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C~w 1US A-r, wave glý:ane a5 an' - c:

'A;rgllidiAnOC I' g-z'I:7) to cun earrns sys*eris. 71he atilitv of a .sens-.c to-~ kLw-a.e .'

ZMn ,he ba-a'cfV' is af.:ted blr manv fa'ters. Atm..ospheric , rie. sz:?ke a.d obs,,,- ns.

eec~ag~etc ~~z~ce.svstern nc~e. atn&d muitipath erors rmust ý:a be zori ed n srz.ýc&irz

g-uidan.e s:,,-.m per-r'nance. The last fc-cr. multipaih, is the fwx.s of .ins repctr r-

.Mu:'ipath er-mm am caused by returns frm signals which have refeccd off the rearth's surface on

the %ay to or back from the target, or both. These indirect retrrs incfrfere wi~h the r'atums from sizias

that have tra,'e!ed a direct path to the target and back to the receiver. Thiis interference will produce a

signal that may be changed in amplitude and phase from the free-space signal resulting in tackLg errors-

Reflection of the radar signal from a smooth, flat earth depends on the electrital properties of the ground

at te point of reflection. However, the earth's surface is noi smooth relative to miimeter wavelen-gths.

so a Fresnel reflection coefficient is used to calculate the strength of the reflection. The ýOefflcient

depends on the .-oughriess of the surface over whicth the signal propagates (3eckmann and Spizzichino

1963) and also upon the type of terrain cover present grass. siow. ice, etc. The terrain profile will also

have an impact on the degree to which multipath affects tracking performance. Generally, the more

irregular the terrain, the more points of reflection there may be between antenna and target whereas, a

perfectly flat terrain has only one possible reflection point

Multip-th propagation can cause the target to appear higher or lower than it actually is by causirg

a shift in the null or by causing multiple nulls in the Lracking radar antenna pattern. This condition may

be exacerbated by large antenna beamwidths wherein a grater portion of the beam intercepts the ground,

and more ground reflected energy will be received than for a smaller beam. Antenna bear :widths may

be reduced by using a larger aperture or operating at higher frequen-esi Also, the height of the antenna

and target abo,, t.e ground will determine the extent to which multipath will be important-the higher

these are, the smaller the multipath effects will be.

Although the multipath problem has been studied for decades, there has been relatively little

investigation of this phenomenon in the millimeter wave range of the electromagnetic spectrum. One of

the early millimeter wave studies (Kammerer and Richer 1964) was conducted by the U.S. Army Ballistic

Research Laboratory (BRL). Aberdeen Proving Ground. MD. The data, taken at 68 GHz, showed that
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To imprxd e our undestaisdieg in this amea. n enerrinlud was, drsAd-d to mnesure at 95 a, a

140 Ge snimultateously t effects of multipah trtcrference on the tcng accu"rac of a co erical scn

radar. Th experimem it ws cornIucteu during the winter of 1986-1987 at Rzdswoer Arsenal, AL. and ai

Aberdeen Proiing Ground. Mo.I

I. DES CRI1'rON OF RADAR AND INSTRI.MENTATIONV

The radar instrumentat~io used to make the measurments, including radar-controlling software. was 1
designed and fabricated by the BRL The instrumeraton onsisted of a dual frmuencyjrdar. a vertical'

probe. and a data acquisition facility.

The radar system used to make measurements of angular pointing erms consisted of twu pulsed

radars or :rating simultaneously at 95 and 140 GHz through a common apertur.. Diplexing of the two

radars was accomplished by using an orthomode tramsducer and a sc-.ar-feed horn to illuminate a

Cassegrain.amerm. The. polarizations of the- radars were thus orthgonal and wer routed so they were

both at a 45' angle to the ground. The orthomode ansducer and horn were W-band units which produced

approximately 3 dB more two-way loss at ,140 GHz than at 95 GHz.

The two radars employed inip= avalanche transit time (MPAT) oscMa which were pulsed

alternately to avoid interferenro. A voltai c-conzroued automaic gain cotl (AGC) iSrcit was employed

with video "box car" integrators to maintain a lark> dynamic range. The AGC signal was sampled by a

Masscomp 533 data acquisition computer to measure amplitude var;ations. The angular errors were

derived, by synchronously detecting the AGC 'voltage with a four-quadrau timing signal taken from the

corical scan ccnri-l circuit. Azimuth aid elevatl gain and phaswee controll separely to obtain

2



the mininium cross talk between recorded angular error signals. During the course of a measurement, the

AGC, azimuth, elevation, and target height positions wee continuously dicitized by the data acquisition

computer at a higher rate than the target vertical position was upda:ed. Figures I and 2 show sam ple.s of

AGC measurements versus position measurements..

Figures 3 through 6 show the two-way horizontal and vertical antenna patterns at 95 and 140 GHz

of the 0.62-m antenna used at Aberdeen Prving Ground (APG). The patterns were measured with a

calibrated trihedral reflector placed 550 m from the antenna to ensure far-field conditions were met using

the approximation (Balanis 1982):

R, 2L)2R Ž> (1)

where the diameter of the antenna dish (D) is 0.62 m, the wavilength (•) at 140 GHz is 2.14 mm, and

the far-field (R1) is 503 m. The 95-GHz far-field would be clo er (longer wavelength X), so the 550-m

range is valid for both frequencies.

The azimuthal -attin was measured by positioning the' antenna subreflector so that the beam was

at each of its maximum azimuthal positions. An azimuthal scan of the radar mount provided a record of

signal level versus mount angle (Figures 3 and 5). The paternr n Figures 4 and 6 were measures of the

elevational pattern made in the same manner.

A visual inspection of the pattrns reveals that for both frequencies, the beamwidth for the azimuthal

sweep is larger than the beamwidth for the elevational plane sweep. As expected, Lie 6-dB two-way

beamwidth of the antenna at 5i GHz is slightly larger tan the corresponding beamwidth at 140 GHz.

At 95 GHz, the 6-dB Y, :nwidth is 0.35" in the azimuthal and 0.33* in the elevational direction. At

* 140 GHz, the beanwidth is 0.32w for the azimuthal and 0.30' for the elevational direction.

Antennas with narrow beams have more sensitivity to deviations of the target from thebeam axis and

experience less error in the presenca of multipath. The angular sensitivity of a particular beam pattern

is derived from the shapes of the two offset beams shown in Figures 3 through 6. Taking the difference

of the two offset beam patterns gives the normalized error signal versus angle, commonly called

an "S-curve," and makes the measured angular error independent of signal amplitude (Barton and Ward

3
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1984). Near the center of the S-curve, the beam pattern difference is a linear measure of the off-axis

angular error. Figures 7 and 8 show measured S-curves for the 95 and 140 GHz radars, respectively.

While the 0.62-m antenna proved adequate for the APG trials, the much longer propagation distance

at Redstone required a narrower beamwidth to maintain tracking accuracy. A 0.93-m antenna with it's

correspondingly lower beamwidth was used for all of the Redstone test

The vertical probe consisted of a mounting for a trihedral comer reflector driven by a threaded rod

on a 3.6-m pole. The threaded rod was turned by a motor that could automatically translate a reflector

up and down the pole at a constant speed. The position of the reflector was monitored by a digitally

controlled pulse generator whose period of oscillation was varied linearly with position by counting the

rotations of the threaded rod. This pulse train was then transmitted down the range over a twisted pair

of wiis to the instrumentation van. The center of travel along the probe pole was 2.0 m above the

ground. The vertical probe empir ed in the experiment is shown in Figure 9.

The radar system was placed on a Scientific Atlanta 4116A positioner control/mount system and

could be moved remotely in azimuth or elevation by a control in the BRL instumentation van.

Figure 10 shows the shelter for the instrumentation radar and the 2-1/2-ton truck in which the, signal

processing equipment and computer were housed. In setting up the radar for tracking the moving target.

the antenna was boresighted on the probe reflector, which was positioned at the center of travel on the

vertical probe. The antenna was aimed at the ceniter for the duration of each trial. The movement of'the

probe reflector was observed from inside the radar van by means of a television monitor, which had been

optically boresighted to within ±0.006 of the center of the radar beam.

As the triledrai moved, vertical and horizontal error voltage signals from the 95- and 140-GHz

radars, the probe height, and the time of measurement were recorded continuouslv with the Masscomp 533

data acquisition system. When a trial was completed, error signals versus target position could be viewed

on a "quick-look" uncalibrated basis using the Masscomp on-line graphics software.

3. EXPERIMENTAL PROCEDURE

3.1 Site Description and Test Conditions. Two different test sites were used during the course of

the experiment in an attempt to observe the effect of different terrain profiles and surfaces on tracking

acCuracy.

7
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The first site was the Redstone Arsenal Test Area 3; it was a slightly rolling cow pasture that had

been plowed and was covered with long, dead grass. The terrain profile for the test site is shown in

Figure 11. The profile was measured using seven reflectors placed along the 2,850-m antenna/target path

with pole heights adjusted so that each reflector aligned with the optical line of sight to the vertical probe.

The heights of the poles were then measured, and the terrain profile was easiiy deduced from the resulting

measurements.

"The second site was the Aberdeen Proving Ground (APG), electromagnetic propagation (EMP) range;

it contained no vegetation other than dead grass and weeds in the vie:&ity of the propagation path.' The

terrain profile for the Aberdeen test 3 not shown because it is esseni:ally flat and varies no more than

six inches in height over its 838.4-rn length. This can be seen in Figure 12, where the test range is shown

with a light covering of icy snow.

Data was recorded on 5 December 1986 at Redstone Arsenal, and on 30 January 1987; 5, 17, 19, 20,

23, and 24 February 1987; and 26 March 1987 at APG,. Measurements were made over the APG terrain

with a vriety of ground cover conditions: grassy, snowy, and icy. The decision to record data on any

particular day was based on the weather and ground conditions. A synopjfs of the logbook that was kept

throughout the course of the experiment is included in the Appendix. Descriptions of the conditions that

existed on any days during which measurements were taken can be found there.

3.2 Test Procedures. The experimental setup is shown in Figure 13. The radar antenna was

positioned at 1.5 m above the ground at Redstone and 1.1 m above the ground at APG, and the beam axis

of its conical scan was pointed at the center of travel of the trihedral comer reflector mounted on the

vertical positioner.

The tials run each day included one with the probe nmning from top to bottom of the positioner,

and one with it runnming from bottom to top, to verify that the measurements were repeatable. Another

comer reflector, whose cross section. was known very accurately, was positioned on a stationary pole near

the probe but out of the measurement path, to act as a boresight reference. The signal level measured off

the reference reflector was used to periodically check the calibration' of the radars and to make sure the

signal levels and error signals weir not drifting during the course of a day's trials. Measurements were

restricted to days with calm, to moderate winds to avoid sway of the probe.

11,
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An S-curve was meas•xrd before eah tHal rn. an"d each i:-re was ý.ýcc' In cibaratin2 'h, •2t C'

error voltage measurements wthich feoowed. To measure an S-orvc. the anterna mount %as swe• p.

vertically over the target mflector. The mflector was placed on a pole tall enough to ersure th, zx nna

beam did not strike the ground. Exam'ples of such w.nýzal S-cwves am sho•wn iin Figures 7 and S.

Azimuthal S-curves were similaily mea.sured by sweeping ute antenra from left to. nght across Lhe target

reflector.

4. ANALYSIS OF MULT7PATH PROPAGATION D•ATA

4.1 Calibration of Data. Figures 1 and 2 show typicW AGC sigrols versus probe posidon before

calibration and filtering. Processing the raw data -'-s a thriee-,ep process Luat consisted of: 1) converting

ang,ilar error voltages from "unit" error in Analog-to-Digita Sits (12-bit integer representations of the

actual voltage values) ,to angular error in degree:, 2) converting the position axis from "unit" position to

meters above ground and. 3) filtering the data with a smoothing algorithm.

""hc angular error voltage was calibrated to give angular error by using i-Z'nrmation derived from the

S-curves recorded before each trial. The straight-line secticn in tfr middle of each S-curve was used to

compute a slope. The slope is in units of units/degrees, as can be seen in Figures 7 and 8. The digitized

angular error voltage values were scaled by this slope value resulting in angular error in deg.'es.

Next, the position axis of the raw dau. was calibrated. The pulse geaerated output from the vertical

probe contaired position information in terms of uncalibrated "units." This value would change every time

the probe moved an inch along is pah., Thas, the number of inches the probe moved during a trial could

be determined by counting the number of position value changes. This count 'was then converted from

inches to meters to give the total distance moved during the trial in meters. Finally, the total distance in

meters was added to the measured minimum height above grounr of the probe t,, give the position

"information as "distance above ground."

In some instances, two consecutive samples of angular error voltage had the same probe position

value (in "units"), indicating that the probe had moved less than an inch between signal measurements.

In these cases, thp two samples for this probe height were averaged, and the averaged value was then

associated with this probe height in subsequent caiculatiom.

Is
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retlection pom to ripple. The curves were rxoohhed uwig a 10-point inoving average. The U•r:z

calibrated angular error verus target height curves are shown in Figures 14 to 28.

'.2 O ,'atjos. Table I presents a summary of the daia presented in Fi;gurs 14 tdhough 28. The

peak-to-peak angular errors are shown for the diffcrer conditions over the course of testing. Some of the

wn,- i.-t-resting features are not easily compiled into a table. When different trials on the sante day

)ielded the s;Pme value for peak-to-peak angular error, that value is listed in the table for that day.

In the plots shown in Figures 1 and 2, the target height is incre3asin, as the unit position increases.

These plots demonstrate how the spatial frequency of osillation of I i multipath induced errors decrease

F. Vi (2) i
where F. is the frequency of cyclic multipath error, h is the height of the antenna (which is constant in

this case), X, is the wavelength (also constant), and E is the ratc of tzrget elevation angle change as seen

by the radar. From the geometry, it can be seen that if E stays constant, then equal changes in target

height wi.: lead to faster cycling at the upper positions.

Inspection of the data leads to several observatie.z. The errors at Redstone consistently stayed below

the null, whereas the Aberdeen data showed the error osciliaing around the null, albeit sometimes making

large excurions from it. This bias below the nominal boresight is attributed to a mechanical'shift of the

boresight when the radar aim point was moved from the calibration target to the vertical probe. This

setup problem did not exist at AFP.

Another diffe.ence observed between the data from the two sites is tCat when both sites are covered

withdead grass, the maXimum.peak-to-peak error of the angular error curve oscillations is larger for the

Aberdeen data than the Redstone data, for both frequencies. At Redstone, a peak-to-peak angular error

Sf0.050 for 95 GHz was measured; at Aberdeer,,it was 0.1 It. At 140 GlIz, the difference becomes even

more apparent with a 0.01" angular error at Redstone and a 0.08" crror at Aberdeen.
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The Aberdeen data taken between 20 February and 26 March show the effect of going from a

relatively snow-free, terrain (mostly grass showing with patches of snow) to one covered with 35 cm of

snow and then back to a dry terrain. The maximum angular error for the 95-G0z radar, 0.?, occurred

on the day it snowed. Before the snow, it was 0.07*, and after the snow had cleared, it dropped back

down to 0.070. The largest variations in angle error also came on the day it snowed; however, they were

still large on the following day after an overnight freeze turned the ground cover into a crusty ice. The

melting water on the snow day and the ice that formed the following day increased the surface reflection

coefficient, thereby increasing the ground reflected beam strength and adding to multipath interference.

The 140-GHz data followed the same general pattern during these changing ground conditions. The

maximum angular error at 140 GHz was -0.25., but a return to grassy conditions caused the error to drop

back down to levels recorde befor, the snowfall.

Just as with the AGC signal, the spatial frequency of the angular error cycling increases as the probe

reflector beight increases. Measurements on the data sets indicate that ft ratio of the osci.lations of the

95-GHz to the 140-GHz curves is within ±15% of the ratio of the two wavelengths over all the data sets.
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Table 1. Peak-to-Peak Errors for Various Conditions

Terrain Ground Angular Error
Date Freq., Profile Cover Peak-to-Peak,

GHz deg

5 Dec 95 RA Grass 0.05
140 0.01

5 Feb 95 APG Crusty 014
140 0.10

17 Feb 95 APG Patchy 0.13
140 0.10

19 Feb 95 APG Melt 0.10
140 0.10

20 Feb 95 APG Melt 0.13
140 0.11

23 Feb
TR 1 95 APG Snow 0.32
TR 1 ,140 0.37
TR 2 95 APG Snow 0.16
TR 2 140 0.20

24 Feb
TR 1 95 APG Crusty 0.29
TR 1 140 0.25
TR 2 95 APG Crusty 0.24
TR 2 140 0.21

26 Mar 95 APG Grass 0.11
140 - 0.08

Notes: APG - Aberdee Pmving Gromd.
Cnmty mow atemsd ova with ice.
Melt = melting snow.
RA - Redskaw Arna.
Patchy - petches of mow and ice.

It can easily be .seen from the geometry of specular reflection that this should be a constant equal to

95/140. Also, as the target climbed above the terrain, the magnitude of the angular errors got smaller,

however, on days with snow and ice cover, the error is ttill significant at the maximum target heighL

5. CONCLUSIONS'

1) The peak-to-peak angular error is greater for the lower-frequency, wider-beamwidth radar in all

but two cases, both of them being under melting snow and high surface moisture corditions.
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2) In general, the angular error over grassy terrain was greater at Aberdeen than at Redstone. The

difference was particularly noticeable at 140 GHz. To a great extent, this was due to the very different

terrain profiles of these test sites.

3) TMx angular error on days when the ground is grassy is smaller than, on days when the ground

is covered with snow or ice.
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DATA LOG

Redstone
5 Decamber 36 ?.age was 2850 m. Antenna height above ground was 13 m. Probe height

aried from 0.4 to 3.6 m. Frequencies used were 95 GHz and 140 GHz,
which were transmitted cross polarized, 45" off the vertical. The optical
boresight was fixed at the center of the probe. Terrain was plowed and
covered with lorg grass and had some bare, muddy areas. The range was
fairly level over the. first half of its course, and then E, started to fall off over
the second half (as we moved towards the probe).

Trial I began at 1455 hours, with probe running from top to bottom of pole.

Trial 2 began at 1511 hours, with probe rinning from bottom to top of pole.

Trial 3 began at 1525 hours, with probe running from top to bottom of pole.
Aberdeen

Measurements took place at the electromagnetic propagztion (EMP) range.
Grow-d toughness was similar to that on the Redstone range. However, the
EMP range is fairly level, changing no more in elevation than six inches over
its entire distance of 838 m.

30 January 87 No log entry.

Trial began at 1456 hours, with probe running from bottom to top of pole.

The 140 data appears to be greatly different than the other 140 curves. This
data will not be used in the analysis.

5 Februa 87 Snow over entir field. frozen last nighL

Trial I began at 0837 hours, with probe running from top to bottom of pole.'

Trial 2 began at 0848 hours. ,vith probe running from bottom to top of pole.

17 February 87 Fro=z ground, with small patches of *rozen snow and some ice in low areas.

Trial began at 1445 hours, with probe running from top to bottom of pole.

19 February 87 Some partly frozen ground. small patches of melting snow, and water in low

Trial began at 1455 hours, with probe running from top to bottom of pole.

20 February 87 No log entry.

Trial I began at 1438 hours, with probe running from bourom to top of pole.

Trial 2 began at '1459 hours, with probe running from top to bottom of pole.
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23 February 87 Overnight snow, appioximately 14 inches. Warm day with very wet snow
approximately 11 inches deep.

Trial I began at 1314 hours, with probe running from bottom to top of pole.

Trial 2 began at 1341 hous, with probe running from top to bottom of po.e.

.24 February 87 Snow approximately 11 inches deep. Very h"d freeze overnight, thick crust.

Trial I began at 0826 hours, with probe running from bottom to top of pole.

Trial 2 began at 0841 hours, with probe running from top to bottom of pole.

26 March 87 No entry in log of ground conditions. Assumed dry.

Trial I began at 1416 hours, with probe running from bottom to top-of pole.

Trial 2 began at 1428 hours, with probe running from top to bottom of pole.
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