
AD-A243 028

2. NOR TiI fE T LI/S
(LA BOR-ATORiY FOR INTEGRATED SYSTEMS)

* ~'en-iann al I clnicalReport No. 1
Dept . of C 'iputer Scienice and Engineering

.1) veSjtv of WashingtonI

DTIC Novemiber S, 1991S ELECTE LIS TR. #91-31-01

HimcJoring IVerim1(: - Iv I1. I m N' NC: ::Iv8 9

Prnci pal 1,, yv: itors: (?anoaorricI lo

I.: %v-ecc Snyder

ocuri hsbn proved

urPublic 1011Oase and sole; its
ditributon is Unlimited.

rlie views an(l conclusions contaiiied :ii this (loculnnt, are those
of the authors and should uiot be hl 'rproteI as representing t~

official policies, Qither expressedl Or inijed. Of tile Defenlse
Advanced Research Projects Agevicy oi- the U.S. Gover i yel.t.

91-16737
- ~~ ~ ~ ~ ~ ~ ~ I - 1\\'\IU\\l1~W\l i i 90 A A

OCCUnITY CLASSIFICATION OF TWIS PAGE (*%on Date Enlered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETIJ G FORM

REPORT NUMBER 2. GOVT ACCESSION NO. t RECIPIENT'S CATALOG NUMBER
TR #91-31-01

4. TITLE (md SubElle) S. TYPE OF REPORT & PERIOD COVERED

Semi-Annual Technical Report #1 Technical

I. PERFORMING OR. REPORT NUMIER

?. AUTHOR(*) I. CONTRACT OR GRANT NUMUER(a)

Gaetano Borriello
Carl Ebeling N00014-91-J-4041
Larry Snyder

S* PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECIT. TASK

Northwest Laboratory for Integrated Systems AREA & WORK UNIT NUMBERS,

University of Washington
Dept. of Comp. Science, FR-35 Seattle, WA 98191

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA-ISTO November 8, 1991

1400 Wilson Boulevard I. NUMBER OF PAGES

Arlin~ton. VA 22209 40
14. MONITORING AGENCY NAME 4 AOORESS(It different from CondroIlnd OffIce) 1I. SECURITY CLASS. (of ghle rpefl)

Office of Naval Research - ONR
Information Systems Program - Code 1513: CAF
800 North Quincy Street IS. OECLASSIFCATION/OOWNGRAOING

Arlington, VA 22217 SCHEDULE
I6. DISTRIBUTION STATEMENT (of thia Report)

Distribution of this report is unlimited.

17. DISTRIBUTION STATEMENT (0 the obeIact entered In Stock 20, It dIfferent from Repo#)

IS. SUPPLEMENTARY NOTES

I. KEY WORDS e(Continu en reverse olde If nec. ry md identify by block number)

Retiming, Field Programmable Gate Arrays, Subgraph Ismorphism, Timing
Verification, High-Level Synthesis, Routing Networks, VLSI Testing

20. ABSTRACT (Contlme an reverse ald If necese.ry mid Identfy by block number)

DOO 1473 aDITION Of I NOV *S IS OSSOLETE
S/N 0102-LF-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (Wim Oefs Roel)

Northwest Laboratory for Integrated Systems
Department of Computer Science and Engineering

University of Washington

Semiannual Technical Report No. I

Accesion For

November 8, 1991 NTIS CRAMI
DTIC; TAB Ul

LIS TR #91-31 -01 j:,stiticatiorl

By......---

TCDist. ib,:tioi, I
Avalability -,cdes

Avaii i:icl IOf
Reporting Period: July 1. 1991 -November 8. 1991 Dist SpecialI

Principal Investigators: Gaetano Borriello
Carl EbelingA-
Larry Snyder

Sponsored by: Defense Advanced Research Projects Agency - ISTO
Issued by Office of Naval Research
Under Contract #NO0()14-91 -J-4041

Technical Contact: Gaetano Borriello. 206/685-9432. fax: 206/541-2969
I gaetano@cs.washinigton.edu I

Administrative Contact: Kay Beck. 206/685-3796, fax: 206/543-2969
tkbeck@cs.washington.edu I

The views and conclusions Contained in this document are those of' the authors
and should nrot he interpreted as representing the official policies, either
expressed or imnplied. of' thze Defense Advanced Research Projects AgencY or
the U.S. Government.

Table of Contents

1 Retiming of Level-Clocked Circuits

2 Triptych: A New Field-Programmable
Gate Array Architecture 2

3 Subgraph Ismorphism 4

4 Symbolic Timing Verification and High-Level 5
Synthesis

5 Synthesis of Microcontroller-Based Embedded 7
Systems

6 Chaos Router 9

7 The MacTester 11

Appendices:

TRIPTYCH: A New FPGA Architecture
(Department of Computer Science and Engineering, University of Washington,
TR #91-09-05)

OEsim: A Simulator for Timing Behavior
(Proceedings of the 28th ACM/IEEE Design Automation Conference

Sizing Synchronization Queues: A Case Study in Higher Level Synthesis
(Proceedings of the 28th ACM/IEEE Design Automation Conference)

OPERATION/EVENT GRAPHS: A Design Representation for Timing Behavior
(Proceedings of the IFIP WG10.2 Tenth International Symposium)

1 Retiming of Level-Clocked Circuits

Carl Ebeling, Brian Lockyear

Using level-sensitive latches instead of edge-triggered registers for storage
elements in a synchronous system can lead to faster and less expensive circuit
implementations. This advantage derives from an increased flexibility in
scheduling the computations performed by the circuit. In level-clocked
circuits, a value may arrive early and flow through a latch, giving the
following computation more time.

Taking full performance advantage of latches requires placing them in the
circuit to achieve the best use of the clock cycle. This process of rearranging
the storage elements in a circuit is called retiming and can be used to reduce
the cycle time or the number of storage elements without changing the
interface behavior of the circuit as viewed by an outside host. Retimingz in
effect reschedules the circuit computations in time based on the lcngth of
those computations. An efficient method for retiming circuits that usc edge-
triggered registers has been described by Leiserson. Rose and Saxe jLR83.
LS91]. In essence. this method uses the clock period as the bound on the delay
that can occur on a path in the circuit with no registers.

We have extended these retiming techniques to level-clocked circuits by first
restricting the circuit domain to "well-formed" level-clocked circuits. In
well-formed circuits, latches occur in order along any path through the
circuit. This is the usual style of multi-phase circuit design and provides
retiming with maximum flexibility for placing latches. We then define
correctness of level-clocked circuits based on the proper flow of signals
through the circuit. That is, we require signals departing one latch to arrive
at the following latch during the next clock phase for that latch.

This definition of correctness leads to a set of simple path delay constraints
and cycle delay constraints. The definition of a critical path between any two
vertices is extended using these constraints. leading to constraints on the
minimum number of latches on each critical path or cycle. These constraints
can then be solved for any given clock period to find a valid retiming, if any.
The usual search for the optimal clock period can then be performed. This
technique is valid for clocks with any number of phases with no constraints
on phase lengths or overlap other than the valid clock schedule c:onstraints.

We are now working to relax some of the restrictions we have imposed.
primarily the zero minimum delay constraint and the well-formed circuit
constraint.

References:

[LR831 C. Leiserson and F. Rose and J. Saxe, "Optimizing Synchronous Circuitry
by Retiming," in Proceedings of the 3rd Caltech Conference on VLSI. March.
1983.

[LS91] C. Leiserson and J. Saxe. "Retiming Synchronous Circuitry."
Algorithmica. Vol. 6. No. 1. pp. 5-35, 1991.

1

2 Triptych: A New Field-Programmable Gate Array

Architecture

Carl Ebeling, Gaetano Borriello, Scott Hauck. David Song, Elizabeth Walkup

Current general-purpose FPGAs use a combination of programmable logic
blocks and programmable inLerconnect to provide a genc: al circuit
implementation structure. This clear separation between logic and
interconnection resources is attractive because the mapping, placement and
routing decisions are decoupled. The price for this separation is the large area
and delay costs incurred for the flexible interconnection needect to support
arbitrary routing requirements. This leads to architectures like Xiiinx. where
the routing resources consume more than 90% of the chip area.

Domain-specific FPGAs like the Algotronix CAL1024 and Concurrent Logic
CFA6000 increase the chip area devoted to logic by providing a less general.
nearest neighbor, routing structure appropriate for structured applications
such as DSP and systolic algorithms. These FPGA architectures, however, are
not suitable for general applications, particularly state machines and
controllers.

We have designed a new FPGA architecture called Triptych which can
efficiently implement both structured circuits like data paths and more
general circuits like state machines. Triptych differs from other FPGAs by
matching the structure of the logic array to that of the target circuits, rather
than providing an array of logic cells embedded in a general routing
structure. By matching the physical structure to the logical structure, we
reduce the amount of random routing that is otherwise required. As shown in
Figure 1, Triptych proviucs an underlying fanin/fanout tree structure that
matches the general structure of multi-level logic DAGs.

Figure 1. The overall structure of the Triptych FPGA shown in a progression
of steps highlighting more and more features.

2i

This basic structure is augmented with segmented routing channels between
the columns that facilitate larger fanout structures than is possible in the
basic array. Finally, two copies of the array, flowing in opposite directions.
are overlaid. Connections between the planes exist at the crossover points of
the short diagonal wires. It is clear that this array does not allow arbitrary
point-to-point routing like that associated with Xilinx and Actel FPGAs.
However, we claim that this array matches the form of a large class of circuits.
and that a mapping strategy that takes this structure into account can produce
efficient implementations.

We have measured the potential of the Triptych architecture relative to other
reprogrammable FPGAs by manually mapping a range of interesting circuits.
including structured circuits and random logic, and comparing the results
with respect to area cost and circuit speed. This comparison shows that
Triptych is similar in cost to the Algotronix CALl024 for structured circuits
suited to the CAL1024 and superior for circuits with non-local communication.
Triptych is about twice as efficient as Xilinx across the whole range of circuits.
The performance of Triptych implementations is comparable to that of other
FPGAs.

Although Triptych shows considerable potential as an efficient FPGA
architecture, the true viable of Triptych requires tools for automatically
mapping circuits to its structure. We are now working on a set of mapping,
placement and routing tools that incorporate information about the
underlying routing structure and attempt to satisfy routing constraints early
in the placement process. Our initial goal is to reach break-even point with
respect to Xilinx which occurs at about 30% utilization. That is. if we can place
and route circuits utilizing more than 30% of the available Triptych logic,
then our area cost will be less than Xilinx. We believe that 50-75% utilization is
ultimately realizable.

The complete text of a paper on Triptych that was present at the recent Oxford
FPGA workshop appears as an appendix to this report.

3

3 Subgraph Isomorphism

Carl Ebeling

We have been working on a "daughter of Gemini" algorithm [EB83. EB88] for
performing fast subgraph isomorphism for circuit graphs. Such an algori' m
will be useful for automatically identifying components in l.:ge VLSI cir. s
so that hierarchy can be extracted from layout and perhaps in techno ,_y
mapping for identifying possible coverings of logic graphs by libr:.ry
components.

Our algorithm is based on graph coloring and operates in two phases. In the
first phase, the subgraph is colored ,ch that the color of each node is
determined only by the internal struct..re of the subgraph. A node at the
center of the subgraph is also identified as the keystone node. The target
graph is also colored such that the keystone nodes of all subgraph instances
(and possibly other nodes as well) have the same color as the subgraph
keystone node.

In the second phase of the algorithm, each possible keystone node is examined
in turn to verify that it is part of a subgraph instance. This is performed by
coloring from the keystone node in both the subgraph and the target graph.
Fortunately, it is relatively easy to show that nodes outside the subgraph
instance can be kept from causing spurious colors on internal nodes. This
coloring provides a match if one exists, but must rely in difficult cases on
backtracking.

A prototype implementation of this algorithm has been completed and
preliminary results indicate that the algorithm works well for practical
circuits. In the future we will be modifying some of the data structures to
optimize the performance of the program, and measuring the performance for
large graphs and difficult subcircuits.

References:

[EB831 C. Ebeling and 0. Zajicek. "Validating VLSI Circuit Layout by WVirclist
Comparison." in Proceeaings of ICCAD, pp. 172-173. 1983.

[EB881 C. Ebeling, "Geminill: A Second Generation Layout Validation Program.
in Proceedings of ICCAD. pp. 322-325, Nov. 1988.

4

4 Symbolic Timing Verification and High-Level Synthesis

Gaetano Borriello. Tod Amon

Symbolic timing verification is a powerful extension to traditional constraint
checking that allows delays and constraints to be expressed as symbolic
variables. The verifier then determines the relationships between these
parameters based on known propagation delays and the timing constraints to
be satisfied. This type of verification provides a way for synthesis tools to
derive delay constraints on internal functions, given interface, throughput,
and latency constraints provided by the user. We have developed an approach
to symbolic timing verification using constraint logic programming
techniques. The techniques are quite powerful in that they yield not only
simple bounds on delays but also relate the delays in linear inequalities so that
tradeoffs are apparent. We model circuits as communicating processes and our
current implementation can verify a large class of mixed synchronous and
asynchronous specifications.

Symbolic timing verification can be used to answer many other questions
about a design specification and implementation. If circuit delays are known.
then the verifier can still provide an answer as to whether or not a particular
implementation meets all the timing constraints in the specification (as in
current non-symbolic verifiers). More generally, however, using variables
for delays can provide an answer about the range of values assignable to that
variable that will still meet the constraints. This can be valuable information
for a synthesis tool that must decide how to implement that particular
function. At low-levels of granularity for circuit functions it may lead to a
different logic network being used for a combinational function. At a high-
level it may lead t, 'i different ,rchitecture to implement a computation (e.g.
more or less parallel). When many delays are represented by variables, the
answer may be a set of linear inequalities constraining the variables. These
relations provide synthesis tools with information about tradeoffs between
circuit delays and how implementation choices for circuit functions may
affect each other.

Therefore, a symbolic timing verifier is extremely valuable for synthesis. The
information it produces about circuit delays can be used to determine how
much time is available for a sequence of operations so that any available slack
can be exploited in minimizing the circuitry required. As user-specified
timing constraints change, the synthesis process may lead to very different
circuit implementations that either exploit relaxed constraints to minimize
area or use higher-performance architectures and components to meet tighter
requirements. The utility of symbolic timing verification can be further
extended if we consider symbolic timing constraints. In this case. the
verification tool serves as an analysis tool that can determine how circuit
delays relate to the symbolic constraints. For example. if we wish to determine
the maximum throughput of a circuit. a variable can be used on the
throughput constraint and the verifier can determine its range of values
given circuit delays and other constraints.

It is these uses of symbolic timing verification, determining delay flexibility
in synthesis and how it affects the resulting circuit architecture. that
motivates this work. The information obtainable from a symbolic verification

5

process has three principal uses: (1) implementation verification. 12)
obtaining constraints for synthesis. and (3) design evaluation.
Implementation verification confirms that an implementation of a design and
its associated delays will meet the constraints in the original specification.
Synthesis tools can use symbolic delay values to determine the degree of
flexibility that is available while still satisfying the timing constraints. This
can lead to much more efficient use of resources in the final implementation.
Design evaluation can be performer by using sv, :,olic values in the
constraints and determining bounds on the values ol these variables Liven
circuit delays. This can provide information about how well a design will
perform and also relate the constraint variable to circuit delays.

6

5 Synthesis of Microcontroller-Based Embedded Systems

Gaetano Borriello. Pai Chou. Ross Ortega

Most digital design involves the design of controllers and most of the
controllers currently on the market usually involve an embedded
microcontroller that orchestrates the behavior of the system. However. high-
level synthesis tools have yet to target this type of low-cost. yet ubiquitous.
implementation medium and still focus on custom integrated circuit
implementations. We have recently begun a project to address this required
change in emphasis.

The issue is even more urgent as integration levels are increasing to tile point

where designers of these control systems have little idea what to do xith all
the devices that are now available on a single-die or within a single package.
In response to this, highly programmable logic arrays are being marketed
that can take advantage of economies of scale while still providing hardware
speeds and effectively the same density at the board level as custom logic.
Field-programmable gate arrays are not the only instance of this.
Microcontrollers. with ever increasing options for their communication ports.
are becoming extremely commonplace. There are even cases of the two being
integrated onto the same chip. thus allowing an entire control system to be
implemented in a single device that includes the required program and data
memory.

Our project is to study all aspects of synthesizing to these types of devices.
Problems range from how control-dominated designs are specified. to how
tradeoffs can be made as to what functions will go in hardware and which in
microcontroller software. Our approach is based on transformation of
communication channels between the parallel processes that make up the
system. We start from an initial specification and determine where a cut can
be made between processes. separating them on the basis of hardware or
software implementation. The position of the cut is based on the
communication channels crossing it and whether they can be effectively and
efficiently mapped to the microcontroller's I/O ports. Of , o rsc.
transformations mill be required to change the conmunication ko that ain
optimized cut can be made. Criteria for guiding the transformation includc
width and speed of the communication channel as well as the size of the
processes. Bandwidth and speed requirements have to be met. Program or
hardware size may be under constraints related to the details of the
microcontroller and programmable logic being used. Tradeoffs between the
two media are necessary to get designs to fit.

Currently, we are in the initial phases of implementing our system. We are
using a subset of Verilog with some specialized macros as our front-end and
plan to generate Verilog output as well. The output processes will be tagged as
being hardware or software and then sent to the appropriate low-level
synthesis tools for final mapping. Most of our efforts are goinu into the
development of a library of transformations for communication channels.
Each transformation module will create new processes of either hardware or
software to replace an existing communication channel and improve one ol
the above metrics. Also. we are investigating parallelization and
sequentialization algorithms for communicating sequential processes. as these

7

wil be needed to mect constraints or map multiple processes to a "Ingzle
microcontroller.

6 Chaos Router

Kevin Bolding, Samson Cheung, Carl Ebeling, Larry SnYder

The Chaos Router is an randomizing, nonminimal adaptive packet router for
use in communication systems of parallel computers [KS90. KS91I. Thc router
is deterministically deadlock free, probabilisitically livelock free and well
suited for k-ary, d-cube topologies. The present research thrust is to compare
chaotic routing with other routing strategies. e.g. oblivious routing and
deflection routing, to understand the circumstances under which it is superior
to competitors and to estimate quantitatively the amount of the improvement.
Additionally, the fault tolerance implications of the router are being
investigated. [This research is funded by NSF Grant MIP-9013274 and ONR
Grant N00014-91-J-1007.1

Since the last semiannual report, considerable progress has been achieved in
the areas of performance analysis and fault tolerance.

To evaluate the performance of chaotic routing against known routing
methods, an enormous number of simulations have been performed for a
variety of topologies (hypercube, mesh and torus), a variety of load
characteristics (uniform random and 4X hot spots) and for a number of system
sizes (64, 256 and 1024). The voluminous data generated by these simulation
cannot be easily distilled into a single characterization. However. the
accompanying graph gives a typical summary. Shown below are results for
an oblivious router, a deflection (hot potato) router, and chaotic router.

100, 256-node Torus Throughput (Uniform Tratfic)
3 tchaos

80 .----------- oblivious
-----. deflection

.- 60k -: - '- . K

40k

E 20-

10 20 30 40 50 60 70 80 Q() I W

% max load

256-node Torus Latency (Uniform Traftic)_

600 chaos
------ ..----- oblivious

~2400k--- 7
200 -- ' ". .

-------- -------------

0
10 20 30 40 50 60 70 80 0() I (X)

% max load

9

The topology is a torus of 256 nodes. The plots show normalized throughput
(bisection bandwidth = 100%) and latency (in flit times) as a function of
presented load. The results show that chaotic routing with shared channels is
able to transmit nearly all of the presented load and to have the minimum
latency among the different routers throughout most of the range. Further
results for 2-dimensional structures are presented in IBS91al.

In the fault dlerance arena, a protocol has been developed to implement
system level fault tolerance. The protocol includes detection of lost or blocked
packets, fault diagnosis (including discovery of inoperative channels and
processors), fault recovery (including a limited amount of system
reconfiguration). and system restart. Detection is especially interesting in the
chaotic router because there is no "worst case time for delivery" of a packet,
and thus it is not possible to use the usual timeout of acknowledgment failure
to identify lost packets. Details of the protocol can be found in [BS91b].

References:

IKS90 Smaragda Konstantinidou and Lawrence Snyder. "The Chaos Router: A
Practical Application of Randomization in Network Routing," in Proceedin:s ,,
the 2nd Symposium on Parallel Algorithms and Architectures. ACM. pp. 21-30.
1990.

[KS91 Smaragda Konstantinidou and Lawrence Snyder. "Chaos Router:
Architecture and Performance," in Proceedings of the 18th International
Symposium on Computer Architecture, IEEE, pp 212-221, May 1991.

[BS9laI Kevin Bolding and Lawrence Snyder. "Performance Study of Two-
Dimensional Chaotic Routers." Technical Report 91-04-04. Dept. of Computer
Science and Engineering, University of Washington. Seattle. WA. April 1991.

[BS91bj Kevin Bolding and Lawr'-nce Snyder, "Overview of' Fault Handling for
the Chaos Router." in Proceedings of the 1991 IEEE International lVorkshop on
Defect and Fault Tolerance in VLSI Systems. November 1991.

10)

7 The MacTester

Carl Ebeling, Neil MacKenzie. Larry McMurchie

The MacTester is a low-cost functional tester for both VLSI chips and board-
level designs. The test head datapath uses Xilinx FPGAs and provides 128 test
signals. each of which can he dynamically assigned as input or output. The
test head is a ZIF socket that accommodates a variety of DIP's and PGA's up to
132 pins without any auxiliary wiring, with the possible exception of power
and ground for large chips. The MacTester was originally designed with an
interface to the Mac Nubus. During the summer of '91, we completed the
design of an interface to the IBM AT bus.

There are two software environments for running the MacTester. One consists
of writing a test program (using any of ANSII C compilers) and linking a
library of low level tester routines that set and observe pins of the DUT.
Another environment is the DesignWorks schematic capture and simulation
system (from Capilano Computing), where the DUT is represented by an icon
just like any other schematic device. In this way one can add circuitry to the
schematic drawing that sets values on the DUT input pins and
observes/checks the output pins.

Recently, Applied Precision Inc. of Mercer Island. WA has indicated they will
manufacture and sell a tester based on the MacTester design. Availability is
scheduled for early 1992.

Apple Computer provided funds and equipment for the design of the
MacTester. Funding for the MacTester software development was provided by
an Software Capitalization Grant (NSF Grant #MIP-9018224). Through MOSIS,
DARPA has provided a means of fabricating tester PCBs.

11

TRIPTYCH: A New FPGA
Architecture

Carl Ebeling, Gaetano Borriello,
Scott A. Hauck, David Song,

Elizabeth A. Walkup

Department of Computer Science & Engineering
University of Washington

Seattle, WA 98195

Technical Report 91-09-05
September. 1991

This paper appears in "FPGAs", a book that contains
the proceedings of the Oxford Workshop on Field

Programmable Logic, September 1991.

TRIPTYCH: A New FPGA Architecture

Carl Ebeling, Gaetano Borriello, Scott A. Hauck,
David Song, Elizabeth A. Walkup

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195

A bstract

Existing FPGA architectures can be classified along two dimensions:
reprogrammable vs. one-time programmable and general-purpose vs. domain
specific. The most challenging class of FPGA architectures to design is the
reprogrammable, general-purpose FPGA, of which Xilinx is the most well-
known example. In this paper we describe Triptych. a new FPGA architecture
that addresses two problems of current reprogrammable FPGAs: the large
delays incurred in composing large functions and the strict division between
routing and logic resources. Our studies indicate that Triptych is more area-
efficient than current architectures and has comparable delay characteristics for a
large range of circuits that include both data-path elements and control logic.

INTRODUCTION

The most common approach to field-programmable gate array architectures is to dedicate a
portion of the total chip area to logic functions and the remainder to interconnection resources.
The logic functions may be fixed or programmable. while the routing is usually highly
programmable to ensure that a large percentage of designs are routable. The flexibility of the
interconnection network is limited by two factors: the number of configuration points (bits or
fuses) that can be accommodated on chip and the speed requirements of the signals routed
through the network (more switches or fuses on a signal path imply slower wires) (Rose
1991).

FPGAs can be programmed using a reprogrammable memory-based scheme or a one-time
programmable fuse technology. Xilinx is the most well-known example of a reprogrammable
FPGA (Carter 1986). It has logic blocks that can perform arbitrary functions of five inputs.
The routing resources are arranged in an orthogonal grid around the function blocks and
occupy approximately 90% of the chip area. Approximately 300 function blocks can be placed
in a single device, the number being limited by the extra routing resources additional function

2 Triptych: A New FPGA Architecture

cells would require. In a chip with 320 cells, 64.160 programming bits are required, or
approximately 200 bits per cell (Xilinx 1991).

Among one-time programmable FPGAs, Actel is the most common (E1-Ayat 1989). Actel
arranges a basic cell in rows similar to an arrangement of standard cells in a semi-custom
integrated circuit. The cell functionality is fixed, with the logic function determined by where
inputs are connected to the cell (typical usage is as a 3-input function). The interconnection
resources are also similar to the standard cell style with wires running in segmented channels
between the rows of cells and orthogonally across the cells to provide routing in all four
directions. The logic cells account for 10-15% of the chip area and 750,000 bits are required to
program a typical chip of 1200 cells (Actel 1991). The number of routing tracks limits the total
number of cells that can be placed with reasonable routability on a single chip.

A more recent entry in the FPGA arena is the Apple Labyrinth architecture (Furtek 1990).
Rather than dedicating chip area to either computation or interconnect, the Labyrinth FPGA
tiles the chip with identical small cells that can perform either 2-input functions or routing,
depending on the user-specified programming in the 4 bits per cell. Each cell is connected only
to its four nearest neighbors. The design is intended for pipelined bit-serial applications,
because the delays incurred in routing through many cells severely limit the cycle time.

In this paper, we present an alternative structure for reprogrammable FPGAs that blends
logic and routing resources more closely than most other FPGAs. That is, each routing and
logic block (RLB) in the Triptych array can be used both to compute a logic function and route
signals. More importantly, the array is structured to match the inherent fanin/fanout tree
structure of circuit graphs. This allows the physical layout of a mapped circuit to follow its
logical structure, reducing the need for extensive routing resources. Circuits use varying
numbers of RLBs for routing depending on how much their structure diverges from the
Triptych structure.

We decided to undertake the detailed design and implementation of Triptych in the graduate
VLSI implementation course (CSE568) in the winter quarter of 1991. The problem was an
ideal class project because there was only a small collection of basic cells to design, and
students could work on implementation and mapping issues in parallel. This paper describes
the basic Triptych architecture and the experience we gained implementing it and mapping
circuits to it. The two sections following this introduction describe the architecture in detail and
the issues and design choices encountered during implementation. The next section provides a
first look at how the architecture can be used and how it compares to others, as well as some
ideas for automatic mapping. Finally, we conclude with remarks about both the architecture
and the educational experience.

TRIPTYCH

The FPGA architecture we present in this paper differs from other FPGAs by matching the
structure of the logic array to that of the target circuits, rather than providing an array of logic
cells embedded in a general routing structure. By matching the physical structure to the logical
structure. we reduce the amount of "random- routing that is otherwise required.

Figure 1 shows a high-level view of a typical multi-level combinational logic circuit. The
flow is shown as unidirectional. from inputs to outputs. From the point of view of each input,
the data flow forms a fanout tree (shown with solid arrows) to those outputs that the input
affects. From the point of view of each output. the data flow forms a fanin tree (shown with

Ebeiin Borriello/lIauck/Song/Walkup 3

dashed arrows) from those inputs it depends upon. It is this fanin/fanout tree form that
Triptych emulates architecturally by arranging RLBs into column,, with each RLB having a
short, hard-wired connection to its nearest neighbors in adjacent columns (see Figure 2).

The basic structure is augmented with segmented routing channels between the columns
that facilitate larger fanout structures than is possible in the basic array. Finally, two copies of
the array, flowing in opposite directions, are overlaid. Connections between the planes exist at
the crossover points of the short diagonal wires. It is clear that this array does not allow
arbitrary point-to-point routing like that associated with Xilinx and Actel FPGAs. However,
we claim that this array matches the form of a large class of circuits and that mapping will
produce mutable implementations.

0~ 1 0

0~0

o0
o

Figure 1 View of a multi-level combinational logic circuit as interleaved fanin/fanout
trees.

Figure 2 The overall structure of the Triptych FPGA shown in a progression of steps
highlighting more and more features. The basic fanin/fanout structure on the left is
augmented with segmented routing channels that make a third input and a third output
available to the RLBs. The structure on the right is obtained by merging two copies of
the middle structure, with data flowing in opposite directions in the two copies. Not
shown are the connection between the two copies. which permit internal feedback.

4 Triptych: A New FPGA Architecture

Each RLB in the array has three inputs and three outputs and may perform an arbitrary
logic function of the three inputs, with the result optionally held by a master/slave D-latch
(Rose 1990). Routing in the Triptych array is in three forms: horizontally through the RLBs
(by selecting an input to be routed to an output), diagonally through short wires to neighbors,
and vertically through the segmented channels between columns of RLBs. Only one input and
one output can be connected to the vertical wires; the other two must be on the local diagonal
interconnect.

Circuits can be mapped onto this array by partitioning the logic into circuit DAGs
containing nodes with at most three inputs. These DAGs are then mapped to the physical
structure, with the inputs at one side of this structure and the outputs generated at the other.
The nodes of the DAGs are placed such that input signals are available from the neighbor nodes
or along a vertical connection. As Rose suggests in (Singh et al 1990), delay can be minimized
by using mostly direct, hard-wired connections for the critical path. Triptych implementations
do not strive for 100% logic utilization. Many RLBs will be used to provide routing, either to
fanout a signal or to pass it forward to the next level. Sometimes a mapping will leave some
cells unused to achieve a routable placement of nodes. Examples are provided below.

Figure 3. Triptych RLB design. The RLB consists of: 3 multiplexers for the inputs,
a 3-input function block, a master/slave D-latch, a selector for the latched or unlatched
result of the function, and 3 multiplexers for the outputs.

RLB structure

A logical schematic of the basic Triptych RLB is show in Figure 3. As can be seen, the cell is
designed to handle both function calculation and signal routing simultaneously (hence the name
routing and logic block. RLB). It takes input from three sources and feeds them into a function
block capable of computing any function of the three inputs, and the output can then be used in
latched or unlatched form. The RLB's three outputs can choose from any of the three inputs
and either the latched or unlatched version of the function block output. One last feature is the

Ebeling/Borriello/iauck/Song/Walkup 5

loopback from the master/slave D-latch, which enables the function to be dependent on its
previous value. This last feature is included for state machine implementation, although it may
be used to output both the latched and unlatched versions of the function block. Again, only
one of the inputs and one of the outputs can be connected to the vertical wires: the other two of
each type are connected to the local diagonal wires.

Typical RLB utilization

A Triptych RLB is capable of performing both function calculation and routing tasks
simultaneously, which leads to several different uses of the RLB (see Figure 4). The three
most obvious are: (a) a muting block with each input connected to one of the outputs; (b) a
splitter with one of the inputs going to two or three of the outputs; and (c) as a function
calculator with the three inputs going to the function block and the function going out the
outputs. However, there are two important classes of hybrids that help produce more compact
designs. The first comes from the observation that in blocks used to calculate a three-input
function, the function block will most likely not go out all three outputs, and one or two of the
input signals could be sent out the unused output connection(s), as in (d). Secondly, a
function of two inputs can be implemented by making the function insensitive to the third
input, thus allowing the unused input to be used to route an arbitrary signal. as in (e). An
important observation is that the RLBs will never need to be used for one-input functions (i.e.,
an inverter), since any output signal will only be used either as an input to another arbitrary
function block where the inverter could be just merged into the function computed, or to an
output pin where an optional inversion can be applied.

As was shown earlier, the Triptych FPGA has no generalized interconnect for moving
signals horizontally. Instead, there is a heavy reliance on unused RLBs and unused portions of
RLBs to perform these routing tasks.

(a) (b) (c) (d) (e)

Figure 4 Five typical uses of Triptych RLBs.

Interconnection

The Triptych RLBs are connected by three separate interconnection schemes. The first is for
horizontal interconnect and is accomplished through the RLBs as described above. The second
is for local high-speed communication between neighboring RLBs and is achieved through
"diagonals". The detailed structure of the diagonals is shown in Figure 5. They allow RLBs
to send outputs to the RLBs immediately above and below them, which flow in the opposite
direction, and to the two RLBs in the same position in the next column, which flow in the same

6 Triptych: A New FPGA Architecture

direction. Diagonals are important for two reasons. Diagonals permit the construction of
multilevel functions of more than three inputs without the speed penalty of general-purpose
interconnect. They also allow signal flow to change direction both so that circuits can be more
tightly packed and feedback can be provided for the implementation of sequential logic.

XX

Figure 5 Schematic view of a pair of diagonals and the routing combinations they
allow (implemented by a multiplexer at each diagonal input). The diagonals connect an
RLB's outputs to the RLB's four nearest neighbors: two directly above and below in
the same column and the two in the same positions in the next column.

The third type of interconnect is used for longer range connections and large fanout nodes.
It is implemented as a set of segmented "channel wires" between adjacent columns (see Figure
6) that connect middle outputs of RLBs to the middle inputs of RLBs flowing in the same
direction in the next column. Needless to say, this flexibility leads to a slower path. and speed-
critical designs will avoid using the vertical channels for critical paths. There are 7 tracks in a
vertical channel, with 6 handling inter-cell RLB routing and a seventh to carry a pin input. The
6 inter-cell tracks are broken up into two tracks each of 8. 16. and 32 RLB high segments.

Figure 6 .Top half of a segmented channel (on its side). The bottom half is a mirror
image of the top.

Ebeling/Borello/Hauck/Song/Wakup 7

One last important feature of the interconnect structure is how it handles the array borders.
Since there are no RLBs beyond the right and left edges for the channel wires to route to, the
channels on the edges tie the two directions of RLBs together. This way of handling the
border cases leads to a different way of looking at the array, namely as a cylinder of RLBs. If
the diagonals leading to the opposite direction of RLBs were cut except for those at the edges,
the chip would appear to be a folded cylinder of RLBs. In fact. it is often helpful to think of the
array as containing many smaller cylinders. For example, a six by six square of RLBs can be
broken off from the rest of the array and considered to be a cylinder three RLBs high and
twelve RLBs in circumference. This is not quite true because the vertical channel for the left
and right edges of the original six by six square will be unusable on the cylinder, however it
can be a useful abstraction for hand mapping. In fact, the Triptych chip is an array of 64x8
RLBs, yielding a cylinder of 32x 16.

Programming bit implementation and the scan path

Triptych is a RAM-based reprogrammable gate array with 26 memory bits per RLB, including
those bits used for all three types of routing. The memory cells are implemented pseudo-
statically with a "hold" signal asserted during normal operation and unasserted during
programming. We found that this gave a much smaller layout than a fully static design
(including the space needed for this extra hold line), especially when it was realized that the
hold signal was necessary for selectively disabling RLB output drivers during programming.
The memory cells are connected by a scan path running throughout the chip, allowing it to be
programmed by cycling data through the bits.

The scan path used for programming is also attached to the RLB's master/slave D-latches.
This not only allows the chip to start in any arbitrary combination of latch states, but it also
allows the contents of the latches to be shifted out after the chip has run an arbitrary number of
cycles to facilitate debugging. Also, if the scan path input is connected to the output, a
programmed circuit can be stopped at any point, the contents of the D-latches analyzed, and the
circuit resumed at the previous starting point.

Vital statistics

The speed of a path in a Triptych RLB can be calculated from the numbers given below in
Table 1. For example, a path using 4 RLBs, 2 for routing and 2 for function calculation, and 1
channel wire would take 13.9±0.6 nanoseconds (4¥1.6 + 2Y2.2 + 3.1±0.6 = 13.9+0.6).
Note that being able to use such a simple speed calculation method is due both to the simplicity
of the interconnect and also to the design philosophy of "independence of paths" described
below.

Table I Speed of important features, estimated using HSPICE with parameters for
the 1.2mm CMOS n-well process available from MOSIS.

Resource Used Delav
RLB 1.6ns
Function Block additional 2.2ns

8 Triptych: A New FPGA Architecture

Channel Wire 2.5-3.7ns

Table 2 Estimated space and memory utilization per RLB of various features. (Note:
percentage of RLB area includes area for memory cells.)

Percentage of Number
RLB area of bits

Vertical Segmented Channels 54% 9
Diagonals 6% 2
Internal Routing & Multiplexers 23% 7
Function Block & D-Latch 17% 8
Total 26

Table 2 describes the relative sizes of the main components of the Triptych RLBs. The
features measured are "Vertical Segmented Channels", including the line drivers and line
readers; "Diagonals" which includes similar features as the "Vertical Segmented Channels";
"Internal Routing & Multiplexers" which includes the three 4:1 multiplexers for selecting the
signal to send to each output as well as the 2:1 multiplexer that chooses between the latched and
unlatched function block output: and "Function Block & D-Latch". Note that each category not
only includes the area needed for the given functionality, but also the area necessary to store the
configuration bits (which contributes 1% of RLB area per bit, since 26 programming bits take
up 26% of the RLB area).

Probably the most important observation to be made from the table is that 83% of RLB
area is devoted to routing of one form or another, with the actual function calculation only
occupying 17%. Note that this number is fairly small compared to other reprogrammable
FPGAs since a full 30% of the space for "Vertical Segmented Channels" is actually the
inverters and tri-state buffers used to drive the channel wires, with another 6% in associated
memory cells. These features would be included in the function blocks of other FPGAs.

DESIGN ISSUES

The design and implementation of the Triptych FPGA brought up several issues that we feel
are of general interest. These are discussed in the following subsections.

Regularity

A goal in the design of the Triptych cell and interconnect was to achieve as regular a structure
as possible. This was done because technology mapping is difficult, and any irregularities only
complicate the issue. For example. the Triptych function block can compute any function of
three inputs, as opposed to designs such as the Actel FPGA where only a subset of the
possible functions can actually be realized in a cell. Also, an arbitrary function block removes
the worry of what to do for inversions, since an inverter can easy be factored into any or all of
the inputs and the output of the function block.

EbelingiBomello/Hauck/Song/Walkup 9

The interconnect scheme follows the same philosophy; the only deviation is caused by the
edges of the array. A more creative structure with the interconnect optimized differently (e.g.,
as a butterfly) could have been implemented. but we feel that the complications added to the
technology mapping stage would negate any potential gains.

Independence of paths and logical effort

The Triptych RLB is mostly composed of multiplexers and bus drivers. Early on, the decision
had to be made whether to implement most of the multiplexers with switch or gate logic. Our
original choice was to do most of the RLB in switch logic and only insert inverters where
necessary to drive loads. We have since decided this was a mistake and have redesigned the
circuit almost completely in gate logic. The main reason for this is something we call
"independence of paths". The idea is that the routing of two different paths should affect the
timing of each other as little as possible. This point is much the same as the one above, except
that where the above rule dealt with the logical specification of the RLB and the interconnect,
this deals with how the RLBs are actually implemented. Take for example the case where a
single RLB output fans out to several inputs. If the RLBs were implemented in switch logic,

ith pass-gates taking inputs off the vertical channels, a signal would propagate more slowly if
several RLBs were reading the same interconnect line than if each had its own. Thus, a
technology mapper designed to optimize for speed would have to make sure that the critical
path always used its own interconnect line. There are several other places where this effect can
manifest itself, such as routing an input to an output (which slows down the function
calculation) and splitting a signal to two or more outputs (which slows down both signals).
This rule exists not just to make technology mapping easier: by making paths independent, it is
also much easier to optimize the RLB channel wire drivers.

The Triptych chip was onginally laid out by a handful of graduate students with little or no
previous integrated circuit design experience. The project was camed on by one of these
graduate students (Scott Hauck). who did a completely new layout aided significantly by the

model of logical effort (Sutherland and Sproull 1991) which assists in the proper sizing of
transistors and insertion of buffers to optimize speed. Although we have no firm numbers
determining how much better the second design is than the fir ;t. we feel that logical effort can
help novice designers develop faster circuits.

Routing flexibility

There are several unsettled issues in the design of the Triptych routing network. First and
foremost is the sharing of tracks in the vertical segmented channels. By sharing tracks between
RLBs flowing in opposite directions. we could implement a more flexible feedback capability
than is possible using only the diagonals. Currently, the array has seven tracks for each
direction, for a total of 14 in each segmented channel. One alternative is to have 5 tracks for
each direction with another 2 shared for a total of 12. It is difficult to tell just how much
sharing is needed. The shared tracks would have more drivers and receivers than they would if
they were not shared and thus be slower. More experience with manual and automatic
mapping will be needed before this issue is resolved.

Another issue relates to the D-latch loopback capability, which replaces the channel wire
input in RLBs that use the loopback. Most likely, this input will be needed for an input and
conflict with the use of the loopback. The loopback exists because it was extremely cheap to

10 Triptycii: A New FPGA Architecture

include. The alternative is to route the output of the D-latch around through the RLB above or
below on diagonals. Whether this is sufficient or a form of internal loopback is required
(possibly coming in on diagonal inputs) will also be determined by experimentation.

Finally, we still must resolve how the Triptych array will be connected to the chip's I/O
pins. Inputs can reach the array by entering RLBs on either vertical edge or by entering the
vertical channels from the top and bottom. We expect to provide general input/output pads on
all four sides with routing channels along the top and bottom of the array. Connections with
either vertical edge will be more direct to provide a fast path into and out of the array for data-
path applications.

Programming hazards

In FPGA design it is very tempting to ignore the programming phase, except to demand the
most compact implementation of the programming bits as possible. However, this can lead to
some serious problems. In an FPGA, there are certain assumptions made about the
programming that are not enforced by the hardware. For example, it is assumed that at most
one RLB drives any specific channel wire. This is automatically enforced in intra-cel routing
and diagonals by virtue of multiplexer logic. In the case of channel wires, special hardware is
required to enforce this constraint, with a very high overhead. In the Triptych FPGA, we
simply assume that the software performing the mapping deals with this problem and that no
configuration loaded will violate this constraint. During programming, however, bits stream
through the programming memory, violating this programming assumption. This leads to
short-circuits in the chip and possible damage. One solution is to adopt a bit-addressable
scheme for the programming memory rather than a scan-path. but this is quite expensive due to
the extra routing and decode logic required. Instead. we use the same signal that enables the
scan-path to disable all channel wire drivers. Thus, while the chip is being programmed no
drivers are active, thereby eliminating the problem. This costs approximately an extra 3% in
chip area for the transistors and wiring required.

USING TRIPTYCH

In this section, we present several circuits that we have mapped by hand to Triptych. The
purpose of these examples is to demonstrate the constraints on routing and how multilevel logic
circuits do indeed map to the physical structure provided by Triptych. In these examples, each
RLB is shown as a cell with three input entries and three output entries. Each entry indicates
an incoming or outgoing signal. Note that each block may create a new signal by computing a
logic function over the inputs. Diagonals and reverse diagonals that are used in the
implementation are highlighted, as are connections to the channel wires. For clarity, only those
vertical wires carrying signals are shown.

8-bit rotate function

The power of using columns of RLBs for routng only is shown in this example which rotates
a set of 8 bits 4 positions. Each level can be used to send one signal from each RLB to a
neighbor of the final position. Since each RLB has two outputs. one intermediate RLB column
and two vertical channels are required to route the signals to their final destination (see Figure

EbelingfBorriello/Hauck/Song/Walkup 11

7). This generalizes to the case where three signals are routed per RLB, which requires two
intermediate RLB columns and three channels.

-- ---..

A A"

Figure 7 Triptych mapping of a 4-bit rotate of 8 bits.

Generalizing this use of the vertical channels suggests a naive place and route algorithm that
alternates columns of RLBs used for routing with columns used to compute logic functions.
Subject to a sufficient number of routing tracks, this leads to a viable routing of arbitrary logic
functions. However, as the next example shows, this scheme is much less area-efficient than
is generally achievable.

State machine example

Figure 8 shows the factored logic equations and corresponding Triptych implementation for the
ubiquitous traffic light example. This example shows that circuit mappings can be very
compact if the individual logic blocks are correctly placed. The inputs and outputs of this
circuit are all connected at the left and right of the array, except for three signals that use the pin
input track of the vertical channels (shown dangling off the bottom). In this example 16 RLBs
are used to compute logic functions, 2 RLBs are used only for routing, and 6 RLBs are left
unused (these 6 RLBs must be counted in order to achieve a rectangular mapping; they might
be used in neighboring circuits). Also, this circuit is assumed to be placed along the left edge
of the chip, so the vertical tracks at that edge are used to connect RLBs in the same column.
Note that this example would have been easier to map if the vertical wires could be used to
route within a column anywhere in the chip, not just at the borders, and in fact such an
extension is under consideration. This is about as compact a Triptych layout as can be
expected for a random logic function.

12 Triptych: A New FPGA Architecture

INORDER = sl s2 dl st SBO SB1;

OUTORDER = NSBO NSB1 r1 yi gi r2 y2 g2 sd;
NSB1 = !st * !gl !g2;

yl = r2 * 51;

gl = r2 * 151;

r2 = !st SB0 * 9 + st * !SB0 *9

y2 = 53 + 45;

g2 = !st * !r2 * !y2;

sd = 12 + 45;

51 = s2 * !SBl + !SB * SB1;

9 !SBI + !dl;

45 = sl * !SB1 * 46;

52 = !dl * SB1

53 = 52 * 46;

12 = !SBI * 18;

NSBO = 'st * !r2; a

46 = 'St * SB0;
18 = !SBO * s2 *st: 9 51 rC

Figure 8 Factored equations and Triptych realization of the traffic light controller.

Lyon bit-serial multiplier

Although our experience shows that Triptych can be used to implement a wide range of
circuits, its locally connected structure makes it especially good for repetitive arrays like bit-
serial arithmetic circuits. The Triptych structure has some of the same features (e.g., nea rest
neighbor connections) as the Labyrinth FPGA which was targeted to bit-serial and
pipelined/systolic circuits. We have chosen the Lyon bit-serial multiplier ceil (Lyon 1981)
shown in Figure 9 as a representative circuit from this class. A full n-bit multiplier comprises n
copies of this cell, and signal processing circuits typically make use of several of these
multipliers, containing many individual cells.

EbelingfBorriello/Hauck/SongWalkup 13

Figure 9 Design of a single Lyon bit-serial multiplier cell.

Figure 10 Layout for the Lyon bit-serial multiplier cell.

This multiplier cell presents the sam-e classic layout problem as that faced by VLSI cell
designers. The cells need to tile horizontally so that inputs match outputs and vertically so that
little space is wasted between adjacent multiplier cells (see Figure 10). In this case, however,
there is an extra dimension since a string of multiplier cells will wrap around the chip on the
opposite direction of RLBs. Since there is one RLB that is used from the opposite direction
(position E-2), the layout must provide a "hole" into which this RLB can fit (position B--4).
Note that these two logical RLBs can share a single physical RLB since they use independent
paths through the RLB. The cost of this multiplier cell design is 12.5 RLBs which is not much
more than the smallest conceivable design, which costs 11I RLBs. The 0.5 RLB results from
the sharing of one RLB (positions A-3 and F-4) between two vertically adjacent multiplier
cells.

Measurement and comparison

Although our experience with snapping circuits to Triptych is thus far very limited since
automated placement and routing are still being developed, we have some preliminary
measurements of the cost of Triptych implementations relative to Labyrinth and Xilinx. Since

14 Triptych: A New FPGA Architecture

the area cost is measured for each FPGA type in terms of the number of logic blocks used for
that technology, we must first normalize the cost of the different FPGA logic blocks to be able
to compare the different FPGAs. Although such relative figures are difficult to come by, we
have combined a relative size estimate based on die size and number of logic blocks, along with
the relative number of program bits to arrive at the following relative cost figures. Using the
cost of the Labyrinth logic block as the normalized unit cost, we estimate that the cost of a
Triptych RLB is about 4-5 (4.5) units and that of a Xilinx CLB (configurable logic block) is
about 20-25 (22) units. This places the Triptych logic cell squarely in the middle between the
very cheap Labyrinth cell and the relatively expensive Xilinx cell.

Table 3 gives the approximate cost of implementing a number of circuits using all three
FPGAs, both in terms of each technology's logic blocks and in normalized cost as defined
above. We believe these figures indicate that Triptych is a promising architecture for a range of
different circuits. These results are of course very preliminary and many more experiments
must be done with other circuits and using automatic place and route tools.

Labyrinth normalized Xilinx normalized Triptych normalized
Circuit # blocks cost # blocks cost # blocks cost

Multiplier 54 54 5 110 12.5 56
Traffic 280 280 6 132 24 108
s208 N/A N/A 26 572 61 275

Table 3. Results of mapping three examples: the Lyon bit-serial multiplier, a traffic
light controller, and ISCAS benchmark s208 the Labyrinth, Xilinx and Triptych.

Issues in mapping to Triptych

We have successfully mapped a number of regular structures and small control circuits to the
Triptych architecture, and we are currently working on CAD tools that will automatically
perform the mapping for arbitrary circuits. As with other FPGAs. the process of mapping a
circuit onto Triptych can be considered to consist of three steps:

" covering: forming a circuit graph containing function nodes with at most three inputs,
" placement: assigning these function nodes to cell locations on Triptych. and
• routing: making the connections in the graph through the available routing on Triptych.

If the circuit to be mapped has a regular structure, as is encountered in domain-specific
applications such as digital signal processing, an initial pattern for the repeating portion may be
derived by hand. Circuits without regular structure. or "random logic", must rely on heuristic-
based automatic placement and routing methods similar to those used by other FPGAs.
However, because Triptych's routing resources are highly constrained, placement and routing
must be more closely integrated than they are in other FPGAs.

For the covering portion of mapping to Triptych, we assume that a tool such as chortle or
mis-pga is available to express the original circuit as a graph of elementary gates and then cover
the graph's fanout-free trees with collections of three-input RLBs (Francis 1991, Murgai
1990). It should be noted, however, that a covering which minimizes the total number of
RLBs may not be optimal when placement and routing are taken into consideration. For
example, if after placement two of the inputs to a three-input RLB naturally both occur at a

Ebeling/Borriello/Haucr/Song/Walkup 15

single location distant from that RLB. it is usually advantageous to split the RLB into two two-
input functions. If this is possible, we can route one less signal across the large distance.
Clearly, such situations are not unique to Triptych. However, we particularly wish to avoid
routing extra signals horizontally whenever it can be avoided. Otherwise, RLBs become
congested with signals they do not use. Such optimizations are difficult to predict at cover time
and thus need to be attempted during routing.

Because Triptych's routing resources are limited and fairly tightly constrained, we believe it
is necessary to keep placement and routing well integrated. Evaluating possible placements
with simple measures of routing length can lead to placements whose congestion make routing
nearly impossible. Currently, we are exploring iterative improvement methods for placement
which will assign an RLB only into locations which are adjacent to enough free tracks to route
the RLB's inputs and outputs. Thus, we avoid congestion at a local level whenever we place
an RLB.

A complicating factor is that Triptych's distance metric is non-symmetric. All pairs of
RLBs that face in the same direction, except those in the same column, have a distance from the
first's output to the second's input different than that of the second's output to the first's input.
Also, vertically adjacent blocks have the same routing distance as diagonally adjacent blocks.
For these reasons, routing distance is not well represented by the x-y coordinates given to the
RLBs. Work is ongoing to develop an integrated force-directed placement procedure, a
Triptych-specific distance measure, and the congestion avoiding method mentioned above.

CONCLUSIONS

The new FPGA architecture presented in this paper was motivated by three needs: permitting
the realization of delay-critical circuits: including data-path and control elements in the same
array; and minimizing the space devoted to routing resources. We believe that Triptych
achieves these goals given the experience gained so far with many example circuits: a few of
which have been presented above. The examples have proven to be more densely packed and
to have delay characteristics comparable to the other FPGAs.

The most interesting and challenging future direction for research is automatic mapping.
Triptych requires that the functional and interconnect elements not be treated separately.
Combining the considerations for covering, placement. and routing should allow us to develop
mapping tools that more precisely predict the performance of circuits and more accurately trade
off density for speed.

Pedagogically, the design of a field-programmab!e gate array made an excellent class
project. It exposed our students to a large vertical slice of the design problem stretching from
electrical details to technology mapping issues. They were able to experience many of the
issues and tradeoffs that must be resolved in both integrated circuit and logic design.
Furthermore. the design and layout were ideal for a class pro,,ct because the work was easily
partitioned and only a small number of cells needed to be considered. In this respect, the
Triptych effort was a resounding success and has motivated several of the non-VLSI, non-
CAD oriented students to continue to look into VLSI issues.

In summary, we learned much from the design experience and believe we have a viable
new FPGA architecture for circuits where either minimization of delay is of critical importance
and/or data-path elements must be included with control logic. There is much work to be done,

16 Triptych: A New FPGA Architecture

especially in the area of automatic mapping, and promising directions are just beginning to be
pursued.

ACKNOWLEDGEMENTS

Thanks to David Hubbell, Daniel Kerns, Alexander Klaiber, Dylan McNamee, J. Scott
Penberthy, Radhika Thekkath, and especially Christopher Hdbert for participating in CSE568
and contributing to the early design phases of the Triptych layout and mapping techniques.
Thanks also to Rick Hood for the Labyrinth measurements in Table 3 and help developing the
relative cost measures. This research was funded in part by the Defense Advanced Research
Projects Agency under Contract N00014-J-91-4041. Gaetano Borriello and Carl Ebeling were
supported in part by NSF Presidential Young Investigator Awards with matching funds
provided by IBM Corporation and Sun Microsystems. Elizabeth Walkup holds an NSF
Graduate Fellowship.

REFERENCES

Actel Corporation, "ACT Family Field Programmable Gate Array Data Book", 1991.
W. Carter et al., "A User Programmable Reconfigurable Gate Array", Proceedings of the IEEE

Custom Integrated Circuits Conference, May 1986.
K. A. E1-Ayat, A. EI-Gamal, R. Guo. J. Chang, R. K. H. Mak, F. Chiu, and E. Z. Hamdy,

"A CMOS Electrically Configurable Gate Array", IEEE Journal of Solid-State Circuits,
Vol. 24, No. 3. June 1989, pp. 752-761.

R. Francis, J. Rose, and Z. Vranesic. "Chortle-crf: Fast Technology Mapping for Lookup
Table-Based FPGAs", Proceedings of the 28th Design Automation Conference, June
1991.

F. Furtek. G. Stone and I. W. Jones, "Labyrinth: A Homogeneous Computational Medium",
Proceedings of the IEEE Custom Integrated Circuits Conference. May 1990.

R. F. Lyon. "A Bit-Serial VLSI Architectural Methodology for Signal Processing",
Proceedings of VLSI'81, August 1981.

R. Murgai, Y. Nishizaki, N. Shenoy, R. Brayton. A. Sanggiovanni-Vincentelli, "Logic
Synthesis for Programmable Gate Arrays", Proccedings of the 27th Design Automation
Conference, June 1990.

J. Rose and S. Brown, "Flexibility of Interconnection Structures for Field-Programmable Gate
Arrays", IEEE Journal of Solid-State Circuits, Vol. 26, No. 3, March 1991, pp. 277-282.

J. Rose, R. J. Francis, D. Lewis, and P. Chow, "Architecture of Field-Programmable Gate
Arrays: The Effect of Logic Block Functionality on Area Efficiency", IEEE Journal of
Solid-State Circuits, Vol. 25, No. 5, October 1990, pp. 1217-1225.

S. Singh, J. Rose. D. Lewis, K. Chung, and P. Chow, "Optimization of Field-Programmable
Gate Array Logic Block Architecture for Speed", Proceedings of the IEEE Custom
Integrated Circuits Conference. May 1990.

I. Sutherland and R. Sproull, "Logical Effort: Designing for Speed on the Back of an
Envelope", keynote address at the University of California at Santa Cruz Advanced
Research Conference in VLSI, March 1991.

Xilinx. Inc., "The Programmable Gate Array Data Book", 1991.

OEsim: A Simulator for Timing Behavior

Tod Amon and Gaetano Borrillo

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195

Abstract Digital circuit behavior consists of two Behavior Structure
components: functionality and timing. Most computer-aided
design tools focus on functional aspects of behavior concurrent program register-transfer level
emphasizing data transformation and sequencing of operations. Functional abstract / high-level descriptions
Timing aspects of behavior have received far less attention and
have only recently come to the fore as concerns for system
level simulation, system integration, and synthesis are Tinting real-timeconstraints propagationdelays
becoming more acute. In this paper, we present a behavior (context dependent) setup/hold times
simulator, called OEsim, that addresses these issues. The
underlying model is based on OEgraphs and supports the
specification of timing constraints at many levels of Figure 1. The design representation space is divided betwee
abstraction, from propagation delays to interface behavior, behavior and structure and orthogonally between functional an
The simulator is an ideal design validation tool in that it timing aspects. Examples in each of the four quadrant
supports incremental checking of timing constraints during demonstrate the distinctions.
simulation and minimizes the description of circuit details
unnecessary to timing simulation. The key ideas are the use of Detailed timing behavior is an important part of higl
causality for the specification of abstract constraints through level specification. simulation and synthesis. Whe
the use of a restricted first-order predicate calculus that has a s e ci ito smlato and snhesis. he
clear simulation semantics and an efficient realization in the synthesizing a circuit not all aspects of its behavior are undt
simulator. OEsim has been implemented in C++ and constructs the control of the designer. That is. the circuit must conforma compiled simulation from an OEgraph representation, the environment in which it will be placed. The environmer

may demand that particular timing relationships be respecte,

1. Introduction These can be as simple as setup and hold times or as complex L
the spacing between messages sent over a local area networi
Within a circuit, we must be able to adequately describe th

Design representations capture many facets of digital timing methodologies used to implement different parts of th
circuit specifications. Circuit behavior is the high-level circuit. These include precharging constraints, pipelin
description of what a circuit does without overly specifying interlocks, and multiple-phase clocks. Also, we must be abi
how that computation is performed. Circuit structure is the to provide an abstraction of a circuit based on its interfac
low-level description of how the computation is implemented, behavior, a crucial capability for information hiding' an

that is. the logic gates and flip-flops used. Functional aspects modularity.
of both behavior and structure describe the data transformations We have developed a new representation which support
and computations to be performed on the inputs in order to the specification of timing behavior and was designed wit

generate the outputs. In contrast, timing relationships for simulation and incremental synthesis in mind. A cl
behavior and structure describe temporal properties such as simulation semantics was a requirement for all the features c
minimum and maximum separation times for signal events, the model enabling, among other capabilities. increment
Figure I maps out the space of design representation timing constraint checking during simulation. We hay

schematically. implemented a simulator, based on our representation. whic
It is of critical importance that a design representation provides empirical verification of timing behavior.

support user validation. Making sure that what was specified is This paper is divided into .five major sections. Section I
what was desired is the first step in verifying a design and motivates our approach to timing specification and provide
cannot be automated. A simulator provides the user with the the details of our new model. Section I n describes o
capability to try out the circuit and make sure it behaves as simulator and how simulation efficiency concerns affected th
expected (at least for a subset of all possible inputs). The develomen o setation ecioncons a ar

ability to simulate the specification at any point in the design development of the representation. Section IV contains a larg

space is also crucial as designs may consist of both behavioral example which demonstrates the usefulness of th
and structural components. Existing simulators focus representation and the simulator. Section V contains
primarily on functional or stuctural aspects and include little comparison of the simulator with existing high-levesupry fon fhesuntion o stuctrdin c e lr simulators and concludes the paper by summarizing thsupport for the simulation of timing behavior, contributions.

II. A New Model for Timing Specification

Permission to copy without fee all or part of this material is granted To describe timing relationships between circuit events w
provided that the copies are not made or distributed for direct commercial need to identify the circuit events being constrained an,
advantage, the ACM copyright notice and the title of the publication and express properties which the events need to satisfy. Fo
its date appear. and notice is given that copying is by permission of the example, a setup constraint applies to two circuit events (e.g.
Association for Computing Machinery. To copy otherwise, or to republish. an event on an input and the next rising clock edge), an(
requires a fee and/or specific permission. requires that they be separated by a fixed amount of time (e.g.

28th ACM/IEEE Design Automation Conferences
Paper 38.3
656 C 1991 ACM 0-89791-395-7/91/0006/056 S1-C

[time of edge - time of input] > 5ns.). Circuit events are usually Event nodes represent changes in logic level on circuit
constrained by specifying separation times - both absolute wires. If an event node is on a cycle in the graph then it may
("Sns") and relative ("3 cycles") to characterize propagation occur multiple times. Therefore, it is important to distinguish
delays, clock rates. etc. At higher behavioral levels, timing a discrete event from an event node. An event node represents
constraints are more abstract because they specify separation an event that may occur; a discrete event is an actual occurrence
times between abstract behavioral events. Constraints may of that event. Operation nodes or boxes are the second type of
apply only in a specific behavioral context (e.g., , uring read node in our graph representation and correspond to the
and not write operations) or as a result of a specific causal path. functional aspects of behavior and structure. Boxes contain
Typically timing constraints are informally specified using program code (e.g.. C++ source code) that is evaluated
timing diagrams and tables (see Figure 2). whenever an input event occurs. The evaluation may

conditionally generate output events which will occur at some
future point in time and/or possibly change internal state. An

-- o example of an operation node is a logic gate that may generate
9c U an output event whenever an input event occurs. The delay in

generating the output event corresponds to the propagation

SRW delay of the gate. The delay is specified by either a fixed value
-: or a range of values and a distribution function to indicate

*uncertainty with respect to when the event will actually occur
(e.g., the delay is dynamically computed each time a discrete

u , event is generated). A more abstract example of a box is one
Alm that forks two independent processes: an input event arrives at

;C='I r1* -.. I M",,All to s4 I,- an operation node that will then cause two parallel output
M. I w events thereby permitting two parts of the specification to

proceed in parallel. The events, in this case, do not correspond
_ _o __ to logic transitions and instead represent abstract control flow., NU Dependency arcs specify the flow of events in to and out of

Figure 2. A timing diagram from the specification of the boxes. The graph is bipartite because dependency arcs specify
Intel Multibus [I]. Constraints specify separation times flow of control by directing events into boxes and the output of
between events (i.e., changes in logic level on signal wires). boxes to events. Events have an in-degree of at most one

dependency arc, thus each event is either an external event or is
caused by tne execution of a single operation node. Events

To identify circuit events both chronological and causal may have arbitrary out-degree.
relationships are needed. Chronological relationships rely on
time as a means of identifying the events being constrained
(e.g., the next clock edge) and appear often in many
representations (i.e., temporal logics (2,3, hardware Dependency Arc
description languages [4]. waveform algebra 15], and many Operation Node(Box)
others). Causal relationships are equally important. For fall oe wire ck("ck);
example, in Figure 3. requests to a non-FIFO queue need to be E oe event F("F'.ck, WW);
acknowledged in less than lOOms. However. in this case, oeevent R_1 R,ckHIGH)

chronology cannot be used to pair up and identify the request 9 F (ck-) a~l I
and acknowledge events as they may occur in a different order itf (trigger--R) cause(F,25):1
on the output than on the input (i.e., a ater request may be f rise) (
acknowledged before an earlier one). if (trigger--F) cause(R,25) :

___ E (08box opl(lopl, fall);
R (coebox op2("op2", rise);

non-FO connect (opl, F); connect {R, opl}:
R equest u Acknowledge Event Node connect (F,op2) :connect (op2,R); I

Figure 3. A non-FIFO queue that acknowledges requests in a Figure 4. Graphical and textual versions of a simple single
different order than the requests were received, phase clock in the OEgraph representation (from a behavioral

perspective). The clock has a cycle time of 50 time units with
11.1 The OEgraph Model a 50% duty-cycle.

The representation we ha- e proposed [6.71 is a Event nodes that affect changes on the same wire can be
straightforward graph model whose 1,asis consists of two types grouped into an event node set. Since every possible change
of nodes connected by directed arcs to form a bipartite graph. A on the wire (every discrete event) is collected into the set we
restricted predicate calculus is used to express timing refer to such a set as a wire. In practice, wires can be
constraints. The model contains a novel concept: event considered a third type of node in our graph. Operations may
ancestry, to permit ressnning shout causal as well as have wires as inputs (any event that is a member of the wire is
chronological relationships. We present a summary of the an input to the operation) and may also have wires as outputs
model omitting many of the features that are not directly related (the output wire's value is changed via an implicit internal
to the expressibility of timing behavior (the applicability of event). An operation can ask about the value of an input wire
the model to the entire design space is discussed in detail in (i.e., the effect of the most recent discrete event on that wire).
(71).

Paper 38.3

657

The model contains additional elements for handling buses and * an integer function "V that returns the time at which a
other structural constructs, discrete event occurs

- a relation "anc" to test whether a discrete event is an

Wire Node owire ckc) ~ancestor of another
oe-wire D("DI); • a function "v" returning the wire value for a discrete event
Soewire Q(CQ"): • associated wire value relations

latch 0 (
i (trigqer-ck 6& ck--HIGH) The time at which an event occurs is not an infinite
cause(Q, uniformdelay(5,10), precision real, but instead is an integer. Thus multiple events

valuect ();) may appear to occur at the same time, due to a natural
maan I granularity problem that also exists in the physical world (i.e.,
oebox op("opl", latch); at some level of detail it is not possible to determine which of

I mlic Q connect (ck,opl); two events actually occurred first). This affects the definitions
Intemal Event connect D,opl); of the primitive relations described later in this section.

connect Iop, Q); The full first-order predicate calculus introluces problems
Figure $. A clocked edge-triggered D-latch in our (discussed in the next section) which we have addressed by
representation. Note that the propagation delay is uniformly restricting the representation of timing constraints to the
distributed between 5 and 10 time units, following format: 1. universal quantification of the discrete

events involved in the constraint, 2. specification of the
'Me model uses an event based paradigm because timing context within which the constraint must hold and. 3.

constraints are relationships between circuit events and are specification of a particular timing relationship that is required

more easily expressed in an event based model [8]. With to be true when the context is true.

respect to our representation, timing constraints are quantified discreteevents timing requirement
relationships between discrete events - not event nodes. For
example, the setup time constraint on the D-input to the latch in a =0 for the
of Figure 5 applies to any event on D and the next context discrete events
chronological occurring rising edge event on the clock.
Chronological relationships can often be used to identify the In order to capture much of the expressibility of the full
discrete events involved in a constraint. However, constraints calculus, while restricting it to the format above, we added the
may be relative to a particular execution path in a complex following three relations (lower case variables represent
graph, and constraint specification must include a way of quantified discrete events).
getting at this history. Causal relationships also need to be
described and reasoned about. An example of a constraint * mra(x,S,y) to test whether x's most recent S ancestor
requiring a causal relationship is a response time constraint on (of all the events in the set S) is/might be y.
requests to the queue of Figure 3. Causality pairs up mra(x.S.y)m Vz (anc(xy) A (ze Sv-ancestor(x,z)v t(z)Sr(y)))
corresponding request and acknowledge events so that a • pco(x,Y,y) to test whether x's previous chronological
maximum separation can be specified. occurrence of an event in the set Y is/might be y.

We have developed the concept of event ancestry to pco(x,Y~y)S Vz (y*XA'(y)S'(x)^ (ze Yv €(z)Lt(x)v(z):5(y))
address the specification of causal relationships. An ancestor p co(xY~y) to tst whether Yv nex c ronological
of a discrete event is any previously occurring discrete event * nco(xYy) to test whether x's next chronological
that led to the generation of its descendant through its effect on occurrence of an event in the set Y is/might be y.
a series of boxes. Thus, every discrete event has an ancestry nco(x,Y,y)m Vz (y*xAT(y)2%(X)A (Z9 Yv T(z)S'[(x)v [(z)..T(y))
tree, consisting of its immediate ancestors and their ancestors.
transitively. Whenever an operation decides to generate an These three relations are formally defined using the full calculus
event, the new discrete event has as ancestors the most recent and encapsulate, in a more efficient and compact form.
discrete occurrences of the input events named as ancestors (all concepts which are essential for timing constraint expression.
inputs by default). When an input wire is named as an ancestor, All constraints consist of combinations of these relations and
the most recent discrete event on the wire (as seen by the the logic primitives.
operation) is the ancestor. Internal state is treated the same
way as output events in that internal state variables have H2 Examples
ancestors and can be named as ancestors of output events.
When a state variable is named as an ancestor all of the Figure 6 contains the specification of the setup constraint
ancestor events of the state variable are ancestors of the for the D-input to the latch of Figure 5. The textual
discrete event. This permits decomposition of operations. representation for the calculus is very straightforward.

The language used for the specification of timing Constraints (and discrete events) are declared and specified
constraints (which are assertions about the desired behavior of using the three part format described above. Constraints can be
the specification) is based on a first-order predicate calculus specified individually as shown in Figure 6 or through the use
that consists of: of subroutines that can be parameterized (as is the case with

common constraints such as setup and hold).
- standard Boolean and integer functions and relations Most constraints imposed on a circuit have a simple

(V, A, -0, -, +. -. *,/, <. >, =) semantics and are thus easily expressed. For example a
V quatfication of discrete events and a test for equality constraint specifying that an input waveform has a minimum

(exqutntiaion o" dirse eV anda o equality pulse width is easily expressed: quantify two edges of the
(existential "3", universal "V", and equality =") waveform, and if they are chronologically related (e.g.,

. a relation "e" to test if a discrete event is an occurrence of pco(edgel.waveworm.edge2) then they must be separated by
a named event or a member of an event set the minimum pulse width (e.g. -(edge l)-'r(edge2)2 minpulse).

Paper 38.3
658

... inserted into main(I of figure 5 III. Simulation
Soe.constraint setup (setupl); As mentioned in section II the representation for timing

... - . discrete-name 0(0O0",O); constraints is a restricted version of the full first-order
D discrete name RO (R0",R); predicate calculus. In particular, the calculus only supports

setup.quantify(D0.RO); universal quantification where all quantifiers precede all
setup (D to R) > 10 setup.context (ico (DO, R, RO)); clauses. Existential quantification and the ability to negate

setup.require(timeOf(RO)-tmeOf(DO) >10)
restricted calculus: quantifiers was completely removed.

These simplifications were made for a number of reasons.
Vr Vd(re R A d D A nco(d,R,r)).-- (.r(r) - .(d) > 0)) In simulation, the universe of discrete events changes as new

full calculus: events occur and are added to the universe. Constraints are
Vr Vd 3z (,r(r)-r(d)>l0 v r R v de Dv r--d v (r)<x(d) v (zr R statements about the infinite universe of events. If the
A^r(d)<r(z)cr(r))) universe is constantly changing, when can constraints be

checked and violations reported? Violations can be detected
and reported for constraints with universal quantificationFigure 6. Our representation of the setup constraint for the because a particular instantiation of discrete events causesD input to the latch in Figure 5. constraint violation. With existential quantification
violations often can never be reported because the events that

Many constraints which appear to be simple in nature satisfy the-constraint may not yet have occurred. Of course, we
actually have a complicated semantic meaning. For example a can report satisfaction for existentially quantified constraints
constraint stating that "two events occur one cycle apart" is and not for universal ones, but in simulation (i.e.. for
subject to many interpretations. Timing diagrams and tables validation purposes) constraint violations are of primary
attempt to convey the semantics of such constraints but are interest. Often we would not be able to conclude anything
informal specifications and are often insufficient. Using about constraints that contain both quantifications and the
OEgraphs and the constraint specification language described simulator would be extremely inefficient because constraints
above we can formally specify such a constrainL would be repeatedly checked.

Figure 7 contains a constraint that states that events A and In addition, event generation (existence) is represented in
B are required to occur exactly one cycle apart whenever A and B the functional components of the graph. If an event is required
occur from the same request event (REQ). The constraint is to exist given a particular set of circumstances, an operation
complicated by the fact that A and B occur synchronously to can be defined which generates the event given the
the failing edge of the clock (F) and may occur anywhere within circumstances. Therefore, existential quantification - which
the shaded region shown in Figure 7 (requiring an exact is used primarily to describe functionality, is already
separation time between A and B would thus be incorrect). This encapsulated within our representation.
is another example of a constraint that cannot be expressed Of course, there are some relationships that can be easily
without the use of event ancestry. For example, waveform expressed in the full calculus which do not suffer from the
algebra (5] cannot be used to describe this constraint because it problems described above. We added pco. nco, and nra to our
cannot pair up the A and B events to be constrained, restricted calculus because they encapsulate relations which are

essential for timing constraint expression. They have
semantics that are easily implemented by the simulator and the
three relations do not introduce complications which would

REQ -F F prevent efficient incremental constraint checking - the
ck--JL L important motivation for our restrictions. Of course restricting

F A the calculus does weaken its expressibility. However. based onF aexperience with many example specifications we believe that
-there is no effect with respect to the specification of timing

requirements encountered in digital systems.

1111.2 Simulation Efficiency

quantify: AO, BO, FO, Fl. REQI The main efficiency concern in the simulator is the
context: pco(AO,F.FO)Apco(B0,F,FI)A incremental checking of timing constraints. Whenever a new

discrete event occurs, all constraints that quantify the event
mra(AOREQ, REQl) rara(BO.REQ,REQl) must be checked. The new event is quantified in the constraint

requirement: pco(FO,F,Fl)vpco(FI.F,FO) and all possible combinations of discrete events (that
previously occurred) are tried for the other quantified events.

Figure 7. A sequential logic constraint requiring two This mechanism ensures that each constraint will only be
events to be one cycle apart, checked once for each possible assignment of unique discrete

events. For example, consider the following constraint:
'Me context for the constraint establishes the identities of "quantify: XO,Yl context: r(Xo)>t(Yl) and some requirement".the quantified events. FO is the clock edge prior to Ai; F1 is If X events had previously occurred at time 5 and 12 and a new Y

the clock edge prior to BO; AO and BO share the same REQ event occurred at time 17, the constraint would be checked at
ancestor. The requirement is simply that FO be the clock edge time 17 with Y@17 instantiated for Yi and with X@5, and then
prior to F1 or that FI be the clock edge prior to FO. X@12 instantiated for X0. If a new X event occurred at time 20

the constraint would be checked with X@20 instantiated for X0

and with Y@17 instantiated for Yl. Constraint checking
requires an exponential amount of time with respect to the

Paper 38.3

659

number of events quantified by a constraint. Fortunately, most 111.2 Implementaton and Interface
timing constraints contain only two quantifications. This is
because most constraints require a separation time between two OEsim is a compiled simulator that takes as input a C++
events, and a simple context (i.e. a simple chronological or description of an OEgraph and its associated constraints and
causal relationship) is sufficient to identify the discrete events generates a compiled and linked form that includes the
being constrained, simulator front-end. This produces a single executable

Many other optimizations are performed to make the simulation program. By virtue of being a compiled C++
simulator more efficient. The occurrence of an event need not program, an operation node's program can include arbitrary
always trigger the evaluation of a constraint quantifying that C++ code that can be used to provide special interactions with
event as described above. If a constraint's context strictly the user (e.g., read and write data files). The simulation steps
orders the time of occumence of two events then a new event through the execution of the OEgraph and contains commands
need not be instantiated into the earlier event because it is which support user control (e.g., single stepping, setting
known that the context will be false (the later event has not yet breakpoints, scheduling events, etc.). Figure 8 contains an
occurred). For example, since t(X0)>r(Y 1) new occurrences of example simulation showing a violation of the setup
Y do not require checking of the constraint. This static constraint described in Figure 6.
optimization is also applied to constraints which refer to
ancestry because an ancestor must always occur before its Welcome To Simulation vl.3, Mon Nov 5 15:13:43 1990
descendant. Similar optimizations are made for constraints ... no stimulus file (fig6.itf) found
involving the chronological relations (pco and nco) and for oesim-O> schedule-event F 0
events which are known to occur at the same time. In this case, oesim-0> schedule-wire D HIGH 60
only one of the events needs to trigger constraint evaluation. oesim-0> schedule-wire D LOW 120

The optimization described above helps reduce the amount oesim-0> run-to 150
of time required by constraint checking. However, as the eventoccurs at time: 0 event F

simulation progresses and new events occur, constraint eventoccurs at time: 25 event R
checking becomes more time consumig because more events event-occurs at time: 50 eventevent occurs at time: 60 event D$<external>(D*HIGH)
are instantiated each time a constraint's context is evaluated, event-occurs at time: 75 event R
This problem is related to another efficiency concern: the event-occurs at time: I00 event F
amount of space required to store past events and maintain the event-occurs at time: 120 event DS<external> (D'LOW)
directed acyclic ancestry graph. This is particularly event_occurs at time: 125 event R
troublesome in that larger simulations usually generate lots of
events, and some events (e.g. clock edges) occur very *-Constraint Violation: setup:
frequently. However, it should be pointed out that larger R0 DO : nco(DO, R, RO) =-> ((t(RO) - t(D0)) >10)
simulations (i.e. large OEgraphs) are not inherently less RO - unique event: R occurrence: 3 at time: 125
efficient to simulate. Timing constraints apply to small D = unique event: D$<external> occurrence: 2 at

numbers of events, irrespective of graph size, and the

efficiency of the simulation engine is related to the amount of stopped at time: 150
parallelism inherent in the graph, not the graph size.

One approach to this problem is discrete event removal. Figure 8. An example simulation showing a violation of
Discrete events can be removed from storage if it can be shown the setup constraint described in Figure 6.
that they are no longer needed for constraint checking. In the
simple case, if an event is not a part of any quantified set, it The simulator was implemented using C++ in a UNIX
need not be stored. Before removing the discrete event, the environment and has already been instrumental in debugging
ancestry information which is contained in the discrete event specifications. We have used our simulator to describe a wide
node needs to be pushed outward. This is accomplished by range of examples derived from real circuits or extracted from
connecting the children of the node to the parents of the node the specification and synthesis literature--the largest being a
before deleting the node. We intend to extend this simple partial specification and simulation of the Intel Multibus (see
optimization (which has been implemented) to support the [71). We have yet to analyze the performance of OEsim in
removal of discrete events even when they are quantified and detail, but have found it to be efficient and capable. Compile
appear in timing constraints. Many constraints involve time (a few minutes) has always exceeded simulation time
simple chronological relationships that do not require storing except for un-optimized simulations containing constraints
complete histories (e.g. instead of storing every clock edge, that quantify many events. Space efficiency has not been a
only the two most recent edges are stored since they are the problem (i.e. storing over a million events) but further work is
only ones involved in constraints) and it should be possible to needed to suppon larger and more lengthy simulations.
determine a priori how many events need to be stored. With At the University of California at Berkeley, OEsim is
respect to causality, often only the more recent causal chains being used to represent the abstract interfaces of complex
are important, and in this case an event removal technique akin components that must be interconnected on a printed-circuit
to garbage collecting could operate periodically and effectively board or multi-chip module. The result is a simulation module
prune the ancestry DAG. for the glue logic that must be designed and an understanding of

For a given constraint if analysis can prove that under the many timing relationships that must be maintained when
any possible execution of the specification the context is the components are interconnected.
always false, the constraint would not need to be checked.
Likewise, the constraint would not need to be checked if any V. Conclusion
possible execution would result in the requirement always
being true. Such a simulation optimization tool (capable of OEgraphs were designed with simulation in mind. A clear
detecting these two conditions) would constitute a very simulation semantics was a requirement for all the features of
powerful verification tool. the model. An important goal consisted of modeling general

Paper 38.3

660

111111110

timing constraints expressed using both chronological and References
causal relationships. The difficulty with timing constraints
was ensuring that the calculus used for their specification had a [1) Intel Corporation. Intel Mudtibus Specification, 1982.
clear simulation semantics and would support incremental [2 E. Clarke. E. Emerson. A. Sistla. "Automatic Verification
constraint checking. This was accomplished with the three of Finite-State Concurrent Systems Using Temporal Logic
new primitives and format restrictions outlined in section II. Specifications". ACM Transactions on Programming

Existing simulators (i.e.. THOR [9]. COSMOS [101. VHDL Languages and Systems. Vol. 8. No. 2. April 1986.
[111) focus primarily on functional aspects of both behavior [31 B. Moszkowski, "A Temporal Logic for Multilevel
and structure. To consider timing constraints, users have to Reasoning about Hardware". IEEE Computer, VoL 18. No.
develop functional modules to check timing properties and 2, February 1985.
report their satisfaction/violation. This is precisely the [4 J. Nestor. "Specification and Synthesis of Digital
approach taken in VAL which uses a VHDL simulation engine Systems with Interfaces". Technical Report CMUCAD-87-
and augments the VHDL with assertions in waveform algebra 10, Dep't of Electrical and Computer Engineering.
(121. It is also important that these types of structured Carnegie-Mellon University. April 1987.
approaches are used rather than the more common ad hoc [5) L Atv .stin. "Techniques for High-Level Synthesis and
methods. Specification of timing constraints is very error Specific *on: Waveform Algebra". Fourth International
prone and must be done consistently to be useful. Workshop on High Level Synthesis, October 1989.

There are many reasons for developing a new f 6] T. Amon. G. Borriello. "On the Specification of Timing
representation and simulator instead of attaching our constraint Behavior". First International Workshop on Timing Issues
language to a VHDL simulator. First. complete VHDL is very in tn Soecification and Synthesis of Digital Systems (Tau).
difficult to synthesize and we would have 'ad to use a subset of Aug,-!. 1990
the language. Many constructs in the anguage allow the [71 T. Amon. G. Borriello. C. S-quin. "Operation/Event
manipulation of the simulation model ar s event queues. It Graphs: A Design Representation for Timing Behavior".
is not at all clear how to synthesize de. ptions using these Tenth International Symposium on Computer Hardware
consmcts. Second. to be able to refer tc . aus relationships Description Languages and Their Applications (CHDL),
among VHDL events would have meant moaifyL fundamental April 1991.
data structures to include the ancestry trees. Third, many [8] G. Borriello. "A New Interface Specification
aspects of behavior are best represented using an event model Methodology and its Application to Transducer Synthesis".
that is not completely supported in VHDL which is based Ph.D. Thesis, Computer Science Division. University of
primarily on a signal wire model. Lastly, we wanted the California at Berkeley, 1988.
capability of including arbitrary C++ code in our simulations [9] Thor Tutorial. VLSI/CAD Group. Stanford University.
so that user interfaces and other interesting I/O could be [101 R. Bryant. D. Beaty. K. Brace. K. Cho. T. Sheffler.
directly incorporated in the executable for the simulation. "COSMOS: A Compiled Simulator for MOS Circuits".

Implementation of OEsim is complete, although Proceedings of the 24th Design Automation Conference.
additional work to improve the user interface and to extend June 1987.
existing efficiency optimizations needs to be done. Our [111 M. Shahdad. et. aL., "VHSIC Hardware Description
research emphasis has moved from OEsim to other tools which Language". IEEE Computer. Vol. 18. No. 2 February 1985.
operate within the same framework. OEgraphs give time and [121 L. Augustin. B. Gennart. Y. Huh. D. Luckham. A.
timing constraints their long deserved equivalent status with Stanculescu. "An O.,ervicw of VAL", T iuical Report CSL-
structural and functional specifications. We believe the TR-88-367, Stanford University, 1988.
representation provides a target for the development of
domain-specific description languages and a basis for
incremental synthesis algorithms. The focus of our synthesis
work is on control logic synthesis and scheduling algorithms.
OEsim will be critical in verifying our efforts.

Acknowledgements

The authors gratefully acknowledge numerous dis ons
with Carlo Sequin and David Dill. Wayne Winder ar ren
Bartlett were instrumental in the implementatior; the
simulator. Jane Sun at UC Berkeley has been daring i to
put our simulator to the test.

This work was supported by the National -.ce
Foundation under a Presidential Young Investigaoi rd
(MIP-8858782) and by the Defense Advance Research Prc
Agency under contracts #N00014-88-K-0453 and #N00039
C-0182.

Paper 38.3

661

SIZING SYNCHRONIZATION QUEUES: A Case Study in Higher Level Synthesis

Tod Amon and Gaetano Borriello

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195

Abstract. In synthesizing a circuit from its description in a circuit configurations without changing the original
concurrent programming language, it is necessary to make specifications of the circuit components (processes).
decisions about how to implement synchronization constructs Our model of a send/receive queue is shown in Figure 1.
such as send and receive statements. The semantic model of From a user's perspective, the queue is of infinite length - the
these constructs is an infinite length FIFO queue that can user does not specify a size for the queue, it is assumed that the
handle all send events until they are paired up with queue will be as large as needed to process every send event and
corresponding receive events. In this paper, we describe an store its data until a receive event indicates that the data should
algorithm to size these synchronization queues while be output. From a synthesis perspective, there are two
permitting the maximum parallelism between the possibilities depending on whether the queue size can be
communicating processes (circuits). It is an example of higher bounded or not. An unboundable queue will necessitate explicit
level synthesis in that the user does not include an explicit handshaking signals that can be used to block the producer
description of the queue in the specification as is necessary in and/or consumer processes (thereby restricting some possible
current high level synthesis systems. parallelism). A bouded queue my be implement without explicit

handshaking and if it is of a small enough size (i.e.. one or two
I. Introduction entries) may be removed altogether through a merging of the

two processes. In this paper, we explore the problem of
High level synthesis is the process of deriving hardware determining the size of a synchronization queue given

implementations for circuits from concurrent programming constraints on the relative frequency of its send and receive
languages or other high level specifications [1]. These events.
specifications may include statements that are not inherently
implementable. An example of this is the send and receive
statements used for inter-process communication. These are Send Dataln
especially important in the specification of digital signal
processing, communications, and protocol circuits. The
semantics of send and receive is that two processes are
connected by an infinite length FIFO queue that can handle all
send events so that they can be paired up with the
corresponding receive event. In current high level synthesis oo Length Queue
systems. the user must explicitly bound the size of the queue
and ensure that the two parallel processes (circuits) will never
need to exceed that bound. This is normally achieved by the
user placing additional control statements in the specification
(e.g., in the form of handshaking signals) [2]. Receive ValidData DataOut

This leads to design style that is not modular and may also
unduly limit the parallelism inherent in the specification. A Figure 1. Our model of a generic FIFO queue. Send events
higher level synthesis system should be able to use timing indicate that data should be captured by the queue. Receive
constraints on the rate of send and receive events to compute a events indicate that the environment is ready to receive
bound for the queue size. As different interconnections are data. The queue issues ValidData events to indicate that it
made between components it should not be necessary to change has taken data out of its FIFO and placed it on the output.
their internal specification (as is currently the case l . If no
bound is computable then the system could automatically
modify the specification to include control logic to ensure that This paper is divided into four major sections. Section II
a certain size is not exceeded. The tradeoff between the size of describes the semantics of two particular queue models and their
the queue, the complexity of the control logic, and the timing constraints. Section HI describes a general technique
parallelism in the circuit could be under the direction of the for sizing synchronization queues. Section IV provides an
synthesis system and not the user. By sizing queues example and Section V concludes the paper summarizing the
automatically, different tradeoffs can be made for different contributions.

II. Queue Models and Timing Constraints

Permission to copy without fee all or part of this material is granted Many types of queues can be derived from the generic queue
provided that the copies are not made or distributed for direct commercial
ddvantage. the ACM copynght notice and the title of the publication and model presented in Figure 1. A non-blocking queue interprets
its date appear. and notice is given that copying is by permission of the receive events as requests for output which can be ignored if the
Association for Computing Machinery. To copy otherwise, or to republish, queue is empty. The receive events do not block and arrive
requires a tee andlor specific permission. periodically to poll the queue for data. A blocking queue

28th ACM/IEEE Design Automation Conferences
Paoer 39.5
690 1991 ACM 0-89791-395-7/91100060690 $1.50

interprets receive events as requests for output which must be detect and remove them. In some cases, the constraints will be
satisfied - when the queue is empty a receive event blocks (no ill-formed and the specification may be considered nonsensical
additional receive events will occur) until a send event arrives (e.g., SI ? 5 and S1 5 4).
and the receive is acknowledged by ValidData. These two Our analysis is also based on an important assumption.
queues appear often in the context of digital signal processing, "EmSg" is formall! defined as a timing constraint that is
communications, and memory and system bus interfaces, satisfied when E events occur: it does not state that the events

Asynchronous input data can be synchronized by a non- must occur. Since we are interested in operating circuits, we
blocking queue (e.g., every falling clock edge corresponds to a assume that the events will necessarily occur, and are interested
receive event which indicates that data can be output and thus in the steady state behavior (i.e., we assume that receive events
synchronized to the clock). In a blocking queue send and will not start occurring arbitrarily later than the send events).
receive events are paired up; this corresponds to the It is important to note here that our usage of queues is quite
send/receive constructs found in many concurrent programming different than in queueing theory. The constraints on events
languages. are not statistical averages but are abstractions of the

The two queues and their timing constraints are formally propagation delays inherent in the hardware used to construct
defined using OEgraphs which provide a formal semantics and a these circuits. As such. they are deterministic and enable us to
framework for our analysis 13,41. In this paper, we present a set firm bounds on the size of queues and even consider their
simplified syntax for timing constraints and rely on the elimination by transforming the queue into other memory
informal descriptions of the queues presented above, elements such as registers.

Timing constraints express information about the relative
frequency of send and receive events. How quickly events can III. Queue Sizing
occur is specified using the constraint "En a f" which
informally states that the nth next occurrence of E (En) relative Queue sizing is accomplished by comparing the fastest
to any E event (EO) takes place at least f time units after E0. rate at which send events can arrive with the slowest rate at
Thus. "S1 5" states that send events (S = send. R=receive) are which receive events must arrive. Before we present the
separated by at least 5. The constraint "En < f" specifies the algorithms for determining the queue size some preliminaries

slowest rate that events can occur. Thus. "R3 5 10" states that are in order including ascertaining that the constraints supplied

the third receive event after Any receive must take place within are well-formed.

10 time units. Intervals are specified using two integer time values and

The constraint definitions given above rely on being able may be open 3t2) or closed 14321. Open intervals may be

to fully order the occurrence of events (e.g., to be able to talk converted to closed intervals since times are integer values

about the 3rd receive event after another receive event). In (e.g.. (tl,t2) = (t1 1t2-11). We denote the maximum number

OEgraphs the time at which an event occurs is not an infinite of E events that can occur in the closed interval t4,t21 as
precision real, but instead is an integer [I]. Thus two events mostEin[tl,t2] and similarly denote the least number as
may appear to occur at the same time due to a natural granularity leastEin[tl,t2] . Note that mostEin and leastEin are based on
problem that also exists in the physical world (i.e.. at some the size of the interval (e.g., t2-tl) not the actual values of tj
level of detail it is not possible to determine which event and t2. Regardless of any constraints on E events if tl>t2 then
actually occurred first). Timing constraints express properties mostEin[tlt2] = 0 and leastEin~tl.t2] = 0. In the absence of
that are true given any interpretation for the order of events any constraints on E events and if tlt2 then mostEinItl.t2J =
that occur at the same time (i.e.. within the same time grain). and leastEinftl,t2] = 0. The constraints on an event are ill-
The two constraints are more formally defined as follows: formed if there exists an interval in which the minimum number

of events constrained to exist by a constraint is greater than
En f = given n and f positive integers and two points in the maximum number of events allowed by another constraint.
time ti and t2. if there are n+1 or more Es in the closed
interval t,t21 then t2-tl >_ f. Theorem 1: Given any number of constraints, if g/m < f/n
Em < g s given m and g positive integers and two point (for some Enaf and Em-<g constraint) then the constraints are

in time tI and t2. if there are m+1 or more Es in the closed ill-formed.

interval 1el,t21 and less than m Es in the open interval Proof: Consider an interval of size fg - 1. it must have at

(t43t2) then t2-tl 5 g. least ng Es (from Eng 2- fg which is derived by multiplying the
constraint En a f by g) and can have no more than mf Es (from

Our analysis would be conceptually easier if we assumed that Emf < gf which is derived by multiplying the constraint EmS5 g
every receive or send event was separated by at least 1 time by f). But ng < mf. a contradiction which indicates that the
unit. However, we consider the more general case in which two constraints are ill-formed.
events can appear to take place at the same time. This is
important because our underlying semantics is based upon Given a set of well-formed constraints for both the send and
OEgraphs. Also, if more complicated queues (e.g., multiple receive events of a queue it is then possible to determine if the
input ports) are modeled as simple queues then the ability to queue size is bounded or not.
handle inputs which appear to arrive at the same time is crucial.

More than one constraint may be available for a given Theorem 2: Given any number of constraints on S and R
event (e.g., S I a 2 and S5 ; 30). In some cases, one of the that are well-formed:
constraints may be redundant (e.g., if 51 a 2 then S3 a 4 is if Maxiall Rm-<g) (m /g) > Minl(al Snafl(n/1)

redundant because S3 a 6 can be inferred from S I a 2) because then the queue is boundable.

one or more other constraints can be used to derive a more if Maxiall Rm!g)(n/g) < Minj a
5 l Sn~f)(n/f)

restrictive constraint. Redundant constraints can be removed then the queue is not boundable.
but our results are not altered in the presence of redundant Proof: The justification for this theorem is rather intuitive.
constraints and it is more efficient to process them than it is to "Max fall RmSg1(m/g)' represents the slowest rate at which

Paper 39.5

691

receive events must arrive and "Minfall Snaf)(n/f)" represents Theorem 4: Given Ems g then leastEin(tt+] = nm.(I+j)/gJ.
the fastest rate at which send events could arrive. A necessary Proof: Every interval of size g-1 (i.e.. [t.t+g-lJ) must have
(but not sufficient) condition for bounding the queue is that on at least m Es. otherwise the first E (or one of the first if tied)
average the number of R events that occur is greater than or that occurred before the interval has as its mth next E an E after
equal to the number of S events, the interval, this would directly contradict the definition of

If the queue is bounded then for a given time interval, we EmS g. The closed interval [t.t+I] consists of LI/gJ
contrast the maximum number of send events that may have subintervals of size g - I (i.e., [t,t+g-l], [t+g,t+2g-l]
occurred with the minimum number of receive events that must tt+gLl/gJt+l]) each of which has at least m Es. and one interval
have occurred during the interval. The size of the queue is the of size I - gLI/gJ which has at least m Es if I - gLI/gj = g - 1.
maximum difference over all possible interval sizes. The The summation of mLI/gJ plus m if I - gLI/gJ = g - I easily
algorithm for determining maximum queue sizes is givenbelow: simplifies to m (I+l)/gJ.

I = maxQ = 0; We next consider cases in which there are multiple
repeat constraints specified for an event (including both minimums

Imax mostSin[0,I]-leastRin(0,I) and maximums). The additional constraints provide further
maxQ = Max(maxQ. Imax) information which may tighten the bounds on the minimum
1=1+1 and maximum number of events that can occur in a given

until (Imax:5 0) interval. For example, a constraint stating a minimum
separation can actually increase the number of events that must

The algorithm terminates when a negative or zero sized queue is occur in a given interval (e.g., given just E3 5 10 an interval of
achieved for a given interval. We don't need to consider larger size 5 is not required to have any Es. but if we add El a 2 then
intervals because somewhere in the larger interval the queue the Es satisfying E3 < 10 cannot occur together, and an interval
will be empty and the larger interval consists of smaller sub- of size 5 is now required to have at least one E).
intervals which have already been analyzed. The only problem
with the algorithm as presented is that there is no guarantee Theorem 5: Given any number of En f constraints and any
that it terminates (in fact, it would not terminate if it were used number of Era< g constraints then:
on unboundable queues). When the rates of S and R events are
equal, the algorithm may not terminate because the queue may mostEin[t. t+l] = Minfall Enf} of:
never empty but still contain a boundable number of entries.
For this special case, the loop termination condition changes n-lati[mod f+~-1
to: t rI/Id + Min n. iflI<f.

until (I a least common multiple of the M stEin[m mod fl, otherwise
g in Maxjal RmSg)(m/g) and the f in Min(all Snf)(n/f))

The algorithm terminates after running for a fixed number of leastEin[tL t+I] = Max~all EmSg} of:
intervals. Larger intervals are not considered because the/
behavior of the queue follows a worst-case pattern which is m - mostEin[(l mod g)+l.g-1],
cyclical. mLI/gJ + Max ifI<g,

The algorithms above rely on two functions mostIn and
leastIn that return the number of events (maximum and eastEin[0,1 mod g], otherwise
minumum number, respectively) that can occur in an interval.
Note that the minimum number in the open interval is Proof: (Omitted due to space constraints.) Intuitively, the
subtracted from the maximum number in the closed interval. two expressions are cross-coupled recurrence relations because
This is necessary to properly handle events that may occur in
the same time grain. A numerical algorithm is required because avmaxim (inimum) constraint can t acimgmoevents in an interval constrained by a minimum (maximum)
the maximum and minimum over all intervals cannot be constraint. We take the minimum (maximum) over all
determined analytically due to the discontinuous nature of the constraints so as to obtain the most constrained result. The
two functions. basic expression sums the events in all sub-intervals of size fThe values returned by mostin and leastn are dependent onthe constraints on the events and the size of the interval. We (g) and then takes the minimum (maximum) of n (0) and the

number of events constrained to occur in the interval left overnow consider the definition of these two functions and begin of size less than f (g).
with two simple theorems that apply when only one constraint
on an event has been specified. We now present an algorithm (see below) to solve the

cross-coupled recurrence relations and yield the maximum and
Theorem 3: Given En > f then mostEin[tLt+lj = n&.I/fJ +1). minimum number of events in an interval of a given size, given
Proof: If I < f there can be at most n Es in (t,t+I] because if any number of well-formed constraints on the events. It is
there were ai+l or more Es. this would directly contradict the based on two arrays (most and least) of size equal to the
definition of En : f. If I > f then [t,t+IJ consists of LfJ + I intervals in question. The arrays are initialized up to the size of
subintervals of size < f (i.e., [t,t+f-1], [t+f,t+2f.I] largest of all the f's and g's (M). Then each constraint is
[t+1/fJ.t+II) each of which can have at most n Es. applied to the arrays up to the size of the interval.

The initialization dominates the complexity of the
algorithm which otherwise consists of a single application of

Paer 39.5

692

the constraints to the interval in question. Constraints are represent either message headers or individual pieces of
repeatedly applied until mostEin has been minimized and message data. The fastest separation time between a header or a
leastEin has been maximized. The complexity of the piece of data and the next consecutive piece of message data is
initialization is easily (albeit pessimistically) analyzed: After specified as S I a 3. The slowest worst case separation time
one iteration, most has an upper bound of Max{all En-f)(nLT/fJ between consecutive receive events is a given. R 1 < 5.
+n) and the least has a lower bound of 0 (from the Unfortunately, these worst case constraints are not sufficient to
initializations to 0 and infinity and one application of the bound the size of the queue because send events can arrive on
constraints). Regardless of the number of iterations, most has average more often than receive events.
a lower bound of 0 and least has an upper bound of However, there is a large delay between consecutive
Max I all Em g) (mLT/gJ +m). Every iteration must either messages which can be specified as S 100 Z 750 (e.g,. messages

reduce most or increase least for some interval :5 T. This gives consist of at most 98 pieces of data and one header). This is

a very pessimistic upper bound on the complexity of the sufficient to compute a worst-case queue size of 41 (for an

algorithm. The algorithm is linear with respect to the number interval of size 297) after considering intervals up to 501 in
of constraints and has constants that are polynomial with size. The algorithm does not consider larger intervals becauserespect to the actual nbers specified in the constraints (i.e.. at 501 the number of receives is equal to the number of sends
cubic with respect to T). In practice the algorithm has been (100) and the queue is guaranteed to have been emptied.
observed to be nearly linear (with respect to T) because few If it was known that receive events will be occurring more
iterations are required (i.e. in one iteration most/least for frequently than the worst case separation (e.g., interrupts in the
many intervals dereireds(irases by large amounts until the receiving process can delay receive events but the interrupts
minimum/maximum is reached) themselves do not occur very often) then the queue size can be

decreased. For example, R5 0 S 200 results in a worst-case

ComputeMostLeast(intervalSize) (queue size of 31 (for an interval of size 294) after considering
intervals up to 401 in size.

applyconstraints (I) V. Conclusion
for every En : f constraint

N = rl/fJ + Min(most(I mod fl. n-least[f-2-(l mod 01) Sizing potentially infinite queues is an important
most4I] = Min(N, most(l]); component of higher level synthesis (5]. Placing the burden

for every Em S g constraint on the user to set the size of such queues is an unnecessary
N = mLlgJ+Max(leas[I mod gj,m-mosqg-2-(l mod g)]) overhead that can lead to inefficiencies in the exploitation of
least[I] = Max(N, least(I]); } the inherent parallelism in the specification and detracts from

the modularity and reusability of the specification.
if (we haven't initialized) In this paper, we have described an algorithm for sizing

check for well-formed constraints (Theorem l). synchronization queues given constraints on the rate of send
T = Max(Max~all Endf}f, Majall Emgg); and receive events. These constraints are either given or can
for I = 0 to T often be inferred given the presence of other constraints on the

most(l] = infinity; least[l] = 0; circuit's behavior (e.g., the circuit's propagation delays). In
repeat current synthesis systems. the user must explicitly specify the

for I = 0 to T queue size and then ensure that it does not overflow. The
apply-constraints(I) algorithm presented here is a part of an incremental approach

until (contents of arrays stop changing) to synthesis being developed with OEgraphs as a foundation.
Our immediate plans are to extend this work in the direction of

apply-constraints(intervalSize) synthesizing the control logic for the physical queue that will
return mostfintervalSize) and least[intervalSize) need to be implemented and perform tradeoffs between circuit

parallelism (slowing down the rate of send events or speeding

The techniques developed above can also be used to size up the rate of receive events), queue size, and control logic
blocking queues. The only difference for blocking queues is complexity.
that constraints on receive events have an altered semantics. If References
i receive event blocks, no more receive events will occur until
a send event occurs. Timing constraints need to express [11 M. McFarland. A. Parker. R. Camposano. "Me High-Level
information about the amount of time that can pass from an [1s M. Mcgrlnd A.Pre r o s o the IEEl
unblocked receive to the next receive event. Also of Synthesis of Digital Systems" Proceedings of the iEEE,
importance is the amount of time that can pass from a send that Vol. 78, No. 2, February 1990.
dispatches the blocked receive event to the next receive. These [21 D. Ku, G. De Micheli, "HardnwareC - A Language for
constraints can be specified within the OEgraph framework. In Hardware Desin Version 2.0". Technical Report CSL.
either type of queue, the constraints refer only to the first next TR-90-419. Stanford University, 1990.
receive event, and it is likely that the separation times are [3 e T. Anton G. Borello. "Operation/Event Graphs: A
identical in both cases. Therefore, we use exactly the analysis Design Representation for Timing Behavior" 10th
presented above with a different semantics for the timing International Conference on Computer Hardwareconsrains onR evnts.Description Languages, April 1991.
constraints on R events. [4) T. Amon. G. Borriello. "OEsim: A Simulator for Timing

IV. Example Queue Sizing Behavior" 28th ACM/IEEE Design Automation
Conference, June 1991.

We consider an example in which send and receive events [5) J. Huisken. et. aI., "Synthesis of Synchronous
arrive asynchronously to a non-blocking queue which is used to Communications Hardware in a Multiprocessor
buffer data being transferred between processes. Send events Architecture" 5th International Workshop on High-Level

Synthesis. March 1991.

PaDer 39.5

693

zs~e c , = 0Z?= -c

WIC-~-
0 W

. tC

00
Q~ :

~C .0
w

. ~

o C C5 .2 0 3' . s

>j .~ 6 . '->

0 >~ .w
r - . - =U C U0

> 6

to U< c - G ~r
rc. 0:~ .~ -k 5 *- wE4

Q~ CU
-- 0 E c3~ .C .U>

C QCu 0 C 07 m.. 0 C u* - C -1 Cu < C Q

C u o) 2U 14 m ~ C - 0 - C.-m c
.N~~. InC~u In-

~Cu~-~.nCo C) 0~C)~nto c OC0.u,~

u. . 0 y C >~

0, M 0.(UC w I

0~0 -M 45 E.
0

IA E~~uj ~ CD m - -. z ~
MO

4) W C !R Q .. = 0 EU)W

=>.Cu~ 0 - a1

U2..Cu*0
0 E- EO0,Ouiu-

~~~t .2,0u u
S.2 Q o0 C3

00 Cu0C2 0 ~ u CJ r -- ' C

w~ 4) ba 
C Cn-uQ

Mu2 C e . C vu 4u)u- C u 0 - vu - C A r - -Z -

S C u U2 0~ 1- w
C C-C C'u00u Cu.u-uCu Ca*Z*

Co 4)Z 
~ 

4) 
.-

>L C

a)= .-- ,- Cu Cu A0 Co O. a

Cu Co 0 CJ 
C

M C (.. 
- -

-n -. - -Q o a 0.

Q ~ ~ ~ ~ C cc ( A0o

S 00 - u > C

Lo~. u~ 0) 0 o5

0 UZ 
c

=0

(n 4) 0 "ac ~ -j 0.

6= t. CZ~

C ~~ - -2~

E- W.2 0.Cu Cz UC

05 ~ u 12  C.)

-4) U >>~C

o C-
U LL £C 0 

..

-~u cc0~

60~~C -. fl X 
C

~U.C
0ZCu

E 0

2 V



-d Q WQ uF c

E c
_ -*rbQo*u S62 2 to

-ca C) L -C
4v = Q

0 . 0 E- J0 0 01
Z o .>. c .- .ML

.0 o) w C o

C.)Q . - c 0

c2~co. Z -0 ca C.. r
cc m.u -

>1uz C6 I. .. W2
%; E 41 C)L.

u) r -00_I n -

o r -- E~~~ co

rW O .- - I "-- ci-

"0 >b .ao > - 0.

- - L -

r C .0 . _. 
r

E .o "aC Q. a) W
0* 0 u- >4E ~ 

4  w

JUS
cd X w b& 0 0 to zC z*

2~4 ~a
C) w_ S. T.

~W. 0

4- C U

--0 CZ

I- La M C

U .0 ca

>1 2~. -* U~~ U E

ci co P

-. =~



1U 0 1 'o - . 0 >

E 1- so. .2 c E c

ca o s o . 0a c~. E r -- 10 c

0-- -0 2 mo"
cc. ba 0. w t 0

ba 0.00.. 0.0 c I

a. Z a r-c , z > uI .

0 anc Wx .
> 0 ca a 0

cc a.U - z. 0I 03 0.
as 0i 2 ..- o 0 o 0. -
-

lv . -1

00

o: 0 : I > ~ '*

> >
w 0 C 0 ca~

Lt 0 "= .3 A -- 0I "
Q -0 a X .00 C 'A 0

~~& 00 booc~ U~

an- &. 0t,0 0 $. > 0 . s 0 1.. 0 0o

ba 'U0o, 0. 0 cr uE > - >

0O . )(00 0o~ 
0

bOO~~ C~t -* -*a= - -- U
Cd C0 O ~ 0 t r- c 0 CU.. coC r..

-00 '.-C c -o .ca r.o r.

o~ ~ 0 A .
0-,o0000.01 0 00

A6U . CU 0- p 0 0.2z b* -C 0 a C z > - ot 0** cc 4)

ca 0 w WS oU-U cw '

ow r-~2 Or 11T _

r- Co a =

:3 E 0
cd !E 00.0

r- 0 0urUcc 0 1.0 .

0~~~ v 0 0 - 00
WS 1 0 1 cc~

2,... E ~ =w Q6 & c c
o * ~ o S)0u Z a) PII.( -coct

,j E



L0

~cCE.u
c

30 c.. ~
0s A~ =0 j79 5-q

> r0 0. u~ -w @* icC 'a

o CL -0 -"W Lo 14 0

5: -- 4 - o c~w

00 u 0 u 0 c

-- s U-5 9 1
I.. ca r ..

r C.W
0  "C

0- ~ 05 g, cmE sZ

02W tfC j> '

j920 cx:~-;* .5.. -~ C.
4.~r 4 )3.

-u 'cc E S e 0

- 4) 1 2 0.
~.! ,* E =* ~ .o 02W

.. E0 E- -tz : .

c = 1. 1 - 10 w .QmC EE>P

Oc 3: -- c

>= > PC50 Q. S01 l

0 . . ~ 0 0

C 0~~0

3 Z.

> >

c lca4) , -

- ; .- , . 0 t

0 C

it L. 3 W

AI 40 0. .0 U)IE4

c o - -



7- C -

0.- - 1,x %- - .- Q

. rr..f- .- :=

0. Cl C f

0
2

Eo > Q CcC L. 4jI 0
M (*2 M.) I . -I Al

to>Q " -:

a- ~
0 j 1 cCUl-z ~ C .w C3 to . . . c
ba crM In U) >-In Al -- VIx

r-~~w 
' 00.

0-0 ~.C*.) CJ - C:-

V C 0 M

50 Q ~ "* J O L. 4 W to co co Cl > 0
4).t~ - C .0 M C.) - CW c %

U, t, CS Nam- C t-C 7-
0 c.. a~ .1 9

- 0 17ClC 0~ E 0 Cl -c II 6 ul

0C -0 *0-1 ... CC l l C , CcoJ C. Z0 = x- ;V :1 - C11- 0

MC Wo uC.>C- IN -(J. 14 C- w )
> 0

W C- 0 " cd
0 ~-i50 + 00. odP

Cl g5~ o u 0o c
S- . wm

>0 Cc. co t ,"I.,~~ -c < .
cz~~ 0 E 6

w 0 -Z 0

r- 0 ' - 0-1

Q.C w .40,

cc g5 00-* SA A

s~ ol

a~* i PC0 0V n

3:6 1aw. C- 00a.~~ ~ ~ a~ e ::V:3:::r ;;J 0!tom~ ~~ ~ ; % wQ " . b



~~v t- c Q

2o 'Eo 'a w 0Z
wo~

v r ~ C ).

'>O C-- >w,-

1Lo -

.0 0b cd cJ r

w 03

-- -> C 

A 0

-= -4 'R.~~- w
LL. C < .

a r 0 t -o

X >

;j 11. B:I
'r,~ ~ 52 0-

II ci- ca

~ -~owu ~ "

.JM 000

< x** C, x rz E 2

-. rd~ c-0

o ~~ ~ ~ .. 0Z~ ~ ~ ~ ~ bG

4' -cdO U ...
z vi~

>~-( ~(
Ooj

cz m -.0
'-Ir



E ~~ 0 i0 -4

:3 0

a, co CO -,' M)0 xvt wC -

0 . . 4)uiC-W o -
4*,Q- L. aco>0

. 'a >~ 'a j 0 0)

m~ 0 -Mo

> ca w m C

,, 'o -0 C ' i Ec Z C
L - a~ 0.)EI ~ (A>,(0 a

4 0 0

004)0

a Q ** -j a ~ -C q
c C C

m) - 0 m 10)~0 4 C
- -. 4)04

"o Q- a .I-(

W) cz-. 0.C~. -o.' - 0 [

E Cc r

ri C w a -w.
ca L.0 caC _

> Oc
w -V0.0 Q v 'Acc

0 > 0z
Q0

-ca C*to-, E

oZCc Q Z

cj C,

Q cj ) QL u c cz Q .

ca E- E

C4C



w r

go E- C .- C Z uuu

> ) E-C co -)C

.- X co cu C-, e 0 -1 c Q C

1 C12 r- ~ W cu M.

~) 0 a> .. o a W T,

M.C E~ 0
u ~ C c3c - ,0.

-OmC~b r.~-

= C
>. uCOI Q6 . u. >Q

C.' 1 Vu 0C. - = ) = C 0 4 ) 4)W
03 .r tj 0. Cr-M = - > 0 aQ0A 0 0 .C -a . t .

C4~ o - - o-+C >u >.-. ~ ~ ~ ~ ~ c W .-C.C; ~ C Cc - .9 L*. 0 u.C

Cub~ ~ [4 Cu -0. 
0 ~ C0-

0 a.-= 0U. W, w E- 0 cqO~

C0~~~.>u c: - C usw.- V CuUC - - -o

> + Cu C~~%E2 -c >C u o Q .0

co =u ,0 ~ r-'a, CJ C

a-W-. Mu C L) w~ .uZ40- '0 too 13~u - V M E_
Eu0 =W (z 3 C -

E-- S~ cc C 06-

euj Q CC..9 C .00-j o - r-,. 0C c
-U M- '- - 0.- , r- - C30

~ C = :u~ * _0 CuC .

ci c WC - u -- -0 a

-i co W.; S r u 4. M

X- 0u~ 02 W~~ O C c

0.~~~~~~ 
c ' ~ u 4 ~ ~ - ~0

a*=.=u L. "u .. a Q q

02W~ Cu.! -- - :~ u . b~
OO'2 Z~ 

CC~~~u'~4
e, ~ ~ ~ ~ - -0 C Q 4 ) 0 

.
4 

C ~ *~** 4
Q C _ 0 . o -j -4

4) 0.) c - Q) u u C 0,u

E a



!I, Cc a,- 't.

u-4 -, MC CL0 aim 0 -

c0 - 3C
C4 Cu 1 -

00 in -) t
>) -- z~- 

~ - 0

au *i Q. 0'

00...C 0 - ~ ~ 0-

LL;M Z 'r±u? 0o .0 Cu

a U~ cc~ co co ar~~~> 0. CO2-~4 -

r c 
Cc Q) S. - ~ C

Cu L.00-V 1

Q0 r Z W.~ 00 t. 6- 10~
41) .- Q C) x

01 04, ca. 3o .
CL Q4 > -- oj;; co to0. ~ c

Q . < .r- 4)* r-4, 0 F w

,, M 6~ r- 0.- t ~ (3 -> - _ - C
a cz > 'a O4) 1~ r, w 0 0 E2

'F- c* 1- C4 - - Eu ) 4)
C C (a E. -:; . >~)-o ~ 4~

C. M- 04 . to ' - 0 mu. -C

000 co> - L

. 00u M a

=0 -am w~

-0 > A L. ) -2 c. a4 0 - 'r cn ~
-0 t .~ . = " a u r- C 0')

co ~ s - v c)a

z to

a C c u 4" 0 .  
-0 o 4 b c ) Cu .. Ot 0u) U .. M2W

eo 00.. -4 0
1

,C w1.~ 
*-a Q Ox~~~~ .0tt..~..> .

+~~uUr F)~ .. C C )
V .2

Sn~C> cc S.. EC~ >> ! o-

-a - 0 Q) ~ 4)0
0 0 ) C" 0 -C b. E CM.0 Cuu... ccm

>1 0 ~Cu ) 0. - 0 Cu U , >
.2. ~ u C , w - - Cu

.. 0 v) c0 1.w3C Z

Cu 4) CLCu E >u4 0 0 00 c

E ' a Q~ c o E

w. E . Z V r- v -- ~
.- =00O a, CO~. co Cu E Co

Sv0. Cu. -0

cz a ui *-, -C 0 Q !. u .~ .~

M- E~. ; w i aC -f ,
E E4..Uu4).~.44 0 oou

c E
0 ..t4 - co)~~ z 4 X w U- c

4) > > C w .- ; Z.90 -

>,U " 00



0 -0

-n 00 r-

> Ce- .- .
cc O &7 -c - a t

-., -o6 -J ur

u cn , -'nr. ,

r to 0

0 n
U rn

2r 0 0~~C2 ~ a.24 r~~ COO 0

. c~. .

to C; -n a)0C
C to E E . C Z

M-& ML w a s- 0.6

'A 0 C"~
41 CL 10 9 0 C!-

CU,,

E -- E 0

4, Go ~ 13 0 ~ 0 wf C,
C! A- ~ '-S

IV, E,'r ~

WU,4>


