
AD-A243 078

NAVAL POSTGRADUATE SCHOOL
Monterey, California

zS

THESIS
AN ANALYSIS OF MISSION CRITICAL COMPUTER

SOFTWARE IN NAVAL AVIATION

by

Robert L. Buckley

March 1991

Thesis Advisor: Martin J. McCaffrey

Approved for public release; distribution is unlimited

91-17261

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.
2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School

Code 36

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, andZIP Code) 10. SOURCE OF FUNDING NUMBERS
Program Element No. Project No. Task No. Work Unit Accesion

Number

11. TITLE (Include Security Classification)

AN ANALYSIS OF MISSION CRITICAL COMPUTER SOFTWARE IN NAVAL AVIATION

12. PERSONAL AUTHOR(S) Buckley, Robert L.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT
Mastes Thesis From To March 1991 78

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the US.
Government.
17. COSATI CODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP Software Engineering, Software Maintenance, Software Development, MCCR, ECR,
Aviation Software, Naval Aviation Software, Military Software Regulations and Standards.

19. ABSTRACT (continue on reverse if necessary and identify by block number)

For over 25 years, the United States Navy has been designing, developing and maintaining software for embedded computer systems.
Throughout this generation of Naval aviation software development, no collective analysis of the successes and failures in software development
had been accomplished. To accomplish this task, this thesis evaluated aircraft software data from the Department of the Navy against two
metrics: 1) did the original software development schedule have to be changed, and 2) did the software released to the fleet contain any major
defects? This research has revealed that only about half of the original software development schedules were sustained without a milestone
change being made. Also, software that was released to the fleet had no major deficiencies three out of four times. To further specify this
information, it has been refined into categories of software language, size of program and type of software program. The results of this study will
be beneficial to aviation program managers, software developers and software maintenance technicians

20. DISTRIBUTIONJAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

0UNCLASSIFIED/UNLIM17ED 3SAME AS REPORT 3DTIC USERS IUnclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area code) 22c. OFFICE SYMBOL
Martin J. McCaffrey (408)646-2488 AS/Mf

DD FORM 1473.84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

An Analysis of Mission Critical Computer Software in Naval Aviation

by

Robert L. Buckley
Lieutenant Commander, United States Navy

B.S., Texas A&M University, 1979

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
March 1991

Author: -J < dc
Robert L. Buckley

Approved by:
Martin J. Mcdaffrey, Thesis At is

Tarek K. Adbel-Hamid, Second Reader

Davd i
Department of Administrative tienes

ABSTRACT

For over 25 years, the United States Navy has been designing, developing

and maintaining software for embedded computer systems. Throughout this

generation of Naval aviation software development, no collective analysis of the

successes and failures in software development had been accomplished. To

accomplish this task, this thesis evaluated aircraft software data from the

Department of the Navy against two metrics: 1) did the original software

development schedule have to be changed, and 2) did the software released to

the fleet contain any major defects? This research has revealed that only

about half of the original software development schedules were sustained

without a milestone change being made. Also, software that was released to

the fleet had no major deficiencies three out of four times. To further specify

this information, it has been refined into categories of software language, size

of program and type of software program. The results of this study will be

beneficial to aviation program managers, software developers and software

maintenance technicians.

Acoession For
NTIS GRA&I

DTIC T:AB 0
Unannounced 0
Justificn t 0

By.
DIs rlbution

Availability Codes
Avail and/or

Dit special

TABLE OF CONTENTS

I. INTRODUCTION 1

A. GENERAL 1

B. SCOPE 2

C. METHODOLOGY 2

D. FOCUS 3

E. ORGANIZATION 4

II. REGULATIONS FOR SOFTWARE DEVELOPMENT 5

A. OVERVIEW 5

1. DOD Directive 5000.29 5

2. DOD-STD-2167A 6

3. DOD-STD-2168 6

4. DOD-STD-1679A 7

5. DOD-HDBK-287 7

6. MIL-STD-480B 7

7. MIL-STD-1521B 8

8. SECNAVINST 5200.32 8

9. OPNAVINST 5200.28 8

10. NAVELEXINST 5200.23 9

11. TADSTANDS A through E 9

B. DOD-STD-1679A AND DOD-STD-2167A DIFFERENCES 10

iv

C. DETAILED REQUIREMENTS OF DOD-STD-2167A 11

1. System requirements analysis/design 12

2. Software requirements analysis 12

3. Preliminary design 13

4. Detailed design 13

5. Coding and CSU testing 13

6. CSC integration and testing 14

7. CSCI testing 14

8. System integration and testing 15

III. DATA COLLECTION 18

A. DEFINITION OF TERMS 18

B. METRICS USED 21

C. DATA SEARCH 22

D. INQUIRY BACKGROUND 23

1. Purpose 23

2. Information Collected 23

3. Definition of Inquiry Terms 24

IV. DATA ANALYSIS 26

A. DATA PARAMETERS 26

B. METHODS OF DATA ANALYSIS 27

1. Frequency of Class Data Analysis Method . 28

2. Chi-square Independence Test Analysis Method 29

C. DATA RESULTS 31

1. Frequency of Class Data Results 31

v

2. Chi-square Data Results 35

V. CONCLUSION 40

A. EXPLANATION OF RESULTS 40

B. SUMMARIZING THE RESULTS 43

C. RECOMMENDATIONS 44

D. OVERVIEW OF THE DOD SOFTWARE DEVELOPMENT PROCESS 47

E. POSSIBLE FOLLOW-ON TOPICS 53

F. LESSONS LEARNED 55

G. FINAL THOUGHTS 55

APPENDIX A - INQUIRY FOR DATA COLLECTION 57

APPENDIX B - LIST OF ACRONYMS 65

LIST OF REFERENCES 67

BIBLIOGRAPHY 68

INITIAL DISTRIBUTION LIST 70

vi

I. INTRODUCTION

A. GZNZRAL

The use of computers and application software has become

a part of everyday life in today's society. The same can be

said for military organizations in all areas of specialization

(i.e. administrative, training, maintenance, operations, etc).

However, the area where the Department of Defense (DOD) spends

the most money for computer software is in the area of

embedded computers [Ref. 1]. The one section of

embedded computers where the user requirements are the most

stringent is in weapons systems, especially aviation systems

where decisions have to be made instantaneously with little or

no room for error. The United States Navy has been designing,

developing and implementing software for embedded computer

avionics systems for over 25 years, but as the requirements of

computer systems have become more demanding and aircraft have

become more sophisticated the problems with software have

increased (at least observably so). The difficulties of

software projects meeting the original schedule have been

noted throughout the computer industry and DOD is not immune

from this problem. "... Air Force General Bernard Randolph,

chief of Air Force Systems Command, characterized software as

the Achilles' heel of weapons development. "On software

1

schedules, we've got a perfect record: We haven't met one

yet." [Ref. 21 Additionally, this problem is

magnified for DOD aviation programs because of their

tremendous size, complicated specifications, large budgets and

high public visibility. But, do all Navy aviation software

programs have a problem with meeting their schedule or it is

just the publicized ones who get the notoriety? And, if

software programs have problems being on-time is it generally

for the same cause or are there different reasons for the

delays? This thesis will answer these questions and analyze

the software factors which cause problems before and after a

program is released to the Fleet.

B. SCOPE

In an attempt to discover why some software projects are

successful and others are not, an analysis was conducted of

the life cycle management of Naval Aviation mission critical

software. This analysis of the life cycle management of

mission critical software will be made comparing current and

historical data on the software which operates the mission

computers of several aviation platforms in the fleet.

C. METHODOLOGY

This thesis was developed using a f-ur step approach.

First, a general idea of research interest was determined and

later was more narrowly focused to fit research capabilities.

2

Second, a thorough literature review and data search was

conducted to discover past efforts in this area, in an effort

to develop a working database. Next, questionnaires, field

trips and phone conversations were conducted to gain as much

specific information on each project as possible. Finally,

all data was collected and analyzed allowing conclusions and

recommendations to be made.

D. FOCUS

This research was designed to collect as much information

on embedded computer systems and their software in Navy

aircraft as possible. Due to the many different types of

computer systems in aircraft and the difficulty in

accomplishing a valid comparison between systems only one type

of computer system was chosen to collect data about. The

system which almost all aircraft have in common is the main or

mission computer. The software that runs these mission

computers is an Operational Flight Program (OFP) or

equivalent. The following Navy and Marine Corps aircraft use

OFPs or the equivalent and are included in this research:

A-6E AH-IW

AV-8B EA-6B

E-2C F-14A

HH-60H/J P-3C

S-3A/B SH-2

3

SH-3 SH-60B

SH-60F

3. ORGANIZATION

Chapter II provides background information for this

thesis. The applicable regulations and guidelines that Navy

program managers must follow in develop.ng, implementing and

maintaining an embedded computer system are summarized.

Additionally, a more thorough explanation of the principal

document used in embedded software development is given.

The process of data collaction for this research is

explained in Chapter III. The unique terms for software

development are defined along with the metrics used to compare

software projects. An explanation of the inquiry used to

collect the data is given in an effort to show what

information was required.

Chapter TV contains an explanation of how the data was

analyzed. The process of data comparison and analysis is

shown along with the numerical results obtained from this

process.

The conclusions and recommendations are contained in

Chapter V. A more in-depth explanation of the results

obtained in Chapter IV is given, plus other noteworthy facts

collected during this research. Additionally, a section

outline with possible follow-on topics from this area of

research is included.

4

II. REGULATIONS FOR SOFTWARE DEVELOPMENT

A. OVERVIEW

All Navy program managers (PMs) who are in charge of major

defense systems that contain embedded computer resources must

observe set standards and guidelines for software development.

Each regulation is written to integrate all phases of military

software life cycle management and covers either overall

policy or specific details for software development. To more

fully understand, the purpose of each regulation and what

information a PM or software developer can obtain from them,

a short synopsis of these major standards and guidelines is

provided.

1. DOD Directive 5000.29

Published in 1976, this directive establishes policy

for the DOD in the management and control of the development,

acquisition, deployment and support of computer resources in

major defense systems. This directive requires embedded

computer resources to undergo validation and risk analysis,

configuration management, and life cycle planning. To oversee

and coordinate the policies of this directive the Management

Steering Comnittee for Embedded Computer Resources (MSC-ECR)

was created. Besides improving the management of embedded

computer resources in major defense systems, this committee

5

works to ensure that new computer research, development,

technology and policy are a part of normal defense system

acquisition process. DOD Directive 5000.29 is the basis of

all other Department of the Navy (DON) instructions on

managing embedded computer resources.

2. DOD-STD-2167A

This DOD standard is the keystone regulation for the

entire software development process with all other regulations

providing either implementation policy or support for specific

phases of life cycle management. This standard sets the

requirements to be used during acquisition, development and

support of mission critical software systems. These software

life cycle requirements are not only mandatory for DOD

agencies but also for the contractor. The major phases for

the software development process that 2167A recommends will be

explained in more detail below.

3. DOD-STD-2168

This DOD standard works in conjunction with DOD-STD-

2167A to establish the requirements for a software quality

program. To fulfill these requirements, a process must be

implemented to effectively resolve software problems by

evaluating software quality, documentation and related

activities in a timely manner. The requirements of this

standard are applicable to DOD agencies and contractors during

the entire software life cycle from acquisition to support.

6

4. DOD-STD-1679A

This DOD standard is the predecessor to DOD-STD-2167

and lists the original DOD requirements for mission critical

software development. This software development procedure was

written to allow for changing operational requirements,

reduction of life cycle costs and the highest degree of

software reliability and maintainability. Since this was the

software development standard before September 1986, most

Naval aviation software programs in operation today are

covered under this standard.

5. DOD-RDBK-287

This DOD handbook was published to assist government

agencies in tailoring DOD-STD-2167A for either a software

development contract or a software support contract. The

handbook provides key concepts of DOD-STD-2167A and the

factors that should be considered when tailoring a software

contract to this DOD standard.

6. MIL-STD-480B

This military standard sets forth the requirements and

procedures for configuration control in the acquisition of

software items. An important part of configuration control is

the correct process of making changes to an already approved

configuration item. The documents used for requesting these

changes are known as Engineering Change Proposals (ECPs),

deviations or waivers. The procedures, formats and rules for

7

submitting these documents for changes are provided in MIL-

STD-480B to standardize this process.

7. MIL-STD-15218

This military standard provides the requirements to be

followed when conducting technical reviews and audits of

computer systems and software. This standard lists general

and specific requirements that both the contracting agency and

the contractor must accomplish during each phase of review or

audit. Like DOD-STD-2167A, this standard shall be tailored to

use only the applicable requirements for the computer resource

being acquired.

8. SZCNAVINST 5200.32

This Secretary of the Navy Instruction (SECNAVINST)

sets DON policy for managing embedded computer resources

including software. The overall policy of this instruction is

to ensure that all levels of DON project and acquisition

management give proper emphasis to life cycle and software

management, risk and cost analysis, and stabilization of

computer resource requirements. This instruction supplements

the policies and procedures of DOD Directive 5000.29.

9. OPNAVINST 5200.28

This Chief of Naval Operations Instruction (OPNAVINST)

establishes the CNO policy for life cycle management of

Mission-Critical Computer Resources (MCCR) under the Research,

Development and Acquisition (RDA) process. This policy covers

8

all MCCR including software that are an integral part of or

are used in support of weapons systems. The purpose of this

instruction is to ensure that all MCCR that support weapons

systems are integrated into the same life cycle management

process as the weapons system. This life cycle management

process begins from the very start of the acquisition process

and continues through the post-deployment software support

(PDSS) phase.

10. NAVZLZXINST 5200.23

This instruction, which was originally promulgated by

the Naval Electronic Systems Command (NAVELEX) and now is

administered by the Commander, Space and Naval Warfare Systems

Command (COMSPAWARSYSCOM), is the current U.S. Navy guide on

computer software life cycle management. Information on

software engineering and life cycle management of the software

acquisition process is provided for use by program managers.

This instruction also provides some of the factors that are

common software problems, how current DOD policies were

established to respond to these problems and why each phase of

computer software life cycle management is important.

11. TADSTANDS A through R

These Tactical Digital Standards (TADSTANDS) A through

E, which are administered by COMSPAWARSYSCOM for the Navy,

establish the standards to be used during system development

and life cycle support. Each TADSTAND sets the policy or

9

requirements for the standardization of one of five areas:

definitions for embedded computer resources (ECR), computer

interface devices, programming and design languages, reserve

computer capacity and requirements for mission-critical

systems software acquisition, development and support.

B. DOD-STD-1679A AND DOD-STD-2167A DIFFERZNCZS

As the two main standards that are used to guide MCCR

development, it is important to understand what changes, if

any, were made between the first standard DOD-STD-1679 and

it's successor DOD-STD-2167. One of the basic differences

between the two standards is that DOD-STD-2167A is more

current with computer technology and refers to the components

of software as Computer Software Configuration Items (CSCI)

while DOD-STD-1679A uses older terminology and refers to

software components as programs, subprograms, modules and

units. The only software programs that are subject to DOD-

STD-2167 are those which have either issued a request for

proposal for full scale engineering development (FSED) or

entered FSED after September 1986. Although, the spirit and

intent of both DOD-STD-1679A and -2167 are very similar, both

standards approach software development differently. This can

be seen when comparing the detailed requirements of DOD-STD-

2167A (explained in the next section) and the detailed

requirements of DOD-STD-1679A listed below:

10

1. Software Performance Requirements

2. Software Design

3. Programming Standards

4. Programming Conventions

5. Software Implementation

6. Software Generation

7. Software Operation

8. Software Testing

9. Software Quality Assurance

10. Software Acceptance

11. Software Configuration Management

12. Software Management Planning

C. DETAILED REQUIREMNTS OF DOD-STD-2167A

Since DOD-STD-2167A (from now on referred to as 2167A) is

the current MCCR software development standard for DOD, it

will be explained in more detail than DOD-STD-1679A (from now

on referred as to 1679A). Again, the spirit and intent of

these two instructions is virtually the same -- development of

the best quality software. 2167A establishes specific

software development management requirements which must be

followed by DOD contracting agencies and contractors.

However, the standards can be tailored by the contracting

agency if a requirement is non-applicable. The tailored set

of requirements for each software program will be specified in

11

the contract agreed upon by the contractor and the contracting

agency. All detailed requirements prescribed by 2167A

contain elements of the general requirements: software

development management, software engineering, formal

qualification testing, software product evaluation and

software configuration management. The standard set of

detailed requirements are as follows:

1. System requirements analysis/design

This section of 2167A requires the software contractor

to conduct a thorough analysis of system specifications for

consistent and complete software requirements, and to optimize

computer resource allocations (i.e. hardware, software and

personnel). Also, the contractor shall support all system

reviews as specified in the contract, plus evaluate and

collate by specified criteria the proper preliminary

documentation.

2. Software requirements analysis

The software contractor is required to conduct reviews

of the software specifications by the standards set in MIL-

STD-1521 (from now on referred to as 1521) and to establish

the baseline for the Computer Software Configuration Items

(CSCI). All engineering, interface and qualification

requirements for each CSCI shall be documented by the

contractor, and evaluation of software and interface

requirements must also be performed by criteria set in 2167A.

12

3. Preliminary design

The Preliminary Design Review (PDR) of the software is

to be conducted by the contractor according to the procedures

set forth in 1521. The PDR ensures that the following items

have been developed: a Software Design Document (SDD) which

contains separate preliminary designs for each CSCI and

requirement allocations; a Software Test Plan (STP) for formal

qualification tests for each CSCI; and a preliminary Interface

Design Document (IDD) which contains the preliminary design of

interfaces external to each CSCI.

4. Detailed design

The Critical Design Review (CDR) of the software is to

be conducted by the contractor according to the procedures set

forth in 1521. The CDR is more specific than the PDR. The

CDR verifies that the detailed design for each CSCI has been

accomplished and documented in the SDD and IDD. The CDR also

verifies that specific test cases have been described for each

formal qualification test and documented in the Software Test

Description (STD).

5. Coding and CSU testing

This section of 2167A requires the contractor to code

and test each Computer Software Unit (CSU) to ensure specified

requirements are meet. If changes are necessary to the CSU

code, then revisions to the design, documentation and code

13

will be made by the contractor along with any necessary

retesting.

6. CSC integration and testing

After CSU coding and testing is complete, then the

CSUs are assembled together into the correct Computer Software

Component (CSC). The contractor must integrate and test each

CSC to ensure specified requirements are meet. If changes are

necessary, then revisions to the design, documentation and

code will be made by the contractor along with any necessary

retesting of CSUs or CSCs. A Test Readiness Review (TRR)

will be conducted by procedures set forth in 1521 to ensure

the CSC integration and testing is complete.

7. CSCI testing

This section of 2167A software development is where

the Formal Qualification Testing (FQT) is conducted for each

CSCI. If changes are necessary due to FQT results, then

revisions to the SDD, IDD and code will be made by the

contractor along with any necessary retesting of applicable

CSU, CSC or CSCI. The STD sets the procedures to be used for

the FQT with the results being recorded in a Software Test

Report (STR). The contractor may also support the Functional

Configuration Audit (FCA) and Physical Configuration Audit

(PCA) if conducted during this section.

14

8. System integration and testing

The contractor will support all areas of system

integration and testing and make any revisions to

documentation and coding including retesting as necessary.

Additionally, if FCA and PCA are conducted during this

section, then the contractor will support it.

This total process is graphically displayed in Figure

1 which is reproduced from DOD-STD-2167A:

15

System Requirements
Analysis IDesign

$ystefnSoftware PMilMbn"" ntae
requirements desof reqiremonts design

anay-i deste
sy tm~nr aeWatespei~oalondocumet

Preim

Segmen es:pln
Design TeeaN

Docum es Ia
Deliverable
Products

Soft"are iremenft.

relimina lnterfm* remi
RqIeents

cati on S1

Deeopment
Ilan

=fn tion

Reviews Systemn. System Softwar Preliminary
and Requirement Design. Specfmlson.. Design

Auit Rv'wReview Reoview Review

BasllesFunctional AllocatedBasliesBaseline Baseline

Figure 1 Deliverable products, reviews, audits, and
baselines.

16

Doe.tailed Codcng 08 080CI erto
dein and O$U intgration
... dsig and, %tetg tastng aid testing

signat Source
Vssuiwfn Code.

dot. dsign Lsting

Source Updated
Code source

Deliverable
Products Sotwe.Sowr

Jespt T stWi

Interface

Figure 1 continue

17otwr

III. DATA COLLECTION

A. DEFINITION OF TERMS

The following words and terms are defined from DOD-STD-

2167A, MIL-STD-1521B, MIL-STD-480B, or TADSTANDS A and

D:[Ref. 3]

1. Computer Resources

"The totality of computer equipment, computer programs,

computer data, associated documentation, personnel, and

supplies."

2. Computer Software Component (CSC)

A distinct part of a computer software configuration item
(CSCI). CSCs may be further decomposed into other CSCs
and Computer Software Units (CSUs).

3. Computer Software Configuration Item (CSCI)

"A configuration item for computer software."

4. Computer Software Unit (CSU)

"An element specified in the design of a Computer Software

Component (CSC) that is separately testable."

5. Configuration Item (CI)

"An aggregation of hardware, firmware, software, or any of

its discrete portions, which satisfies an end use function and

is designated for configuration management."

6. Critical Design Review (CDR)

This review shall be conducted for each configuration item
when detail design is essentially complete. For CSCIs,

18

this review will focus on the determination of the
acceptability of the detailed design, performance, and
test characteristics of the design solution, and on the
adequacy of the operation and support documents.

7. Embedded Computer (EC)

A digital computer or processor that is an integral
component, from the design, procurement, and operations
point of view, of any tactical digital system. This
deiinition includes microcomputer, microprocessor, etc.

8. Embedded Computer Resources (ECR)

The totality of operational and support software/firmware;
embedded computers; data storage and display devices;
interface standards; programming languages; support
facilities ashore; training facilities; training support
personnel; and personnel whose primary specialized
educational experience and/or training is directed toward
operation or maintenance of embedded computers.
Specifically included are programmable calculators
(PROCALS) that are electrically interfaced to tactical
digital systems.

9. Formal Qualification Testing (FQT)

"A process that allows the contracting agency to determine

whether a configuration item complies with the allocated

requirements for that item."

10. Functional Configuration Audit (FCA)

A formal audit to validate that the development of a
configuration item has been completed satisfactorily and
that the configuration item has achieved the performance
and functional characteristics specified in the functional
or allocated configuration identification. In addition,
the completed operation and support documents slall be
reviewed.

11. Mission-Critical Computer Resources (MCCR)

Computer resources acquired for 1'se as integral parts of
weapons; command and control; communications;
intelligence; and other tactical or strategic systems
aboard ships, aircraft, and shore facilities and their
support systems. The terms also includes all computer
resources associated with specific program developmental

19

test and evaluation, operational test and evaluation, and
post-deployment software support including weapon system
trainer deqices, automatic test equipment, land-based test
sites, and system integration and test environments.

12. Physical Configuration Audit (PCA)

"A technical examination of a designated configuration

item to verify that the configuration item 'As Built' conforms

to the technical documentation which defines the configuration

item."

13. Preliminary Design Review (PDR)

"For CSCIs, this review will foc-:s on: (1) the evaluation

of the progress, consistency, and technical adequacy of the

selected top-level design and test approach, (2) compatibility

between software requirements and preliminary design, and (3)

on the preliminary version of the operation and support

documents."

14. Problem Reports

Also referred to as Software Trouble Reports (STRs) or

Program Trouble Reports (PTRs) -

Problems detected in the software or its documentation
shall be classified by priority as follows:
a. Priority One

(Also referred to as an Emergency PTR) - A software problem
that does one of the following:

(1)Prevents the accomplishment of an operational or
mission essential capability specified by baseline
requirements

(2)Prevents the operator's accomplishment of an
operational or mission essential capability.

(3)Jeopardizes personnel safety.
b. Priority Two

A software problem that does one of the following:
(1)Adversely affects the accomplishment of an

operational or mission essential capability specified by

20

baselined requirements so as to degrade performance and for
which no alternative work-around solution is known.

(2)Adversely affects the operator's accomplishment of
an operational or mission essential capability specified by
baselined requirements so as to degrade performance and for
which no alternative work-around solution is known.

15. Test Readiness Review (TRR)

A review conducted for each CSCI to determine whether the
software test procedures are complete and to assure that
the contractor is prepared for formal CSCI testing.
Software test procedures are evaluated for compliance with
software test plans and descriptions, and for adequacy in
accomplishing test requirements.

B. METRICS USED

The success of any software project can only be obtained

from the standards by which it is judged. For this analysis,

the metrics used to define a successful software program were:

1. Did the program meet the initial planned delivery date

with the specified software requirements?

2. was the program operationally successful (i.e. no priority

one or two Problem Reports were issued after the software was

released to the fleet)?

Other factors which must be considered in this comparison

analysis are program size, computer language the program is

written in, and type of program (i.e. new, an upgrade to an

existing progralm or a maintenance fix for problems reported in

a previous program).

21

C. DATA SEARCH

The collection of data in any research is difficult,

especially if there is not a place acting as a central data

repository. Another factor is the political sensitivity of

the data to the responsible organization. These two factors

are true for software data collection in both the public or

private sectors and understandably so. In searching for data

sources for this research, the few possible software databases

which might contain viable information could not be used

because of data confidentiality. Since no current databases

could be used or found, an office in the Naval Aviation

Command (NAVAIR) with connections to all aviation computer

systems was discovered which could be a central point for data

collection. However, because of the immense amount of

background information that was needed on aircraft software,

the best source of information was decided to be from the

Software Support Activities (SSAs) in the field. The SSA is

an organization whose purpose is to provide software

maintenance and support for one specific aircraft type after

the software contractor has completed contractual obligations

and delivered the software. The SSA also monitors all phases

of software development by the contractor and has the most

complete records on aircraft software development of any Navy

organization. Using all possible sources of information was

important; therefore, the sources of data for this research

22

have come from offices in NAVAIR, the SSAs of the aircraft

types used and technical support contractors.

D. INQUIRY BACKGROUND

1. Purpose

A major difficulty in collecting data from the SSAs is

due to the fact that they are not in one central location, but

are dispersed across the United States. In order to collect

the research data necessary, an inquiry or small questionnaire

was developed to collect the information required for this

analysis. The inquiries were mailed or faxed to the 11 SSAs

which participated in this study. Each inquiry was followed

up with telephone conversations to alleviate any of the

questions that either side may have had about the information

being requested or the data being supplied. The inquiry data

collection procedures were continually updated to ensure

conciseness, clarity and completeness. A copy of the final

revision of the inquiry used for data collection is provided

in Appendix A.

2. Information Collected

As shown in Appendix A, the inquiry collected

information on specific items about the software, as follows:

1. Type of aircraft.

2. Type of computer system.

3. Total number of Lines of Code (LOC) in software program
today.

23

4. Computer language that the software program was written
in.

5. A copy or list of the Software Life Cycle Schedule
(sometimes referred to as "Milestone Charts")for each
version of the software program, in order to gain a
pictorial perspective of the history of each software
program.

6. For each software version, an explanation of why
schedule changes, if any, (noted in 5 above) were made.

7. Number of LOC which were new or changed from one version
of the software program to the next.

8. Type of software program each version was (e.g. Initial,
Upgrade, Maintenance or Other).

9. For each software version, reasons for Priority one or
two Problem Reports, if any.

10. Space for additional comments on aviation software
development, specific or general.

3. Definition of Inquiry Terms

Some of the terms in the software field are vague and

not well defined. To help alleviate this situation, the

following words and terms used in the inquiry are more fully

defined.

a. Lines of Code (LOC) - executable statements and

data definitions are counted, but not comment statements and

headers.

b. Software Type - classification of the purpose of

the software version released to the fleet.

(1) Initial - the original release of a software

program for a new aircraft type or configuration, or for a

major change in computer hardware configuration.

24

(2) Maintenance - the release of a software program

to correct the problems (priority one or two PTRs) of a

previously released software version.

(3) Upgrade - the release of a software program to

enhance the capabilities of or provide new features to a

current working software version. Upgrades may also contain

some corrections to minor software problems from previous

releases.

(4) Other - any software release which does not

fall under the three classes above.

c. Software Version - the nomenclature used to

differentiate between a previous software program and any

changes or updates made to that previous software program

(e.g. program A will come before program A.1 or program B).

25

IV. DATA ANALYSIS

Although the information collected in this research may

have been specific as to personnel and organizations, the

results of this study will only be of a generic nature. The

categorizing of data into specific software factors was done

to provide useful information on software development without

drawing attention to certain software programs. This high

level of confidentiality of source data was established in

order to obtain the most accurate and candid information.

A. DATA PARAMTZRS

Chapter III Section B discussed the metrics used to

determine a successful software program, while Section D

discussed the information that was collected in the inquiry.

From the data collected, it has been reported that when a

milestone changed for a software version, it was never

accelerated but instead was always delayed. It has also been

reported that once a milestone was delayed that the entire

software development schedule was also delayed including the

software delivery date. Therefore, if the inquiry data

reported that a milestone change had occurred then the answer

to metric standard one, about the initial planned delivery

date being on time, was NO. Similarly, the metric standard

about program operational success was YES if the program had

26

no priority one or two Program Trouble Reports (PTRs) and NO

if there were priority one or two PTRs. These two metric

standards, milestone changes and priority one or two PTRs,

were compared against the total number of software versions in

the study. To provide more precise information, the total

number of software versions were changed into more specific

technological categories of 1) software language, 2) program

size, and 3) software type. Each of these categories was then

subsequently divided into more explicit subcategories in order

to further refine the results as follows:

1) The software language category was divided into

assembler and CMS-2, the two languages used for all programs

in this study.

2) The program size category was separated into three

subcategories of programs in the size ranges: 0 - 90,000,

90,000 - 200,000, and 200,000 and above bytes.

3) The software type category, as previously defined in

Chapter III Section D, was subdivided into initial, upgrade,

maintenance and other.

Also, the reasons why these milestones changed will be

given along with percentage of occurrence.

B. METHODS OF DATA ANALYSIS

The analysis techniques that were determined to be

appropriate for this study were the relative frequency of

27

class data or percentages and the Chi-square independence

test.

1. Frequency of Class Data Analysis Method

To accomplish the first analysis technique of

frequency of class data, the data on each success metric,

milestone change and priority one or two PTRs, was divided

into YES and NO responses for each metric. These four numbers

were then divided by the total number of software versions in

the study in order to get the overall percentage of software

versions which were not delayed, delayed, operationally

successful or not operationally successful. Each software

version was then viewed from the more technical categories of:

software language, program size or software type. These

categories were further refined into their respective

subcategories so as to make the data more specific. First, a

percentage of each subcategory was calculated by adding up the

total number of software versions per subcategory and dividing

this number by the total number of software versions. Next,

each subcategory was divided into YES/NO responses for each

success metric, milestone change and priority one or two PTRs,

and a percentage was calculated. This was accomplished by

totaling up all the subcategory software versions that did and

those that did not have milestone changes (those that had

priority one or two PTRs and those that did not) and dividing

this number by the total number of software versions in that

28

subcategory. Finally, a percentage was calculated for each

different reason for why milestones changed. To accomplish

this, the total number for each reason was divided by the

total number of overall reasons.

2. Chi-square Independence Test Analysis Method

To accomplish the second analysis technique, each

category (software language, program size and software type)

was tested for independence with each of the two metrics

(milestone change and priority one or two PTRs) using the chi-

square independence test. Additionally, the two metrics were

tested for dependency with each other. The chi-square

independence method tests two events for statistical

independence which is defined as: "... if the occurrence (or

nonoccurrence) of one of the events does not affect the

probability of the occurrence of the other event."

[Ref. 4] The term independence will be used in place

of statistical independence. The chi-square independence test

requires that null and alternative hypothesis be stated.

The null hypothesis is that each category was

independent of each of the two metrics, and the alternative

hypothesis was that each category was dependent of each of the

two metrics. The chi-square procedure uses the observed

values for each sub-category as shown in Tables 1-3, and a

calculated expected value tc derive the chi-square value for

testing. The expected value is calculated by multiplying the

29

row total of software versions by the column total of software

versions and dividing by the total number of software versions

for each sub-category. The expected values must satisfy two

assumptions: 1) all expected frequencies are at least one; and

2) at most 20 percent of the expected frequencies are less

than five. A level of significance must be determined for the

test along with the degrees of freedom for each table. The

degrees of freedom are calculated by subtracting one from the

number of rows and multiplying this number by the number of

columns minus one. A critical value for the chi-square value

is found by using a chi-square distribution table with the

input values of significance level and the degrees of freedom.

The chi-square value (X2) is calculated using the formula:

(O-E) 2

E

Where 0 is the observed value and E is the expected value.

If the chi-square value is less than the critical value then

the null hypotheses is not rejected and the two items being

tested are independent of each other. If the chi-square value

is more than the critical value then the null hypotheses is

rejected and the two items being tested have some form of

dependency on each other. [Ref. 5]

30

C. DATA RESULTS

1. Frequency of Class Data Results

Of the 68 different software versions reviewed in this

study, 32 of them had milestone changes and 19 of them had

priority one or two PTRs written on them after fleet release.

This means that 47.1 percent of these software versions were

delayed from their initial scheduled delivery date and 27.9

percent of them were not operationally successful. The number

of software versions which were successful by both metrics

(did not have a milestone change and had no priority one or

two PTRs) was 31 or 45.6 percent. Further refinement of this

information can be seen when it is viewed in the technical

categories: software language, program size and software type.

In the area of software language, 44 (64.7 percent) of

these software versions were in assembly language and 24 (35.3

percent) were in CMS-2. The number of assembly language

programs which had milestone changes was 19 (43.2 percent),

while six (13.6 percent) had priority one or two PTRs. A

total of 22 (50.0 percent) assembly software versions passed

both success metrics. Whereas, the number of CMS-2 language

programs which had milestone changes was 13 (54.2 percent),

while 13 (54.2 percent) also had priority one or two PTRs. A

total of nine (37.5 percent) CMS-2 software versions passed

both success metrics. The above data is organized in Table 1

below.

31

TABLE 1
SOFTWARE LANGUAGE METRIC COMPARISON

Sub- Milestone Priority Passed Both
category Changes 1 or 2 PTRs Metrics
No. / Pct No. / Pct No. / Pct. No. / Pct.

Yes No Yes No Yes No

Assembly 19 / 25/ 6/ 38/ 22/ 22/
44 / 64.7% 43.2% 56.8% 13.6% 86.4% 50.0% 50.0%

CMS-2 13 / 11 / 13 / 11 / 9 / 15 /
24 / 35.3% 54.2% 45.8% 54.2% 45.1% 37.5% 62.5%

The category of program size had 19 (27.9 percent)

software versions in the range of 0 - 90,000 bytes (small), 39

(57.4 percent) software versions in the range of 90,000 -

200,000 bytes (medium) and ten (14.7 percent) software

versions in the range of 200,000 bytes and above (large). Of

the 19 small-size software versions, 12 (63.2 percent) had

milestone changes, eight (42.1 percent) had priority one or

two PTRs and six (31.6 percent) successfully passed both

metrics. Of the 39 medium-size software versions, 15 (38.5

percent) had milestone changes, seven (17.9 percent) had

priority one or two PTRs written on them after fleet release

and 21 (53.8 percent) successfully passed both metrics.

Finally, on the ten large-size software versions, five (50.0

percent) had milestone changes, four (40.0 percent) had

priority one or two PTRs written on them and four (40.0

percent) successfully passed both metrics. The above data is

organized in Table 2 below.

32

TABLE 2
P7"OGRAM SIZE METRIC COMPARISON

Sub- Milestone Priority Passed Both
category Changes 1 or 2 PTRs Metrics
No. / Pct No. / Pct No. / Pct. No. / Pct.

Yes No Yes No Yes No

0 - 90,000 12 / 7 / 8 / 11 / 6 / 13 /
19 / 27.9% 63.2% 36.8% 42.1% 57.9% 31.6% 68.4%

90,000 - 15/ 24/ 7/ 32/ 21 / 18/
200,000 38.5% 61.5% 17.9% 82.1% 53.8% 46.2%

39 / 57.4% 1

200,000 - 5/ 5/ 4/ 6/ 4/ 6/
ABOVE 50.0% 50.0% 40.0% 60.0% 40.0% 60.0%
10 / 14.7% 1 :_

In the category of software type, seven (10.4 percent)

software versions were initial, 41 (61.2 percent) software

versions were upgrade, 19 (28.4 percent) software versions

were maintenance and one (1.5 percent) software version was

classified as other. Of the seven initial software versions,

all seven (100 percent) had milestone changes and priority one

or two PTRs written on them, and therefore zero (0.0 percent)

passed both success metrics. Of the 41 upgrade software

versions, 21 (51.2 percent) had milestone changes, five (12.2

percent) had priority one or two PTRs written on them after

fleet release and 21 (51.2 percent) successfully passed both

metrics. Of the 19 maintenance software versions, four (21.1

percent) had milestone changes, six (31.6 percent) had

priority one or two PTRs written c'n them and 11 (57.9 percent)

passed both metrics successfully. Finally, the one software

version which vas classified as other had zero (0.0 percent)

33

milestone changes, one (100 percent) priority one or two PTR

written against it after fleet release and did not pass both

success metrics. The above data is organized in Table 3

below.

TABLE 3
SOFTWARE TYPE METRIC COMPARISON

Sub- Milestone Priority Passed Both

category Changes 1 or 2 PTRs Metrics
No. / Pct No. / Pct No. / Pct. No. / Pct.

Yes No Yes No Yes No

Initial 7 / 0 / 7 / 0 / 0 / 7 /
7 / 10.4% 100% 0.0% 100% 0.0% 0.0% 100%

Upgrade 21 / 20 / 5 / 36 / 21 / 20 /
41 / 61.2% 51.2% 48.8% 12.2% 87.8% 51.2% 48.8%

Maint. 4 / 15 / 6 / 13 / 11 / 8 /
19 / 28.4% 21.1% 78.9% 31.6% 68.4% 57.9% 42.1%

Other 0/ 1/ 1/ 0 / 0/ 1 /
1 / 1.5% 0.0% 100% 100% 0.0% 0.0% 100%

Of the 32 software versions which had milestone

changes, the data sources reported 68 reasons why these

milestones changed. Only one of the 12 reasons listed for a

milestone change in the inquiry in Appendix A was not chosen

as a possible answer. The reason that did not cause a

milestone change was hardware reliability. The reasons for

milestone changes and their percentages of occurrence are

listed in Table 4.

34

TABLE 4

REASONS FOR MILESTONE CHANGES

Reason Pct Reason Pct

Hardware Changes 10.3% Software Changes 17.6%

Changing User 22.0% Software 4.4%
Requirements Reliability

Budgetary Pressure 1.5% System Integration 10.3%
Problems

Inadequate 10.3% Political Decision 10.3%
Integration Time

Inadequate Design 1.5% Inadequate 1.5%
Time Development time

Other 10.3% i

2. Chi-square Data Results

The first chi-square independence test compared

software language against the two metrics (milestone change

and priority one or two PTRs) * The null hypothesis for both

tests was that software language and milestone changes (or

priority one or two PTRs) are independent. The alternative

hypothesis for both tests was that software language and

milestone changes (or priority one or two PTRs) are dependent.

The significant level used was 0.01 and the number of degrees

of freedom is one which gives a corresponding critical value

of 6.635. The chi-square value for milestone changes is 0.8

and for priority one or two PTRs is 12.7. Therefore, the null

hypothesis for the milestone changes test is not rejected, but

the null hypothesis for the priority one or two PTRs test is

rejected and the alternative hypothesis is accepted. It

35

appears that software language is statistically independent of

milestone changes but statistically dependent of priority one

or two PTRs. The results of these two tests are shown below

in Table 5.

TABLE 5
SOFTWARE LANGUAGE INDEPENDENCE TEST RESULTS

Sub-category Milestone Row Priority Row
Changes Total 1 or 2 PTRs Total
Observed / Observed /
Expected Expected

Yes No Yes Yes No

Assembly 19/ 25/ 44 6/ 38/ 44
20.7 23.3 12.3 31.7

CMS-2 13 / 11 / 24 13 / 11 / 24
11.3 12.7 6.7 17.3 _

Column Total 32 36 68 19 49 68

The second chi-square independence test compared

program size against the two metrics (milestone change and

priority one or two PTRs). The null hypothesis for both tests

was that program size and milestone changes (or priority one

or two PTRs) are independent. The alternative hypothesis for

both tests was that program size and milestone changes (or

priority one or two PTRs) are dependent. The significant

level used was 0.01 and the number of degrees of freedom is

two which gives a corresponding critical value of 9.21 for

each test. The chi-square value for milestone changes is 3.2

and for priority one or two PTRs is 4.6. Therefore, the null

hypothesis for both tests is not rejected, and it appears that

program size is statistically independent of milestone changes

36

and priority one or two PTRs. The results of these two tests

are shown below in Table 6.

TABLE 6
PROGRAM SIZE INDEPENDENCE TEST RESULTS

Sub-category Milestone Row Priority Row
Changes Total 1 or 2 PTRs Total
Observed / Observed /
Expected _Expected

Yes No Yes Yes No

Small 12 / 7 / 19 8 / 11 / 19
8.9 10.1 5.3 13.7

Medium 15 / 24 / 39 7 / 32 / 39
18.4 20.6 10.9 28.1

Large 5/ 5/ 10 4/ 6/ 10
4.7 5.3 2.8 7.2

Column Total 32 36 68 19 49 68

The third chi-square independence test compared

software type against the two metrics (milestone change and

priority one or two PTRs). Since there was only one software

version of software type other, this single value was deleted

from this test. Therefore, these two tests will only have 67

values instead of 68 as the previous four test have had. The

null hypothesis for both tests was that software type and

milestone changes (or priority one or two PTRs) are

independent. The alternative hypothesis for both tests was

that software type and milestone changes (or priority one or

two PTRs) are dependent. The significant level used was 0.01

and the number of degrees of freedom is two which gives a

corresponding critical value of 9.21 for each test. The chi-

37

square value for milestone changes is 13.3 and for priority

one or two PTRs is 23.8. Therefore, the null hypothesis for

both tests is rejected, and the alternative hypothesis is

accepted. It appears that software type is statistically

dependent of milestone changes and priority one or two PTRs.

The results of these two tests are shown below in Table 7. It

should be noted that the results for the chi-square

independence test for software type and milestone changes may

not be totally valid, since one of the chi-square test

assumptions as stated in chapter IV Section B subsection 2

above has been violated.

TABLE 7
SOFTWARE TYPE INDEPENDENCE TEST RESULTS

Sub-category Milestone Row Priority Row
Changes Total 1 or 2 PTRs Total
Observed / Observed /
Expected Expected

Yes No Yes Yes No

Initial 7 / 0 / 7 7 / 0 / 7
3.3 3.7 1.9 5.1

Upgrade 21 / 20 / 41 5 / 36 / 41
19.6 21.4 11.0 30.0

Maintenance 4 / 15 / 19 6 / 13 / 19
9.1 9.9 5.1 13.9

Column Total 32 35 67 18 49 67

The fourth chi-square independence test compared the

two metrics (milestone change and priority one or two PTRs)

against each other. The null hypothesis was that milestone

changes and priority one or two PTRs are independent. The

38

alternative hypothesis was that milestone changes and priority

one or two PTRs are dependent. The significant level used was

0.01 and the number of degrees of freedom is one which gives

a corresponding critical value of 6.635 the test. The chi-

square value for milestone changes is 7.5. Therefore, the

null hypotheses for the test is rejected, and the alternative

hypothesis is accepted. It appears that milestone changes are

statistically dependent of priority one or two PTRs. The

results of this test are shown below in Table 8.

TABLE 8
METRICS INDEPENDENCE TEST RESULTS

Priority 1 or 2 PTRs Row
Observed / Expected Total

Yes No

Milestone Yes 14 / 8.9 18 / 23.1 32
Changes 5 10.1 31 / 25.9 36

Column Total 19 49 68

39

V. CONCLUSION

This research has produced many interesting results. From

the raw collected data to conversations with software

developers, these results express the facts and opinions of

Naval aviation software developers with respect to their

specific aircraft platform. This study has compiled these

results to present an overall view of Naval aviation software

development.

A. EXPLANATION OF RESULTS

1. Explanation of Software Language Results

As shown in Table 1, the language (assembly or CMS-2)

that a software version is written in only has a significant

difference in the pr.1ror-.ty one or two PTRs metric. CMS-2

software versions being released to the fleet have a four

times greater percentage in having priority one or two PTRs as

assembly language versions.

The chi-square independence test results of Table 5

have shown that software language and milestone changes are

statistically independent, while software language and

priority one or two PTRs are statistically dependent.

2. Explanation of Program Size Results

The results in Table 2 also show that the size of the

software program had no significant affect on the success of

40

a software version against the metrics. However, medium-size

(90,000 - 200,000) software versions on average do slightly

better against the metrics than large-size (200,000 and above)

software version which do slightly better than small-size (0-

90,000) software versions.

The results from the chi-square independence test of

Table 6 verifies that program size is statistically

independent of the occurrence milestone changes and priority

one or two PTRs.

3. Explanation of Software Type Results

The most significant result of this study is in the

category of software type. As shown in Table 3, ALL initial

software versions had to change their original milestone

schedule, and when finally released to the fleet, they had

major problems that had to be reworked.

Table 3 also shows that upgrade software versions are

two times more likely to have a milestone change as

maintenance versions, but less than half as likely to cause

priority one or two PTRs to be generated after the software is

released to the fleet. However, both maintenance and upgrade

software versions are approximately equal in passing both

metrics (no milestone changes and no priority one or two

PTRs).

The results of the chi-square independence tests of

Table 7 show that type of software version affects the

41

occurrence of whether a software version is delayed or will

have problems after fleet release.

4. Explanation of Reasons for Milestone Change Results

The reasons for milestone changes, as summarized in

Table 4, show that software reliability, budgetary pressure,

inadequate design time and inadequate development time are

rarely a reason for changing a milestone since all four

reasons together account for only 9.9 percent of the problems.

The most prominent reason for milestones to change is because

of changing user requirements, which accounted for 22 percent

of the changes. The second most prominent reason for

milestones to change is because of software changes, which

accounted for 17.6 percent of the changes. Hardware changes,

system integration problems, internal/external political

decisions and miscellaneous other causes (usually dealing with

documentation) were each the reason for milestone changes 10.3

percent of the time.

5. Explanation of Software Metrics Results

The results of the chi-square independence tests of

Table 8 have shown that whether a software version is delayed

or not does not affect the probability that the software

version will have major reported problems after it is released

to the fleet.

42

B. SUROARIZING THE RZSULTS

The most important success factor in defining a successful

software version is the category of software type. This

factor was further confirmed with the results of the chi-

square independence test, since software type was the one

category which had a statistical dependence of milestone

changes and priority one or two PTRs.

"Maintenance" types of software versions are the most

successful (57.9 percent) in staying on original schedule and

being trouble-free after release to the fleet. However,

medium-size software versions, "upgrade" types of software

versions and assembly language software versions are 50

percent or better at passing both metrics.

In contrast, "Initial" types of software versions were

never able to maintain original schedule or be released to the

fleet without major problems being discovered afterwards. All

other subcategories (excluding the software type subcategory

of other) are nearly equal in their percentage (a narrow range

between 30 - 40 percent) of successfully passing both metrics.

The software subcategories are ranked by their success at

passing both metrics in Table 9 below.

Further analysis of the results has shown that of the 15

software versions which had milestone changes due to "changing

user requirements" (the reason cited most often for a

milestone change), 12 of these changes occurred in upgrade

type software versions. This result is not totally unexpected

43

since upgrade software versions, in an effort to enhance fleet

user capabilities as much as possible, try until the very last

minute to add the latest requests for new system features.

Maintenance versions on the other hand are usually more stable

since they are trying to correct problems of a current

software version, and few new functions are normally added.

[Ref. 6]

TABLE 9
RANKING OF SOFTWARE SUBCATEGORIES BY PERCENTAGE

Subcategory Percentage that Passed Both Metrics

Maintenance Type Versions 57.9%

Medium Size Programs 53.8%

Upgrade Type Versions 51.2%

Assembly Versions 50.0%

Large Size Programs 40.0%

CMS-2 Versions 37.5%

Small Size Programs 31.6%

Initial Type Versions 0.0%

Other Type Versions 0.0%

C. RECOMMENDATIONS

As previously discussed, the category of software type

produced some very noteworthy results and showed possible

areas where improvements could be made. This section notes

some of the shortfalls discovered in this study and recommends

some solutions.

44

Situation ONE

The inability of the initial software versions to be

produced without having to change their original milestone

schedules.

Recommendation - For initial versions where software is

being developed for the first time for a new aircraft

configuration or where computer hardware is being added and/or

changed for an existing aircraft system, more time is needed

in the development process. Changes could possibly be made in

the method used to calculate software development time

schedules and allow for more development time for original

versions of a software program. To some extent this extra

time could be used to better define the system specifications

or ensure integration problems are more thoroughly worked out.

It would provide a more accurate implementation schedule.

Further research to determine a more exact method for

calculating software development time could more fully define

a list of factors which cause schedule delays.

Situation TWO

The most significant result was that even after changing

their schedules these initial software versions had serious

software problems which were not discovered until the software

was in the fleet. For instance, a software version was

released to the fleet after successfully passing testing, and

under normal flight situations the computer would stop

working.

45

Recommendation

The best solution to this problem is to ensure

specifications are thoroughly defined and that all areas of

testing are well specified and properly accomplished.

Situation THREE

The low success rate of upgrade software versions (48.8

percent) compared to maintenance software versions (78.9

percent) in being able to maintain the original development

schedule needs to be increased.

Recommendation

The suggested solution to revamp this problem is similar

to situation one above. More time is needed in the

development schedule. This in turn requires a more accurate

method for estimating the upgrade schedule. Consideration

should be given to solidifying software specifications when

originally planned and not allowing any new changes or

enhancements to be added to this baseline. New changes or

enhancements would be handled in future updates.

If an urgent change or enhancement is needed "NOW", this

change should be made to the current working software version.

If determined to be of a less urgent status, then add it to

the follow-on version to the current software under

development. Adding a late change or enhancement to an

already baselined software version only causes problems in the

46

development schedule. The later such a change is made the

more costly and time consuming the problem becomes.

[Ref. 7]

Situation FOUR

As noted in Chapter IV Section C, on the average 45.6

percent of the software versions passed both metrics (no

milestone changes and no priority one or two PTRs). This

average needs to be raised. An initial goal of at least 50

percent should be made. In keeping with the DOD

implementation of Total Quality Leadership (or continuous

process improvement) efforts should continue to improve in

this area.

Recommendation

Applying the recommendations of situations 1, 2 and 3 can

help improve this percentage. Also, a more thorough study of

this specific problem could generate procedures which would

improve the entire software development process for DOD and

save the government time and money.

D. OVERVIEW OF THE DOD SOFTWABE DEVELOPMENT PROCESS

The DOD standard for software development, DOD-STD-2167A,

and the entire software development process are well

established, especially considering today's knowledge of this

process. However, software development is neither a science

nor a strict engineering discipline. It is more like an art,

and is difficult to manage. (Ref. 81

47

The DOD situation is further compounded because it

endeavors to develop software for computers whose use is being

continuously updated or completely changed. When the DOD is

developing software for an embedded aircraft computer system,

it is not like developing software for a personnel computer

(PC). Most aircraft computers are real-time or near real-time

systems. The software in these aircraft must respond to

numerous inputs and produce several outputs instantaneously

without failure. If the software in a PC fails, the user can

restart the computer and try the problem again. If an

aircraft is in a combat situation or needs the software for

aircraft control, the crew may not have time to restart the

computer and this may cost the government the lose of an

aircraft and a crew. As a result, military software has an

important requirement for minimal or zero software faults.

For its part, the DON as a whole does a remarkable job of

managing and producing software for embedded aircraft computer

systems. In developing aircraft software, the DON must take

into account a continuously changing world situation and the

bureaucracy of the appropriation process for receiving

funding. Additionally, all aircraft missions and capabilities

are different, and each aircraft type must have software

developed for it that will integrate correctly with unique

hardware and avionic systems. However, in the process of

collecting data for this study the following points were

noted:

48

1. Relationship between software developer and technical

and operational testers.

- The software developers work hard to give the fleet

user the best possible product with the newest technology and

features as quickly as possible.

- The testing agencies want to give the fleet a high

quality product. They strive for zero defects in the software

and work to ensure that the product is capable of doing the

mission it was designed for.

It would seem that both organizations, the software

developers and the testing community, are working for the same

thing, a successful product for the fleet. However at times,

developers believe that not all technical and operational

testing is required for every version of software; testers

believe that any change to a software version should go

through some if not all forms of testing. The developer's

opinion is that testing will delay a good software product

from being delivered quickly to the fleet. The tester's

opinion is that if a bad software product is delivered to the

fleet then the fleet is going to be less capable than before.

A defective new software version is even further delayed.

The data collected for this study show that there have

been software products which have successfully passed the

testing process without problems, ones in which problems were

found and returned for corrections, and those that were sent

out to the fleet with problems that were later discovered.

49

This area of "when" or "if" a software version should be

tested is important enough to warrant a study of the situation

to see if the current process should be revamped. However,

the bottom line is that fleet user will be the one who decides

if the product can be used effectively to get the mission

accomplished because product environments change and what was

useful yesterday may not be correct for the situation today.

2. Incorporation of ADA.

ADA is the High Order Language (HOL) used for computer

programming that DOD had developed in an effort to standardize

computer programming, logistics and support from several

languages to one software language. For the Navy, OPNAVINST

5200.28 has mandated that "Ada is required for new

developments and shall be phased into use for existing systems

at the next major upgrade." (Ref. 9] Congress, in the

fiscal year 1991 budget, mandated ADA to be used [Ref. 10].

There are two potential problems the Navy has in

incorporating ADA into existing systems. First, ADA is a

relatively new software language and as such the programming

experience level of ADA programmers is small. Second and

perhaps most important, all the current software engineers

that work to develop software for Navy aircraft and have many

years of experience in developing aviation software, have

little or no experience with ADA. This study has shown all

aircraft computer programming for the programs reviewed is in

50

either assembler or CMS-2. The Navy needs to establish a plan

which considers any or a combination of the following points:

1) provide the experienced software engineers training

in the ADA language. They are valuable resources having

developed their aircraft software for many years.

2) all newly hired programmers should be trained in

ADA.

3) be prepared to incur the additional learning curve

transition to ADA which must be figured into the development

schedule.

A thorough study and analysis of this situation will

provide valuable information and alternatives to make the

optimum decision.

3. PTR reporting.

The use of program trouble reports for reporting

software or system problems by the fleet user may be lacking

for the following reasons:

a. the aircraft crews may find a way to work-around

a problem or discrepancy, but in so doing are adapting

themselves to the discrepancy situation rather than making

sure the software or system is performing as specified.

Because the aircraft crew has discovered a suitable work-

around for the problem, a PTR may not be written, and the

discrepancy is not reported.

b. all aircraft crews may not know how to report

software or system problems, or do not believe it is important

51

to take the time to write down a discrepancy if a suitable

work-around can be used instead. This situation of aircraft

crews being uninformed about the importance of PTRs can lead

to numerous software problems that are not reported and later

may cause more serious problems.

4. Software testing.

In the collection of data for this research, software

developers have expressed the importance of thorough

validation and testing. The use of independent validation and

verification (IV&V) and stress testing to discover major

software problems is essential. Lack or only partial

completion of these two forms of testing have been a major

factor in software being released for technical and

operational testing with priority one and two deficiencies.

5. Software Integration.

The integration of computer hardware with the software

that will be operating on it is always a factor software

developers take into consideration. However, some of the

reasons for software delay and priority one or two PTRs are

from integration problems with other aircraft systems. The

source of these integration problems come from new or updated

weapon systems (including weapon ballistics), auxiliary

computers, or other avionics systems. The cause of these

integration problems is normally that the change to the other

aircraft system is considered by its developer to be so minute

that this change should not affect any other system. This

52

unfortunately is not always the case. The important key is

communication between developers is needed when a change is

made to a system that integrates with a computer.

Z. POSSIBLE FOLLOW-ON TOPICS

The area of mission critical computer software for Naval

aviation is critical for the future. Further in-depth

research beyond this study can greatly assist with future

decisions on Naval aviation software development. The

following suggested research topics can provide valuable

information for making these decisions.

1. A thorough study of individual aircraft platform's

software. From when the initial software requirements were

made with the software developer for the original aircraft

through the software life cycle to the current version.

2. A detailed study of tae entire software maintenance

process and documentation of what NAVAIR, the Software Support

Activities (SSAs) and the testing agencies do to make changes

in weapon system software.

3. A more in-depth study of why initial software versions

have problems maintaining original software development

schedule and even when their schedules are updated major

software problems still occur (i.e., priority one or two

PTRs).

4. Research to determine why software version schedules

fail to be met in excess of 50 percent. Also why these

53

programs are delivered with an inordinately high rate of major

errors discovered after fleet release.

5. An examination on the amount of testing that is

statistically required for a software version after it has

left the SSA (i.e. does it need TechEval and/or OT&E).

6. Analysis to determine what affect ANSI/MIL-STD-l815A

(Reference Manual for the ADA Programming Language) and its

implementation directives will have on the software

development process and the software developers (contractors

and the SSAs) since most of the programmers know either

assembler or CMS-2.

7. Thorough study of the ability of the software

developers to deliver software versions within budget. This

study could be combined with the data from this thesis which

would produce the more classic software study of the software

developers ability to meet cost and schedule requirements and

the difficulties in meeting these two criteria.

8. Incorporation of the results of any of these research

topics into a decision support system (DSS). A DSS could

assist program managers or software developers in making

decisions in many areas of the software development process.

These systems would improve the entire Naval aviation software

development process.

54

F. LESSONS LEARNED

The following lessons learned were noted during the entire

life cycle of this research:

1. To gain an understanding and appreciation of the area

of research, the researcher must be immersed into the research

environment. This may entail asking the wrong or foolish

questions, but later on this will enable the researcher to ask

the right questions and collect the correct data.

2. Questionnaires are adequate for data collection but

face-to-face interviews are a faster way to collect data.

Additionally, in-person interviews have the added advantage of

allowing the researcher to get a better understanding of the

data environment.

3. For all forms of data collection, allow ample time for

personnel to respond to research questions, but set a FIRM

last day for acceptance of data collection and stick to it.

Direct follow-up will ensure a higher response rate.

4. The researcher should make the original research

objective realistic yet flexible. This allows the researcher

to modify the objective for contingencies such as needed data

is not easily accessible in a timely fashion or not available

at all.

G. FINAL THOUGHTS

This study has only scratched the surface for evaluating

the software development process of different types of

55

aircraft. To gain a more thorough understanding of the

successes and failures of the Naval aviation software

development process, further research that concentrates

specifically on each aircraft type is needed. This in-depth

research will help to correct problems each development

process has, while allowing all other aircraft types to

benefit from their successes.

DOD-STD-2167A was established with the intention of

allowing each aircraft program enough flexibility to develop

mission critical software under any feasible development

method, while still furnishing an architecture to work with.

However, all phases of the software development method that is

selected must be thoroughly implemented otherwise milestone

delays and major deficiencies in fleet released software

occur. Most problems in Naval aviation software development

seem to occur when user requirements change after software

development has commenced or when a development phase is not

completely performed (e.g. incomplete stress testing).

With decreasing budgets, Naval aviation software

development must become as efficient as possible. This will

require improvements in all areas of software development and

the overall commitment of everyone involved in this process to

a total and integrated team or mission concept. This task

will be difficult, but with the implementation of Total

Quality Leadership, it will not be impossible.

56

APPENDIX A

INQUIRY FOR DATA COLLECTION

1. What type of aircraft is the computer software used
for? (circle all applicable platforms)

A. A-6 B. AV-8

C. EA-6 D. E-2

E. F-14 F. F-18

G. P-3 H. S-3

I. SH-2/3 J. SH-60B

K. SH-60F

L. Others (please specify)

2. What type of computer system is the software to be

used for? (circle all applicable computer systems)

A. AN/AYK-10 B. AN/AYK-14

C. ASN-123 D. ASN-150

E. CP-3B F. CP-901

G. TDY-43

H. Others (please specify)

57

3. What is the total number of lines of code in the
software program today and what software languages is it
written in?

4. Please provide a copy of the Software Life Cycle
Schedule (Milestone charts) for as much of the software
program history as is available (i.e. from the initial
software program to the current fleet release). If the above
is not possible, please annotate when and what Milestones were
revised for each version of software.)

58

5. Using the Milestones in number 4 above, please list
what Milestones were changed and why they needed to be revised
from the previous estimate. (Note: a Version number or
software baseline designator are considered the same.)

Possible Answers May Be:
A. Hardware changes B. Software changes
C. Changing user requirements D. Hardware reliability
E. Software reliability F. Budgetary pressures
G. System integration problems H. Inadequate

integration time
I. Political decision J. Inadequate design

time
K. Inadequate development time L. Others (specify

below)

A. Version number Milestone

Reason(s) for change (circle all appropriate answer(s)):

A B C D E F G H I J K L

Other(s) (please specify)

B. Version number Milestone

Reason(s) for change (circle all appropriate answer(s)):

A B C D E F G H I J K L

Other(s) (please specify)

C. Version number Milestone

Reason(s) for change (circle all appropriate answer(s)):

A B C D E F G H I J K L

Other(s) (please specify)

59

D. Version number Milestone

Reason(s) for change (circle all appropriate answer(s)):

A B C D E F G H I J K L

Other(s) (please specify)

E. Version number Milestone

Reason(s) for change (circle all appropriate answer(s)):

A B C D E F G H I J K L

Other(s) (please specify)

F. Version number Milestone

Reason(s) for change (circle all appropriate anewer(s)):

A B C D E F G H I J K L

Other(s) (please specify)

G. Version number Milestone

Reason(s) for change (circle all appropriate answer(s)):

A B C D E F G H I J K L

Other(s) (please specify)

H. Version number Milestone

Reason(s) for change (circle all appropriate answer(s)):

A B C D E F G H I J K L

Other(s) (please specify)

60

6. For each version of software in number 4 above, what is
the number of lines of newly written or changed source code
for each version of software from previous baseline?

A. Version number Number of lines

B. Version number Number of lines

C. Version number Number of lines

D. Version number Number of lines

E. Version number Number of lines

F. Version number Number of lines

G. Version number Number of lines

H. Version number Number of lines

I. Version number Number of lines

J. Version number Number of lines

7. For each version of software in number 4 above, what
Type would you classify it as?

Possible Answers are:
A. Initial release B. Major upgrade release

C. Maintenance release to fix D. Other (please specify)

priority 1 or 2 PTRs.

A. Version number Type

B. Version number Type

C. Version number Type

D. Version number Type

E. Version number Type

F. Version number Type

G. Version number Type

H. Version number Type

I. Version number Type

J. Version number Type

61

8. Were Priority 1/Priority 2 Problem Reports or
Emergency PTRs written against any of the software versions
within 3 years of Fleet Issue? NO / YES (circle one)

If YES, please elaborate on what problem the software program
had and how the problem was fixed.

A. Software version number _____________

Problem__________________________

Solution_________________________

B. Software version number _____________

Problem__________________________

Solution___________________________

C. Software version number_____________

Problem__________________________

Solution____________________________

62

D. Software version number_____________

Problem__________________________

Solution __________________________

E. Software version number _____________

Problem___________________________

Solution ___________________________

F. Software version number _____________

Problem__________________________

Solution ___________________________

63

9. Please include any other comments which may be of use
for this software analysis.

64

APPZNDIX B

LIST OF ACRONYMS

Chief of Naval Operations Instruction OPNAVINST

Commander, Space and Naval COMSPAWARSYSCCM
Warfare Systems Command

Computer Software Component CSC

Computer Software Configuration Items CSCI

Computer Software Unit CSU

Configuration Item CI

Critical Design Review CDR

Department of Defense DOD

Department of the Navy DON

Embedded Computer EC

Embedded Computer Resources ECR

Engineering Change Proposals ECPs

Formal Qualification Testing FQT

Full Scale Engineering Development FSED

Functional Configuration Audit FCA

High Order Language HOL

Independent Validation and Verification IV&V

Interface Design Document IDD

Lines of Code LOC

Management Steering Committee for MSC-ECR
Embedded Computer Resources

Mission-Critical Computer Resources MCCR

Naval Aviation Command NAVAIR

Naval Electronic Systems Command NAVELEX

65

Operational Flight Program OFP

Personnel Computer PC

Physical Configuration Audit PCA

Post-Deployment Software Support PDSS

2reliminary Design Review PDR

Program Managers PMs

Program Trouble Reports PTRs

Programmable Calculators PROCALS

Research, Development and Acquisition RDA

Secretary of the Navy Instruction SECNAVINST

Software Design Document SDD

Software Support Activities SSAs

Software Test Description STD

Software Test Plan STP

Software Test Report STR

Software Trouble Reports STRs

Tactical Digital Standards TADSTANDS

Test Readiness Review TRR

66

LIST OF REFuRENCES

1. Glaseman, S., Comparative Studies in Software Acquisition,
pp. 4-8, Lexington Books, 1982.

2. Kitfield, J., "Is Software DOD's Achilles' Heel?,"
Military Forum, pg. 29, July 1989.

3. Department of Defense Military Standard DOD-STD-2167A,
Defense System Software Development, 29 February 1988;
Department of Defense Military Standard MIL-STD-1521B
(USAF), Technical Reviews and Audits for Systems,
Equipments, and Computer Software, 4 June 1985; Department
of Defense Military Standard MIL-STD-480B, Configuration
Control - Engineering Changes, Deviations and Waivers, 15
July 1988; Department of the Navy Tactical Digital
Standard A, Standard Definitions for Embedded Computer
Resources in Tactical Digital Systems, 2 July 1980;
Department of the Navy Tactical Digital Standard D
Revision 1, Reserve Capacity Requirements for Mission-
Critical Systems, 27 October 1989.

4. Hassett, M. J., and Weiss, N. A., Introductory Statistics,
2d ed., pg. 160, Addison-Wesley Publishing Company, 1989.

5. Hassett, M. J., and Weiss, N. A., Introductory Statistics,
2d ed., pp. 473-481, Addison-Wesley Publishing Company,
1989.

6. Jones, C., Programming Productivity, pp. 141-142, McGraw-
Hill, Inc., 1986.

7. Mission Critical Computer Resources Management Guide, pg.
7-7, Defense Systems Management College, Fort Belvior,
VA., 1990.

8. Boehm, B. W., and Ross R., "Theory-W Software Project
Management: Principles and Examples," IEEE Transactions on
Software Engineering, v.15, no.7, pg. 902, 7 July 1989.

9. Chief of Naval Operations Instruction 5200.28, Life Cycle
Management of Mission-Critical Computer Resources (MCCR)
for Navy Systems Managed Under the Research, Development,
and Acquisition (RDA) Process, 25 September 1986.

10. Schwartz, K. D., "Ada Use Is Mandatory As of June,"
Government Computer News, pg 1, 10 December 1990.

67

BIBLIOGERPY

Attanasio, H., Contracting for Embedded Computer Software
within the Department of the Navy, Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1990.

Boehm, B. W., "Improving Software Productivity," COMPUTER,
September 1987.

Boehm, B. W., "Software Engineering Economics," IEEE
Transactions on Software Engineering, v. SE10, no. 1, 1
January 1984.

Brooks, F. P., Jr., "No Silver Bullet - Essence and Accidents
of Software Engineering," Information Processing 86, 1986.

Brooks, F. P., Jr., The Mythical Man-Month, Addison-Wesley,
Publishing Company, 1975.

Burke, J. D., Capt, USA, "Software Testing Management,"
Program Manager, May-June 1988.

Department of Defense Directive 5000.29, Management of
Computer Resources in Major Defense Systems, 26 April 1976.

Department of Defense Instruction 5000.31, Interim List of DoD
Approved High Order Programming Languages (HOL), 24 November
1976.

Department of Defense Military Handbook MIL-HDBK-287, A
Tailoring Guide for DOD-STD-2167A, Defense System Software
Development, 11 August 1989.

Department of Defense Military Standard DOD-STD-1679A (NAVY),
Software Development, 22 October 1983.

Department of Defense Military Standard ANSI/MIL-STD-1815A-
1983, Reference Manual for the Ada Programming Language, 17
February 1983.

Department of Defense Military Standard DOD-STD-2168, Defense
System Software Quality Program, 1 April 1985.

Department of the Navy, Naval Electronics Systems Command
Instruction (NAVELEX INST) 5200.23, NAVELEX Computer Software
Life-Cycle Management Guide, 17 Pecember 1979.

Department of the Navy, Secretary of the Navy Instruction
(SECNAVINST) 5200.32, Management of Embedded Computer
Resources in Department of the Navy Systems, 11 June 1979.

68

Department of the Navy, Tactical Digital Standard (TADSTANDS)
B, Standard Embedded Computers, Peripherals, and Input/Output
Interfaces, 5 March 1990.

Department of the Navy, Tactical Digital Standard (TADSTANDS)
C, Computer Programming Language Standardization Policy for
Mission-Critical Computer Resources, 15 August 1990.

Department of the Navy, Tactical Digital Standard (TADSTANDS)
E, Software Development, Documentation, and Testing Policy for
Navy Mission Critical Systems, 24 January 1989.

Deutsch, M. S., "An Exploratory Analysis Relating the
Software Project Management Process to Project Success."
Working Paper for Hughes Aircraft Company, 1990.

Fritz, R. L. and Shocket, F., "LAMPS: Demonstrated
Maintainability through Application of MIL-SPEC Software
Development Techniques," paper presented at the Conference on
Software Maintenance-1988, Phoenix, Arizona, October 24-27,
1988.

Lientz, B. P., and Swanson, E. B., "Problems in Application
Software Maintenance," Communications of the ACM, November
1981.

Scacchi, W., "Understanding Software Productivity: A
Comparative Empirical Review," IEEE, 1989.

Subcommittee on Investigations and Oversight, U.S. House of
Representatives, Bugs In the Program", Problems In Federal
Government Computer Software Development and Regulation,
Washington, D.C., September 1989.

Texas Instruments, Inc., Technical Report RCI-TR-012, A Poor
Man's Guide To Estimating Software Costs, by D. J. Reifer, 1
November 1985.

United States General Accounting Office, Information
Management and Technology Division, EMBEDDED COMPUTERS: Navy's
Approach to Developing Patrol Aircraft Avionics System Too
Risky, September 1990.

69

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Martin J. McCaffrey AS/Mf 1
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

4. Dr. Tarek Abdel-Hamid, AS/Ah 1
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

5. Program Executive Officer for Space, 1
Communications and Sensors
PMW-148
2511 Jefferson Davis Hwy
Washington, D.C. 20353-5100
Attn: LCDR Robert L. Buckley

6. Commander Naval Weapons Center 1
Code 3104
China Lake, California 93555

7. Commander Naval Weapons Center 1
Code 3103A
China Lake, California 93555

8. Commander Naval Weapons Center 1
Code 3193
China Lake, California 93555

9. Commander Naval Weapons Center 1
Code 3103B
China Lake, California 93555-6001

10. Commander Naval Weapons Center 1
Code 3107
China Lake, California 93555-5000

11. Commander Pacific Missile Test Center 1
Pt. Mugu, California 93042-5000
Attn: Code 4060A

70

12. Commander Pacific Missile Test Center
Code 9040.1
Pt. Mugu, California 93042-5000

13. Fleet Combat Direction Systems Support Activity
200 Catalina Blvd
San Diego, California 92147-5081
Attn: Code 3

14. Commander Naval Air Development Center
Street Road
Warminster, Pennsylvania 18974-5000
Attn: Code 103J1

15. Commander Naval Air Development Center
Street and Jacksonville Road
Warminster, Pennsylvania 18974
Attn: Code 101C

16. Commanding Officer
Naval Aviation Depot
Code 331
NAS North Island
San Diego, California 92135-5112
Attn: Ken Pecus

17. Commanding Officer
Naval Air Development Center
Warminster, Pennsylvania 18974
Attn: Code 1022

18. Department of the Navy
Naval Air System Command
Washington, D.C. 20361-5460
Attn: AIR-54661

19. Department of Defense
Defense Systems Management College
Fort Belvior, Virginia 22060-5426
Attn: Mr. Alan Roberts

20. Michael S. Deutsch
Hughes Aircraft Company
Ground Systems Group
P. 0. Box 3310
Fullerton, California 92634

71

