
69 ; 12 T800d-20 0.77 0 [ 5:3 16:2 6:1 14:0)
70 ; 13 T800d-20 0.77 3 C 11:3 17:2 9:1 7:0 J
71 ; 14 T800c-20 0.90 1 [ 12:3 7:2 17:1 8:0)
72 ; 15 T800c-20 0.90 2 C 10:3 9:2 8:1 17:0 ]
73 ; 16 T800c-20 0.76 3 [ 17:3 11:2 12:1 10:0 )
74 ; 17 T800d-20 0.88 2 C 15:3 14:2 13:1 16:0)

75 ;
76 ; Here node CO is the root transputer (on the INS B004) and node C2 is
77 ; the T212 (on the INS B012). The other sixteen nodes are the T800's

7s ; that are used for the work. A logical interconnection topology is
79 ; described below.
80
81;

82 ;--=------=------- TOPOLOGY

83

84 ; The physical interconnection scheme described above is an actual 4-cube

85 ; with one exception. The root node (CO) is situated BETWEEI nodes Cl

86 ; and C3 (which would be connected directly in the usual 4-cube). This

87 ; gives us two 3-cubes: one whose node labeling is GOxxx and the other,
88; whose node labeling is Glxxx (where the xxx represents all permutations

89 ; of 3-bits). These are the usual three cubes, and they will exist if we
90 ; define the node numbering/labeling correctly.

91

92 ;

93 ; ------------ STRATEGY
94 ;
95 ; The node labeling established by the hIF is available via the variable
96 ; -node-number (see <conc.h>) in source code. Therefore, we would like a
97 ; smart labeling scheme in the hIF file so that programming is easier.
98 ; This, of course, is subject to the restriction that NIF labels begin

99 ; with 11 and so on.
100 ;
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101 ; One such method would be to define a NIF labeling so that the Gray code
102 ; label for a node would be (_node-number - 2). In fact, this is
103 ; possible and the adjacencies defined below allow us to realize this
104 ; feature. Below, node 1O is the host PC, node NI is the root transputer
105 ; (T414 on the B004), 12 through 117 correspond to GO through G15 (the
106 ; nodes of a 4-cube), and 118 is not used (but it's the T212).
107 ;

109

110

iii host-server cio.exe; (default)
112

113 ; TRANSPUTER RESET DESCRIPTION OF LINK CONNECTIONS
114 ; NODE LOADABLE COMES
115 ; ID CODE (.tld) FROM: LIWKO LINKI LINK2 LIMK3
116 =

117 1, rootcode, rO, 0, 2, , 10; B004
118 2, nodecode, ri, 4, 1, 3, 6; B012
119 3, nodecode, r2, 11, 2, S, 7;
120 4, nodecode, r5, 12, 5, 8, 2;
121 5, nodecode, r3, 9, 3, 4, 13;
122 6, nodecode, r7, 2, 7, 14, 8;
123 7, nodecode, r9, 3, 9, 6, 15;
124 8, nodecode, r4, 6, 4, 9, 16;
125 9, nodecode, r8, 17, 8, 7, 5;
126 10, nodecode, rl, 14, 11, 1, 12;
127 11, nodecode, r13, 15, 13, 10, 3;
128 12, nodecode, r16, 10, 16, 13, 4;
129 13, nodecode, r12, 5, 12. 11, 17;
130 14, nodecode, r6, 16, 6, 1, 10;
131 15, nodecode, r14, 7, 14, 17, 11;
132 16, nodecode, r17, 8, 17, 12, 14;
133 17, nodecode, r15, 13, 15, 16, 9;
134 ; 18, switch, si , 1 , ; T212
135

136

137 ;- ------------- EOF hyprcube.nif
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C. STANDARD FILES

macros.h This header file gives several C macros that are used in other programs.

matrix.h This header file establishes the standard definition of a matrix.
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i /* -------------- PRMGRA INFORMATION

2 *
3 * SOURCE macros.h

4 * VERSION 1.3
5 * DATE 14 September 1991

6 * AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School
7 *

8 * -------------- -------------

9

10

11

12 #define MAX(x,y) (((x) > (y)) ? (x) (y))
13

14 #define NIN(x,y) (((x) > (y)) ? (y) W())

15

16 #define POW2(n) Mi) << (n))
17

18

19

20

21

22 /* -------------- EOF macros.h -/
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i /* ------------- PROGRAM INFORMATION ...........

2 *

3 * SOURCE : matrix.h
4 * VERSION : 2.0
s * DATE 02 September 1991
6 * AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School
7*
8*

9 ------------- DESCRIPTION -------------
10

11 * A header file for a family of functions designed to work with matrices.
12 *

13 -- - - - --*- - - - - -

14 *
15

16 #include "complex.h" /* for Complex-Type */
17

18

19

20 /* -------------- MANIFEST CONSTANTS -/

21

22

23 #define BASE-TEN 10
24 #define CURRENT 1
25 #ifndef EXIT-FAILURE
26 #define EXIT-FAILURE 1
27 #endif
28 #ifndef EXIT-SUCCESS
29 #define EXIT-SUCCESS 0
30 #endif
31 #define FAILURE I
32 #define FALSE 0
33 #define LINE-LENGTH 80
34 #define MAXNAMELENGTH 80
35 efine NO 0
36 *define OFF 0
37 #define ON 1
38 *define ONE-BYTE 1
39 #define ONE-MEMBER 1
40 #define PREVIOUS 0
41 *define SUCCESS 0
42 $define TRUE 1
43 *define TYPE-CHAR 0
44 #define TYPE-DOUBLE 1
45 #define TYPE-FLOAT 2
46 *define TYPEINT 3
47 *define YES 1
48

49

50
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51 /* ------------- TYPE DEFINITIONS - -

52

53

54 typedef struct {
55

56 char *name;
57 int rows,
58 cola;
59 double **matrix;
60

61 } Matrix-Type; /* default/standard is type double */
62

63

64

65 typedef struct {
66

67 char *name;
68 int rows,
69 cola;

70 Complex-Type **matrix;
71

72 } ComplexMatrixType; /* type Complex-Type is in complex.h */
73

74

75

76 typedef struct {
77

78 char *name;
79 int rows,
so cola;
81 double **matrix;
82

83 } DoubleMatrixType;
94

85

86

87 typedef struct f
88

89 char *name;
90 it rows,

91 cola;
92 float **matrix;
93

94 } FloatMatrixType;
95

96

97

98 typedef struct {
99

1OO char *name;
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101 int rows,
102 cols;
103 imt **matrix;
104

105 ) Int-latrix-Type;
106

107

lo0 /* ----- -- EOF matrix.h--------------------*
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D. SOURCE CODE FILES

There is one header file and one (.c) source code file for each remaining member

of the library, so the filename is given without the suffix.

allocate Memory allocation and management functions.

clargs For processing command-line arguments.

comm Communications functions for the hypercubes.

complex Complex numbers and operations.

epsilon Machine precision functions.

generate Matrix generation functions.

io Input/output (10) functions.

mathx A small extension to the C math library.

num-sys Various number systems (binary, decimal, hexadecimal).

ops Matrix and vector operations.

timing Functions for timing.

Again, however, most of the source code has been omitted and only the header

files remain. The singular exception is complex.c because this source contains an

algorithm referenced earlier in the thesis.
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S/* ------------- PROGRAM INFORMATION -

2 *

3 * SOURCE allocate.h

4 * VEf.SION 2.0
5 * DATE : 09 September 1991
6 * AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School
7
8 *

9 * - - - DESCRIPTION ........

10 *
11 • Declarations of functions associated with memory allocation.
12 *

13 *

14 ------------- LIST OF FUNCTIONS

15 *

16 * cmatalloc()
17 * intvecalloco)

is * matalloc()
19 *

20 *-----------------------

21 */
22

23

24

25

26

27 /* ------------- FUNCTION DECLARATION ===-------------

26 *

29 * PURPOSE: This function performs the memory allocation for a matrix
30 * structure (of the ComplexMatrixType) using the C function
31 * calloco). Additionally, it fills the "ros" and "cols"

32 * fields of the matrix structure returned with the parameters
33 * passed to the function. If s structure is returned (see
34 * "RETURNS"), then its "rows" and "'cnls" fields will be
35 * filled with the correct values. The structure type is

36 * defined in "matrix.h".
37 *

3a INCLUDE: "allocate.h"

39 *

40 * CALLS: calloco)
41 *

42 * CALLED BY:
43

44 * PARAMETERS: int rows the number of rows in the desired matrix

45 int cols the number of columns in the desired matrix

46 •

47 * RETURNS: A pointer to the structure if successful; NULL otherwise.

48 * The NULL case includes non-positive rows or cols in addi-
49 * tion to the obvious allocation failure.
50 •
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si * EXAMPLE: ComplexMatrixType *A;
52 •

53 * A = cmatalloc(7. 7);

54 •

55 ----------------------------

56 •/

57

ss #ifdef PROTOTYPE
59

60 ComplexMatrixType *cmatalloc(int rows, int cola);
61

62 #else
63

64 ComplexMatrixType *caatalloc() ;
65

66 #endif
67

68

69

70

71

72 /* ------------- FUNCTION DECLARATION -------------
73 *

74 * PURPOSE: This function performs the memory allocation for a vector,
75 • v, of num-elements integer elements.
76 *

77 * INCLUDE: "allocate.h"

78 

79 * CALLS: calloc()
80 *

s8 * CALLED BY:
82 *

s3 * PARAMETERS: See PURPOSE.

84 *

85 * RETURNS: A pointer to the array if successful and NULL otherwise.
86 *

87 * EXAMPLE: int desired-ize-ofv 7,
88 *V;

89 *

go * v = intvecalloc(desiredsize_ofv);
91 •

92 ------------------- ---

93 */

94

95

96 Sifdef PROTOTYPE
97

98 int *intvecalloc(int numelements);
99

loo #else
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101

102 int *intvecalloco;
103

104 #endif
105

106

107

108

109

110 /* -- - = - - FUNCTION DECLARATION - -.

111 *

112 * PURPOSE: This function performs the memory allocatibn for a matrix
113 * structure using the C function calloco). Additionally, it
114 * fills the "rows" and "cols" fields of the matrix structure
115 * returned with the parameters passed in to the function.
116 * If a structure in returned (see "RETURNS"), then its "rows"
117 * and "cole" fields will be filled with the correct values.
118 * The structure type is defined in "matrix.h".
119 *

120 * INCLUDE: "allocate.h"
121 *

j22 * CALLS: calloc()

123 *

124 * CALLED BY:
125 *

126 * PARAMETERS: int rows the number of rows in the desired matrix
127 * int cola the number of columns in the desired matrix
128 *

129 * RETURNS: A pointer to the structure if successful; NULL otherwise.
130 * The NULL case includes non-positive rows or cols in addi-
131 * tion to the obvious allocation failure.
132 *

133 * EXAMPLE: DoubleMatrixType *A = matalloc(7, 7);
134 *

135 *------------- ------------------------------------------

136 */

137

138 #ifdef PROTOTYPE
139

140 DoubleMatrixType *matalloc(int rows, int cols);
141

142 #else
143

144 DoubleMatrixType *matalloco;
145

146 Sendif
147

148

149 /* ............ EOF allocate.h -------------
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i /* .. .. ..- P RO G RA M INF ORM AT ION ==-

2 *

3 * SOURCE clargs.h
4 * VERSION : 1.6

a * DATE : 09 September 1991
6 * AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School
7 *

8*

9 ------------- DESCRIPTION -------- ----

10 •
11 • This header file gives the declarations to accompany clargs.c. These

12 * files provide a standard (it somewhat limited) way of handling command-
13 * line arguments. The objective is to handle:

14 *

15 * 1.) Simple boolean arguments like "if -v exists, set verbose = TRUE".

16 * We will call such an argument a 'simple' argument type. This
17 • type of argument can be recognized by the fact that it has no

18 * sub-arguments (the sub-argument count, subargc = 0).

19 •

20 * 2.) Arguments with sub-arguments to be interpreted as numbers. We

21 w will this a 'complex' argument type. Suppose that we want to set

22 * int dim = 3 when the command line arguments contain "-d 3 "

23 * This case implies several requirements:
24 *

25 * a.) First, we must know in advance how many sub-arguments the

26 • argument has--we'll call this subargc (in this case we are
27 • expecting one sub-argument, so the caller would have set

28 • subargc = 1).
29 •

30 • b.) Secondly, we must know how to interpret each sub-argument

31 [ [i.e.. what type is the sub-argument? Is it a double or long

32 * (float and int can be handled by type casting)?]
33 *

34 W We will call this kind of argument a complex argument type. They
35 * can be recognized as those with subargc > 0.

36 *

37 • Here is the strategy. The user makes a list of valid command-line

3a * arguments by creating an array of pointers to structures of type

39 * ArgStruct. We will call this the option list, (ArgStruct *) optvO.
40 0 The code assumes that you can do something like this at the top of your

41 * source:

42 •

43 #define MAX.NUMBEROFARGS 3
44 •

45 • static ArgStruct •optv[MAINUMBEROFARGS];

46 •

47 * Let (int) optc, be the option count (number of options). Every element

48 • in (pointed to by) the option list is a structure of type ArgStruct
49 • defined below. By using the standard C argc and argv; and by creating

50 • and passing optc and optv around, we can manipulate command-line
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s1 * arguments just about however we want. The next step is to understand
52 * the structure.
53 *

54 *

55 * LIST OF FUNCTIONS

56 *

57 * install-coplex.arg()

5s * install-simple-arg()
59 * interpret-argso)

60 *
61 *------------ -------

62 */
63

64

65

66 /* ------------- MANIFEST CONSTANTS */
67

68

69 #ifndef EXIT-FAILURE

70 #define EXIT-FAILURE 1
71 #endif
72 #ifndef EXIT-SUCCESS
73 #define EXIT-SUCCESS I
74 *endif
75 #ifndef FALSE
76 #define FALSE 0

77 $endif
78 #ifndef NULL
79 #define NULL 0
so #endif
s8 #ifndef SUCCESS

82 *define SUCCESS 0
83 #endif
s4 #ifndef TRUE
85 #define TRUE 1
86 #endif

87
88

89 /*
go * The maximum number of characters in an argument name, MAXARGLEN is a
91 * relatively arbitrary thing... make it whatever you want. The DOUBLE
92 * and LONG manifest constants are assumed to be used for values of
93 * subargi (see the structure below).

94 el

95

96 #define MAX.ARGLEN 7
97 *define DOUBLE 0
98 *define LONG I
99

100
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101 /* ----- -=- DATA STRUCTURES -=====---==-

102 *

103 * argname The (string) name of a valid argument. For instance, if
104 * you want the simple argument "-v", then argnamse would be
105 * "-v". If you have a complex argument that will appear as
106 * "-number 3 4.5 6.7". then argname will be "-number" and you

107 * must use the sub-argument variables below to handle the
108 * integer and two floating-point values.

109 *

11o * subargc Consider the "-number" example again. There are three sub-
111 * arguments (3, 4.5, and 6.7) so the sub-argument count would
112 * be 3.
113 *

114 * subargi[ This array tells us how to interpret the subarguents. For

115 * instance, again using the "-number" example above, we would
116 * set subargi[O) a LONG; subargi[l] = DOUBLE; and
117 * subargi[2] = DOUBLE.
118 *

119 * found This should is initialized to FALSE. The function
126 * interpret.args() will set this field TRUE if the argnaae[]

121 * appears on the command-line (in *argv[]).

122 *

123 * dsafl This field is an array of double sub-arguments.

124 *

125 * lsaE This field is an array of long sub-arguments.

126 *

127 * Consider the "-number" example again, After argument resolution, we
128 * would find that dsa[O) is not defined since subargi[O) == LONG.
129 * However, we can use subargiE) to verify that subargi[1] and subargi[2

130 * are DOUBLE. Knowing this, we can safely presume that the values with

131 * CORRESPONDING index in dsa0 should be interpreted as doubles. That
132 * is, dsal1] will be a double value '4.5) and dsa[2J will also be a

133 * double (6.7). In a similar manner, lsa[O] must be a long (3) and
134 * lsa[1] and lsa[2] are not defined.

135 *

136 *-----------------

137 */
138

139 typedef struct {
140

141 char argname:[MAXARGLE];
142

143 int subargc, /* how many subarguments expected
144 *subargi, /* how to interpret subarguments */
145 found; /* set TRUE if the argument is found */
146

147 double *dsa; /* double-valued sub-arguments */

148 long *lsa; /* long-valued sub-argument list */
149

15o } ArgStruct;

236



clargs.hl

151

152

153 / -------------- FUNCTION DECLARATION -------

154 *

155 * PURPOSE: To install a valid complex argument in the option list,
156 * optvO.

157 *

1s8 INCLUDE: "clargs.h"
159 *

160 * CALLS: strcpy()
161 *

162 * CALLED BY:
163 *

164 * PARAMETERS: int index;
165 * ArgStruct *optv[O;
166 * const char *argname;
167 int *interpret,
168 • subargc;
169 *

170 * The first three parameters are exactly like the corresponding ones for
171 * install-simple.argo. Additionally, for complex arguments, we need to
172 * pass in instructions concerning how many sub-arguments there are (i.e.,

173 * subargc) and how to interpret each. The array interpret[] should be
174 * filled with subargc elements when you call this function. The elements

175 * should only be valid ones (e.g., DOUBLE, LONG).

176 *

177 *--------------------------

178 */
179

1so #ifdef PROTOTYPE
181

182 void install-complexarg(int index, ArgStruct *optv[],
183 const char *argname, int *interpret,
184 int subargc);
is5 #else
186

187 void install-complex-argo;
188

189 #endif
190

191

192

193

194

19s /* ------------- FUNCTION DECLARATION --:

196 *

197 * PURPOSE: To install a valid simple argument in the option list,

198 * optvf[.
199 *

200 * INCLUDE: "clargs.h"
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201 *

202 * CALLS: strcpyo)
203 *

204 * CALLED BY:

205 *

206 * PARAMETERS: int index;
207 * ArgStruct *optv[] ;
208 * const char *argname;
209 *

210 * The 'index' gives the location of the option in the option list,

211 * optv[]. The function uses this index to install the argname at the
212 * proper location in optv0. For instance, set this variable to zero for
213 * the first option in the list. Normal C indexing convention applies;

214 * namely, 0 <= index < MAINUMBEROFARGS. The 'arguase' is the string

215 * that you want recognized as a valid argument. For instance, suppose

216 * that you want a timing argument to be recognized whenever "-t" appears
217 * on the command line. Then you would supply "-t" in this place.

218 *

219 *--------------------------

220

221

222 #ifdef PROTOTYPE
223

224 void install-simple.arg(int index. ArgStruct *optv[],

225 const char *argname);

226 #else
227

228 void install-siplearg();
229

230 #*endif

231

232

233

234

235

236 /* FUNCTION DECLARATION ---------

237 *

238 * PURPOSE: Once the user has defined an appropriate option list,

239 * optv[], with optc options, this function parses the

240 * command-line arguments (as given by argc and argv) and fills the
241 * *optv0 structures appropriately. For instance every valid (exists in

242 * optv ==> valid) argument that appears on the command line will result

243 * in the corresponding optv structure's 'found' field being set to TRUE.

244 * The function also interprets sub-arguments and fills dsa[ and/or lsa[]
245 * accordingly. It assumes that the caller has established the desired

246 * argname's, subargc's, and subargi's.
247 *

248 * INCLUDE: "clargs.h"
249 *

250 * CALLS: printf()
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251 • strcnp()
252 * strtod()
253 * utrtol()
254 •

255 CALLED BY:
256 *

267 * PARAMETERS: As described in PURPOSE.

258 *

259 --------------- -------------
280 */

261

262

263 #ifdef PROTOTYPE
264

265 void interpreZtargs(int argc, char **argv. int optc, ArgStruct *•optv);

266

267 #else
268

269 void interpret-argsC);

270

271 #ondif
272

273

274 /* ------------- EOF clargs.h ------------- *
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I /* - = =--------= PROGRAM IIFORMATION --==----'-===
2 *

s * SOURCE : comm.h
4 * VERSION : 2.5

5 * DATE : 14 September 1991
6 * AUTHOR Jonathan E. Hartman, U. S. laval Postgraduate School

7 *
8 *

9 ------------- DESCRIPTIOI ====== --------

10

11 This header file gives manifest constants and function specifications

12 * for comm.c. These files contain communication (and related) functions
13 * for a normal hypercube topology and a hybrid topology. Unfortunately

14 * the code is a bit busy with #ifdef's, but the purpose of these files is
15 * to make hypercubes a little more transparent. This makes the comm.h

16 * and comm.c files a bit hard to read, but you should be able to recoup

17 * this loss when it comes time to write a particular application.
18 *

19 *

20 *--- -------------- TOPOLOGIES -=====--------
21 •

22 * The functions specified below have been designed to work on three very

23 C different machines. First, the Intel iPSC/2 with a normal hypercube of
24 * order 0, 1, 2, or 3 is handled. A normal hypercube of transputers is

25 C next on the list (also order 0, 1, 2, or 3). Finally, there is a
26 * hybrid topology of transputers that is handled. The normal hypercubes
27 need almost no introduction. We have a host or root processor/program

28 * together with programs running on the nodes. I will use host and root
29 * interchangeably here, although 'host' is properly associated with the
3o * Intel machine and 'root' is the more correct/descriptive term when the

31 * subject is transputer networks. The hybrid topology deserves a more

32 * careful introduction.
33 *

34 * The hybrid topology is a network of Inmos transputers (PC host with an
3s * INS BOO4 board and a T414 linked to sixteen T800 processors on an INS

36 * B012 board) arranged so that the 'root' is situated between nodes zero

37 * and eight of a 4-cube. This means that nodes 0 and 8 are NOT directly
38 * connected. The functions made for this topology compensate for this
39 $ situation. Instead of trying to describe each function, I will simply

40 * remark that the most natural way to treat this problem is (more-or-
41 * less) as two 3-cubes attached to the root. A more careful description
42 * of how each problem is handled may be found in the code for the parti-
43 $ cular function.
44 *

45 • In summary, the transputer portions of the code depend upon: (1) a very

46 * specific hardware configuration, (2) the appropriate NIF file to
47 * support the usual Gray code in a convenient way

48 e
49 s £ mynode() == _node-number - 2 J.
50 •
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si * and (3) a particular link arrangement like that can be created by Mike
52 * Esposito's t2.nif, root.tld, and switch.tld.
53 *

54 * DETAILS: Look for additional details in hyprcube.nif.

55 *

56 *

87 * ==----------PREREQUISITES

58 *

59 * Before using any of the functions involving send() or receive(), the
60 * host (or root) program must initialize-hypercube(). For transputer

61 * applications, EACH of the MODES must initialize-hypercube() too, and

62 * you need to be sure that a hypercube exists in hardware and that your
63 * RIF describes a hypercube with the usual Gray code. You must define

64 * the global variables {Channel *ic[O, *ocO;} because the code depends
6s * upon their existence. Both of these vectors must be of length

66 * (cubesize+l) as described in the preface to initialize-hypercube().

67 *

68 * The cubesize and dimension that you use with the transputer implementa-

69 C tion determine the cube. Even though you actually have sixteen T800's

70 * in the cube, the cubesize and dimension that you use will determine the

71 C portion that actually gets used. lote that both the usual hypercube

72 * and the hybrid 4-cube are built upon the same hardware and link setup.

73 C Many of the functions declared below DEPEND upon the proper call to the

74 C initialize-hypercube() function. To avoid difficulty. observe the

75 * guidelines given with this function! Additionally, in the transputer

76 * case, you will need to make sure that you include <conc.h>.

77 C

76 C

79 *------------- LIST OF FUNCTIONS -

80 *

a1 * coalesceo)

s2 C cubecasto)

s3 * cubecast.from()

84 C directional-exchange()

85 C directional.receive()

86 C directional.sendC)

87 C hamming-distanceo)

s * initialize.hypercube()

89 * least.dimensiono)

90 * link-numbero)

91 * linkin()

92 * linkout()

93 * receive()

94 * send()

gs * submito

96 *

97 C-----------------

98 */
99

100
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101 /I --==- MACROS & MANIFEST CONSTANTS -=== --- *
102

103 #ifdef TRANSPUTER
104

105 #define ayhosto) -1
106 #define mynodeo) (_node-number - 2) /* depends upon <conc.h> 4/

107

1o8 #else /* iPSC/2 */
109

iio #define ALLNODES -1
ill *define ALLPIDS -1

112 #define ANY-NODE 0 /* for receive(from any node, ... ) */
113 *define ANY-TYPE -1 /* first non-force-type message */
114 *define ARBITRARY-TYPE 0 /* don't care */
115 #define KEEPTILRELCUBE I /* for getcubeo) */
116 #define IODEPID 0 /* arbitrary ... don't care ./
117 #ifndef NULL
uis *define NULL 0
119 #endif
120

121 #endif
122

123

124 #ifndef FALSE
125 #define FALSE 0
126 #endif
127

128 #ifndef TRUE
129 #define TRUE 1
130 #endif
131

132

133 /* ---------- FUNCTION DECLARATION

134 *

135 * PURPOSE: This function performs the first step in the opposite of

136 * the cubecast() function. That is, this one is used when

137 * you want to collect information from the nodes in 'higher dimensions'

i s * of the hypercube at the current node. You may want to perform some work

139 * before forwarding this information down to the next lower dimension, so

140 * the submit() function is given separately.

141 *

142 * Like the other functions in this file, coalesce() performs a somewhat

143 * different task when executed in the hybrid 4-cube, so first we will

144 * discuss the usual hypercubes. coalesceo) is a null operation when
145 * called from in the highest dimension C if least-dimension(node) is

146 • equal to dim ). Otherwise it performs the communication to receive

147 * from higher dimensions (i.e., neighbors with larger node numbers). If
148 * it is called from the host/root, it attempts to receiveo) from node

149 • zero.

150 *
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151 * The coalesce() and submito) functions must be balanced properly across
152 * the nodes. The CALLER must take the necessary steps to be sure that
153 * but is large enough to hold ((dim - leastdimension(node)) * len)
154 * bytes. That is, there will be (din - leastdimension(node)) copies of

155 * the message accumulated at the calling node.

156 C

157 • There are several exceptions in the hybrid 4-cube topology. Since the

158 * root is connected to nodes 0000 and 1000, it must make sure that buf

159 * can hold 2 copies of length, len. Then you should think of nodes Oxxx

160 * as one 3-cube and nodes lxxx as another (more-or-less separate) 3-cube.

161 • That is, there will be no exchanges in the lxxx direction between them.

162 • To determine the size of but at any node, use the following formulae:

163 •

164 * (3 - leastdimension(node)) * len, Nodes Oxx

165 *

166 • (3 - least-dimension(node - 8)) * len, Nodes lxxx

167 *

168 * CAUTIONS: If you fail to allocate enough space for but, you may find

169 * that your program doesn't work.

170 

171 * The transputer implementation depends upon the parameter
172 * 'type' being set equal to cubesize.

173 •

174 * PREREQUISITE: initialize-hypercubeo)

175 •

176 * INCLUDE: <conc.h> (Logical Systems C, version 89.1)

177 * "comm.h"

176 •

179 * CALLS: leastdimension()
180 * myhosto) (macro given above)

181 • pow2() "mathx.h"

182 * receive()

183 *

184 * CALLED BY:

185 *

186 * EXAMPLE: Suppose we are 'at' node 0 and we want to coalesceo) copies

187 * of some object from all of the appropriate nodes. Let the

ise g object be of size 'len' bytes. For concreteness, let the topology be a

189 * hypercube of order 3 (i.e., dim == 3). We would allocate a large enough

190 but to hold (dim * len) bytes, since least-dimension(O) == 0. That is,

191 * node 0 will be receiving from all neighbors whose least-dimension() is

192 * greater [in this case, that is ALL of its neighbors]; namely, 1, 2, and

193 * 4. After the call, we would find the data from node 1 in the first len

194 * bytes of but; the data from 2 in the middle len bytes of but; and the

195 * data from 4 in the final len bytes of but. The function is treated as

196 * a multiple receiveo, in increasing origin order, from the appropriate

197 * neighbors.

198 *

199 * PARAMETERS:

200 *
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201 * int node the coalesce(ing (receivinf ) node
202 * int dim the dimension of the hypercube

203 * char *buf a pointer to the beginning of the buffer where you want
204 * the message placed.

205 * long len the number of bytes to be received from EACH node in

206 * the next higher dimension that will be submito)ing.

207 * long type the type of the message (iPSC/2 applications only), or

208 * cubesize in the transputer case.

209 *

210 *------------- -------------------------------------------------

211 */
212 #ifdef PROTOTYPE
213

214 void coalesce(int node, int dim, char •buf, long len, long type);

215

216 #else
217

218 void coalesce(/* int node, int dim, char *buf, long len, long type •/);
219

220 #endif
221

222

223

224 /* FUNCTION DECLARATION ---=-===-

225 *

226 * PURPOSE: This function is called from the root/host and all nodes to
227 * execute a broadcast to all p nodes. The host/root sends to

228 * node zero to start the process off. Let lg(n) denote log_2(n). This

229 * function performs the communication in lg(p) steps. For instance, node
230 * zero receives from the host in what we'll call stage zero. Then, in

231 * stage 1, node 0 passes the message to node 1. In stage 2, node 0 sends

232 * the message to node 2 and node I sends it to node 3. In stage three,

233 * nodes 0, 1, 2, and 3 each send the message to nodes 4, 5, 6, and 7
234 * (respectively).
235 *

236 * Then. in general, in stage i, the message moves into the ith dimension.
237 • If you prefer, you can think of a pointer starting (after the message

238 arrives at node 0) at the rightmost bit (LSB) and indicating the direc-
239 • tion for the next transmission. The pointer moves left until it

240 * reaches the NSB. This is the final stage of the cubecasto).

241 *

242 * The hybrid 4-cube is implemented by sending the message from the root

243 • to nodes 0 and 8 first. Then node 0 performs the usual cubecast for
244 * the nodes that appear in the usual 3-cube. Node 8 mirrors this action,

245 * filling the other three-cube with labels like lxxx.

246 *

247 * In all cases, buf is filled with an initial receive() from the proper

248 * node, and then it is used in retransmissions to other nodes. In any
249 * event, buf holds the message after execution.

250 *
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251 * CAUTION: The transputer implementation depends upon the parameter

252 * 'type' being set equal to cubesize.
253 *

254 • PREREQUISITE: initializehypercube()
255 •

256 * INCLUDE: <conc.h> (Logical Systems C, version 89.1)
257 • "comm.h"
258 *

259 * CALLS: least-dimension()
260 * NINO (macro from macros.h)

261 * myhosto) (macro from above)
262 * pow2() "aathx.h"
263 * receive()
264 * sendo)
265 •

266 • CALLED BY:
26-

268 • PARAMETERS:
269 •

270 int node the sending node
271 int dim the dimension of the hyperczbe
272 • char *buf a pointer to the head of the message
273 * long len the number of bytes to be passed
274 • long type the type of the message (iPSC/2 applications only), or
275 • cubesize in the transputer case.
276 *

277 -

278 •/

279

280

281 #ifdef PROTOTYPE

282

283 void cubecast(int node, int dim, char *buf, long len, long type);
284

285 else
286

287 void cubecast(/* int node, int dim, char •buf, long len, long type */);
288

289 #endif
290

291

292

293

294

295 /* -------------- FUNCTION DECLARATION ---------------
296 *

297 * PURPOSE: This function is similar to cubecasto) but more general.
298 * Here we do not assume that the message starts at the host
299 * or at node zero; it may start at any general source node, src. In fact,
300 * it may NOT be called from the root/host (use cubecast() in that case).
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301 * If dim is the order of the hypercube, then arc goes through dim stages,
302 * passing the message to its neighbors. The sequence is defined by an

303 * ZOR operation that starts at bit 1 of arc and moves up through bit dim.

304 * For instance, suppose arc == 5 == lOb in the 3-cube (dim == 3). Then

305 * arc will first send to (101 IOR 001) - node 4, next to (101 IOR 010)

306 * == node 7, and finally to (101 XOR 100) == node 1. Meanwhile, any time

307 * that a non-source node gets the message, he begins the same process,

308 * but only picks it up at the appropriate stage (the one after the stage

309 * in which he received the message).

310 *

311 * PREREQUISITE: initializehypercube()

312 *

313 * IICLUDE: <conc.h> (Logical Systems C, version 89.1)

314 * "comm. h"

315 *

316 * CALLS: directional-receiveo)

317 * directional-send()

318 * freeo)

319 * least-dimensiono)

320 * malloc()

321 * pow2() "mathx. h"

322 * receiveo)

323 * send()

324 * sizeofo)

325 *

326 * CALLED BY:

327 *

328 * PARAMETERS:

329 *

330 * int src the source

331 * int node the number of the node calling this function

332 * int dim the dimension of the hypercube

333 * char *buf a pointer to the head of the message

334 * long len the number of bytes to be passed

335 *

336 *----------------------------

337 */
336

339

34o #ifdef PROTOTYPE

341

342 void cubecast.from(int arc, int node, int dim, char *buf, long len);

343

344 #else
345

346 void cubecast.fromo;

347

34s #endif

349

350
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351 /* - FUNCTION DECLARATIO-

352 *

353 * PURPOSE: To perform an exchange along a prescribed direction. The

354 * direction is given as an integer in {1, 2, 4, 8,... ,2dim}.
355 * This is because the direction is really a bit mask for the Gray-coded

356 * node numbers. For instance, if you perform a directional.exchangeo)
357 * from node == 3 == 011 in the 3-cube along direction == 4 == 100, this

358 * is the same as performing a coordinated sendo and receive() combina-

359 * tion with node (011 XOR 100 == 111 == 7). Care is taken to make sure

360 * that deadlock does not occur.

361 *

362 * PREREQUISITE: initializehypercube()
363 *

364 * INCLUDE: <conc.h> (Logical Systems C, version 89.1)

365 * "comm.h'

366 *

367 * CALLS: pow2() "mathx.hV
368 * receive()

369 * send()

370 *

371 * CALLED BY:

372 *

373 * PARAMETERS:

374 *

375 * int node the number of the node calling this function

376 * int dim the dimension of the hypercube

377 * int direction as described above (1, 2, 4, 8, etc.)

376 * char *ibuf a pointer to the head of the incoming message

379 * char *obuf a pointer to the head of the outgoing message

380 * long len the number of bytes to be passed

381 *

382 ----------------------------------------------------383 */

384

385
3a6 #ifdef PROTOTYPE

387

38 void directional.exchange(int node, int dim, int direction,

389 char *ibuf, char *obuf, long len);

390

391 *else

392

393 void directionalexchangeo;

394

395 Sendif

396

397

398

399

400
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401 /* ------------ FUNCTION DECLARATION =---i===-=-

402 *

403 * PURPOSE: To receive from a prescribed direction. The direction is

404 * as described in directional-exchange() above.

405 *

406 * PREREQUISITE: initializehypercube()

407 *

403 * INCLUDE: <conc.h> (Logical Systems C, version 89.1)

409 * comm.h"

410 *

411 * CALLS: pow2C) "mathx.h"
412 * receive()

413 *

414 * CALLED BY:
415 *

416 * PARAMETERS:

417 *

418 * int node the number of the node calling this function

419 * int dim the dimension of the hypercube

420 * int direction direction to receive from

421 * char *buf a pointer to the head of the message

422 * long len the number of bytes to be passed

423 *

424 -----------------------------

425 */
426

427

428 #ifdef PROTOTYPE
429

430 void directionalreceive(int node, int dim, int direction.

431 char *buf, long len);

432

433 #else

434

435 void directional-receiveo;

436

437 #endif

438

439

440

441 /* -------------- FUNCTION DECLARATION

442 *

443 * PURPOSE: To send in a prescribed direction. The direction is as
444 * described in directional-exchange() above.

445 *

446 * PREREQUISITE: initialize.hypercube()

447 *

448 INCLUDE: <conc.h> (Logical Systems C, version 89.1)

449 " comm. h"

450 *
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451 * CALLS: pow2) "mathx.h'
452 * sendo)
453 *

454 * CALLED BY:
455 *

456 • PARAMETERS:
457 *

45 * int node the number of the node calling this function
459 * int dim the dimension of the hypercube

460 * int direction direction to send to

461 * char *but a pointer to the head of the message

462 * long len the number of bytes to be passed

463 *

464 *-----------------

465 *1
466

467

468 #ifdef PROTOTYPE
469

470 void directional-send(int node, int dim, int direction,

471 char *buf, long len);

472

473 #else
474

475 void directional-send();

476

477 #endit
478

479

480

481

482

483 /* -------------- FUNCTION DECLARATION ---------------

484 *

485 * PURPOSE: To give the Hamming distance between i and j.
486 *

487 * INCLUDE: "comm.h"
488 *

489 * CALLS: sizeofo)
490 *

491 * CALLED BY:
492 •

493 * PARAMETERS: int i, j the numbers

494 *

495 * RETURNS: (int) the Hamming distance(i,j). That is, the number of

496 * ones in the binary exclusive OR (i XOR j).

497 •

498 • ---------------

499 */

oo
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so5 #ifdef PROTOTYPE

502

503 int haamingdistance(int i. int j);
504

505 #else
506

507 int haming-distance(/* int i, int j •/);
508

509 #endif
510

511

512 /• -------------- FUNCTION DECLARATION =-=======
513 •

514 * PURPOSE: The initialize-hypercube() function creates the hypercube
sis * and performs the required setup for comunications. It
516 • must be completed before you expect to comunicate. On the iPSC/2,
517 * OILY the host code should call this function. For transputer implemen-
518 • tations every node should call it (in addition to the root node). This

519 * is prerequisite to most of the other functions in this file. The basic

520 * requirements for this function are so different (machine dependent)

521 * that there are two versions: one for the transputers and one for the

522 * iPSC/2 machine.
523 *

524 * INCLUDE: "comm.h"
525 *

526 * CALLS: attachcube() (Intel iPSC/2 C Library)

527 * calloco)
528 • free()

529 • getcube() (Intel iPSC/2 C Library)

530 • linkin()

531 * linkout()
532 • loado) (Intel iPSC/2 C Library)
533 * malloc()
534 * printf()

535 * setpiuo) (Intel iPSC/2 C Library)

536 * sizeof()
537 * strcpyo)

538 

539 * CALLED BY:

540 •

541 • PARAMETERS: In both cases, the desired dimension of the hypercube is

542 • passed in am the first argument. After this, the functions
543 * are quite different.

544 *

545* (1) iPSC/2----------------------------------------------------

546 •

547 • char *nodecode A pointer to the filename of the nodecode is

548 • required so that the function can load the node

549 • program.

50 0
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551 * (2) transputers -

552 *
553 * Channel *ic[(CUBESIZE + )) This is the incoming channel list.

554 * You must declare it globally. Let CUBESIZE be the number of
5ss * transputers in the hypercube. Then icO is a vector of length
556 * (CUBESIZE + 1). The indexing is such that (ic[n] == C), where
557 * n is some neighbor and C is the incoming Channel* from n. For
55s * instance, if node k finds that ic[n] == LINKI then node k
559 * knows to receive messages from node n via LINKII. The element

560 * ic[CUBESIZE holds the channel for the root node (if any).
561 * icn] == NULL means that there is no connection to node n.

562 *

563 * Channel *oc[(CUBESIZE + 1)) is the outgoing channel list. It

564 * is completely analogous to icO except that it will hold
565 * LINKOOUT, LIKIOUT, LIN12OUT, or LINK3OUT for the appropriate
566 * node index. Your only obligation is to define these lists as

567 * globals in the manner shown. The Channel pointer elements will

568 * be filled in by initialize.hypercubeo.

56b *

570 * RETURNS: The iPSC/2 version of the function returns a pointer to the
571 * name of the cube. In the transputer environment, the cube-

572 * name has no meaning, so a void function suffices. For the
573 * transputer environment, the single most important task that
574 * initialize-hypercubeo) performs is the filling of icO and

575 * ocfl. These vectors are used by most of the other coinuni-

576 * cations functions.
577 *

578 *

579

580

581

582 #ifdef TRANSPUTER

583

584 void initialize.hypercube(int dim);
585

586 #else
587

5" char *initializehypercube(/* int dim, char *nodecode */);
589

59o #endif
591

592

593

594

595 /* ------------- FUNCTION DECLARATION -.--------------
596 $

597 * PURPOSE: This function, called from any node in the hypercube,

598 * returns the dimension of the smallest hypercube containing
599 5 that node.

600 *
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601 * INCLUDE: "comm.h"
602 *

603 C CALLS: pow2 ) "nathx.h"

604 *

6os C CALLED BY:

606 *
607 * PARAMETERS: int node the inquiring node
608 *

609 RETURS: For an n-cube containing P=:2"(n) processors, this function

610 C is designed to work for nodes numbered 0 through (P-1). If

611 * the function is called from the root (host) node, there is no guarantee
612 * as to the returned value. If it is called by a valid node, it will
613 * return the dimension of the smallest hypercube containing that node
614 * number. For instance least-diension(O) == 0, leastdimension(1) == 1,

615 * least.dimension(2) == 2, least-dimension(3) 2, and least-dimension
616 * (8) == 4.
617 *

618 -----------------------------

619 */
620

621

622 #ifdef PROTOTYPE

623

624 int least.dimension(int node);

625

626 #else

627

628 int least-dimension(/* int node */);
629

630 #endif

631

632

633

634

635 /* FUNCTION DECLARATIONS --------

636 *

637 * PURPOSE: The receive() and sendo) functions declared below provide

638 * communication to (from) a buffer pointed to by buf. The

639 * volume of material to send (receive) is indicated in bytes by the len

640 * argument. The destination (origin) is given by the first argument,

641 * using a valid node number. Suppose you have an n-cube established upon

642 * a system with p == (2-n) node processors. Then you should refer to the

643 * nodes of the hypercube by their node number, which is a Gray coded

644 * value in the range [ 0, (p-1) ). If you are at the root, of course,

645 * you may not communicate with the root (at least not with these func-

646 * tions); but if you are at one of the nodes of the hypercube, you may

647 * communicate with the root by using myhost() as the origin (or destina-

648 * tion) of your message. The macro given above makes myhost() available

649 * on the transputers.

650 *
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651 * Transputers or iPSC/2? The type parameter is only used in the implied

652 * sense with the iPSC/2 implementation [ it becomes type or typesel for

653 * csendo) or crecvo) 3. For transputer implementations, type RUST BE set

654 * equal to the number of nodes in the hypercube (e.g., p in the example

655 * above). I have called this 'cubesize' in most of my references.

656 *

657 * PREREQUISITE: initialize.hypercube()

658 *

659 * INCLUDE: <conc.h> (Logical Systems C, version 89.1)

660 * 'comm.h"
661 *

662 * CALLS: Chanlno) (Logical Systems C, version 89.1)

663 * ChanOut ()
664 • crecv() (Intel iPSC/2 C Library)

665 * csendo)
666 *

667 * CALLED BY:
668 

669 *- ------------- CATION ----------------
670 *

671 * Make sure type == cubesize in the transputer case (see the note above)!
672 *

673 -

674 */
675 #ifdef PROTOTYPE
676

677 void receive(int origin, char *buf, long len, long type);

676

679 void send(int destination, char *buf, long len, long type);
680

61 #else
682

683 void receive(/* int origin, char *buf, long len, long type *1);
684

685 void send(/* int destination, char *buf, long len, long type S/);
686

687 #endif
688

689

690 /* -------------- FUNCTION DECLARATION -----------
691 *

692 * PURPOSE: This function is called from the nodes to submit a message

693 * to the next lower dimension. If it is called from the host

694 * (root) it has no effect. When it is called from node zero, the trans-
695 * mission is directed to the root/host. When called from any other node,

696 * the information in buf is passed to the proper node in the next lower
697 * dimension. The lower dimension must have an accepting coalesce() or

698 * other receiving function [ coalesce() and submito) are meant to be used
699 * in a balanced fashion, where each submit() or group of submito's in

700 * one dimension is matched by a coalesce() in the next lower dimension ].
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701 *

702 * PREREQUISITE: initialize-hypercube()
703 *

704 * INCLUDE: <conc.h> (Logical Systems C, version 89.1)
705 * "comm.hh

706 *

707 * CALLS: least-dimension()
708 pow2() "iathx.h"

709 * send()
710 *

711 * CALLED BY:
712 *

713 EXCEPTIONS: Again, we have the hybrid hypercube in the transputer case
714 * (see many comments above). The general rule is changed in
715 * this case since node 1 submito)s to the root and not node 0. This is
716 * the only change.
717 *

718 * SPECIFICS: If you need to determine exactly where a submitC) will go,
719 * you can figure it out in the following manner [ with the

720 * obvious EXCEPTIONS (the previous paragraph) .
721 *

722 * Suppose you are 'at' node i in an n-cube (p processors = 2-n). You
723 * must submit() information to the (unique) node, j, that satisfies two
724 * requirements:
725 *

726 * (1) hammingdistance(i, j) == 1
727 *

728 * (2) least-dimension(i) == (least.dimension(j) + 1)
729 *

730 * So, for instance, consider a 4-cube where i == 12. It should be fairly
731 * easy to see that j will be node 4. This is because these two nodes are
732 * adjacent and they are one dimension apart in the cube (i.e., node 4
733 * first appears in a 3-cube and node 12 first appears in a 4-cube).
734 *

735 * PARAMETERS:

736 *

737 * int node the sending node
738 * int dim the dimension of the hypercube
739 * char *buf a pointer to the head of the message
740 * long len the number of bytes to be passed
741 * long type the type of the message (iPSC/2 applications only), or
742 * cubesize in the transputer case.
743 *

744 *

745 */
746

747

748 #ifdef PROTOTYPE
749

750 void submit(int node, int dim, char *buf, long len, long type);
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751

752 #0180
753

754 void submit(/* int node, int dim, char *but, long len. long type *)
755

756 #audit
757

758

759 /* ------- EOF comu.h ---------------
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I IS------------- PROGRAM INFORMATION ....
2 *

3 * SOURCE complex.h

4 * VERSION 1.6
s * DATE 09 September 1991

6 * AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School
7 *

8 * ------------- REFERENCES -
9 *

10 * [1) Goldberg, David. ''What Every Computer Scientist Should Know About

11 * Floating-Point Arithmetic''. ACM Computing Surveys, Vol. 23,

12 * No. 1, March 1991.

13 *

14 *

15 *------------- DESCRIPTION
16 *

17 * This file contains the definition of Complex-Type and declarations of

i * functions that perform operations with complex numbers:

19 *

20 * cadd()

21 * cdiv()

22 * cmul()
23 * csub()
24 * Im()
25 * Re()
26 *

27 *-------------------------

28 */
29

30

31

32

33

34 /* ------------- TYPE DEFINITION ------------

35

36

37 typedef struct {
38

39 double x, /* real part

40 y; /* imaginary part */
41

42 } Complex-Type;
43

44

45

46

47

48 /* FUNCTION DECLARATION -------------
49 *

so * PURPOSE: To add two complex numbers, zi and z2, and place their sum
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81 * in the Complex-Type '*esum'.
52 *

53 * INCLUDE: "complex.h"
84 *

85 * PARAMETERS: The parameters give the two operands zi and z2, and a
86 * pointer to the result, sum.
57 *

s * EXAMPLE: Complex-Type zl, z2, z3;
89 *

60 * cadd(zl, z2, &z3);

61 *
62 ---------------------------

63 */
64

65 #ifdef PROTOTYPE

66

67 void cadd(ComplexType zl, Complex-Type z2, Complex-Type *sum);
68

69 #else
70

71 void caddo;
72

73 #endif
74

75

76

77

78

79 /* -= --- --- =-= FUNCTION DECLARATION ...........

80 *

si * PURPOSE: To divide two complex numbers, (zl / z2), and place the
82 * result in the Complex-Type '*quotient'.
83 *

84 * ALGORITHM: The code uses Smith's formula (page 25 of )ll) to perform
85 * the division.
86 *

87 * INCLUDE: "complex.h"
88 *

89 * PARAMETERS: The parameters give the two operands zl and z2, and a
90 * pointer to the result, quotient.
91 *

92 * EXAMPLE: Complex-Type zl, z2, z3;

93 *

94 • cdiv(zl, z2, &z3);
95 •

96 *- -=::--------------:---

97 */
98

99 #ifdef PROTOTYPE

100
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ioi void cdiv(ComplexType zi, Complex-Type z2, Complex-Type *quotient);
102

103 #else

104

105 void cdivo;
106

107 Sendif
108

109

110

III

112

113 /* -------------- FUNCTION DECLARATION ----------
114 *

115 * PURPOSE: To multiply two complex numbers, z1 and z2, and place their
116 * product in the Complex-Type '*product'.
117 *

11s * INCLUDE: "complex.h"

119 *

120 * PARAMETERS: The parameters give the two operands zi and z2, and a
121 * pointer to the result, product.
122 *

123 * EXAMPLE: Complex-Type z1, z2, z3;
124 *

125 cmul(zl, z2, &z3);
126 *

127 *-------------- -------------

128 */
129

130

131 #ifdef PROTOTYPE
132

133 void cmul(ComplexType zi, Complex-Type z2, Complex-Type *product);
134

135 #else
136

137 void cmul();
138

139 #endif
140

141

142

143

144

145 /* -------------- FUNCTION DECLARATION ----------
146 *

147 * PURPOSE: To place the difference of two complex numbers, (zl - z2),
148 * into the Complex-Type '*difference'.
149 *

150 * INCLUDE: "complex.h"
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151 *

152 * PARAMETERS: The parameters give the two operands zi and z2, and a
153 * pointer to the result, difference.

154 *

155 * EXAMPLE: Complex-Type zi, z2, z3;

156 *

157 • csub(zl, z2, kz3);
158 *

159 ,--

160

161

162

163 #ifdef PROTOTYPE
164

165 void csub(ComplexType zi, Complex-Type z2, Complex-Type *difference);
166

167 #else
168

169 void csubo;
170

171 #endif
172

173

174

175

176

177 /* -------------- FUNCTION DECLARATION ====--=-=-

178 *

179 * PURPOSE: To return the imaginary part of a complex number, z.
180

is1 * PARAMETERS: The complex number, z, is passed into Imo.
182 •

183 * RETURNS: The imaginary part of z as type double; that is a real

184 * number y so that y * sqrt(-1) [or iy] is the imaginary part
185 * of z.

186 *

187 * EXAMPLE: y = Imkz);
188

189*

190 •/
191

192 #ifdef PROTOTYE
793

194 double im(ComplexType z);

195

196 #else
197

198 double Imo;
199

200 #endif
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201

202

203

204

205

206 /* -------------- FUNCTION DECLARATION .....------

207 *

201 * PURPOSE: This function returns the real part of a complex number, z.
209 *

210 * PARAMETERS: The complex number, z, is passed into ReC).
211 *

212 * RETURNS: The real part of z as type double.
213 •

214 * EXAMPLE: x = Re(z);
215 •

216 *------------------

217 */
218

219

220 #ifdef PROTOTYPE

221

222 double Re(ComplexType z);
223

224 #else

225

226 double Reo;
227

228 #endif

229

230

231 /* ------------------------- EOF complex.h */
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1 /* - PROGRAM IIFORMATION -------

2*

3 * SOURCE complex.c
4 * VERSION 1.6

5 * DATE 09 September 1991

6 * AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School

7 * DETAILS See "complex.h".

8 *

9 *---------=---------------------------------- --------

io */
11

12 #include <stdio.h>
13 #include "complex.h"

14

15

16

17

18

19 /* ------------- FUNCTION DEFINITION ------------

20

21

22 #ifdef PROTOTYPE

23

24 void cadd(ComplexType z1, Complex-Type z2, Complex-Type *sum)

25

26 #else
27

28 void cadd(zl, z2, sum)
29

30 Complex-Type z1,

31 z2,

32 *sum;

33

34 #endif
35 {
36

37 sum->x = zl.X + Z2.x;

313 sum->y = zl.y + z2.y;
39

40 }
41 /* End cadd() --------------------------------------------------------- */
42

43

44

45

46

47 /* ------------------- - FUNCTION DEFINITION --------- ------------- */
48

49

so #ifdef PROTOTYPE

261



complex.c

51

52 void cdiv(ComplexType zi, Complex-Type z2, Complex-Type *quotient)

53

54 #*else
55

56 void cdiv(zl, z2, quotient)

57

58 Complex-Type z1,
59 z2,
60 *quotient;
61 #endif
62 {
63

64 double d;
65

66

67 it (fabs(z2.y) < fabs(z2.x)) {
68

69 d = (z2.y / z2.x);
70

71 quotient->x = ((zi.x + zl.y * d)/(z2.x + z2.y * d));
72 quotient->y = ((zl.y - zl.x * d)/(z2.x + z2.y * d));

73 }
74 else {
75

76 d (z2.x / z2.y);
77

78 quotient->x = (( zl.y + zl.x * d)/(z2.y + z2.x * d));
79 quotient->y = ((-zl.x + zl.y * d)/(z2.y + z2.x * d));

so }
81 }
82 /* End cdiv() /------------------------------------------------------
83

84

85

86

87

S/* -------------- FUNCTION DEFINITION --- *-
89

90

91 #ifdef PROTOTYPE
92

93 void cmul(ComplexType zi, ComplexType z2, Complex-Type *product)

94

95 #else
9b

97 void cmul(zl, z2, product)

98

99 Complex-Type zl,

100 z2,
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101 *product;
102 #endif
103{

104

10 product->x = (zl.x * z2.x - zl.y * z2.y);

106 product->y = (zl.x * z2.y + zl.y * z2.x);
107 }

108 /* End cmul() -----------------------------------------------------
109

110
III

112

113

114 /* - ----------- FUNCTION DEFINITION -= -- /

115

116

117 #ifdef PROTOTYPE

11

119 void csub(ComplexType zi, Complex-Type z2, Complex-Type *difference)

120

121 #else
122

123 void csub(zl, z2, difference)
124

125 Complex-Type z1,

126 z2,
127 *difference;
126 #endif
129 {
130

131 difference->x = zi.x - z2.x;

132 difference->y = zl.y - z2.y;

133

134

135 /* End caub() /------------------------------------------------------
136

137

138

139

140

141 /* ------------ FUNCTION DEFINITION ------------
142

143

144 #ifdef PROTOTYPE
145

146 double Im(ComplexType z)

147

148 *else
149

16o double Im(z)
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151

152 Complex-Type z;
153

154 #endif
155 {
156

157 roturnCz.x);
158

159 }
160 /* End Imo - */
161

162

163

164

165

166 /*------------- FUNCTION DEFINITION ------------
167

168

169 #ifdef PROTOTYPE
170

171 double Re(ComplexType z)

172

173 #else
174

175 double Re(z)
176

177 Complex-Type z;
178

179 #endif

180 {
181

182 return(z.y);
183

184 )

1s5 /* End Re() /--------------------------------------------------------
186

187

Is /* ------------- EOF complex.c --------- --------------.
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i /* ------------ PROGRAM INFORMATION ------=---

2 *

3 * SOURCE epsilon.h
4 * VERSION 1.7
5 * DATE 09 September 199,
6 * AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School
7 *
8 *

9 ------------- REFERENCES

10

11 * [1] Gragg, William B. Personal conversations, course notes, and KATLAB
12 * code, 1991.
13 *

14 *

15 ------------- DESCRIPTION-------------
16 *

17 * This file contains declarations of functions that determine the machine
is * precision for a particular machine. The definition of epsilon is given
19 * below.

20 *

21 *

22 * LIST OF FUNCTIONS
23 *

24 * epsdo)
25 * epsf()
26 *

27 *------------- ------------------------------------------

28 */
29

30

31
32

33

34 / U--------------FUNCTION DECLARATION ----------

35 *

36 * PURPOSE: To find the machine precision. The machine precision, eps,
37 * is defined as the largest number which satisfies:
38 *
39 * 1.0 + eps == 1.0

40 •

41 * This program uses the type "double" which normally means an 8-byte
42 * (64-bit) floating-point number stored in the IEEE 754 double precision
43 * standard representation of [ 1 sign bit 3[ 11-bit exponent 1[ 52-bit
44 * mantissa/significand ].
45 *

46 * INCLUDE: "epsilon.h"
47 •

48 * RETURNS: The value of epsilon (double).
49 *

----------------------------
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51 */
52

53 double epsdo;
54

55

56

57

58

59 /e -------------- FUNCTION DECLARATION

60 *

61 * PURPOSE: This function is identical to epsd() except that it returns

62 * type float. Note: The values returned may be identical,
63 * probably reflecting C arithmetic done in type double

64 * regardless of the ultimate type returned. Anyway, this
65 * function does everything using type float.

66 *

67 * INCLUDE: 6epsilon.h"
68 *

69 * RETURNS: The value of epsilon (float).
70 *

71 *

72 *f
73

74 float epsfC);
75

76

77 /* EOF epsilon.h -------------
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i /== ------------- PROGRAM IIFORMATION -----------

2 *

3 * SOURCE : generate.h
4 * VERSION : 1.7
5 * DATE 09 September 1991
6 * AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School
7 *

a * ------------- = REFERENCES--------------
9 *

io * [1) Gragg, William B. Personal conversations, course notes, and MATLAB
11 * codes, 1991.

12 *

13 *

14 * --- --- DESCRIPTION -------------
15 *

16 * Declarations of matrix and vector generation/initialization functions.
17 *

18 *

19 *--------------- LIST OF FUNCTIONS -------------
20 *

21 * hilbert()
22 * identity()
23 * initial-permutationvector()
: * mxrand()
25 * wilkinsono)
26 * zeros()
27 *

28 *

29 */
30

31

32 /* FUNCTION DECLARATION ------------
33 *

34 * PURPOSE: This function generates a Hilbert matrix of the specified
35 * size. The function takes care of memory allocation, so
36 * the caller does not need to do this. The definition used
37 * for a Hilbert matrix is (for rows and columns numbered from
33 * 1) that the element at the (i,j) position has the value
39 * (1/(i + - 1)).

40 *

41 * INCLUDE: "allocate.h"
42 * "matrix.h"
43 *

44 * CALLS: matalloc()
45 *

46 * CALLED BY:
47 *

48 * PARAMETERS: The parameters tell the size of the desired matrix.
49 C

5o * RETURNS: On success (i.e. no allocation problems), hilbert() returns
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51 * the allocated matrix filled with the values as described.
52 * A NULL return value flags an allocation failure.
53 *

54 * EXAMPLE: DoubleMatrixType *A = hilbert(S, 7);
55 *

56 *-------------------------

57 */

58

59 #ifdef PROTOTYPE

60

61 DoubleMatrixType *hilbert(int rows, int cola);
62

63 #else
64

65 DoubleMatrixType *hilbert();
66

67 #endif
68

69

70

71

72

73 /* ------------ FUNCTION DECLARATION

74 *

75 * PURPOSE: This function generates an Identity matrix of the specified
76 * size. The function takes care of memory allocation, so
77 * the caller does not need to do this.

78 *
79 * INCLUDE: "allocate.h"
8o * amatrix.h"
81 *

82 * CALLS: matalloc()
83 *

84 * CALLED BY:
85

6 * PARAMETERS: The parameters tell the size of the matrix.
87

g8 RETURNS: On success (i.e., no allocation problems), identityo)
89 * returns the allocated matrix filled with the ones on the
9o * diagonal. A NULL return value flags an allocation failure.
91 *

92 * EXAMPLE: DoubleMatrixType *A = identity(E, 7);
93 *

94 *---------------------------------- ------------

95 */

96

97

s #ifdef PROTOTYPE

99

100 DoubleMatrixType *identity(int rows, int cols);
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101
102 #else
103

104 DoubleMatrixType *identityC) ;
105

1o6 #endif
107

108

109

110

111

112 /* FUNCTION DECLARATION

113 *
114 * PURPOSE: To initialize a permutation vector, p0. This function
115 * performs allocation for p[0, assuming that it must contain
116 * n integer elements. Additionally, the function assigns
117 * values p[j] = j for all 0 <= j < n. If allocation fails, p
118 * will be NULL upon return.
119 *

120 * INCLUDE: "allocate.h"
121 *

122 * CALLS: intvecalloc()
123 *

124 * CALLED BY:
125 *

126 * PARAMETERS: The size of the vector, n.
127 *

128 * RETURNS: (A pointer to) The vector.
129 *

130 *-------------------

131 */
132

133 #ifdef PROTOTYPE
134

135 Ant *initial-permutation_vector(int n);
136

137 $else

138

139 int *initialpermutationvector();
140

141 #endif
142

143

144

145

146

147 /* -------------- FUNCTION DECLARATION -----------

148 *

149 * PURPOSE: This function generates a matrix whose elements are pseudo-
150 * random numbers (generated by lcdrand() in mathx.c).
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151 *

152 * INCLUDE: "allocate.h"
153 * "mathx.h"

154 * "matrix. h"
155 *

156 * CALLS: lcdrand()
157 * natalloc()
158 *

159 * CALLED BY:
160 *

161 * PARAMETERS: The parameters tell the size of the matrix.

162 *

163 * RETURNS: On success (i.e., no allocation problems), mxrando) returns
164 * the allocated matrix filled with the random values. A NULL
165 * return value flags an allocation failure.

166 *

167 * EXAMPLE: DoubleMatrixType *A = mxrand(5, 7);
168 *

169 * -- - -- - -- -- - -- - -

170 s/
171

172

173 #ifdef PROTOTYPE
174

175 DoubleMatrixType *mxrand(int rows, int cols);

176

177 #else

178

179 DoubleMatrixType *mxrandC) ;

180

181 #endif

182

183

184

185

186

187 /* -------------- FUNCTION DECLARATION

188 *

189 * PURPOSE: This function generates a Wilkinson matrix of the specified
190 * size. The function takes care of memory allocation, so

191 * the caller does not need to do this. The definition used

192 * for a wilkinson matrix is: ones along the diagonal, ones

193 * along the rightmost column, zeros in the upper right

194 * triangle, and (-1)'s in the lower left triangle.

195 *

196 * [ 1 ]

197 * [1 1 1 )
198 * [-1-1 1 1 J
199 * [111 1 1 )
200 *
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201 *
202 *

203 *

204 * INCLUDE: "allocate.h"
205 * "atrix.h"
206

207 * CALLS: matallocC)
208 *

209 * CALLED BY:
210 *

211 C PARAMETERS: The parameters tell the size of the matrix.

212 *

213 * RETURNS: On success (i.e. no allocation problems), wilkinson()

214 C returns the allocated matrix filled with the values as

215 C described. On (allocation) failure, wilkinaon() returns

216 * NULL.

217 *

218 * EXAMPLE: DoubleNatrixType *A = wilkinson(5, 7);

219

220 *-----------------

221 */
222

223 #ifdef PROTOTYPE
224

225 DoubleMatrixType *vilkinson(int rows, int cola);
226

227 #else
228

229 Double-MatrixType *wilkinsonC) ;
230

231 #endif

232

233

234

235

236

237 /* ------------- FUNCTION DECLARATION ------------

238 *

239 * PURPOSE: This function generates a matrix of the specified size,

240 * where all of the entries are zero.

241 *

242 * INCLUDE: "allocate.h"

243 * "matrix.h"
244 *

245 C CALLS: matalloc()
246

247 C CALLED BY:

248

249 C PARAMETERS: The parameters tell the size of the matrix.

250 C
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251 * RETURNS: On success (i.e. no allocation problems), zeroso) returns
252 * the allocated matrix filled with zeros. On allocation
253 * failure, zeros() returns NULL.
254 *

255 * EXAMPLE: DoubleMatrixType *A = zeros(S. 7);
256 *

257 *- ------------------ - ----------- ------------------------------

258 */
259

260 #ifdef PROTOTYPE
261

262 DoubleMatrixType *zeros(int rows, int cols);
263

264 #else
265

266 DoubleMatrixType *zeroso);
267

268 #endif
269

270

271 /* - ------------- EOF generate.h -------------
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i /* ---------- PROGRAM INFORMATION
2 *

3 * SOURCE : io.h

4 * VERSION 2.2
5 * DATE : 09 September 1991

6 * AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School
7 *

9 ------- - DESCRIPTION

10*

ii • This file contains declarations of functions for matrix and vector

12 * input/output. The matrix structures such as "DoubleMatrixType" are
13 ' given in "matrix.h".

14 *

15 * The following parameters are common enough to justify a one-time
16 * explanation here (and not with each occurrence below):
17 *

is * width the width in which to print a value
19 *

20 * aft the number of places to print after the decimal point

21 *

22 *

23 ------------- LIST OF FUNCTIONS
24 *

25 * answero)

26 * fill-matrix()
27 * fread-matrix()

28 * fwrite-matrixo)
29 * getint()
30 * getmatrix-sizeo)
31 * pauseo)

32 * printmdo)
33 * printvdo)
34 * printvio)
35 *

3f, -----------------------

37 */
38

39

40 /* ---- ----- MANIFEST CONSTANTS -/
41

42

43 #define LONG-AFT 8
44 #define LONG-WIDTH 12
45 #define SHORT-AFT 2
46 #define SHORT-WIDTH S

47 #define STDAFT 3
48 #define STDWIDTH 8
49

50
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51 /* -------------- FUNCTION DECLARATION ------------

52 *

53 * PURPOSE: To get a yes or no answer from the user.

54 *

55 N NOTE: This function includes the prompt "(y/n)? " so you do not

56 * have to include this in your query. There is no space
57 * before, two spaces after, and no newline (i.e. as shown).

58 *

59 * INCLUDE: <stdio.h>

60 * io.h"
61 *

62 * CALLS: getcharo) <stdio.h>

63 •

64 * CALLED BY:

65

66 * PARAMETERS: void.

67

68 * RETURNS: Cint) YES or NO (as defined in matrix.h).

69 *

70 *------------------------

71 */

72

73

74 int answero;

75

76

77

78

79

8o

81 /s ------------- -FUNCTION DECLARATION

82 *

83 • PURPOSE: A function which prompts the user for the pertinent data

84 * about a matrix and fills the structure provided with the
85 * appropriate information. That is, this function allows the
86 * user to input the values of the elements.

87 •

g8 * PARAMETERS: A pointer to the structure containing the matrix to be

89 * filled.

90 *

91 * INCLUDE: <stdio.h>

92 * "io.h"
93 •

94 • CAUTION: This function ASSUMES that the "rows" and "cola" fields

95 * have been correctly assigned by something like matalloco)

96 * [see "allocate.h") and makes no effort to enter a value in

97 * those fields of the matrix structure.

98 *

99 • CALLS: )
100 •
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ioi • CALLED BY:

102 5

103 • PARAMETERS: The parameters tell the size of the matrix.
104 *

105 RETURNS: The matrix associated with A is operated on during the

106 * execution of the function, and the result is available

107 * upon return.
108 *

1o9 * EXAMPLE: if (!fill-matrix(&A)) ....
110 *

III 5------------- ------------------------------------------------

112 *1
113

114 #ifdef PROTOTYPE
115

116 void fill.matrix(DoubleMatrixType *A);

117

118 #else
119

120 void fill_matrix();

121

122 #endif
123

124

125

126 /* FUN------------- FCTION DECLARATION

127 *

128 * PURPOSE: A function which reads data from a file and stores it in
129 * the matrix of A. This function takes care of matrix

130 * allocation for the caller.

131 *

132 * INCLUDE: <stdio.h>

133 • "io .h"

134 *

135 • CAUTION: This function ASSUMES the file has been stored in the

136 * format described in "matrix.fmt".

137 *

1i3 * CALLS: fgets()
139 * fscanf()
140 * rewind()
141 *

142 • CALLED BY:
143 *

144 • PARAMETERS: The pointer to the matrix structure and the file pointer.
145 *

146 * RETURNS: 1 on success and 0 on any sort of failure.
147 *

148- --------------------------

149 •/

150

275



151 #ifdef PROTOTYPE
152

153 int freadtmatrix(DoubleMatrixType **I, FILE *fp);
154

155 #else

156

157 int freadaatrixo;
158

159 #*endif
160

161

162

163

164

165 /* -------------- FUNCTION DECLARATION

166 *

167 * PURPOSE: A function which writes data from A->matrixlJ[] to a file

168 * pointed to by fp.
169 *

170 * INCLUDE: <stdio.h>
171 * "io.

172 *

173 * ASSUMPTION: The caller has already performed fopen() on fp for the

174 * "w (write) mode.

175 *

176 * CALLS: fprintf()
177 * rewindo)

178 *

179 * CALLED BY:

180 *

161 * PARAMETERS: A is a pointer to the structure which contains the matrix.

182 * fp is a FILE pointer.

183 *

184 * RETURNS: I on success and 0 on failure.

185 *

186 *------------- -----------------------------------------

187 *

18

189

190 #ifdef PROTOTYPE
191

192 int fwrite.matrix(DoubleMatrixType *A, FILE *fp. int width, int aft);

193

194 #else
195

196 int fwrite-matrix();
197

198 #endif
199

200
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201 /* ------ FUNCTION DECLARATION ....

202 *

203 * PURPOSE: A function to get user input of a single integer.

204 *

205 * INCLUDE: <stdio.h>
206 * "io.h"

207 C

208 * CALLS: fflush()
209 * scanf()

210 *

211 * CALLED BY:

212 *

213 * RETURNS: The user's integer.

214 *

215 *- -=-=- - - - ------ - - - --------------

216 *l

217

21S int getinto;
219

220

221

222 /* FUNCTION DECLARATION -----------

223 *

224 * PURPOSE: A function to ask the user for the size of a matrix.

225 *

226 * INCLUDE: <stdio.h>

227 * "io.h"

226 *

229 * CALLS: answero)
230 * fflush()
231 * scanfC)

232 *

233 * CALLED BY:
234 *

235 * PARAMETERS: Pointers to the size of the matrix (m rows by n columns).

236 *

237 *--------------------------

233 */

239

240 #ifdef PROTOTYPE
241

242 void get.matrixsize(int *m, int *n);

243

244 0010
245

246 void get.matrix.size();

247

248 #endif
249

250
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251 /* FUNCTION DECLARATION
252 *

253 * PURPOSE: Press a key to continue!
254 *

255 * INCLUDE: <stdio.h>
256 * "io.h"
257 *
258 * CALLS: fflush()
259 * getchar()
260 * printf()
261 *

262 *- - - - - - -- - - - ----------------

263 */
264

265 void pause();
266

267

268 /* -------------- FUNCTION DECLARATION ---
269 *

270 * PURPOSE: This function provides a printout of the information stored
271 * in the structure A.
272 *

273 * INCLUDE: <stdio.h>
274 *"io.h"

275 *

276 * CALLS: printf()
277 *

278 * PARAMETERS: A is the structure that contains the matrix to be printed.
279 * The width and aft values are described near the top of this
280 * file. The defaults are defined as manifest constants.
281 *

282 * EXAMPLE: DoubleMatrixType *A = hilbert(7, 5);
283 *

284 * printmd(*A, LONG-WIDTH, LONG_.FT);
285 *

286 *------------------

287 */

288

289 #ifdef PROTOTYPE
290

291 void printmd(DoubleMatriType A, int width, int aft);
292

293 #else
294

295 void printmd();
296

297 #endif
298

299

300

278



3o /* ----------- FUNCTION DECLARATION -===-- --

302 *

303 * PURPOSE: This function prints the vector, v, of doubles.

304 *

305 * INCLUDE: <stdio.h>
306 * "io.h

307 *

308 * CALLS: printf()
309 *

310 * CALLED BY:

311 *

312 * PARAMETERS: v is the vector, size is the number of elements in v0.

313 *

314 ==--------------------------

315 */
316

317

318 #ifdef PROTOTYPE
319

320 void printvd(double *v, int size, int width, int aft);

321

322 #else
323

324 void printvdC);
325

326 #endif
327

328

329

330

331

332 /* -------------- FUNCTION DECLARATION --

333 *

334 * PURPOSE: This function provides a printout of the integer vector v.
335 *

336 * INCLUDE: <stdio.h>
337 * io.h"

338 *
339 * CALLS: printf()
340 *

341 * CALLED BY:
342 •

343 * PARAMETERS: v is a vector of size integers.

344 *

345 - --------------------------

346 */
347

348 #ifdef PROTOTYPE
349

350 void printvi(int *v, int size, int width);
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381

352 #.186
353

354 void printvio;

355

356 #.ndif
357

358

359

360

361 /* --------------=----------EOF io.h ---------
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mathx.h

I /* PROGRAM INFORMATION -

2 *

3 * SOURCE : mathx.h
4 * VERSION 1.2

5 * DATE : 09 September 1991
6 * AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School
7*
8 *

9 *---------------------- REF-- EREICES
10 *
ii * [I] Knuth, Donald E. The Art of Computer Programming, Volume 2: Semi-
12 * numerical Algorithms. Addison-Wesley Publishing Company,
13 * Reading, MA, 1969, pp. 9-24.
14 *

15 * [2] Sedgewick, Robert. Algorithms, Second Edition. Addison-Wesley
16 * Publishing Company, Reading, MA, 1988, pp. 513-514.
17 *
18 *

19 *------------- DESCRIPTION ....

20 *

21 * A small extension to the usual C <math.h>.
22 *

23 *

24 *------------- LIST OF FUNCTIONS -------------
25 *

26 * lcdrand()
27 * lclrando)
28 * multmodo)
29 * pow2()
30 *

31 *-------------------------

32 */
33

34

35

36

37

39 /* ------------- MANIFEST CONSTANTS ...... --- /
39

40 #ifndef EXIT-FAILURE
41 #define EXIT-FAILURE -1
42 #endif
43

44 #define START 1234567 /* starting value, 1o. See [1) *1
45 #define MULT 31415821 /* multiplier, a. See [1) *1
46 #define INCR 1 /* increment, c. See E1) */
47 #define SQRTM 10000 /* sqrt(m) */
48 #define MODULUS 100000000 /* modulus, m. See E1) */
49

50
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s /* --- - FUNCTION DECLARATION
52 *

53 * PURPOSE: To calculate a pseudo-random number in the range [0, 1)
54 * using the linear congruential method. This function is a
55 * very simple application of lclrand(). It merely divides
56 * the value that lclrand() returns by the modulus, and
57 * returns the resulting double value.
58 *

59 * INCLUDE: "mathx.h"

60 *

61 * CALLS: lclrando)
62 *

63 * CALLED BY: mxrand() "generate.c"
64 *

65 * PARAMETERS: The parameters are identical to those for lclrando.
66 *

67 * RETURNS: A pseudo-random double value in the range [ 0.0, 1.0 ).
68 *

69 * EXAMPLE: double d;
70 *

71 * d = lcdrand(START, MULT, INCR, SQRTM, MODULUS);
72 *

73 *------------- ------------

74

75

76

77 #ifdef PROTOTYPE
78

79 double lcdrand(long In, long a, long c, long sqrtm, long m);
80

s8 #else /* iPSC/2 */
82

83 double lcdrand(/* long Xn, long a, long c, long sqrtm, long m */);
84

s5 #endif
86

87

88

89

90

91 /* - FUNCTION DECLARATION ---------

92 *

93 * PURPOSE: To calculate a pseudo-random number of type long in the
94 * range [0, (m-0)1, where m is the argument for modulus. The
95 * algorithm uses the linear congruential method. This method
96 * is given in great detail in [1. A shorter, algorithmic
97 * treatment is given in [2]. I have tested the function to
98 * be sure that it produces the ten numbers listed on page 513
99 * of [2].
10o *
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1ol * INCLUDE: "mathx.h"
102 *

103 * CALLS: aultmod()
104 *

1os • CALLED BY: lcdrand()
106 •

107 * PARAMETERS: The notation comes from El (more-or-less). In is the
10 starting value. a is the multiplier. c is the increment.
109 s sqrtm is the square root of a, which is the modulus. A
110 * negative value for any of the arguments is impossible and
111 will invoke the defaults given among the manifest constants
112 a above. The starting value, In, is the exception. If you
113 C supply a nonnegative value, your value will be accepted as
114 * the starting value. Else, the starting value BEGINS at the
115 C default START and is changed each time the function in
116 * called (as long as the starting value argument, In, is
117 * negative). That is, In HAS MEMORY as long as your program
118 3 is running. The other parameters are determined from call-
119 • to-call.
120 *

121 * RETURNS: A pseudo-random long in the range [ 0, (-i) ], where a is
122 * the modulus argument.
123 *

124 * EXAMPLE: This example illustrates the use of the default values:
125 *

126 * long 1;
127 •

128 1 = lclrand(START, MULT, INCR, SQRTM, MODULUS);
129 *

130 •

131 */
132

133

134 #ifdef PROTOTYPE
135

136 long lclrand(long In, long a, long c. long sqrtm, long n);
137

13 #lseo /* iPSC/2 */
139

140 long lclrand(/* long In, long a, long c, long sqrtm, long a */);
141

142 #endif
143

144

145

146

147

148

149

IS0
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151 /* ---- =--==- FUNCTION DECLARATION ---==----

:%2 *

.s3 * PURPOSE: To calculate (a * b) mod a-2, while trying to avoid over-

154 * flow. This function is adapted from Sedgewick's 'nult'

15s * function on page 513 of [1).
156 *

157 * INCLUDE: "mathx.h"
158 *

159 * CALLS:
160 C

161 CALLED BY: lclrando)

162 •

163 e PARAMETERS: long a, b, m.

164 *

165 • RETURNS: long (a * b) mod a-2.
166 *

167 --------------------------------------------- --------

168 */

169

170

171 #ifdef PROTOTYPE
172

173 long multmod(long a, long b, long m);
174

175 #else
176

177 long multmod(/* long a, long b, long n /);

178

179 #endif
18o

181

182

183

184

185 /* ------------ - FUNCTION DECLARATION ----------
186 *

187 * PURPOSE: To calculate the value of two raised to the (n) power. This

I"s * function [unlike the macro POW2() given in macros.h] will

189 * handle the case where (n == 0). This function uses left

190 * shifts to achieve the result, so if you ask for too large a

191 * value, the result is not guaranteed. The value of n is

192 * ASSUMED to be a POSITIVE integer.

193 *

194 * INCLUDE: "nathx.h"
195 *

196 * CALLS:

197 *

198 CALLED BY:
199 *

200 * PARAMETERS: The desired power of two, n.

2S1



mathx.h

201 *

202 * RETURNS: The function returns the value of 2-(n).
203 *

204 -

205 */
206

207

208 #ildef PROTOTYPE
209

210 long pow2(int n);
211

212 else
213

214 long pov2(/* int n
215

216 #endif
217

218

219

220

221

222 /* ------------ EOF mathx.h ------------
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1 /*------------- PROGRAM INFORMATION -=-

2 *

3 * SOURCE num-sys.h
4 * VERSION 1.4

5 * DATE 09 September 1991

6 * AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School
7 *
8 *

9 =------------- - REFERENCES

10 *

i1 [1) Goldberg, David. ''What Every Computer Scientist Should Know About

12 * Floating-Point Arithmetic.'' ACM Computing Surveys. Vol. 23,

13 • No. 1, March, 1991, pp. 6-48.

14 *

15 * [2J Hayes, John P. ''Computer Architecture and Organization." McGraw-

16 * Hill Book Company, New York, Second Edition, 1988, p. 196.

17 *

18 *

19 - DESCRIPTION ........

20 *

21 * The "num.sys" group of functions relate to number systems (e.g. binary,

22 * decimal, hexadecimal).

23 *

24 *

25 - LIST OF FUNCTIONS

26

27 * binrep()
28 • binvec()
29 * hexrep()

30 * ieeerep()
31 *

32 --------------------------

33 */
34

35

36 /* ------------- FUNCTION DECLARATION

37 *

3s * PURPOSE: To display the binary representation of a number. Given the

39 * parameters described below, binrepo) prints the binary

40 * representation. For numbers of type double, type float, or

41 * type int; binrep() reverses the order of the bytes from the

42 * machine storage. This makes them more readily recognizable

43 * as [ SIGN I[ EXPONENT I[ MANTISSA I for the floating-point

44 * types and orders the bytes in order of decreasing signifi-

45 * cance for the integers.
46 *

47 * INCLUDE: "inum.sys.h"

48 *

49 * CALLS:

50 *
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51 * CALLED BY:
52 *

53 * PARAMETERS: The function needs to know what type of number you are
54 * sending in, so use the types given in matrix.h. The

s5 * function understands TYPE-CHAR, TYPE-DOUBLE, TYPEFLOAT,

56 * and TYPEINT). It also needs a pointer to the-number.
57 *

58 * EXAMPLE: float f;
59 *

60 * binrep(TYPEFLOAT, kf);
61 *

62 *

63 */
64

65 #ifdef PROTOTYPE
66

67 void binrep(int number-type, void *the-number);
68

69 #else
70

71 void binrepo);

72

73 #endif

74

75

76

77 /* -------------- FUNCTION DECLARATION
78 *

79 * PURPOSE: To expand the bits of the input into an array of integers.
so * The array only holds zeros and ones, with each element
81 * representing a bit of the input number.

32 *

83 * INCLUDE: "num.sys.h"
84 *

s * CALLS:

86 *

87 * CALLED BY:
88 *

s9 * CAUTION: This function returns the bits AS THEY ARE IN THE MACHINE!
90 * Many machines store type double, type float, and type int
91 * so that their bytes are in an order that is the reverse of
92 * what you might expect. Of course, the bits within a byte
93 * are in the expected (msb ...... lsb) order.

94 *

95 * PARAMETERS: The function needs to know what type of number you are

96 * sending in, so use the types given in matrix.h. The
97 * function recognizes TYPECHAR, TYPE-DOUBLE, TYPE-FLOAT, and
98 * TYPEINT. It also asks for a pointer to the number.
99 *

100 * RETURNS: A pointer to int. The function will take care of allocation
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1o * for this pointer, and it will fill the array with the bits

102 * of the number. For indexing purposes, you will probably

103 * need to know how big this vector is. Multiply the

104 * [sizeof(type you are sending in)] by 8 (bits/byte). That's
105 * how many elements will be in the returned vector of integer

106 * (bits). This pointer will be DULL if there was an alloca-

107 * tion problem.

108 *

1o9 * EXAMPLE:
110 *

111 * float f; Assume that this takes 4 bytes e 8 bits

112 *

113 * int *v; To hold the bit vector of f (32 elements)

114 C

115 * V = binvec(TYPEFLOAT, Af);

116 *

117 ---------------------------
118 o/

119

120 #ifdef PROTOTYPE
121

122 int *binvec(int number-type, void *thenumber);

123

124 #else

125

126 int *binvec(;
127

126 #endif
129

130

131 /* -------------- FUNCTION DECLARATION ----------

132 *

133 PURPOSE: To display the hexadecimal representation of a number.

134 *

135 * INCLUDE: "num.sys.h"
136

137 * CALLS:

138 C

139 * CALLED BY:
140

141 C PARAMETERS: The function needs to know what type of number you are
142 * sending in, so use the types given in atrix.h. The

143 * function recognizes TYPE-CHAR, TYPE-DOUBLE. TYPE-FLOAT, and
144 * TYPE-INT. It also needs a pointer to the number.
145 C

146 C EXAMPLE: float f;

147

148 C printf("The hexadecimal representation of %f is: ", f);
149 * hexrep(TYPEFLOAT, Af);
150 *
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151 * - --=--- - ---

152

153

154 #ifdef PROTOTYPE

155

156 void hexrep(int number-type, void *the.number);
157

1s8 #else
159

160 void hexrep();
161

162 #endif
163

164

165 /* -------------- FUNCTION DECLARATION -

166 *

167 * PURPOSE: To display binary and IEEE representation of a number. This

168 * is nearly a tutorial function! It displays a binary repre-
169 * sentation of the number, and then breaks out the sign,
170 * exponent, and mantissa (or significand). Some terse trans-
171 * lation tips are also provided.
172 *

173 * INCLUDE: "num-sys.h"
174 *

175 * CALLS:
176 *

177 * CALLED BY:
178 *

179 * PARAMETERS: The function needs to know what type of number you are

180 * sending in, so use the types given in matrix.h. This

181 * function ONLY recognizes the floating-point types (i.e.,
182 * TYPE-DOUBLE and TYPE-FLOAT). It also needs a pointer to
183 * the number.
184 *

185 * EXAMPLE: float f;
186 *

187 * printf("The IEEE 754 representation of .f is: ", f);
188 * ieeerep(TYPEFLOAT, if);
189 *

190 *------------------------------------------------------------

191 *

192

193 #ifdef PROTOTYPE

194

195 void ieeerep(int number-type, void *the.number);
196

197 #else
198

199 void ieeerepo;
200
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201 #eridif
202

203

204 /* - - - - - - EOF num-s.ys.h- - - - - --
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1* /-------------= - PROGRAM INFORMATION --------

2 *

3 * SOURCE : ops.h
4 * VERSION 1.7
5 * DATE 09 September 1991
6 * AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School
7*

9 ----------------------------- REFERENCES-------
10*

11 [1) Golub, Gene H., and Charles F. VanLoan. Matrix Computations. The
12 *Johns Hopkins University Press, Baltimore, 1989.
13*

14

15 *----------------------------DESCRIPTION-------

16*

17 *The functions declared below perform matrix and vector operations. For
is the sake of brevity. I will often use simple (MatLab-style) notation in
19 comments. For instance, x' means x transpose (i.e. a row). Do not
20 *confuse the comment shorthand with what is really happening in the
21 *code. My goal is to get function specifications across clearly and
22 *succinctly without excessive concern for implementation. Here are a
23 * fw notes.
24*

*25 *An operation preceded by a ".' means 'elementwise". For instance,
26 *X .* y means the elementwise vector multiplication of x by y. That is,
27 *the result would be some vector z like:
26

29 z E x[i1*y[i], x[2ey[2) ........ x~n)*y[n] J
30*

31 *If the operation appears without the preceding ".,it means the vector
32 *operation.

33*

34*

35 -------------- 2= - - LIST OF FUNCTIONS-------

36*

37 *Cole()

38 dot..producto)
39 *matrix-.product()

40 *max..element()

41 *normpo)

42 * outer-.producto)
43 * rows()
44 * swap..cols()
45 * swap-.rowso)

*46 * Vec-.initC)
47 *

48*---------------------------------------------- --------

49 *
50
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51 /* - FUNCTION DECLARATION -

52 *

53 * PURPOSE: To return the number of columns in the matrix A.
54 *

5s * INCLUDE: "ops.h"
56 *

57 *------------- -------------

58 */

59

60 #ifdef PROTOTYPE

61

62 int cols(DoubleMatrixType WA);
63

64 #else
65

66 int cols(/* DoubleMatrixType *AI);

67

68 #endif
69

70

71 /* ------------- FUNCTION DECLARATION -----

72 *

73 * PURPOSE: Computes the dot product of the input vectors x and y which

74 * is defined in [1] (page 4). The dot product of x and y is

75 * '* y.

76 *

77 * PARAMETERS: The vectors x and y should be arrays of type double, each

78 * having "size" elements.

79 *

so * INCLUDE: "ops.h"
81 *

82 * CALLS: N/A
83 *

84 * CALLED BY: matrix.producto) [see below]

85 *

se * RETURNS: A double (scalar) value equal to the dot product x' * y.

87 *

ss * EXAMPLE: The following example would conclude with answer == 10.0.

89 *

90 * double answer;

91 *

92 * static double x[] = { 1.0, 2.0, 3.0 }.
93 * y] = { 3.0, 2.0. 1.0 };
94 *

9s * int size = 3;
96 *

97 * answer = dotproduct(x, y, size);

98 *

99 *==------------------------

1oo */
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102

103 #ifdef PROTOTYPE
104

105 double dot.product(double *x, double *y, int size);
106

107 Ses
108

109 double dot.product(/* double *x, double *y, int size */);
110

111 #endif
112

113

114

115

116 /* -------------- FUNCTION DECLARATION -------------

117

11a * PURPOSE: To multiply matrices A and B, placing the product in C.
119

120 * INCLUDE: lops.h"
121

122 * CALLS: dot-product [see above]
123

124 * CALLED BY:

125

126 * PARAMETERS: The parameters tell the size of the matrix.
127

128 * RETURNS: SUCCESS if the matrices were compatible for multiplication
129 * and C contained enough space to contain the entire result.
130 * FAILURE if A and B were incompatible or C was not big
131 * enough to hold the product. The values for SUCCESS and
132 * FAILURE are given in 'matrix.h'.
133 *

134 * EXAMPLE: DoubleMatrixType *A,
135 *B,

136 **C;

137

138 * if (matrix-product(A,B,C) == FAILURE) {
139 *

140 * printf("matrix-product(A.B,C) failed.\n");
141 * exit(EXITFAILURE);
142 l }
143 * else {
144 *
145 * printf("C contains A * B.n");
146

147 ,

148 - -------------

149 */

150
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1s #ifdef PROTOTYPE
152

153 int matrix.product(DoubleMatrixType *A,

154 DoubleMatrixType *B,

155 DoubleKatrixType *C);

156 #*else
157

158 int matrix-producto);

159

160 #endif
161

162

163

164 /* - FUNCTION DECLARATION ==-=======-

165 *

166 * PURPOSE: To search the elements below and to the right of A(k,k) for

167 * the element that is maximum in absolute value.

169 * INCLUDE: <math.h> [link using -lm if necessary]

170 * ops.h"

171 *

172 * CALLS: fabs()
173 *

174 * CALLED BY:

175 *

176 * PARAMETERS: A is the matrix (structure). k is the index for a position
177 * on the main diagonal, A(k,k). The search will be conducted

178 * for the area of the matrix that lies below k and to its

179 * right:

180 *

181 * (k,k) ------------------- >
182 * I This is the area that will be searched
183 * I for an element of maximum absolute value.
184 * I The search does NOT include row k nor
185 3 I does it include column k.
186 *

187 * Parameters must also include a, the address of an integer
18 * that will contain the row number for the maximum element

189 * upon return; and t, an address of an integer to store the
190 * column number for the maximum element.
191 *

192 * NOTE: To search the WHOLE MATRIX, the parameter k should be (-1).
193 * The values of k, a, and t should be interpreted as the C

194 * versions of indexes (i.e. beginning with 0).
195 *

196 * RETURNS: The function returns the maximum (in absolute value)
197 * element found in A (type double). Additionally, the index

198 * values for this element are placed in the variables pointed
199 * to by a (row) and t (col).
200 *
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201 * EXAMPLE:

202 *

203 * DoubleMatrixType *A;

204 *

205 * double u;
206 *

207 * int k,
208 * 5,

209 *t

210 *

211 * u = maxelement(A, k, As. At);
212 *

213 ----------------- - -- - - -

214 */
215

216 #ifdef PROTOTYPE
217

218 double max-element(DoubleMatrixType *A, int k, int *s, int *t);

219

220 Lelse
221

222 double maxelemento);
223

224 #endif
225

226

227

228 /* ------------- - FUNCTION DECLARATION ----------

229 *

230 * PURPOSE: Computes the p-norm of the input vector x defined in [1)
231 * (page 63).
232 *

233 * INCLUDE: <math.h>
234 * "ops.h"

235 *

236 * CALLS: fabs()
237 *

238 * CALLED BY:
239 *

240 * PARAMETERS: x is the vector. It must contain "size" elements of type
241 * double. The p argument is the p of p-norm.
242 *

243 * RETURNS: A double (scalar) value equal to the p-norm of x.

244 *

245 * EXAMPLE:

246 *

247 * static double x[) = { 1.0, 2.0, 3.0 };
248 *

249 * double Euclidean-norm-of-x;

250 *
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251 * Euclidean-normsof-x = normp(x. 2, 3);

252 *

253 - -- -- -- -- -- - ------------------------------------------

254 */
255

256 Sifdef PROTOTYPE

257

258 double normp(double *x, Ant p, Ant size);

259

260 #*lse
261

262 double normp();
263

264 #endif
265

266

267 /* ------------- FUNCTION DECLARATION
268 *

269 * PURPOSE: To place the outer product of x and y in C.

270 *

271 INCLUDE: "ops.h"

272 *

273 * CALLS: N/A
274 *

275 * CALLED BY: N/A
276 *

277 * ASSUMPTION: The matrix associated with C is already allocated to the
276 * proper size.
279 *

280 * PARAMETERS: Two vectors, x and y, of sizes x-size and y.size; and the

281 * matrix associated with C to accept the outer product.

282 *

283 * RETURNS: The matrix associated with C is filled with the proper
284 * values.
285 *

286 *------------------

287

288

289

290 #ifdef PROTOTYPE
291

292 void outerproduct(double *x, Ant x_size, double *y, Ant y.size,

293 double **C);
294 #else
295

296 void outerproducto;

297

298 #endif
299

300
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302 *

303 * PURPOSE: To return the number of rows in the matrix A.
304 *

305 * INCLUDE: "ops.h"
306 *

307 ---------------------------

308 */
309

310 #ildef PROTOTYPE
311

312 int rows(DoubleMatrixType *A);
313

314 #else
315

316 int rowso;
317

318 #endif
319

320

321

322 /* ........ . FUNCTI ON DECLARATION ==-----------

323 *

324 * PURPOSE: To swap columns p and q in the matrix contained within A.

325 *

326 * INCLUDE: "ops.h"
327 *

328 * CALLS: N/A
329 *

330 * CALLED BY:
331 $

332 * PARAMETERS: A is the structure holding the matrix. The integers p and
333 * q are the column numbers to be swapped. Indexes are

334 * numbered according to the C convention (beginning at zero).

335 *

336 * RETURNS: Upon return, the columns have been swapped in A.
337 *

338 ---------------------------

339 $/

340

341 #ifdef PROTOTYPE
342

343 void swap.cols(DoubleMatrixType *A. int p, int q);

344

345 #else
346

347 void svap.cols();
348

349 #endif
350
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351 / =------------- FUNCTION DECLARATION -------------

352 *
353 * PURPOSE: To swap rows p and q in the matrix contained within A.
354 *

355 * INCLUDE: "ops. V

356 *

357 * CALLS: N/A
358 *
359 * CALLED BY:
360 •

361 * PARAMETERS: A is the structure holding the matrix. The integers p and
362 * q are the row numbers to be swapped. Indexes are numbered
363 * according to the C convention (beginning at zero).

364 *
365 * RETURNS: Upon return, the rows have been swapped in A.

366 *

367 ------ ------- - ------------

368 */
369

370 #ifdef PROTOTYPE
371

372 void swap-rows(DoubleMatrixType *A, int p, int q);

373

374 #else
375

376 void swap-rowso;

377

378 #endif
379

360

381

382

393 /* ------------- -FUNCTION DECLARATION =--------

384 *

385 * PURPOSE: To initialize the vector v of n integers with the values

386 1, 2, 3, ..., n.
387 C

3"5 INCLUDE: "ops.h"
389 •

390 * CALLS:
391 C

392 * CALLED BY:

393 *

394 A ASSUMPTION: The vector, v, has already been successfully allocated as
395 C an array of n integers.

396 *

397 * PARAMETERS: The vector, v, to be initialized; and its size, n.

398 

399 C RETURNS: The vector's elements are set to the new values and these

400 * values are in v[1 upon return.
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401

402 *-- -- -- -- -- -- -------==-------

403 *
404

405

406 #ifdet PROTOTYPE
407

408 void vec~init~int *v, int n);
409

410 #elge
411

412 void vec-.iriitC);
413

414 #endif
415

416

417 /*-------------- -- -- EOF ops.h --------
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1 /* -.......... PROGRAM INFORMATION --=-

2 *
3 * SOURCE : ti-ing.h
4 * VERSION : 1.2

5 * DATE 09 September 1991
6 * AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School
7 *

8 * ---------------- -EFER E------------CES

9 *

1o * REFERENCES
11 •

12 * [1) Inmo. The Transputer Databook, Second Edition, 1989.
13 *

14 • [2) Intel. iPSC/2 Programmer's Reference Manual.

15 *

16 •

17 - DESCRIPTION

18 •

19 • This file contains definitions of manifest constants, type definitions,

20 • and function declarations for time-related tasks on the Intel iPSC/2 or
21 • a network of Inmos transputers.

22 •

23 *

24 ------------- LIST OF FUNCTIONS -

25 •

26 * clocko

27 • delay()

28 •

29 -

30 */

31

32

33

34

35

36 /* MANIFEST CONSTANTS •/

37

3a #ifdef TRANSPUTER

39
40 *define LOPERIOD 64.0e-6 /* period of low priority clock •/

41 #define 91-PERIOD 1.Oe-6 /• period of high priority clock

42 #define LOFREQ 15628.0 /* frequency of low priority clock •/
43 #define HIFREQ 1.0e6 /* frequency of high priority clock •/

44

45 #else /* iPSC/2 */

46

47 #define MPERIOD 1.0e-3 /* period of Intel's mclockC) •/

48 #define MFREQ 1.Oe-3 /• frequency for Intel's mclock() •/

49

so gendif
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51

52

53 /* -------------- TYPE DEFINITIONS
54 *

55 * The type 'ticks' is defined in an effort to sake timing a bit more

56 * transparent across the machines listed.
57 *

M8 * ------------- ------------------------------------------------

59 */
60

61 #ifdef TRANSPUTER
62

63 typedef int ticks;

64

65 8else /* iPSC/2 */
66

67 typedef unsigned long ticks;
68

69 Sendif
70

71

72

73

74

75 /* -------------- FUNCTION DECLARATION -
76 *

77 * PURPOSE: To get the time (in ticks) from the processor's clock.

78 *

79 * INCLUDE: <conc.h> (Logical Systems C, version 89.1)

8o * "timing.h"
81 *

82 * CALLS: Timeo) (Logical Systems C, version 89.1)
3 * aclock() (Intel iPSC/2 C)

84 *

85 * CALLED BY:

86 *

87 * PARAMETERS: None.

88 5
89 * RETURNS: The function samples the clock and returns ticks. More
90 * information on ticks, period, and frequency is given in the
91 * definitions above.
92 *

93 * EXAMPLE: ticks t[2J;

94 *

95 * t[O] = clocko);
96 *

97 *-------------------

98 */

99

100
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1O1 #itdef PROTOTYPE
102

103 ticks clock(void);

104

105 #else

106

107 ticks clock(/* void '/);
108

1o9 #endif
110

111

112

113

114

115 /* ------------ =- FUNCTION DECLARATION

116 *

117 * PURPOSE: To force a delay of at least a given amount (in seconds) in

1I1 * program execution.
119 *

120 * INCLUDE: <conc.h> (Logical Systems C, version 89.1)
121 * "timing.h"

122 *

123 * CALLS: ProcGetPriorityC) (Logical Systems C, version 89.1)

124 * Time() (Logical Systems C, version 89.1)
125 * mclocko) (Intel iPSC/2 C)

126 *

127 * CALLED BY:
128 *

129 * PARAMETERS: The (float) argument tells the function the minimum time
130 * (in seconds) to delay.

131 *

132 * EXAMPLE: delay(1.25);

133 *

134 ----- ----------------------

135

136

137 #ifdef PROTOTYPE

138

139 void delay(float seconds);
140

141 #else

142

143 void delay( /* float seconds e/ );
144

145 #endif
146

147

148 /* --------------- EOF timing.h -------------
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E. GAUSS FACTORIZATION CODE

The Gauss factorization code appears on the pages that follow. First, the code

for partial pivoting is given. Since the complete pivoting case was very similar, most

of it has been omitted to save space. The pivot election function, however, is shown

in a fragment of gfpcnode.c, the node code for GF with Pivoting (Complete).
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I 8 --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2#
3 # PURPOSE Makefile for Hypercube Gauss Factorization (GF) Program
4 * AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School
5 S DATE : 26 August 1991
68
7 8
8

9 ROOTCODE=gfpphost
1o NODECODE=gfppnode
11 EADER=gf

12 NIFFILE=gfpp
13

14

15 S ---------------------- OPTIONS AND DEFINITIONS
16 #

17 8 iPSC/2 Section (NDIR MatLib directory)
18
19 KDIR=/usr/hartman/matlib/
20

21

22 8 Transputer Section
23 #

24 8 The following section establishes options and definitions, starting
25 # with PP, the Logical Systems C Preprocessor. The '-dX' option (with no
26 8 macro-.expression) is like '*define X 1'. Next the compilation options
27 * for Logical Systems' TCX Transputer C Compiler are given. The '-c'
28 8 means compress the output file. The options beginning with '-p' tell
29 # TCX to generate code for the appropriate processor:
30 8
31 # -p2  T212 or T222
32 * -p25 T225
33 # -p4  T414
34 # -p45 T400 or T425
35 # -p8 T800
36 # -p8 5  T801 or T80S
37 #

3 # Logical Systems' TASK Transputer Assembler is next. The '-c' means
39 8 compress the output file (it can cut it in half)! The '-t' is used
40 8 because the input to TASK will be from a language translator (TCI's
41 8 output) and not from assembly source code.
42 #

43 # The final list tells TLNK which libraries to look at during linking.
44 8 It also establishes an entry point. We use '_main' for the root node
45 8 and 'nsmain' for other nodes.
46

47 PPOPT2=-dPROTOTY7E -dTRANSPUTER -dT212
48 PPOPT4=-dPROTOTYPE -dTRANSPUTER -dT414
49 PPOPT8=-dPROTOTYPE -dTRAUSPUTER -dT800
so TCXOPT2=-cp2
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51 TCXDPT4=-cp4
52 TCXOPT8=-cp8
53 TASNOPT=-ct
54 T2LIBt2lib. tll
55 T4LIBzaatlib4.tll t4lib.tll
56 T8LIBmaatlib8.tll t8lib.tll
57 ftEETRY-main
58 NEITRY_ns-main
59

60

618-----------------------------DEFAULT K= AKE ALL ------------

628

63# Coment out one or the other....
648

65 8 all: ipsc
66 11 ru: irun
67 8 clean: iclean
6s all: transputer
69 run: ti-un
70 clean: tclean
71

72

73

74

758S------------------------------ROOT CODE ---------------
76 8
77 8 iPSC/2 Section
78

79 ipac: SCROOTCODE) $(EODECODE)

81 $(ROOTCODE): $CROOTCODE).o
82 cc $(ROOTCODE).o $OIDIR)allocate.o $(NDIR)clargs.o $CMDIR)comost.o $(KDIR)generate.o
$(MDIR)epsilon.o $CNDIR)io-o $CKDIR)mathx.o $CKDIR)ops.o $CRDIR)timing-o -lm -host
-o $CROOTCODE)
83

84 $CFWOTCODE) .o: *(ROOTCODE) .c $CHEADER) .h
85

86

87 8 Transputer Section

89 transputer: $CROOTCODE) .tld $CNODECODE) .tld
90

91 $CROOTCODE) .tld: SCROOTCODE) .trl
92 echo FLAG c > $CROOTCODE).lnk
93 echo LIST $(ROOTCODE).map >> $(ROOTCODE).lnk
94 echo INPUT $CROOTCODE).trl >> $CROOTCODE).lnk
95 echo ENTRY $(REITRY) >> $(ROOTCODE).lnk
96 echo LIBRARY $CT4LID) >> $CROOTCODE).lnk
97 tlnk $CRoOTCaDE).lnk
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99 S(ROOTCODE) .trl: S(ROOTCODE) .tal
100 tass $(ROOTCODE).tal $(TISROPT)
101

102 *(ROOTCODE) .tal: *(ROOTCODE) .pp
103 tcZ $(ROOTCODE).pp $CTCXOPT4)
104

mo $(RDOTCODE).pp: $(ROOTCODE).c
106 pp $(ROOTCODE).c $CPPOPT4)
107

108

109

110

III

112 # ------------------------------ NODE CODE ---------------
113#

114

115 # iPSC/2 Section
116

117 *(NODECODE): $CUODECODE).o
118 cc S(NODECODE) .o $(NDIR)allocate.o 0 (NDIR)coammode-o $(KDIR)generat..o $(NDIR)io.o
$CMDIR)uathx.o $CNDIR)ops.o SCKDIR)timing.o -node -13 -o $CIODECODE)

119

120 $(SODECODE) .o: S(IODECODE).c $CHEADER) .h
121

122

123 8 Transputer Section
124

125 $(NODECODE) .tld: $CIODECODE) .trl
126 echo FLAG c > *CNODECODE).lnk
127 echo LIST $(IODECODE).aap >> $(IODECODE).lnk
128 echo INPUT *(NODECODE).trl >>$(NODECODE).lnk
129 echo ENTRY $(IEITRY) >> $(IODECODE).luk
130 echo LIBRARY $(T8LIB) >> *CIODECODE).1Dk
131 tink $(IODECODE).lnk
132

133 $(NODECODE) .trl: $CIODECODE) .tal
134 team $(NODECODE).tal $(TASHOPT)
135

136 $(NODECODE) .tal: S(NODECODE) .pp
137 tCX *(NODECODE).pp $(TCXOPT8)
1383

139 S(NODECODE).pp: $(NODECODE).c
140 pp S(NODECODE).c $CPPOPT8)
141

142

143

144

145

146 S ------------------------------ EXECUTION ---------------
147
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148

149 irun: $(ROOTCODE) $CIODECODE)
iso $CROOTCODE)
151

152 trun: $(ROOTCODE).tld $CIODECODE).tld $CNIF-FILE).nif
153 echo makecub. first
154 1d-net $(NIF..FILE) -t -v
155

156

157 8------------------------------CLEAN UP ---------------
1588

159

160 iclean:
16 ra *(NODECODE).o
162 ru $(ROOTCODE).o
163 rm $(IODECODE)
164 ra $(ROOTCODE)
165

166 tClean:
167 del $CROOTCODE).lnk
16s del $ (IODECODE) .lzk
169 del $CROOTCODE).map
17o del $CIODECODE).map
1M del $CROOTCODE).tal
172 del $(IODECODE).tal
173 del $CROOTCODE).pp
174 del $CNODECODE).pp
175 del $(ROOTCODE).trl
176 del $CIODECODE).trl
177

178

179 8 EOF gfpp.mak ---------------------------------------------------------
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[gfpp.nif]

1 ; - NETWORK INFORMATION FILE -

2 ;

; SOURCE : gfpp.nif
4 ; VERSION : 1.0
5 ; DATE : 14 September 1991
6 ; AUTHOR : Jonathan E. Hartman, U. S. Naval Postgraduate School
7 ; USAGE id-net gfpp
8;

9;

0; ------------- REFERENCES ======== -------------

11 ;
12 ; [1] Inmos. INS B012 User Guide and Reference Manual. Inmos Limited,
13 ; 1988, Fig. 26, p. 28.
14 ;
15 ;
16 ;------------- DESCRIPTION

17 ;
is ; Network Information File (IIF) used by Logical Systems C (version 89.1)
19 ; LD-NET Network Loader. This file prescribes the loading action to take
20 ; place when the 'ld-net' command is given as in USAGE above.
21 ;
22 ;
23 ;- ------------ HARDWARE PREREQUISITES ----------

24 ;
25 ; NOTE: There are three node numbering systems: the one created by Inmos'
26 ; CHECK program, the Gray code labeling, and the RIF labeling. Since all
27 ; three will be used on occasion, I will prefix node numbers with a C, G,
28 ; or N to identify which system I am using!
29 ;
30 ; The INS B004 and INS B012 must be configured correctly. The B004's T414
31 ; has link 0 connected to the host PC via a serial-to-parallel converter,
32 ; link 1 connected to the INS B012 PipeHead, link 2 connected to the T212
33 ; [comunications manager (not used here)] on the B012, and link 3
34 ; connected to the INS B012 PipeTail (see [1)). By the way, link 2 from
35 ; the B004 goes to the the ConfigUp slot just under the PipeHead slot
36 ; (this connects it to the T212). Finally, the B004's Down link must run
37 ; to the B012's Up link.
38*

39 ;
40 ;------------- ==== SETTING THE C004 CROSSBAR SWITCHES ====
41 ;

42 ; Once you have connected the hardware in the fashion mentioned above,
43 ; the system is ready to be transformed to a hypercube. Three codes by
44 ; Mike Esposito are used here: t2.nif, root.tld, and switch.tld. I have
45 ; a batch file called 'makecube.bat' that performs a 'id-net t2' also.
46 ;

47 ; Mike's code passes instructions to the T212 on the B012; which, in-turn
48 ; tells the C004's how to connect their switches. After the code has
49 ; executed, the (very specific) configuration that we are looking for
so ; will exist. Specifically, the following (output from CHECK /R) is what
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51 ; this process gives us:
52 ;
s3 ; check 1.21

54 ; # Part rate Kb Bt [ LinkO Linki Link2 Link3 ]
55 ; 0 T414b-15 0.09 0 [ HOST 1:1 2:1 3:2 ]
56 ; 1 T800c-20 0.80 1 [ 4:3 0:1 5:1 6:0 )
57 ; 2 T2 -17 0.49 1 [ C004 0:2 ... C004J
51 ; 3 T800c-20 0.80 2 E 7:3 8:2 0:3 9:0 ]
59 ; 4 T800c-20 0.76 3 [ 9:3 10:2 11:1 1:0 )
60 ; 5 T800d-20 0.90 1 [ 8:3 1:2 10:1 12:0 J
61 ; 6 T800d-20 0.76 0 ( 1:3 12:2 7:1 11:0 J
62 ; 7 T800d-20 0.76 3 [ 13:3 6:2 14:1 3:0 J
63 ; 8 T800d-20 0.90 2 [ 14:3 15:2 3:1 5:0 )
64 ; 9 T800c-20 0.77 0 [ 3:3 13:2 15:1 4:0 J
65 ; 10 T800d-20 0.90 2 [ 16:3 5:2 4:1 15:0 ]
66 ; 11 T800d-20 0.90 1 C 6:3 4:2 16:1 13:0 )
67 ; 12 T800d-20 0.77 0 [ 5:3 16:2 6:1 14:0 ]
66 ; 13 T800d-20 0.77 3 1 1:3 17:2 9:1 7:0 J
69 ; 14 T800c-20 0.90 1 [ 12:3 7:2 17:1 8:0 )
70 ; 15 T800c-20 0.90 2 C 10:3 9:2 8:1 17:0 )
71 ; 16 T$00c-20 0.76 3 C 17:3 11:2 12:1 10:0 )
72 ; 17 T800d-20 0.88 2 C 15:3 14:2 13:1 16:0 J
73 ;

74 ; Here node CO is the root transputer (on the INS B004) and node C2 is
75 ; the T212 (on the IKS B012). The other sixteen nodes are the T800's
76 ; that are used for the work. A logical interconnection topology is
77 ; described below.
78 ;

79 ;
so ;------------- =-==TOPOLOGY--------------

82 ; The physical interconnection scheme described above is an actual 4-cube
83 ; with one exception. The root node (CO) is situated BETWEEN nodes CI
84 ; and C3 (which would be connected directly in the usual 4-cube). This
85 ; gives us two 3-cubes: one whose node labeling is GOxxx and the other,
86 ; whose node labeling is Glxxx (where the xxx represents all permutations
87 ; of 3-bits). These are the usual three cubes, and they will exist if we
"s ; define the node numbering/labeling correctly.
89
90
91; ------------ STRATEGY---------
92

93 ; The node labeling established by the EIF is available via the variable
94 ; -node-number (see <conc.h>) in source code. Therefore, we would like a
95 ; smart labeling scheme in the NIF file so that programming is easier.
96 ; This, of course, is subject to the restriction that NIF labels begin
97; with NI and so on.
98
99 ; One such method would be to define a EIF labeling so that the Gray code

100 ; label for a node would be (_node-number - 2). In fact, this is
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101 ; possible and the adjacencies defined below allow us to realize this

102 ; feature. Below, node 10 is the host PC, node 1 is the root transputer
103 ; (T414 on the B004). 12 through 117 correspond to GO through G15 (the
104 ; nodes of a 4-cube), and 118 is not used (but it's the T212).

105 ;

106 ;

107

108

109 host-server cio.exe; (default)

110

III; TRAISPUTER RESET DESCRIPTION OF LIIK CONVECTIONS
112 ; NODE LOADABLE COMES

113 ; ID CODE (.tld) FROM: LIIKO LINKI LIIK2 LIIK3

114 ;

115 1, gfpphost, rO, 0, 2, , 10; B004
116 2, gfppnode, rl, 4, 1, 3, 6; B012

117 3, gfppnode, r2, 11, 2, 5, 7;
118 4, gfppnode, rS, 12, 5, 8, 2;

119 5, gfppnode, r3, 9, 3, 4, 13;

120 6, gfppnode, r7, 2. 7, 14, 8;

121 7, gfppnode, r9, 3, 9, 6, 15;
122 8, gfppnode, r4, 6, 4, 9, 16;

123 9, gfppnode, r8, 17, 8, 7, 5;
124 10, gfppnode, ril, 14, 11, 1, 12;

125 11, gfppnode, r13, 15, 13, 10, 3;

126 12, gfppnode. r16, 10, 16, 13, 4;
127 13, gfppnode, r12, 5, 12, 11, 17;

126 14, gfppnode, r6, 16, 6, 15, 10;

129 15, gfppnode, r14, 7, 14, 17, 11;
130 16, gfppnode, r17, 8, 17, 12, 14;

131 17, gfppnode, r15, 13, 15, 16, 9;

132 ; 18, switch, sl, 1, ; T212
133

134

135 ; EOF gfpp.nif
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/* ------------- PROGRAM INFORMATION - --------

2 *

3 * SOURCE : gf.h
4 * VERSION 2.5
5 * DATE 21 September 1991
6 * AUTHOR : Jonathan E. Hartman, U. S. Naval Postgraduate School
7 *

a * SEE ALSO: gfpc.mak makefile for the complete pivoting came
9 * gfpp.mak makefile for the partial pivoting case

10 * gfpchost.c host code for the complete pivoting case
11 * gfpphost.c host code for the partial pivoting case
12 * gfpcnode.c node code for the complete pivoting case
13 * gfppnode.c node code for the partial pivoting case
14 *

15 *

16 • --- REFERENCES

17 *

is * [1] Gragg, William B. MATLAB code and personal conversations, 1991.
19 *

20 *

21 ------------- DESCRIPTION

22 *

23 This header file is shared by several programs (listed above). Each of
24 * these codes has something to do with a parallel implementation of Gauss
25 * Factorization (GF). Several pivoting strategies are supported. Files
26 e like gfpc*.* represent a COMPLETE pivoting strategy, and the files like
27 • gfpp*.* give the corresponding code for the PARTIAL pivoting scheme.
28 *

29 * The basic algorithm is from [1]. Parallelism is sought by distributing
30 * the columns of A across the nodes of a multiprocessor system (using the
31 * hypercube interconnection topology). The program is designed for the
32 * Intel iPSC/2 or a network of Inmos transputers.
33 *

34 * The algorithm factors Q'AP = LU with P and Q permutation matrices, L
35 * unit lower trapezoidal (r columns) and U upper trapezoidal with nonzero
36 * diagonal elements (r rows). The program is designed for a general
37 • matrix, A. It does not assume A square or sparse. There is no effort
38 to optimize for this, or any other, special structure. There is one
39 * caveat: I designed the code to gather data for square matrices of full
40 * rank. Therefore, I have tested the square case of random matrices very
41 $ carefully. While the code should work for any general matrix, it has
42 $ not been carefully tested in other cases. Additionally, since I sought
43 * timing data for matrices of full rank, I have NOT addressed the problem
44 * of gathering columns (back to the host) to the right of the final pivot
45 * for rank-deficient matrices. This would not be a difficult task, but I
46 * did not make this effort since it has no bearing on my goal.
47 •

48 * In the partial pivoting code, the search for pivots is carried out only
49 * in the pivot column, so P is the identity (i.e., there are no column
so * interchanges). Many of the remaining comments pertain to the complete
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51 * pivoting case, since it is the most challenging. The changes for the
52 * partial pivoting case should be evident in most cases. At times, when
53 * the changes are not necessarily evident, clarifying remarks address the
54 * partial pivoting scheme. This header file contains the majority of the
ss * background and algorithm information, but if you're after a careful
56 * study of the differences, compare the source codes. The algorithm below
57 * gives a road map through the code.
58 *

59 -------------- ------------

60 */
61

62

63

64 /A LGORITHM: BACKGROUID -

65 *

66 * 1.) Preliminaries. Consider A (m x n), a matrix of real numbers. The
67 * permutation vectors, p and q, characterize column and row permutations
68 * (respectively). The scalar, (g/a), is the growth factor. The integer,
69 * r, is a fairly reasonable determination of the 'numerical rank' of A.
7o * The C language convention is followed, numbering rows and columns from
71 * zero; and storing dynamic, two-dimensional arrays (matrices) in row-
72 * major-order. The 'pivot' will be that element located at A(k,k). The
73 * area (in A) below and to the right of the pivot Call A(i,j) where i > k
74 * and j > k I is called the 'Gauss transform area'.
75 *

76 * 2.) Communications and Coordination. Let I be the number of processors
77 * (workers) in the hypercube. These nodes are labeled with a Gray code
76 * { 0 .. (N - 1) ). The root (host) node distributes the columns of A to
79 * the nodes. This is done cyclically, using the C modulus operator MO.

80 * That is, column j will be sent to processor (j mod N). Once the nodes
81 * have their columns, they begin work. Communication (for the complete
82 * pivoting case) involves an election process for the next pivot, where
s3 * each of the nodes finds its best candidate and then the election finds
84 * the best candidate in the global picture. This is done in lg(I) steps
85 * using the cubecast-fromo) function.

86 C

87 * The partial pivoting case does not require the election process that
8 • complete pivoting needs, but both methods look similar (in terms of
89 C communication) after the elections are complete. The node holding the
90 * pivot column must perform the pivot column arithmetic and distribute
91 t the resulting pivot column (also in lg() steps) to the other nodes.
92 C Communications functions are not explained much in this code, but
93 * details can be found in the files com.h & comm.c.
94 *

95 * 3.) Pivoting Strategy. The complete pivoting strategy's election
96 C process (at each stage), determines the element in (the entire Gauss
97 * transform area of) A that is largest in absolute value. This element
98 * wins the election and is 'moved' to A(k,k) for the upcoming stage. It
99 * isn't really moved.. .but p and q are updated so that we can keep track

100 C of permutations. During the search for the new pivot, candidates are
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EI
ioi * denoted A(s,t) = u. The largest of the candidates is installed as the
102 * next pivot. There seems to be too much overhead associated with this
103 * fancy indexing off of p[] and qD. For the partial pivoting code, I
104 * chose to ACTUALLY SWAP rows (if necessary) at each stage. This makes
os * the 'pp' code a bit easier to read.

106 *

107 * 4.) Stopping. The GF process is repeated until one of two criteria is
io0 * satisfied. First, of course, we may run out of matrix. Secondly, we
109 * may find a pivot whose absolute value is less than our tolerance (tol).
110 * In the latter case, we have a rank-deficient A. Currently, the codes
111 * recognize rank-deficiency and bail out of the iteration loop; but they

112 * do not gather (to the host) all of the remaining columns to the right
113 * of the last pivot. This is discussed above.

114 *

115 •

116 * ALGORITHM: THE GF PROCESS ---------

117 •

lis * 0.) Initialization. Let dim be the dimension of the hypercube. Let
119 * k = 0. Search A and find the largest (in absolute value) element, u.
120 * This is done at each node. Once each node has a local candidate for
121 * the next pivot, an election is held, dimension-by-dimension. This
122 * requires (dim) steps, and when it is finished, every processor knows
123 * exactly the position and value of the next pivot. Exception: In the
124 * partial pivoting code, the processor which has the pivot column simply
125 * searches the (proper part of the) pivot column for the next pivot and
126 * then informs the other processors.

127 *

126 * 1.) Status. Every node knows the position and value of the next pivot,
129 * namely u = A(s,t); and where it should be installed, A(k,k). The growth
130 * rate is adjusted: g = max[g, abs(u)]. If (u < tol), then A is rank-

131 * deficient and we exit the loop (using the C 'break' statement).

132 *

133 * 2.) Permutations. We account for the interchange of rows s and k and
134 * columns t and k by swapping the elements of p0 that are indexed by k
135 * and t and swapping the elements in q[ indexed by k and s. This
136 * (effectively) establishes the new pivot at A(k,k). The column permu-
137 * tation vector ha* no significance in the partial pivoting case since
138 * it would never be changed. The matrix, P, in this case, is simply the
139 * identity.

140 *

141 * 3.) Adjust the Gauss Transform Area.
142 *

143 ( Ca) In the (single) node that holds the new pivot's column (k),
144 * divide every element below the pivot by the pivot value. Broadcast
145 * this column to every other node. lode 0 updates the manager, who
146 * uses this information to append to his copy of the resulting
147 * (factored) A.
148 •

149 * (b) low every worker has the updated column k. At every node, do
150 * the following: For every element A(i,j) E where i > k and j > k J
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151 let A(i,j) = A(i,j) - (ACik) * Ak,j)).
152 *

153 * 4.) Pivot Search. In the Gauss transform area, G, search for the
154 * element that is largest in absolute value. Its position is A(s,t) and

155 * its value is u. The candidates are chosen at the local (processor)
156 * level, then an election is held at the global level to determine the

157 * best candidate in the same manner that was described in step 0.
158 * Increment k. Repeat the process (go back to step 1). The obvious

159 * exceptions apply to the partial pivoting case.

160 *

161 *

162 *------------- OTES FOR IMPROVEMENT

163 *

164 * Currently the code does not give full support for rank-deficiency. It

165 * DOES break out of the loop, but everything to the right of the final
166 * pivot column will be garbage. It would be relatively easy to add the

167 * necessary post-iteration rank-deficiency check and coalesce each of the
168 * remaining columns back to the manager, but this code wis created to
169 * test the full-rank cases and take performance data.

170 *

171 * Secondly, there is the issue of whether it is better for the manager to

172 * receive each pivot column as it becomes available, or if all columns
173 * should be sent in at the end. I'm not yet sure which method is better,

174 * but the current code keeps the root node up-to-date at each stage. This
175 * is probably the best solution to the problem above and would probably
176 * enhance performance during the iterations! It REALLY SHOULD BE TESTED!
177 *

178 * There are many other questions that pertain to optimization that remain
179 * unanswered (especially in the complete pivoting case).
180 *

181 *---------------------------------------------------- - -

182 *
183

184

185

186

187

i88 /* ------------- ALGORITHM: CONCLUSIO -----------
189 *

190 * 1.) Rank. Set r, the rank of A, equal to the number of iterations that

191 * were executed. This is automatic in the manager (host) code since
192 * the integer, r, is used as the loop index. The worker nodes use k for

193 * a loop index variable.

194 *

195 * 2.) Interchanges. Row and column interchanges are not actually done in
196 * the complete pivoting code. Instead, we maintain permutation vectors,

197 * p[0 and q[]. You may note that while both vectors are used heavily
198 * during the GF process q[1, in particular, comes in handy at the end to

199 * set A in order. The partial pivoting code performs the actual inter-
2o0 * changes of rows. At first, we would be inclined to believe that the
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201 * indexing by pC] and q[1 leads to better performance, but there is no
202 * clear timing evidence (at this point) that supports this idea.
203 *

204 * 3.) Factors. The upper trapezoidal matrix, U, is the upper trapezoid
205 * of (the resulting, factored) A (the diagonal of A and everything above
206 * that). The lower trapezoidal matrix, L, is formed by placing ones on
207 * the diagonal of A; zeros above; and copying the lower trapezoid of A
208 * (excluding the diagonal). To form Q'AP, we use THE ORIGINAL copy of A
209 * (not the factored, resulting A) and the matrices Q and P that are
210 * implied by q[ and p0]. That is, in the end, we set q[qi] [i) = 1.0
211 * for all i in { 0, 1, ... (, (m-) } and set P[p[j]][j] = 1.0 for all j
212 * in { 0, 1, .... (n-i) }.
213 *

214 - - - - - - - - - - - - --------------

215 •/

216

217

218

219

220

221 /* - ----------- -- MANIFEST CONSTANTS ==-------------

222 *

223 *

224 * Section 1: Communications Aids (Message Types and Type Selectors)
225 *

226 * The following manifest constants simplify the communications effort.
227 • The TRANSPUTER section is fairly general in nature. The iPSC/2 section
228 * specifies types and type selectors for csendo) and crecv(. It IS
229 * SIGNIFICANT that NODE-OFFSET is the largest of these. It must remain
230 * the largest so that (for all nodes n) the value of (n + NODE-OFFSET)
231 * cannot be equal to one of the other message types (consider n == 0).
232 *

233 *--------------------------------------------------------------------------------------------

234 */

235

236

237 #ifdef TRANSPUTER
238

239 #define CUBESIZE 8 /* change these for a cube of other dim */
240 #define DIMENSION 3
241

242 #else /* iPSC/2 •/
243

244 #define ARGTYPE I /* for passing command line argument info 5/

245 #define COLSIZETYPE 2 /* for sending n part of size(A) ==> cols */
246 #define COLTYPE 3 /* use this to send a column */
247 #define PIVOT-TYPE 4 /* candidate for next pivot */
248 #define PCOLTYPE 5 /* use this to send a pivot column */
249 #define ROWSIZETYPE 6 /* for sending m part of size(A) ==> rows •/
250 #define NODE-OFFSET 7 /* for sending messages from nodes 4/
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251

252 #endif
253

254

255 /*-------------------------------------------------------------------------

256 *

257 * Section 3: Timing
258 C

259 C The root uses a two-dimensional array where the rows are indexed by the
260 C node numbers and the columns use the following indexing. The nodes, of
261 C course, only need a one-dimensional array with indexing according to
262 • the following scheme. There a total of NAIEVENTS elements in the
263 C array, and indexing for a specific event is given by START-TIME, SETUP,
264 C and so on. The partial pivoting case does not use all of the events.
265 C

266 ------------------------------------------------------------------------

267 C/

268

269

270 #define MAX-EVENTS 18 /* number of events that we want to time */
271

272

273 #define DATA-SOURCE 0 /* node number of source of the data 5/

274 #define START-TIME 1 /* t(O) ==> starting time for the node
275 #define SETUP 2 /* from t(O) until starting to receive cols a/
276 #def ine DISTRIBCOLS 3 /* time to distribute columns */
277 #define FIRST-PIVOT 4 /* from receipt of last col to start iter C/

278

279 /* The next two only apply to nodes zero and eight ./
280 #define PCOLSTOHOST 6 /* time spent passing pivot cols to host 4/

281 #define PIVOTSTOHOST 6 /C time spent passing pivots to host

282

283 /* The next five kind of represent the big picture
284 #define PIVOT-ELECTION 7 /* time spent on pivot elections */
285 #define UPDATINGPQ 8 /* time spent updating permutations p and q C/

286 #define PCOLARITHMETIC 9 /* time spent on pivot column arithmetic */
287 #define PCOLDISTRIB 10 /* time spent distributing pivot columns C/

288 *def ine UPDATINGG 11 /* time spent updating the Gauss transform C/

289

290 /C The next four are times from within updateG() C/

291 #define PRLTIME 12 /C pivot row location time C/

292 define LCTIME 13 /* time to determine if a column is local C/

293 #define GARITHMETIC 14 /* time spent on arithmetic within G C/

294 #define LOOPTIME 15 /* time for both for() loops in update-Go) C/

295

296 /* The last two are back at the big picture level again C,

297 #define ITERATION 16 /C time checked before and after iteration C/

298 #define STOP 17 /C the last time sampled by the node
299

300
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301

302

303

304 /*
305 *

306 * Section 4: General
307

309 */
310

311 #define AFT 4 /* number of digits to print after decimal */
312 define WIDTH 6 /* number of characters (including decimal) */
313

314

315

316

317

318 /*

319 *

320 * Section 5: A special flag used for the id field of a pivot. When it

321 * appears, it indicates that the sending node's part of A has

322 * no elements as big as the tolerance, tol; and therefore this node's

323 * candidate for pivot should not be considered.

324 *

325 --

326 */
327

328

329 #define RANK-DEFICIENT -1
330

331

332

333

334

335 /* ------------ TYPE DEFINITIONS -------- */

336

337

s3 typedef struct {
339

340 int id;

341 double u;

342 int 8,

343 t;

344

345 ) Pivot-Type;

346

347

348 /* EOF gf.h -- ------------- */
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gfpphost.c

1 /* ------------- PROGRAM INFORMATION i

2 *
3 * SOURCE gipphost.c

4 * VERSION 2.0

s * DATE 21 September 1991
6 * AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School
7 *

s ------------- DESCRIPTION

9 *

io * Gauss Factorization (GF) with Partial Pivoting: Parallel Version.
ii * This is the manager portion of the code. See gf.h] for details.
12 *

13 *------------- ------------------------------------------------

14 */
15

16 #include <stdio.h>
17 #include <string.h>
18

19 #ifdef TRANSPUTER

20

21 #include <conc.h>
22 #include <stdlib.h> /* addfreeC), _heapend */
23

24 #include <matrix.h>
25 #include <macros.h>
26 #include <allocate.h>
27 #include <clargs.h>

26 #include <comm.h>
29 #include <epsilon.b>
30 #include <generate.h>
31 #include <io.h>

32 #include <ops.h>
33 #include <timing.h>
34

35 #else /* iPSC/2 */
36

37 #include "/usr/hartman/matlib/matrix.h"

s #include "/usr/hartman/matlib/acros.h"
39 #include "/usr/hartman/matlib/allocate.h"
40 #include "/usr/hartman/matlib/clargs.h"
41 #include "/usr/hartman/matlib/com.h"
42 #include "/usr/hartman/matlib/epsilon.h"
43 #include "/usr/hartman/matlib/generate.h"
44 #include "/usr/hartman/matlib/io.h"
45 *include "/usr/hartman/matlib/ops.h"
46 #include "/usr/hartman/matlib/timing.h"
47 Sondif

48

49 #include "gf.h"
50
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51

52

53 /* MANIFEST CONSTANTS -

54 *

55 * The following manifest constants are used to determine the size of the
56 * option list, optv[]; indexing associated with valid command line
57 * arguments; and selection constants for the user's choice of matrix type
58 * [used in generate()].
59 *

60 */
61

62 #define IUMBEROFARGS 3 /* -d -t -v */
63

64 #define DIM 0 /* index into optv[/
6s #define TIMING 1 / i .. .. .. of

66 #define VERBOSE 2 /* . */
67

68 #define SELECT-QUIT 0 /e menu / matrix selection */
69 #define SELECT_IDENTITY 1
70 #define SELECTHILBERT 2
7I #define SELECT-RANDOM 3
72 #define SELECTILKINSON 4
73

74

75

76

77

78 /* ------------ GLOBALS ---------- /
79

80

81 static char version[ = "Parallel GF with Partial Pivoting, Version 2.0";
82

83

84 #ifdef TRANSPUTER
85

86 Channel *ic[(CUBESIZE + 1)],
87 *oc[(CUBESIZE + 1));
88

89 #else /* iPSC/2 */
90

91 static char *cubename;
92

93 static char enodecode = "gfppnode";
94

95 #endif / TRANSPUTER e/
96

97

98 static ArgStruct Coptv[NUMBEROFARGS];
99

100
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101
102

103

104 /* ---- -=-f-f--f--- FUNCTION DEFINITION -------
105 *

106 * The structure is defined more carefully in clargs.h, but the basic idea
107 * is that we have an array of pointers to type ArgStruct...in this case,
1os * there are NUMBEROFARGS valid arguments and the next few steps take
109 * care of allocation and definition of then. The -d argument allows the
11o * user to enter the desired dimension of the hypercube, -t sets timing on
111 * and -v is used to set verbose on.

112 */
113

114 void definevalid.args() {
115

116 static int interpretO) = { LONG };
117

118

119 installcomplex.arg(DIM, optv, "-d", interpret, 1);
120

121 install-simple-arg(TIMING, optv, "-t");
122 install-simple-arg(VERBOSE, optv, "-v");
123

124

125 /* End define.valid.args) ------------------------------------------- */
126

127

128

129

130

131 /* ------------ FUNCTION DEFINITION -

132 *

133 * A simple function to display the results ....
134 */

135

136 #ifdef PROTOTYPE
137

138 void display-timing.data(DoubleMatrixType *A,
139 int dim,

140 double a,
141 double eps,
142 double g,
143 double tol,
144 int r,

145 double **t)
146

147 #else
148

149 void display-timing.data(A, dim, a, eps, g, tol, r, t)
150
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151 Double-atrix-.Type *A;
mo)it dim;

153 double a,
154 spat
155 g
156 tol;
157 int r

158 double *t
159

160 #audit

161{
162 int aft,
163 cubesize =pow2Cdim),
164 i

165 a = A->rows,
166 u= A->cols,
167 width;
168

169

170 #ifdef TRANSPUTER /* is measured in 64 microsecond ticks => 4-5 places *
171

172 aft = 6;

173 width = 15;
174

175 *else /* iPSC/2 is measured in milliseconds ==> three places*/
176

177 aft =3;
178 width = 13;
179

180 #endif
181

182 printfI C"---------------- TIMING DATA ==== ------
193 printf(IC"-------- nno
184

185 printf(C" Hypercube of order VAd" dim);
186 (dim == 0) ? (printfC"C1 processor)\n\n"))
187 (printfC"C%d processors)\n\n", cubesize));
1I8

189 printf("Problem size ==> sizeCA) = (Yd x Yd).\n". m, n);
190 printf("Machine precision: eps = %ea", eps);
191 printf ("Tolerance: tol = %e\n", tol);
192 printf("Growth factor: g/a. = Xe\n", (g/a));
193 printf ("Rank: rankCA) =%3d\n", r )
194 printf ("Units for timing data: =seconds\n");

195

196 for Ui = 0; i < cubesize; i++){
197

198 printfC"\nlode %2d Dat----------------------------------"i)

199 printfI --"---------------------------- n")
200
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201 printf("Setup and initialization: '9;
202 printf("%*.*lf", width, aft, t [iJ SETUP));
203 printf("\nlnitial column distribution:
204 printf("%*.*lf", width, aft, t[i] [DISTRIBCOLS]);
205

206 if (i =o) {
207

208 printf("\nTransmission of pivot columns to the host: ");
209 printf("%*.*lf", width, aft, t [i] [PCOLSTOSOST);
210 printf("\nTranmission of pivots to the host: ");
211 printf("%*.*lf", width, aft. t[i] [PIVOTSTO_.HOST);
212 }
213

214 printf("\nPerforance of pivot column arithmetic: ");
215 printf("%*.*lf", width, aft, t [i] [PCOLARITHNETIC));
216 printf('\nDistribution of pivot columns: ');
217 printf(",*.*lf", width, aft, t[i][PCOLDISTRIB));
218 printf("\nPerforance of updates and arithmetic in G: ");
219 printf("%*.*lf", width, aft, t [i] [UPDATINGG));
220 printf(\nUpdateGo: loop time including arithmetic: ");
221 printf(",*.*lf", width, aft, t[iJ [LOOPTINE);
222

223 printf("\n\nTime for all work inside main iteration loop: ');
224 printf("%*.*lf", width, aft, t [i] [ITERATION]);
225 printf("\nTotal time from start to stop: '9;
226 printf ("%e*. *lf\n\n", width, aft, (t Ci] [STOP]-t [i][ STARTTINEJ));
227 "

226

229 }
230 /* End display-timing-data) ----------------------------------------
231

232

233

234

235

236 /* ---- ===---- FUNCTION DEFIIITION ---------

237 *

238 * This function distributes the columns of A to the nodes of the hyper-
239 * cube. The loop variable, j, designates each column of A in turn. The
240 * column buffer, cbuf[, copies from A the coluln to be transmitted.
241 * After cbuf 0 is filled, Ci = (j mod cubesize)] means that node i will
242 * get column j and the modulus operation seems to be a reasonable and
243 * efficient scheme of distribution. Finally, the call to sendo) ships
244 * the column out to the appropriate node.
245 *

246 ------------------------------------------------------------------------

247 e/

248

249 #ifdef PROTOTYPE

250
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251 void distribute-colmns(DoubleMatrixType *A, int dim, double *cbuf)

252

253 #else
254

255 void distributecoluans(A, dim, cbut)

256

257 DoubleMatrixType *A;
258 int dim;

259 double *cbuf;
260
261 #endif
262 {
263

264 int i,

265 j.

266 po5 = 42, /* position of print head '/
267 rm = LINE-LENGTH - 10; /* right margin (see matrix.h) 'I
268

269 long cubesize = pov2(dim),
270 sizeof-col = (long) (A->rows e sizeof(double));

271

272

273 printf("Distributing the columns of A to the nodes");
274

275 for j = 0; j < A->cols; j++) {
276

277 for (i = 0; i < A->rows; i++) { cbuf[i] = A->matrix[i3[j); }
278

279

280 i = j % cubesize; /* column --> node i */

281

282 #ifdef TRANSPUTER /* node 0 has to sort 'em out '/
283

284 if (i < 8) {
285

286 send(O, (char s) cbuf, sizeof-col, cubesize);

287 }
28 else {
289

290 send(B, (char *) cbuf, sizeofcol, cubesize);

291 "

292

293 *0180 /* iPSC/2 */
294

295 send(i, (char*) cbuf, sizeof-col, COLTYPE);

296

297 #endif /* TRANSPUTER 5/

298

299 printf(.)
300
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301 if (pos++ > rm) {
302

303 pos = 0;
304 printf("\n");
305 }
306

307

308

309 printf("\nColuun distribution complete.\n\"n);
310

311 }
312 /* End distributecolumns() ------------------------------------------

313

314

315

316

317

318 /* ------------- FUNCTION DEFINITION ------------
319 *

320 * This function prompts the user for matrix size and type, then generates
321 * the matrix with a call to a function from generate.c.
322 */

323

324

325 #ifdef PROTOTYPE
326

327 Double.Matrix-Type *generate(int *m, int *n)
328

329 #else

330

331 Double-KatrixType *generate(m, n)
332

333 int *m,
334 *n;

335 #endif
336{

337 Double-MatrixType *A;
338

339 int matrix-type,
340 valid = FALSE;
341

342

343 printf("Please enter the number of rows in A: -);
344 scanf ("d", an);
345 fflush(stdin);
346

347 printf("\n ...... and the number of columns in A: ");
348 scanf "d", n);
349 fflush(stdin);
350
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351 printf("\n\nSelect from the following list of matrices:");
352

353 while (!valid) {
354

355 printf("\n\n");
356 printf (" Vd.) QUIT \n", SELECT-QUIT );
357 printf (" VA.) Identity \n", SELECTIDENTITY );
358 printf(" Ud.) Hilbert \n", SELECT-HILBERT );
359 printf (" 7A.) Random \n", SELECT_.ANDOM );
360 printf (" Ud.) Wilkinson \n", SELECTWILKINSON);
361 printf("\n>");
362 scanf("%d", &atrix.type);
363 fflush(stdin);
364

365 svitch(matrixtype) {
366

367 case SELECTIDENTITY
368 case SELECT-HILBERT
369 case SELECT-RANDOM
370 case SELECT-WILKINSON : valid = TRUE; break;
371

372 case SELECT-QUIT exit(EXITSUCCESS);
373 }
374

375 } /* end while() */
376

377

378 switch(matrix.type)
379

380 case SELECT-IDENTITY:
381

382 printf("\n\nGenerating A = identity(d, %d).\n\n", *m, *n);
383

384 A = identity(*m, *n);
385 break;
386

387 case SELECT-HILBERT:
388

389 printf("\n\nGenerating A = hilbert(%d, %d).\n\n", *m, *n);
390

391 A = hilbert(*m, *n);
392 break;
393

394 case SELECT-RANDOM:
395

396 printf("\n\nGenerating A = mxrand( , %d).\n\n". *m, *n);
397

398 A = mxrand(*m, *n);
399 break;
400

325.



I gfpphost .c

401 case SELECT-WILKINSON:
402

403 printf("\n\nGenerating A = wilkinson(YAd, %d).\n\n", *m, *n);

404

405 1 = wilkinson(*m, *n);

406 break;

407 }
408

409

410 if (A) {
411

412 printf("generate(: allocation failure for the matrix A.\n");

413 exit(EXITFAILURE):
414 }
415

416 returnCA);

417

418

419 /* End generateo) ---------------------------------------------------- *
420

421

422

423

424

425 /* ------------ FUNCTION DEFINITION -----------
426 *

427 * Collect timing data from the nodes. The Intel side of this function
428 * takes advantage of the host's ability to receive from any node. The

429 * transputer side must receive every node's information from nodes zero &
430 * eight (eight only becomes involved in the case of the hybrid 4-cube).

431 */
432

433 #ifdef PROTOTYPE

434

435 double **receive-timing-data(int cubesize)

436

437 #else

438

439 double **receivetiming.data(cubesize)

440

441 int cubesize;

442

443 #endif

444
445 double **dt; /e (double) version of t[[ */
446

447 int i,

448

449

450 long tlen; /* length of one node's data */
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451

452 ticks **t; /* raw timing data from nodes */
453

454

455

456 * Perform allocation for the timing dt t 0]. The two-dimensional
457 * array is indexed by node number for the rows and by event for the
458 * columns. For instance, t[i] [j] means the time required for event
459 * j at node i. Actually, there is an extra row reserved at the end
460 * of tDO for totals: t[cubesize][j] gives the total time for event
461 * j across all nodes.
462 */
463

464 if (!(dt = (double .*) malloc((cubesize+l) * sizeof(double*)))){
465

466 printf("receivetimingdatao): Allocation failure for dt[3.\n");
467 exit (EXITFAILURE);
468 }
469

470 for (i = 0; i < (cubesize + 1); i++) {
471

472 if (!(dt[i) = (double *)calloc(MAXEVENTSsizeof(double)))){
473

474 printf("Host: Allocation failure for dt[%d.\n". i);
475 exit (EXITFAILURE);
476

477

478

479 if (!(t = (ticks **) malloc((cubesize+1) * sizeof(ticks*)))) {
480

481 printf("receive-timing-datao: Allocation failure for tO].\n");
482 exit (EXITFAILURE);
483 }
484

485 for (i = 0; i < (cubesize + 1); i++) {
486

487 if (!(t[i) = (ticks *) callocCMAXEVENTS, sizeof(ticks)))) {
488

489 printf("Host: Allocation failure for t[%d.\n". i);
490 exit (EXITFAILURE);
491

492

493

494 printf("Receiving timing data from the nodes");
495

496 tlen = (long) (KAXEVENTS * sizeof(ticks));
497

498 for (i = 0; i < cubesize; i++) {
499

500 printf ('. ");
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501
502 #ifdef TRANSPUTER
503

504 if (i < 8) receive(O, (char *) t[i], tlen, cubesize);
505 else receive(8, (char ) t[i], tlen, cubesize);
506

507 #else /e iPSC/2 */
508

509 receive(i, (char ) t[i], tlen, (i + IODEOFFSET));
510

511 #endif /* TRANSPUTER */
512 }
513

514 printf("\n\n");

515

516

517 /* Calculate totals, averages; place totals in t[cubesize] first....
518 * then copy to dt[ [ and record averages in dt[cubesize].
519 */
520

521 for (i = 0; i < cubesize; i++) {
522

523 for (j = 0; j < MAXEVENTS; j++) t[cubesize][j] += t[i][j];
524 }
525

526 /* Fill dt[][] with double values (in seconds). The convers: n
527 * factors are borrowed from timing.h.
528 */
529

530 for (i = 0; i <= cubesize; i++) {
531

532 dt[i] [DATASOURCE] = (double) t[i] [DATASOURCE];
533

534 for (j = STARTTIME; j < XAXEVEITS; j++) {
535

536 #ifdef TRANSPUTER
537

538 dt[i][j] = ((double) t[i][j]) * LOPERIOD;
539

540 #else
541

542 dt[i][j] = ((double) t[i][j]) * MPERIOD;
543

544 #endif
545 }
546 }
547

548 /* Convert totals to averages in dt[cubesize)
549

550 for Ci = STARTTIME; j < NAXEVENTS; j++) {
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551

552 dt~cubesize)(j) /= ((double) cubesize);
553 }
554

* 555

556 for (i = 0; i < (cubesize + 1); i++) free(tti));
557 free~t);
558

559 raturn~dt);
560 }
561 /* End recaive.timing-.datao)------------------------------------------,
562

563

564

5635

566

567 /* ----------- =---------FUNCTION DEFINITION == -------------------

568 *

569 * This function analyzes the command line that the user supplied and sets
570 * variables accordingly. The valid arguments are given by def ine-.valid-.
571 * argsO., and the real work is passed off to interpret-.argso, from the
572 * clargs library.
573 *
574

575 #ifdef PROTOTYPE
576

577 void resolve.args~int argc, char *argv[J,
578 int *dim, mnt *timning, int *verbose)
579

580 #else
581

582 void resolve-.args~argc, argv, dim, timing, verbose)
583

584 mnt argc;
585 char *argv 0;
586 int *dim,
587 *timing,
588 *verbose;
589

590 Sendif
591{

592 mnt maxdim = 3,
593 valid = FALSE;
594

595

596 interpret-.args(argc, argv, NUMBER-.OFARGS, optv); /* see clargs.h e
597

598 Sifdef TRANSPUTER
599

600 *dim = DIMENSION;
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601
602 #else /* iPSC/2 */
603

604 if (optv[DIN]->found) *dim = (nt) optv[DIKI->lsa[O];
605

606 switch (*din) {
607

608 case 0: case 1: case 2: case 3: break;
609

610 default: while (!valid) {
611

612 printf("Enter desired cube dimension (0.. .Yd): ", madim);
613 scanf("Yd". dim) ;

614 fflush(stdin);
615
616 switch(*dim) {
617 case 0: case 1: case 2: case 3:
618 valid = TRUE;
619 break;
620 }
621 }
622 } /* end switcho) */
623

624 #endif /* TRANSPUTER */
625
626 (optv[TIMNIG]->found) ? (*timing = TRUE) : (*timing = FALSE);
627

628 (optv[VERBOSE]->found) ? (*verbose = TRUE) : (*verbose = FALSE);
629
630 printf("Argument resolution complete...nn);
631 printf(" Cube Dimension: %d\n", *dim);
632

633 if (*timing) printf(" Timing: ON\n");
634

635 (*verbose) ? (printf(" Verbose Mode: OI\n\n"))
636 (printf("\n"));

637

631}

639 /* End resolve_args() ------------------------------------------------
640

641

642

643

644

645 /* ----------- FUNCTION DEFINITION -----------
646 *

647 c

648

649 #ifdef PROTOTYPE
650
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651 void showresulting.matrices(DoubleMatrixType *A,
652 DoubleMNatrixType *AO, int *q)
653

654 *else

655

656 void show-resultingsatrices(A. AO, q)
657

658 DoubleMatrixType *A,
659 *AO;
660 int *q;
661

662 #endif
663 {
664 DoubleMatrixType *D.
665 *L.

666 *LU,
667 Of

668 *QT,
669 *QTA,
670 *QTAP,
671 *U;

672

673 ijt i,

674 i -

675 m = A->rows,
676 n = A->cols;
677

678

679 printf("Gauss Factorization Complete... \n\n");
680

681 strcpy(A->name, "A (after GF operations)");
682

683

684 /* Allocate and form Q' and P ------------------------------------
685

686 if (!(QT = matalloc(m,m))) {
687

6printf("Allocation failure for QT.\n");
689 exit (EXITFAILURE);
690 }
691

692 strcpy(QT->name, "'Q Transpose");
693

694 for (i = 0; i < m; i++) { QT->matrix[i)[q[i) : 1.0;
695

696

697 if (!(P = identity(n,n))) {
698

699 printf("Allocation failure for P.\n");
700 exit(EXITFAILURE);
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701 }
702

703 strcpy(P->name, "P C Partial (column) Pivoting ==> P == Identity 3");
704

705

706 /e Here, we slowly form Q'AP, keeping in mind that the A we are

707 * talking about is the original A .... and we have labeled that one
708 * AO. Therefore, we first form QTA (Q'A) as Q' A AO. After we
709 * have QTA, we can multiply it (on the right) by P to get Q'AP,

710 * or QTAP as it is called here.

711 */
712

713 if (!(QTA = matalloc(m,n))) {
714

715 printf ("Allocation failure for QTA.\n");
716 exit (EXITFAILURE);
717 }
718

719 strcpy(QTA->name, "Q' * (original) A");
720

721 if (matrix.product(QT. AO, QTA) == FAILURE) {
722

723 printf("matrix.product(QTA) Failure. \n");
724 exit (EXITFAILURE);
725 "

726

727

728 if (!(QTAP = matalloc(m,n))) {
729

730 printf("Allocation failure for QTAP.\n");
731 exit(EXITFAILURE);
732 }
733

734 strcpy(OTAP->name, "Q) * A * P");
735

736 if (matrix.product(QTA, P, QTAP) == FAILURE) {
737

738 printf ("matrix-product(QTAP) Failure .\n");

739 exit (EXITFAILURE);
740 }
741

742

743 /* Next, we form L and U so that we can compare Q'AP ?? LU. */

744

745 L = zeros(m, n); L->name = "L ";

746 U = zeros(m, n); U->name = "U ";

747

748 for (i = 0; i < A->rowu; i++) {
749

750 for j = 0; j < A->cols; j++) {
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751

752 if (i < j) { U->atrix[i] [j] = A->aatrix[i][]; }
753

754 it (i P

755

756 L->matrix[i][j] = 1.0;
757 U->atrix[i][j] f= A->matrix [i] [j];
758

759

760 if (i > j) { L->matrix[i] [j] = A->aatrix[i][j]; }
761 1
762

763

764 if (:(LU = matalloc(m,n))) {
765

766 printf ("Allocation failure for LU.\n");
767 exit (EXITFAILURE);
768 "

769

770 strcpy(LU->name, "L * U.9;
771

772 if (matrix-product(L, U, LU) == FAILURE) {
773

774 printf ("matrix-product LU) Failure. \n");

775 exit (EXIT-FAILURE);
776 "

777

778

779 /* Finally, we create a matrix of differences between the elements

780 * found in QTAP (Q'AP) and LU. If everything proceeded according

781 * to the plan, this will be a matrix of zeros.
782

783

784 if (!(D = matalloc(m,n))) {
785

786 printf ("Allocation failure for D.\n");
787 exit(EXITFAILURE);
788 

789

790 strcpy(D->name, "Q'AP - LU");
791

792 for (i = 0; i < m; i++) {
793

794 for (j = 0; j < n; j++) {
795

796 D->matrix [i] [j] = (QTAP->atrix [i] [j] - LU->matrix [i) [j]);

797

798

799

800 printmd(*A, WIDTH, AFT);

333



I gfpphost.c

801 printf("\n\n");
802 printnd(*L, WIDTH, AFT);
8o3 printf("\n\n");
804 printud(*U. WIDTH, AFT);
805 printf("\n\n");
806

807 printud(*QT, WIDTH. AFT);
sos printf("\n\n");

809 printmd(*P, WIDTH, AFT);
810 printf("\n\n");

ll printmd(*QTA, WIDTH, AFT);
812 printf('\n\n");
813 printmd(*QTAP, WIDTH, AFT);
814 printf("\n\n");
815 printmd(*LU, WIDTH, AFT);
816 printf("\n\n");
817 printmd(*D, WIDTH, AFT);
818 printf("\n\n");
819

820 }
821 /* End show.resulting.matrices() -------------------------------------- *
822

823

824

825

826

827 /* ----------- FUNCTION DEFINITION -----------

828 *

829 * This is a simple function to physically swap the elements from row a to
830 * the current pivot row, r. It does not concern itself with column r or
831 * any column j > r.
832

833

834 #ifdef PROTOTYPE
835

836 void swap.rows.leftofpivot(DoubleatrixType *A, int r, int s)
837

8 #else
839

64o void suwaprowsleft-of-pivot(A, r, s)
841

842 DoubleMatrixType *A;
843 int r,
844 a;
845

s46 #endif
s47 {

848 double tmp;
849

850 int j;
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851

852

853 for (j = 0; j < r; j++) {
85455 tap = A->matrix[r) [j];

856 ->matrix[r] [j] = A->atrix[s] [j];
857 A->aatrix[s] [j] = tap;
858

859

860 }
861 /* End swap-rows-left-of-pivot() --------------------------------------
862

863

864

865

866

867 /* ------------ FUNCTION DEFINITION =====--=-=-

868 *

869 * This function performs updates to a permutation vector, v], of length
870 * 'size'. The pivot-index indicates the row or column where the next
871 * pivot has been located; and k indicates the stage, or the row and
872 * column where the pivot is to be installed.
873 */
874

875 #ifdef PROTOTYPE
876

877 void update.permutation(int v[1, int size, int k, int pivotindex)
878

879 #else
880

881 void update-peruutation(v, size, k, pivotindex)

882

883 int v[],

884 size,
885 k,
886 pivot-index;

887

888 #endif

889 (

890 int i;

891

892

893 i = v[k]; v[k) = v[pivot-index]; v[pivot-index] =i;

894 }
s95 /* End updatepermutation() ------------------------------------------

896

897

898

899

900
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901 #ifdef PROTOTYPE /* === = */
902

903 main(int argc, char *argv[')
904

905 #e8s
906

907 nain(argc, argv)
908

909 int argc;
910 char *argv [];
911

912 #endif
913

914

915 /* -- - VARIABLE DEFINITIONS -/

916

917 double a, /* denominator of growth factor (g/a) */
918 *cbuf, /* col buffer holds one col at a time */
919 **dtime, /* doubles corresponding to ticks **t */
920 eps = epsd(). /* machine precision (see machine.h) */
921 g = 0.0, /* the growth factor */
922 root-time, /* time measured at root for iterations */
923 tol; /* tolerance */
924

925 DoubleMatrixType *A, /* This A gets operated upon/changed */
926 *AO; /* The original copy of A */
927

925 int cubesize, /* number of processors in the cube */
929 dim, /* dimension of the hypercube */
930 i,

931 i

932 M, /* number of rows in A ./
933 me, /* root processor's id
934 n, /* number of :ols in A
935 *q, /* row permutation vector */
936 r, /* numerical rank estimate
937 timing, /* Boolean C/

938 verbose; /* Boolean */
939

940 long sizeofcol, /* sizes, in bytes
941 sizeofint,
942 sizeof_pivot;
943

944 ticks root-start,
945 troot, /* time measured at root transputer 4/

946 **t; /* time data: row => node, col => event */
947

948 Pivot-Type pivot; /* pivot 4/
949

950
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951 /*------------ INITIALIZATIONS - --== --- ---

952

953 #ifdef TRISPUTER
954

955 /* Add IM to the heap to allow for generation of large matrices *
956 addfree((void *) .heapend, Ox1OOOOO);
957

95s Sendif
959

960 printfCQ\n%s\n\n", version);
961

962 define-.valid-.argsO);
963

964 rosolve..args(argc, argv. Mdin, ftiming, &verbose);
965

966 A = generate~ft, ft);
967

968 sizeof-col = (long) (A->rows * sizeof(double));
969 sizeof-int = (long) sizoofint);
970 sizeof-.pivot = (long) sizeof(Pivot..Type);
971

972 if ('cbuf = (double *) malloc~aizeof..col))){
973

974 printf("'maino): Allocation failure for cbuf[J.\n");
4975 exit(EXIT-FAILURE);

976 }
977

978 cubesize = POW2Cdim);
979

980 #ifdef TRANSPUTER
981

982 initialize..hypercube(dim);
983

984 #elBs
985

986 cubename = initialize.-hypercube(dim, nodecode);
987

988 #endif
989

990

991 ae = byhosto;
992

993 if (verbose){
994

995 if M'AO =matalloc(m,n))){
996

997 printf('Allocation failure for AO.\n");
998 exit CEXIT..FAILURE);
999}

1000
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1001 strcpy(AO->name, "Original A");
1002

1003 for (i = 0; i < A->rows; i++) {
1004 for (j = 0; j < A->cols; j++) {
1005

1006 AO->matrix[i] (jJ = A->matrix i) [j] ;
1007 }
1008

1009 printf("\n\nA has been allocated and generated. \n\n");
1010 printmd(*A, WIDTH, AFT);
1011 printf("\n\nSending size(A) to the node.s\n\n");
1012

1013

1014

1015 #ifdef TRANSPUTER
1016

1017 cubecast(me, dim, (char *) km, sizeofint, cubesize);
1018 cubecast(me, dim, (char *) kn, sizeof-int, cubesize);
1019 cubecast(me, dim, (char *) &timing, sizeofint, cubesize);
1020

1021 #else /* iPSC/2 */
1022

1023 cubecast(me, dim, (char *) &m, sizeof-int, ROWSIZETYPE);
1024 cubecast(me, dim, (char *) kn, sizeof-int, COLSIZETYPE);
1025 cubecast(me, dim, (char *) &timing, sizeofint, ARGTYPE);
1026

1027 #endif
1028

1029 if (verbose) printf("\nSent size(A) to nodes.\n");
1030

1031 distributecolumns(l, dim, cbuf);
1032

1033 q = initial-permutationvector(m);
1034

1035

1036 /* FINAL PREPARATIONS BEFORE STARTING THE ITERATION------------------
1037

103 $ Get the first pivot from node 0. Initialize the growth factor
1039 * variables, g and a, so that we can compute growth factor (g/a) as
1040 * ue go. Set a reasonable tolerance.
1041 •

1042

1043

1044

1045 #ifdef TRAISPUTER
1046

1047 receive(O, (char *) &pivot, sizeof.pivot, cubesize);
1048

1049 #else /* iPSC/2 */
1050
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1051 receive(O, (char e) &pivot, sizeof.pivot, PIVOTTYPE);

1052

1053 #endif /* TRLNSPUTER */
1054

1055

1056 a = g = MAX(g, fabs(pivot.u));
1057

1o58 tol = (MIN(un)) * g * eps;

1059

1060

1061 /$ BEGINNING OF ITERATION----------------------- --------

1062 •

1063 W We enter with A established and knowledge of the first pivot.
1064 •

1065 --------------------------------------------------------------------

1066 */
1067

1068 #ifdef TRANSPUTER
1069

1070 root-start = clock();
1071

1072 #endif
1073

1074 printf ("Beginning iterations.\n\n");
1075

1076 for (r 0 0; r < (MIN(m,n)); r++) {
1077

1078 if (pivot.id == RANK-DEFICIENT) break;
1079

1080 /* We expect to receive cbuf[] in the correct (i.e., already

1081 * swapped) order. Before we stuff cbuf[0 into A00, we'll swap

1082 * rows left of the pivot column, and then insert the new pivot

1083 C column.
1084 */
1085

1086 #ifdef TRANSPUTER
1087

108 receive(O. (char *) cbuf, sizeof-col, cubesize);
1089

1O9O #else /* iPSC/2 */
1091

1092 receive(O. (char ) cbuf, sizeof-col, PCOLTYPE);
1093

1094 #endif /* TRANSPUTER e/
1095

1096 g = MAX(g, fabs(pivot.u));
1097

1098 updatepermutation(q, a, r, pivot.s);

1099

1100 if (pivot.s != r) swap-rows-left-of-pivot(A, r, pivot.s);
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1101
1102 for (i 0 ; i < A->rovs; i++) { A->matrix[i][r] = cbuf[i]; }
1103

1104 it (verbose) {
1105

1106 printf("Host: Stage %d, Pivot value = %e. ", r, pivot.u);
1107 printf("Growth factor = %e.\n", (g/a));
1108 printf("q = "); printvi(q, A->rows, WIDTH);
1109 printf(\n');
1110

1111 }
1112
1113 it (r < ((MIN(m,n)) M f)

1114

1115 #ifdef TRAISPUTER
1116

1117 receive(O, (char *) &pivot, sizeoftpivot, cubesize);
1118

1119 #else /* iPSC/2 */
1120

1121 receive(O, (char *) &pivot, sizeofpivot, PIVOTTYPE);
1122

1123 #endif /* TRANSPUTER */
1124

1125

1126

1127 } /* end for(r) -------------------------------------------------
1128

1129 #ifdef TRANSPUTER
1130

1131 t-root = (.lock() - rootstart);
1132

1133 if (timing) {
1134

1135 root-time = ((double) t-root) * LOPERIOD;
1136

1137 printf("\n\nRoot transputer: ");
1138 printf("Time for iterations: %8.41f seconds\n\n", root-time);
1139

1140

1141 Sendif
1142

1143

1144 free(cbut);
1145

1146

1147 /. I have selected the easy way out and assumed A has full rank. If
1148 * you did not make this assumption, you would need to collect the
1149 * remaining columns at this point.
1150
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1151

1152 if (timing) dtime = receive-timing-data(cubesize);
1153

1154

1155 /* There is no more use for the nodes, so they can be released. */
1156

1157 Sifndef TRINSPUTER
1158 printf("\n\nmain(): Killing and releasing cube.\nn");
1159 killcube(ALLIODES, ALLPIDS);
1160 relcube(cubename);
1161 #endif
1162

1163 if (verbose) { /* Create and show Q', AO, P, L, U .... -----

1164

1165 show-resulting-matrices(A, AO, q);
1166

1167

1168

1169

1170 if (timing) display-timing-data(A, dim, a, eps, g, tol, r, dtime);
1171

1172

1173 /* ------------ -EOF gfpphost.c -------------
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1 /* PROGRAM IIFORMATIOI -====-

2 *

3 * SOURCE gfppnode.c
4 * VERSION 2.0
5 * DATE 21 September 1991
6 * AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School
7 * REMARKS See gf.h.
8 *
9 * ------------------------------ - - - - -

10 *
11

12 *include <ath.h>
13

14 #ifdef TRANSPUTER
15

16 #include <conc.h>
17

is #include <matrix.h>
19 #include <macros.h>
20 #include <allocate.h>
21 #include <comm.h>
22 #include <generate.h>
23 #include <mwthx.h>
24 #include <ops.h>
25 #include <timing.h>
26

27 #else

28

29 #include "/usr/hartman/natlib/matrix.h"
30 #include "/usr/hartman/matlib/aacros.h"
31 #include "/usr/hartman/matlib/allocate.h"
32 #include "/usr/hartman/matlib/comm.h"
33 #include "/usr/hartman/matlib/generate.h"
34 #include "/usr/hartman/matlib/mathx.h"
35 #include "/usr/hartman/matlib/ops.h"
36 #include "/usr/hartman/matlib/timing.h"
37 #endif

38

39 #include "gf.h"
40

41 #ifdef TRAISPUTER
42

43 Channel *ic[(CUBESIZE + 1)],
44 *oc[(CUBESIZE + 1));
45

46 #endif
47

48

49 ticks t[MAXEVENTS];
50
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51
52
53

54
s5 /* ------------- FUNCTION DEFINITION----------
56 *

57 * This function is kind of an inverse for local-column(). Given some

58 * column number (localcolumn) held at this node, the function returns

59 * the corresponding column number in the global/host copy of the full-

60 * sized A. This could be implemented more efficiently as a macro.

61 */
62

63 #ifdef PROTOTYPE

64

65 int global.column(int local-column, int me, int cubesize)

66

67 #else
68

69 int global.column(local.columln, me, cubesize)

70

71 int local-column,
72 me,

73 cubesize;
74

75 #endif
76 {
77 return(local.column * cubesize + me);
78 }
79 /* End globalcolumno) ----------------------------------------------- *
s0

81

82

83

84

85 /* ------------ FUNCTION DEFINITION

86 *

87 * This function maps a column number in the global A (the full-sized A
s * held at the root processor/host) to the corresponding local column num-
89 * ber. If the global.column is not one that is held at this node, a
90 * negative value (-1) is returned.

91 */
92

93 *ifdef PROTOTYPE

94

95 int local.column(int global-column, int me, int cubesize)

96

97 Selse

98

99 int local-column(global-column, me, cubesize)

100
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101 int global_column,
102 me,

103 cubesize;
104 #*endif
105 {
106 if ((globalcolumn .cubesize) != me) return(-1);
107

108 return((int) global-column / cubesize);
109 )
lio /* End locacolumn() ---------------------------------------------- *
111

112

113

114

115

116 /* ------------ FUNCTION DEFINITION ----------

117 *

118 */
119

120 #ifdef PROTOTYPE
121

122 void do-pivot-column-arithmetic(DoubleMatrixType *A, double *cbuf,
123 int k, int me, int cubesize)
124

125 #else
126

127 void do-pivot-column_arithmetic(A, cbuf, k, me, cubesize)
128

129 DoubleMatrixType *A;
130 double *cbuf;
131 int k,
132 me,
133 cubesize;
134

135 fendif
136 {
137 double pivot-value;
138

139 int i.

140 pivot-column;
141

142

143 pivot-column = localcolumn(k, me, cubesize);
144

145 pivot-value = A->matrix[kJ [pivotcolumn];
146

147

148 /* Divide everything under the pivot by the pivot value */
149 for (i = (k+l); i < A->rows; i++) {
150
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151 A->atrix[iJ [pivotcolumn) = pivot-value;
152

153

154

155 /* This is somewhat redundant, and not optimal with respect to
156 • efficiency, but it works and reads clearly, right?
157

158

159 for (i = 0; i < A->rows; i++) cbuf[i] = A->atrix[i][pivotcolumn];
160

161

162 /A End do.pivot.columnarithmetic() -----------------------------------
163

164

165

166

167

168 /* ------------- FUNCTION DEFINITION ===

169 *

170 * This function accepts the matrix, the global column number for this
171 * stage (where the pivot will be taken from), and a pivot structure to be
172 * filled .... among other things .... and 'returns' the row, s, and value, u,
173 * of the ne pivot in global column r (local column 1c).
174 */

175

176 #ifdef PROTOTYPE
177

178 void locate-pivot(int me, int cubesize, DoubleMatrixType *A, int r,
179 Pivot-Type *pivot)
180

181 #else
182

183 void locate.pivot(me, cubesize, A, r, pivot)
184

185 int me,
186 cubesize;
187 DoubleNatrixType *A;
IS int r;
189 Pivot-Type *pivot;
190

191 #endif
192 {
193 int i,
194 pivotcolumn;
195

196

197 pivotcolumn = local-column(r, me, cubesize);
198

199 /* Initialize pivot row and value */
200 pivot->a = r;
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201 pivot->u = A->matrix[r) [pivot _olumnJ;
202

203

204 for (i = (r+l); i < A->rows; i++) {
205

206 if (tabs(->atrix[i][pivot-column]) > fabs(pivot->u)) {
207

208 pivot->s = i;

209 pivot->u = A->matrix[i] [pivotcolumn];
210 }
211 }
212 )
213 /* End locate.pivot() ------------------------------------------------ *
214

215

216

217

218

219 /* ------------- FUNCTION DEFINITION -- ---------

220 *

221 * Receive this node's columns from the root/host processor (manager),
222 * place them into the column buffer, then transfer them into A while
223 * the other processors are communicating with the root.
224 *

225 * The transputer scheme is a bit more involved. Here nodes 0000 and 1000
226 * are connected to the root and they must receive for everyone. They (0
227 * and 8) are not directly connected to everyone, so the columns must be
228 * passed out in cycles. For instance, suppose we used the hybrid 4-cube.
229 * Then nodes 0 and 8 would receive bursts of 8 columns at a time. They
230 * would keep the first one (we'll call it column 0 in some sort of rela-
231 * tive numbering scheme that abides by the C numbering convention), send
232 * the next one (col 1) in the Oxl direction, the next to the Ox2 direc-
233 * tion, column 3 in the Oxl direction, column 4 in the Ox4 direction,
234 * column S in the Oxl direction, column 6 in the Ox2 direction, and
235 * lastly, column 7 in the Oxl direction. This makes cycle == 8 for nodes
236 * 0000 and 1000. Similarly, nodes xO01 have a cycle of four where they
237 * keep the first column to arrive and then send the next three to direc-
238 * tions x2, Ox4, and Ox2 in turn. This distribution pattern is main-
239 * tained until all of the columns have been distributed.
240

241

242 #ifdef PROTOTYPE
243

244 void receive-columns(int dim,
245 int node,

246 DoubleMatrixType *A,

247 int n,

248 double *cbuf,

249 int my-cols,

250 int colsize)
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251

252 #8ls0

253

254 void receivecolumns(dim, node, A, n, cbuf, my-cols, colsize)

255

256 int dim,

257 node;
258 Double_.atrixType *I;

259 int n;

260 double *cbuf;

261 int mycols,

262 colsize;
263

264 #endif

265 {
266 int cubesize = pow2(dim),

267 cycle, /* length of typical col burst */

268 dimeff = IN(3, dim), /* effective dimension */

269 from, /* node that I receive from e/
270 gc, /* global column index */

271 i,

272 idx, /* index into to[] */
273 Ic = 0, /* local column index */
274 ldeff, /* effective least-dimensiono) */
275 nodeff = (node % 8), /* effective node number *[
276 others, /* no. of nodes in other 3-cube */

277 step, /* for destination of cols rec'd*/

278 thehost = myhosto),

279 to[8); /* ==> direction to send to */
280

281

282 #ifdef TRANSPUTER
263

284 ldeff = least-dimension(nodeff);
285

286 if (nodeff == 0) from = myhosto;

287 else from = node - pow2(ldeff - 1);
288

289 /t cycle describes the length of a cycle that starts with me (node)...

290 * then I receive several columns for others .... then start over with
291 * me. The nodes in the highest dimension have cycle == 1 ==> self
292 * only. We also fill to[] with the directions that we will be

293 * sending to within a given cycle. Not all nodes use all 8 elements

294 * of to[. They only use the first cycle elements. The step is the
295 * difference between the column numbers received at this node during

296 * a given burst of length cycle.

297 *

298 * When we use the hybrid 4-cube, we are treating it as two 3-cubes,

299 * so the variable others is set to 8. This is because there are 8

300 * other columns between every burst that comes to the 3-cube that
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301 * node is in.
302

303 cycle = pov2(dineff - ldeff);

304

305 (di == 4) ? (others = 8) : (others 0);

306

307 step = po2(ldeff);

308

309 to[O] = 0;

310 to[l) = to[3) = to[5] = to[7J = pov2(ldeff);
311 to[2] = to[6] = po2(ldeff + 1);
312 to[4] = pov2(ldeff + 2);
313

314

315 for (gc = node; gc < n; gc += (others + step)) {
316

317 receive(from, (char *) cbuf, colsize, cubesize);

318

319 for (i = 0; i < A->rovs; i++) A->natrix[i][ic] = cbuf[i];
320

321 Ic++;

322

323 for (idx = 1; idx < cycle; idx++) {
324

325 SC +: step;
326

327 if Cgc < n){
326

329 receive(from, (char *) cbuf, colsize, cubesize);

330

331 directional-send(node, dim, to[idx], (char*) cbuf, colsize);

332

333

334

335 } /* end for(gc) */
336

337

338 #else /* iPSC/2 */
339

340 for (c = 0; lc < my-cols; lc++) {
341

342 receive(thehost. (char *) cbuf, colsize, COLTYPE);

343

344 for (i = 0; i < A->rows; i++) ( A->atrix[i]lc] = cbuf[i];

345

346

s47 #endif /* TRAISPUTER 4/

348

349}

350 /* End receivecolunns() --------------------------------------------- */
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351

352

353

354

355

356 /* ---- ===-- FUNCTION DEFINITION --------

357 *

358 * This function sends in the timing data that is held in tO.
359 *1
360

361 #ifdef PROTOTYPE
362

363 void submit.timing.data(int node, int dim)
364

365 #else

366

367 void submittiming-data(node, dim)
368

369 nt node,
370 dim;

371

372 Sendif
373 1

374 int dimeff = MIN(dim, 3),
375 dir,
376 i.

377 ld = least-dimension(node % 8),
378 nodeff = (node % 8),
379 root = myhosto;
380

381 long cubesize = pow2(dim),
382 tlen;
383

384

385 tlen = (long) (MAX-EVENTS * sizeof(ticks));
386

387 #ifdef TRANSPUTER
388

389 submit(node, dim, (char *) t, tlen, cubesize);
390

391 if (dimeff == ld) return;
392

393 it ((nodeff == 2) 11 (nodeff == 3)) {
394

395 if (dimeff > 2) {
39& directioaia..ze,ive(node, dim, Ox4, (char *) t, tien);
397 submit(node, dim, (char *) t, tlen. cubesize);
398 }
399 return;
400
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401

402 it (nodeff 1) {
403

404 it (dimeff > 1) {
405

406 directional-receive(node, dim, Ox2, (char *) t, tlen);

407 submit(node, dim, (char *) t, tlen, cubesize);
408

409

410 it (dimeff > 2) {
411

412 directional-receive(node, dim, Ox4, (char *) t, tlen);

413 submit(node, dim, (char *) t, tlen, cubemize);

414 directional-receive(node, dim, Ox2, (char *) t, tlen);

415 submit(node, dim, (char *) t, tlen, cubesize);

416

417

418 return;
419 1
420

421 it (nodeff == 0) {
422

423 it (dimeff >) {
424

425 /* retrans from 1 or 9 ----------------------------------- */
426 directional-receive(node, dim, Oxl, (char *) t. tien);

427 submit(node, dim, (char *) t, tlen, cubesize);

428

429

430 it (dimeff > 1) {
431

432 /* retrans from 2 or 10 ---------------------------------
433 directionalreceive(node, dim, Ox2, (char *) t, tlen);

434 submit(node, dim, (char *) t, tlen, cubesize);

435 /* retrans from 3 or 11 ---------------------------------- */
436 directional-receive(node, dim, Oxl, (char *) t, tlen);

437 submit(node, dim, (char *) t, tlen, cubesize);

438

439

440 if (dimeft > 2) {
441

442 /* retrans from 4 or 12 ---------------------------------
443 directional-raceive(node, dim, Ox4, (char *) t, tlen);

444 submit(node, dim, (char *) t, tlen, cubesize);

445 /* retrans from 5 or 13 ---------------------------------- /

446 directional-receive(node, dim, Oxl, (char *) t, tlen);

447 submit(node, dim, (char *) t. tlen, cubesize);

446 /* retrans from 6 or 14 ----------------------------------
449 directional-receive(node, dim, Ox2, (char s) t, tien);

450 submit(node, dim, (char *) t, tlen, cubesize);
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451 /* retrans from 7 or 15 ---------------------------------- *
452 directional-receive(node, dim, Oil, (char *) t, tien);
453 submit(node, dim, (char *) t, tlen, cubesize);

454

455

456

457

458 #0lse /* iPSC/2 */
459

460 delay(l.0 + 2.0 * (float) nods);
461

462 send(root, (char *) t, tlen, (node + NODEOFFSET));
463

464 #endif /* TRINSPUTER */
465

466
467 /* End submit.timing.data() -------------------------------------------- *
468

469

470

471

472

473 /* ------------- FUNCTION DEFINITION ==----------= ------------
474 *

475 * This function performs the required operations on the Gauss Transform
476 * area, G, of A and searches for the next pivot.

477 */
478

479 #ifdef PROTOTYPE
480

481 void updateG(DoubleMatrixType *A, double *cbuf,
482 int cubesize, int k, int me, iut n, Pivot-Type *pivot)
483

484 #else
485

486 void updateG(A, cbuf, cubesize, k, me, n, pivot)
487

4" DoubleMatrixType *A;
489 double *cbuf;
490 imt cubesize,
491 k,

492 me,
493 n;

494 Pivot-Type *pivot;
495

496 #endif
497 {
498 int i,
499 3 ,
50o gc 0, /* global column number */
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501 Ic = 0; /* local column number to start */
502

503 ticks start;

504

505

506 while ((gc = global.column(lc, me, cubesize)) <= k) lc++;

507

508

509 /* The pivot row is k and we know that Ic is the first local column to

510 * the right of k. low we must move through the Gauss Transform area,

511 * all A(ij) where i > k and j > k, and perform the operation:
512 *

513 * Aij) = A(i,j) - Aik) * A(k,j) <==> A(ij) -= cbuf[i]*ACk,j)

514 */

515

516 start = clocko;
517

518 for (i = k+1; i < A->rows; i++) {
519

520 for (j = lc; j < A->cols; j++) {
521

522 A->matrix/i] [j] -= (cbuf[i] * A->atrix[k [j]);
523

524 } /* end for(j) */
525

526 } /* end for(i) */
527

528 t[LOOPTIME] += (clock() - start);

529

530 }
531 /* End update-Go) ---------------------------------------------------- *
532

533

534

535 /*-*I
536

537 maino){
538

539 double *cbuf; /* column buffer holds one col of A */
540

541 DoubleMatrixType *A; /* this node's portion of the matrix A */
542

543 int cubesize, /* number of processors in the cube */
544 dim, /* dimension of the hypercube */
545 gc, /* global column number */
546 i, /* generic integer and row ctr */
547 j. /* generic integer and col ctr */

548 k, /* index to pivot */

549 m, /* number of rows in A (same local/all) */

550 me, /* id of this processor */
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551 my-cols = 0, /* number of cola in local portion of A */
552 n, /* number of cola in all of A */
553 root, /* host/root processor id */
554 timing; /* Boolean */
555

556 long sizoof-col, /* sizes, in bytes */
557 sizeof-int,
558 sizeotfpivot;
559

560 ticks start,
561 starti; /* another start 5/

562

563 Pivot-Type pivot;
564

565

566

567 /* ------------- INITIALIZATION WORK ------------

568

569 for (i 0; i < MAX-EVENTS; i++) t[i] = 0;
570

571 start : t[STARTTIME] = clocko);
572

573
574 #ifdef TRANSPUTER

575

576 cubesize = CUBESIZE;
577 dim = DIMENSION;
576 initialize-hypercube(dim);

579

580 *else

581

582 cubesize = Cint) numnodeso);
583 dim = (int) nodedimo;
584

585 #endif

586

587 t[DATASOURCE] = me = (int) mynodeo);
588 root = (int) xyhosto);

589

590 sizeof-int = (long) sizeof(int);
591 sizeof.pivot = (long) sizeof(PivotType);

592

593

594 /* BROADCAST THE SIZE(A)---------------------------------------------
595 *

596 * All node processors need to know the number of rows and columns in
597 * the matrix A [i.e., size(A)]. A broadcast to the entire cube,

598 * cubecasto), is used to achieve this. The nodes also need to know
599 * whether or not to set timing on, so this value is passed too.

600 *
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601

602

603 #ifdef TRANSPUTER
604

605 cubecast(me, dim, (char *) m. sizeof-int, cubesize);
606 cubecast(me, dim, (char *) In, sizeof-int, cubesize);
607 cubecast(me, dim, (char *) ktiming, sizeof.int, cubesize);
608

6o9 *else /* iPSC/2 */
610

611 cubecast(me, dim, (char *) sm. sizeofint. ROWSIZETYPE);
612 cubecast(me, dim, (char *) kn, sizeof-int, COLSIZETYPE);
613 cubecast(me, dim, (char *) ktiming, sizeofint, ARG_TYPE);
614

615 #endif /* TRANSPUTER */
616

617 sizeof.col = (long) (m * sizeof(double));
616

619

620 /* COLUMN BUFFER AND COUNTER--------------------------------------
621 *

622 * The column buffer, cbuf[j, will be used to hold one column of A at
623 * a time. We will see cbuf[] used on a variety of occasions when we
624 * must work with a column of A. Allocate cbuf[ and determine the
625 * number of columns that will be stored locally (mycols).
626 *

627 */
626 cbuf = (double *) malloc(sizeof-col);
629

630 for (i = 0; i < n; i++) { if ((i % cubesize) == me) my.cols++; }
631

632

633 /* ESTABLISH LOCAL A----------------------------------------------
634 *

635 * Allocate storage space for this node's part of A (it is called A
636 * even though it is only part of A).
637 */
638

639 A = matalloc(m, my-cola);
640

641 t[SETUP] = clock() - start;

642

643 start = clock();
644

645 receive-columns(dim, me, A, n, cbuf, my-cols, sizeofcol);
646

647 t[DISTRIBCOLS] = clock() - start;
648

649

650 /* BEGIN ITERATION-----------------------------------------------
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651

652 * 1.) At the top of the for() loop we have just completed update-G(),
653 so the local candidate for the next pivot is situated in np[O).
654 * The function electnext-pivoto) performs a series of directional-
655 * exchange()s so that all local candidates compete in an election
656 * process. The winner is np[O.
657 *

658 * 2.) If all vent well, np[O] contains the next pivot. This informa-
659 *

660 * 3.) If this node has the pivot column [if (p[k] == gc)], it must
661 * divide everything under the pivot by the value of the pivot and
662 * distribute the column to all other nodes (node zero sends to host).
663 *

664 * 4.) Finally, this node must perform the computations across the
665 * Gauss Transform area for the local portion of A. The
666 update-G() function also locates the next pivot without special
667 e expense. Then it is time to go back to the top of the loop.
668 */
669

670 start = clocko;
671

672 for (k = 0; k < (MIN(mn)); k++) {
673

674 pivot.id = k % cubesize;
675 pivot.t = k;
676

677 /* know id; k ==> t; need s, u */
678

679 if (pivot.id == me) locate-pivot(me, cubesize, A, k, &pivot);
680

681 cubecastfrom(pivot.id, me, dim, (char *) &pivot, sizeof-pivot);
682

683 if (me ==) {
684

6865 starti = clocko;
686

687 #ifdef TRANSPUTER
688

689 send(root, (char *) pivot, sizeofpivot, cubesize);
690

691 #else /* iPSC/2 c/
692

693 send(root, (char ) kpivot, sizeofpivot, PIVOTTYPE);
694

695 #endif /* TRAISPUTER */
696

697 t[PIVOTSTOHOST] += (clock() - starti);
698 1
699

700 svaprows(A, k, pivot.s);
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701

702 sthxti = clocko;
703

704 if (pivot.id == so) f
705

706 do-.pivot-coluan...rithaetic(A. cbuf, k, so, cubenize);
707}
708

709 t[PCOL-ARITHMETIC) += Cclock() - starti);
710

711 starti = clockC);
712

713 cubecast-.from~pivot.id, me, dim, (char *)cbuf, sizoof-.col);
714

715 t[PCOL-.DISTRIB) += (clocko) - starti);
716

717

718 if (me == 0){
719

720 starti =clocko;
721

722 #ifdef TRANSPUTER
723

724 submit~me. dim, (char *)cbuf, sizeof~col, cubesize);
725

726 #else /* iPSC/2 *
727

72.8 submit~me, dim, (char *)cbuf, sizeof-col, PCOL-TYPE);
729

730 #Oeldif /* TRAISPUTER *
731

732 t[PCOLS-.TO..JOST] += Cclock() - starti);
733}

734

735 starti = clocko;
736 update..G(A. cbuf, cubesize, k, me, u, &pivot);
737 t[UPDATING_G] += (clock() - starti);
73.8

739 }
740 /* END ITERATION [for~k ... ) --------------------------------------- *
741

742 tEITERATION) = clocko) - start;

743

744

745 frecbuf);
746

747 t[STOP] = clocko;
748

749 it (timing) submit-.timing-data(me. dim);
750
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751 retun(SUCCESS);
752 )
753 /* ------------ EOF gfppnode.c -- -- - ---
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i / - PR3GRAM INFORMATION -------------

2 *

3 * SOURCE gfpcnode.c

4 * VERSION 2.3

a * DATE 17 September 1991

6 * AUTHOR Jonathan E. Hartman, U. S. Naval Postgraduate School

7 * REMARKS See gf.h.
8 *

9 •-------------------------

10 *
11

12 *include <aath.h>
13

14 #ifdef TRANSPUTER

15

16 #include <conc.h>

17

is #include <matrix.h>
19 #include <macros.h>

20 *include <allocate.h>
21 #include <comm.h>
22 #include <generate.h>

23 #include <mathx.h>
24 #include <ops.h>

25 #include <timing.h>
26

27 #else
28

29 #include "/usr/hartman/matlib/matrix.h"
30 #include "/usr/hartman/matlib/macros.h"

31 #include "/usr/hartman/matlib/allocate.h"
32 #include "/usr/hartman/matlib/comm.h"
33 #include "/usr/hartman/matlib/generate.h"

34 #include "/usr/hartman/matlib/mathx.h"
35 #include "/usr/hartman/matlib/ops.h"
36 *include "/usr/hartman/matlib/timing.h"
37 Sendif
38

39 *include "gf.h"
40

41 #ifdef TRAISPUTER

42

43 Channel *ic[(CUBESIZE + 1)],
44 *oc[(CUBESIZE + 1));
45

46 Sendif

47

48

49 ticks trMAXEVENTS];
50
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51 /* ----------- FUICTION DEFIIITION -----------

52 *

53 * After this node finds its candidate for next pivot, there must be a
54 * comparison with all other nodes. The local candidate starts in np[OJ.
55 * Direction-by-direction, candidates are exchanged and the winner is
56 * positioned in np[O). If there is a tie, the candidate from the smaller
57 * node number wins. A RAIKDEFICIENT opponent is ignored (the local
58 * candidate must be at least as good). In the end, all processors have
59 * identical entries in np[O].
60 */

61

62 #ifdef PROTOTYPE
63

64 void elect.nextpivot(int me, int dim, Pivot-Type *np)
65

66 #else

67

68 void elect-next-pivot(me, dim, np)
69

70 int me,

71 dim;
72 Pivot-Type *np;
73

74 Sendif

75 (
76 int dir;
77

78 long cubesize = pow2(dim),
79 len = sizeof(PivotType);
80

81

82 for (dir = 1; dir < (int) cubesize; dir <<= ) 
83

84 if (dir != 8) {
85

86 directional-exchange(me, dim, dir, (char *) &Cnp[l]),
87 (char *) &(np[o), len);

89 else {
90

91 if ((me % 8) != 0) { /* we don't want 0 <--> 8 comm */
92
93 directional-exchange(me, dim, dir, (char *) &(np[1]).
94 (char *) (np[O]), len);

95

96

97

98

99

100
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101 if (np[1].id != RAIKDEFICIENT)
102

103 if (fabs(np[1J.u) > fabs(np[O].u)) {
104

105 np[O).id = np[1].id; np[O].u -= npE1.u;
106 np[O.s = npE1i.s; np[O].t = np[1J.t;
107 }
lOS else {
109

110 if (fabs(np[1].u) == fabs(np[O].u)) {
111

112 if (np[1].id < np[O].id) { /* smallest breaks tie e/
113

114 np[Ol.id = np[lJ.id; np[O].u = np[1].u;
115 np[O],s = np[1].s; np[0).t = np[13.t;
116

117

118

119

120 } /* end if(np[1].id....) */
121

122 } /* end for(dir) e/
123

124

125 /* Since there is no direct connection between nodes 0 and 8, we once
126 * again destroy the beauty and generality of the hypercube so that we
177 * can be sure that 0 and 8 have the best candidate for pivot.
128 *a
129

130 if (dim == 4) {
131

132 if ((me % 8) == 0) { /* Nodes 0000 and 1000 */
133

134 directional-receive(me, dim, Oxl, (char *) np, len);
135

136

137 if ((me . 8) == 1) { /* Nodes 0001 and 1001
138

139 directional-send(ne, dim, Oxil, (char *) np, len);
140

141 }
142 "

143 /* End elect-next-pivot) ---------------------------------------------
144

145

146 /* This is only the first part of this file. The rest would be similar to
147 * gfppnode. c
148 *

149 ------------ EOF gfpcnode.c -------------
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