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The US. Ammy is investizating millimeter wave guidance as an ziomal
wire guidance 1 groend wo-ground weapens sysiems. The ability of 2 sensor o teck wow-argie g
on the bamlefic'd 15 affecied by many ‘ﬁztﬂsn Atmospheric trbulence. smoke and obscurams,
glectromagnelic 17 Tarende, svsiem net se. and mults Itipath errors raust aild be Vc:m:i;it.'.td wien studvirg

guidance sysiom ;x,.kr'-!ame The last facor. multipadh, is the focus of tus repont.

Multipath errors are caused by retumns from signals uh;ch jve refzcicd off the canth’s surface on
- the way 10 or back from the target, or both. These indirect rm ns interfere with the mwums from signals
that have traveled a direct path to the target and back to the receiver. This intecference will produce a
signal that may be changed in amplitude and phase from the free-space signal resulting in t-acking errors.
Reflection of the radar siznal from a smooth, flat cax;th depends on the electrical properties of the grourd
at the point of reflection. However, xhc earth’s surface is noi smooth relative to milimeter wavelengths
so 2 Fresnel reflection coefficient is used to calculate the strength of the reflection. The .oéfSicient
depends on the ;nughhcss of the surface over which the signal propagates (3eckmann and Spizzichino
1963) and also upon the type of tcrraiﬁ;éovcr present: grass, s30W, ice, etc. Thc terrzin profile will also
have an impact on the degree to which multipath affects tracking pcrfonnanéc. Generally, the more
irregular the terrain, the more points of reflection there may be between antenna and target; whereas, a
perfectly flat temrain has only one possib'l.e' reflection point. -

Multpzth prbpaga;ion.can cause the target to appear higher or lower than it actually is by causirg
a shift in the mull or by causing muliiple nulls in the tracking radar antenna partem. This condition may
be exacerbated by large antenna beamwidths wherein a greater portion of the beam iruércepts the ground,
ind more ground reflected energy will be received than for a smaller beam. Antenna bear:widths may
be reduced by using a larger aperture or operating at hxgher freque'u:xcs. Also, the height of the antenna
- and target above the ground will determine the extent to which multipath will be 1mponam—-{he h:ghcr"
xhesc are, the smaller the multipath effects will be.

Although the multipath problem has becn studied for decades, there has | been relatively little
investig:m'cn of this phenomenon in the milliinetcr wave range of the electromagnetic spectrum. One of -
| the early millimetar wave studies (Kammerer and Richer 1964) was conducwd by the U.S. Ammy Ballistic
Research l.aboratory (BRL) 'Aberdcen vamg Ground. MD. The data. taken at 68 GHz. showed that




argaar pointing oot of loss than enendh c‘ the heamwidth could be achieved with ruloeome norcal

scan poinarng echrdoues. Ancther BRL mvesugation (Wallace 1979 compared measurd Zats 3 speodar

refleceon multipath theery o derive forward ec.a::c-"-;g coe. 35'73 at 40 GHr for varinus mpes of

E‘L

groand cover. It was conciuded that ground with vegetative cover hag g coefficient lein th
L1 for asphalt, it ts ehow 0.5, This poings out that millimeter- wvc oultipgh probizm iess
- seriovs when propagaoing gver vegelated surfaces than over surfa»w such as asphalt because the powcr
of the wdesired, reflected szgnaxs will be mduced by absorption and the reflected siznals diffused v a
relagvely rough surface. ‘ ‘

To improve our understanding in this area, = experiment was desiyned to measure at 95 ard
140 GHi simultaneausly the effects of multipath irterference on the tracking accuracy of a conical scan
radar. The experimert wis conductad during the winter of 1986—1987 at Redstone Arsenal, AL, and a2
Aberdeen Proving G*ound. MD.

2. DESCRIPTION OF RADAR AND INSTRUMENTATION

The radar instrunentation used to make the measurements, including radar-controlling software, was

designed and fabricated by the BRL. The instrumeniation consisted of a dual frequency radar, a vertical’

probe, and a data acquisition facility.

The radar systers used to make measuxuncnf.s ofanguhrpoinﬁngmconsistedofmg(ﬂsed
radars of rating simultaneously at 95 and 140 GHz through a common apermure. Diplexing of the two
radmwasaooomphsbcdbyusmgmomnmodemduceraxnasv" caar-feed hom to illuminate a
Cassegrain antenna. _‘m:.polanzauons ofme-udammdnxsomwgmnlzﬂmmmedsoﬂnym
both at 2 45” angle to the ground. The orthomode transducer'and hom were W-band units which produced
approximately 3 dB more two-way loss at 140 GHz than at 95 GHz. | |

The two radars employed imipazt avalanche transit time (IMPATT) oscillators, which were pulsed
alternately to avoid interference. A volta; c-controised automatic gain control (AGC) sircuit was employed

with video "box car” integrators to i0aintain a larz. dynamic range. The AGC signal was sampled by a -

Masscomp 533 data acquisition computer to measure amplitude variatons. " The angular ertors were

derived. by synchronously detecting the AGC voltage with a four-quadrant timing signal taken from the
com'caisqanmolcimxix. Azimuth and elevaticn gain and phase were controlled separately to obtain 4

, :




the minimum cross talk between recorded angular error signals. During the course of a measurement, the

AGC, azimuth, elevation, and target height positions wese continuously digitized by the data acquisition

‘computer at a higher rate than the target vertical position was updated. Figures ! and 2 show samplss of

AGC measurements versus position measurements. -

Figures 3 through 6 show the two-way horizontal and vertical antenra patterns at 95 and 140 GHz
of the 0.62-m antenna used at Aberdeen Proving Ground (APG). The pattems were measured with a
calibrated trihedral reflector placed 550 m from the antenna to ensure far-field conditions were met using
the approximation (Balanis 1982):
2D? ' :
R 2 = : (?)
where the diameter of the antenna dish (D) is 0.62 m, the wav=length (A) at 140 GHz is 2.14 mm, and
the far-field (R)) is 503 m. The 95-GHz far-field would be clo er (longer wavelength A), so the 550-m
range is valid for both frequencies. °
The azimutha! rattem was measured by positioning the antenna subreflector so that the beam was
at each of its maximum azimuthal positions. An azimuthal scan of the radar mount provided a record of
signal level varsus mount angle (Figures 3 and 5). Tlie patiems n Figures 4 and 6 were measures of the

elevational pattern made in the same manner.

A visual inspection of the pattzms reveals that for both freyuencies, the beamwidth for the azimuthal
sweep is larger than the beamwidth for the elevational plane sweep. As expcctev:i. Lie 6-dB two-wéy
beamwidth of the antenna at 35 GHz is siightly larger tnan the corresponding beamwidth at 140 GHz.
At 9S‘G!lz.uxe 6-dB I .nwidth is 0.55%in the azimuthal and 0.33°in the elevational dircction. At

- 140 GHz, the beamwidth is 0.32* for the azimuthal and 0.30° for the cievaﬁonal direction.

Antennas with narrow beams have more sensitivity to deviations of the target from the beam axis and

- ck;ﬂcn’ence less error in the presence of multipath. The angular sensitivity of a particular beam pattcm

is derived from the shapes of the two offset beams shown in Figures 3 through 6. Taking the difference

of the two offset bcam“pancms gives the normalized error signal versus angle, commonly called
an "S-curve,” and makes the measured angular error independent of signal amplitude (Barton and Ward
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1984). Near the center of the S-curve, the beam pattern difference is a linear measure of the off-axis

angular error. Figures 7 and 8 show measured S-curves for the 95 and 140 GHz radars, respectively.

While the 0.62-m antenna proved adequate for the APG trials, the much longer propagation distance
at Redstone required a narrower beamwidth to maintain tracking accuracy. A 0.93-m antenna with it’s
correspondingly lower beamwidth was used for all of the Redstone test.

The vertical probe consisted of a mounting for a trihedral comer reflector dﬁven,by a threaded rod
on a 3.6-m pole. The threaded rod was tumed by a motor that could automatically translate a reflector
up and down the pole at a constant speed. The position of the reflector was monitored by a digitally
controlled pulse generator whose period of oscﬂlanon was varied linearly with posmon by coummg the
rotations of the threaded rod. This pulse train was then transmitted down the range over a twisted pair
of wires to the incrumentation van. The center of travel along the probe pole was 2.0 m above the
ground. The vertical probe emplr sed in the experiment is shown in Figure 9.

The radar system was placed on a Scientific Atlanta 4116A positioner control/mount system and

" could be moved remotely in azimuth or elevation by a control in the BRL instzumentation van.

Figure 10 shows the shelter for the instrumentation radar and the 2-1/2-ton truck in which the signal
processing equipment and computer were housed. In setting up the radar for tracking the moving target,
the antenna was boresighted on the probe reﬂectml'. which was positioned at the center of travel on the
vertical probe. The antenna was aitned at the center for the duration of each trial. The movement of the .
probe reflector was observed from inside the radar van L';y means of a television monitor, which had been
optically boresighted to within iﬂ.ObB' of the center of the radar beam. -

As the mhedral moved, vertical and horizontal error voltage sxgnals from the 95- and 140-GHz
radars the probe height, and the time of measuremem were recorded continuousty wuh the Masscomp 533
data acqnsmon system. When a tnal was complcwd error signals versus target position could be viewed

‘ona qmck-look" uncahbnmd bas:s usxng the Masscomp on-line graph:cs software.

3. EXPERIMENTAL PROCED_U_RE
3.1 Site Description and Test Conditions. Two different test sites were used during the course of

' the experiment in an attempt 1 observe the effect of different terrain profiles and surfaces on tracking
X N . . . .

. .;K;;"*W;ﬁw e
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The first site was the Redstone Arsenal Test Area 3; it was a slightly rolling cow pasture that had
been plowed and was covered with long, dead grass. The terrain profile for the test site is shown in
Figure 11. The profile was measured using seven reflectors placed along the 2,850-m antenna/target path
with pole heights adjusted so that each reflector aligned with the optical line of sight to the vertical probe.
The heights of the poles were then measured, and the terrain profile was casiiy deduced from the resulting

measurements.

“The second site was the Aberdeen Proving Ground (APG), electromagnetic propagation (EMP) rﬁnge'
xt contained no vegetation other than dead gmss and weeds in the vic’1ity of the propagauon path.” The
terrain profile for the Aberdeen test i35 not shown because it is essen:"ally flat and varies no more than
six inches in height over its 838.4-m length. This can be seen in Figure 12, where the test range is shown
with a light covering of icy snow.

Data was recorded on 5 D:ecember 1986 at Redstone Arsenal; and on 30 January 1987; S, 17, 19, 20,
23, and 24 February 1987; and 26 March 1987 at APG, Measurements were made over the APG terrain
‘with a v}.ﬁéty of ground cover conditions: grassy, snowy, and icy. The decision to record data on any
. particular day was based on the weather and ground conditions. A synog-'s of the logbook that was kept
throughout the course of the experiment is included in the Appendix. Descriptions of the conditions that
‘existed on any days during which measurements were taken can be found there.

3.2 Test Procedures. The experimental setup is shown in Figure 13. The radar antenna was
positioned at 1.5 m above the ground at Redstone and 1.1 m above the ground at APG, and the beam axis
of its conical scan was pointed at the center of travel of the trihedral comer reﬂectof mounited on the
vertical positioner. ‘

“The trials run each day included one with the probe runﬁing from top to bottom of the positioner,
and one thh it running from bottom to top, to vcnfy that the measurements were repeatable Another

comer reflector, whose cross section was known very accurately. was positioned on a stauonary pole near
the probe but out of the measurement path, to act as a boresight n;fcrence. The signal level measured off
~ the reference reflector was used to periodically check the calibration of the radars and to make sure the
| signal levels and en_'br signals were not driﬂing-durixig the course 'ofl a day’s trials. Measurements were
restricted to days: thh calm: to moderate winds to avoid sway of the probe.
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An S-curve was measured before each trial run, and each wurve was osed in calibrating te wt of

emor voltage measurements which followed. To measure an S-cnrve, the anterina mouni was swept
vertically gver the target reflector. The reflector was placed on a pele tall encugh to ensure the (nlenna
beam did not strike the ground. Examples of such w.cal S-curves are shown in Figures 7 and 8.
Azimuthal S-curves were similaily meacured by sweeping tiie antenna from left to right across the target

reflector.
4. ANALYSIS OF MULTIPATH PROPAGATION ['ATA

4.1 Calibrnti.on of Data. Figures 1 and 2 show typicc! AGC signals versus probe positon before
calidration and filtering. Processing the raw data ‘ss a three-s.ep process taat consisted of: 1) converting
angilar error voitaga from "unit” error in Analog-to-Digita 5its (12-bit irteger representations of the
actual voltage values) to angular error in degrees, 2) converting the positicn axis from "unit” position 0
meters above ground and, 3) filtering the data with a smoodmg alzorithm.

The angular error voltage was calibrated to give angular ermor by using i~ cormation derived frotri the
S-curves recorded before each trial. The straight-line sectica in the middle of each S-curve was used 0

compute a slope. The slope is in units of units/degrees, as can be seen in Figures 7 and 8. The digitized

angular error voitage values were scaled by this slope value xésulting in angular error in deg™es.

Next, the position axis of the raw datz was calibrated. The pulse geierated output from the vertical

probe containred position information in tenas of uncalibrated "units.” This value would change e\}ery time .

the probe moved an inch along is path. , Thas, thé number o: inches the probe moved during a trial could
be determined by counting the number of position value changes. This count was then converted from
.inches to meters to give the total distancc moved during the trial in meters. Finally, the total distance in
meters was added to the mcasured minimum hclghx above ground of the probe v give the position
mformanon as "distance above ground.”

In some instances, two consecutive samples of angular error voltage had the same probe position
“value (in “units”), indicating that the probe had moved less than an inch between signal measurements.

- In these cases, the two samples for this probe helght were averaged, and the averaged value was then
.assocxated with this probe helght in subsequcm calculations.
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. The last sier m reducing v daia was smocthing o got nd of the pesse that may Rave othore se

otscursd the mons incresting mularath effects. The noise was caused by the lawral movemen of ©

e%

probe pole as the comer reflector was being rassed or lowered and by the wind causing the weeds a7

.C?
4]

retlection poirg o rippie. The curves were smocothed using a 10-point moving averzge. The rec.lin

0

calidrated angular error versus target height curves are shown in Figures 14 10 28,

€2 Observations. Tahle 1 presents a summary of the data presented in Figures 14 through 28. The
peak-to-peak angular errors are shown for the different conditions over the course of esting. Somz of te
mo.. i~t=resting features are not easily compiled into » table. When different trials on the sanie day

yielded the same value for pezk-to-peak angular error, that value is listed in the table for that day.

In the plots shown in Figures 1 and 2, the target height is increasing as the unit position increases. -
These piots demonstrate how the spatial frequency of oscillation of tne multipath induced errors decrease
with decreasing elevation angle according to the equation (Barton and Ward 1984):

F =, ‘ (92}

where F., is the frequency. of cyclic multipath error, & is the height of the antenna (which is constant in
this case), A is the wavelength (also constant), and E is the ratc of tzrget elevation angle change as seen
' bythct"adar. ‘Fromthcgeolmctry.itcanbcsecnumifE stays constant, then equal changes in target
height wil lead to faster cycling alx the upper positions._

 Inspection of the data leads to several observatic :5. The zrTors at Redstone consistently stayed below
the null, whereas the Aberdeen data showed the error oscilia.ing around the null, albeit sometimes making
large cxbmsions from it. This bias below the nominal borf:sight is attributed to a mechanical shift of the
boresight when the radar aim pomt was moved from the calibration target to the vemcal probe. This
_»semppmblun dxdnotexxstatAP 3.

Another difference observed between the data from the two sites is thiat when both sites are covered
with dead grass, the makimum peak-to—peak error of the angular efror curve oscillations is larger for the
Aberdeen data than the Redstone data, for both frequencies. At Redstonc. a peak-to—peak angular error
" ~f0.05° for 95 GHz was measured; at Aberdeer, it was 0.11°, At 140 GHz, the difference becomes even
more apparent with a 0.01° angular error at Redstone and a 0.08° crror a, Aberdeen.
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“The Aberdeen data taken between 20 February and 26 March show the effect of going from a
relatively snow-free terrain (mostly grass showing with patches of snow) to one covered with 35 cm of
snow and then back to a dry temrain. The maximum angular error for the 95-GHz radar, 0.2°, occurred
on the day it snowed. Before the snow, it was 0.07°, and after the snow had cleared, it dropped back
down to 0.07°. The largest variations in angle error also came on the day it snowed however, they were
still large on the following day after an overnight freeze tumed the ground cover into a crusty ice. The
melting water on the snow day and the ice that formed the following day increased the surface mﬂecuon

coefficient, thereby i mcxeasmg the ground mﬂectcd beam strength and adding to mulupath mterferenoe

~ The 140-GHz data followed the same general pattern during these changing ground conditions. The
maxunum angular error at 14OGHz was -0.25°, but a retum to grassy condmonscausedthecmrtodmp
back down to levels recorucd bcfore the snowfall.

Just as with the AGC signal, me spatial frequency of the angular error cycling increases as the probe
reflector height increases. Measurements on the data sets indicate that ihe ratio of the oscillations of the
95-GHz 1o the 140-GHz curves is within +15% of the ratio of the two wavelengths over all the data sets.




Table 1. Peak-to-Peak Errors for Verious Conditions
Terrain | Ground | Angular Error
Date | Freq., | Profile | Cover | Peak-to-Peak,
GHz ' deg
5 Dec 95 RA Grass 0.05
: 140 001
5 Feb 95 APG | Crusty 014
140 - ‘ 4 0.10
17 Feb 95 APG | Patchy 0.13
140 : - 010
19 Feb 95 APG | Melt -0.10
140 0.10
20 Feb 95 APG | Melt 0.13
‘ 14¢ ©ooa
23 Feb .
TR 1 95 APG | Snow 0.32
TR1 | 140 0.37
TR 2 95 APG | Snow 0.16
TR2 | 140 ' 020
24 Feb -
TR 1 95 APG | Crusty 0.29
TR1 | 140 : 0.25
TR 2 95 APG | Crusty’ 0.24
TR2 | 140 : - 021
26 Mar | 95 APG | Grass 0.11
140 . 0.08

Notes: APG = Aberdeen Proving Ground.
Crusty = snow crusted over with ice.
Melt = melting snow.
RA = Redswne Arsenal,
Pachy = paiches of snow and ice.

It can easily be.seen from the geometry of specular reflection that this should be a constant equal to
95/140. Also, as the target climbed above the terrain, the magnitude of the angular errors got smaller;
however, on days with snow and ice cover, the error is still significant at the maximum :argét height.

S. CONCLUSIONS

1) The peak#w-pcak angular error is greater for the lower-frequency, wider-beamwidth radar in all
but two cases, both of them being under melting snow and high surface moisture corditions. A
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2) In general, the angular error over grassy terrain was greater at Aberdeen than at Redstone. The
difference was particularly noticeable at 140 GHz. To a great extent, this was due to the very different
terrain profiles of these test sites. ‘

3) The angular error on days when the ground is grassy is smaller than on days when the ground
is covered with snow or ice. : '
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Redstone
5 Decemoer 16

Aberdeen

30 January 87

SFebm;:y87

17 February 87

19Febtutry87"

20 February 87

DATA LOG

*.ange was 2850 m. Antenna height above ground was 1.5 m. Probe height
.aried from 0.4 to 3.6 m. Frequencies used were 95 GHz and 140 GHz,
which were transmitted cross polarized, 45° off the vertical. The optical
boresight was fixed at the center of the probe. Terrain was ploved and
covered with long grass and had some bare, muddy areas. The range was
fairly level over the first half of its course, and then .t started to fall off over

the seocnd half (as we moved Lowards the probe). '

Trial 1 began at 1455 hours, with probc rinning from top to bottom of pole.

Trial 2 began at 1511 hours, with probe running from bottom to zop of pole.

Trial 3 began at 1525 hours, with probe running from top to bottom of pole.
Measurements took place at the electromagnetic propagation (EMP) rangé.
Ground roughness was similar to that on the Redstone range. However, the
EMP range is fairly level, changing no more i elevation than six inches over
its entire distance of 838 m.

No log entry.

Trial began at 1456 hours, with probe running from bottom 1o 10p of pole.

The 140 data appears to be greatly different than the other 140 curves. Thzs
danwxllmtbeuscdmﬂnamlysns

. Snow over entire field, frozen last night

Trial 1 began at 0837 hours, with probe running from top to bottom of pole.

Trial 2 began at 0848 hours, with probe running from bottom 1o top of pole.

_ Frozen ground, with small patches of frozen snow and some ice in low areas.

Trial bégah at 1445 hours, with probe running from top o bottom of pole.

Some party frozen ground, small patches of melting snow, and waer in low '

arecas,

Trial began at. 1455 hours, with probe running from ibp to 50(;0:'11 of pole. »
No log entry. - |
Trial 1 began at 1438 hbu:js, with probe running from bottom to top of pole.

Trial 2 began at 1459 hours, with probe running from top to bottom of pole.

]




23 February 87

24 February 87

26 March 87

Ovemight snow, appioximately 14 inches. Warm day with very wet snow

apnroximately 11 inches deep.

Trial 1 began at 1314 hours, with probe running from bottom to top of pole.
Trial 2 bcgm at 1341 bours, with probe running from top to bottom of po.e.
Snow approximately 11 inches dee;;. Very ha-d freeze overnight, thick crust.
Trial 1 began at 0826 hours, with probe running from bottom to top of pole.
Trial 2 began at 0841 hours, with probe an from top to bottom of pole.
No entry in log of ground caﬁiu'aw. Assumed dry. |

Trial 1 began at 1416 hours, with probe mnmng from bottom to top of pole.

Trial 2 began at 1428 hours, with probe rurning from top to bottom of pole.
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