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ABSTRACT

Lithium, Potassium, and Cesium ion sources have been

studied using devices based on thermal emission from a Beta-

Eucryptite structure as possible ion sources for use in

satellite charge control. The experiments evaluated the

power requirements of the different ion emitters to produce

approximately 10(#A) of current and tested the effects of

using an Osmium-Ruthenium coating to increase the work

function of the emitter surface. Lifetime tests of the

different ion emitters were also performed.

Analysis of the

experimental findings showed that Lithium ion sources with a

lifetime of 93 hours and Potassium ion

sources with a

lifetime of 44 hours produced acceptable current levels for

use in spacecraft charge control devices.

produced the necessary current, 10(uxA),

temperature than the Lithium sources.

at 140°(C) lower

All of the coated

sources produced wildly fluctuating currents at the 10(gR)

level and were not acceptable for the purpose intended.
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I, INTRODUCTION

Satellite charge control technology is needed to improve
satellite survivability at high altitudes and to improve the
results of scientific measurements on research missions.
Plasma (ion) sources are needed to reduce the positive
charge induced on illuminated surfaces, by photoemission,
and to reduce differential, negative, charge buildup on
shadowed insulators. Previous experimental work on
satellite charge control devices at the Naval Postgraduate
Schoo! considered gas discharge technology (hollow cathodes)
and, more recently, solid state ion emitters.[Ref.1,2] The
solid state devices considered to date utilized Lithium ion
productiorn.. These emitters produced sufficient ions,
approximately 10(uR), for use in charge control devices.

One drawback of the lithium sources was that the power
requirements were greater than the desired power of
approximately 15(W). This thesis pursues the use of ion
emitters which produced Potassium or Cesium ions instead of
Lithium ions. The idea is to determine if the power
requirements for ion emitters could be reduced by using
other alkali elements with lower ionization energies than
Lithium without decreasing the source lifetimes or current

production below the levels required. Increased ion source
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lifetime and lower power requirements would increase the
usefulness of the sources as charge control devices on space

vehicles.

The work described below is based on the operation of an
ion emitter design which uses a tungsten pellet impregnated
with different emitter materials which have a common, Beta-
Eucryptite, crystalline structure. Lithium, Potassium, and
Cesium ion emitters were tested. The experiments were
designed to evaluate the power requirements to produce
approximately 10(#A) of current, the level which would be
necessary for the ion source to be used as part of a space
vehicle charge control device. Tests were done on the
effects of coating the surface of the emitter with an
Osmium-Ruthenium layer to increase the work function of the
emitter surface. The lifetimes of ion sources with

different emitter materials were also tested.




II. BACKGROUND

A. SPACECRAFT CHARGING
1. Hislory

Spacecraft charging is defined as the potential
difference between the surface of a spacecraft and the
surrounding plasma. Such potentials result from the
interaction of space vehicles with sunlight and the
surrounding plasma. 1In sunlight, high altitude satellites
typically float a few volts positive.[Ref.3] 1In the absence
of sunlight, potentials comparable to the energy of the
ambient electrons can develop. Negative potentials on
spacecraft ranging from 0(V) to -10,000(V) in eclipse were
first reported by DeForest in 1972 when observed by
detectors on ATS-5 (Applied Technology Satellite-5).
DeForest also reported that typical satellite potentials at
geosynchronous orbit in sunlight range from -200(V) to a fow
volts positive. Further measurements of negative potentials
were observed by detectors on ATS-6 (Applied Technology
Satellite-6) and SCATHA (Spacecraft Charging at High
Altitude) satellites. Olsen reported the largest observed
negative potential to date, -19,000(V) in eclipse and
-2,000(V) in sunlight, which occurred on

ATS-6.[Refs.4,5,6,7]




The occurrence of negative satellite potentials in
sunlight was something of a mystery, since the current due
to photoemission was so much larger than the ambient plasma
(electron) current. The resolution of the mystery involves
the process of differential charging which is the
development of large negative potentials on shadowed

surfaces.[Ref.8]

2. Charging Effects

Spacecraft charging, defined as the buildup of charge
on the satellite frame, may blind some environmental sensors
but is not a major problem by itself. Charging becomes a
problem, endangering satellites and their operation, when a
potential difference develops between adjacent surfaces.
This potential difference can lead to arcing. Arcing, which
is nature's way of balancing the charges, is observed and
reported as spacecraft operational anomalies. Arcing can be
a serious problem and it is possible for satellites to be
structurally damaged by strong discharges. 1In addition,
weak discharges have been related to unusual electronic
switching incidents, thermal coating breakdown, and
degradation of solar cell and optical sensor operations.
The initial correspondence between spacecraft charging and
operational anoralies came from comparing the time
distribution of the potentials measured on ATS-6, shown in

Figure 1(a), with the time distribution of operational




anomalies show: in Figure 1l(b). This comparison showed that
spacecraft anomalies occur more frequently during periods of
increased potential 25 measured by detectors on the
satellite. The detailed analysis of a major charging event
on the SCATHA satellite, in September 1982, established a
clear link between satellite charging, arcing, and
operational anomalies on the SCATHA

satellite.[Refs.4,9,10,11]
J. Charging Sources

a  Pholoelectrie Biect

/
Typically, the largest current at geosynchronous
orbit is produced by the Photoelectric effect. Photons
which collide with the surface of the spacecraft can knock
electrons from the spacecraft's surface. BAs electrons leave

the surface through photoemission the surface builds up a

positive charge as shown in Figure 2.[Ref.3,12]

b Space Hasma

The ambient space plasma also contributes to
surface charging. A spacecraft is constantly colliding with
charged particles, which are collected on the surface of the
satellite. Surfaces in shadow will typically build up a net
negative charge as shown in Figure 2. This is because the

flux (nvyp) of the electrons is approximately 43 times the

ambient ion flux for a Hydrogen ion environment. Some




spacecraft geometries can actually enhance this effect Ly
having depressions in the surface of the

spacecraft.[Refs.4,9,13]

¢ ferenlial (hareine

The spacecraft would charge to a uniform potential
if the materials making up the surface were uniform good
conductors. Satellite surface materials, however, are
selected mainly for their thermal properties which leads to
the majority of the spacecraft's surface being made of
insulators instead of conductors. BAlso, solar arrays are
made up of glass covered cells. Therefore, there is a wide
difference in the conductivity between different areac of
the surface. This conductivity difference leads to
differential charging in which the sunlit areas of the
satellite can charge positively, while the shaded areas

develop a negative charge.[Ref.4,12,13]

B. SPACECRAFT CHARGE CONTROL

1. Passive Control
The photoelectric effect and plasma bombardment
combine to generate the majority of spacecraft surface
charging. Many aspects 0f vehicle design including
stabilization techniques, material makeup, and orbital
positioning may vary the generation of surface charge due to

these processes. 1In particular, spacecraft design using




conducting materials for surface construction and proper
grounding can eliminate a large percentage of charging
problems. Also, the photoelectric effect and plasma
bombardment do offset each other to a certain extent as
would be expected. However, realistic designs restrictions
and some specific satellite missions eliminate the
possibility of sufficient charge control through

manufacturing techniques and orbital placement.[Ref.4,9]

2. Active Control

Active control of spacecraft charging would require a
satellite to be equipped with ion and electron emitters
capable of producing sufficient gquantities of charged
particles that when emitted from the satellite would
neutralize the effects of charging on the frame and
insulating surfaces. For science missions, typically
utilizing conductive coatings over the insulators, an ion
emitter would be necessary to neutralize the positive
spacecraft rotentials encountered in sunlight to allow
measurements of the very cold component of the ambient

plasma.[Ref.14,15]

3. Observation ¢f Charge Control
The effects of plasma emissions on spacecraft
potentials were reported by Olsen in 1981. Observations of
the charging effects on ATS-6 in conjunction with the

operation of an ion engine were examined to determine the



effect of plasma emission on satellite surface charging.
Data analysis showed that plasma emission could be used to
control spacecraft charging and differential surface

charging.[Ref.16])

Ion engine technology, as applied to charge control,
utilizes a gas discharge. The core of this technology is
the hollow cathode. Such a device is scheduled to fly in
1993 on the National Aeronautic and Space Administration
Polar satellite. The technology has some drawbacks. The
gas feed system, including pressure vessel, valve, and
regulator is heavy. The system can be difficult to
integrate and electromagnetically noisy. Weight and power
limitations led to a new charge control design for use on
the Cluster satellite. This design is a 7(kVv), 10(uR), .
liquid metal, Indium ion gun. The limitation of this design
is that it does not affect differential charging, since the

7(kV) ion beam does not return to the vehicle.[Ref.15]

4. Charge Control Device
Concerns about the problems associated with gas
discharge technology motivated a search for a different
design. This search led to studies using the Lithium ion
source developed by Heinz and Reaves [Ref.22]. This source
has been previously studied at the Naval Postgraduate School
[Ref.2]. One implementation of this design using the same

principles as the previous work at the Naval Postgraduate .




School is shown in Figure 3. This device, invented by F. L.
Leung, is a quiet plasma source which produces a plasma from
separate ion and electron emitters. Leung's plasma source
is designed for use in examining space plasma effects and
can be used as a charge neutralizer without causing the
electromagnetic interference associated with producing ions
using impact ionization discharges in neutral gases. This
thesis will investigate the types ¢f ion sources, which
could be used in a source like this one for spacecraft

charge control.[Ref.17]




Ill.  THEORY

A. 10N EMISSION

Ions are easily produced by placing certain materials on
the surface of a heated metal filament. The coating of
impurities can be evaporated as positive ions as long as the
work function of the surface of the filament exceeds the
ionization potential of the atom that is evaporating. This
principle is used extensively in mass spectrograph studies

such as research for unknown stable isotopes.[Ref.18,1¢%]

Blewett and Jones compared several alkali alumino-
silicate sources using this process by heating coated
tungsten spiral filaments. Of the alumino-silicates tested,
Beta-eucryptite was the most satisfactory producer of ions.
It produced almost twice the current at a given temperature
as the next best source. At 170(°C) below its melting point

it produced as much as 1 (mA) of current.[Ref.20]

B. BETA-EUCRYPTITE

1. Structure

Beta-Eucryptite (Lij0-A1503-28i03) is an
aluminosilicate with a crystalline structure as shown in

Figure 4. Its structure is similar to high temperature

10




guartz with the exception that half of the Silicon atoms are
replaced by Aluminum atoms in alternate layers along the ¢
axis. The Lithium atoms are situated in large holes in the
center of the lattice structure and bound to Oxygen atoms.
These Oxygen atoms also have electrostatic bonds to one
Silicon and one Aluminum atom. The bonds to the Silicon and
Aluminum atoms are much stronger than the bonds to the
Lithium atom. When heated this difference in bond strength
causes the structure to expand in such a way that the
centrally located openings in the lattice are increased in
diameter. The Lithium molecules, located in these opening
are then easily released when an electric field 1s

applied.[Ref.21]

2. Production Mechanism
Crystal conglomerates of Beta-Eucryptite, which were

essentially single crystals, have been examined in order to
determine the conductinc mechanism within the lattice
structure. Measurements c¢f the thermoelectric power of
Beta-Eucryptite showed that the crystal was p-type. This is
consistent with having a concentration gradient of
positively charged Lithium atoms oriented along the
thickness of the crystal. This explanation was confirmed by
observing that Lithium ion production is increased when the
emitting plane is perpendicular to the symmetry

axis.[Ref.21]

11




3. Conclusion
Therefore, the structural analysis and experimental
results indicate that Lithium 1ons travel through channels
in the crystal structure which are enhanced by heating the .
crystal. This makes the structure of Beta-Eucryptite an

excellent configuration for the production of ions.
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IV. 10N SOURCES

A.  INTRODUCTION

The ion sources used in the experimental work of this
thesis were produced by Spectra-Mat Incorporated of
Watsonville, California. These sources are based on a design
by O. Heinz and R. T. Reaves. The source takes advantage of
the nonuniform crystalline expansion of Beta-Eucryptite in
conjunction with the high work function of a porous tungsten
disc. The source, coated with Beta-Eucryptite, when heated
is a copious ion producer. It is used in conjunction with
an extraction grid, placed at a negative potential, which
overcomes the ion vapor pressure at the emitting surface and

accelerates the ions away from the source.[Ref.21]

B. 10N SOURCE STRUCTURE.

Based on the fact that crystalline compounds of Beta-
Eucryptite would emit Lithium ions when heated above
1000(°C), Heinz and Reaves designed a compact Lithium
emitter in 1968 which is shown in Figure 5. This source was

described as follows.

13




The emitter consists of an indirectly heated, highly
porous, tungsten plug into whichk the emitter material! has
been fused. The molybdenum body holding the tungsten plug
is machined with a solid partition for complete isoclation
between the emitter and the heater cavity. The three

rhenium support struts are brazed at a 120° spacing with a

moly/ruthenium eutectic at 2100°C in hydrogen, yielding a
ductile and versatile mounting tripod. The heater is a
noninductively wound bifilar coil with heliarc welded
rhenium leads solidly potted into the body cavity. The

high purity Al,03 potting mix is Hy fired at 1900(°C)
which completely immobilizes the heater. The emitter
matrix, a specially prepared, extremely porous, tungsten

disc with a density of 30% (70% porosity) is heliarc
welded to the moly body.[Ref.22]

C. EMITTING COMPOUNDS

1. Compound Composition

The ion sources examined in this thesis were coated
with Beta-Eucryptite compounds. They were prepared by
placing an ion emitter impregnate mixture of 1 mole of
alkal: or alkaline earth carbonate, 2 moles of silica and 1
mole of alumina on the surface of the porous tungsten disc
and melting the mixture onto the disc at approximately
1650(°C) in a Hydrogen atmosphere. The alkali or alkaline
earth carbonates are greater then 99.5% pure. The silica is
140 mesh powder and the alumina is 0.05 micron

alumina.[Ref.22,23]

2. Impregnale Mixtures

Three different impregnate mixtures were examined in
this thesis. Bll three were prepared as described with

different alkali elements. These elements were Lithium,

14




Potassium, and Cesium. It is assumed that the Potassium and
Cesium atoms replace the Lithium atoms in the structure of
Beta-Eucryptite without changing the crystalline structure
of the lattice. In addition, some Potassium and Lithium
sources were coated with a 1 Angstrom coating of Osmium-

Ruthenium to reduce the work function of the surface.

3. Production Differences
During conversations with Spectra-Mat

representatives, some differences in the actual production
of emitters with these different impregnates were discussed.
When the Lithium mixture is melted on the surface of the
disc, heating is reduced as soon as the mixture glasses
over. As the device cools, a portion of the impregnate pops
off the surface. This leaves a deposit of Lithium
impregnate on the surface which is flat and requires no
further processing. When Potassium and Cesium are used, the
same process is followed but all of the impregnate remains
on the surface of the disc. This leaves an unacceptable
surface which is flattened by grinding a portion of the
impregnate off of the surface. This suggests that the
actual amount of impregnate deposited on the surface is not
as controllable when Lithium impregnate is used. 1In
addition, none of the impregnate mixtures can be completely
melted into the tungsten plug without evaporating the alkali

atoms in the process.

15




V. EXPERIMENTAL EQUIPMENT

The experimental equipment consisted of a vacuum system
used to produce a high vacuum in a chamber, various
potential and current measuring equipment, and a power
supply to provide power to the emitting source heater. The

emitting source was mounted in a specially designed ion gun.

A. VACUUM SYSTEM

A Varian vacuum system was used to provide an
experimental environment of 10-3 to 10'7(torr). The Varian
system used is equipped with a turbo-pump to produce high
vacuum pumping. The normal operation pressure for
experiments was 1.3 x 10’7(torr). This system is not

equipped with a liquid nitrogen trap.

B. VACUUM CHAMBER

The vacuum chamber was a large glass bell jar. BAll
electrical connections were made through standard vacuum
connectors on the bottom plate of the chamber. A copper
mesh screen was wrapped around the entire interior of the
chamber and used to collect ions which traveled through the

extraction grid.

16




C. 10N GUN

The ion gun, shown in Figure 6, was centrally mounted in
the bell jar. It was designed to electrically isolate the
extraction grid from the emitter source and the source
mounting plate. The electrical circuit used during the
experiments is shown in Figure 7. Ceramic tubing, cut to
the proper length, was used to isolate the connecting bolts
and also used as spacers to separate the plates of the ion
gun. The spacers allowed the experiments to be standardized
with the extraction grid positioned .25(in) from the surface

0of the emitter source.

1. Extraction Grid

The extraction grid was constructed from a thin sheet
of tantalum. A 1/32(in) drill bit was used to perforate a
circular area 1 inch in diameter in the center of the
3.5(in) diameter circular sheet. The exact transparency of
the grid was not directly measured. The holes are spaced as
closely as the machining process would allow causing the

grid to be approximately 40% transparent.

2. Mounting Plate

The emitter source is mounted on a thin tantalum
sheet which is attached to the center of a 1/4(in) thick
aluminum disc for stability. The tantalum sheet has a

central hole allowing the heater leads to pass through the

17




mounting plate. There are also small holes placed to line
up with the support struts attached to the emitter source.
During mounting the struts are easily bent over on the back

of the mounting sheet to keep the emitter in position.

4

3. Support Plate

All electrical connections are made on the back of
the support plate. The support plate also has a central
hole to allow the connections to the emitter's heater to

pass through the support plate.

18




VI EXPERIMENTAL OBSERVATIONS

All of the emitter sources were mounted in the same ion
gun and positioned .25 inches from the extraction grid. Ion
production was measured as a current flowing to the
extraction grid and the copper screen surrounding the inside
of the vacuum chamber. The total current produced by a
source s reported as the sum of these two currents. The
temperature of the source was measured with an optica:
pyrometer focusing on the side of the canister in which the
source was contained. Frontal teriperature measurements of
the actual emitting surface were not possible because the
transparency of the extraction grid was not sufficient to
allow accurate readings through the grid. During normal
operations the screen potential was maintained at -200(V)

and the extraction grid potential was maintained at -100(V).

A.  LITHIUM 10N SOURCES

Two Lithium sources were tested during these
experiments. The fiist source was used to exhaustion for
the purpose of lifetime testing. The second source was used
to verify that the results of the first source were

reproducible.

19




1. Lifetime

The first Lithium ion source was slowly heated until
it reached 1100(°C). This tempecrature was maintained over a
period of days. The source was operated approximately 8
hours a day and power was turried completely off each night.
The vacuum (107 torr) was maintained at all times. Figure
8 shows the operating lifetime ot the source. The lithium
source current production increased each time it was
operated through approximately 90 hours as shown in the
figure. It reached a peak of 30(uR) before ion production
began falling rapidly. Figure 9 is an expanded graph of the
final hours of current production for the Lithium source.
The decrease 1in current is attributed to the depletion of
Lithium within the source. After 93 hours and 32 minutes
the source was producing less than 2(#A) of current and was

removed from the ion gun.

2. Power and Temperature

The power to the heater was incrementally decreased
once the source was steadily producing ions to examine the
current production as a function of power and as a fuiction
of the temperature corresponding to that power. Figure 10
shows that ion production for the Lithium source does not
reach 1(xA) until the source reaches a temperature of
945(°C) at a power of 17(W). The current increased steadily

as the heater power was increased. At temperatures over

20




1150(°C) the heater showed signs of gradual failure as power
had to be gradually increased to maintain a constant

temperature.

3. Bxtraction Polential

jure 11 shows the total current as a function of
extraction grid potential. The grid potential was decreased
from -100(V) to -10(V) while maintaining a constant
temperature. The screen potential was also held constant
while the grid sweep was performed. The figure shows that
ion production is increased with an increase in extraction
potential.’® The current production does not appear to
flatten out before reaching -100(V) extraction potential.
Figure 11 also shows the breakdown between the current
collected on the graid and the screen. The grid current 1is
always higher and both currents increase at the same rate

with an increase in extraction voltage.

4. Screen Polential
Figure 12 shows that varying the screen potential
from -100(V) to -300(V) hac no effect on the production of
ions. This demonstrates that the negative potential on the
collecting screen is not influencing the electric field
involved in the production of the Lithium ions. Also, space

charge effects outside the source region can be ignored.

21




5. Lithium Source Comparison

a fower

Figure 13 shows the total current production of
the two Lithium sources as a function of applied heater
power. The first source produced approximately the same
number of ions at almost 6(W) less power. One of the
sources could have been in better thermal contact with the
mounting plate which could account for a portion of this
power difference. Also, there could have been manufacturing
differences, such as in heater placement, which could
account for the difference in power requirements between the
sources. No experiments were performed to determine the
relationship between these two possible causes for different
heater power requirements. Figure 13 also shows that the
two Lithium sources perform much the same when ion
production is compared as a function of temperature.
However, the first source does produce slightly more current

at all temperature settings.

b Jemperalure and Grid Polentia/

Figure 14 shows the effect of varying the grid
potential at various temperatures. It shows that although
more ions are produced at higher temperatures the difference
in production is not realized until the grid potential is

-50(V) or higher.
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B.  POTASSIUM ION SOURCES

Three Potaséium ion sources were used in these
experiments. The first and second sources were run to
exhaustion for the purpose of lifetime testing and
verification of ion production. The third source failed
after 1 hour of operation. The third source was operating
at 895(°C) and 15.7(W) when an unexplained arc between the
source and the extraction grid was observed. The arc
current was sufficient to blow the fuse in the multimeter
measuring current to the extraction grid. The vacuum
pressure remained at 2.2 x 10‘7(torr) before and after this
event. It is possible that a large quantity of Potassium
ionized at the same time causing this arc. After this event
the source was exhausted. No ion production occurred

regardless of increased temperature or extraction potential.

1. Lifetime

The Potassium sources were slowly heated to 930(°C).
Several grid and power sweeps were performed and then the
sources were operated at 885(°C) for a period of days.

Power was increased and reduced daily as described for
previous sources. The lifetime current production of the
first source is shown in Figure 15. Current production fell
below 2(uA) after 16 hours of operation. The extraction

potential was increased to -200(V) in an attempt to extend
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the life of the source. Current production promptly
increased to 6(#uA). After an additional 18 hours the
current again fell below 2(sA) and the extraction potential
was increased to -300(V). The increase to -300(V) increased
the current production to 4(#A) but the current gradually
decreased to below 2(uA) within 5 hours and the source was

removed from the ion gun.

2. Power and Temperature
The heater power was slowly decreased after the
source had been operated for several hours. Current
production as a function of power and temperature for the
first Potassium source is shown in Figure 16. Current
production increased with increasing power. This source

produced 1(xA) of current at 790(°C) and 9(W) power.

3. Extraction Potential

Figure 17 shows the total current as a function of
extraction grid potential for the first Potassium ion
source. The grid potential was increase to -200(V) and then
decreased to -10(V) while maintaining a constant temperature
and a constant screen potential. This figure shows that
Potassium ion production is also increased with increased
extraction potential with the sharpest increase occurring

from -10(V) to -70(V). PFigure 17 also shows that the grid
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current is always greater than the screen current and both
currents increase at the same rate with increased extraction

potential.

4. Polassium Source Comparison

a Lifelime

Figure 18 shows the data from Figure 15 with the
data from a second Potassium source added. Both sources
produced currents above 2(uxA) for approximately 16 hours
with an extraction potential of -100(V). The second source
was initially operated at a higher temperature and produced
more current during that time which would account for the
difference in lifetime between the two sources. Both
sources immediately increase current production to 7(gd)
when the extraction potential was increased to -200(V). The
-200(V) extraction potential caused both sources to produce
currents above 2(#A) for an additional 20 hours. The grid

potential was then raised to -300(V) which increased the

life of each source an additional 5 hours.

b Power
Figure 19 shows total current production of the
two Potassium sources as a function of applied heater power
and the corresponding temperature. The figure shows that
the two sources performed relatively the same although the
first source produced higher currents for similar

temperatures. This difference is probably due to initially
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operating the second source at higher temperatures causing a
large initial depletion of the second Potassium source.
Comparison of the power and temperature curves does show
that the heater in the first source is performing more
efficiently. This is probably due to manufacturing
differences, since operating techniques were fairly standard

by this point.

¢ Temperature and Crid Polenlia/

Figure 20 shows the effect of varying the grid
potential at various temperatures. It shows that for the
second Potassium source an increase in temperature causes an
increase in ion production at all extraction potentials.
However, the first source produced more ions than the second
source at all temperatures and their ion production is
essentially equal with a temperature difference of 40(°C).
This difference is again due to the second source being
operated at higher temperatures early in the experiment and

being more depleted of Potassium than the first source when

the measurements in Figure 20 were made.

C. POTASSIUM ION SOURCES WITH COATING

Two Potassium ion sources with Osmium-Ruthenium coating
were tested. The first source was used to exhaustion for
the purpose of lifetime testing. The second source was used

to verify the results from the first source.
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1. Lifetime

The first coated Potassium source was slowly heated
to 930(°C) and several experiments varying the potential and
heater power were then performed. Figure 21 shows the
operating lifetime of the source. RAfter 9 hours of
operation an arc was observed between the extraction grid
and the source while operating at 910(°C) and 16.64(W) of
power. The extraction grid potential was set at -200(V).
After the arc, the current dropped from 43.67(uA) to 10(sd)
and then climbed to 32(sA) in a matter of minutes. The
vacuum pressure remained at 2.0 x 10'7(torr) during this
event. The arc is unexplained but it is possible that a
large quantity'of Potassium ionized at the same time causing
the arc. Throughout the life of this source the current
production was very unstable. At times, the current would
vary as much as 10(#A) in a matter of seconds. This
fluctuation was probably due to the presence of the Osmium-
Ruthenium coating. The coating increases the work function
of the surface. This apparently causes inconsistent ion
production in the current production range over which these
sources were operating. The source was then run to
exhaustion with a grid potential of -200(V) and a screen
potential of -100(V). These settings reduced the current

fluctuation as much as possible.
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2. Power and Temperalure

The power to the heater was varied once the source
had run for several hours. Figure 22 shows the ion
production for both coated Potassium sources as a function
of power and temperature. These sources produce 1l(sA) of
current at 7(W) to 9(W) of power and a temperature of
760(°C). 1Ion production increases with temperature until
approximately 860(°C) where the curve flattens out. The
data points for total current are averages of the current as
it varied sharply over short time intervals. For example, a
reading varying from 5(wA) to 15(uRA) was reported as 10(uA).
Current production was therefore much more unstable than the

figure indicates.

3. Extraction Polential

Figure 23 shows the total current as a function of
extraction grid potential for the first coated Potassium
source. The grid potential was lowered from -200(V) to
-10(V) while maintaining a constant temperature and screen
potential. This figure shows that Potassium ion production
is also increased with increased extraction potential with
the sharpest increase occurring from -10(V) to -90(V).
Figure 23 also shows that the grid current is always greater

than the screen current and both currents increase at the
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same rate with increased extraction potential. Again,
current production was more unstable than the figure

indicates.
4. Coaled Polassium Source Comparison

a  fower
Figure 22 shows the total current production of

the two coated Potassium sources as a function of applied
heater power and the corresponding temperature. The figure
shows that the second source produced approximately the same
number of ions at almost 4(W) less power. This difference
is again attributed to mounting and manufacturing
differences. Figure 22 also shows that the two coated
Potassium sources perform much the same when ion production

is compared as a function of temperature.

b Temperalure and Crid Folenlia/

Figure 24 shows the effect of varying the grid
potential at various temperatures. It shows that for the
first coated Potassium source an increase in temperature
caused an increase in ion production at all extraction
potentials. However, the second source produced less ions
than the first source when operated at 20(°C) higher
temperature. This difference is attributed to the
fluctuation in current production observed with the coated

Potassium sources.
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D. CESIUM 10N SOURCE

Two Cesium ion sources were tested during these
experiments. Both sources were used to exhaustion for the

purpose of lifetime testing and verification of results.

1. lifetime

The first Cesium source was slowly heated to 895(°C).
Several grid and power sweeps were performed and then the
heater power to the source was gradually increased to
1100(°C) over a period of days in an attempt to increase the
lifetime of the source. The lifetime current production of
the first source is shown in Figure 25. Current production
fell to under 2(uA) after 44 houfs and 55 minutes of
operation while the extraction potential was maintained at
-100(VvV). The screen current of this sources varied as much
as 3(#uA) in a matter of seconds throughout the lifetime of
sources. The grid current remained relatively stable
throughout the experiments. The fluctuation in current
production is probably due to the low ionization of Cesium
and the relatively high temperatures at which the source was
operated. This source never produced more than 10(xA) of

current throughout its operation.
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2. Power and Temperalure
The heater power was slowly decreased after the

source had been operated for several hours. Current
production as a function of power and temperature for the
first Cesium source is shown in Figure 26. Current
production increased with increasing power and the source
produced 1(#A) of current at below 760(°C) and 9.4(W) power.
The exact temperature is unknown because the lowest
temperature reading possible on the optical pyrometer used

was 760(°C).

3. Extraction Potential

Figure 27 shows the total current as a function of
extraction grid potential for the first Cesium ion source.
The grid potential was decreased from -100(V) to -10(V)
while maintaining a constant temperature and a constant
screen potential. This figure shows that Cesium ion
production is increased with increased extraction potential
with the sharpest increase occurring from -10(V) to -40(V).
This figure also shows that the screen current is initially
greater than the grid current but flattens out at 3(uA).
The screen current and total current are average values of
the current produced at any one time as the screen current
varied as much as 3(uA) in a matter of seconds. The grid

current was relatively stable. Again, this instability is
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probably due to the low ionization energy of Cesium and the
relatively high temperatures applied during these
experiments.
4. Cesium Source Comparison
g, Lifelme

Figure 28 shows the data from Figure 25 with the
data from the second Cesium source added. The first source
produced above 2(#A) of current for 44 hours and 55 minutes
with an applied extraction potential of -100(V). The second
source lasted only 27 hours. The second source was
initially operated at a higher temperature and produced more
current during that time which would account for the
difference in lifetime between the two sources. The total
ion production of the two sources over their entire lifetime

was comparable.

5 Power
Figure 29 shows total current production of the
two Cesium sources as a function of applied heater power and
the corresponding temperature. The figure shows that the
two sources performed relatively the same with respect to

power and temperature.

¢ Jemperalure and Grid Folenlia/

Figure 30 shows the effect of varying the grid

potential at various temperatures. It shows that for the
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second source an increase in extraction potential causes an
increase in ion production. This experiment was not run on

the first Cesium source.

E.  CESIUM 10N SOURCES WITH COATING

Two Cesium ion sources with Osmium-Ruthenium coating
were tested for ion production. Both sources were used to
exhaustion for the purpose of lifetime testing and

verification of results.

1. Lifetime

The first coated Cesium source was slowly heated to
900(°C). The temperature was later increased to 925(°C) and
the current production of the source declined throughout the
experiment. Figure 31 shows the operating lifetime of the
source. After 8 hours of operation the current production
fell to below 2(#A) and the source was removed from the ion
gun. No grid extraction or power experiments were performed
on this source because of its short lifetime. Throughout
the life of the source the current production was unstable.
The current varied as much as 2(gA) in a matter of seconds.
This fluctuation is probably due to the Osmium-Ruthenium
coating and the low ionization energy of Cesium which caused
inconsistent ion production in the current production range

over which this source was operating.
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2. Power and Temperature

The power to the heater of the first coated Cesium
source was observed when the source was initially heated.
Figure 32 shows the ion production for the first ion source
as a function of power and temperature. The source produced
1(#A) of current below 760(°C) and 8(W) of power. Ion
production increased with temperature until 900(°C), which
was the upper limit of the initial heating, without showing

signs of flattening out.

3. Extraction Polential
Figure 33 shows the total current as a function of

extraction grid potential for the second coated Cesium
source. The grid potential was lowered from -200(V) to
-100(V) while maintaining a constant temperature and screen
potential. The figure shows that Cesium ion production is
increased with increased extraction potential and the
sharpest increase occurred from -10(V) to -60(V). Figure 33
also shows that the grid current is always greater than the
screen current and both currents increase at the same rate

with i1ncreased extraction potential.
4. Coaled Cesium Source Comparison
g, lLifelme
Figure 34 shows the lifetime current production of

the two coated Cesium sources. The first source produced

currents above ?(uA) for 8 hours and 38 minutes while the
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second source lasted for just over 14 hours. The first
source was initially operated at higher temperatures and
produced more ions during this time than the second source.
This difference in source operation would account for the
difference in lifetime. Therefore, the total ion production

of the two sources are comparable.

b fower
Figure 35 shows the total current productior of
the two coated Cesium sources as a function of applied
heater power and the corresponding temperature. The figure
shows that the two sources performed very differently with
respect to power ancd temperature. The fluctuating current
production and the differences in sources stated before

contributed to these results.
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VII.  SOURCE COMPARISON

For the purpose of comparison, a minimum requirement of
10(eh) of relatively stable current production is assumed to

be necessary for the purposes of spacecraft charge control.

A.  SOURCE LIFETIMES

Of the five types of sources tested, a Lithium source
produced ions for more than twice as long (93 hours) as the
next best sources. Only one Lithium source was operated to
exhaustion but the second Lithium source was operated for
over 43 hours without falling below 2(sR) of current
production. The Potassium sources and the Cesium sources
both lasted approximately 44 hours. The coated Potassium
source lasted almost as long as the uncoated Potassium
source and fell below the 2(uA) cutoff after 38 hours. The
coated Cesium sources had the shortest lifetimes and fell
below the cutoff after only 14 hours of ion production.
Therefore, Lithium would be judged the best source type in
the criteria of lifetime based on the results of these
experiments. Potassium, Cesium, and coated Potassium
sources would be judged as equal second best choices in the

lifetime criteria.
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The percentage of alkali ions extracted from the
exhausted sources could not be estimated from these
experiments. There is an unknown loss of the alkali
material, due to evaporation and surface preparation, during
the manufacturing process. Detailed measurements would have
to be taken at all stages of production in order to estimate

the percentage of alkali material extracted as ions.

B.  POWER AND TEMPERATURE,

It is advantageous to produce a sufficient quantity of
ions to control spacecraft charging at the lowest possible
temperature and therefore at the lowest required power.
This fact is based on the limited power available on
operating satellites. For this reason, lower temperature

current production will be judged as better.
1. Coated and Uncoaled Sources

a, folassium
Figure 36 shows a comparison of the coated and
uncoated Potassium scurces current production as a function
ot temperature. At lower temperatures the coated Potassium
source produced approximately the same current as the
uncoated source at more than 50(°C) lower temperature. This
relationship holds until the current production coincides at
approximately 940(°C). The reduction in temperature

requirement is due to the Osmium-Ruthenium coating's higher

37




surface work function. Therefore, in respect to temperature
and required power the coated Potassium would be judged to

be the better source.

)

4

Cesum

Figure 37 shows a comparison of the coated and
uncoated Cesium sources current production as a function of
temperature. At lower temperatures the coated Cesium source
produced more current than the uncoated source until the
sources reached 790(°C) where the coated Cesium source's
current production fell below that of the uncoated source.
For the purpose of charge control, the coated Cesium sources
produced insufficient currents at all temperatures. None of
the coated Cesium ion sources reached the desired current
production level of 10(uA) at any time during any of the
experiments that were conducted. Although the coated source
does initially produce current at lower temperatures than
the uncoated source, this current is insufficient for the
purposes of charge control and the uncoated Cesium ion
source is judged to be the better source with respect to

temperature and power requirements.
2. All Sources
Figure 38 shows a comparison of all the types of ion
sources examined with respect to temperature. The Lithium

source did not produce 10(ewA) of current until it reached

1050(°C) which is was 150(°C) higher than the next closest
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type of ion source. This temperature difference is due to
the higher ionization energy of Lithium as compared to
Potassium and Cesium. Figure 39 shows the same comparison
with the Lithium source removed. The Potassium ion source
required a temperature of 910(°C) to reach the 10(uR) level.
The Cesium ion source reached the same level at 865(°C)
while the coated Potassium source required only 850(°C) to
reach 10(#A) of current production. The coated Cesium ion
source never reached the 10(uA) level at any of the
temperatures applied. The figure therefore shows that the
Osmium-Ruthenium coating on the surface of the coated
Potassium source 1s able to overcome the expected lower
temperature requirements of Cesium due to its lower
ionization energy. Therefore, based on these experiments
the coated Potassium ion source would be judged to be the
better ion source type with respect to power and temperature

requirements.

C. EXTRACTION POTENTIAL

Figure 40 shows the total current as a function of
extraction grid potential for each type of ion source. All
of the sources were initially set at a power and
corresponding temperature so that the current production was
a constant 10(sA) with an applied extraction potential of

-100(V) and a screen current of -200(V). The coated Cesium
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source never reached 10(#R) as the figure shows. The
extraction ¢rid was then increased to -200(V) and slowly
decreased to -10(V). The figure shows that the Lithium ion
source was the most effective ion producer at lower
extraction potentials, closely followed by the Cesium ion
source. However, both of the Potassium ion source types are
more affected by extraction potentials greater than -100(V).
This result indicates that the extraction potential required
for ion production may be related to the mass of the
extracted ions. It is possible that the larger Potassium
atoms encounter a higher resistance in the lattice structure
of the Beta-Eucryptite which can be overcome with an
increase in the extraction potential. This hypothesis is
substantiated to a certain degree ty the Lithium ion source,
which is producing smalle: Lithium ions, reaching a constant
current production at -50(V). These results suggest that
the Potassium ion sources could be operated at lower
temperatures with increased extraction potentials and
produce sufficient ions for the purposes of charge control
at lower power requirements. Further experiments, such as
lifetime tests run at -200(V) extraction potential, would
have to be performed to verify the feasibility of this

arrangement.
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VIII.  CONCLUSIONS

The experiments performed in conjunction with this
thesis evaluated Lithium, Potassium, Osmium-Ruthenium coated
Potassium, Cesium, and Osmium-Ruthenium coated Cesium ion
sources for possible use in satellite charge control
devices. A comparison of these sources shows that only the
Lithium and Potassium ion sources are acceptable for
satellite charge control purposes. The choice between these
two source types would be a trade off between the longer
lifetime of the Lithium source and the lower power
requirements of the Potassium source. The choice between
these two sources would depend ¢n tie satellite charge
control requirements and the number of sources which could

be used in sequence in a charge control device.

These experiments showed that the idea of using
Potassium sources in place of the Lithium sources does lower
the power requirements for ion production in the emitter
design used in these experiments. The experiments also
showed that, although coating the sources to increase the
surface work function does reduce the power requirements,
the coated sources were unsuitable for use in charge control

devices due to fluctuating current production.
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Figure 1 (a). Time Distribution of ATS8-6 Spacecraft
Charging Bvents: probability that charging occurred
plotted at the local time of the satellite. (b). Time
Distribution. of Spacecraft Anomalies: plotted at the
local time of various satellites at geosynchronous
orbit.[Ref.10]
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Figure 4. Crystal Structure of Beta-Eucryptite viewed
along c axis. Large spheres represent oxygen atoms,
small spheres either Si or Al atoms. The Lithium ions
are situated in center openings.[Ref.21]
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Figure 22. Potassium With Coating Total Current vs
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Figure 28. Cesium Lifetimes.
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Figure 31. Cesium Lifetime With Coating.
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