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NOMENCLATURE

a threshold level

c correlation coefficient, c = E{Fo,,.Sp}/0longaP

CG centre of gravity

• - (DI, D2, D3 ) displacements in the three component directions at the point _
(X,Y,Z)

E{F o,,.SI} expected value of FlongS

erf y error function

FP inertial force in the earth system

f(F 0o.g, Sp) joint probability density of Fo.ng, Sp

F. inertial force in thc s:ip system

Fit lateral force estimator (linearized lateral force per unit mass in the
ship system)

Fo0I, longitudinal force estimator (linearized longitudinal force per unit
mass in the ship system)

Fjol,/Co transfer function of F1o,,n

F,, linearized vertical force per unit mass in the ship system

g acceleration due to gravity

m mass

m, spectral momnents of S.

Mjoq spectral moments of Flo.,,

m,, spectral moments of Sp

rn., spectral moments of w

mn,z spectral moments of :

Alp number of slides per unit time in the port direction

MA number of slides per unit time in the starboard direction or, the
number of upcrozsings by S.(t) of a threshold at level a

S ....



P = (X, Y, Z) point on the ship

p.(r) duration of threshold exceedance probability density

r nondimensional threshold, r = a/v/'-'

S.(t) aft sliding estimator function

SI(t) forward sliding estimator function

Sp(t) port sliding estimator function

S,, 0 /(0  transfer function of the port sliding estimator function

Ss.(w.) spectrum of S.(t)

S.,(t) starboard sliding estimator function, assumed to be a zero-mean
Gaussian process

S.o amplitude of the starboard sliding estimator function

t time

T2 zero-crossing period, T2 = 2 7rvmO/rn2

T, modal period

t, time at which an object stops sliding

to time at which the sliding estimator function crosses the threshold
a

zo distance in the starboard direction

w -FIo,,o sine + Sp cos e

z Fl:o, cos • + SP sin e

6 angle of azimuth defined in Fig. 9

f rotation angle, e = -0.5arctan[2co'jAcp /(o2' - I

r•= (r1Y2,17,r3) translatory displacements of the ship's CG

pd dynamic coefficient of friction

j4 static coefficient of friction

•'= (r74, 2r 6 ) angular displacements of the ship
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along standard deviation of Flong(t)

arP standard deviation of Sp(t)

a, standard deviation of S.(t)

7- duration of a threshold exceedance

f average duration of a threshold exceedance

4 m mean heel angle

O(r) = (I/v2) f7 e-x'/2dx

w angular frequency

w2  frequency corresponding to the zero-crossing period, T2

w, encounter frequency
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ABSTRACT

A frequency-domain method of predicting the incidence of personnel
or equipment sliding is presented which includes the (linearized) forces
due to roll, pitch, longitudinal, lateral and vertical accelerations, and also
the effects of non-zero mean heel. The predictions of the method are
compared with the results of observations of at-sea sliding incidents, and
good correspondence is obtained.

A simple approximation for the duration of threshold exceedance prob-
ability density is described, and used to develop a method for predicting
the incidence of slides greater than a certain severity. The method applies
for arbitrary lateral and vertical acceleration, but only to the case in which
the longitudinal acceleration is negligible. An example of the application
of the method is presented.

It is argued that ship motions such as roll, pitch, lateral and longitu-
di.•n,- accelerations are the wrong physical parameters for expressing sea-
keeping criteria. These criteria become simpler when expressed in terms
of the incidence -)f degrading events such as helicopters sliding, and are
equally applicable to all vessel types.

ADMINISTRATIVE INFORMATION

This work was do.-ie while the first author was on exchange at the David Taylor Re-
search Center from Defence Research Establishment Atlantic. It was sponsored by the
Chief of Naval Research, Office of Naval Technology, Code ONT211, under 6.2 Surface
Ship Technology Program (ND1A), Program Element 62121N, Advanced Hull Project
RH21S23, Task 5, Ship Motion Control. The work was performed during FY1991 under
work unit number 1-15O6-122. The DN number is DN178067.

INTRODUCTION

Predictions of the operational performance of ships at sea require three elements: a
statistical description of the wave and wind environment in which the ship will oper-
ate; computer programs for determining the ship response; and seakeeping criteria to
indicate the effects of the motions on operational performance. Hindcast data bases are
now available for many operational areas (see e.g. Reference 1), and strip theory com-
puter programs such as SMP 2'3 are in wide-spread use. There has been comparatively
less effort devoted to developing seakeeping criteria, and the accuracy of operability
predictions is now limited by the accuracy of available criteria.

A summary of criteria in use in 1989 was presented in Reference 4. As an example,
criteria for personnel consist of separate limits for each of the following four parameters:

roll, pitch, and lateral and vertical acceleration at the pilot house. There are some prob-

lems associated with this aproach. First. operations are not limited by any one of these

1I



parameters individually, but rather by some combination of all four. A value of roll
which will cause extreme problems in the presence of significant vertical accelerations,
will be perfectly acceptable when vertical motions are small. Second. the criteria are
primarily based on operational experience with frigates and destroyers. While the lim-
iting values of these parameters found do reflect the level of motions at which significant
personnel problems occur on these vessels, they may result in misleading predictions
of the operability of SWATH vessels or even of monohulls of significantly different size.
For example, the pitch criterion of 1.50 RMS which is based on operational experience
on vessels with length to beam ratios of about 9 with most frequently occurring pitch
periods of around 6 seconds might be conservative if applied to a SWATH vessel with
a length to beam ratio of 2 and longer pitch periods.

In fact, roll, pitch, vertical and lateral accelerations are the wrong physical param-
eters for expressing personnel criteria. The limiting values of these parameters found
through operational experience are representative of the motion levels at which certain
degrading effects start to become important. For personnel operating on deck, the de-
grading effects are the onset of loss-of-balance events due to tipping oL sliding. These
events were called motion-induced interruptions (MII) in Reference 5. Reference 6 in-
troduced a frequency-domain method for predicting the incidence of motion-induced
interruptions that included the effects of both lateral and vertical acceleration, and
proposed that a rational seakeeping criterion for deck operations involving personnel
could be developed in terms of the incidence of MIl's per unit time.

In future, we propose that all seakeeping criteria should be presented in terms of
limits on the incidence of whatever degrading event is determined to limit the operation
of interest rather than the underlying ship motions. As an example, we consider an
unsecured helicopter on deck, as addressed in Reference 7. In this case, the degrading
event of most interest ;s the onset of helicopter sliding. A criterion in terms of the
maximum acceptable number of slides per hour is physically easy to understand, and
obviously applies equally to SWATH or monohull vessels. The alternative approach of
trying to determine separate limits for the contributing motions of roll, pitch, vertical,
lateral, and longitudinal accelerations as well as relative wind will not lead to a unique
answer because of their interrelation; moreover, different values will be obtained de-
pending on whether the deck is slippery or not. If, on the other hand, the criterion is
expressed in Oerms of a limit on the allowable number of slides per unit time, the effect
of the coefficient of friction is automatically taken into account. It should be noted that
the philosophy outlined above is already used routinely for slamming and deck wetness
criteria which are usually expressed as limits on the number of slams or wetnesses per
hour.

In order to implement our approach to developing seakeeping criteria, two steps are
required. First methods must be developed to predict the incidence and severity of
degrading events such as sliding of helicopters or NIII's of personnel on deck In order
to lead to practical tools for ship design, these methods must work in the frequency
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domain. Second, operational data are required to determine acceptable limits for the
incidence of occurrence of the degrading events.

In this report, which is an extension of Reference 6, we present a frequency-domain
method of predicting the incidence arnd severity of personnel or equipment sliding which
includes the (linearized) forces due to roll, pitch, longitudinal, lateral and vertical ac-
celerations, and also the effects of non-zero mean heel angle. An analysis of personnel
tipping which includes the above forces and also steady and unsteady wind effects will
be published later-.

PREDICTION OF SLIDING INCIDENCE
WITH ZERO LONGITUDINAL ACCELERATION

In this section, we review the frequency-domain method for predicting sliding in-
cidence in the absence of longitudinal acceleration which was presented in Reference
6. Longitudinal acceleration is usually negligible for large monohulls, but need not be
for small monohulls or different platform types. A method for predicting sliding inci-
dence in the presence of combined longitudinal, lateral, and vertical acceleration will
be presented in a later section.

Two coordinate systems will be used for the sliding calculations. The inertial system
is illustrated in Fig. 1. Its origin is located at the mean position of the ship and it
translates with the mean velocity of the ship, maintaining a fixed orientation with
respect to the free surface. The motions surge, sway, heave, roll, pitch, yaw will be
denoted by r/j, i = 1,.-- ,6.

The displacement f) = (Di, D 2, D3 ), at a point P5 = (X, Y, Z) on the ship is given
by

44. (1)

where i= (71,r772, 773) and •= (ýt, 2, 6). For example, the displacement in the vertical
direction is given by

D3 = 773 + 774Y - 75X (2)

and includes contributions from heave, roll, and pitch. The velocities and accelerations
at 5 are obtained by differentiating Eq. 1 with respect to time.

D=r7+•#xP (3)

D + x5 P(4)

°Graha ,. R., Baitis, A.E., and Meyers, W.G., "On the Development of Operability Criteria". to
appear in Naval Engineers Journal, ASNE Day, 1992
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An object of mass in fixed to the ship with center of gravity located at the point P
experiences an inertial force, which in the earth system is given by

Fe = -m(DI,D 2,D 3 + g) (5)

where g is the ricceleration due to gravity. The object could be an unsecured helicopter
on deck, a crew member, or anything else. For the development of seakeeping criteria,
the forces perpendicular and parallel to the deck are of more relevance. These are the
forces in the ship reference system, Fa.

Fig. 1 also illustrates the ship coordinate system, which is now fixed to the ship.
Performing the coordinate transformation from the earth to ship reference system, and
retaining only the linear terms we obtain

F. = m(-D, + gl7s, -bD2 - g97, -D 3 - g) =_ m(Fz,,,. Flat. F,) (6)

The quantities Fo0,9 and F1,f are the (linearized) longitudinal and lateral forces per
unit mass, and following Reference 5 will be called the longitudinal and lateral force
estimators. F,, is the (linearized) vertical force per unit mass.

Suppose that the object under consideration has a static coefficient of friction given
by /1. Under the assumption that Fo,10  .•. 0, slides can only occur in the port or
starboard directions. A slide to port will occur whenever

,,•tE 1,, > - in, F,. (7)

or

S- D- 74 - A,5 3 > 1.g (8)

On the other hand, the object will slide to starboard if

rnF,.t < mnp.F, (9)

or

D2 + 974 - 14D 3 > Pog (10)

The quantities on the left hand sides of Eqs. 8 and 10 were called generalized lateral
force estimators in Reference 6. In the present work, these quantities will be called
sliding estimator functions, and denoted by S, and S,, respectively.

Wind forces on the ship or asymmetric loading conditions may result in the presence
of a steady heel angle, 0m (positive starboard side down). In this case, the right hand
sides of Eqs. 8 and 10 should be replaced by /•g + ,•g and pag - Og, respectively.
The net result is to make sliding more likely to occur in the downhill direction.

In Reference 6. a frequency-domain method was derived for predicting the number of
slides per unit time, under the assumption that the sliding estimator functions followed
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the Rayleigh distribution. In fact, the result holds provided that S,(t) and S,(t) are
zero-mean Gaussian processes, and is not restricted to narrow-band processes. Let
Ss. (w,) denote the (one-sided) power spectral density of S,(t) as a function of encounter
frequency w,, and denote by m, the spectral moments of Sso(w,).

j S = [ Ss( weP(11)

Rice8 (see also Reference 9) showed that the number of upcrossings (or downcrossings)
per unit time of a threshold at level a is given by

1 exp ( _ (12)

27r mo 277h)o2

The quantity M, is the number of slides per unit time in the starboard direction. In
the absence of steady heel, the threshold a is at Ag. In the general case, the threshold
a is at ;4g - ,,g. The number of slides in the port direction 11p can be estimated in
a similar manner.

The onset of widespread sliding of objects on board ship is indicative of a level of
motion which makes all shipboard operations difficult, and necessitates tying down all
moveable objects. It is suggested that a minimal seakeeping criterion for almost any
operation is that the probability of sliding remain i-cceptably low.

The probability of sliding depends on the precise location 3n the ship; hence, in
specifying a sliding criterion, it is also necessary to specify a location or series of loca-
tions of interest. For a transit mission, for example, the locations of interest could be
the bridge, the engine room, etc., and the sliding criterion would have to be evaluated
simultaneously at the various locations. The incidence and severity of sliding which is
considered tolerable at each location will ultimately have to depend on the tasks be-
ing performed and the degree of degradation in task performance which sliding causes.
Normally, this degradation will result from the reduced pace of task performance, but
in some cases, e.g. aircraft sliding on deck, sliding may result in injuries to personnel
or damage to equipment.

COMPARISON OF MEASURED AND
PREDICTED SLIDING INCIDENCE

In order to validate the method presented above for predicting sliding incidence, the
results of a chair-sliding experiment conducted in 1989 on board the USCG Morganthau
were analysed. Unlike helicopter sliding, chair sliding is more likely to be a nuisance
than to result in serious degradation of operational performance; however, the chair
sliding experiment described here provides a valid check of the method, and had the
advantage of be.'ng easy to conduct without appreciable danger to the crew or equip-
ment. Moreover, the lower coefficients of friction on the inside of the ship allow this

5



type of experiment to be conducted under much less severe conditions than would be

necessary to cause an appreciable incidence of helicopter sliding events.

Basic ship data for the Morganthau are given in Table 1. In this experiment, a
,;ubject sitting in a standard government issue chair with mctal feet was located in a

compartment with a linoleum floor which had been pitted and scarred from heavy use.

The subject was facing to port and was located in front of a computer terminal. At

the onset of the chair sliding, the subject was instructed to press a function key which
time-stamped the data. A total of 25 slides were recorded during the course of the
experiment, which lasted 20 minutes. The ship was heeled to starboard by 3.3 degrees,
and as a consequence, all of the slides occurred in this direction.

Table 1. Basic Ship Data for the USCG Morganthau

Displacement 3055. tonnes

LBP 106.7 metres

Beam 12.80 metres
Draft 4.40 metres

The chair was located about 1.5 metres to port of the centreline and 2.0 metres aft
of the ship's centre of gravity. The ship motion instrumentation, which was installed for
an unrelated experiment, was located near the flight deck at a centreline position 26.9
metres aft of the CG. The flight deck lateral and vertical accelerations were corrected
to the position of the chair, by using the measured roll, pitch and yaw signals to take

into account the difference in moment arms. The longitudinal acceleration at the chair
was estimated using the recorded pitch signal and the distance of the chair from the
waterline and it was found to be negligible.

From Eqs. 7 and 9, slides should occur whenever Flo1 > - 4 F,, or FJ0 t < ;, t,.
Unfortunately, the coefficient of friction of the chair on the floor was not measured
directly during the experiment, but estimates were obtained by computing the values
of the ratio IF. oI/IFtI for the observed sliding incidents. The values obtained are shown
in Table 2.

In practice, only 17 of the 25 sliding incidents were included in Table 2, since it
appeared that the subject was slow in time-stamping the remaining slides. Motion
data was recorded at three samples per second, and so, the uncertainty in the starting
time of the slides was probably about 0.5 seconds. The values shown in Table 2 result in

a mean coefficient of friction of 0.189 with a standard deviation of 0.024. The variation

in the p, values found is consistent with the poor condition of the floor. It should

be noted that even under laboratory conditions, significant variation in coefficients of

friction are found when measurements are repeated. (See for example Reference 10.)

Figure 2 illustrates a sample plot of F 01t, 14F, and -14F, versus time. From Eqs. 7

and 9, slides should occur whenever Fl, crosses eit .cr of the other two curves. The time



Table 2. Computed Coefficients of Friction

Time of Event j4 Time of Event 1 14

34.9 .184 967.3 .191
54.6 .182 1038.9 .219
75.5 .205 1117.2 .207

302.6 .174 1125.8 .175

500.1 .174 1141.8 .176

559.7 .166 1152.5 .211
776.8 .168 1176.1 .211
803.8 .162 1186.1 .245
827.1 .161 1

stamps corresponding to the recorded slides are shown as vertical lines on the figure.

The same information can be presented in terms of the starboard sliding estimator

function, which, from Eq. 10, is given by S. = -Flot - Nf)3 . In this context, Flo0 is
simply minus the lateral acceleration at the chair since the acceleration was measured
in the ship reference system and therefore already includes the component of gravity

parallel to the deck due to the roll angle. The mean offset in Flt due to the nonzero heel
angle should be removed, so that the upcrossings of S, can be estimated using Eq. 12,
which is only applicable to zero-mean processes. Slides are predicted to occur whenever

S, exceeds the threshold 14g - gO,,. Figure 3 shows a plot of the starboard sliding

estimator function for th! same time interval as shown in Fig. 2. The threshold 14g-g40
is also shown in the figure. Although Figs. 2 and 3 contain the same information, the
presentation of Fig. 3 results in a constant threshold, and allows the sliding incidence

to be estimated in the frequency domain.

Figures 4 and 5 show plots of the sliding estimator function for two other time

slices. Good correspondence between observed sliding incidents and threshold crossings
is obtained in Fig. 4, except for the fifth slide, which appears to have been noted
late, and the eighth slide, which seems to occur at an anomalously low S. value. The

experimenter noted that the slides at the end of this time slice were rather large. This

is in qualitative agreement with the large threshold exceedances which occured during
the sixth and seventh slides.

On the other hand, the correspondence between threshold crossings and observed

slides shown in Fig. 5 is poor. In this case, the two events shown do not correspond

to threshold crossings, while a subsequent crossing did not result in an event. Figure

6 presents the same time slice, with the addition of the starboard sliding estimator

functions and thresholds corresponding to coefficients of friction of plus or minus one

standard deviation about the mean. The effect of the change in coefficient of friction

on the sliding estimators is small; however, the effect on the threshold is significant.
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The two events shown now correspond to crossings of the lower threshold. while the
'non-event' at 882 seconds did not exceed the upper threshold. Effectively, the variation

in the coefficient oi" friction results in uncertainty as to whether a particular crossing
will result in an event. For the purposes of validating the method presented herein, it

is most important that the average number of events be predicted correctly.
Overall, the correspondence between threshold crossings and observed sliding events

was as follows. Sixteen of the observed slides corresponded to threshold crossings,
whereas nine events did not. On the other hand, there were seven upcrossings which

did not result in events for a total of twenty-three upcrossings. This corresponds well
with the observed number of twenty-five slides. The number of upcrossings was also
estimated using Eq. 12 and the computed standard deviations of the sliding estimator
function and its time derivative. This resulted in an estimate of 24.5 upcrossings for the
twenty minute period which is also in close correspondence with the observed number

of slides.
It should be noted that real data may show significant variability in the number

of upcrossings in adjacent time slices. It must be emphasized that the method pre-
sented here is statistical, and only determines the average number of upcrossings over
a sufficiently long period.

PREDICTION OF SLIDING SEVERITY WITH
ZERO LONGITUDINAL ACCELERATION

For some applications, notably fixed-wing operations on aircraft carriers, operators
routinely tolerate numerous small sliding incidents, and only curtail operations when
severe slides start to occur. This suggests that it may be of interest to predict not
only the onset of sliding, but also to predict the severity of sliding, as measured by the
distance that the object slides before coming to rest. The purpose of this section is
to present an approximate frequency-domain method for estimating the probability of
occurence of sliding incidents of arbitrary severity. The method only applies to the case
in which the longitudinal acceleration can be neglected.

REGULAR WAVE CASE

In this section, we treat the special case in which the starboard (or port) sliding
estimator function is sinusoidal, and we first assume that the dynamic coefficient of

friction, lid, and the static coefficient of friction, 4,. are equal. In this case

S,(t) = S.o sinWt (13)

and the situation is as illustrated in Fig. 7. We denote by t' the time at which

S.o sinwt' = a (14)

where a =ig - og. Choosing t = t' as the new time origin, the mass experiences a

force given by
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m(S.o sin w(t + t*) - ag) for t > t' (15)

Denoting the distance in the starboard direction by z,, we have

,ni.(t) = m(S, sin w(t + t") - ag) (16)

The velocity at time t is given by

(I(t) - (1- cos wt) + -sin wt - at (17)

for times t > t° such that i,(t) is greater than zero. Once the mass comes to rest,
the frictional force keeps it at rest until the next threshold exceedance. Eq. 1.7 can be

solved iteratively to determine the time t, at which the mass stops. Choosing our origin
at the initial rest position of the object, the distance at time t is given by

z.(t t [ a ((I - coswi) - Iat' (18)

The distance travelled can now be determined by substituting t = t. in the previous
equation.

In the case/I :0 1, the force per unit mass on the object after the onset of sliding

in the starboard direction becomes

-F - pQD 3 - k9 + Og (19)

when the sliding estimator function exceeds the threshold (p4 - ,). Equation 19 will

be approximated by

-F1.1 - 14D 3 - (/Q - 0,)9 = S.(t) - (N - 0',)g (20)

This approximation is required because of the method used to estimate the amplitude
of the sliding estimator functions in the frequency domain which will be discussed in

the next section. It can be expected to be good whenever the vertical acceleration is
small compared to g, or when ;4 - N is small.

With the approximation of Eq 20, and a sinusoidal sliding estimator function, the
velocity and distance travelled in the starboard direction become

(t) = M (I - cos wt) + -sinwt t- (A- n..,)gt (21)

[t(• [(S20- a2 ( sin wt) a 1 1
(t4 a- + -j Cos wt) -(M-ng J (22)
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While the incidence of sliding depends only on pt, the sliding distance depends
mainly on pd which determines the magnitude of the frictional force once motion has
started. As an example, for an angular frequency of 0.628 (corresponding to a ten-
second period for the sliding estimator function), an amplitude of 0.5 g's, and zero heel
angle, Eq. 22 predicts a sliding distance of 0.57 metres for p4 = 0.45 = p., but a sliding
distance of 4.36 metres for p. = 0.45 and N = 0.35. Another consequence of Eq. 22 is
that if there is a large difference between j4 and p., there are no insignificant slides: all
slides are serious ones.

IRREGULAR WAVE CASE

A time history of the starboard sliding estimator function derived from the chair
sliding experiment is shown in Fig. 8. We will assume that in the vicinity of a threshold
exceedance the sliding estimator function can be adequately approximaed by a sine
wave. It remains to develop frequency-domain methods for estimating toe amplitude
and angular frequency of typical threshold exceedances.

We will make use of a high-threshold approximation for the duration of exceedance
probability density function due to Rice". In Appendix A, the applicability of this
approximation to the wave elevation process is investigated, and is shown to give good
results for thresholds greater than or equal to one standard deviation. This condition
is not unduly restrictive for present purposes, since if the standard deviation of the
sliding estimator function is greater than or equal to the sliding threshold, it is clear
that severe sliding is so common that operations would be impossible.

As before, we assume that the sliding estimator function S,(t) is a zero-mean, Gaus-
sian, stochastic process (not necessarily narrow-banded), and suppose that the threshold
level is at a. We define the nondimensional threshold by r = a/a,, where a', =_= V is
the standard deviation of S,(t).

We will denote by r the duration of a given threshold exceedance, and the dura-
tion probabilitN density by p,(r). From Eq. 61 of Appendix A, we have the following
approximation for the duration probability density p,(r)

p,(r) k 2k-]2rexp [r) J 2_ (23)

where 0(r) is defined in Eq. 56.
With the sine wave approximation, the duration of exceedance of a threshold can

be used to determine the amplitude of the sliding estimator function, provided that the
angular frequency is known. We assume that the angular frequency can be adequately
approximated by the frequency w2 corresponding to the zero-crossing perio T-2 , as
illustrated in Fig. S. The accuracy of this assumption will be bricfly discussed below.
We have

T, =-- (2.1)
m 02
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For a sinusoidal exceedance of the threshold a of duration r with frequency -2. the
amplitude So0 is given by

S -o = a ý2(1 -cosw 2r) (25)sin w2r (5

As before, the threshold for the starboard sliding estimator function is given by N - ,9.
Putting these results together, we have the following numerical procedure for esti-

mating the probability of occurence of slides of distance greater than an arbitrary length
1. We determine the amplitude of the sliding estimator function S" which results in
a slide of distance I by solving Eq. 22 iteratively. The duration rt resulting in this
amplitude is obtained by solving Eq. 25

1 a
r =-arccos2 -) 1 (26)

W2 S1

The fraction of threshold crossings that result in slides vf listance greater than I is
given by

( 7rM N"' '
]p.(r)dr = exp WT[(2 (. 2  (27)

The number of slides per second of distance greater than I is obtained by multiplying
Eq. 27 by Mo, which is given in Eq. 12.

As an example of an application of the method, we will revisit the chair-sliding
experiment considered above and compute the expected number of slides of distance
greater than 1.8 metres (6 feet) in a twenty minute period. No estimates of the dynamic
coefficient of friction were available, but for the purposes of the exercise, ;Q was assumed
to be 0.15. As before, the sliding threshold was at 14g - O,,g = 0.131g. For this
experiment, w 2 = 0.679, and it was found that a sliding estimator amplitude of 0.149 g's
resulted in a sliding distance of 1.8 metres. The corresponding duration of exceedance
from Eq. 26 was 1.47 seconds. From Eq. 27, the fraction of slides of distance greater
than 1.8 metres was found to be 0.54, so that the expected number of slides of distance
greater than 1.8 metres in a twenty minute period was 24.5 x 0.54 = 13.2.

In order to get some idea of the accuracy of using the zero-crossing frequency W2 in
determining th,- amplitudes corresponding to a threshold exceedance of given duration,
the threshold c) ossings of the chair sliding experiment were analyzed. For each crossing,
the duration and amplitu( ? of the sliding estimator function were measured, and the
corresponding frequency w2 was determined from Eq. 26. The resulting estimates of
w, had a mean value of 0.61 and a standard deviation of 0.12. This compares with an
w2 value of 0.6;;; computed from Eq. 24. This suggests that Eq. 25 may be sufficiently
accurate for priLctical purposes, but further investigation is required.
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PREDICTION OF SLIDING INCIDENCE WITH
NONZERO LONGITUDINAL ACCELERATION

In this section, we present a frequency-domain method for predicting the incidence
of sliding in the presence of combined vertical, lateral, and longitudinal acceleration.
\Ve first present an accurate method which is restricted to longitudinal accelerations
that are small compared with the lateral acceleration, which is the case of most interest
on monohull vessels. We then present an approximate method for dealing with the case
of comparable longitudinal and lateral accelerations.

We first consider the case of zero heel angle. A slide will occur in some direction
whenever

VFIo + Fl., >( + b 3 ) (28)

or

VF, og + F,,, - j.D 3 > pAg (29)

Under the assumption that Fi,0 •9 and Fl., are jointly Gaussian, it can be shown
that VF 1

2o-9 + F2- follows the Rayleigh distribution. Unfortunately, the distribution

of Fo1' q + Flo1 - pD 3 is the convolution of a Rayleigh distribution with a Gaussian
distribution, and is not tractable. It is therefore necessary to develop approximate
solutions.

We first consider the case in which the longitudinal acceleration is small compared
with the lateral acceleration. Suppose that at a given instant in time the resultant force
parallel to the deck (the vector sum of F1.c and Fio,,) is in the direction 6 shown in
Fig. 9. The resultant force will result in a slide in this direction provided that

F10,,, cos b + Fio, sin 6- p/D 3 > 4g9 (30)

Under the assumption that Fio,,,, is small (but not necessarily negligible) compared with
Fl,,, most of the sliding incidents will take place within some range about 6 = 900 and
6 = 2700, and slides near 6 = 00 and 6 = 180' will be very unlikely.

We will estimate the number of slides to port by determining .the incidence of up-
crossings of pg by the resultant of Flo,,, and Sp -- F,,t - ;,D 3 for which 6 is in
the neighbourhood of 900. The resultant of F10,,, and Sp is in the direction 6'
arctan(Fj.t - ID3)/Fjo,,.) and has magnitude

Flo,,, cos V + Fi,1 sin b= - pD 3 sin V (31)

whereas the direction of the resultant force parallel to the deck is given by 6 M
arctan(F1 o,/F,,,,) and the condition for sliding in the direction 6 is given by Eq. 30.
WVe will approximate 6 by 6, and approximate the sliding con-lition by
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Fiong cos P + F,., sin ?' - pAD3 sin ?" > /4g (32)

A preliminary assessment of the accuracy of this approximation was made by examining
recorded acceleration time histories from the T-AGOS monohull. Equations 30 and
32 were both evaluated in the time domain, and the resulting predictions of the total
number of sliding incidents were compared. From these results, it appears that Equation
32 provides a good approximation to Equation 30 provided that the RIMS longitudinal
acceleration is less than about half of the RMS lateral acceleration.

As an aside, we note that the method presented here for small longitudinal accelera-
tion would apply for arbitrary longitudinal acceleration if the vertical acceleration were
zero. For monohulls, it is difficult to conceive of a situation in which this combination
would occur.

We assume that F1ong and S,, are jointly Gaussian with zero means, standard de-
viations 61ony and cp, respectively, and correlation coefficient c = E{FlogSp}/a7ong67p,
where E{Fo,.lSp) denotes the expected value of F1o,SSp. Under these assumptions
their joint probability density, f(Ft°,o, S) is given by

F2

f(Flon9 , 5,) = ____--_ _ L'.F ________ ,J (33)

Although Flo07 and Sp are not independent, we can apply a coordinate rotation e to
obtain independant random variables

(z) ( Flo,,csie+ SpsinE ) (34)

provided that e is given by

tan 2e = 2c'al°"ga (35)

We will estimate the number of slides near 6 = 900 as the number of upcrossings of

the threshold pAg by the resultant of z and w in the half plane u, > 0. Slide5 for which
6 is not in the neighbourhood of 900 will be rare unless co,,, is a significant fraction of
Ag, and in this case a, will be sufficiently large to cause wide-spread sliding anyway.

As shown in Fig. 10, the number of slides that occur at a distance z = z0 from
the w axis can be estimated as the sum of the number of u, up-crossings of the level

(•g)2 - 40 which occur in the small interval dz3 about zo plus the number of z up-

crossings of the level z0 which occur in the small interval dw0 about V(g)2 - 4o0. An
estimate of the total number of slides to port, A!,, is obtained by integrating over
z0. Denoting the ith spectral moments of z and W by rnm, and rn,,, respectively, and
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making use of the independence of these two random variables, we obtain

f4'w I 2 ,_7 4LZ ~2
AM = V - - e • +- dzo + (36)

2rmo,,V7 M0

2i r 0 2  2pg) 2
_ ,9 M 2  L_ , 1 +r'( zzo

- e __
0V r 2, - (rno,/

where

b=()2  ( ,, 2,) (37)

and 'erf' denotes the error function, which is defined in Eq. 58 of Appendix A. The

integral over y in Eq. 36 appears to be improper; however, making the substitution
12 "- 1 -y 2 we obtain

jo e~br2  yd f0 e-b('-It)dz (38)

In general, this last integral can be evaluated numerically; however, in the case that b is
large, most of the contribution to the integral over ,t, in Eq. 36 will come from the points
near the origin. In this case, the integral can be estimated by expanding 1/VT":W
about y 0. We obtain

The spectral moments of z and w can be expressed in terms of the moments A.nd

cross-spectral moments of Fi0o,9 and S,,. Let (F1o.,,0/C0) and (St,o/fro) denote the (.o',r-
plex) transfer functions of 3 a and St, respectively, and S m(w) denote the wave sustu -i

trum as a function of encounter frequency w•,

Z'- -) 1) 2weoti

rno,2 = f •oF9 , cose.+ sine) F7 9 ,0 cose+~2sn)S(ede(0

e~~-o s- b y2(dy -b~dx ) (38)

where the bars indicate complex conjugates. We have

lr o.e, os •f + 2conriut on.tsine cos+ o'; sin q (41)

=a the eorgn Inthis case, oa sin e cos e e+ siy 2  e

Making use of Eq. 35, we obtiin

14



i 0 .: C(along + 9 - a) = - nog) 2 + (2ctaongap)- (42)

Similarly,

12 2 ) (3)

The second moments can be determined in an analogous fashion. If we denote by I the
integral

2: -Ftong,O Sp,O~ F10119,0 O(e ~(4

we obtain

( 21 9+ (i 2 ,p - "n,o,,,)(O" - along).= 2+2 1/(o -zo.,)2 + (2c,,,o1+o,) 2  (45)

Ic Clongap
ý(,. - ao.2 )2 + (2c•,o.n 9 ,, )2

and

1 (r 2 .p - 2, lon)(o 2 - a•2
m2, -(rn 2 ,1011, + m 2 .P) + - LO P 01 (46)2 2~,V/(a'2 - ,12 + 2c 0 1 o) 2

+ Ic a to,,9IPa2/o. -O•)2 + (2c,,,0.,,),

The incidence of sliding in the starboard direction can be determined in a similar
fashion. In the presence of a mean heel angle 0, the threshold Ag should be replaced
by j4 + 0,,g and ;4 - ,Og, for port and starboard sliding, respectively.

To gain some insight into the increased sliding incidence which resuits from the
presence of nonzero longitudinal acceleration, we will compare the port sliding incidence
predicted from Eq. 36 with the sliding incidence from Eq. 12 for a numerical example.
We assume along = a1/3 and arp/3 0.5N, g, c = 0.5, and 0, = 0. For simplicity, we
take

(1/27r)vm 2 •,, /mo, 1, = (1/27r)v/rn 2 ,,mo,, = (l1/27r)m 2.,/mo., (47)

For this example, we find that the presence of longitudinal acceleration increases the
sliding incidence by about 14%.

For longitudinal acceleration larger than about half the lateral acceleration, it is no
longer reasonable to assume that all of the slides will occur near the port and starboard
directions. An estimate of the number of sliding incidents in the case of comparable
lateral and longitudinal accelerations can be obtained as follows. The coefficient of
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friction j4 is the same at all angles of azimuth: hence. a polar plot p, as a function of
6 forms a circle. We will (somewhat crudely) approximate this circle by a square of
equal area, as shown in Fig. 11. The coefficient of friction now becomes a function of
6. Suppose that at a given instant, the resultant force parallel to the deck is in the
direction 6 as shown in Fig. 12. The condition for sliding in the direction 6 which was
given in Eq. 30 now becomes

F,,,, 9 cos 6 + Ft, sin 6 - P.(6) 3 > /(6)9 (4 ,)

Note however, that in order for a slide to occur in some direction 6 in the quad.rant
within 450 of the longitudinal direction, it is necessary and sufficient that

Flog - 14(0)b 3 > A (0)9 (49)

To see this, we note that Eq. 48 is equivalent to

Fg + F1?.t - p(6)D3 > (6 )9 (50)

Multiplying this result by cos 6 = Fio,,g/lý7,,, +. F9o, we obtain

F -" p-(6)cos 6b 3 > N (6) cos 69 (51)

which is equivalent to Equation 49.
If we define the forward sliding estimator function as

S1 = Yo.9 - 4(00)3  (52)

then the forward slides can be estimated by counting the upcrossings of S1 of the
threshold j 5(0)g. Similarly, we define the aft sliding estimator function via

S. = -Flo., - M(0)D 3  (53)

The total number of slides can be approximated by summing the upcrossings of the
sliding estimator functions in the four primary directions. For the equal area square
approximation to the circle, we have j4(0) = pjV//2 = 0.886k4.

The reader is cautioned that in the case of small longitudinal acceleration, this
approximation results in an overestimate of the number of slides. For the example con-
sidered above in which o, = ap/3 and ap/3 = 0.5/4g, the number of sliding incidents
predicted to occur to port with the reduced threshold 0.886/4 is 54% larger than the
sliding incidence with the original threshold. The more careful analysis presented above
showed that the presence of longitudinal acceleration produced an increase of on!y 14%.
The estimates obtained with the square approximation should improve in the case of
comparable longitudinal and lateral accelerations.
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CONCLUDING REMARKS

A frequency-domain method of predicting the incidence of personnel or equipment
sliding has been presented. The method includes the (linearized) forces due to roll,
pitch, longitudinal, lateral and vertical accelerations, and also the effects of non-zero
mean heel. Two different solutions were developed according to the relative size of the
longitudinal acceleration. The method developed for small longitudinal acceleration is
accurate, while the method developed for comparable longitudinal and lateral accelera-
tions is more approximate, but should still produce estimates of sufficient accuracy for
practical purposes. The predictions of the method were compared with the results of a
chair-sliding experiment conducted at sea, and good correspondence was obtained.

A simple approximation for the duration of threshold exceedance probability density
was described, and used to develop a method for predicting the incidence of slides
greater than a certain severity. The method applies for arbitrary lateral and vertical
acceleration, but only to the case in which the longitudinal acceleration is negligible.
An example of the application of the method was presented.

It has been proposed that in future, seakeeping criteria should be presented in terms
of the tolerable incidence of degrading events such as helicopter sliding. Criteria in this
form are simple and are equally applicable to all vessel types.
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APPENDIX A
A SIMPLE APPROXIMATION FOR THE DURATION

OF THRESHOLD EXCEEDANCE PROBABILITY DENSITY

by
Ross Graham and John F. Dalzell

INTRODUCTION

In seakeeping research, there are frequent occasions when the number of up-crossings
of a threshold by a zero-mean, Gaussian stochastic process i:ust be determined. Stan-
dard examples include estimating the probability of keel emerg,'nce and the probability
of deck wetness. The solution to this problem is well-known, and was first developed
by Rice" (see also Price and Bishop").

For certain applications, information on the duration of time that the process spends
above the threshold is also required. Complete information on the duration statistics
would be provided by the duration of exceedance probability density, but unfortunately,
this density can only be estimated numerically, and the available approximations are
both difficult to implement, and suffer from serious problems.

The first of the available approximations originates with the theory of Rice", as
refined by Kuznetsov, Stratanovich and Tikhonov 2'1 3 . (The theory and approximations
are also partially described by Price and Bishop'.) The "exact" theory deals with the
conditional probability density for the duration of exceedance of an arbitrary threshold,
with no pre-conditions about the nature of the process or the statistical independence
of the times of threshold crossings. The conditioning of the density is upon the value
of the threshold, with a duration event defined as the time interval between successive
up- and down-crossings of the threshold. This "exact" theory takes the form of an
infinite functional series which was impossible to evaluate in the 1960's-and probably
still is. Hence, practical use has involved approximations and assumptions of one sort
or another.

The boldest simplifying assumption is that all the times of threshold crossings are
statistically independent. With this assumption, the durations become a Poisson pro-
cess, a model whic, appears relevant for very high thresholds, and which has been noted
in the seakeeping literature14.

The usual approach for arbitrary thresholds is due to Rice" and Tikhonov13, and will
be called "Approximation 1" herein. This approximation involves taking only the first
term of the infinite series of the exact theory as an approximation for arbitrary threshold
levels but "small" durations. Unfortunately, this approach yields a result which is not
exactly that desired. In effect, the approximate density involves the probabilities that,
given a threshold up-crossing at some time, to, there is a down-crossing threshold in the
neighborhnod of a later time t. regardless of what happened between time to and to + t.
As a result, Approximation I appears to yield good approximations to the true density
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for short durations, but does not integrate to unity, and in fact the integral may not
even be finite.

An essentiadly more modern treatment of the problem is due to Rainal's and Mi-
maki 6 '"7 . In these works, the estimation of the conditional density was formulated
in a different way, and by making the assumption that a given individual interval
between thres'iold crossings is statistically independent of nearly all the possible sums
of preceding i:itervals, the problem was reduced to the solution of a Volterra integral
equation involving the numerical results from Approximation 1. described above. On
the whole, Approximation 2, though more computer intensive, yields more satisfying
results than Approximation 1. However, the approximation has disquieting faults of its
own-principAlly that the computed density may become negative for large durations.

Thus, both of the available approximations for arbitrary threshold levels are useless
when momenti of the density are required. The purpose of this appendix is to examine a
high-threshold approximation which was developed in Reference 11, but which appears
to have gone unnoticed. The approximation, which is described in the next section, has
a simple analytic form and satisfies the basic requirements of a probability density. The
question of hoN high the threshold must be before a good approximation is obtained is
investigated ir a later section using the results of a time domain simulation of a typical
long-crested wave system.

APPROXIM ATION FOR THE DURATION OF THRESHOLD
EXCEEDArNCE PROBABILITY DENSITY

Let Sa(t) be a zero-mean, Gaussian, stochastic process (not necessarily narrow-
banded,. In the main text, Sa(t) is assumed to be the starboard sliding estimator
function, but is an arbitrary function in this appendix. Let a, denote the standard
deviation of S0(t), and suppose that the threshold level is at a. We define the nondi-
mensional threi;hold by r = a/la.

We will den.te by r the duration of a given threshold exceedance, and the duration
probability den:sity by pa(r). Rice" demonstrates that for high thresholds, p°(r) tends
towards the Rayleigh probability density. i.e.

p,(r) -4 Are-'X2/2 (54)

Rice (see also Vanmarcke's) shows that the average duration f of a threshold exceedance
is given by

0(r) (55)

where M, is given in Eq. 12, and

1 t• --'"
2(r) "edx (56)
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Equation 55 is not restricted to high threshhold levels. The function 6(r) is related to

the er,.or function erf(y) via

I(r)-- -[ erf ( (57)

where

erf (y) 2 A •e- dx (58)

For the Rayleigh probability density, we have

= j r Ae-, 2/2dr = (59)

so that

7r T rM. (60)2 f 2 210(rffi

This results in the following approximation"1 for p.(r)

7r2[•(r) x 4M[r( r )]M r 2 (61)

for high enough thresholds.

TIME DOMAIN SIMULATION

In order to get some feeling for how high a threshold must be in order to obtain
reasonable results with the Rayleigh approximation of Eq. 61, a typical long-crested
wave system was modeled as a zero-mean Gaussian process, simulated in the time
domain, and the resulting "data" used to derive some duration statistics for comparison
with the approximation.

Though the results were later nondimensionalized, the variance spectrum of the
long-crested wave system was chosen to be of the Bretschneider type with modal pe-
riod, T, of 9 seconds and significant height of 4 units. The mechanics of the time
domain simulation involved the "fast convolution' method in which: pseudo-random
bandlimited white noise is Fast Fourier transformed; the resulting transform is mod-
ified by a nonrealizable frequency domain filter corresponding to the desired variance
spectrum; and an inverse Fast Fourier Transform then in turn yields the simulated
process.

The time series simulations of realizations of the selected wave spectrum were gener-
ated in "handy-sized" realizations of 8K point time series, at delta-time of 0.1 seconds.
Thirty independent realizations of the process were simulated by entering the computer
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noise generator at widely separated points in its sequence. Considering all of the sam-
pies, the simulation was equivalent to a 6.7 hour observation of the wave process defined
by the 9 second modal period spectrum.

A threshold crossing analysis was performed on the simulated data for six nondi-
mensional thresholds corresponding to r = 0, 0.5, 1.0, 1.5, 2.0 and 2.5. The mean time
interval between threshold crossings was first computed, and found to agree well with
the corresponding theoretical estimates (1/1A,), Eq. 12. The computed time differences
between each up- and down-crossing were combined into an ordered sample for further
analysis, and each duration, r, was nondimensionalized by the wave modal period, T,.

For purposes of comparisons with theory, an estimate of the mean probability density
over some small interval of duration was required. A uniform nondimensional duration
class interval, A{r/T,,.}, was first assumed and the number of simulated exceedance
durations falling into each was tallied. The resulting tallies were divided by tile total
number of exceedance durations in the sample to form an estimate of the probability,
[p.(,r/T,,) A{r/Tm}], and then this result was divided by AZ{r/Tm} to form an estimate
of the mean probability density over the interval. For graphical purposes these estimates
were associated with the mid-point of the nondimensional class interval.

RESULTS AND DISCUSSION

The results from the simulation are compared with Eq. 61 in Figs. 13 through 18 in
terms of the nondimensional duration time T/T,. Computations of duration densities
according to Approximations 1 and 2 as described in the introduction are shown for
comparison.

As expected, the comparison is poor for a 0 threshold (Fig. 13), and at most fair for
r = 0.5 (Fig. 14), but the results are surprisingly good for the higher threshold levels.
The comparison shown in Fig. 15 for r = 1.0 is already quite acceptable, and Figs. 16,
17 and 18 show that good agreement is obtained d'. higher thresholds.

A closer examination of Figs. 13 to 18 reveals that the average duration f of a
threshold exceedance is slightly underestimated in all cases. In theory, Eq. 55 should
hold exactly for all threshold levels. The discrepancy appears to arise from differences
.n the theoretical estimate of m2 in Eq. 12, and the value of m2 realised in the simu-
lated time history. The theoretical estimate was obtained by direct integration of the
analytical expression for the Bretschneider spectrum, and is slightly higher than the m2
value for the simulation. This discussion serves to higillight that accurate estimates of
the threshold exceedance probability density depend strongly on accurate estimates of
in 2 .

It is concluded that, at least for the sample wave elevation process considered here,
Eq. 61 provides a reasonable engineering approximation to the threshold exceedance
duration probability density function for nondimensional thresholds greater than or
equal to one.

!t should be noted that the wave elevation process is narc,w-banded. The applica-
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bility of the Rayleigh approximation for the exceedance duration probability density of
wide-band processes requires further investigation.

CONCLUDING REMARKS

A simple approximation due to Rice" for the duration of threshold exceedance prob-
ability density at high threshold levels was presented, and its applicability to the wave
elevation process was investigated, by comparison with the results of a time-domain
simulation. Unlike other more complicated approximations in use, this approximation
has a simple analytic form, namely, the Rayleigh probability density.

It was found that the simple approximation compared well with the time-domain
simulation results for nondimensional thresholds greater than or equal to one.
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Fig. 13. Comparison of Simulated Threshold Exceedance Probability

Density Function with Approximations 1 and 2 and the Rayleigh
Approximation for a Nondirnensional Threshold r = 0.0
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Fig. 14. Comparison of Simulated Threshold Exceedance Probability
Density Function with Approximations 1 and 2 and the Rayleigh
Approximation for a Nondimensional Threshold r = 0.5
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Fig. 15. Comparison of Simulated Threshold Exceedance Probability

Density Function with Approximations 1 and 2 and the Rayleigh
Approximation for a Nondimensional Threshold ' = 1.0
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Fig. 16. Comparison of Simulated Threshold Exceedance Probability
Density Function with Approximations 1 and 2 and the Rayleigh
Approximation for a Nondimensional Threshold r = 1.5
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Fig. 17. Comparison of Simulated Threshold Exceedance Probability
Density Function with Approximations 1 and 2 and the Rayleigh
Approximation for a Nondimensional Threshold r = 2.0
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Fig. 18. Comparison of Simulated Threshold Exceedance Probability
Density Function with Approximations 1 and 2 and the Rayleigh

Approximation for a Nondimensional Threshold r = 2.5
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