
Copy of 87 copies

AD-A243 089 ()

IDA PAPER P-2628

AN EXAMINATION OF SELECTED COMMERCIAL
SOFTWARE TESTING TOOLS

Bill R. Brykczynski, Task Leader
Christine Youngblut
Reginald N. Meeson

October 1991

ClD

Prepared for I-
Strategic Defense Initiative Organization T

Approved for public release, unlimited distribution: 29 October 1991.

* j INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria. Virginia 22311-1772

IDA Log No. HO 91-039501

DEFINITIONS
IDA publishes the following documents to report the results of its work.

Reports
Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody results of major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address Issues that have
significant economic Implications. IDA Reports are reviewed by outside panels of experts
to ensure their high quality and relevance to the problems studied, and they are released
by the President of IDA.

Group Reports

Group Reports record the findings and results of IDA established working groups and
panels composed of senior individuals addressing major issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to the problems studied, and are released by the President of IDA.

Papers
Papers, also authoritative and carefully considered products of IDA, address studies that
are narrower in scope than those covered in Reports. IDA Papers are reviewed to ensure
that they meet the high standards expected of refereed papers in professional journals or
formal Agency reports.

Documents
IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done in quick reaction studies, (b) to record the proceedings of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed In the course of an investigation, or (e) to forward
Information that Is essentially unanalyzed and unevaluated. The review of IDA Documents
Is suited to their content and intended use.

The work reported in this document was conducted under contract MDA 903 89 C 0003 for
the Department of Defense. The publication of this IDA document does not indicate
endorsement by the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.

This Paper has been reviewed by IDA to assure that it meets high standards of
thoroughness, objectivity, and appropriate analytical methodology and that the results,
conclusions and recommendations are properly supported by the material presented.

@1991 Institute for Defense Analyses

The Government of the United States is granted an unlimited license to reproduce this
document.

Fomn ApprodREPORT DOCUMENTATION PAGE NO.
Publi e wa= V rd for" this oflaleci of ifamatiat is egimawd o averae I hor pc bmhdm d thu ire for iew m . f. aWI. in g data sources.

p.thri, a..m the dVa needed. ad mmp me .vuwma the =lea im. C a W.I. d or any othe. aspect of ths
collealan of informattua. including Dainetlans for fuin this burdat. to Wshintm Headquarter Swices, DiRetotex or l ai ua p u uma i Report. 1215 Jefferon
Dav=s Highway, Suite 1204. AtoaVA22202-4302,dtothOeofMafem and udatpwo Reton Proje (0704-4188),hgon. DC 20503.

1. AGENCY USE ONLY (Leave blask) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 1991 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An Examination of Selected Commercial Software Testing Tools MDA 903 89 C 0003

Task T-R2-597.21
6. AUTHOR(S)

Bill R. Brykczynski, Christine Youngblut, Reginald N. Meeson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION REPORT

NUMBER

Institute for Defense Analyses (IDA) IDA Paper P-2628
1801 N. Beauregard St.
Alexandria, VA 22311-1772

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Computer Resources, Engineering Division REPORT rNUMBER

SDIO
Room 1E149, The Pentagon
Washington, D.C. 20301-7100

11. SUPPLEMENTARY NOTES

12L DI'RIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release, unlimited distribution: 29 October 2A
1991.

13. ABSTRACT (Maximum 200 words)

This paper reports on the examination of ten commercial tools identified for the static and dynamic
analysis of Ada code. It provides software development managers with information that may help
them gain an understanding of the types of tools that are commercially available, the functionality of
these tools, and how they can aid the development of Ada software. During the course of the
assessment, the tools were applied to a series of Ada programs in order to assess their functionality.
Each tool was then described in terms of its functionality, ease of use, and documentation and support.
Problems encountered during the examination and other pertinent observations were also recorded.
Significant findings from this study include the following: 1) some of the examined tools could be
brought into immediate use to improve the cost-effectiveness of testing for SDI software development
efforts, 2) the coverage analyzers provide reporting data that can support the management of SDI
testing efforts, and 3) many of the tools can be used in conjunction to overcome the limitations of
particular tools.

14. SUBJECTTERMS 15. NUMBER OF PAGES
Software Testing; Software Testing Tools; Ada; SDL 108

16. PRICE CODE

17._SECURIYCLA55IRCA1,ONIS.sEcURITYCLA SIFICATION 19.SECURrTYQASSIRCATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR
NSN 7540-01-230-5500 SUmdtd Form 293 (Rev. 2-89)

Precrbed by ANSI Sd. Z39-18
299-102

IDA PAPER P-2628

AN EXAMINATION OF SELECTED COMMERCIAL
SOFTWARE TESTING TOOLS

Bill R. Brykczynski, Task Leader 9
Christine Youngblut
Reginald N. Meeson

October 1991
DJ t F

Apprmd wi puabli rstsus um~igie ius~hin: 22 Octeb IMl.

IDA
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003
Task T-R2-597.21

PREFACE

This paper was prepared by the Institute for Defense Analyses (IDA) for the
Strategic Defense Initiative Organization (SDIO), under contract MDA 903 89 C 0003,
Subtask Order T-R2-597.21, "SDS Test and Evaluation." The objective of the subtask is
to assist the SDIO in planning, executing, and monitoring software testing and evaluation
research, development, and practice.

In support of this objective, IDA conducted an examination of several commer-
cially available tools that support static and dynamic analysis of Ada code. This paper
presents the results of the assessment and provides software development managers with
information on current capabilities of commercial testing tools.

This paper was reviewed by the following members of the IDA research staff:
Dr. Robert Atwell, Dr. Dennis Fife, Dr. Randy Garrett, Dr. Karen Gordon, Ms. Audrey
Hook, and Dr. Richard J. Ivanetich.

EXECUTIVE SUMMARY

Software testing is labor intensive and can consume over 50% of software

development costs. Rarely is sufficient, effective testing performed as evidenced by the

fact that a failure rate of 3 to 10 failures per thousand lines of code is typical for commer-

cial software. Moreover, the cost of correcting a defect increases as software develop-

ment progresses; for example, the cost of fixing a requirements fault during operation can

be 60 to 100 times the cost of fixing that same fault during early development stages. Con-

sequently, timely defect detection is important. Automated testing tools can alleviate

these problems by reducing the traditionally manual nature of testing and encouraging the

application of improved testing practices.

Over one hundred testing tools from nearly seventy vendors of testing tools were

identified. A short list of tools supporting the static and dynamic analysis of Ada code
was developed. Consideration of tools that are limited to quality analysis or regression

analysis, dependendent on special hardware, or form part of a computer-aided software
engineering system was postponed and these tools excluded from the list. From the short

list, ten tools that support the testing of Ada code were selected for examination: MAL-

PAS, SoftTest, S-TCAT/Ada, TCAT/Ada, TCAT-PATH, TDGen, TSCOPE, TBGEN,
TCMON, and TestGen. During the course of the examination, the tools were applied to

a series of Ada programs in order to assess their functionality. Each tool was then

described in terms of its functionality, ease of use, and documentation and support. Prob-

lems encountered during tool use and other pertinent observations were also recorded.

Compared to other software development tools for Ada, the market offers rela-
tively few commercial tools that support the static and dynamic analysis needed for test-

ing Ada code. Significant findings from this study include the following:

" Some of the examined tools could be brought into immediate use to improve the

cost-effectiveness of testing for SDI software development efforts.

• The coverage analyzers provide reporting data that can support the management

of SDI testing efforts.

This report provides software development managers with information that may

help them gain an understanding of the types of software testing tools that are commer-
cially available and how these tools can aid the development of Ada software.

vii

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1 Purpose and Scope 1
1.2 Background 1

2. APPROACH AND METHODS 7

2.1 Vendor Identification 7
2.2 Tool Selection 7
2.3 Method of Examination 9

3. TOOL EXAMINATIONS 11
3.1 MALPAS 11

3.1.1 Tool Overview 11
3.1.2 Observations 13

3.2 SoftTest 14
3.2.1 Tool Overview 14

3.2.2 Observations 16
3.3 TCAT/Ada, TCAT-PATH, TDGen, S-TCAT/Ada, and

TSCOPE 16
3.3.1 Tool Overview 16
3.3.2 Observations 18

3.4 TBGEN and TCMON 19
3.4.1 Tool Overview 20

3.4.2 Observations 21

3.5 TestGen 22
3.5.1 Tool Overview 23
3.5.2 Observations 24

4. CONCLUSIONS 27

4.1 Findings on the Status of Commercial Tools 27
4.2 Functional Gaps in Commercial Testing Tools 30

5. FURTHER WORK 33
5.1 Additional Static and Dynamic Analysis Tools33

5.1.1 Preliminary Information on AdaQuest 33

5.1.2 Preliminary Information on T 34
5.2 Other Classes of Testing Tools 34

REFERENCES 37

ACRONYMS 41

ix

APPENDIX A - VENDORS OF TESTING TOOLS 43

APPENDIX B - SAMPLE OUTPUTS FROM MALPAS 49 a

APPENDIX C - SAMPLE OUTPUTS FROM SoftTest 57

APPENDIX D - SAMPLE OUTPUTS FROM TCAT-PATH, TCAT/Ada, and
S-TCAT/Ada 61

6
APPENDIX E - SAMPLE OUTPUTS FROM TBGEN AND TCMON 79

APPENDIX F - SAMPLE OUTPUTS FROM TestGen 85

0I

LIST OF FIGURES

Figure B-1. Sample Pascal Code Illustrating MALPAS Analyses 51

Figure B-2. MALPAS Intermediate Language Translation of Sample 52

Figure B-2. MALPAS Intermediate Language Translation of Sample(con-
tinued) 53

Figure B-3. MALPAS Control Flow Analysis of ADVANCE 53

Figure B4. MALPAS Data Use Analysis of ADVANCE 54

Figure B-5. MALPAS Information Flow Analysis of ADVANCE 54

Figure B-6. MALPAS Semantic Analysis of ADVANCE 55

Figure C-1. SoftTest Cause-Effect Graph Input 57

Figure C-2. SoftTest Variation Analysis Output 58

Figure C-3. SoftTest Test Synthesis Output 59

Figure C4. SoftTest Cause-Effect Graph 60

Figure D-1. TCAT-PATH Reference Listing 61

Figure D-2. TCAT-PATH Instrumentation Counts for STOREPAT-
TERN 62

Figure D-3. TCAT-PATH Error Listing for STORE.PATIERN 63

Figure D4. TCAT-PATH Digraph of STORE..PATTERN 63

Figure D-5. TCAT-PATH Path Analysis of STORE.PATTERN 63

Figure D-6. TCAT-PATH Complexity of STORE-PATERN 64

Figure D-7. TCAT-PATH Coverage Report for STOREPATTERN 64

Figure D-8. TCAT/Ada Reference Listing 65

Figure D-9. TCAT/Ada Coverage Report 66

Figure D-9. TCAT/Ada Coverage Report (continued) 67

Xi

0

Figure D-9. TCAT/Ada Coverage Report (continued) 68

Figure D-10. S-TCAT/Ada Reference Listing 70

Figure D-11. S-TCAT/Ada Instrumentation Counts 70

Figure D-12. S-TCAT/Ada Instrumented Call-Pairs 72

Figure D-13. S-TCAT/Ada Error Listing 72

Figure D-14. S-TCAT/Ada Control Graph 72

Figure D-15. S-TCAT/Ada Coverage Report. 74

Figure D-15. S-TCAT/Ada Coverage Report (continued) 75

Figure D-15. S-TCAT/Ada Coverage Report (continued) 75

Figure D-16. TDGen Sample Value and Template Files 76

Figure D-17. TDGen Table of Sequential Combinations for Initial Files 76

Figure D-18. TDGen Output of First Random Execution. 77

Figure D-19. TDGen Output After 3 Executions with 1st Value File. 77

Figure D-20. TDGen Output After 2 Executions with 2nd Value File.......77

Figure E-1. TBGEN Record File 79

Figure E-2. TBGEN Trace File 80

Figure E-3. TBGEN Generated Log File. 81

Figure E-4. TCMON Profile Execution Listing. 82

Figure E-5. TCMON Log File...................83

Figure E-6. TCPOST Coverage Summary 84

Figure F-1. TestGen Conditions for Path Testing ALTERNATE. 86

Figure F-2. TestGen Example Control Graph of ALTERNATE. 87

Xii

LIST OF TABLES

TABLE 1. Tools to Support Dynamic Testing 3

TABLE 2. Tools to Support Static Analysis 4

TABLE 3. Summary of Tool Features28

TABLE A-1. Vendors of Commercially Available Testing Tools 43

TABLE F-1. TestGen Cyclomatic Complexity Report 85

TABLE F-2. TestGen Test Case Effort Report 85

xiii

1. INTRODUCTION

1.1 Purpose and Scope

This report provides software development managers with information that may
help them gain an understanding of the types of software testing tools that are commer-
cially available, the functionality of these tools, and how they can aid the development of
Ada software.

Tools are available to support a variety of testing tasks at different stages in the
software life cycle. To make best use of available resources, the work described here was
limited to the examination of tools that support the static and dynamic analysis needed
for testing Ada code. Code-based testing was selected as being one area where auto-
mated support is critically needed b ,th to increase software reliability and to reduce
development costs. Restriction to the Ada programming language [ANSI/MIL-
STD-1983] was adopted in view of Department of Defense (DoD) Directive 5000.1,
which requires the use of Ada for weapons systems [DoDD 1991]. The Strategic Defense
System Initiative Organization (SDIO) [SDI 19911 also requires use of Ada. It is
expected, therefore, that the results of this work will apply to the majority of Strategic
Defense Initiative (SDI) software development efforts.

Section 2 of this report describes how particular tools were selected for examina-
tion and the method of examination. Details of the capabilities of these tools and obser-
vations made during the examinations are given in Section 3. The findings resulting from
this work are reported in Section 4. Appendix A lists all the commercial testing tools that
were identified. Sample outputs from each examined tool are provided in Appendices B
through F.

1.2 Background

Definitions of some relevant terms and testing statistics will help to clarify the
scope of this work and the applicability of the findings to SDI software development
efforts.

An error is a mistake made by a software developer. Its manifestation may be a
textual problem in the code called a fault or defect. A failure occurs when an encoun-
tered fault prevents software from performing a required function within specified limits.

1

Testing refers to the act of detecting the presence of faults, or demonstrating their
absence, and is distinguished from debugging where faults are textually isolated. Three
stages of testing are commonly recognized; these are unit testing, integration testing, and 0
system testing. In the first of these, unit testing, each program module is tested in isola-
tion. In integration testing, these modules are combined so that successively larger
groups of integrated software and hardware modules can be tested. Finally, system test-
ing examines an integrated hardware and software system to verify that the system meets •
its specified requirements.

In bottom-up testing the modules at the bottom of the invocation hierarchy are
tested independently, then modules at the next higher level that call these modules, and
so on. Top-down testing starts at the highest-level module, with stubs replacing the
modules it invokes. These stubs are then replaced by the next lower-level modules, with
new stubs being provided for modules these call, and so on.

This report looks at unit and integration testing by both dynamic and static analy-
sis. Dynamic analysis approaches rely on executing a piece of software with selected test
data. The effectiveness of any dynamic analysis technique is directly related to the test
data used. Current tools attempt to detect faults rather than demonstrate the absence of
faults. Additionally, these tools can only detect faults whose effects propagate to soft-
ware outputs. Static analysis approaches do not require software execution and can dem-
onstrate the absence of certain types of defects such as variable typing errors. The
absence of execution, however, means that they cannot detect faults that depend on the
underlying operating environment. Consequently, effective testing requires a combination
of static and dynamic analysis approaches. The key types of dynamic and static analysis
tools are identified in Tables 1 and 2, respectively. Table 2 omits tools for analyses rou-
tinely performed by Ada compilers, such as type analysis.

For dynamic analysis, different strategies or heuristics can be used to drive test
data generation. Commercial automated support is currently only available for func-
tional and structural strategies. In the first case, test data is derived from the program's
requirements with no regard to program structure; these approaches are language-inde-
pendent. In structural strategies, test data is derived solely from the program structure
where this structure is often represented as a directed graph (digraph). The only func-
tional strategy currently supported is cause-effect graphing. Here causes relate to distinct
input conditions or equivalence classes of input conditions, and effects relate to the result- •
ing output conditions or system transformations. Test data is derived from a combina-
tional logic network that represents the logical relationships between causes and effects.
The structural strategies at the unit level that are supported are branch and path testing.
Branch testing requires each conditional branch statement and the code segment whose

2

4W

TABLE 1. Tools to Support Dynamic Testing

Type Description

Assertion Analyzer During execution, evaluates logical expressions inserted into the
software that specify required program states or conditions on
variables.

Code Instrumentor Inserts probes, such as instructions or assertions, into a program to
aid statement or resource monitoring, or other activities.

Coverage Analyzer Assesses measures associated with the execution of program structural

elements to determine the adequacy of a series of test runs.

Keystroke Capture Captures keystroke sequences for automatic playback of test sessions.

Mutation Analyzer Determines test set thoroughness by measuring the extent to which a
test set can discriminate between a program and fault-simulating
variants.

Performance Analyzer Measures the ability of a (sub)system to perform its functions within
speed and storage allocation constraints.

Oracle Produces correct outputs to compare with actual software outputs.

Regression Tester Retests software to verify that modifications have not caused
unintended effects and that the software still meets specified
requirements.

Reliability Analyzer Determines achieved level of reliability of an existing system
(component) based on the rate of defect detection.

Test Data Generator Uses a test strategy to generate test data in a methodical manner.
The ideal is to find the minimal set of test cases that result in
discovery of a maximal set of defects.

Test Manager Controls a large and evolving amount of information on system
features to be tested, as well as test plans, test data, and test
results.

Test Bed Directs the execution of the software under test against a collection of
test data sets. Usually it records and organizes the output generated.

Trace Analyzer Provides a record of program execution; it states the sequence in
which instructions were executed.

3

S

TABLE 2. Tools to Support Static Analysis

Type Description

Code Auditor Checks for conformance to prescribed programming standards and

practices.

Concurrency Analyzer Determines synchronization patterns in a concurrent program. 0

Cross-Reference Analyzer Provides cross-reference information on system components, e.g.,
data name, statement label, literal use, inter-subroutine call
cross-indexes.

Data Flow Analyzer Performs graphical analysis of collections of sequential data definitions
and reference patterns to determine constraints that can be placed on
data values at various execution points.

Expression Analyzer Detects certain commonly occurring faults associated with evaluation
of expressions.

Interface Analyzer Checks the interfaces between program units for consistency and
adherence to predefined rules or axioms.

Metric Analyzer Measures the extent or degree to which a product possesses and
exhibits a certain quality, property, or attribute.

Path Analyzer Identifies all possible paths through a program to detect incomplete
paths, unexecutable paths, or conditions that drive path execution.

Reference Analyzer Detects reference anomalies, e.g., when a variable is referenced
along a program path before it is assigned a value.

Safety Analyzer Identifies the possible causes, and consequence, of critical system
failures and so determines the necessary fault tolerance or other
mechanisms needed to ensure safe operation under various
operating conditions.

Symbolic Evaluator Accepts symbolic values for some program inputs and algebraically 9
manipulates them according to the expressions in which they appear.

Unit Analyzer Determines whether or not the units or physical dimensions attributed
to an entity are correctly defined and consistently used.

Update Analyzer Compares two versions of a module to look for differences. S

S

4

execution is controlled by this conditional to be executed at least once. Similarly, path

testing requires execution of every path conditional and associated code segment. Path

testing is the more stringent strategy but can incur unacceptable computational costs. The

equivalent structural strategy at the integration level requires that each pair of module

invocations is executed at least once.

Testing is labor-intensive and can consume over 50% of software development
costs. In one particular case, NASA's Apollo program, 80% of the total software devel-
opment effort was incurred by testing [Dunn 1984]. In general, schedule pressure limits
the amount of testing that is performed and defects frequently lead to the failure of opera-
tional software. For example, 3 to 10 failures per thousand lines of code (KLOC) are
typical for commercial software and 1 to 3 failures for industrial software [Boehm 1988].
With a rate of 0.1 failures per KLOC after delivery for its shuttle code, however, NASA
has demonstrated that poor reliability can be avoided [Myers 1988]. The cost of correct-
ing a defect increases as software development progresses; for example, the cost of fixing

a requirements fault during operation can be 60 to 100 times the cost of fixing that same
fault during early development stages [Pressman 1987]. Consequently, timely defect

detection is important.

Automated tools can improve testing cost effectiveness; indeed, they are a pre-
requisite for most static analysis approaches. In addition to eliminating some repetitive
manual tasks, tools can promote effective dynamic analysis by guiding the selection of test
data and monitoring test executions. Through capturing and reporting data gathered dur-
ing the performance of testing activities, tools also support the quantitative process mea-
surement that is necessary for controlling the testing process. Benefits claimed by some

of the tools discussed later include: 1

* Tool X can save a developer $15,000 or more per KLOC.

* Tool Y has given clients an 8:1 reduction in test development effort and one client
has achieved a reduction from 1.3 to 0.072 failures per 1,000 lines of source code.

Of course, testing tools are not the only mechanism for improving software relia-
bility. Software inspections, for example, have been reported to find 60% to 90% of soft-
ware defects, while reducing total development costs by as much as 25% [Fagan 1986].
These and other approaches are discussed in [Brykczynski 1990].

1. Tool names are omitted since these claims have been neither validated, nor invalidated, in the course of
this work.

5

2. APPROACH AND METHODS

The overall approach taken to this work was to identify vendors of testing tools,
select tools for examination, and apply the selected tools in the testing of sample pieces
of code. These activities are described below.

2.1 Vendor Identification

Tool vendors were identified from a number of sources, specifically:

* The tools fair reported in IEEE Software [Lutz 1990].

* The survey of Ada tool and service suppliers in Defense Science [DefSci 1990].

" IDA's survey of the state of the art in software testing and analysis [Youngblut

1989].

" Input from the SDI Cooperative Research Exchange (SCORE) effort.

" Tools exhibited at the Tri-Ada Conference, held October 1990 in Baltimore.

* The tools fair at the 8th International Conference on Testing Computer Software,

held July 1991 in Washington D.C.

Nearly seventy vendors of over a hundred tools were identified. A list of these is given in
Table A-1 in Appendix A. A short list of those tools supporting static and dynamic anal-

ysis of Ada code was prepared and tool information sought from the vendors. In several
cases, vendors gave in-house demonstrations of their tools.

2.2 Tool Selection

Additional criteria were applied to refine the list to be compatible with the
resources available for tool examination. To ensure that the results apply to the largest
possible audience, it was determined that selected tools should be essentially independent

of processor architecture. Consequently, non-intrusive monitors for real-time systems,
which require special purpose hardware, were not considered. For a similar reason, tools
tied to a particular Ada compiler were not considered. Because the relationship between
quality metrics and software reliability is not well understood, tools restricted to quality
analysis were also not considered. Examination of testing tools that are part of a com-
puter-aided software engineering (CASE) system or that perform regression testing was

7

S

postponed for a later effort.

The following tools were selected:

" Malvern Program Analysis System (MALPAS). MALPAS provides static analy-
sis capabilities suitable for unit testing and bottom-up integration testing. It uti-
lizes an intermediate language (IL). Translators exist for several languages
including Pascal, Fortran, and C.

" SoftTest. This is a requirements-based testing tool that uses cause-effect graphing
to generate test conditions. It is independent of programming languages.

" TCAT/Ada, TCAT-PATH, S-TCAT/Ada, TDGen, and TSCOPE. These tools
provide structural coverage analysis at the unit and integration levels, test data
generation, and animation of the increasing levels of coverage achieved. Ver-
sions of the tools supporting Ada, C, Cobol, Fortran, and Pascal programming

languages are available.

* Test Bed Generator (TBGEN) and Test Coverage Monitor/Program Bottleneck •
Finder (TCMON). TBGEN supports dynamic testing of Ada code at the unit
and integration levels by generating a testbed that allows a user to control subpro-
gram execution and observe the results. TCMON allows a user to study the cov-
erage of test data or analyze the dynamic behavior of an Ada program. These
two tools can be used independently or combined to generate a monitored 0

testbed.

" TestGen. Part of the Ada Integrated Software Lifecycle Environment (AISLE)
family of Ada design tools, TestGen provides three types of structural module
coverage analysis for testing Ada code at the unit level. •

Two additional selected tools whose examinations were postponed are:

* AdaQuest. A static and dynamic testing system based on an existing verification
and validation system for Fortran. The first complete version of AdaQuest was •
due for release in May 1991 but is unavailable as of this writing.

" T. A new version of this functional test data generation tool that includes exten-
sive additions is due to be released in September 1991. A testbed that drives pro-
gram execution is expected to be released at the same time. Examination of T •
has been postponed until these become available.

S

8

2.3 Method of Examination

Each tool was used to test several small Ada programs. The goal of these initial
tool applications was to allow the examiner to gain familiarity with overall tool operation.
Each tool was subsequently applied to the same Ada program. This software was the
Ada Lexical Analyzer Generator program that creates a lexical analyzer or "next-token"
procedure for use in a compiler, pretty printer, or other language processing program
[Meeson 1989]. It was developed for the Software Technology for Adaptable, Reliable
Systems (STARS) program and consists of several Ada subprograms with a total of 3,253
lines of code.

The experience gained by installing and using the tools was used to prepare a
short review of each tool. Determination of the appropriate high-level information to col-
lect was based on questions given in the Software Engineering Institute's A Guide to the
Classification and Assessment of Software Engineering Tools [Firth 1987], and Brown-
stein and Lerner's Guidelines for Evaluating and Selecting Software Packages [Brown-
stein 1982]. More detailed information requirements were deduced from the characteris-
tics of the tools themselves.

9

3. TOOL EXAMINATIONS

This section describes the selected tools in terms of pertinent vendor details,
operating environments, and the functionality provided. Price information accurate at
the time of examination is also included. Each description is supported with observations
that discuss ease of use, documentation and user support, and Ada restrictions. Brief
mention of any problems encountered during the examinations provides insight into the
reliability and robustness of each tool.

3.1 MALPAS

MALPAS comprises a suite of static analyzers that provide control flow, data
use, input/output dependency, and complexity analysis and symbolic execution.

3.1.1 Tool Overview

MALPAS was developed in the late 1970s at the United Kingdom Ministry of
Defense Royal Signals and Radar Establishment to verify avionics and other safety-criti-
cal defense system software. Since 1986 it has been marketed and supported by Rex,
Thompson & Partners (RTP). MALPAS has 50 users, including 5 Ada sites. The Ada
translator is a new product released in July 1991. RTP also markets seminars to intro-
duce potential customers to MALPAS and training courses. A users group is supported.
MALPAS is available on VAX/VMS platforms. The tools examined in this study were
MALPAS Release 5.1, IL Version 5, Pascal-IL Translator 3.1, and Ada-IL Translator
1.01. The price for MALPAS and the Ada-IL translator at the time was $60,000.

The analyses performed by MALPAS are intended to assure software safety, reli-
ability, consistency, and conformance to standards. They include the following:

* Control flow analysis to reveal underlying program structure, unreachable code.

* Data flow analysis to detect uninitialized variables, successive assignments with-
out use.

* Information flow analysis to identify input-output dependencies.

* Path assessment to produce a structural complexity measure.

11

" Partial analysis using program slicing to reduce analysis time.

" Semantic analysis to provide symbolic execution for each loop-free path.

" Compliance analysis to verify code against formal specifications.

MALPAS analyses are based on an Intermediate Language (IL) representation
of program specifications or source code. Translators from several languages (including
Ada, C, Fortran, and Pascal) to IL are available. The approach of using a common
intermediate language for analyses simplifies the extension of MALPAS's capabilities to
other programming languages. Formal program specifications can also be expressed in
IL. At present, however, no automated translation tools for other formal specification
languages such as OBJ, Vienna Development Method (VDM), or Z are supported.

Analyzing application source code is a two-step process. First the code is
translated into IL. Since the Ada translator was not available when the tool examination
started, the Pascal translator was examined first. Pascal code is translated as a single
complete program; this is a straightforward process. The translation of Ada source code
to IL is significantly more complicated. The sample Ada code analyzed contained sev-
eral separately compiled packages and subunits. First the generic input/output packages
used by the program had to be instantiated (by hand), translated, and loaded into an IL
code library. Then each program unit had to be translated and loaded into the IL code
library.

The second step is to run the analyses on the IL code. A single tool controls all of
the available analyses. Options are selected by command line parameters and results are
written to files that can be printed. Default parameter settings for initial analyses of new
code were set up to include control flow, data use, and information flow analyses. The •
compliance and semantic analyses are computationally more complex. The partial anal-
ysis capability allows these analyses to be restricted to particular modules or paths within

the program.

Control flow, data flow, and information flow analyses are fairly standard static 0
analysis techniques. Structured programming has largely eliminated control flow
anomalies. Data flow and information flow anomalies, however, are still useful indica-
tors of potential problems. Information flow, for example, identifies all of a subprogram's
inputs and outputs, which may be more than those passed as parameters. MALPAS's
semantic analysis option provides symbolic execution of loop-free code segments. That •
is, for each possible path through a segment, the value of each modified variable is given
as an algebraic expression in terms of the input variables. This provides valuable feed-
back to a programmer about the meaning of the code and the results that will be produced

2

12

when the code is executed. The compliance testing option uses this same information to
check formally specified requirements that have been added to the IL code.

3.1.2 Observations

Ease of use. MALPAS is a batch-oriented tool even though it may be invoked
interactively. The only user interaction is through the set of options that can be selected
from the command line. The large number of options may make MALPAS "flexible" for
expert users. Novice or casual users, however, may have some difficulty controlling non-
default processing.

Introducing the intermediate language for analyses may cause problems for some
users. All analyses and reports refer to the IL version of the program rather than to the
original source code. The mapping back to the original code must be done manually. The
intermediate language approach may simplify extending MALPAS to cover a range of
different programming languages (by requiring only new IL translators), but it imposes a
level of separation between the actual source code and the analyses that must be compen-
sated for by the user.

Translating Ada source code to IL was found to be somewhat more complicated
than expected. The sample Ada code analyzed contained several separate packages and
subunits, and normally requires several compilation steps. The MALPAS Ada to IL
translator, however, required several additional steps that Ada compilers either do not
need or are able to hide.

Documentation and user support. Installation and operating instructions were
clear, thorough, and accurate. Installation required simply editing sample command files
to name local directories and disks. The manuals included good examples and the tools
operated exactly as described.

Ada restrictions. Although support for all aspects of Ada that can be analyzed
statically is the vendor's eventual goal, the current MALPAS tools support only a subset
of Ada. The Ada to IL translator recognizes all valid Ada code but the translation to IL
is not complete. The intermediate language, for example, does not include any mecha-
nism for concurrency, so Ada tasks cannot be translated. This restriction is particularly
unfortunate because execution-based testing of concurrent programs is often difficult to
control. Repeating a particular test, for example, might not produce the same results
each time. Rigorous static analyses of potential task interactions would contribute signifi-
cantly to identifying and correcting tasking problems.

Translation of Ada's generic program units is not supported. Generic units pro-
vide a powerful mechanism that simplifies programs and enhances reuse. Ada's standard

13

input and output facilities, for example, are defined in terms of generic packages. MAL-
PAS currently requires manual instanti-Ation of any required generic units.

Access types (pointers) and dynamic storage allocation are not supported. Anal-
ysis of unconstrained use of pointers, for example to detect potential "dangling" pointers,
is virtually impossible. A workaround for disciplined use of pointers for data structures
such as linked lists is to define abstract data types that encapsulate the pointers. MAL-
PAS would be able to analyze application code that used the abstract data types since the 0
pointers are hidden. MALPAS, however, would not be able to analyze an implementa-
tion of the abstraction that used pointers.

Problems encountered. The MALPAS tools performed as specified in their docu-
mentation. No failures occurred in use.

3.2 SoftTest

SoftTest supports requirements-based test analysis using cause-effect graphing. It
derives test conditions to guide the preparation of test data. It also provides a measure of
test adequacy in terms of the number of testable functional variations for which tests have
been specified.

3.2.1 Tool Overview

SoftTest was developed in 1987 and is marketed and supported by Bender and
Associates. There are currently over 50 users. The tool executes on any IBM PC, XT,
AT, PS2 or compatible platform under MS-DOS. Bender also markets project methodol-
ogy guidelines, consulting services, and training courses on software quality assurance
and testing. The version of SoftTest examined was Release 3.1. At the time the price
was $2,500.

SoftTest automates a requirements analysis technique called cause-effect graph-
ing, developed at IBM in the early 1970s. The primary phases of analysis are as follows:

* Extraction of node, relation, and constraint definitions from cause-effect graphs. 0

* Functional variation analysis to identify combinations of input conditions
required for tests.

* Test condition synthesis to consolidate variations and produce minimal test sets.

A cause-effect graph identifies the set of input conditions (the causes) that a pro-
gram must respond to, and relates these to the set of output conditions (the effects) that
the program must produce. Relations between inputs, outputs, and intermediate condi-
tions are specified in terms of combinational logic (AND, OR, NOT). Special

14

relationships such as mutually exclusive input conditions and conditions that hide or mask
other conditions can also be specified.

The functional variations of a cause-effect graph reflect all the individual unique
functions the software is required to perform. The thesis of this approach to testing is
that although the number of possible combinations of input conditions may be very large,
a program can be thoroughly tested by exercising this relatively small set of unique func-
tions.

Some functional variations may not be testable because, for example, it may be
physically impossible for certain combinations of input conditions to arise. Another rea-
son is because the results of one function may be obscured by other functions. When this
latter case arises, SoftTest identifies intermediate program results that, if they could be
observed, would enable otherwise obscured functions to be tested.

A single test may exercise several functions. This means that a smaller number
of test cases will often be able to exercise all of a program's functionality. SoftTest
includes analysis that yields a minimal number of test cases that will exercise all the
testable functional variations. Additional tests for special cases such as boundary condi-
tions can be added to the tests produced by SoflTest.

Cause-effect graphs express only combinational relationships, constructed from
AND, OR, and NOT operations, between causes and effects. Graphs are not allowed to
form loops that connect effects back to causes. This raises a question about how to test
programs that clearly require iterative or recursive processing. For example, the func-
tionality of sorting a fixed number of inputs can be specified using AND, OR, and NOT;
but sorting arbitrary length lists or files of inputs cannot. By unrolling the first few itera-
tions of the (assumed) loop structure, SoftTest can generate test conditions that achieve
virtually any level of coverage. That is, if the functionality required could be imple-
mented by:

while not completed loop
loop-body;

end loop;

then the cause-effect graph could be specified as if the implementation would be:

if not completed then
loop-body; -- first Iteration
If not completed then

loop-body; -- second iteration

end f;
end If;

15

The test conditions produced for this specification cover zero, one, and two iterations of
the loop body, which would exercise every combination of pairwise linear code segments.
Although not exhaustive, this level of coverage is usually considered fairly thorough test-
ing. Additional, "realistic" tests for sorting, for example, could be added to the tests pro-
duced by this analysis. Requirements-based testing, of course, is not supposed to use
knowledge of a program's structure. The required functionality, however, can strongly
indicate an iterative (or recursive) implementation.

3.2.2 Observations

Ease of use. SoftTest's user interface provides simple menu-driven comrmands to
initiate processing and review results. It is also possible to invoke one of a number of
third-party text editors from within the tool so that graph specifications can be corrected S
and analyses rerun without leaving the tool. Analysis reports can also be easily printed.
The hard part about using SoftTest is developing complete functional specifications for
software to be tested. Even though the cause-effect graph language is clear and simple,
writing specifications in this form requires some experience. New users should expect to
spend some time with the tutorial materials provided. Training courses offered by the
vendor may also prove useful.

Documentation and user support. Tie tool documentation and user support were
quite good. Installation was simple and the tool operated exactly as described in the ref-
erence manual. Two tutorials were provided-one that worked through examples of how
to run the tool and one that discussed requirements-based testing .n more general terms.
Bender and Associates answered several questions about cause-effect graphing tech-
niques over the phone.

Ada restrictions. SoftTest is independent of a particular programming language. 9

Problems encountered. SoftTest performed as documented. No problems were
encountered in its use.

3.3 TCAT/Ada, TCAT-PATH, TDGen, S-TCAT/Ada, and TSCOPE

These tools are part of the Software TestWorks toolset that also includes
SMARTS, CAPBAK, and EXDIFF for regression testing. Two more tools, SpecTest
and MetaTest, are planned for release late 1991 and will use software specifications and
designs to guide code testing. S

3.3.1 Tool Overview

Software TestWorks has been marketed by Software Research for over five years.
Each type of coverage analyzer, that is TCAT, TCAT-PATH, has respectively 2,100,

16

1,800, and 1,600 users. TDGen has over 400 users, and TSCOPE has 1,100 users. Soft-
ware Research also offers a range of software testing services, technical seminars, and
programming language validation suites. The tools are available on operating platforms
ranging from personal computers (PCs) to mainframes under UNIX, MS-DOS, OS-2,
and VMS operating systems. TSCOPE requires X-Windows. Prices dependent on the
operating environment and start at $1,900 for TCAT/Ada, $1,950 for TCAT-PATH, $800
for S-TCAT/Ada, $300 for TDGen, and $900 for TSCOPE. The examinations were per-
formed on a Sun-4 copy of the TCAT/Ada Version 7.6, S-TCAT/Ada Version 7.6,
TCAT-PATH Release 7, TDGen Release 3.2, and TSCOPE Release 1.2.

TCAT/Ada instruments the code contained in a user-specified list of files to
reveal whether each module branch has been executed. This process also produces a
program listing, called a reference listing, that shows the location and numbering of
markers that identify particular code segments. The user then compiles the instrumented
program and links it with a provided runtime file. When run, this program queries the
user for the name of the tracefile to which execution data will be written. This tracefile is
subsequently used by the reporting utility to list the overall coverage achieved, identify hit
and not-hit segments, and produce histograms showing the frequency distribution of seg-
ments hit using either linear or logarithmic scales. All segment information is given in
terms of the segment numbers shown in the reference listing. The reporting utility can
combine archived test data with new tracefile data if desired. At the end of each run, the
tracefile is combined with the specified archive file to produce a new archive file. With
the exception of information on the sequence in which segments were hit, archive files
contain the same data as a tracefile. For integration testing, a special utility that moni-
tors the total could-have-been-hit count is provided to prevent initial tests, that may not
touch all program modules, from producing artificially high coverage counts. Additional
utility programs for abbreviated coverage reports, reporting coverage on individual
modules, and analyzing trace files for record types are provided.

S-TCAT/Ada provides the same basic functionality for analyzing
module-to-module interfaces that have been exercised as TCAT/Ada provides for
branches. Modules are defined to be all Ada procedures and functions, exkept runtime
functions and those appearing in a user-specified list of interfaces. An additional utility is
provided to generate a tabular representation of the call graph of the source program.

TCAT-PATH is also similar to TCAT/Ada except that coverage reporting
addresses the paths executed and is only provided on a single tracefile; archive files are
not supported. In addition to the instrumented code and reference listing, the instrumen-
tor generates a separate digraph for each module. This can be used to count the number
of paths and display path statistics. A set of module paths also can be generated from a

17

digraph with the user li-niting path generation or preventing the output of some generated

paths as necessary. Additional utilities are available to generate an (approximate) pic-

ture, determine the cyclomatic complexity of a digraph, and support use of TCAT-PATH
th UNIX-type make files.

TSCOPE can be used with TCAT/Ada, TCAT-PATH, or S-TCAT/Ada to ani-

mate test completeness. Each program module can be instrumented for either branch,
path coverage, or call-pair coverage. All instrumented modules are reported on a single
display and different kinds of reporting can be selected for different modules. Graphic

representations such as histograms are available for dynamic displays. Digraphs and

call-trees can be displayed either dynamically or statically. TSCOPE employs a graphical

user interface and output displays are mapped to an X-Window screen by means of a

user-specified configuration file.

TDGen works with two files. The template file tells TDGen how to generate test
data based on data supplied in a values file. TDGen replaces variable fields, called
descriptors, in the template with values from the values file. Descriptors may be user-
defined or take one of the predefined values (ascii, alpha, decimal, and real). When

invoking TDGen the user specifies whether values for the descriptors should be taken

from integers given in the command line, randomly from the values file, or sequentially

from the values file to generate every possible combination of values. To aid this choice,

TDGen can be requested to tabulate the number of possible test data combinations. A
provision for escaping to the operating system level is provided to allow, for example,
editing files during a TDGen session.

3.3.2 Observations

Ease of use. A user can interact with these tools using either a command-line

interface or a series of menus. Only the command-line interface versions of the tools
were available for the examination reported here. In the case of TCAT-PATH, support

for UNIX-like make files is provided to facilitate repetitive compilation and linking tasks.

Context-sensitive help and help frames discussing each function are provided. No special
knowledge is required to use these tools.

Reports are generally well-structured. Since segments, paths, and call-pairs are
referred to by number, however, a user must refer back to the various reference listings to
identify the subject of each reference. Path descriptions, given in terms of numbered

edges and nodes from the underlying digraph, are particularly difficult to read. The pre-

sentation of histograms, digraphs, and call graphs would benefit from the use of modern

graphical techniques.

18

Documentation and user support. The tools are supported by extensive documen-
tation that includes guidelines on appropriate minimum coverage levels. Examination of
these tools was delayed by the time it took the vendor to respond to tool problems.

Instrumentation Overhead. TCAT/Ada and TCAT-PATH instrument the con-
tents of files specified as part of the tool invocation. In each case, all code is instru-
mented the same way. For TCAT/Ada, the vendor recommends a capacity of up to 2500
segments (approximately 20,000 lines of code). The vendor estimates the size/perfor-
mance overhead for instrumentation at 20% to 30%, although this can be higher for very
complex programs. For the Ada Lexical Analyzer Generator, TCAT/Ada, TCAT-
PATH, and S-TCAT/Ada instrumentation gave, respectively, 26%, 27%, and 14%
increases in code size. The instrumentation introduced by S-TCAT/Ada can be limited
by specifying a set of module interfaces that are not to be reported on. Versions of TCAT
and S-TCAT that accomplish various levels of in-place buffering to enhance performance
are available for C. Similar support is not available for the Ada versions.

Ada restrictions. The coverage analyzers do not instrument overloaded routines
or tasking constructs. The TCAT/Ada and S-TCAT/Ada processors (iada and s-iada)
have been validated against the Ada validation suite, a set of programs that test compli-
ance with the Ada standard.

Problems encountered. Several problems delayed the examination of these tools.
First of all, copies of testing tools for C programs were sent twice before the requested
Ada versions finally arrived. Except for TDGen and TSCOPE, only the command-line
versions of tools were sent. The menu versions were again requested but never arrived.
Initial execution of TCAT/Ada on one of Software Research's example programs caused
a segmentation fault and sometimes a core dump. Initial problems encountered with
TCAT-PATH and S-TCAT/Ada turned out to be the result of errors in the supplied run-
time file. For all three instrumenters, misplaced inserted instrumentation statements had
to be manually corrected. In some cases, these misplaced statements caused compilation
errors. In other cases, the incorrectly instrumented program would compile but produced
the wrong results. Additional problems with accessing help were attributed to poor
installation procedures that caused help files to be improperly positioned. In TDGen,
errors in values and template file, or in the specification of program options, caused the
program to hang.

3.4 TBGEN and TCMON

TBGEN generates testbeds that facilitate unit testing bottom-up integration test-
ing. The next version of this tool will include the generation of stubs so that top-down
integration testing is also supported.

19

3.4.1 Tool Overview

TBGEN and TCMON are marketed by Nokia Data systems. They have been
commercially available since 1986, although a fully revised version of TBGEN (Version
3.0) was released in May 1989. 30 permanent multi-user licenses have been sold.
Designed to be hardware architecture, operating system, and compiler independent,
these tools are available for VAX/VMS, Sun-3/SunOS, PCs under MS-DOS and OS-2,
and Rational machines. There are some minor difference between the versions available 0
on different operating environments; for example, unlike the Sun-3/SunOS versions, the
VAX/VMS tools do not allow escaping to the operating system command level. TBGEN
prices start at $2,850 and TCMON at $2,300. Evaluation copies of the tools, allowing
their use for 60 days, are available for $1,000 (one tool) or $1,500 (both tools). The ver-
sions examined were TBGEN Version 3.1 and TCMON Version 2.2 operating on a
VAX/VMS platform.

Using Ada program unit specifications, TBGEN generates a testbed and a com-
mand file for compiling and linking this testbed with the units under test. The user can
control the size of a generated testbed by specifying particular subprograms or program
objects to be excluded. A log file automatically records pertinent information about
testbed generation. The user executes the resulting testbed, specifying the desired calling
sequence and subprogram parameters, and observing the results. A powerful set of Ada-
like testbed commands is provided. For example, testbed variables can be declared and
their visibility directly controlled, and many of the entities declared in Ada specifications
can be accessed. Additional commands display information based on current testbed set-
tings and testbed status, or cause user inputs and testbed outputs to be copied to a trace
file for later examination. Instead of using a testbed interactively, the user can specify
testbed inputs in the form of a script file. Scripts may be user developed or generated in 0
the form of a copy of previous testbed inputs. Conditional and iteration control struc-
tures, along with fixed and variable breakpoints, are provide for scripts. Assertions are
provided for automatic checking of test results against expected results. Since the testbed
takes standard input from the keyboard for' interactive communication with the user, •
some difficulties may be encountered if a module under test also uses standard input.

TCMON instruments the contents of user-selected files with statements that act
as measurement probes. In addition to structural coverage, these probes provide for seg-
ment execution counts and true/false counts of conditions and subconditions. They also 0
provide timers that allow capturing execution times at the program unit level, and the
measurement of times between user-specified events. Each subprogram can be instru-
mented for different types of monitoring. A test monitor is generated. A command file
for compiling the monitor and instrumented code and performing necessary linking is also

20

generated, together with a log file providing information about instrumented files and
units generated. The monitor supports a command-driven interface that provides the
user with commands to reset all counters and timers, save and append measurement
data, produce a profile listing, run the instrumented program, etc. Where necessary, this
interface can be omitted by inserting TCMON commands in source files as special com-

ments and generating a dummy monitor. Data generated by the instrumentation is
recorded in a profile listing. This gives detailed information about counter and timer

places and values, and a histogram of statement list execution counts is included. The
profile listing also contains information that can be used to estimate the influence of
instrumentation statements on measured time. The TCMON Postprocessor (TCPOST)
processes the profile listing to generate summary reports at either the package or subpro-

gram level.

Timers may include invalid data when two or more tasks call the same instru-
mented subprogram or are of the same instrumented task type. The same is true for
recursive procedures. If this happens, the affected timers are flagged in the profile listing.
Although generic piocedures and packages can be instrumented, multiple instances are
not distinguished. Also, when returning from a function, it is not possible for a timer
within the function to record the time spent in the evaluation of the return expression.
Exceptions, which are invisible to the instrumentor, may also distort timing results.

3.4.2 Observations

Ease of use. The user interacts with TBGEN and TCMON through command
interfaces that are well supported with prompts to guide a user through necessary steps.
Context-sensitive help is available, together with general descriptions on user-selected
topics. Error messages are informative, though no specific help for resolving an error is
provided. They are written to both the display and the appropriate log file. When erro-

neous input is detected, execution of the current command is terminated and the rest of
the current input line ignored. When a test script is being used in TBGEN, processing will
continue with the next line. Command files are provided to relieve the user of some
repetitive manual labor. Although the use of TCMON requires no special knowledge, the

TBGEN command-interface requires a knowledge of Ada. All reports are well-struc-
tured and clear, with useful history-keeping information.

TBGEN is taiorable in several ways. The SPECIAL command implements envi-
ronment or installation specific commands. Configuration parameters specified in a sys-
tem file can be changed, essentially to modify default file names. A system file gives the
specification for package STANDARD which can be modified to reflect some of the

options available to Ada compilers. The template files used in generating testbed

21

components can be changed.

Some aspects of TCMON can also be altered by modifying the template file used
for generating auxiliary Ada units and the command file. This template file also contains
the configuration parameters that can be changed to alter default values. The TCMON
User's Manual provides suggestions for modifying the parent type for counter variables,
measuing CPU-time instead of default elapsed time, or including other cost functions.

Documentation and user support. The documentation is well-written and guides a

user through using each tool. The vendor provided good support and answered all ques-
tions quickly and well.

Instrumentation Overhead. TCMON is designed to minimize the introduction of
unnecessary instrumentation. It not only allows the user to select the files whose contents
are to be instrumented, but allows each file to be instrumented differently. TCMON also
allows the user to select between SAFE or UNCHECKED modes for the segment
counter. The vendor cites a 50% to 100% increase in code size for full structural instru-

mentation. For the Ada Lexical Analyzer Generator, full structural instrumentation of 0
all units gave a size increase of 120%.

Ada restrictions. TBGEN accepts any valid Ada code. Expressions, however,

are skipped with the result that the type of an array index cannot always be determined
automatically and the user may be asked to supply this information. Tasks, task types,
and dependent entities are ignored and cannot be accessed in testbeds directly. Similarly,
testbeds do not provide the user with access to objects of limited type, functions with
results of limited type, array objects with a constrained array definition, and constrained
subtypes of a type with discriminants. TCMON may misinterpret overloaded operators
returning boolean values when these are used in conditions. 0

Problems encountered. No significant problems were encountered during the
examinations of these tools.

3.5 TestGen 0

TestGen is part of the AISLE family of software tools that is based on the Ada-

based Design and Documentation Language (ADADL). ADADL itself is fully compil-
able by any Ada compiler and has been selected by the Joint Integrated Avionics Working

Group (JIAWG) as the Ada program design language (PDL) to use for the Army's Light 0
Helicopter Experimental (LHX) and the Air Force's Advanced Tactical Fighter (ATF)
programs. In additional to the ADADL processor that provides static analysis of
designs, the tool family includes syntax-directed and graphical editors, a design and code

quality analyzer, an automatic document generator, and design database analysis tools
0

22

0

and supports requirements traceability. It can interface to the Teamwork, Software
Through Pictures, and Excelerator CASE systems [Hook 91] to provide automatic gener-
ation of designs from requirements. The examination focused on TestGen which can be
applied both to ADADL designs and Ada code.

3.5.1 Tool Overview

The AISLE tool family is marketed by Software Systems Design (SSD). It has
been available since 1984 and has over 1,000 users. The tools are available on a wide
range of machines such as VAX, VAXStation, and MicroVAX under VMS, UNIX, or
Ultrix; and Sun-3 and Sun-4, HP9000-800, Apollo, DecStation, and 80386-based PC sys-
tems under MS-DOS or UNIX. Where windowing is required, the tools support X-Win-
dows, SunWindows, DECwindows, Tektronix, and Hewlett-Packard windows. Graphics
output is formatted for a range of devices. These formats include Postscript, Tektronix,
and Graphical Kernel System (GKS). TestGen prices start at $4,600 and those for
ADADL, required for TestGen preprocessing, at $5,000. Training and consulting ser-
vices are available.

These examinations used Demonstration Version 2.0.3 of the tools operating on a
Sun-4 system. The demonstration version costs $150 and is supposedly fully functional
with the exception that input files are limited to 450 lines. During the examination of
TestGen, however, it was found that the demonstration version only identifies 50% of
paths and reports the coverage achieved on only 1 program unit. Additionally, it only
supports X-Windows and SunWindows. The restriction on input file size precluded appli-
cation of some parts of the TestGen on the Ada Lexical Analyzer Generator. In these
cases, SSD executed the necessary steps using a full version of the tool and returned the
results to the examiner for analysis.

Two parts of TestGen were considered: the Unit Test Strategy Generator and the
Test Coverage Analyzer. (The third component, the Design Review Expert Assistant was
not examined.) The first of these parts calculates the total number of paths and branches
and the cyclomatic complexity for each selected program unit. It also identifies any unex-
ecutable paths and generates control graphs of the code. This information is used in
estimating testing costs in terms of the number of test cases required for structural analy-
sis. TestGen supports three structural dynamic analysis techniques: path testing, branch
testing, and structured testing based on McCabe's cyclomatic complexity number
[McCabe 1976]. Once the user specifies the types of analysis required, the Unit Test
Strategy Generator identifies the conditions required at each decision point and the state-
ments executed under those conditions. This information helps the user derive necessary
test data for structural testing. The Test Coverage Analyzer is then used to instrument

23

user-specified program units. It also generates a simple testbed for the main Ada proce-

dure that performs a loop calling the instrumented programs for as long as the user
wishes. If a main procedure is not present, a special testbed must be manually created by 0
the user based on a template supplied in the documentation. The user compiles and links
the instrumented code and testbed. As the program executes on test data, the instrumen-
tation produces a trace history that records the order in which statements were executed.
The Test Coverage Analyzer is then used to analyze this trace history and report on state-
ment and path coverage, and statement and program unit execution profiles. Reporting
on the coverage accumulated over a series of test runs is achieved by requiring analysis of
multiple trace histories.

3.5.2 Observations 0

Ease of use. TestGen is menu-driven, requiring input from the keyboard. An
on-line manual is provided instead of on-line help. Error messages are terse and only
minimal checking of user input is provided. For example, in one case the lack of check-
ing for invalid file names led to a segmentation fault. No special knowledge is required to
use the tool. All output reports are well-structured and provide easy-to-read information.
A major strength of this tool is the clear identification of the path conditions that guide
the execution of particular program paths. Other than setting default values for files
names, the user interface cannot be tailored.

Documentation and user support. The installation instructions were not very clear,
but other documentation was good. SSD staff provided quick and helpful support. They
acted on problem reports immediately, providing resolutions to the encountered problems
within a day or even within a couple of hours.

Instrumentation Overhead. The entire program must be analyzed by the ADADL
processor before the Unit Test Strategy Generator can be used. Subsequently, TestGen
functions can be invoked for the files analyzed by the ADADL processor. The size of
instrumented code is minimized by allowing the user to specify which modules in the
selected file should be instrumented. All selected modules are instrumented in the same •

fashion. Instrumentation of the Ada Lexical Analyzer Generator gave a 50% increase in

code size. TestGen accumulates the data generated by instrumentation statements in

memory; this may limit the amount of code that can be monitored.

Ada restrictions. The Unit Test Strategy Generator can analyze any Ada code,

but the Test Coverage Analyzer cannot instrument tasks. Source lines with multiple state-

ments may be instrumented incorrectly.

24

Problems encountered. TestGen requires that the software under test first be ana-

lyzed by the ADADL processor; problems were encountered during the initial use of this

processor. In one case, the ADADL processor went into an infinite loop when run on
example code provided by SSD. These problems were reported to SSD who subsequently

identified one defect in the ADADL processor and two defects in TestGen. Workarounds
were provided. Some problems were the result of inadequate documentation or error
checking. For example, TestGen does not check whether the specified window format is

actually available; if it is not, the tool crashes. It should be remembered that the exami-
nation was performed on the demonstration version of TestGen; these problems may not

occur with the licensed versions.

25

4. CONCLUSIONS

An overview of the examined tools is provided by Table 3 which summarizes the

tool features previously reported. The first part of this section lists findings concerning

the status of the examined tools that may affect their use. The last part comments on

identified gaps in testing tool functionality.

4.1 Findings on the Status of Commercial Tools

Findings drawn from the examination of these commercial tools are as follows:

Finding 1: Some of the examined tools could be brought into immediate use to

improve the cost-effectiveness of testing for SDI software development efforts. The

examined tools provide various ways to improve the consistency of defect detec-

tion and reduce testing costs. Those that were found to be robust and easy to use

are suitable for immediate use. In particular, TBGEN offers valuable support for

automatically generating the test beds needed for both unit and integration testing.

TCMON not only provides for ensuring the adequacy of a set of test data in terms

of the level of structural coverage required, but is the only examined tool that sup-

ports timing analysis. TBGEN and TCMON also provide useful records of testing

activities. SoftTest supports the systematic development of test data and measures

test data adequacy in terms of functional coverage. TDGen provides systematic

generation of large amounts of user-defined test data.

Finding 2: The coverage analyzers provide reporting data that can support the man-

agement of SDI testing efforts. Several of the examined tools support test manage-

ment by reporting on test progress in terms of percentage of the required structural

coverage that has been achieved to date. The majority of these tools are intended

to measure coverage at the unit testing but base their measurement on different

structural features. Although these tools provide module execution counts that

provide some support for measurement at the integration level, only S-TCAT/Ada

measures coverage achieved during integration testing. The coverage analyzers

vary in their ability to estimate the number of test cases needed, to support the

development of test data, and to handle archive files of test results. Only TCMON
allows the user to specify the required coverage level.

27

TABLE 3. Summary of Tool Features

Tool Class

/ 0

Tool Name CiCQ
Marketed Since '86 '87 '90 '86. '87 '86 '88 '89 '86 '84

Starting Price $K 60 2.5 0.3 2.85 2.5 1.9 1.95 0.9 2.3 4.6

Range of Platforms O 0 0 0 0 0 0 0 * 0

#LanguagesSupp >5 n/a n/a 1 4 5 5 n/a 1 2

Related Products s s s,tv s,t,v s,tv s,tv s,t,v - s

Vendor Support 0 000 0 0 0 0 0 0

Ease of Installation 0.0 0 0 0 0 0 0 0 0

Tool Tailorability * . * • - - 0 *
Documentation 0 0 0o0o0 0 0 0

Absence of Problems o.0 * 0 0 0 0 0 0

On-Line Help .-0 * * * - -

EaseofUse 0O0 0 0 0 0 0 0 0

Test Phases U sj S UI I U U uj U U

Activity Logging O 0 - 0 0 0 - O -

teatTool Dependencies -. - - -tcat
........ ... s-t a adadl

tcat-path

Ada Coverage 0 n/a n/a 0 0 n/a 0 0

Key to Related Products: 00 00 Key to Test Phases Supported:
s - seminars/consulting Better Worse U - unit testing
t - testing services I - integration testing
v - language validation suites 28 S - system testing

Finding 3: Many of the tools can be used in conjunction to overcome the limitations
of particular tools. The tools are all intended to provide support for specific, lim-
ited testing activities. No single tool provides all desirable functionality. MAL-
PAS, SoftTest, S-TCAT/Ada, TBGEN, and TDGen each provide different func-
tionality. They all operate in an independent manner and can be used in conjunc-
tion with each other. TCAT/Ada, TCAT-PATH, TCMON, and TestGen provide
similar types of functionality; each can be used with any combination of MAL-
PAS, SoftTest, and TDGen. In addition to its companion tool TCMON, it may be
possible to use TBGEN to generate test beds for use with TCAT/Ada and TCAT-
PATH.

Finding 4: Only a few of the tools support test data generation, and this support is
generally indirect. Only TDGen actually generates test data. This tool operates
independently of a functional specification, design, or code. It is independent of
any particular test strategy and the effectiveness of generated test data depends on
the user. Some other tools, namely SoftTest and TestGen, identify values that cer-
tain program variables should take, requiring a user to work backwards to deter-
mine the necessary values for program inputs.

Finding 5: The use of some tools may impose restrictions on code development.
Only SoftTest and TDGen are independent of code. The other tools are all subject
to restrictions on the Ada code they can process. Additionally, TBGEN and all
the coverage analyzers receive data on the standard input stream. This presents
present difficulties when testing programs that also use the standard input stream.
TCMON is the only tool that provides a workaround for this problem. Additional
limitations may be found with further use of the tools.

Finding 6: The overhead incurred by code instrumentation needed for structural
coverage analysis can be a significant factor. The examined coverage analyzers all
limit unnecessary increases in program compilation and execution times by allow-
ing the user to specify files whose contents are to be instrumented. Only TestGen
goes beyond this and allows the explicit specification of the particular programs
units to instrument. How a tool gathers the large amount of data that instrumenta-
tion typically generates is also important. The amount of code that can be moni-
tored may be restricted if this data is accumulated in memory. The alternative
approach, writing data to a file, incurs a performance overhead.

Finding 7: The tools do not require special skills but some are immature. The tools

29

require little sophistication on the part of the user and are supported by good docu-

mentation. Some actively guide a user through necessary tasks, keep a record of
test activities, and take extra steps to relieve the user of repetitive tasks. In gen- S
eral, however, the tools employ primitive user interfaces that could benefit from
the application of human factors engineering. In two cases, MALPAS and TCAT-
PATH, the need to refer to separate listings to identify objects referenced in
reports complicated tool use. There were instances where different tools gave dif-
ferent results when performing the same function, for example, calculating
cyclomatic complexity. Moreover, some of the tools contained faults. While most
defects were trivial, others rendered a tool unusable until fixed by the vendor. In
three cases, TCAT/Ada, TCAT-PATH, and TestGen, major failures occurred
when using the tool on sample software supplied by the vendor.

Finding 8: The examined tools all support mature testing approaches. The func-
tional and structutal testing approaches supported by the majority of these tools
have been available since the early 1970s. Although the effectiveness of these
approaches cannot be directly stated in terms of freedom from defects, there is
considerable empirical evidence of their benefits [Rowland 1989, Duran 1984,

Girgis 1986, Selby 1986]. This is not to say that they cannot be improved; for
example, several test strategies have been developed that offer a compromise
between the high cost of path testing and the lack of stringency of branch testing 0
[Woodward 1980, Harrold 19891. These alternative strategies could be useful

employed in coverage analyzers.

More data on the practical costs and benefits of particular tools is needed to determine
which tools should be recommended for use, to justify these recommendations, and to
encourage prospective users. It could also be used to determine further necessary prod-
uctization efforts or the porting of tools to new operating platforms. To this end, SDI soft-
ware development managers should be encouraged to conduct their own examinations of
testing tools, perhaps using this report as an initial guideline. Lessons learned in the 0
course of such efforts should be fed back to the tool developers to guide the improvement
of existing tools and the development of new tools.

4.2 Functional Gaps in Commercial Testing Tools

Despite the efforts of several researchers, for examples see [Goodenough 1975,
Cherniavsky 1988, Moren 1988], there is no commonly agreed formal theory of software
testing. In the absence of such a theory, a definitive specification of the required func-
tionality of testing tools cannot be developed. One alternative way of compiling a list of

30

desired functionality is to look at the new testing techniques that researchers are investi-
gating. This type of approach could result in a list that requires automated support for a
large number of techniques such as assertion testing [Luckham 1986], data flow testing
[Frankl 1986], flavor analysis [Howden 1987], mutation testing [DeMillo 1988], and soft-
ware fault tree analysis [Cha 19881.

A more pragmatic approach is to look at testing practices and identify where
automated support is needed to alleviate difficulties in current practices. This is the
approach adopted here. Based on an assessment of these difficulties, and the capabilities
of the set of testing tools identified at the start of this work, some of the most critical gaps
in commercial tool functionality are the following:

" Support for reproducible testing of concurrent software. The inherent indeter-
minism of concurrent programs severely complicates path analysis and means
that two executions of the same software with the same inputs can produce differ-
ent behaviors. This lack of reproducibility handicaps, for example, determining
the cause of a failure and retesting a modified program. Concurrent programs
can also contain a new class of faults, called synchronization faults. Additional
tests are needed to check for existence of these faults.

* Automated oracles that, for stated test inputs, can determine the expected out-
puts. In dynamic testing, determining the expected program outputs for each set
of test data is equally important to generating the test data itself. It is also more
difficult and time consuming. Since technology for automated oracles is not, and
may never be, available, the development of expected outputs will continue to be
a major cost source. A number of alternative approaches have been investigated.
These include testing techniques that avoid the need for an oracle [DeMillo 1988]
and the use of N-version programming [Avizienis 1985]. The use of symbolic eval-
uation for providing a partial oracle is perhaps the most promising approach
[Richardson 1985].

* Automated assessment of software reliability. Currently, software reliability
models are the only way of assessing software reliability. Although the Naval Sur-
face Weapons Center has developed a tool that automates some of the most pop-
ular models, there is a need for supported commercial tools. Meanwhile, these
models are based on hardware reliability theory and their validity in the software
arena has been questioned. Further understanding of software reliability is
needed.

Research is being conducted in these areas. As appropriate, the timely development of
prototypes should be encouraged to help this technology to mature.

31

5. FURTHER WORK

In determining the current scope of the study, the examination of several tools or
tool classes was postponed. Examination of these tools and tools classes will provide a
better understanding of the available commercial tools that support testing of Ada code.
This section identifies specific tools and tool classes that should be included to complete

this study.

5.1 Additional Static and Dynamic Analysis Tools

During the initial data gathering activities of this work several promising static
and dynamic analysis tools were identified that, because of limited resources or other rea-
sons, were not included in the examinations. As previously discussed, examination of the
T testing tool has been postponed pending the availability of a significantly revised ver-
sion due for release in September 1991. The first complete version of AdaOuest is still
awaited. Preliminary information on AdaQuest and T is given below. Additional analy-
sis tools that should be examined include the following:

* Static and Dynamic Code Analyzer (ARC SADCA) from Optimization Technol-
ogy, Inc. The Ada version of this new tool is expected by the end of 1991.

" TST from Intermetrics. A testbed generation tool for Ada subprograms and
tasks, this tool is based on the Ada Test Support Tool whose development was
funded by the STARS program. Its commercial availability is still uncertain.

" Analysis of Complexity Tool (ACT), Battlemap Analysis Tool (BAT), Design
Complexity Tool, and Structure Testing and Requirements Tool (START) from
McCabe and Associates. These tools provide complexity analysis, test path and
.ondition generation, integration test generation, and data flow scenario genera-
tion. The Ada version of the new Instrumentation Tool is expected to become

available by the end of 1991.

5.1.1 Preliminary Information on AdaQuest

AdaQuest is under development for operation on VAX machines. Advertised
prices depend on the operating environment and start at $6,500. The dynamic analyzer
supports branch testing and verifies unit and subsystem timing requirements by measuring
the actual time spent in user-specified code sections. Assertions are used for checking

33

unit-internal design constraints and interface constraints. In addition to supporting test

data preparation for branch testing, the static analyzer checks for logic errors such as infi-

nite loops, unreachable statements, and uninitialized variables. It also checks for viola- 0
tion of project-specific coding standards and generates various dependency reports.

Finally, the task analyzer traces the actual synchronization relationships between Ada

tasks, creating timing diagrams that may help in diagnosing synchronization errors such

as deadlock and starvation.

5.1.2 Preliminary Information on T

T is already used by various government organizations, including the Naval

Avionics Center, the Jet Propulsion Laboratories, Naval Coastal Systems Center, and the

US Army Forts Monmouth and Sill. It is available for PC/MS-DOS and VAX/VMS plat-

forms, and various workstations under UNIX. Training is a prerequisite for tool purchase

and costs $1,500 per person at PEI, or $10,000 for an on-site workshop. Software prices

start at $7,000. An interface between T and the Teamwork CASE system is due to be

marketed by Cadre Technologies, Inc. in early 1992.

T generates test cases from requirements information. This information includes

details on software actions, data, events, conditions, and states and is specified in the T

Software Description Language (TSDL). T's goal is generation of the minimum number

of traceable test cases that will exercise every operation and each of a set of vendor-

defined probable errors at least once. It can be used during any software development

stage; during maintenance test cases are generated for software changes only. In addition

to test data generation, it provides tracing between tests and defined software actions.

From user-specified pass/fail results, T also provides a measure of test adequacy based

on requirements coverage, input domain coverage, output range coverage and, option-

ally, structure coverage.

5.2 Other Classes of Testing Tools

Regression testing tools are widely believed to offer significant cost savings during

software development and maintenance. For example, based on its industrial research

and testing services, one leading testing company reports that 30% of a maintenance bud-

get is typically spent on retesting software, and automated regression testing can result in

savings of 20-25% [SR 1988b]. A sample set of regression testing tools should be exam-

ined. 0

There is increasing evidence that CASE systems are starting to support testing

activities. A recent survey of CASE vendors, performed on behalf of the US Air Force,

found that nearly 25% of the examined products claim explicit support for software

3

testing activities [Hook 91]. The goal of integrating testing support into a CASE system is
to provide easy access to testing tools that facilitates continual evaluation of evolving soft-
ware. This evaluation can be used to ensure timely detection of faults and provide the
software developer with feedback to guide the development process. The tools examined
in this report can be used in conjunction with any CASE system that supports the develop-
ment of Ada software. Integration into a CASE system, however, requires representing
the testing processes and products in the supported life cycle model. A sample set of
those CASE systems that offer testing support should be examined to determine how
thorough and well-integrated this support is.

35

REFERENCES

ANSI/MIL-STD-1983 Military Standard MIL/ANSI-STD-1815A. January 1983. Ada
Programming Language.

Avizienis 1985 Avizienis, A. December 1985. "The N-Version Approach to Fault-
Tolerant Software." IEEE Transactions on Software Engineering,
Vol. 11, No. 12, pp. 1491-1501.

Boehm 1988 Boehm, B.W. and P.N. Papaccio. October 1988. "Understanding
and Controlling Software Cost." IEEE Transactions on Software
Engineering, Vol. 14, No. 10, pp. 1462-1477.

Brownstein 1982 Brownstein, I, and N.B. Lerner. 1982. Guidelines for Evaluating and
Selecting Software Packages. Elsevier.

Bishop 1986 Bishop, P.G. et al. August 1986. "PODS - A Project on Diverse
Software." IEEE Transactions on Software Engineering, Vol. 12,
No. 9, pp. 929-940.

Brykczynski 1990 Brykczynski, B.R., R.N. Meeson, C. Youngblut. 1990. A Strategic
Defense Initiative Organization Software Testing Initiative. Institute
for Defense Analyses, IDA Paper P-2493.

Cha 1988 Cha, S.S., N.G. Leveson, and T.J. Shimeall. 1988. Safety Verifica-
tion in Murphy Using Fault Tree Analysis. University of California.

Cherniavsky 1988 Cherniavsky, J.C. 1988. "Testing: An Abstract Approach." In Proc.
ACM SIGSOFT '88 Second Workshop on Software Testing, Analysis,
and Verification, July 19-21, Banff, Canada, pp. 38-44.

DeMillo 1988 DeMillo, R.A. et al. 1988. "An Extended Overview of the Mothra
Software Testing Environment." In Proceedings 2nd Workshop on
Software Testing, Verification, and Analysis, July 19-21, Banff, Can-
ada.

DefSci 1990 Aerospace and Defense Science. August 1990. "5th Annual Direc-
tory of Ada Tools and Services."

DoDD 1991 DoD Directive 5000.1. February 23, 1991. Defense Acquisition.

Dunn 1984 Dunn, R.H. 1984. Software Defect Removal. McGraw-Hill.

Duran 1984 Duran. J. and S. Ntafos. July 1984. "An Evaluation of Random Test-
ing." IEEE Transactions on Software Engineering, Vol. 10, No. 7,

37

0

pp. 438-444.

Fagan 1986 Fagan, M.E. July 1986. "Advances in Software Inspections." IEEE:
Transactions on Software Engineering, Vol. SE-12, No. 7,744-751.

Firth 1987 Firth, R. et al. August 1987. A Guide to the Classification and
Assessment of Software Engineering Tools. Software Engineering
Institute. Technical Report CMU/SEI-87-TR-10.

Frankl 1986 Frankl, P.G., and E.J. Weyuker. 1986. "Data Flow Testing in the
Presence of Unexecutable Paths." In Proc. ACM Workshop on Soft-
ware Testing, July 15-17, Banff, Canada, pp. 4-13.

Girgis 1986 Girgis, M.R. and M.R. Woodward. 1986. "An Experimental Com-
parison of the Error Exposing Ability of Program Testing Criteria."
In Proc. ACM SIGSOFT '86 Symposium on Software Testing, Analy-
sis, and Verification, 15-17 July, Banff, Canada, pp. 64-73.

Goodenough 1975 Goodenough, J.B., and S.L Gerhart. June 1975. "Towards a Theory •
of Test Data Selection." IEEE Transactions on Software Engineer-
ing, Vol. 1, No. 2, pp. 156-173.

Harrold 1989 Harrold, M. and M. Soffa. 1989. "Interprocedural Data Flow Test-
ing." In Proc. ACM SIGSOFT '89 Third Symposium on Software 0
Testing, Analysis, and Verification, December 13-15, Key West,
Florida, pp. 158-167.

Hook 1991 Hook, A.A. et al. 1991. Availability of Ada and C++ Compilers,
Tools, Education, and Training. Institute for Defense Analyscs. S
Institute for Defense Analyses, draft IDA Paper P-2601.

Howden 1987 Howden, W.E. 1987. Functional Program Testing and Analysis.
New York: McGraw-Hill.

Luckham 1986 Luckham, D.C. 1986. Anna: A Language for Specifying and Debug- .

ging Ada Software. University of Stanford.

Lutz 1990 Lutz, M. May 1990. "Testing Tools." IEEE Software, Vol. 7, No. 3,
pp. 53-57.

McCabe 1976 McCabe, T.J. December 1976. "A Complexity Measure." IEEE
Transactions on Software Engineering, Vol. 2, No. 4, pp. 308-320.

38

S

Meeson 1989 Meeson, R.N. 1989. Ada Lexical Analyzer Generator User's Guide.
Institute for Defense Analyses, IDA Paper P-2109.

Morell 1988 Morell, L.J. "Theoretical Insights into Fault-Based Testing." In
Proc. ACM SIGSOFT '88 Second Workshop on Software Testing,
Analysis, and Verification, July 19-21, Banff, Canada, pp. 45-62.

Myers 1988 Meyers, W. September 1988. "Shuttle Code Achieves Very Low
Error Rate." IEEE Software, Vol. 5. No. 6, pp. 93.

Pressman 1987 Pressman, R.S. 1987. Software Engineering: A Practitioners
Approach. McGraw-Hill.

Richardson 1985 Richardson, D.J., and L.A. Clarke. 1985. "Testing Techniques
Based on Symbolic Evaluation." In Software: Requirements, Specifi-
cation, and Testing. T. Anderson (ed.), 93-110. Blackwell Scientific
Publications.

Rowland 1989 Rowland, J.H. and Y. Zuyuan. 1989. "Experimental Comparison of
Three System Test Strategies." In Proc. ACM SIGSOFT '89 Third
Symposium on Software Testing, Analysis, and Verification,
December 13-15, Key West, Florida, pp. 141-149.

SDI 1991 SDIO Directive No. 3405. 1991. Strategic Defense System (SDS)
Software Policy.

Selby 1986 Selby, R.W. "Combining Software Testing Strategies: An Empirical
Evaluation." In Proc. ACM SIGSOFT '86 Symposium on Software
Testing, Analysis, and Verification, July 15-17, Banff, Canada, pp.
82-90.

SR 1988a Software Research Inc. July 1988. Testing with TCAT: CostlBenefit
Analysis.

SR 1988b Software Research Inc. October 1988. Testing with SMARTS and
CapBak: CostlBenefit Analysis.

SR 1991 Software Research, Inc. 1991. TCATIAda Test Coverage Analysis
Tool for Ada. Users Manual UM-1368/2.

Tai 1989 Tai, K.C., R.H. Carver, and E.E. Obaid. 1989. "Deterministic Exe-
cution Debugging of Concurrent Ada Programs." In Proceedings
13th Annual International Computer Software and Applications
Conference, September 20-22, Orlando, Florida, pp. 102-109.

39

Weyuker 1988 Weyuker, E.J. 1988. "An Empirical Study of the Complexity of Data
Flow Testing." In Proceedings 2nd Workshop on Software Testing,
Verification, and Analysis, July 19-21, Banff, Canada, pp. 188-195. 0

Woodward 1980 Woodward, M.R., D. Hedly, and M. Hennell. May 1980. "Experi-
ence with Path Analysis and Testing of Programs." IEEE Transac-
tions on Software Engineering, Vol.6, No. 3, pp. 278-286.

Youngblut 1989 Youngblut, C. et al. 1989. SDS Software Testing and Evaluation: A
Review of the State-of-the-Art in Software Testing and Evaluation
with Recommended R&D Tasks. Institute for Defense Analyses,
IDA Paper P-2132.

40

ACRONYMS

ACM Association for Computing Machinery

ADADL Ada-based Design and Documentation Language

AISLE Ada Integrated Software Lifecycle Environment

ARC SADCA Static and Dynamic Code Analyzer

ATA Advanced Tactical Aircraft

ATF Advanced Tactical Fighter

CASE Computer-Aided Software Engineering

CPU Central Processing Unit

DoD Department of Defense

DoDD Department of Defense Directive

GKS Graphical Kernel System

IDA Institute of Defense Anaryses

IEEE Institute of Electronics and Electrical Engineers

IL Intermediate Language

JIAWG Joint Integrated Avionics Working Group

KLOC Thousand Lines of Code

LHX Light Helicopter Experimental

MALPAS Malvern Program Analysis System

MIL-STD Military Standard

NASA National Aeronautics and Space Administration

PC Personal Computer

PDL Program Design Language

PEI Programming Environment Institute

SR Software Research

41

RTP Rex, Thomspon and Partners

S-TCAT System Test Coverage Analysis Tool

SCORE SDI Cooperative Research Exchange

SDI Strategic Defense Initiative

SDIO Strategic Defense Initiative Organization

SDS Strategic Defense System

SEI Software Engineering Institute

SIGSOFT Special Interest Group on Software Engineering

SSD Software Systems Design

STARS Software Technology for Adaptable, Reliable Systems

STW Software TestWorks

TBGEN Test Bed Generator

TCAT Test Coverage Analysis Tool

TCAT-PATH Path Test Coverage Analysis Tool

TCMON Test Coverage Monitor/Program Bottleneck Finder

TCPOST TCMON Postprocessor

TDGen Test Data Generator

TSDL T Software Description Language

VDM Vienna Development Method

4

42

APPENDIX A

VENDORS OF TESTING TOOLS

TABLE A-1. Vendors of Commercially Available Testing Tools

Vendor Phone # Tool Name and Function Lang.

ABRAXAS Software Inc. (800) 347-5214 CODE CHECK complexity, portability, style analyzer C, C++

AETECH, Inc. (619) 755-1277 AdaScope interfaces symbolic debugger to code Ada

ACT Corp. (212) 696-5600 AdaSoft analyzer/debugger Ada

ASA Inc. (214)245-4553 Hindsight logic, complexity, performance, productivity C
analyzer

ATI (212) 354-8280 superCASE CASE system w' dynamic analyzer Fortran

Alsys Inc. (617) 270-0030 AdaTune non-intrusive performance, coverage analyzer Ada

BTree Verification Systems, Inc. (612) 474-3756 SVS regression analyzer n/a

Bender and Associates (415) 924-9196 SoftTest functional test data generator n/a

Cadre (703) 875-8670 SAW non-intrusive performance analyzer Ada, C

XRAY code execution simluator/debugger

CodeMap coverage, stack space analyzer

SmartProbe debugger w' trace and breakpoints

Evaluator regression analyzer n/a

Charles Stark Draper Lab. DARTS CASE system w' design analyzer n/a

Clyde Digital Systems, Inc. (801) 224-5306 CARBONCopy regression analyzer n/a

Computer Associates (203) 627-8923 TRAPS regression, acceptance tester n/a

Concurrent Computer Corp. (201) 758-7531 XPA performance analyzer n/a

Simulation Wbench real-time performance analyzer n/a

43

0

Vendor Phone # Tool Name and Function Lang.

Convex Computer Corp. (214) 497-4383 CXpa performance analyzer n/a

DDC-1 (602) 944-1883 DACS compiler, non-intrusive symbolic debugger Ada

Digital Equipment Corp. (800) 332-4636 PCA coverage, performance analyzer n/a

SCA static analyzer n/a

Test Manager regression, test analyzer n/a

Direct Technology (800) 992-9979 Automator qa regression and test manager n/a

Donatech Corp. (515) 472-7474 RealTime Testware non-intrusive executor w' test manage- n/a
ment

Dynamic Research Corp. (508) 475-9090 AdaMAT quality analyzer Ada

EVB Software Engineering Inc. (301) 695-6960 DYN complexity analyzer Ada

General Research Corp. (805) 964-7724 AdaQuest static, dynamic analyzer Ada

J73AVS static, dynamic analyzers Jovial

RXVP80 coverage, static analyzer Fortran

Gimpel Software (215) 584-4261 Generic Lint static analyzer C

Goldbrick Software (714) 760-9196 Bloodhound regression analyzer n/a

Harris Corp. (305) 977-5573 AMS quality analyzer Ada

Hewlett Packard (301) 670-4300 HP Branch Validator coverage analyzer C, C++

ITT Avionics (201) 284-5030 UATL driver for test execution Ada

i-Logix (617) 272-8090 Statemate CASE system w' testing functions Ada, C

Information Processing Tech. Inc. (415)494-7500 FORTRAN-lint static analyzer Fortran

lint-PLUS static analyzer C

Inst. for Information Industry +886 2737 7187 KangaTool/CEA cause-effect analyzer n/a

KangaTool/DPA dynamic program analyzer various

KangaTool/SPA static program analyzer various

KangaTool/UTT unit test tool various

44

Vendor Phone # Tool Name and Function Lang.

Integrated Systems, Inc. (408) 980-1500 AutoCode CASE system w' testing functions various

Intermetrics, Inc. (714) 891-4631 TST Symbolic debugger, test data generator; path, perfor- Ada
mance, coverage analyzer

JADE (804) 744-5849 JADE animator, monitor, debugger for simulation n/a

Jackson Systems Corp. (203) 683-1976 APJ Workbench Animator for test data against data/program Ada

structures

MCC (512) 338-3345 SMDC quality analyzer Ada

McCabe and Associates (301) 596-3080 ACT comp'exity, test paths/conditions analyzer various

BAT test path/condition generator various

DCT design complexity, integ. test various

START data flow scenario generator n/a

Mentor Graphics, Inc. (714) 660-8080 CASE Station CASE system w' testing functions C

Mercury Interactive Corp. (408) 982-0100 Runner series regression tester n/a

Microtec Research Xray/DX performance, coverage analyzer for embedded code n/a

Qual Trak Corp. (408) 274-8867 DDTs defect tracking system n/a

EDDTs field defect tracking system n/a

Nokia Data +358-31-237317 TBGEN test bed generator Ada

TCMON coverage, performance analyzer Ada

Pacific-Sierra Research (213) 820-2200 Flint static analyzer Fortran

Performance Awareness (919) 870-8800 preVue series functional, regression, performance tester n/a

Performance Software (800) 873-6587 V-Test regression analyzer n/a

Pilot Research Associates, Inc. (703) 883-2522 Check*Mate regression analyzer n/a

Popkin Software (212) 571-3434 System Architect CASE system w' testing functions n/a

Programming Environments Inc. (201) 918-0110 T functional test case generator n/a

Programming Research (817) 589-0949 PR:QA quality analyzer C

45

Vendor Phone # Tool Name and Function Lang.

RTP Software Ltd. +0252 711414 MALPAS static analyzer various 4

RJO (301) 731-3600 Auto-G CASE system w' testing functions n/a

Reasoning Systems (415) 494-6201 Refine CASE system w' testing functions C

Howard Rubin Associates, Inc. (914) 764-4931 RA-METRICS project management analyzer n/a

FPXpert complexity analyzer n/a

SQL Systems International +44 279-641021 PCMS*ADA dependency analyzer Ada

Set Labs (503) 289-4758 UX-METRIC quality analyzer various

PC-METRIC quality analyzer various

Softool Corporation (805) 683-5777 CAC/2167A DoD-STD-2167A compliance analyzer

Scandura Intelligent Systems (215) 664-1207 PRODOC CASE system w' coverage analyzer

Science Applications Inter. Corp. (703) 553-6171 MAT maintenance analysis tool Fortran S
Path Analysis Tool coverage analyzer Fortran

Software Quality Automation (800) 228-9922 SQAManager test planner w' test management n/a

Software Recording, Inc. (214) 368-1196 AutoTester test planner w' regression testing n/a

Software Research Inc. (415) 957-1441 TCAT branch coverage analyzer various

S-TCAT function call coverage analyzer various

TCAT-PATH path coverage analyzer various

T-SCOPE coverage animator n/a

TDGen random and sequential test data generator n/a

SMARTS regression tester n/a

CAPBAK keystroke Capture and Playback System n/a

EXDIFF file comparator n/a

Software Systems Design, Inc. (714) 625-6147 TestGen complexity, path, coverage analyzer Ada, C

QualGen design, code quality analyzer Ada, C

AIEM database design analyzer

Sterling Software (818) 716-1616 TestPro test planner w" test management n/a

46

Vendor Phone # Tool Name and Function Lang.

Syscon Corporation (619) 296-0085 PEP performance analyzer

GRAP animator w' CPU usage, call frequency analyzer

System Design and Development (303) 449-3634 DCATS regression analyzer UI-!

Tartan Laboratories, Inc. (412) 856-3600 Ada Scope analyzer Ada

Teledyne Brown Engineering 352-8533 ACAT complexity analyzer Ada

SMART quality assurance system Ada

TAGS/RT CASE system w' testing support n/a

TeleSoft (619) 457-2700 Telegen2 development environ,-ent w' profiler Ada

Tiburon Systems, Inc. (703) 920-2321 FERRET testing workstation various

Verilog SA (703) 354-0371 Logiscope complexity, required tests, coverage analyzer various

AGE CASE system w' r/qs test case generator n/a

XA Systems Corp. (800) 344-9223 PATHVU quality analyzer Cobol

Xinotech Research (612)379-3844 Program Composer analyzer Ada

47

APPENDIX B

SAMPLE OUTPUTS FROM MALPAS

Due to MALPAS's restrictions on analysis of Ada access types, the lexical

analyzer code used as a sample test program could not be thoroughly analyzed. To illus-

trate the reports that MALPAS produces a simple Pascal program was substituted. This
program and the MALPAS analysis reports are shown in the following figures.

49

program average (input, output);
[This program shares a stream between two consumers by merging the)
[processes and evaluating the result of the second process eagerly.)
type resulttype = integer; [consumer process result type I

streamelement = integer; (stream element type)
var conslresult: resulttype; [result returned by consumer #1)

cons2result: resulttype; [result returned by consumer #2)

(Stream operations)
procedure advance (var eos: Boolean; var next: streamelement; more: Boolean);

const CR = 13; [Advance the actual input stream I
var ch: char;
begin

if more then
if eof then

eos := true
else begin

eos := false;

if eoln then begin
readln;
next := CR

end 0
else begin

read(ch);
next := ord(ch)

end
end

end; 0

procedure consume; [Consume the input stream as one process)
var eos: Boolean; [(count stream elements and sum stream elements))

next: streamelement;
begin

conslresult : 011
cons2result : 0;
advance(eos,next,true);
while not eos do begin

conslresult := conslresult + 1; [count stream elements
cons2result := cons2result + next; [sum stream elements I
advance(eos,next,true) l

end;
end;

begin
tonsume;
writeln('The average of ', conslresult:l,

I characters is "', chr(cons2result div conslresult), '".')

end.

Figure B-1. Sample Pascal Code Illustrating MALPAS Analyses

50

S

It] TITLE average;
[2]
[3] 1 Pascal to Malpas IL Translator - Release 3.0
(4]
[6] _INCLUDE/NOLIST "USR:[ADATEST.PASCALIL30]FIXED.PREAMBLE"
** Including file USR:[ADATEST.PASCALIL30]FIXED.PREAMBLE;I
*** End of file USR:[ADATEST.PASCALIL30]FIXED.PREAMBLE;1 ***
[7] _INCLUDE/NOLIST "USR:[ADATEST.PASCALIL30] TEXT.PREAMBLE"

*** Including file USR:[ADATEST.PASCALIL30]TEXT.PREAMBLE;I

*** End of file USR:[ADATEST.PASCALIL30]TEXT.PREAMBLE;I ***

[8]
(10] CONST cr : integer = +13;

[il] CONST lit 1 theaverage char-array = "The average of ";
[12] CONST lit_2_characters char-array = " characters is
[13] CONST lit_3 : char-array =

[14] [* result returned by consumer #2 *]
(16]
[17] [* Stream operations *]
[18]
120] PROCSPEC advance(INOUT eos : boolean,
[21] INOUT next integer,
[22] IN more boolean)
[23] IMPLICIT ([** IL Global Parameter Section **]
[24] INOUT input : text);
*** WARNING no DERIVES list specified for procedure advance
(25] * Advance the actual input stream *]
[26]
[27] PROCSPEC consume
[28] IMPLICIT ([** IL Global Parameter Section **]
[29] INOUT conslresult, cons2result : integer
[30] INOUT input : text);
*** WARNING : no DERIVES list specified for procedure consume
[31] 1* Consume the input stream as one process *]
[32] 1* (count stream elements and sum stream elements)]

[33]
[35] MAINSPEC (INOUT input text
[36] INOUT output text);
[37]
[38] PROC advance;
(40] VAR ch: char;
[42] #1: IF more THEN
[43] #3: IF eoftext(input) THEN

[44] #5: eos : true
[45] ELSE
[46] #6: eos : false;
[47] #7: IF eoln__text(input) THEN
[48] #9: text__readln(input);
[49] #10: next :- cr

Figure B-2. MALPAS Intermediate Language Translation of Sample

51

0

[50] ELSE

[51] #11: textreadchar(input, ch);
[52] #12: next := charpos(ch)

[53] #8: ENDIF
[54] #4: ENDIF
[55] #2: ENDIF
[56] #STOP: [SKIP]
[56] #END: ENDPROC [*advance*]
[57]
[58] PROC consume;
[60] VAR eos_6: boolean;
[61] VAR next 6: integer;
[63] #1: consiresult := 0;

[64] #2: cons2result : 0;
[65] #3:
[65] advance(eos_6, next_6, true);
*** WARNING : advance has not been fully specified
[66] #4: LOOP [while loop]
[67] #6: EXIT [while loop] WHEN NOT(NOT eos_6);
[68] #7: consiresult := conslresult + 1;

[69] [* count stream elements *]
[70] #8: cons2result := cons2result + next_6;
[71] [* sum stream elements *]
[72] #9:

[72] advance(eos_6, next__6, true)
*** WARNING : advance has not been fully specified

[73] #5: ENDLOOP [while loop]
[74] #STOP: [SKIP]
[741 #END: ENDPROC [*consume*]
[75]
[76] MAIN
[79] VAR conslresult: integer;
[80] [* result returned by consumer #1 *]
[81] VAR cons2result: integer;
[83] #1:
[83] consumeo;

*** WARNING : consume has not been fully specified
[84] #2: textwrite(output, lit_1_theaverage);

[90] #STOP: [SKIP]
[90] #END: ENDMAIN
[93] [**** WARNING : WARNINGS IN PASS 1 ... See Listing File]
[95] FINISH
*** WARNING : Procedure body for text get has not been defined

*** WARNING : Procedure body for textpage has not been defined

'** WARNING : Procedure body for text__writeln has not been defined

Figure B-2. MALPAS Intermediate Language Translation of Sample(continued)

52

0

After ONE-ONE, 13 nodes removed.
No nodes with self-loops removed.

Node id No of pred. Succ. nodes
#START 0 #END

#END 1
After KASAI (from ONE-ONE), No nodes removed.
After HECHT (from ONE-ONE), No nodes removed.
After HK (from HECHT), No nodes removed.
After TOTAL (from HK), No nodes removed.

Control Flow Summary

The procedure is well structured.
The procedure has no unreachable code and no dynamic halts.
The graph was fully reduced after the following stages:

ONE-ONE, KASAI, HECHT, HK, TOTAL
The graph was not fully reduced after the following stages:

None

Figure B-3. MALPAS Control Flow Analysis of ADVANCE

Key

H = Data read and not subsequently written on some path between the nodes
I = Data read and not previously written on some path between the nodes
A = Data written twice with no intervening read on some path between the nodes
U = Data written and not subsequently read on some path between the nodes
V = Data written and not previously read on some path between the nodes
R a Data read on all paths between the nodes
W = Data written on all paths between the nodes
E - Data read on some path between the nodes
L - Data written on some path between the nodes

After ONE-ONE
From To Data Use Expression
node node

#START #END H : ch input more
I : input more
U : eos input next
V : ch eos next
R : more
E : ch input more
L : ch eos input next

Summary of Possible Errors

No errors detected

Figure B-4. MALPAS Data Use Analysis of ADVANCE

53

Information Flow

After ONE-ONE S
From node #START to node #END

Identifier may depend on identifier(s)

eos INs/INOUTs eos input more
CONSTANTs false true S

next INs/INOUTs input more next
CONSTANTs cr

input INs/INOUTs input more
ch INs/INOUTs input more

VARs/OUTs ch

Identifier may depend on conditional node(s)

eos #3 #1
next #7 #3 #1
input #7 #3 #1
ch #7 #3 #1

Summary of Possible Errors

No errors detected

Figure B-5. MALPAS Information Flow Analysis of ADVANCE

40

54

Semantic Analysis

After ONE-ONE

>From node #START
To node #END

IF NOT(more)
THEN MAP
ENDMAP

ELSIF more AND eof__text(input)
THEN MAP

eos :- true;
ENDMAP

ELSIF more AND eoln__text(input) AND NOT(eof__text(input))
THEN MAP

eos :false;

next :13;

input :=readin__text(input);
ENDMAP

ELSIF more AND NOT(eoln__text(input)) AND NOT(eof-text(input))
THEN MAP

eos :false;

next =charpos (read__text char(input));
input skip_ text char(input);
ch :- read_text___char (input);

ENDMAP END IF

Figure B-6. MALPAS Semantic Analysis of ADVANCE

55

APPENDIX C

SAMPLE OUTPUTS FROM SoftTest

/* Test while-loops corresponding to the code template: */
/* iterate: */
/* while not done do */
/* nextiteration; */

/* Test using the following expanded logic: */
/* if done_0 then exit_0
/* else
1* dofirstiteration; */
/* if done_1 then exit_1 '/
/* else

doseconditeration; */
/* if done_2 then exit_2 '/
/* else ... */

NODES
Start = 'Start iteration process'.
DoneO = 'Iteration process has completed after zero iterations'.
ExitO = 'Exit after zero iterations'
DoFirst = 'Perform first step of iteration'.
Donel = 'Iteration process has completed after first iteration'.
Exitl = 'Exit after first iteration'
DoSecond = 'Perform second step of iteration'.
Done2 = 'Iteration process has completed after second iteration'.
Exit2 = 'Exit after second iteration'.
Exit = 'Exit from loop' OBS.

CONSTRAINTS
excl(ExitO, Exitl, Exit2).
mask(not Start, DoneO).
mask(not DoFirst, Donel).
mask(not DoSecond, Done2).

RELATIONS
ExitO .- Start and DoneO.
DoFirst :- Start and not DoneO.
Exitl - DoFirst and Donel.
DoSecond :- DoFirst and not Donel.
Exit2 :- DoSecond and Done2.
Exit :- ExitO or Exitl or Exit2.

Figure C-1. SoftTest Cause-Effect Graph Input

57

Functional Variations for: Test template for iteration schemes

1. If Start and DoneO then ExitO.
2. If not Start then not ExitO.
3. If not Done0 then not ExitO.

4. If Start and not Done0 then DoFirst.
5. If not Start then not DoFirst.
6. If DoneO then not DoFirst.

7. If DoFirst and Donel then Exitl.
8. If not DoFirst then not Exitl.
9. If not Donel then not Exitl.

10. If DoFirst and not Donel then DoSecond.
11. If not DoFirst then not DoSecond.
12. If Donel then not DoSecond.

13. If DoSecond and Done2 then Exit2.
14. If not DoSecond then not Exit2.
15. If not Done2 then not Exit2.

16. If Exit0 then Exit.
17. If Exitl then Exit.
18. If Exit2 then Exit.

19. If not ExitO and not Exitl and not Exit2 then not Exit.

Complexity Factors:
variations / primary causes = 4.8
variations / (primary causes + primary effects) = 3.8

Figure C-2. SoftTest Variation Analysis Output

58

Test Cases/Coverage Matrix for: Test template for iteration schemes

TEST CASE 1:

Cause states:
Start - Start iteration process
DoneO = Iteration process has completed after zero iterations

Effect states:
Exit = Exit from loop

TEST CASE 2:

Ccuse states:
Start = Start iteration process
not DoneO = not Iteration process has completed after zero iterations
Donel = Iteration process has completed after first iteration

Effect states:
Exit = Exit from loop

VARIATION COVERAGE by test:
Test Variations

1 1 16
2 4 7 17
3 4 10 13 18
4 2 19
5 3 9 15 19

TEST COVERAGE by variation:
Var Tests

1 1
2 4
3 5
4 23
5 Untestable
6 Untestable
7 2

19 4 5

Tested variations / testable variations 1 100 %

Figure C-3. Softest Test Synthesis Output

59

StrDoFi Done - I Exit
t ~~A rst 2-[

Doe-DoSe _j Exit Exi

Figure C-4. Softest Cause-Effect Graph

600

APPENDIX D

SAMPLE OUTPUTS FROM TCAT-PATH, TCAT/Ada, and S-TCAT/Ada

-- TCAT-PATH/Ada, Release 1.2 for UNIX/SUN(tm) (05/05/89)
-- (c) Copyright 1989 by Software Research, Inc. ALL RIGHTS RESERVED.
-- SEGMENT REFERENCE LISTING Fri Sep 6 12:56:37 1991

procedure STOREPATTERN (PATID, PAT: in LLATTRIBUTE) is
-- Store a pattern definition in the pattern table.
-- Patterns are stored in alphabetical order by name.

begin
-- START instrumented module "STOREPATTERN" with 10 segment(s).
-- > STOREPATTERN/l:

if CURTABLEENTRIES = PATTERNTABLESIZE then
-- > STOREPATTERN/2:
-- > STOREPATTERN/3:

raise PATTERNTABLEFULL;
end if;
for I in 1 .. CURTABLEENTRIES loop

-- > STOREPATTERN/4:

CURTABLEENTRIES := CURTABLEENTRIES + 1;
PATTERNTABLE(CURTABLEENTRIES) := PAT;
PATTERNTABLE(CURTABLEENTRIES).NAME := PATID.STRINGVAL;

end STOREPATTERN;
-- FINISH instrumented module "STOREPATTERN".

-- END OF TCAT/ADA REFERENCE LISTING

-- TCAT/Ada, Release 1.2 for UNIX/SUN(tm) (05/05/89)
-- INSTRUMENTATION STATISTICS

-- Module # segments # statements # Conditional statements
-- MERGERANGES 3 0 1
-- ALTERNATE 17 0 6
-- CHARRANGE 5 0 2
-- RESTRICT 22 4 825559569
-- TAIL 17 4 6
-- RESOLVEAMBIGUITY 20 8 288143
-- COMPLETEALT 14 5 288510

-- REPEAT 4 0 839518514
-- STOREPATTERN 10 0 839518517
-- ALTERNATE 1 0 302080

Figure D-1. TCAT-PATH Reference Listing

61

-- TCAT-PATH/Ada, Release 1.2 for UNIX/SUN(tm) (05/05/89)
-- (c) Copyright 1989 by Software Research, Inc. ALL RIGHTS RESERVED.

-- Instrumented module names Fri Sep 6 12:56:37 1991

MERGERANGES 3
CHARRANGE 5
RESTRICT 22
TAIL 17
RESOLVEAMBIGUITY 20

COMPLETEALT 14
COMPLETECONCAT 13
COMPLETEOPT 4
COMPLETEPAT 17
COMPLETEPATTERNS 3

CONCATENATE 4

CVTASCII 11
CVTSTRING 7
EMITADVANCEHDR 1
EMITADVANCETLR 1
EMITPKGDECLS 5

EMITALTCASES 7
EMITCONCAT_CASES 8

EMITCONCATRIGHT 5

EMITPATTERNMATCH 32
EMITCHAR 12
EMITSELECT 17

EMITSCANPROC 7

EMITTOKEN 18

INCLUDEPATTERN 3
LOOKAHEAD 1

LOOKUPPATTERN 5

OPTION 4
REPEAT 4

STOREPATTERN 10

Figure D-2. TCAT-PATH Instrumentation Counts for STOREPATrERN

-- TCAT-PATH/Ada, Release 1.2 for UNIX/SUN(tm) (05/05/89)
-- (c) Copyright 1989 by Software Research, Inc. ALL RIGHTS RESERVED.

-- ERROR LISTING Fri Sep 6 12:56:37 1991

--Module EMITPATTERNNAME overloaded, not instrumented S
Internal error loopedgeback called with no edges to loop back
--Module ALTERNATE overloaded, not instrumented

Figure D-3. TCAT-PATH Error Listing for STORE.PATTERN

62

[[o I 0 - 1
IC I] II
[[1]] < 0 0 - 2 3
[C JI I

> > > > [[2 0 << 0 - 4 10I I I I E] I I
0 0 I I [[3 1] < 0 -9 8 5I I [[1] I I

0 0 [[4]] < 1-76[[1] I
[[5]]

Figure D-4. TCAT-PATH Digraph of STORE-PATTERN

1 2 4 5 6 <(4 5 6 7 8 9 > 0
1 2 4 5 7 ([4 5 6 7 8 9)> 1012487 <(456789> 10
1 2 4 8 <[4 5 6 7 8 9 }> 10
1 2 4 9 <4 5 6 7 8 9)> 10
1 2 10
1 3 4 5 6 <[4 5 6 7 8 9)> 10
1 3 4 5 7 <[4 5 6 7 8 9)> 10
1 348 <[456789)> 10
1 3 4 9 <4 5 6 7 8 9 > 10
1 3 10

Path Analysis Statistics

File name: STOREPATTERN.dig

Number of nodes: 6
Number of edges: 10
Cyclomatic number (E - N + 2): 6

Number of paths: 10
Average path length (segments): 9.80
Minimum length path (segments): 3 (Path 10)
Maximum length path (segments): 12 (Path 7)
Most iteration groups: 1 (Path 9)

Path count by iteration groups:
0 iteration group(s): 2
1 iteration group(s): 8

Stopped at 1 iteration groups

Figure D-5. TCAT-PATH Path Analysis of STORE.PATTERN

63

cyclo (Release 3.3 -- 9/26/90)

Cyclomatic Number = Edges - Nodes + 2 = 10 - 6 + 2 = 6

Figure D-6. TCAT-PATH Complexity of STORE-PATTERN

Ct Test Coverage Analyser Version 1.8
(c) Copyright 1990 by Software Research, Inc.

Module "STORE PATTERN": 10 paths, 2 were hit in 5 invocations.

20.0% Ct coverage 0

HIT/NOT-HIT REPORT

P# Hits Path text

1 None 1 2 4 5 6 <[4 5 6 7 8 9)> 10
2 None 1 2 4 5 7 <[4 5 6 7 8 9)> 10
3 None 1 2 4 8 <[4 5 6 7 8 9]> 10
4 None 1 2 4 9 <[4 5 6 7 8 9)> 10
5 None 1 2 10
6 None 1 3 4 5 6 <[4 5 6 7 8 9)> 10
7 None 1 3 4 5 7 <[4 5 6 7 8 9 }> 10
8 None 1 3 4 8 <[4 5 6 7 8 9)> 10
9 4 1 3 4 9 <[4 5 6 7 8 9)> 10
10 1 1 3 10

Figure D-7. TCAT-PATH Coverage Report for STORE-PATTERN

64

-- TCAT-PATH/Ada, Release 1.2 for UNIX/SUN(t m) (05/05/89)
-- (c) Copyright 1989 by Software Research, Inc. ALL RIGHTS RESERVED.
-- SEGMENT REFERENCE LISTING Fri Sep 6 12:56:37 1991

procedure STOREPATTERN (PAT_ID, PAT: in LLATTRIBUTE) is
-- Store a pattern definition in the pattern table.
-- Patterns are stored in alphabetical order by name.

begin
-- START instrumented module "STOREPATTERN" with 10 segment(s).

-- > STORE_PATTERN/I:

if CURTABLEENTRIES = PATTERNTABLESIZE then
-- > STOREPATTERN/2:

-- > STORE_PATTERN/3:

raise PATTERNTABLEFULL;
end if;
for I in 1 .. CURTABLEENTRIES loop

-- > STORE_PATTERN/4:

CURTABLEENTRIES := CURTABLEENTRIES + 1;
PATTERNTABLE(CURTABLEENTRIES) := PAT;
PATTERN_TABLE(CUR_TABLEENTRIES).NAME := PATID.STRINGVAL;

end STOREPATTERN;
-- FINISH instrumented module "STOREPATTERN".

-- END OF TCAT/ADA REFERENCE LISTING

-- TCAT/Ada, Release 1.2 for UNIX/SUN(tm) (05/05/89)
-- INSTRUMENTATION STATISTICS

-- Module # segments # statements # Conditional statements

-- MERGERANGES 3 0 1

-- ALTERNATE 17 0 6

-- CHAR-RANGE 5 0 2
-- RESTRICT 22 4 825559569

-- TAIL 17 4 6

-- RESOLVEAMBIGUITY 20 8 288143

-- COMPLETEALT 14 5 288510

-- COMPLETECONCAT 13 6 839518519

-- REPEAT 4 0 839518514
-- STOREPATTERN 10 0 839518517

-- ALTERNATE 1 0 302080

Figure D-8. TCAT/Ada Reference Listing

65

Coverage Analyzer. (Release 7.3 for SUN/UNIX 12/90]

(c) Copyright 1990 by Software Research, Inc.

Selected COVER System Option Settings:

[-c] Cumulative Report -- YES
[-p] Past History Report -- YES

[-n] Not Hit Report -- YES

[-H] Hit Report -- YES

[-nh] Newly Hit Report -- NO
(-nm] Newly Missed Report -- NO

[-h] Histogram Report -- YES
[-1] Log Scale Histogram -- NO

[-Z] Reference Listing Cl - NO

+-------------------------------------+--

I (Archived) Past TestsI
+--

I Number of
I Module Number Of INumber Of segments Percent

INo. Name Segments: iInvocations Hit coverage
+-------------------------------------+--

I 0: BUILDRIGHT 15 I 128 13 86.67
1: BUILDSELECT 3 I 128 3 100.00

2: CHARADVANCE 4 I2 2 50.00

I 3: CHAR-RANGE 51 30 5 100.001

I32: STOREPATTERN 10 I30 5 50.00
+-------------------------------------+--

I Totals 268 1 1357 158 58.96 1
+-------------------------------------+--

------------------------ +------------------------------------+------------------------------------

I Current Test I Cumulative Summary I
------------------------- +------------------------------------

I No. Of I No. Of
IModule Number Of INo. Of Segments C1% INo. Of Segments Cl%
Name: Segments: Invokes Hit Cover IInvokes Hit Cover

------------------------ +------------------------------------+------------------------------------

IBUILDRIGHT 15 I 0 0 0.00 I 128 13 86.67
IBUILDSELECT 3 I 0 0 0.00 I 128 3 100.00
ICHARADVANCE 4 I 0 0 0.00 I 2 2 50.00
ICOMPLETE-ALT 141 8 9 64.291 28 9 64.291

ITAIL 17 I 4 4 23.53 I 4 4 23.53
------------------------ +------------------------------------+------------------------------------

I Totals 341 1 329 159 46.63 1 1686 210 61.58 1I
+------------------------+------------------------------------+------------------------------------

Figure D-9. TCAT/Ada Coverage Report

66

90

Cl Segment Hit Report.

No. Module Name: Segment Coverage Status:

1 BUILDRIGHT 1 2 3 4 5 6 7 8 10
11 12 13 15

2 BUILDSELECT All Segments Hit. Cl = 100%
3 CHARADVANCE 1 2

4 CHARRANGE All Segments Hit. Cl = 100%

5 COMPLETE-ALT 1 6 7 8 9 10 12 13 14

6 COMPLETECONCAT 1 3 4 5 6 11 13

1 2

36 RESTRICT 1 2 6 8 9 10 11 12 17
18 19 20 21

37 STOREPATTERN 1 3 4 9 10
38 TAIL 1 5 14 16

Number of Segments Hit: 210
Total Number of Segments: 341

C1 Coverage Value: 61.58%

C1 Segment Not Hit Report.

No. Module Name: Segment Coverage Status:

1 BUILDRIGHT 9 14

2 BUILDSELECT All Segments Hit. Cl = 100%

3 CHARADVANCE 3 4
4 CHARRANGE All Segments Hit. Cl - 100%

5 COMPLETE-ALT 2 3 4 5 11
6 COMPLETECONCAT 2 7 8 9 10 12

36 RESTRICT 3 4 5 7 13 14 15 16 22
37 STORE-PATTERN 2 5 6 7 8

38 TAIL 2 3 4 6 7 8 9 10 11
12 13 15 17

Number of Segments Not Hit: 131
Total Number of Segments: 341

Cl Coverage Value: 61.58%

Figure D-9. TCAT/Ada Coverage Report (continued)

67

Cl Segment Hit Report.

No. Module Name: Segment Coverage Status:
Segment Level Histogram for Module: BUILDRIGHT 0

+--
I Number of Executions, Normalized to Maximum
I (Maximum = 348 Hits) X = One Hit
I (Scale: 0.287 Each X = 6.960 Hits)

Segment Number Of 1 8
Number Executions >-l ------- 20 -------- 40 -------- 60 -------- 0 i-------100

1 128 I
2 348
3 348 IN•
4 100 XXXXXX.IDC
5 122 I
6 92 XXXXXXXXXXXXX
7 26 XXX
8 8 X
9 *

10 158
11 190
12 288
13 60 XXXXXXXX
14
15 128 XXXXXXXXXXXXXXXXXX

(* = Zero Hits)

Average Hits per Executed Segment: 153.5385
Cl Value for this Module: 86.6667 •

Figure D-9. TCAT/Ada Coverage Report (continued)

0

68

-- S-TCAT/Ada, Release 1.2 for UNIX/SUN(tm) (05/05/89)
-- (c) Copyright 1989 by Software Research, Inc. ALL RIGHTS RESERVED.

-- SEGMENT REFERENCE LISTING Mon Sep 9 13:51:16 1991

with LLDECLARATIONS, TEXTIO, INTEGERTEXT_IO;

package body LLSUPPORT is

procedure STOREPATTERN (PATID, PAT: in LLATTRIBUTE) is
-- Store a pattern definition in the pattern table.
-- Patterns are stored in alphabetical order by name.

begin
-- START instrumented module "STOREPATTERN" with 1 call pairs(s).

if CURTABLEENTRIES = PATTERNTABLESIZE then

-- I guess I didn't make the table big enough.
raise PATTERNTABLEFULL;

PATTERNTABLE(I) : ALTERNATE(PAT, PATTERNTABLE(I));
-- > STOREPATTERN/l:

PATTERNTABLE(I).NAME := PATID.STRINGVAL;
return;

end if;
end loop;
CURTABLEENTRIES := CURTABLEENTRIES + 1;
PATTERNTABLE(CURTABLEENTRIES) := PAT;
PATTERNTABLE(CURTABLEENTRIES).NAME := PATID.STRINGVAL;

end STOREPATTERN;
-- FINISH instrumented module "STOREPATTERN".

-- END OF S-TCAT/ADA REFERENCE LISTING

-- S-TCAT/Ada, Release 1.2 for UNIX/SUN(tm) (05/05/89)

-- INSTRUMENTATION STATISTICS

-- Module * segments # statements

-- MERGERANGES 0 0

-- ALTERNATE 5 0
-- CHARRANGE 0 0

-- RESTRICT 9 4
-- TAIL 14 4
-- RESOLVEAMBIGUITY 28 8

-- COMPLETEALT 3 5

-- STOREPATTERN 1 0
-- LLSUPPORT 0 0

Figure D-10. S-TCAT/Ada Reference Listing

69

-- S-TCAT/Ada, Release 1.2 for UNIX/SUN(tm) (05/05/89)
-- (c) Copyright 1989 by Software Research, Inc. ALL RIGHTS RESERVED.
-- Instrumented module names Mon Sep 9 13:51:16 1991

MERGERANGES 0
ALTERNATE 5
CHARRANGE 0
RESTRICT 9
TAIL 14
RESOLVEAMBIGUITY 28
COMPLETEALT 3
COMPLETEPATTERNS 0
CONCATENATE 0

REPEAT 0
STOREPATTERN 1
LLSUPPORT 0

MERGERANGES 0
ALTERNATE 5
CHARRANGE 0

RESTRICT 9 0
TAIL 14

RESOLVEAMBIGUITY 28
COMPLETEALT 3
COMPLETEPATTERNS 0
CONCATENATE 0
CVTASCII 0
CVT STRING 1
EMITADVANCEHDR 0
EMITADVANCETLR 0
EMITPKGDECLS 0
EMITALTCASES 4
EMITCONCATCASES 3 5
EMITCONCATRIGHT 2
EMITPATTERNMATCH 13
EMITCHAR 0
EMITSCANPROC 3
EMITTOKEN 0
INCLUDEPATTERN 1
OPTION 0
REPEAT 0
STOREPATTERN 1
LLSUPPORT 0

Figure D-11. S-TCAT/Ada Instrumentation Counts

70

ALTERNATE ALTERNATE

ALTERNATE ALTERNATE

ALTERNATE ALTERNATE

ALTERNATE MERGERANGES

ALTERNATE MERGERANGES

RESTRICT RESTRICT

RESTRICT RESTRICT

RESTRICT ALTERNATE

RESTRICT RESTRICT

RESTRICT CONCATENATE

RESTRICT RESTRICT

RESTRICT OPTION

RESTRICT OPTION

RESTRICT CONCATENATE

TAIL ALTERNATE

TAIL TAIL

TAIL TAIL

TAIL CONCATENATE

TAIL CONCATENATE

TAIL ALTERNATE

TAIL TAIL

TAIL TAIL

TAIL CONCATENATE

TAIL TAIL
TAIL CONCATENATE

TAIL TAIL

TAIL ALTERNATE

TAIL TAIL
RESOLVEAMBIGUITY RESTRICT

RESOLVEAMBIGUITY RESTRICT

RESOLVEAMBIGUITY ALTERNATE

RESOLVEAMBIGUITY ALTERNATE

RESOLVEAMBIGUITY ALTERNATE

RESOLVEAMBIGUITY ALTERNATE

RESOLVEAMBIGUITY TAIL

RESOLVEAMBIGUITY TAIL

RESOLVEAMBIGUITY OPTION

RESOLVEAMBIGUITY CONCATENATE

RESOLVEAMBIGUITY OPTION

RESOLVEAMBIGUITY CONCATENATE

RESOLVEAMBIGUITY CONCATENATE
RESOLVEAMBIGUITY ALTERNATE

RESOLVEAMBIGUITY CONCATENATE

RESOLVEAMBIGUITY ALTERNATE

RESOLVEAMBIGUITY CONCATENATE

STOREPATTERN ALTERNATE

Figure D-12. S-TCAT/Ada Instrumented Call-Pairs

71

-- S-TCAT/Ada, Release 1.2 for UNIX/SUN(tm) (05/05/89)
-- (c) Copyright 1989 by Software Research, Inc. ALL RIGHTS RESERVED.
- ERROR LISTING Mon Sep 9 13:51:16 1991 5

EMITPATTERNNAME not instrumented because overloaded
COMPLETEPAT not instrumented because overloaded
COMPLETECONCAT not instrumented because overloaded
COMPLETEOPT not instrumented because overloaded
EMITSELECT not instrumented because overloaded S
LOOKUPPATTERN not instrumented because overloaded
--Module EMITPATTERNNAME overloaded, not instrumented
LOOKAHEAD not instrumented because overloaded

Figure D-13. S-TCAT/Ada Error Listing

cg 1.12

Root node is ALTERNATE

1) ALTERNATE
2) ALTERNATE (* recursive cycle *)

(2) ALTERNATE (* recursive cycle ')
2) ALTERNATE (* recursive cycle *)
2) MERGERANGES

(2) MERGERANGES 0

Graph contains 3 cycles.

Disconnected nodes:

RESTRICT 0
CONCATENATE
OPTION
TAIL
RESOLVEAMBIGUITY
COMPLETEALT
CVTSTRING
EMITALTCASES
EMITPATTERNMATCH
EMITCONCATCASES
EMITCONCATRIGHT
EMITSCANPROC
INCLUDE-PATTERN
STOREPATTERN

Figure D-14. S-TCAT/Ada Control Graph

72

Coverage Analyzer. [Release 7.3 for SUN/UNIX 12/90]
(c) Copyright 1990 by Software Research, Inc.

Selected SCOVER System Option Settings:
[-c] Cumulative Report -- NO

[-p] Past History Report -- YES

f-n] Not Hit Report -- YES

[-H] Hit Report -- NO
[-nh] Newly Hit Report -- NO
[-nm] Newly Missed Report -- NO
f-h] Histogram Report -- YES
(-i1 Log Scale Histogram -- NO
[-Z] Reference Listing 51 -- NO

Options read: 3
S-TCAT: Coverage Analyzer. [Release 7.3 for SUN/UNIX 12/90]
(c) Copyright 1990 by Software Research, Inc.

--+

I (Archived) Past Tests I
+-------------------------------------
I Number Of I

I Module Number Of j Number Of Call-pairs Percent I
I No. Name Call-pairs: I Invocations Hit Coverage I
+------------------------------------+--

0: EMITTOKEN 0 386 0 100.00
1: CHARRANGE 0 20 0 100.00
2: CONCATENATE 0 112 0 100.00
3: ALTERNATE 5 68 0 0.00
4: STOREPATTERN 1 23 0 0.00
5: OPTION 0 12 0 100.00
6: COMPLETEPATTERNS 0 6 0 100.00
7: EMITPKGDECLS 0 6 0 100.00
8: EMITADVANCEHDR 0 6 0 100.00
9: INCLUDEPATTERN 1 17 1 100.00

I10: EMITADVANCETLR 0 6 0 100.00
11: EMITSCANPROC 3 6 1 33.33
12: EMITCHAR 0 77 0 100.00

17: REPEAT 0 4 0 100.00
18: COMPLETEALT 3 26 1 33.33
19: RESOLVEAMBIGUITY 28 6 1 3.57
20: RESTRICT 9 60 1 11.11i
21: TAIL 14 12 0 0.00
22: EMITALTCASES 4 6 1 25.00

-------------------- ---------------- +--

I Totals 87 1 996 10 11.49
+------------------------------------+--

Figure D-15. S-TCAT/Ada Coverage Report

73

S-TCAT: Coverage Analyzer. [Release 7.3 for SUN/UNIX 12/90]
(c) Copyright 1990 by Software Research, Inc.

S1 Not Hit Report. 0
No. Module Name: Call-pair Coverage Status:

1 EMITTOKEN All Call-pairs Hit. S1 = 100%

2 CHARRANGE All Call-pairs Hit. $1 = 100%
3 CONCATENATE All Call-pairs Hit. 51 = 100%
4 ALTERNATE 1 2 3 4 5

5 STOREPATTERN 1 0
6 OPTION All Call-pairs Hit. S1 = 100%

7 COMPLETEPATTERNS All Call-pairs Hit. S1 = 100%

8 EMITPKGDECLS All Call-pairs Hit. S1 = 100%
9 EMITADVANCEHDR All Call-pairs Hit. 51 = 100%
10 INCLUDEPATTERN All Call-pairs Hit. S1 = 100%
11 EMIT ADVANCETLR All Call-pairs Hit. S1 = 100% 0

12 EMITSCANPROC 2 3
13 EMITCHAR All Call-pairs Hit. S = 100%
14 EMIT PATTERN MATCH 2 3 4 5 6 7 8 9 10

11 12 13
15 EMITCONCATRIGHT 2
16 EMITCONCATCASES 2 3 0
17 CVTSTRING All Call-pairs Hit. S1 = 100%
18 REPEAT All Call-pairs Hit. 51 = 100%
19 COMPLETEALT 2 3
20 RESOLVE-AMBIGUITY 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 0

21 RESTRICT 2 3 4 5 6 7 8 9
22 TAIL 1 2 3 4 5 6 7 8 9

10 11 12 13 14
23 EMIT ALTCASES 2 3 4
Number of Call-pairs Not Hit: 77
Total Number of Call-pairs: 87 0
S1 Coverage Value: 11.49%

S-TCAT: Coverace Analyzer. [Release 7.3 for SUN/UNIX 12/90]
(c) Copyright 1990 by Software Research, Inc.
Call-pair Level Histogram for Module: ALTERNATE

No segments hit
S-TCAT: Coverage Analyzer. [Release 7.3 for SUN/UNIX 12/90]
(c) Copyright 1990 by Software Research, Inc.

Call-pair Level Histogram for Module: STOREPATTERN

No segments hit 0

Figure D-15. S-TCAT/Ada Coverage Report (continued)

74

S-TCAT: Coverage Analyzer. [Release 7.3 for SUN/UNIX 12/90]
S-TCAT: Coverage Analyzer. [Release 7.3 for SUN/UNIX 12/90]
(c) Copyright 1990 by Software Research, Inc.
Call-pair Level Histogram for Module: INCLUDE-PATTERN

+- ---

I Number oi Executions, Normalized to Maximum
I (Maximum - 20 Hits) X = One Hit
I (Scale: 5.000 Each X = 0.400 Hits)

Call-pair Number Of I
Number Executions >- ------- 20 -------- 40 --------60 --------80 ------ 100
----------------- +--

1 20 I

----------------- +--

Average Hits per Executed Call-pair: 20.0000
S1 Value for this Module: 100.0000

S-TCAT: Coverage Analyzer. (Release 7.3 for SUN/UNIX 12/90]
(c) Copyright 1990 by Software Research, Inc.
Call-pair Level Histogram for Module: EMITALTCASES

+---

I Number of Executions, Normalized to Maximum
I (Maximum = 12 Hits) X = One Hit
I (Scale: 8.333 Each X = 0.240 Hits)

Call-pair Number Of I
Number Executions >-1 ------- 20 -------- 40 -------- 60 -------- 80 ------ 00
----------------- +--

1 12
2 *
3 *

4 *

----------------- +--

(* = Zero Hits)

Average Hits per Executed Call-pair: 12.0000
S1 Value for this Module: 25.0000

Figure D-15. S-TCAT/Ada Coverage Report (continued)

75

[%c Values file 1: for variable number of initial TDGen executions. I

expr [% expr)[% op)[% expr) [% identifier) [% realno)
op +-/*
identifier variablel variable2 [% alpha 6)
realno t% real 4.61 1% integl)E+[% integ2) [% integl)E-[% integ2)
integl [%r 1..100)
integ2 [%r 3..61

[%c Values file 2: for last two executions of TDGen. I

expr variablel variable2 [% alpha 6) [% real 4.6) [% integl)E+[%
op + - / *

identifier variablel variable2 (% alpha 6)
realno [% real 4.6) [% integl)E+[% integ2l [% integl)E-t% integ2)
integl [%r 1..100)
integ2 [%r 3..6)

[%c Template file: Produces arithmetic expression of varying I
[%c complexity for use in testing a generated lexical analyzer. I

(% expr I

Figure D-16. TDGen Sample Value and Template Files

No. Table Cumulative Total
Field Entries Combinations

% expr 3 3
% op 4 12
% identifier 3 36
% real-no 3 108
% integl 100 10800
% integ2 4 43200

Figure D-17. TDGen Table of Sequential Combinations for Initial Files

76

ID

It real no)
(% expr)[% op)[% expr)
[% identifier)
(exprH[% op)[% expr]
fidentifier)
(identifier)
(expr)[% op)[% expr)
(real-no)
(real no)
(identifier)

Figure D-18. TDGen Output of First Random Execution

3 E+ 6
[% real 4.6)-variablel
RSBEz4
(% integl)E-[% integ2)-[% integl)E-t% integ2)
variable2
variable2
(% identifier)*[% real no)/[% identifier)/[% identifier)
21E+4
4 7E- 6
variablel

Figure D-19. TDGen Output After 3 Executions with 1st Value File

3E+ 6
3092. 703258-variablel
RSBEz4
53E-4-83E-6
variable2
variable2
G3 6dk5 *2 6E-5/clmHEJ/variable2
21E+4
4 7E-6
variablel

Figure D-20. TDGen Output After 2 Executions with 2nd Value File

77

APPENDIX E

SAMPLE OUTPUTS FROM TBGEN AND TCMON

-- Script file USR:[ADATEST.TBGEN]CALENDAR.REC;l

-- Created at : 1991-08-15 10:37:14
-- Created by Test bed CALBED generated at 1991-08-15 09:00:03
SET TRACE FILE calendar.trc
DECLARE

USE calendar
moment : time := clock

currentyear : year
current-month : month
the_day : day_num
seconds : day_dura

BEGIN
split(moment, currentyear, currentmonth, the-day, seconds)

moment := timeof(currentyear, currentmonth, 15, 0.0)
DISPLAY day(moment)
moz, ent := add 1(moment, 86400.0) -- add_1 equiv to "+"

split(moment, currentyear, currentmonth, the-day, seconds)
ASSERT the_day = 16 AND :-onds = 0.0

now : time := clock
later : time := clock
ASSERT lel(now, later) = true -- lel equiv to "<="

moment := timeof(1991, 2, 28, 0.0)
ASSERT NOT EXCEPTION

moment := time of(1991, 2, 29, 0.0)
ASSERT EXCEPTION(time error)

END
SET TRACE CLOSED
SET RECORD CLOSED

Figure E-1. TBGEN Record File

79

* Softplan (R) Ada Tools *

* TBGEN System Version 3.1, Copyright (C) 1990 Nokia Data Systems *

* Test Bed Trace Listing * S

Test bed generated at 1991-08-15 09:00:03. Time is now 1991-08-15 10:37:22

CALBED> DECLARE
CALBED> USE calendar

CALBED> moment : time := clock

CALBED> current-year : year S
CALBED> currentmonth month

CALBED> theday : daynum

CALBED> seconds : daydura

CALBED> BEGIN
CALBED> split(moment, currentyear, currentmonth, the_day, seconds)

YEAR (out) = 1991

MONTH (out) = 8
DAY (out) = 15

SECONDS (out) = 38266.8500

CALBED>
CALBED> moment := time_of(currentyear, currentmonth, 15, 0.0)

CALBED> DISPLAY day(moment) 0
15

CALBED> moment := add l(moment, 86400.0) -- addl equiv to "+"

CALBED> split(moment, current year, current_month, theday, seconds)

YEAR (out) = 1991

MONTH (out) = 8
DAY (out) = 16

SECONDS (out) = 0.0000

CALBED> ASSERT theday = 16 AND seconds = 0.0

CALBED>
CALBED> now time := clock

CALBED> later : time := clock

CALBED> ASSERT le l(now, later) = true -- lel equiv to "<="

CALBED>

CALBED> moment := time_of(1991, 2, 28, 0.0)

CALBED> ASSERT NOT EXCEPTION

CALBED>

CALBED> moment := time_of(1991, 2, 29, 0.0)
*** exception CALENDAR.TIMEERROR 0

CALBED> ASSERT EXCEPTION(timeerror)

CALBED> END

CALBED> SET TRACE CLOSED

Trace closed at 1991-08-15 10:43:46 0

Figure E-2. TBGEN Trace File

8

80

* Softplan (R) Ada Tools
* TBGEN System Version 3.1, Copyright (C) 1990 Nokia Data Systems *
* Test Bed Generation Log File *

Licence identification of the generator:

Test bed timestamp...: 1991-08-15 09:00:03

Test bed nameCALBED
Generated Ada files..: cal*.ada
Command file : calCMD.COM

Analysed source files:
File: TBGENSYS.STD
File: calendar.spe

The symbol table

package STANDARD/8001/ is
type BOOLEAN/I/ is (

FALSE,
TRUE);

type INTEGER/2/ is IntegerType;
type FLOAT/3/NoV/ is Float Type;
type CHARACTER/4/NoV/ is (

05);
subtype NATURAL/5/NoV/ is INTEGER <2> ;
-- Type Class => Integer-Type
subtype POSITIVE/6/NoV/ is INTEGER <2> ;
-- Type Class => Integer Tfpe

function ">=./2015/(
LEFT : in CALENDAR.TIME <11> ;
RIGHT : in CALENDAR.TIME <11>
return BOOLEAN <1> ;
-- Alias Name => GE_1

TIMEERROR/6006/ : exception;

end CALENDAR;
end STANDARD;

Execution of the generator successfully ended at 1991-08-15 09:01:02

Figure E-3. TBGEN Generated Log File

81

* TCMON System Version 2.2, (C) Copyright 1987 by Softplan *
* Test Coverage Monitor / Program Bottleneck Finder *
* Execution profile listing * S

Counters Timers

LINE EXECUTION LE- PLACE START/ END/ AVERAGE TOTAL
NO. COUNTS VEL DESCRIPTION TRUE FALSE TIME TIME

Source file => [-.adalex2]ll_decls.ada Instr => (A,N,N,N)
Source file => ll_compile dummy.ada Instr => (A,N,N,Y)

23 1 proc LL_COMPILE
120 2 func LLFIND
124***.7777> 2 begin 198 0 ?
127****>7>>>> 3 while_loop 898 763 ?

Condition 898 63

Source file = [-.adalex2]llsupspec.ada Instr = (A,N,N,N)
Source file = ll_supbodymt.ada Instr = (A,Y,Y,Y)

50 1 pack LLSUPPORT 0 0.0000
97 2 func ALTERNATE 14 0.0000 0.0000 •

170 2 func CHAR_RANGE 6 0.0013 0.0078
175***.7 2 begin 6 0 ?
176 TIMER_CHAR_RANGE 6 0.0013 0.0078
178*** 3 if-then 3 3

Condition 3 3
181*** 3 ifelse 3 3 5
183***.7777 4 forloop 62 62
188***-7 3 return 6 0
204 3 proc COMPLETEALT 4 0.0039 0.0156

Median of nonzero counter values = 8
One asterisk (*) <= 1 •
Number of counters - 539
Number of timers - 36
Number of instrumented (sub)conditions - 206
Minimum measurable time interval 0.0001
Estimated cost of one timer operation = 0.0006
Estimated cost of one counter operation 0.0000 6
The instrumentation was done 1991-08-14 13:15:27
This listing was produced 1991-08-14 13:32:48

Data files:
NAME =>sampleTIM.dat

Figure E-4. TCMON Profile Execution Listing

82

* TCMON System Version 2.2, (C) Copyright 1987 by Softplan *

* Test Coverage Monitor / Program Bottleneck Finder *
* Log of TCMON preprocessor execution

Date and time => 1991-08-14 13:15:27

Prefix => SAMPLE

Generated files => sample*.ada
Main procedure => *not specified*
Code pattern file => PATTERNS.TCM

Source => 11_supbody_mt.ada
Target => sample ii supbody mt.ada
Instrumentation => (INCMODE => UNCHECKED

COUNTERS => ALL
AUTOTIMERS => YES
MANUALTIMERS => YES
EXPANDCOMMANDS => YES

package body LL SUPPORT on line 50
function ALTERNATE on line 97

function MERGERANGES on line 103
function CHARRANGE on line 170
-- && start timercharrange on line 176 expanded
-- && stop timer char_range on line 187 expanded
procedure COMPLETEPAT on line 192

Summary Information

Number of instrumented files = 6
Number of compilation units = 4
Number of body stubs = 2
Number of subunits = 2
Number of statement list counters = 539
Number of (sub)condition counters = 206
Number of timers - 36

Number of manual timer STARTs = 2 ... all expanded
Number of manual timer STOPs = 2 ... all expanded

Number of embedded commands 1 ... all expanded

Command file for compilation and linking => SAMPLECMD.COM

ERRORS: 0 WARNINGS: 0

Figure E-5. TCMON Log File

83

* TCMON System Version 2.2, (C) Copyright 1987 by Softplan *

* Test Coverage Summary Report *

PROGRAM STM COND SUB OVER
UNIT LIST CVRG COND ALL

CVRG CVRG CVRG

Source file =) 11_compiledummy.ada Instr => (A,N,N,Y)

proc LLCOMPILE
func LLFIND 88 - 88 - 88 - 88 -
proc LLPRTSTRING 0 - 0 - 0 - 0 -
proc LLPRTTOKEN 0 - 0 - 0 - 0 -
proc LLSKIPTOKEN 0 - 0 -
proc LLSKIPNODE 0 - 0 -
proc LLSKIPBOTH 0 - 0 -
proc LLFATAL 0 - 0 -
proc GETCHARACTER 0 - 0 - 0 - 0 -
func MAKE TOKEN 0 - 0 - 0 - 0 -
proc LLNEXTTOKEN 100 100 100 100
proc LLMAIN 62 - 47 - 47 - 56 -
body LLCOMPILE 100 100 •

proc LLCOMPILE 49 - 44 - 45 - 48 -

Source file => [-.adalex2]ll_tokens.ada Instr =) (A,N,NN)

pack LLTOKENS S
proc ADVANCE 83 - 71 - 74 - 79-

pack LLTOKENS 83 - 71 - 74 - 79 -

= == - -- --- -- --- -- --- --- -- --- -- --- -- -- - ------------------ = --- S

OVERALL SUMMARY: 46 - 44 - 44 - 46

Number of partially instrumented or dropped compilation units : 0

This summary was generated at 1991-08-14 13:34:48, based on the TCMON
execution profile listing file sampleout.dat.
The profile listing was produced at 1991-08-14 13:32:48, and the actual
TCPRE instrumentation was performed at 1991-08-14 13:15:27.

There were 103 places out of 128 where the coverage percentage was
below the selected warning level 100 %.

Figure E-6. TCPOST Coverage Summary

84

qP

APPENDIX F

SAMPLE OUTPUTS FROM TestGen

TABLE F-1. TestGen Cyclomatic Complexity Report

page 1 of 3
Module Name Design Code

LiSupport 1 1
Alternate I ii
MergeRanges 1 2
Char Range 1 3
Complete-Pat 1 12
Complete_- Alt 1 8
Restrict 1 14
Tail I1 .11
ResolveAmbiguity 1 13
Complete Concat i1 8
Complete-Opt 1 1 3
Complete Patterns 1 2
Concatenate 1. 3
CvtAscii 1 10
CvtString 1 4

TABLE F-2. TestGen Test Case Effort Report

page 1 of 3
Number of Test Cases Required for

Module Name Basis Branch Full Path
Testing Testing Testing

LlSupport 1 1 i
Alternate Il 7 27
MergeRanges I i iI
Char-Range 2 2 2
Complete Pat 11 i11 11
Complete-Alt 7 6 8
Restrict 13 13 13
Tail 8 8 8
ResolveAmbiguity 12 9 36
Complete_Concat 6 6 6
CompleteOpt 3 3 3
CompletePatterns 1 I1 I1
Concatenate 3 3 3

85

* Testing all paths of Subprogram: Alternate

Test conditions case 10 of 27 for subprogram: Alternate

Test conditions required for test case 10 are:

210: Set (Right = null or else Right.Variant = Bad) to False
212: Set (Left.Variant = Bad) to False
215: Set (Left.Variant = Alt) to True
216: Set (Right.Variant = Alt) to False
238: Set (NewLeft.Variant = Rng) to True
239: Set (NewRight.Variant = Rng and NewLeft.Name = NewRight.Name) to True

Statements to be executed during test case 10 are:

195: Procedure Alternate is
207: Begin •

210: If Right = null or else Right.Variant = Bad then
*** Condition is False

212: Elsif Left.Variant = Bad

*** Condition is False
214: End if -- for 210
215: If Left.Variant = Alt then 0

'* Condition is True
216: If Right.Variant = Alt then

*** Condition is False
230: Else
231: NewLeft := Right;
232: New_Right := Left;

233: End if -- for 216
237: End if -- for 215

238: If NewLeft.Variant = Rng then
"** Condition is True

239: If NewRight.Variant = Rng and NewLeft.Name = NewRight.Name then
*** Condition is True

240: Return MergeRanges(NewLeft,NewRight);
252: End

Figure F-1. TestGen Conditions for Path Testing ALTERNATE

86

873 Alternate - Code

885

891

2

893

594 912

895 1908

89 901

7

916

917 - 924

919 gi 9 927

9 921 k 928

922

923

929

930

Figure F-2. TestGen Example Control Graph of ALTERNATE

87

Distribution List for IDA Paper P-2628

NAME AND ADDRESS NUMBER OF COPIES

Sponsor

Lt Col James Sweeder 2
Chief, Computer Resources
Engineering Division

SDIO
Room 1E149, The Pentagon
Washington, DC 20301-7100

Other

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dr. Dan Alpert, Director 1
Program in Science, Technology & Society
University of Illinois
Room 201
912-1/2 West Illinois Street
Urbana, Illinois 61801

IDA

General Larry D. Welch, HQ 1
Mr. Philip L. Major, HQ 1
Dr. Robert E. Roberts, HQ 1
Ms. Ruth L. Greenstein, HQ 1
Mr. Bill R. Brykczynski, CSED 65
Ms. Anne Douville, CSED 1
Dr. Richard J. Ivanetich, CSED 1
Mr. Terry Mayfield, CSED 1
Dr. Reginald N. Meeson, CSED 2
Ms. Katydean Price, CSED 2
Dr. Richard L. Wexelblat, CSED 1
Ms. Christine Youngblut, CSED 2
IDA Control & Distribution Vault 3

Distribution List-1

